Principles of AI Planning 1. Introduction

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

October 24th, 2012

1 About the course

About...

Rules

Introduction

People

Lecturers

Prof. Dr. Bernhard Nebel

- email: nebel@informatik.uni-freiburg.de
- office: room 052-00-029
- consultation: Monday, 16:15-17:15

Robert Mattmüller

- email: mattmuel@informatik.uni-freiburg.de
- office: room 052-00-045
- consultation: by appointment (email) or just drop by in the office

About... Coordinates Rules

ntroduction

Exercises

Robert Mattmüller

Nikolaus Mayer

- email: nikolaus.mayer@merkur.uni-freiburg.de
- consultation: by appointment (email)

October 24th, 2012

Introduction

Lectures

- time: Wednesday 10:15-12:00, Friday 10:15-11:00
- place: SR 101-00-010/14

Exercises

- time: Friday 11:15-12:00
- place: SR 101-00-010/14

Course web site

http://gki.informatik.uni-freiburg.de/teaching/ws1213/aip/

- main page: course description
- lecture page: slides
- exercise page: assignments, model solutions, software
- bibliography page: literature references and papers

- no textbook, no script
- slides handed out during lectures and available on the web
- additional resources: bibliography page on web + ask us!

Acknowledgments:

- slides based on earlier courses by Jussi Rintanen, Bernhard Nebel and Malte Helmert
- many figures by Gabi Röger

About... Coordinates Rules

ntroduction

Students of Computer Science:

- Master of Science, any year
- Bachelor of Science, ~3rd year

Students of Applied Computer Science:

Master of Science, ~2nd year

Other students:

■ advanced study period (~4th year)

About... Coordinates Rules

ntroduction

ntroduction

Course prerequisites:

- propositional logic: syntax and semantics
- foundations of AI: search, heuristic search
- computational complexity theory: decision problems, reductions, NP-completeness

Credit points & exam

About... Coordinates Rules

Introduction

6 ECTS points

- special lecture in specialization field Artificial Intelligence and Robotics or Cognitive Technical Systems (depending on version of exam regulations)
- oral exam of about 30 minutes B.Sc. students
- written or oral exam for M.Sc. students (depending on their number)

Introduction

Exercises (written assignments):

- handed out on Fridays
- due Friday following week, before the lecture
- discussed in the exercise session right after hand-in
- may be solved in groups of two students $(2 \neq 3)$
- successful participation prerequisite for exam admission

October 24th, 2012

Projects (programming assignments):

- handed out every now and then (probably two or three times over the course of the semester)
- more time to work on than for exercises
- may be solved in groups of two students (2 = 2)
- Ianguage: Python
- codebase:

Projects

https://bitbucket.org/malte/pyperplan

- solutions that obviously do not work: 0 marks
 - may fix bugs uncovered by our testing if still within submission deadline
- successful participation prerequisite for exam admission

About... Coordinates Rules

Introduction

Introduction

- points can be earned for "reasonable" solutions to exercises and projects (one project counts like two exercise sheets).
- at least 50% of points prerequisite for admission to final exam.

What is plagiarism?

- passing off solutions as your own that are not based on your ideas (work of other students, Internet, books, ...)
- http://en.wikipedia.org/wiki/Plagiarism is a good intro

Consequence: no admission to the final exam.

- We may (!) be generous on first offense.
- Don't tell us "We did the work together."
- Don't tell us "I did not know this was not allowed."

About... Coordinates Rules

ntroduction

2 Introduction

About...

Introduction

What is planning? Problem classes Dynamics Observability Objectives Planning vs. game theory Summary

- What is planning?
- Problem classes
- Dynamics
- Observability
- Objectives
- Planning vs. game theory
- Summary

Planning

- "Planning is the art and practice of thinking before acting." — Patrik Haslum
 - intelligent decision making: What actions to take?
 - general-purpose problem representation
 - algorithms for solving any problem expressible in the representation
 - application areas:
 - high-level planning for intelligent robots
 - autonomous systems: NASA Deep Space One, …
 - problem solving (single-agent games like Rubik's cube)

About...

Introduction

What is planning?

Problem classe: Dynamics Observability Objectives Planning vs. game theory Summary solutions to classical planning problems are paths from an initial state to a goal state in the transition graph

- efficiently solvable by Dijkstra's algorithm in $O(|V| \log |V| + |E|)$ time
- Why don't we solve all planning problems this way?
- state spaces may be huge: 10¹⁰, 10¹⁰⁰, 10¹⁰⁰⁰,... states
 - constructing the transition graph is infeasible!
 - planning algorithms try to avoid constructing whole graph
- planning algorithms are often much more efficient than obvious solution methods constructing the transition graph and using e.g. Dijkstra's algorithm

About...

Introduction

What is planning?

Problem classes Dynamics Observability Objectives Planning vs. game theory Summary

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- 1 classical planning
- 2 conditional planning with full observability
- 3 conditional planning with partial observability
- 4 conformant planning
- 5 Markov decision processes (MDP)
- 6 partially observable MDPs (POMDP)

About...

Introduction

What is planning?

Problem classes

Dynamics Observability Objectives Planning vs. game theory Summary

. . .

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- 1 classical planning
- 2 conditional planning with full observability
- 3 conditional planning with partial observability
- 4 conformant planning
- 5 Markov decision processes (MDP)
- 6 partially observable MDPs (POMDP)

About...

Introduction

What is planning?

Problem classes

Dynamics Observability Objectives Planning vs.

Summary

October 24th, 2012

. . .

B. Nebel, R. Mattmüller - Al Planning

20 / 27

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- ...
- classical planning
- 2 conditional planning with full observability
- 3 conditional planning with partial observability
- 4 conformant planning
- 5 Markov decision processes (MDP)
- 6 partially observable MDPs (POMDP)

About...

Introduction

What is planning?

Problem classes

Dynamics Observability Objectives Planning vs

game theory

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- 1 classical planning
- 2 conditional planning with full observability
- 3 conditional planning with partial observability
- 4 conformant planning
- 5 Markov decision processes (MDP)
- 6 partially observable MDPs (POMDP)

. . .

About...

Introduction

What is planning? Problem classes

Dynamics Observability Objectives Planning vs. game theory

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite

- classical planning
- 2 conditional planning with full observability
- 3 conditional planning with partial observability
- 4 conformant planning
- 5 Markov decision processes (MDP)
- 6 partially observable MDPs (POMDP)

About

Introduction

What is planning?

Problem classes

Dynamics Observability Objectives Planning vs.

October 24th, 2012

. . .

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- 1 classical planning
- 2 conditional planning with full observability
- 3 conditional planning with partial observability
- 4 conformant planning
- 5 Markov decision processes (MDP)
- 6 partially observable MDPs (POMDP)

October 24th, 2012

. . .

UNI FREIBURO

About...

Introduction

What is planning?

Problem classes

Observability Objectives Planning vs.

game theory

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- 1 classical planning
- 2 conditional planning with full observability
- 3 conditional planning with partial observability
- 4 conformant planning
- 5 Markov decision processes (MDP)
- 6 partially observable MDPs (POMDP)

. . .

UNI FREIBURG

About...

Introduction

What is planning?

Problem classes

Dynamics Observability Objectives Planning vs. game theory

Summary

Deterministic dynamics

Action + current state uniquely determine successor state.

Nondeterministic dynamics

For each action and current state there may be several possible successor states.

Probabilistic dynamics

For each action and current state there is a probability distribution over possible successor states.

Analogy: deterministic versus nondeterministic automata

October 24th, 2012

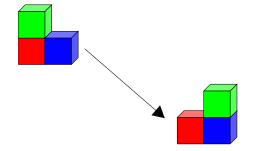
About...

Introduction

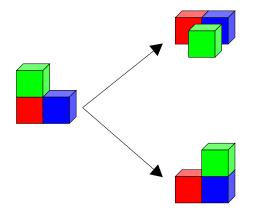
What is planning? Problem classes

Dynamics

Objectives Planning vs. game theory Summary Moving objects with a robotic hand: move the green block onto the blue block.


About...

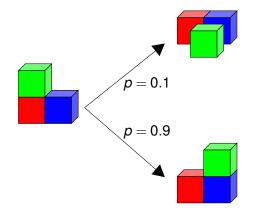
Introduction


What is planning? Problem classes

Dynamics

Observability Objectives Planning vs. game theory Summary

Moving objects with an <u>unreliable</u> robotic hand: move the green block onto the blue block.


About...

Introduction

What is planning? Problem classes

Dynamics

Observability Objectives Planning vs. game theory Summary Moving objects with an unreliable robotic hand: move the green block onto the blue block.

About...

Introduction

What is planning? Problem classes

Dynamics

Observability Objectives Planning vs. game theory Summary

Full observability

Observations determine current world state uniquely.

Partial observability

Observations determine current world state only partially: we only know that current state is one of several possible ones.

No observability

There are no observations to narrow down possible current states. However, can use knowledge of action dynamics to deduce which states we might be in.

Consequence: If observability is not full, must represent the knowledge an agent has.

October 24th, 2012

FREIB

About...

Introduction

What is planning? Problem classes Dynamics


Observability

Objectives Planning vs. game theory Summary

What difference does observability make?

Camera A

Camera B

About...

Introduction

What is planning? Problem classes Dynamics

Observability

Objectives Planning vs. game theory Summary

Goal

- 1 Reach a goal state.
 - Example: Earn 500 Euro.
- 2 Stay in goal states indefinitely (infinite horizon).
 - Example: Never allow bank account balance to be negative.
- 3 Maximize the probability of reaching a goal state.
 - Example: To be able to finance buying a house by 2022 study hard and save money.
- 4 Collect the maximal expected rewards/minimal expected costs (infinite horizon).
 - Example: Maximize your future income.

About...

Introduction

What is planning? Problem classes Dynamics Observability

Objectives

Planning vs game theor Summary

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are rational, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- Some of the techniques are also applicable to special cases of multi-agent planning.
 - Example: Finding a winning strategy of a game like chess. In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.
- Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

About...

Introduction

What is planning? Problem classes Dynamics Observability Objectives Planning vs. game theory Summary

- emphasis on classical planning ("simplest" case)
- theoretical background for planning
 - formal problem definition
 - basic theoretical notions
 - (e.g., normal forms, progression, regression)
 - computational complexity of planning
- algorithms for planning:
 - based on heuristic search
 - based on satisfiability testing (SAT) (time permitting)

Many of these techniques are applicable to problems outside AI as well.

hands-on experience with a classical planner

October 24th, 2012

About...

Introduction

What is planning? Problem classes Dynamics Observability Objectives Planning vs. game theory Summary