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1 Parallel plans

Plan steps, serializations and parallel plans
Forward states and parallel forward distances
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Towards better relaxed plans

Why does the greedy algorithm compute low-quality plans?
It may apply many operators which are not
goal-directed.

How can this problem be fixed?
Reaching the goal of a relaxed planning task is most
easily achieved with forward search.
Analyzing relevance of an operator for achieving a goal
(or subgoal) is most easily achieved with backward
search.

Idea: Use a forward-backward algorithm that first finds a
path to the goal greedily, then prunes it to a relevant
subplan.
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Relaxed plan steps

How to decide which operators to apply in forward
direction?

We avoid such a decision by applying all applicable
operators simultaneously.

Definition (plan step)
A plan step is a set of operators ω = {〈χ1,e1〉, . . . ,〈χn,en〉}.
In the special case of all operators of ω being relaxed,
we further define:

Plan step ω is applicable in state s iff s |= χi for all
i ∈ {1, . . . ,n}.
The result of applying ω to s, in symbols appω (s), is
defined as the state s′ with on(s′) = on(s)∪

⋃n
i=1[ei ]s.

general semantics for plan steps much later
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Applying relaxed plan steps: examples

In all cases, s = {a 7→ 0,b 7→ 0,c 7→ 1,d 7→ 0}.
ω = {〈c,a〉,〈>,b〉}
ω = {〈c,a〉,〈c,aB b〉}
ω = {〈c,a∧b〉,〈a,bB d〉}
ω = {〈c,a∧ (bB d)〉,〈c,b∧ (aB d)〉}
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Serializations

Applying a relaxed plan step to a state is related to applying
the operators in the step to a state in sequence.

Definition (serialization)
A serialization of plan step ω = {o+1 , . . . ,o

+
n } is a sequence

o+
π(1), . . . ,o

+
π(n) where π is a permutation of {1, . . . ,n}.

Lemma (conservativeness of plan step semantics)
If ω is a plan step applicable in a state s of a relaxed
planning task, then each serialization o1, . . . ,on of ω is
applicable in s and appo1,...,on(s) dominates appω (s).

Does equality hold for all/some serialization(s)?
What if there are no conditional effects?
What if we allowed general (unrelaxed) planning tasks?
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Parallel plans

Definition (parallel plan)
A parallel plan for a relaxed planning task 〈A, I,O+,γ〉 is a
sequence of plan steps ω1, . . . ,ωn of operators in O+ with:

s0 := I
For i = 1, . . . ,n, step ωi is applicable in si−1
and si := appωi

(si−1).
sn |= γ

Remark: By ordering the operators within each single step
arbitrarily, we obtain a (regular, non-parallel) plan.
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Forward states, plan steps and sets

Idea: In the forward phase of the heuristic computation,
1 apply plan step with all operators applicable initially,
2 apply plan step with all operators applicable then,
3 and so on.

Definition (forward state/plan step/set)
Let Π+ = 〈A, I,O+,γ〉 be a relaxed planning task.
The n-th forward state, in symbols sFn (n ∈ N0),
the n-th forward plan step, in symbols ωF

n (n ∈ N1), and
the n-th forward set, in symbols SF

n (n ∈N0), are defined as:
sF0 := I
ωF
n := {o ∈O+ | o applicable in sFn−1} for all n ∈ N1

sFn := app
ωF
n

(sFn−1) for all n ∈ N1

SF
n := on(sFn) for all n ∈ N0
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The max heuristic hmax

Definition (parallel forward distance)
The parallel forward distance of a relaxed planning task
〈A, I,O+,γ〉 is the lowest number n ∈ N0 such that sFn |= γ, or
∞ if no forward state satisfies γ.

Remark: The parallel forward distance can be computed in
polynomial time. (How?)

Definition (max heuristic hmax)
Let Π = 〈A, I,O,γ〉 be a planning task in positive normal
form, and let s be a state of Π.
The max heuristic estimate for s, hmax(s), is the parallel
forward distance of the relaxed planning task 〈A,s,O+,γ〉.

Remark: hmax is safe, goal-aware, admissible and
consistent. (Why?)
November 21st, 2012 B. Nebel, R. Mattmüller – AI Planning 10 / 62
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So far, so good. . .

We have seen how systematic computation of forward
states leads to an admissible heuristic estimate.
However, this estimate is very coarse.
To improve it, we need to include backward
propagation of information.

For this purpose, we use so-called relaxed planning graphs.
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2 Relaxed planning graphs

Introduction
Construction
Truth values
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AND/OR dags

Definition (AND/OR dag)
An AND/OR dag 〈V ,A, type〉 is a directed acyclic graph
〈V ,A〉 with a label function type : V →{∧,∨} partitioning
nodes into AND nodes (type(v) = ∧) and OR nodes
(type(v) = ∨).

Note: AND nodes drawn as squares, OR nodes as circles.

Definition (truth values in AND/OR dags)
Let G = 〈V ,A, type〉 be an AND/OR dag, and let u ∈ V be a
node with successor set {v1, . . . ,vk} ⊆ V .
The (truth) value of u, val(u), is inductively defined as:

If type(u) = ∧, then val(u) = val(v1)∧·· ·∧val(vk).
If type(u) = ∨, then val(u) = val(v1)∨·· ·∨val(vk).
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Relaxed planning graphs

Let Π+ be a relaxed planning task, and let k ∈ N0.

The relaxed planning graph of Π+ for depth k, in symbols
RPGk(Π+), is an AND/OR dag that encodes

which propositions can be made true in k plan steps,
and
how they can be made true.

Its construction is a bit involved, so we present it in stages.
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Running example

As a running example, consider the relaxed planning task
〈A, I,{o1,o2,o3,o4},γ〉 with

A = {a,b,c,d,e, f ,g,h}
I = {a 7→ 1,b 7→ 0,c 7→ 1,d 7→ 1,

e 7→ 0, f 7→ 0,g 7→ 0,h 7→ 0}
o1 = 〈b∨ (c∧d),b∧ ((a∧b)B e)〉
o2 = 〈>, f〉
o3 = 〈f ,g〉
o4 = 〈f ,h〉

γ = e∧ (g∧h)
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Running example: forward sets and plan steps

I = {a 7→ 1,b 7→ 0,c 7→ 1,d 7→ 1,e 7→ 0, f 7→ 0,g 7→ 0,h 7→ 0}
o1 = 〈b∨ (c∧d),b∧ ((a∧b)B e)〉
o2 = 〈>, f〉, o3 = 〈f ,g〉, o4 = 〈f ,h〉

SF
0 = {a,c,d}

ω
F
1 = {o1,o2}

SF
1 = {a,b,c,d, f}

ω
F
2 = {o1,o2,o3,o4}

SF
2 = {a,b,c,d,e, f ,g,h}

ω
F
3 = ω

F
2

SF
3 = SF

2 etc.
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Components of relaxed planning graphs

A relaxed planning graph consists of four kinds of
components:

Proposition nodes represent the truth value of
propositions after applying a certain number of plan
steps.
Idle arcs represent the fact that state variables, once
true, remain true.
Operator subgraphs represent the possibility and effect
of applying a given operator in a given plan step.
The goal subgraph represents the truth value of the
goal condition after k plan steps.
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Relaxed planning graph: proposition layers

Let Π+ = 〈A, I,O+,γ〉 be a relaxed planning task, let k ∈ N0.

For each i ∈ {0, . . . ,k}, RPGk(Π+) contains one proposition
layer which consists of:

a proposition node ai for each state variable a ∈ A.
Node ai is an AND node if i = 0 and I |= a.
Otherwise, it is an OR node.
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Relaxed planning graph: proposition layers
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Relaxed planning graph: idle arcs

For each proposition node ai with i ∈ {1, . . . ,k}, RPGk(Π+)
contains an arc from ai to ai−1 (idle arcs).

Intuition: If a state variable is true in step i, one of the
possible reasons is that it was already previously true.
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Relaxed planning graph: idle arcs
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Relaxed planning graph: operator subgraphs

For each i ∈ {1, . . . ,k} and each operator
o+ = 〈χ,e+〉 ∈O+, RPGk(Π+) contains a subgraph called
an operator subgraph with the following parts:

one formula node niϕ for each formula ϕ which is a
subformula of χ or of some effect condition in e+:

If ϕ = a for some atom a, niϕ is the proposition node
ai−1.
If ϕ =>, niϕ is a new AND node without outgoing arcs.
If ϕ =⊥, niϕ is a new OR node without outgoing arcs.
If ϕ = (ϕ ′∧ϕ ′′), niϕ is a new AND node
with outgoing arcs to ni

ϕ ′ and ni
ϕ ′′ .

If ϕ = (ϕ ′∨ϕ ′′), niϕ is a new OR node
with outgoing arcs to ni

ϕ ′ and ni
ϕ ′′ .
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Relaxed planning graph: operator subgraphs

For each i ∈ {1, . . . ,k} and each operator
o+ = 〈χ,e+〉 ∈O+, RPGk(Π+) contains a subgraph called
an operator subgraph with the following parts:

for each conditional effect (χ ′ B a) in e+, an effect
node oi

χ ′ (an AND node) with outgoing arcs to the
precondition formula node niχ and effect condition
formula node ni

χ ′ , and incoming arc from proposition
node ai

unconditional effects a (effects which are not part of a
conditional effect) are treated the same, except that
there is no arc to an effect condition formula node
effects with identical condition (including groups of
unconditional effects) share the same effect node
the effect node for unconditional effects is denoted by
oi
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Relaxed planning graph: operator subgraphs

Operator subgraph for o1 = 〈b∨ (c∧d),b∧ ((a∧b)B e)〉
for layer i = 1.
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Relaxed planning graph: goal subgraph

RPGk(Π+) contains a subgraph called a goal subgraph
with the following parts:

one formula node nkϕ for each formula ϕ which is a
subformula of γ:

If ϕ = a for some atom a, nkϕ is the proposition node ai .
If ϕ =>, nkϕ is a new AND node without outgoing arcs.
If ϕ =⊥, nkϕ is a new OR node without outgoing arcs.
If ϕ = (ϕ ′∧ϕ ′′), nkϕ is a new AND node
with outgoing arcs to nk

ϕ ′ and nk
ϕ ′′ .

If ϕ = (ϕ ′∨ϕ ′′), nkϕ is a new OR node
with outgoing arcs to nk

ϕ ′ and nk
ϕ ′′ .

The node nkγ is called the goal node.
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Relaxed planning graph: goal subgraphs

Goal subgraph for γ = e∧ (g∧h) and depth k = 2:
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γ
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Relaxed planning graph: complete (depth 2)
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Connection to forward sets and plan steps

Theorem (relaxed planning graph truth values)
Let Π+ = 〈A, I,O+,γ〉 be a relaxed planning task.
Then the truth values of the nodes of its depth-k relaxed
planning graph RPGk(Π+) relate to the forward sets and
forward plan steps of Π+ as follows:

Proposition nodes:
For all a ∈ A and i ∈ {0, . . . ,k}, val(ai) = 1 iff a ∈ SF

i .
(Unconditional) effect nodes:
For all o ∈O+ and i ∈ {1, . . . ,k}, val(oi) = 1 iff o ∈ ωF

i .
Goal nodes:
val(nkγ ) = 1 iff the parallel forward distance of Π+ is at
most k.

(We omit the straight-forward proof.)
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Computing the node truth values
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Relaxed planning graphs for STRIPS

Remark: Relaxed planning graphs have historically been
defined for STRIPS tasks only. In this case, we can
simplify:

Only one effect node per operator: STRIPS does not
have conditional effects.

Because each operator has only one effect node, effect
nodes are called operator nodes in relaxed planning
graphs for STRIPS.

No goal nodes: The test whether all goals are reached
is done by the algorithm that evaluates the AND/OR
dag.
No formula nodes: Operator nodes are directly
connected to their preconditions.

 Relaxed planning graphs for STRIPS are layered
digraphs and only have proposition and operator nodes.
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3 Relaxation heuristics

Generic template for relaxation heuristics
The max heuristic hmax
The additive heuristic hadd
The set-additive heuristic hsa
Incremental computation
The FF heuristic hFF
Comparison & relaxation heuristics in practice
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Computing parallel forward distances from
RPGs

So far, relaxed planning graphs offer us a way to compute
parallel forward distances:

Parallel forward distances from relaxed planning
graphs
def parallel-forward-distance(Π+):

Let A be the set of state variables of Π+.
for k ∈ {0,1,2, . . .}:

rpg := RPGk(Π+)
Evaluate truth values for rpg.
if goal node of rpg has value 1:

return k
else if k = |A|:

return ∞
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Remarks on the algorithm

The relaxed planning graph for depth k ≥ 1 can be built
incrementally from the one for depth k−1:

Add new layer k.
Move goal subgraph from layer k−1 to layer k.

Similarly, all truth values up to layer k−1 can be
reused.
Thus, overall computation with maximal depth m
requires time O(‖RPGm(Π+)‖) = O((m+1) · ‖Π+‖).
This is not a very efficient way of computing parallel
forward distances (and wouldn’t be used in practice).
However, it allows computing additional information for
the relaxed planning graph nodes along the way, which
can be used for heuristic estimates.
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Generic relaxed planning graph heuristics

Computing heuristics from relaxed planning graphs
def generic-rpg-heuristic(〈A, I,O,γ〉,s):

Π+ := 〈A,s,O+,γ〉
for k ∈ {0,1,2, . . .}:

rpg := RPGk(Π+)
Evaluate truth values for rpg.
if goal node of rpg has value 1:

Annotate true nodes of rpg.
if termination criterion is true:

return heuristic value from annotations
else if k = |A|:

return ∞

 generic template for heuristic functions
 to get concrete heuristic: fill in highlighted parts
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Concrete examples for the generic heuristic

Many planning heuristics fit the generic template:
additive heuristic hadd (Bonet, Loerincs & Geffner,
1997)
max heuristic hmax (Bonet & Geffner, 1999)
FF heuristic hFF (Hoffmann & Nebel, 2001)
cost-sharing heuristic hcs (Mirkis & Domshlak, 2007)

not covered in this course
set-additive heuristic hsa (Keyder & Geffner, 2008)

Remarks:
For all these heuristics, equivalent definitions that don’t
refer to relaxed planning graphs are possible.
Historically, such equivalent definitions have mostly
been used for hmax, hadd and hsa.
For those heuristics, the most efficient implementations
do not use relaxed planning graphs explicitly.
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Forward cost heuristics

The simplest relaxed planning graph heuristics are
forward cost heuristics.
Examples: hmax, hadd
Here, node annotations are cost values (natural
numbers).
The cost of a node estimates how expensive (in terms
of required operators) it is to make this node true.
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Forward cost heuristics: fitting the template

Forward cost heuristics
Computing annotations:

Propagate cost values bottom-up using a combination
rules for OR nodes and for AND nodes.
At effect nodes, add 1 after applying combination rule.

Termination criterion:
stability: terminate if cost for proposition node ak
equals cost for ak−1 for all true propositions a in layer k

Heuristic value:
The heuristic value is the cost of the goal node.

Different forward cost heuristics only differ in their
choice of combination rules.
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The max heuristic hmax (again)

Forward cost heuristics: max heuristic hmax
Combination rule for AND nodes:

cost(u) = max({cost(v1), . . . ,cost(vk)})
(with max( /0) := 0)

Combination rule for OR nodes:
cost(u) = min({cost(v1), . . . ,cost(vk)})

In both cases, {v1, . . . ,vk} is the set of true successors of u.

Intuition:
AND rule: If we have to achieve several conditions,
estimate this by the most expensive cost.
OR rule: If we have a choice how to achieve a
condition, pick the cheapest possibility.
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Running example: hmax
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Remarks on hmax

The definition of hmax as a forward cost heuristic is
equivalent to our earlier definition in this chapter.
Unlike the earlier definition, it generalizes to an
extension where every operator has an associated
non-negative cost (rather than all operators having
cost 1).
In the case without costs (and only then), it is easy to
prove that the goal node has the same cost in all
graphs RPGk(Π+) where it is true. (Namely, the cost is
equal to the lowest value of k for which the goal node
is true.)
We can thus terminate the computation as soon as the
goal becomes true, without waiting for stability.
The same is not true for other forward-propagating
heuristics (hadd, hcs, hsa).
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The additive heuristic

Forward cost heuristics: additive heuristic hadd
Combination rule for AND nodes:

cost(u) = cost(v1) + . . .+cost(vk)
(with ∑( /0) := 0)

Combination rule for OR nodes:
cost(u) = min({cost(v1), . . . ,cost(vk)})

In both cases, {v1, . . . ,vk} is the set of true successors of u.

Intuition:
AND rule: If we have to achieve several conditions,
estimate this by the cost of achieving each in isolation.
OR rule: If we have a choice how to achieve a
condition, pick the cheapest possibility.

November 21st, 2012 B. Nebel, R. Mattmüller – AI Planning 42 / 62



Parallel
plans

Relaxed
planning
graphs

Relaxation
heuristics
Generic template
hmax

hadd
hsa
Incremental
computation
hFF
Comparison &
practice

Summary

Running example: hadd
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Remarks on hadd

It is important to test for stability in computing hadd!
(The reason for this is that, unlike hmax, cost values of
true propositions can decrease from layer to layer.)
Stability is achieved after layer |A| in the worst case.
hadd is safe and goal-aware.
Unlike hmax, hadd is a very informative heuristic in many
planning domains.
The price for this is that it is not admissible (and hence
also not consistent), so not suitable for optimal
planning.
In fact, it almost always overestimates the h+ value
because it does not take positive interactions into
account.
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The set-additive heuristic

We now discuss a refinement of the additive heuristic
called the set-additive heuristic hsa.
The set-additive heuristic addresses the problem that
hadd does not take positive interactions into account.
Like hmax and hadd, hsa is calculated through forward
propagation of node annotations.
However, the node annotations are not cost values, but
sets of operators (kind of).
The idea is that by taking set unions instead of adding
costs, operators needed only once are counted only
once.

Disclaimer: There are some quite subtle differences between the hsa heuristic as
we describe it here and the “real” heuristic of Keyder & Geffner. We do not want to
discuss this in detail, but please note that such differences exist.
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Operators needed several times

The original hsa heuristic as described in the literature
is defined for STRIPS tasks and propagates sets of
operators.
This is fine because in relaxed STRIPS tasks, each
operator need only be applied once.
The same is not true in general: in our running
example, operator o1 must be applied twice in the
relaxed plan.
In general, it only makes sense to apply an operator
again in a relaxed planning task if a previously
unsatisfied effect condition has been made true.
For this reason, we keep track of operator/effect
condition pairs rather than just plain operators.
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Set-additive heuristic: fitting the template

The set-additive heuristic hsa
Computing annotations:

Annotations are sets of operator/effect condition pairs,
computed bottom-up.
Combination rule for AND nodes:

ann(u) = ann(v1)∪·· ·∪ann(vk) (with ⋃
( /0) := /0)

Combination rule for OR nodes:
ann(u) = ann(vi) for some vi minimizing |ann(vi)|
In case of several minimizers, use any tie-breaking rule.

In both cases, {v1, . . . ,vk} is the set of true successors
of u. At effect nodes, add the corresponding
operator/effect condition pair to the set after applying
combination rule. . . .
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Set-additive heuristic: fitting the template
(ctd.)

The set-additive heuristic hsa (ctd.)
Computing annotations:

. . . (Effect nodes for unconditional effects are
represented just by the operator, without a condition.)

Termination criterion:
stability: terminate if set for proposition node ak has
same cardinality as for ak−1 for all true propositions a
in layer k

Heuristic value:
The heuristic value is the set cardinality of the goal
node annotation.
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Running example: hsa
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Remarks on hsa

The same remarks for stability as for hadd apply.
Like hadd, hsa is safe and goal-aware, but neither
admissible nor consistent.
hsa is generally better informed than hadd, but
significantly more expensive to compute.
The hsa value depends on the tie-breaking rule used,
so hsa is not well-defined without specifying the
tie-breaking rule.
The operators contained in the goal node annotation,
suitably ordered, define a relaxed plan for the task.

Operators mentioned several times in the annotation
must be added as many times in the relaxed plan.
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Incremental computation of forward
heuristics

One nice property of forward-propagating heuristics is that
they allow incremental computation:

when evaluating several states in sequence which only
differ in a few state variables, can

start computation from previous results and
keep track only of what needs to be recomputed

typical use case: depth-first style searches (e. g., IDA∗)
rarely exploited in practice
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Incremental computation example: hadd

Result for {a 7→ 1,b 7→ 0,c 7→ 1,d 7→ 1,e 7→ 0, f 7→ 0,g 7→ 0,h 7→ 0}
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Incremental computation example: hadd

Change value of e to 1.
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Incremental computation example: hadd

Recompute outdated values.
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Incremental computation example: hadd

Recompute outdated values.
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Incremental computation example: hadd

Recompute outdated values.
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Incremental computation example: hadd

Recompute outdated values.
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Incremental computation example: hadd

Recompute outdated values.
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Heuristic estimate hFF

hsa is more expensive to compute than the other
forward propagating heuristics because we must
propagate sets.
It is possible to get the same advantage over hadd
combined with efficient propagation.
Key idea of hFF: perform a backward propagation that
selects a sufficient subset of nodes to make the goal
true (called a solution graph in AND/OR dag literature).
The resulting heuristic is almost as informative as hsa,
yet computable as quickly as hadd.

Note: Our presentation inverts the historical order.
The set-additive heuristic was defined after the FF heuristic
(sacrificing speed for even higher informativeness).
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FF heuristic: fitting the template

The FF heuristic hFF
Computing annotations:

Annotations are Boolean values, computed top-down.
A node is marked when its annotation is set to 1 and
unmarked if it is set to 0. Initially, the goal node is
marked, and all other nodes are unmarked.
We say that a true AND node is justified if all its true
successors are marked, and that a true OR node is
justified if at least one of its true successors is marked.
. . .
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FF heuristic: fitting the template (ctd.)

The FF heuristic hFF (ctd.)
Computing annotations:

. . .
Apply these rules until all marked nodes are justified:

1 Mark all true successors of a marked unjustified AND
node.

2 Mark the true successor of a marked unjustified OR
node with only one true successor.

3 Mark a true successor of a marked unjustified OR node
connected via an idle arc.

4 Mark any true successor of a marked unjustified OR
node.

The rules are given in priority order: earlier rules are
preferred if applicable.
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FF heuristic: fitting the template (ctd.)

The FF heuristic hFF (ctd.)
Termination criterion:

Always terminate at first layer where goal node is true.
Heuristic value:

The heuristic value is the number of operator/effect
condition pairs for which at least one effect node is
marked.
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Running example: hFF
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Remarks on hFF

Like hadd and hsa, hFF is safe and goal-aware, but
neither admissible nor consistent.
Its informativeness can be expected to be slightly
worse than for hsa, but is usually not far off.
Unlike hsa, hFF can be computed in linear time.
Similar to hsa, the operators corresponding to the
marked operator/effect condition pairs define a relaxed
plan.
Similar to hsa, the hFF value depends on tie-breaking
when the marking rules allow several possible choices,
so hFF is not well-defined without specifying the
tie-breaking rule.

The implementation in FF uses additional rules of
thumb to try to reduce the size of the generated relaxed
plan.
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Comparison of relaxation heuristics

Theorem (relationship between relaxation heuristics)
Let s be a state of planning task 〈A, I,O,γ〉. Then:

hmax(s)≤ h+(s)≤ h∗(s)

hmax(s)≤ h+(s)≤ hsa(s)≤ hadd(s)

hmax(s)≤ h+(s)≤ hFF(s)≤ hadd(s)

h∗, hFF and hsa are pairwise incomparable
h∗ and hadd are incomparable

Moreover, h+, hmax, hadd, hsa and hFF assign ∞ to the same
set of states.
Note: For inadmissible heuristics, dominance is in general
neither desirable nor undesirable. For relaxation heuristics,
the objective is usually to get as close to h+ as possible.
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Relaxation heuristics in practice: HSP

Example (HSP)
HSP (Bonet & Geffner) was one of the four top performers
at the 1st International Planning Competition (IPC-1998).
Key ideas:

hill climbing search using hadd
on plateaus, keep going for a number of iterations,
then restart
use a closed list during exploration of plateaus

Literature: Bonet, Loerincs & Geffner (1997), Bonet &
Geffner (2001)
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Relaxation heuristics in practice: FF

Example (FF)
FF (Hoffmann & Nebel) won the 2nd International Planning
Competition (IPC-2000).
Key ideas:

enforced hill-climbing search using hFF
helpful action pruning: in each search node, only
consider successors from operators that add one of
the atoms marked in proposition layer 1
goal ordering: in certain cases, FF recognizes and
exploits that certain subgoals should be solved one
after the other

If main search fails, FF performs greedy best-first search
using hFF without helpful action pruning or goal ordering.

Literature: Hoffmann & Nebel (2001), Hoffmann (2005)November 21st, 2012 B. Nebel, R. Mattmüller – AI Planning 58 / 62
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Relaxation heuristics in practice: Fast
Downward

Example (Fast Downward)
Fast Downward (Helmert & Richter) won the satisficing
track of the 4th International Planning Competition
(IPC-2004).
Key ideas:

greedy best-first search using hFF and causal graph
heuristic (not relaxation-based)
search enhancements:

multi-heuristic best-first search
deferred evaluation of heuristic estimates
preferred operators (similar to FF’s helpful actions)

Literature: Helmert (2006)
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Relaxation heuristics in practice: SGPlan

Example (SGPlan)
SGPlan (Wah, Hsu, Chen & Huang) won the satisficing
track of the 5th International Planning Competition
(IPC-2006).
Key ideas:

FF
problem decomposition techniques
domain-specific techniques

Literature: Chen, Wah & Hsu (2006)
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Relaxation heuristics in practice: LAMA

Example (LAMA)
LAMA (Richter & Westphal) won the satisficing track of the
6th International Planning Competition (IPC-2008).
Key ideas:

Fast Downward
landmark pseudo-heuristic instead of causal graph
heuristic (“somewhat” relaxation-based)
anytime variant of Weighted A∗ instead of greedy
best-first search

Literature: Richter, Helmert & Westphal (2008),
Richter & Westphal (2010)
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Summary

Relaxed planning graphs are AND/OR dags. They
encode which propositions can be made true in Π+

and how.
Closely related to forward sets and forward plan steps,
based on the notion of parallel relaxed plans.
They can be constructed and evaluated efficiently, in
time O((m+1)‖Π+‖) for planning task Π and depth m.

By annotating RPG nodes with appropriate
information, we can compute many useful heuristics.
Examples: max heuristic hmax, additive heuristic hadd,
set-additive heuristic hsa and FF heuristic hFF

Of these, only hmax admissible (but not very accurate).
The others are much more informative. The
set-additive heuristic is the most sophisticated one.
The FF heuristic is often similarly informative. It offers a
good trade-off between accuracy and computation
time.
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