
ACS2: Turing Machines

1 ACS2 WS2011/12

Turing Machines

Bernhard Nebel and Christian Becker-Asano

ACS2: Turing Machines

2

Overview

Turing machines

Variants of Turing machines

Multi-tape

Non-deterministic

…

The definition of algorithm

The Church-Turing Thesis

ACS2 WS2011/12

ACS2: Turing Machines

3

Turing Machine (TM)

 Infinite tape

 Both read and write from tape

 Move left and right

 Special accept and reject state take immediate effect

 Machine can accept, reject or loop

state

control

a a b b □ □ □

Figure 3.1: Schematic of Turing machine

ACS2 WS2011/12

ACS2: Turing Machines

4

= "On input string :

 1. Scan the input to be sure that it contains a single # symbol. If

 not,

 2. Zig-zag across the tape to corresponding positions on either side

 of

1M w

reject.

 the # symbol to check on whether these positions contain the

 same symbol. If they do not, Cross off symbols as they

 are checked to keep track of which symbols correspond.

reject.

 3. When all symbols to the left of the # have been crossed off, check

 for any remaining symbols to the right of the #. If any symbols

 remain, ; otherwise "reject accept.

ACS2 WS2011/12

𝐹 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

ACS2: Turing Machines

5

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ …

X X 1 0 0 0 # X 1 1 0 0 0 ⊔ …

⋮

X X X X X X # X X X X X X ⊔ …

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ …

X 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ …

Example run of TM accepting 𝒘𝟏 ∈ 𝑭

Snapshots of the Turing machine

ACS2 WS2011/12

0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ …

𝐹 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}
𝑤1 ∈ 𝐹 = "011000#011000"

ACS2: Turing Machines

6

Formal definition of a Turing Machine

ACS2 WS2011/12

DEFINITION 3.3:

A Turing machine is a 7-tuple 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 , where

𝑄, Σ, Γ are all finite sets and

1. 𝑄 is the set of states,

2. Σ is the input alphabet not containing the blank symbol ⊔,

3. Γ is the tape alphabet, where ⊔∈ Γ and Σ ⊆ Γ,

4. δ: Q × Γ → Q × Γ × {L, R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state, where qreject ≠ qaccept.

ACS2: Turing Machines

7

Configurations of TMs

yields

yiel

 if (,) (, ,)

 if (,) (, ,)

cannot go beyond left bord

er

d

!

s

i j i j

i j i j

ua q bv u q acv q b q c L

ua q bv uac q v q b q c R









0

1

1

start configuration

accepting configuration - state is

rejecting configuration - state is

A input if a sequence

of con

Turing Machin

figurations ,..., exists where

1. is

e acce

pts

accept

reject

k

q w

q

q

w

C C

C

1

start configuration

2. Each yields

3. is an accepting state

i i

k

C C

C



□ □

q7

A Turing machine with the configuration 1011q701111

1 0 1 1 0 1 1 1 1 □

ACS2 WS2011/12

ACS2: Turing Machines

8

TMs and languages

 The collection of strings that M accepts is the language of

M, L(M) (or L(M) is language recognized by M)

 A language is Turing-recognizable (recursively

enumerable) if some Turing machine recognizes it

 Deciders halt on every input (i.e. they do not loop)

 A language is Turing-decidable (recursive) if some

Turing machine decides it

ACS2 WS2011/12

ACS2: Turing Machines

9

Example 3.7: informal description

ACS2 WS2011/12

TM 𝑀2 recognizes the language consisting of all strings of zeros
with their length being a power of 2. In other words, it decides
the language

𝐴 = 02𝑛
 𝑛 ≥ 0}.

𝑀2 = “On input string 𝑤:

1. Sweep left to right accross the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the tape contained more than one 0 and the
number of 0s was odd, reject.

4.Return the head to the left-hand end of the tape.

5. Go to stage 1.“

ACS2: Turing Machines

10

Example 3.7: state diagram for 𝑴𝟐

q1 q2

q5

q3

q4
qaccept

qreject

0→□,R 0 → x,R

□ →R

x → R

□ → R

□ → R

x → R

x → R

x → R

0 → L

x → L

0 → x,R

0 → R

ACS2 WS2011/12

ACS2: Turing Machines

11

Example 3.7: example run of 𝑴𝟐

q1 0 0 0 0 □ q2 0 0 0 □ x q3 0 0 □ x 0 q4 0 □ x 0 x q3 □ □ x 0 q5 x □ □ x q5 0 x □ □ q5 x 0 x □ q5 □ x 0 x □ □ q2 x 0 x □ □ x q2 0 x □ □ x x q3 x □ □ x x q5 x □ □ x x x q3 □ □ x q5 x x □ q5 □ x x x □ □ q5 x x x □ □ q2 x x x □ □ x q2 x x □ □ x x x q2 □ □ x x q2 x □ □ x x x □ qaccept

q1 q2

q5

q3

q4
qaccept qreject

0→□,R 0 → x,R

□ →R

x → R

□ → R

□ → R

x → R

x → R

x → R

0 → L

x → L

0 → x,R

0 → R

ACS2 WS2011/12

ACS2: Turing Machines

12

Example 3.9

𝑀1 = „On input string 𝑤:

1. Check for #, if not present
reject.

2. Zig-zag across and cross off
same symbols. If not same,
reject.

3. When all symbols left of #
are crossed off, check for
additional symbols right of
#. If yes, reject, otherwise
accept.“

(cf. slides number 4 and 5)

ACS2 WS2011/12

𝐹 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

Figure 3.10: State diagram for TM 𝑀1;
Note: for simplification transitions to reject-state are implicit
and not shown here.

ACS2: Turing Machines

13

Example 3.12

The Turing machine is solving what is called the

 . It is given a list of strings over { } separated by

#s and its job is to accept if all the strings are different. The

4M element

distinctness problem 0,1

*

language is

 { | each { } and for each }

Machine works by comparing and through , then by comparing

 and through and so on. An informal description o

1 2 l i i j

4 1 2 l

2 3 l

E # x # x # ...# x x 0,1 x x i j

M x x x

x x x ,

   

f the TM

deciding this language follows:

4M

ACS2 WS2011/12

ACS2: Turing Machines

14

Example 3.12 (ctd.)

"On input :

 1. Place a mark on top of the leftmost tape symbol. If that symbol

 was a blank, . If that symbol was a #, continue with the

 next stage. Otherwise,

4M w

accept



 2. Scan right to the next # and place a second mark on top of it. If

 no # is encountered before a blank symbol, only was present,

 so

 3. By z

1

reject.

x

accept.

ig-zagging, compare the two strings to the right of the

 marked #s. If they are equal,

 4. Move the rightmost of the two marks to the next # symbol to

 the right.

reject.

 If no # symbol is encountered before a blank symbol,

 move the leftmost mark to the next # to its right and the

 rightmost mark to the # after that. This time, if no # is available

 for the rightmost mark, all the strings have been compared, so

 5. Go to Stage 3."

accept.

ACS2 WS2011/12

ACS2: Turing Machines

15

Variants of Turing Machines

Most of them turn out to be equivalent to
original model

E.g. consider movements of head on tape {L,R,S}
where S denotes “same” (for “same position” or
“stay put”)

Equivalent to original model (represent S
transition by first R and then L, or vice versa)

ACS2 WS2011/12

ACS2: Turing Machines

16

Multi-tape Turing Machines

ACS2 WS2011/12

 The input appears on Tape 1; the others 𝑘 tapes
start off blank

 Transition function is changed to:

 𝛿: 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘
 E.g.: 𝛿 𝑞1, 𝑎1, … , 𝑎𝑘 = (𝑞𝑗 , 𝑏1, … , 𝑏𝑘 , 𝐿, 𝑅, … , 𝐿)

ACS2: Turing Machines

17

Equivalence of multi- and single-tape TM

Representing three tapes with a single one

ACS2 WS2011/12

Theorem 3.13:
Every multitape Turing machine has an equivalent single-
tape Turing machine.

ACS2: Turing Machines

18

Proof of theorem 3.13 (outline)

A language is Turing recognizable if and only if some multitape TM recognizes it.

Corollary

="On input

 1. First puts its tape into the format that represents all tapes of . The formatted

 tape contains

 #

 2. To simula

1 n

• ••

1 2 n

S w w ...w :

S k M

w w ...w # # # ...#



te a single move, scans its tape from the first #, which marks the left-hand

 end, to the (k+1)st #, which marks the right-hand end, in order to determine the symbols

 under the v

S

irtual heads. Then makes a second pass to update the tapes according

 to the way that ´s transition function dictates.

 3. If at any point moves one of the virtual heads to the right

S

M

S onto a #, this action signifies

 that has moved the corresponding head onto the previously unread blank portion of

 that tape. So writes a blank symbol on this tape cell and shi

M

S fts the tape contents, from this

 cell until the rightmost #, one unit to the right. Then it continues the simulation as before."

ACS2 WS2011/12

ACS2: Turing Machines

19

Intermezzo: TMs and programming langs

Programming language „Brainfuck“ (esoteric, 1993, Urban Müller):

 8 language commands, each consisting of a single character

Character Meaning

> increment the data pointer (to point to the next cell to the right). R

< decrement the data pointer (to point to the next cell to the left). L

+ increment (increase by one) the byte at the data pointer.

- decrement (decrease by one) the byte at the data pointer.

. output a character, the ASCII value of which being the byte at the data pointer.

, accept one byte of input, storing its value in the byte at the data pointer.

[
if the byte at the data pointer is zero, then instead of moving the instruction pointer

forward to the next command, jump it forward to the command after the matching]

command.

]
if the byte at the data pointer is nonzero, then instead of moving the instruction

pointer forward to the next command, jump it back to the command after the

matching [command*.

(http://en.wikipedia.org/wiki/Brainfuck)

++++++++++[>+++++++>++++++++++>+++>+<<<<-

>++.>+.+++++++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

++++++++++[>+++++++>++++++++++>+++>+<<<<-

>++.>+.+++++++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

ACS2 WS2011/12

http://en.wikipedia.org/wiki/Program_Counter
http://en.wikipedia.org/wiki/Branch_(computer_science)

ACS2: Turing Machines

20

Intermezzo: PL BF

+++++ +++++ initialize counter (cell #0) to 10

[use loop to set the next four cells to 70/100/30/10

 > +++++ ++ add 7 to cell #1

 > +++++ +++++ add 10 to cell #2

 > +++ add 3 to cell #3

 > + add 1 to cell #4

 <<<< - decrement counter (cell #0)

]

> ++ . print 'H'

> + . print 'e'

+++++ ++ . print 'l'

. print 'l'

+++ . print 'o'

> ++ . print ' '

<< +++++ +++++ +++++ . print 'W'
> . print 'o'
+++ . print 'r'
----- - . print 'l'
----- --- . print 'd'
> + . print '!'
> . print '\n'

Note: Every non-BF-
character is ignored and
used for comments!

(„Hello World!“; Try out „Visual brainfuck“ http://sites.google.com/site/visualbf/)

ACS2: Turing Machines

21

Nondeterministic TMs

q1

q1

q3 q2 q1

q3 q1

q2 q1 q3 q4

q4

q4

q2 q1 q3

q3 q1

q4

q4

ACS2 WS2011/12

Transition function is changed to:

𝛿: 𝑄 × Γ → ℘ 𝑄 × Γ × 𝐿, 𝑅

𝛿 𝑞, 𝑎 = 𝑞1, 𝑏1, 𝐿 , … , 𝑞𝑘 , 𝑏𝑘 , 𝑅

Same idea/method as for NFAs

ACS2: Turing Machines

22

Numbering the computation.

Work with three tapes :

1. input tape (unchanged)

2. simulator tape

3. index for computation path in the tree -

 alphabet {1,..., }b b 

Proof idea

(Non)deterministic TMs

q1

q1

q3 q2 q1

q3 q1

q2 q1 q3 q4

q4

q4

q2 q1 q3

q3 q1

q4

q4

ACS2 WS2011/12

Theorem 3.16:

Every nondeterministic Turing machine has an equivalent
deterministic Turing machine.

ACS2: Turing Machines

23

1. Initially tape 1 contains the input and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2.

3. Use tape 2 to simulate with input on one branch of its non-

 deterministic computation. Before e

w,

N w

ach step of consult the next

 symbol on tape 3 to determine which choice to make among those

 allowed by s transition function. If no more symbols remain on

 tape 3 or if this nondeterminist

N

N´

ic chice is invalid, abort this branch by

 going to stage 4. Also go to stage 4 if a rejecting configuration is

 encountered. If an accepting configuration is encountered,

 the input.

4.

accept

Replace the string on tape 3 with the lexicographically next string.

 Simulate the next branch of s computation by going to stage 2.N´

q1

q1

q3 q2 q1

q3 q1

q2 q1 q3 q4

q4

q4

q2 q1 q3

q3 q1

q4

q4

ACS2 WS2011/12

ACS2: Turing Machines

24

Nondeterministic TMs and languages

Corollary 3.18:

A language is Turing-recognizable if and only if some
nondeterministic Turing machine recognizes it.

Corollary 3.19:

A language is decidable if and only if some
nondeterministic Turing machine decides it.

ACS2 WS2011/12

ACS2: Turing Machines

25

Enumerators

Turing recognizable = Recursively enumerable

Therefore, alternative model of TM,

Works with input tape (initially empty) and output tape (printer).

The language enumerated by an Enume

enumer

rator

ator

 E, is the collection of

all strings that it eventually prints out (in any order, with possible

repetitions).

ACS2 WS2011/12

ACS2: Turing Machines

26

Theorem 3.21

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF

First we show that if we have an enumerator that enumerates a languages

a TM recognizes

The TM works in

E A,

M A.

M the following way.

"On input :

 1. Run . Every time that outputs a string, compare it with

 2. If ever appears in the output of ."

Clearly, accepts those strings th

M w

E E w.

w E, accept

M



at appear on ´s list.E

ACS2 WS2011/12

ACS2: Turing Machines

27

Theorem 3.21 (cont.)

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF (other direction)

If TM recognizes a language , we can construct the

following enumerator for

Say that 1 2

M A

E A.

s ,s is a list of all possible strings in

="Ignore the input.

 1. Repeat tho following for

 2. Run for steps on each input,

 3.

3

1 2 i

,s ,... .

E

i 1,2,3,...

M i s ,s ,...,s .





 If any computations accept, print out the corresponding "

If accepts a particular string , eventually it will appear on the list genereated

by In fact, it will appear on the list infinit

js .

M s

E. ely many times because runs from

the beginning on each string for each repetition of step 1. This procedure gives

the effect of running in parallel on all possible input strings.

M

M

ACS2 WS2011/12

ACS2: Turing Machines

28

Equivalence with other models

 Many variants of TMs (and related constructs) exist.

 All of them turn out to be equivalent in power (under
reasonable assumptions, such as finite amount of work
in single step)

 Programming languages : Lisp, Haskell, Pascal, Java, C,
…

 The class of algorithms described is natural and identical
for all these constructs.

 For a given task, one type of construct may be more
elegant.

ACS2 WS2011/12

ACS2: Turing Machines

29

The definition of an algorithm

David Hilbert

Paris, 1900, Intern. Congress of Maths.

23 mathematical problems formulated

10th problem

“to devise an algorithm that tests whether a
polynomial has an integral root”

Algorithm = “a process according to which it
can be determined by a finite number of
operations

ACS2 WS2011/12

ACS2: Turing Machines

30

Integral roots of polynomials

 There is no algorithm that solves this task.

 A formal notion of algorithm is necessary.

 Alonso Church : -calculus (cf. functional programming)

 Alan Turing : Turing machines

Church—Turing Thesis:

Intuitive notion of algorithm = Turing machine algorithms

3 2 36 3 10

= assignment of values to variables so that

 val

root

integral root

ue of polynomial equals 0

= all values in assignment are integers

x yz xy x  

ACS2 WS2011/12

ACS2: Turing Machines

31

Integral roots of polynomials

There is no algorithm that solves this task.

A formal notion of algorithm is necessary.

Alonso Church : -calculus (cf. functional programming)

Allen Turing : Turing machines

1

1

{ | is a polynomial with an integral root}

Hilbert's 10th problem : is ?

is not decidable, but

Consider { | is a polynomial over

decidable

Turing recognizab

 with an integral root}

Define :

le

D p p

D

D

D p p x

M





1

1

"the input is a polynomial over

 1. Evaluate wrt set to 0,1,-1,2,-2,3,-3,...

 If at any point evaluates to 0, accept"

This is a f deciderrecogni or but not a

can be converted

zer

 into a d

x

p x

p

D

M max

1

1 max

1

ecider using the bounds for

: number of terms; : coefficient highest order term; : largest absol. value coeff.

Extension of exist to but remains a recognizer

c
k x
c

k c c

M D



ACS2 WS2011/12

ACS2: Turing Machines

32

Turing machines

Three levels of description

Formal description

Implementation level

High-level description

The algorithm is described

From now on, we use this level of description:

<𝑂>: describes an object
<𝑂1, … , 𝑂𝑘>: describes objects 𝑂1, … , 𝑂𝑘

Encodings can be done in multiple manners, but this is often
irrelevant because one encoding (and therefore TM) can be
transformed into another one.

STRINGS!!

ACS2 WS2011/12

ACS2: Turing Machines

33

Connected graphs

{ | is a connected undirected graph}

connected = every node can be reached from every other node

A G G

A (connected) graph G

4

1

2 3

G =

ACS2 WS2011/12

ACS2: Turing Machines

34

Connected graphs & TMs

A (connected) graph G

and its encoding

<G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4))

4

1

2 3

G =

ACS2 WS2011/12

M = „On input <G>, the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked.

• For each node in G, mark it if it is attached by an edge to a
node that is already marked.

3. Scan all the nodes of G to determine whether thay all are
marked.
If yes, accept; otherwise reject.“

ACS2: Turing Machines

35

Summary

Turing machines

Variants of Turing machines

Multi-tape

Non-deterministic

…

The definition of algorithm

The Church-Turing Thesis

ACS2 WS2011/12

