Principles of AI Planning

15. Strong nondeterministic planning

Bernhard Nebel and Robert Mattmüller January 16th, 2013

Strong planning

Concepts

Algorithms

Summary

In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans.

Concepts Strong plans

Images
Weak preimages
Strong preimages

Algorithms

Summary

Concepts

Recall the definition of strong plans:

Definition (strong plan)

Let S be the set of states of a planning task Π . Then a strong plan for Π is a function $\pi:S_\pi\to O$ for some subset $S_\pi\subseteq S$ such that

- \blacksquare $\pi(s)$ is applicable in s for all $s \in S_{\pi}$,
- $lacksquare{S}_{\pi}(s_0) \subseteq S_{\pi} \cup S_{\star} \ (\pi \ \text{is closed}),$
- $lacksquare S_\pi(s')\cap S_\star
 eq \emptyset$ for all $s'\in S_\pi(s_0)$ $(\pi$ is proper), and
- there is no state $s' \in S_{\pi}(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps (π is acyclic).

Concepts

Strong plans

Weak preimage

Algorithms

PRE B

Execution of a strong plan

- Determine the current state s.
- 2 If s is a goal state then terminate.
- \blacksquare Execute action $\pi(s)$.
- Repeat from first step.

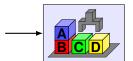
Concepts

Strong plans

Images

Strong preimag

Algorithms



Concepts

Strong plans

Images Weak preimages

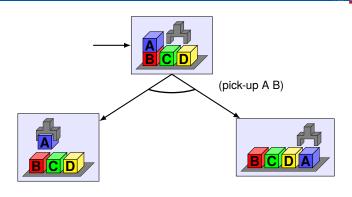
Strong preimages

Algorithms

Images

Weak preimages Strong preimages

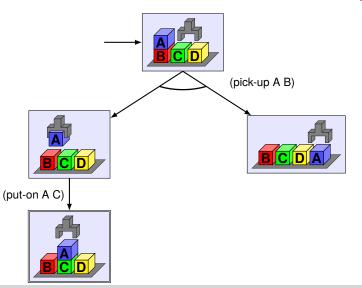
Algorithms



Strong p

Weak preimages Strong preimages

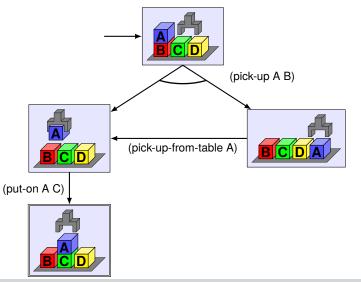
Algorithms



Strong plans Images

Weak preimages Strong preimages

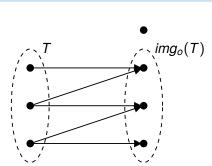
Algorithms



Images

Image

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.



Concepts
Strong plans

Images

Strong preimage

Algorithms

Images

NE NE

Definition (image of a state)

$$img_o(s) = \{s' \in S | s \xrightarrow{o} s'\} = app_o(s)$$

Definition (image of a set of states)

$$img_o(T) = \bigcup_{s \in T} img_o(s)$$

Strong pla

Weak preim

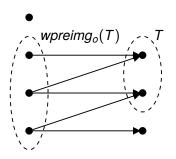
Strong preimage

Algorithms

Weak preimages

Weak preimage

The weak preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.



Strong plans

Weak preimages Strong preimage

Algorithms Summary

Weak preimages

Concepts

Strong pla Images

Weak preimages Strong preimage

Algorithms

Definition (weak preimage of a state)

$$\textit{wpreimg}_{o}(s') = \{s \in S | s \stackrel{o}{\rightarrow} s'\}$$

Definition (weak preimage of a set of states)

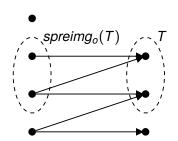
$$wpreimg_o(T) = \bigcup_{s \in T} wpreimg_o(s).$$

Strong preimages

FREIB

Strong preimage

The strong preimage of a set T of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o.



Concepts
Strong plans

Images
Weak preimages
Strong preimages

Algorithms

Strong preimages

Concepts

Strong plans Images

Strong preimages

Algorithms

$$spreimg_o(T) = \{ s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land img_o(s) \subseteq T \}$$

Concepts

Algorithms

Regression Efficient implementation regression

Summary

Algorithms

Algorithms for strong planning

Dynamic programming (backward)

Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.

- Zero actions needed for goal states.
- If states with i actions to goals are known, states with $\leq i + 1$ actions to goals can be easily identified.

Automatic reuse of plan suffixes already found.

Heuristic search (forward)

Strong planning can be viewed as AND/OR graph search.

OR nodes: Choice between operators

AND nodes: Choice between effects

Heuristic AND/OR search algorithms:

AO*, Proof Number Search, ...

Concepts

Algorithms

Efficient implementation or regression

If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

- Base case i = 0: In goal states there is nothing to do.
- Inductive case $i \geq 1$: If $\pi(s)$ is still undefined and there is $o \in O$ such that for all $s' \in img_o(s)$, the state s' is a goal state or $\pi(s')$ was assigned in an earlier iteration, then assign $\pi(s) = o$.

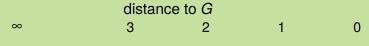
Backward distances

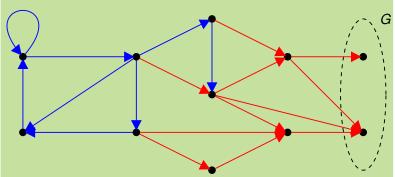
If s is assigned a value on iteration $i \ge 1$, then the backward distance of s is i. The dynamic programming algorithm essentially computes the backward distances of states.

Regression

Backward distances

Example





Concepts

Algorithms Regression

implementation regression

Definition (backward distance sets)

Let G be a set of states and O a set of operators.

The backward distance sets D_i^{bwd} for G and O consist of those states for which there is a guarantee of reaching a state in G with at most i operator applications using operators in O:

$$egin{aligned} D_0^{bwd} &:= G \ D_i^{bwd} &:= D_{i-1}^{bwd} \cup igcup_{o \in O} spreimg_o(D_{i-1}^{bwd}) ext{ for all } i \geq 1 \end{aligned}$$

Concepts

Algorithm

Regression

implementation regression

Concept

Definition (backward distance)

Let G be a set of states and O a set of operators, and let $D_0^{bwd}, D_1^{bwd}, \dots$ be the backward distance sets for G and O. Then the backward distance of a state s for G and O is

$$\delta_G^{bwd}(s) = \min\{i \in \mathbb{N} \, | \, s \in D_i^{bwd}\}$$

(where $\min \emptyset = \infty$).

Concepts

Algorithms

Regression

implementation of regression

Strong plans based on distances

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a nondeterministic planning task with state set S and goal states S_{+} .

Extraction of a strong plan from distance sets

- Let $S' \subseteq S$ be those states having a finite backward distance for $G = S_*$ and O.
- Let $s \in S'$ be a state with distance $i = \delta_G^{bwd}(s) \ge 1$.
- 3 Assign to $\pi(s)$ any operator $o \in O$ such that $img_o(s) \subseteq D_{i-1}^{bwd}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathscr{T} iff $I \in S'$.

Question: What is the worst-case runtime of the algorithm?

Question: What is the best-case runtime of the algorithm if most states have a finite backward distance?

Concepts

Regression

Efficient implementation of regression

Making the algorithm a logic-based algorithm

- UNI FREIBUR
- An algorithm that represents the states explicitly stops being feasible at about 10⁸ or 10⁹ states.
- For planning with bigger transition systems structural properties of the transition system have to be taken advantage of.
- As before, representing state sets as propositional formulae (or BDDs) often allows taking advantage of the structural properties: a formula (or BDD) that represents a set of states or a transition relation that has certain regularities may be very small in comparison to the set or relation.
- In the following, we will present an algorithm using a boolean-formula representation (without going into the details of how to implement it using BDDs).

Concepts

Algorithms

Efficient implementation of regression

0

Making the algorithm a logic-based algorithm

Remark: The following algorithm assumes a propositional representation of the state space as opposed to a finite-domain representation. We have already seen how to translate an FDR encoding into a propositional encoding in Chapter 9 (cf. definition of the "induced propositional planning task").

Therefore, for the rest of the present section, we will assume without loss of generality that all $v \in V$ are propositional variables with domain $\mathcal{D}_v = \{0, 1\}$.

Concept

Algorithms

Efficient implementation of regression

-

Progression breadth-first search

```
def bfs-progression(V, I, O, \gamma):
    goal := formula-to-set(\gamma)
    reached := \{I\}
    loop:
    if reached \cap goal \neq \emptyset:
    return solution found
    new-reached := reached \cup \bigcup_{o \in O} img_o(reached)
    if new-reached = reached:
    return no solution exists
    reached := new-reached
```

→ This can easily be transformed into a regression algorithm.

Concepts

Algorithm

Regression

implementation of regression

Progression

Efficient implementation of

rearession

Regression breadth-first search

```
def bfs-regression(V, I, O, \gamma):

init := I
reached := formula-to-set(\gamma)

loop:

if init \in reached:

return solution found

new-reached := reached \cup \bigcup_{o \in O} wpreimg_o(reached)

if new-reached = reached:

return no solution exists

reached := new-reached
```

■ This algorithm is very similar to the dynamic programming algorithm for the nondeterministic case!

Efficient implementation of

rearession

Regression breadth-first search

```
def bfs-regression(V, I, O, \gamma):

init := I

reached := formula-to-set(\gamma)

loop:

if init \in reached:

return solution found

new-reached := reached \cup \bigcup_{o \in O} spreimg_o(reached)

if new-reached = reached:

return no solution exists

reached := new-reached
```

How do we define spreimg with logic (or BDD) operations?

Transition formula for nondeterministic operators

Let V be the set of state variables and $V' := \{v' | v \in V\}$ a set of primed copies of the variables in V. Intuition:

- Variables in *V* describe the current state *s*.
- \blacksquare Variables in V' describe the next state s'.

We would like to define a formula $\tau_V(o)$ that describes the transitions labeled with o between states s (over V) and s' (over V') in terms of V and V'.

Concept

Algorithms

Efficient implementation of

implementation or regression

Transition formula for nondeterministic operators

Concepts

Algorithms

Regression

implementation of regression

Summar

The formula $\tau_V(o)$ must express

- the conditions for applicability of o,
- how o changes state variables, and
- which state variables o does not change.

A significant difficulty lies in the third requirement because different variables may be affected depending on nondeterministic choices.

 $au_V(o)$ for deterministic operators $o=\langle \chi, e \rangle$

$$au_V(o) = \chi \wedge igwedge_{v \in V} ((\mathit{EPC}_v(e) ee (v \wedge
eg \mathit{EPC}_{
eg v}(e))) \leftrightarrow v') \ \wedge igwedge_{v \in V}
eg (\mathit{EPC}_v(e) \wedge \mathit{EPC}_{
eg v}(e))$$

Assume that $e = \bigwedge_{a \in A} a \land \bigwedge_{d \in D} \neg d$ for $A = \{a_1, \dots, a_k\}$ and $D = \{d_1, \dots, d_l\}$ with $A \cap D = \emptyset$. Then this becomes simpler.

 $au_V(o)$ for STRIPS operators $o = \langle \chi, igwedge_{a \in A} a \land igwedge_{d \in D}
eg d
angle$

$$\tau_{V}(o) = \chi \land \bigwedge_{a \in A} a' \land \bigwedge_{d \in D} \neg d' \land \bigwedge_{v \in V \setminus (A \cup D)} (v \leftrightarrow v')$$

Concepts

Algorithms

Algoritimis

Efficient implementation of regression

Progression

Transition formula for nondeterministic operators

For nondeterministic operators $o = \langle \chi, \{e_1, \dots, e_n\} \rangle$ with corresponding add and delete lists A_i and D_i of e_i such that $A_i \cap D_i = \emptyset$, $i = 1, \dots, n$, we get:

 $au_V(o)$ for nondeterministic operators $o = \langle \chi, \{e_1, \dots, e_n\} \rangle$

$$\tau_V(o) = \chi \land \bigvee_{i=1}^n \left(\bigwedge_{a \in A_i} a' \land \bigwedge_{d \in D_i} \neg d' \land \bigwedge_{v \in V \setminus (A_i \cup D_i)} (v \leftrightarrow v') \right)$$

Example

Let $V = \{a,b\}$, $V' = \{a',b'\}$, and $o = \langle \neg a, \{a,a \land \neg b\} \rangle$. Then

$$au_V(o) =
eg a \wedge \Big(ig(a' \wedge (b \leftrightarrow b') ig) \vee (a' \wedge
eg b') \Big).$$

Concepts

Algorithms

Regression

implementation of regression

.

Definition (substitution)

Let φ, t_1, \dots, t_n be propositional formulas and v_1, \dots, v_n atomic propositions.

We denote the formula obtained from φ by simultaneous replacement of all variables v_i by the corresponding formulas t_i , i = 1, ..., n, by $\varphi[t_1, ..., t_n/v_1, ..., v_n]$.

Concepts

Algorithms

Regression

implementation of regression

_

Definition (existential abstraction)

Let φ be a propositional formula and v_1, \ldots, v_n be atomic propositions. Then the existential abstraction of φ wrt. v_1, \ldots, v_n is recursively defined as follows:

$$\exists v. \varphi := \varphi[\top/v] \lor \varphi[\bot/v]$$

$$\exists v_1 \dots \exists v_n. \varphi := \exists v_1 \dots \exists v_{n-1}. (\varphi[\top/v_n] \lor \varphi[\bot/v_n])$$

For a set of variables $V = \{v_1, \dots, v_n\}$ we use the abbreviation

$$\exists V. \varphi := \exists v_1 \dots \exists v_n. \varphi.$$

Note: Even with intermediate formula simplifications this can lead to an exponential blowup. BDDs can be useful here.

Concepts

Algorithm

Regression

implementation of regression

Progression

Computing strong preimages

NE NE

Strong preimages

$$\begin{aligned} \textit{spreimg}_o(T) &= \{ s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land \textit{img}_o(s) \subseteq T \} \\ &= \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\ \{ s' \in S \mid s \xrightarrow{o} s' \} \subseteq T \} \\ &= \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\ (\forall s' \in S : s \xrightarrow{o} s' \Rightarrow s' \in T) \} \\ &= \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\ (\neg \exists s' \in S : s \xrightarrow{o} s' \land \neg (s' \in T)) \} \end{aligned}$$

Concepts

Algorithm

Regression

Efficient implementation of regression

Computing strong preimages with boolean function operations

$$spreimg_o(T) = \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land (\neg \exists s' \in S : s \xrightarrow{o} s' \land \neg (s' \in T)) \}$$

Strong preimages with boolean functions

For formula φ characterizing set T of strongly backward-reached states:

$$spreimg_o(\phi) = \left(\exists V'.(\tau_V(o) \land \phi[v'_1, \dots, v'_n/v_1, \dots, v_n])\right) \land \left(\neg \exists V'.(\tau_V(o) \land \neg \phi[v'_1, \dots, v'_n/v_1, \dots, v_n])\right)$$

We can use this regression formula for efficient symbolic regression search. BDDs support all necessary operations (atomic propositions, \neg , \wedge , \vee , substitution, \exists , ...).

Concepts

Algorithms

Regression

Efficient
implementation of

regression Progression

Example

Let
$$V = \{a,b\}, V' = \{a',b'\},$$
 and

$$o = \langle \neg a, \{a, a \wedge \neg b\} \rangle, \quad \text{i.e.,}$$
 $au_V(o) = \neg a \wedge \Big(\big(a' \wedge (b \leftrightarrow b') ig) \lor (a' \wedge \neg b') \Big).$

Moreover, let $\varphi = a$. Then

$$\begin{aligned} \textit{spreimg}_o(\phi) &= \exists a' \exists b'. \Big(\neg a \land \Big(\big(a' \land (b \leftrightarrow b') \big) \lor \big(a' \land \neg b' \big) \Big) \land a' \Big) \land \\ &\neg \exists a' \exists b'. \Big(\neg a \land \Big(\big(a' \land (b \leftrightarrow b') \big) \lor \big(a' \land \neg b' \big) \Big) \land \neg a' \Big) \\ &\equiv \neg a \end{aligned}$$

Concept

Algorithms

Regression

Efficient implementation of regression

i iugiessiuii

Progression Search

ZE Z

- We saw a generalization of regression search to strong planning.
- However, this search is uninformed (breadth-first search).
- Is there an analogue to A* search for strong planning?
- Yes: AO* search
 - Progression search (like A*)
 - Guided by a heuristic (like A*)
 - Guaranteed optimality (under certain conditions, like A*)

Concepts

Algorithm

Regression

regression

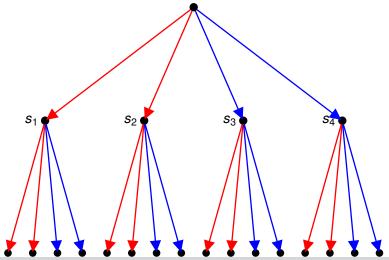
Progression

AND/OR search

Algorithms

Regression Efficient

> regression Progression

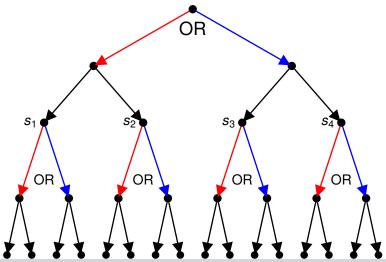


AND/OR search

Algorithms

Regression Efficient

regression Progression



Progression Search

- We describe AO* on a graph representation without intermediate nodes, i.e., as in the first figure.
- There are different variants of AO*, depending on whether the graph that is being searched is an AND/OR tree, an AND/OR DAG, or a general, possibly cyclic, AND/OR graph.
- The graphs we want to search, $\mathcal{T}(\Pi)$, are in general cyclic.
- However, AO* becomes a bit more involved when dealing with cycles, so we only discuss AO* under the assumption of acyclicity and leave the generalization to cyclic state spaces as an exercise.

Concept

Algorithm

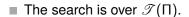
Efficient inplementation of egression

Progression

Algorithms

Regression

Progression



- For ease of presentation, we do not distinguish between states of $\mathcal{T}(\Pi)$ and search nodes.
- Also, for ease of presentation, we do not handle the case that no strong plan exists.

Definition (solution graph)

A solution graph for a nondeterministic transition system $\mathscr{T} = \langle S, L, T, s_0, S_{\star} \rangle$ is an acyclic subgraph of \mathscr{T} (viewed as a graph), $\mathcal{T}' = \langle S', L, T' \rangle$, such that

- \blacksquare $s_0 \in S'$,
- \blacksquare for each $s' \in S' \setminus S_{\star}$, there is exactly one label $I \in L$ s.t.
 - T' contains at least one outgoing transition from s' labeled with /,
 - \blacksquare T' contains all outgoing transitions from s' labeled with I (and S' contains the states reached via such transitions),
 - T' contains no outgoing transitions from S' labeled with any $\tilde{l} \neq l$, and
- every directed path in \mathcal{T}' terminates at a goal state.

Progression

Conceptually, there are three graphs/transition systems:

- The induced transitions system $\mathscr{T} = \mathscr{T}(\Pi)$, which only exists as a mathematical object, but is in general not made explicit completely during AO* search,
- The current portion of \mathcal{T} explicitly represented by the search algorithm, \mathcal{T}_e , and
- The current portion of \mathcal{T}_e considered by the algorithm as the cheapest/best current partial solution graph, \mathcal{T}_p .

Concepts

Algorithms

Efficient implementation

regression Progression

Definition (partial solution graph)

A partial solution graph for a nondeterministic transition system $\mathscr{T} = \langle S, L, T, s_0, S_\star \rangle$ is an acyclic subgraph of \mathscr{T} (viewed as a graph), $\mathscr{T}_p = \langle S_p, L, T_p \rangle$, s.t.

- \blacksquare $s_0 \in S_p$,
- for each $s' \in S_p$ that is not an unexpanded leaf node in \mathscr{T}_p there is exactly one label $l \in L$ such that
 - T_p contains at least one outgoing transition from s' labeled with I,
 - T_p contains all outgoing transitions from s' labeled with l (and S_p contains the states reached via such transitions),
 - T_p contains no outgoing transitions from s' labeled with any $\tilde{l} \neq l$, and
- every directed path in \mathcal{T}_p terminates at a goal state or an unexpanded leaf node in \mathcal{T}_p .

Concept

Pagentin

implementat regression Progression

Definition (cost of a partial solution graph)

Let $h: S \to \mathbb{N} \cup \{\infty\}$ be a heuristic function for the state space *S* of \mathcal{T} , and let $\mathcal{T}_p = \langle S_p, L, T_p \rangle$ be a partial solution graph. The cost labeling of \mathcal{T}_p is the solution to the following system of equations over the states S_p of \mathcal{I}_p :

$$f(s) = \begin{cases} 0 \\ h(s) \\ 1 + \max_{s \stackrel{o}{\longrightarrow} s'} f(s') \end{cases}$$

 $f(s) = \begin{cases} 0 & \text{if } s \text{ is a goal state} \\ h(s) & \text{if } s \text{ is an unexpanded non-goal} \\ 1 + \max_{s \stackrel{o}{\rightarrow} s'} f(s') & \text{for the unique outgoing action} \\ o \text{ of } s \text{ in } \mathscr{T}_p, \text{ otherwise.} \end{cases}$

The cost of \mathcal{T}_p is the cost labeling of its root.

AO* search keeps track of a cheapest partial solution graph by marking for each expanded state s an outgoing action o minimizing $1 + \max_{s \in S'} f(s')$.

Progression

Procedure ao-star

def ao-star(\mathcal{T}):

let \mathcal{T}_e initially consist of the initial state s_0 .

while \mathcal{T}_p has unexpanded non-goal node:

expand unexpanded non-goal node s of \mathcal{T}_p

add new successor states to \mathcal{T}_e

for all new states s' added to \mathcal{T}_e :

$$f(s') \leftarrow h(s')$$

 $Z \leftarrow s$ and its ancestors in \mathscr{T}_e along marked actions.

while Z is not empty:

remove from Z a state s w/o descendant in Z.

 $f(s) \leftarrow \min_{o \text{ applicable in } s} (1 + \max_{s \xrightarrow{\circ} s'} f(s')).$ mark the best outgoing action for s

(this may implicitly change \mathscr{T}_p).

return an optimal solution graph.

Concepts

Algorithm

Regression Efficient

regression
Progression

Correctness (proof sketch)

- Solution graphs directly correspond to strong plans.
- Algorithm eventually terminates (finite number of possible node expansions).
- Acyclicity guarantees that extraction of \mathcal{T}_p and dynamic programming back-propagation of f values always terminates.
- Marking makes sure that existing solutions are eventually marked.

Concept

Algorithi

Regression

regression

Progression

Details

- Pseudocode omits bookkeeping of solved states (can improve performance).
- Choice of unexpanded non-goal node of best partial solution graph is unspecified.
 - Correctness/optimality not affected.
 - One possibility: choose node with lowest cost estimate.
 - Alternative: expand several nodes simultaneously.
- Algorithm can be extended to deal with cycles in the AND/OR graph.

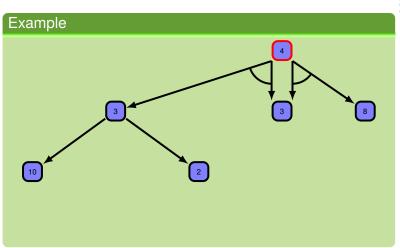
Concepts

Algorith

Regression

implementati regression

Progression

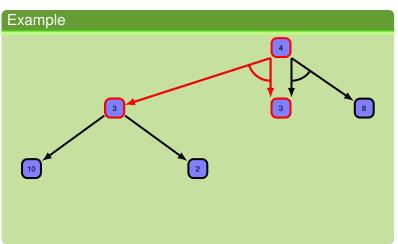


Concepts

Algorithms

Regression

regression Progression

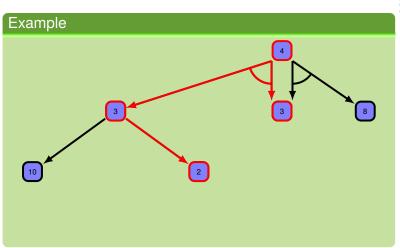


Concepts

Algorithms

Regression Efficient

regression Progression

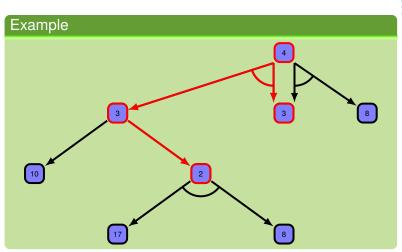


Concepts

Algorithms

Regression

regression Progression

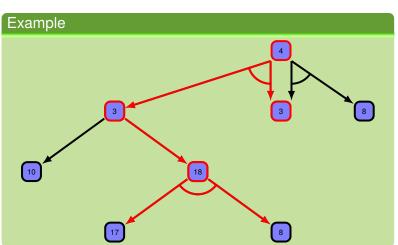


Concepts

Algorithms

Regression

regression Progression

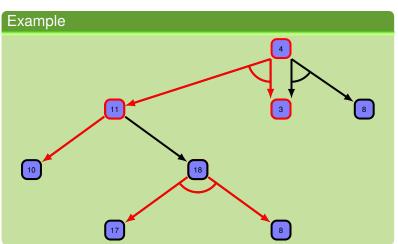


Concepts

Algorithms

Regression

regression Progression

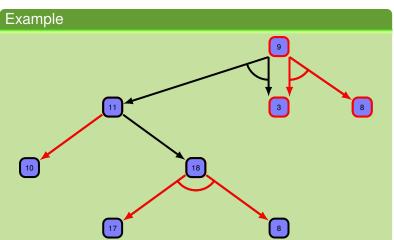


Concepts

Algorithms

Regression

regression Progression



Concepts

Algorithms

Regression Efficient

regression Progression

Heuristic Evaluation Function

- Desireable: informative, domain-independent heuristic to initialize cost estimates.
- Heuristic should estimate (strong) goal distances.
- Heuristic does not necessarily have to be admissible (unless we seek optimal solutions).
- We can adapt many heurstics we already know from classical planning (details omitted).

Concept

Algorithm

Regression Efficient implementation

Progression

Concepts

Algorithms

Summary

Summary

- We have considered the special case of nondeterministic planning where
 - planning tasks are fully observable and
 - we are interested in strong plans.
- We have introduced important concepts also relevant to other variants of nondeterministic planning such as
 - images and
 - weak and strong preimages.
- We have discussed some basic classes of algorithms:
 - backward induction by dynamic programming, and
 - forward search in AND/OR graphs.

Concepts

Algorithms