Turing Machines

Bernhard Nebel and Christian Becker-Asano

Overview

$>$ Turing machines
$>$ Variants of Turing machines
*Multi-tape
*Non-deterministic *...
$>$ The definition of algorithm *The Church-Turing Thesis

Turing Machine (TM)

> Infinite tape

* Both read and write from tape
* Move left and right
* Special accept and reject state take immediate effect
* Machine can accept, reject or loop

Figure 3.1: Schematic of Turing machine

$$
F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}
$$

$M_{1}=$ "On input string w :

1. Scan the input to be sure that it contains a single \# symbol. If not, reject.
2. Zig-zag across the tape to corresponding positions on either side of the \# symbol to check on whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
3. When all symbols to the left of the \# have been crossed off, check for any remaining symbols to the right of the \#. If any symbols remain, reject; otherwise accept."

Example run of TM accepting $w_{1} \in F$

$$
\begin{gathered}
F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\} \\
w_{1} \in F=" 011000 \# 011000 "
\end{gathered}
$$

$->$	1	1	0	0	0	$\#$	0	1	1	0	0	0	\sqcup	\ldots
\mathbf{X}	1	1	0	0	0	$\#$	0	1	1	0	0	0	\sqcup	\ldots
X	1	1	0	0	0	$\#$	X	1	1	0	0	0	\sqcup	\ldots
\mathbf{X}	1	1	0	0	0	$\#$	X	1	1	0	0	0	\sqcup	\ldots
X	X	1	0	0	0	$\#$	X	1	1	0	0	0	\sqcup	\ldots
\vdots													\square	
X	X	X	X	X	X	$\#$	X	X	X	X	X	X	\sqcup	\ldots

Snapshots of the Turing machine

Formal definition of a Turing Machine

DEFINITION 3.3:

A Turing machine is a 7 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where
Q, Σ, Γ are all finite sets and

1. Q is the set of states,
2. $\quad \Sigma$ is the input alphabet not containing the blank symbol \sqcup,
3. Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. $\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ is the transition function,
5. $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state,
6. $q_{\text {accept }} \in Q$ is the accept state, and
7. $\mathrm{q}_{\text {reject }} \in \mathrm{Q}$ is the reject state, where $\mathrm{q}_{\text {reject }} \neq \mathrm{q}_{\text {accept }}$.

Configurations of TMs

$u a q_{i} b v$ yields $u q_{j} a c v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
ua $q_{i} b v$ yields uac $q_{j} v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$
cannot go beyond left border !
start configuration $q_{0} w$
accepting configuration - state is $q_{\text {accept }}$
rejecting configuration - state is $q_{\text {reject }}$
A Turing Machine accepts input w if a sequence of configurations C_{1}, \ldots, C_{k} exists where

1. C_{1} is start configuration
2. Each C_{i} yields C_{i+1}
3. C_{k} is an accepting state

TMs and languages

$>$ The collection of strings that M accepts is the language of $M, L(M)$ (or $L(M)$ is language recognized by M)
> A language is Turing-recognizable (recursively enumerable) if some Turing machine recognizes it
$>$ Deciders halt on every input (i.e. they do not loop)
> A language is Turing-decidable (recursive) if some Turing machine decides it

Example 3.7: informal description

TM M_{2} recognizes the language consisting of all strings of zeros with their length being a power of 2 . In other words, it decides the language

$$
A=\left\{0^{2^{n}} \mid n \geq 0\right\} .
$$

$M_{2}=$ "On input string w :

1. Sweep left to right accross the tape, crossing off every other o.
2. If in stage 1 the tape contained a single 0 , accept.
3. If in stage 1 the tape contained more than one o and the number of os was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go to stage 1."

Example 3.7: state diagram for \boldsymbol{M}_{2}

Example 3.7: example run of \boldsymbol{M}_{2}

```
\mp@subsup{\sigma}{5}{2}
```


Example 3.9 $F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$

$M_{1}=$ „On input string w :

1. Check for \#, if not present reject.
2. Zig-zag across and cross off same symbols. If not same, reject.
3. When all symbols left of \# are crossed off, check for additional symbols right of \#. If yes, reject, otherwise accept."
(cf. slides number 4 and 5)

Figure 3.10: State diagram for TM M_{1};
Note: for simplification transitions to reject-state are implicit and not shown here.

Example 3.12

The Turing machine M_{4} is solving what is called the element
distinctness problem. It is given a list of strings over $\{0, I\}$ separated by $\# \mathrm{~s}$ and its job is to accept if all the strings are different. The language is

$$
E=\left\{\# x_{1} \# x_{2} \# \ldots \# x_{l} \mid \text { each } x_{i} \in\{0, l\}^{*} \text { and } x_{i} \neq x_{j} \text { for each } i \neq j\right\}
$$

Machine M_{4} works by comparing x_{1} and x_{2} through x_{1}, then by comparing x_{2} and x_{3} through x_{l}, and so on. An informal description of the TM M_{4} deciding this language follows:

Example 3.12 (ctd.)

$M_{4}=$ "On input w :

1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that symbol was a \#, continue with the next stage. Otherwise, reject.
2. Scan right to the next \# and place a second mark on top of it. If no \# is encountered before a blank symbol, only x_{1} was present, so accept.
3. By zig-zagging, compare the two strings to the right of the marked \#s. If they are equal, reject.
4. Move the rightmost of the two marks to the next \# symbol to the right. If no \# symbol is encountered before a blank symbol, move the leftmost mark to the next \# to its right and the rightmost mark to the \# after that. This time, if no \# is available for the rightmost mark, all the strings have been compared, so accept.
5. Go to Stage 3."

Variants of Turing Machines

$>$ Most of them turn out to be equivalent to original model
$>$ E.g. consider movements of head on tape $\{L, R, S\}$ where S denotes "same" (for "same position" or "stay put")
$>$ Equivalent to original model (represent S transition by first R and then L , or vice versa)

Multi-tape Turing Machines

$>$ The input appears on Tape 1 ; the others k tapes start off blank
$>$ Transition function is changed to:
$>\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}$
$>$ E.g.: $\delta\left(q_{1}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)$

Equivalence of multi- and single-tape TM

Representing three tapes with a single one
Theorem 3.13:
Every multitape Turing machine has an equivalent singletape Turing machine.

Proof of theorem 3.13 (outline)

$S=$ "On input $w=w_{1} \ldots w_{n}$:

1. First S puts its tape into the format that represents all k tapes of M. The formatted tape contains

$$
\# \dot{w_{1}} w_{2} \ldots w_{n} \# \dot{\square} \dot{\square}
$$

2. To simulate a single move, S scans its tape from the first \#, which marks the left-hand end, to the $(\mathrm{k}+1)$ st \#, which marks the right-hand end, in order to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way that M^{\prime} s transition function dictates.
3. If at any point S moves one of the virtual heads to the right onto a \#, this action signifies that M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost \#, one unit to the right. Then it continues the simulation as before."

Corollary

A language is Turing recognizable if and only if some multitape TM recognizes it.

Intermezzo: TMs and programming langs

Programming language „Brainfuck" (esoteric, 1993, Urban Müller):
> 8 language commands, each consisting of a single character

| Character | Meaning |
| :---: | :--- | :--- |
| $>$ | increment the data pointer (to point to the next cell to the right). R |

Intermezzo: PL BF

Note: Every non-BFcharacter is ignored and used for comments!
+++++ +++++ initialize counter (cell \#0) to 10
[use loop to set the next four cells to 70/100/30/10
> +++++ ++ add 7 to cell \#1
> ++++++ +++++ add 10 to cell \#2
> +++ add 3 to cell \#3
> + add 1 to cell \#4
<<<< - decrement counter (cell \#0)
]
> ++ . print 'H'
> + . print 'e'
+++++ ++ . print 'l'
. print 'l'
+++ . print 'o'
> ++ . print

```
<< ++++++ ++++++ ++++++ . print 'W'
> . print 'o'
+++ . print 'r'
----- - . print 'l'
----- --- . print 'd'
> + . print '!'
> . print '\n'
```


Nondeterministic TMs

Transition function is changed to:

$$
\begin{gathered}
\delta: Q \times \Gamma \rightarrow \wp(Q \times \Gamma \times\{L, R\}) \\
\delta(q, a)=\left\{\left(q_{1}, b_{1}, L\right), \ldots,\left(q_{k}, b_{k}, R\right)\right\}
\end{gathered}
$$

Same idea/method as for NFAs

(Non)deterministic TMs

Theorem 3.16:
Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof idea

Numbering the computation.
Work with three tapes :

1. input tape (unchanged)
2. simulator tape
3. index for computation path in the tree -

alphabet $\Sigma_{b}=\{1, \ldots, b\}$

4. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
5. Copy tape 1 to tape 2 .
6. Use tape 2 to simulate N with input w on one branch of its nondeterministic computation. Before each step of N consult the next symbol on tape 3 to determine which choice to make among those allowed by N 's transition function. If no more symbols remain on tape 3 or if this nondeterministic chice is invalid, abort this branch by going to stage 4 . Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.
7. Replace the string on tape 3 with the lexicographically next string. Simulate the next branch of N 's computation by going to stage 2 .

Nondeterministic TMs and languages

Corollary 3.18:

A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

Corollary 3.19:
A language is decidable if and only if some nondeterministic Turing machine decides it.

Enumerators

Turing recognizable $=$ Recursively enumerable
Therefore, alternative model of TM, enumerator
Works with input tape (initially empty) and output tape (printer).
The language enumerated by an Enumerator E , is the collection of all strings that it eventually prints out (in any order, with possible repetitions).

Theorem 3.21

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF

First we show that if we have an enumerator E that enumerates a languages A, a TM M recognizes A.
The TM M works in the following way.
$M=$ "On input w :

1. Run E. Every time that E outputs a string, compare it with w.
2. If w ever appears in the output of E, accept."

Clearly, M accepts those strings that appear on E^{\prime} s list.

Theorem 3.21 (cont.)

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF (other direction)
If TM M recognizes a language A, we can construct the
following enumerator E for A.
Say that $s_{1}, s_{2}, s_{3}, \ldots$ is a list of all possible strings in Σ^{*}.
$E=$ "Ignore the input.

1. Repeat tho following for $i=1,2,3, \ldots$
2. Run M for i steps on each input, $s_{l}, s_{2}, \ldots, s_{i}$.
3. If any computations accept, print out the corresponding s_{j}."

If M accepts a particular string s, eventually it will appear on the list genereated by E. In fact, it will appear on the list infinitely many times because M runs from the beginning on each string for each repetition of step 1 . This procedure gives the effect of running M in parallel on all possible input strings.

Equivalence with other models

$>$ Many variants of TMs (and related constructs) exist.
$>$ All of them turn out to be equivalent in power (under reasonable assumptions, such as finite amount of work in single step)
> Programming languages : Lisp, Haskell, Pascal, Java, C,
$>$ The class of algorithms described is natural and identical for all these constructs.
> For a given task, one type of construct may be more elegant.

The definition of an algorithm

$>$ David Hilbert
*Paris, 1900, Intern. Congress of Maths.
*23 mathematical problems formulated
$>10^{\text {th }}$ problem
*"to devise an algorithm that tests whether a polynomial has an integral root"
*Algorithm = "a process according to which it can be determined by a finite number of operations

Integral roots of polynomials

$6 x^{3} y z+3 x y^{2}-x^{3}-10$
root $=$ assignment of values to variables so that value of polynomial equals 0
integral root $=$ all values in assignment are integers
$>$ There is no algorithm that solves this task.
$>$ A formal notion of algorithm is necessary.
$>$ Alonso Church : λ-calculus (cf. functional programming)
$>$ Alan Turing : Turing machines

Church-Turing Thesis:

Intuitive notion of algorithm = Turing machine algorithms

Integral roots of polynomials

$D=\{p \mid p$ is a polynomial with an integral root $\}$
Hilbert's 10th problem : is D decidable?
D is not decidable, but Turing recognizable
Consider $D_{1}=\{p \mid p$ is a polynomial over x with an integral root $\}$
Define M_{1} :
"the input is a polynomial over x

1. Evaluate p wrt x set to $0,1,-1,2,-2,3,-3, \ldots$

If at any point p evaluates to 0 , accept"
This is a recognizer for D_{1} but not a decider
M_{1} can be converted into a decider using the bounds $\pm k \frac{c_{\max }}{c_{1}}$ for x
k : number of terms; c_{1} : coefficient highest order term; $c_{\max }$: largest absol. value coeff.
Extension of M_{1} exist to D but remains a recognizer

Turing machines

$>$ Three levels of description

* Formal description
* Implementation level
* High-level description
\star The algorithm is described
\star From now on, we use this level of description:
STRINGS!!
<0>: describes an object
$<O_{1}, \ldots, O_{k}>$: describes objects O_{1}, \ldots, O_{k}
Encodings can be done in multiple manners, but this is often irrelevant because one encoding (and therefore TM) can be transformed into another one.

Connected graphs

$A=\{\langle G\rangle \mid G$ is a connected undirected graph $\}$
connected $=$ every node can be reached from every other node

A (connected) graph G

Connected graphs \& TMs

$G=$

<G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4))

A (connected) graph G and its encoding
$\mathrm{M}=$,On input $<\mathrm{G}>$, the encoding of a graph G :

1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked.

- For each node in G, mark it if it is attached by an edge to a node that is already marked.

3. Scan all the nodes of G to determine whether thay all are marked.
If yes, accept; otherwise reject."

Summary

$>$ Turing machines
$>$ Variants of Turing machines
*Multi-tape
*Non-deterministic *...
$>$ The definition of algorithm
*The Church-Turing Thesis

