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Overview 

Turing machines  

Variants of Turing machines 

Multi-tape 

Non-deterministic 

… 

The definition of algorithm 

The Church-Turing Thesis 
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Turing Machine (TM) 

 Infinite tape 

 Both read and write from tape 

 Move left and right 

 Special accept and reject state take immediate effect 

 Machine can accept, reject or loop 

 

state 

control 

a a b b □ □ □ 

Figure 3.1: Schematic of  Turing machine 
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= "On input string :

     1. Scan the input to be sure that it contains a single # symbol. If

         not, 

     2. Zig-zag across the tape to corresponding positions on either side

         of

1M w

reject.

 the # symbol to check on whether these positions contain the

         same symbol. If they do not,  Cross off symbols as they 

         are checked to keep track of which symbols correspond.

    

reject.

 3. When all symbols to the left of the # have been crossed off, check

         for any remaining symbols to the right of the #. If any symbols

         remain, ; otherwise "reject accept.

ACS2 WS2011/12 

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 
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X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

X X 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

⋮ 

X X X X X X # X X X X X X ⊔ … 

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

X 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ … 

Example run of TM accepting 𝒘𝟏 ∈ 𝑭 

Snapshots of the Turing machine 
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0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ … 

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 
𝑤1 ∈ 𝐹 = "011000#011000" 
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Formal definition of a Turing Machine 

ACS2 WS2011/12 

DEFINITION 3.3: 

A Turing machine is a 7-tuple 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 , where 

𝑄, Σ, Γ are all finite sets and 

1. 𝑄 is the set of states, 

2. Σ is the input alphabet not containing the blank symbol ⊔, 

3. Γ is the tape alphabet, where ⊔∈ Γ and Σ ⊆ Γ, 

4. δ: Q × Γ → Q × Γ × {L, R} is the transition function,  

5. q0 ∈ Q is the start state, 

6. qaccept ∈ Q is the accept state, and 

7. qreject ∈ Q is the reject state, where qreject ≠ qaccept. 
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Configurations of TMs 
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TMs and languages 

 The collection of strings that M accepts is the language of 

M, L(M) (or L(M) is language recognized by M) 

 A language is Turing-recognizable (recursively 

enumerable) if some Turing machine recognizes it 

 Deciders halt on every input (i.e. they do not loop) 

 A language is Turing-decidable (recursive) if some 

Turing machine decides it  

ACS2 WS2011/12 
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Example 3.7: informal description 

ACS2 WS2011/12 

TM 𝑀2 recognizes the language consisting of all strings of zeros 
with their length being a power of 2. In other words, it decides 
the language 

𝐴 = 02𝑛
  𝑛 ≥ 0}. 

𝑀2 = “On input string 𝑤: 

1. Sweep left to right accross the tape, crossing off every other 0. 

2. If in stage 1 the tape contained a single 0, accept. 

3. If in stage 1 the tape contained more than one 0 and the 
number of 0s was odd, reject. 

4.Return the head to the left-hand end of the tape. 

5. Go to stage 1.“ 
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Example 3.7: state diagram for 𝑴𝟐 

q1 q2 

q5 

q3 

q4 
qaccept 

qreject 

0→□,R 0 → x,R 

□ →R 

x → R 

□ → R 

□ → R 

x → R 

x →  R 

x → R 

0 → L 

x → L 

0 → x,R 

0 → R 

ACS2 WS2011/12 
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Example 3.7: example run of 𝑴𝟐 

q1 0 0 0 0 □ q2 0 0 0 □ x q3 0 0 □ x 0 q4 0 □ x 0 x q3 □ □ x 0 q5 x □ □ x q5 0 x □ □ q5 x 0 x □ q5 □ x 0 x □ □ q2 x 0 x □ □ x q2 0 x □ □ x x q3 x □ □ x x q5 x □ □ x x x q3 □ □ x q5 x x □ q5 □ x x x □ □ q5 x x x □ □ q2 x x x □ □ x q2 x x □ □ x x x q2 □ □ x x q2 x □ □ x x x □ qaccept 

q1 q2 

q5 

q3 

q4 
qaccept qreject 

0→□,R 0 → x,R 

□ →R 

x → R 

□ → R 

□ → R 

x → R 

x →  R 

x → R 

0 → L 

x → L 

0 → x,R 

0 → R 

ACS2 WS2011/12 
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Example 3.9 

𝑀1 = „On input string 𝑤: 

1. Check for #, if not present 
reject. 

2. Zig-zag across and cross off 
same symbols. If not same, 
reject. 

3. When all symbols left of # 
are crossed off, check for 
additional symbols right of 
#. If yes, reject, otherwise 
accept.“ 

(cf. slides number 4 and 5) 

ACS2 WS2011/12 

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 

Figure 3.10: State diagram for TM 𝑀1;  
Note: for simplification transitions to reject-state are implicit 
and not shown here. 
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Example 3.12 

The Turing machine  is solving what is called the 

 . It is given a list of strings over { } separated by

#s and its job is to accept if all the strings are different. The 

4M element

distinctness problem 0,1

*

language is

      { | each { }  and  for each }

Machine  works by comparing  and  through , then by comparing

 and  through  and so on. An informal description o

1 2 l i i j

4 1 2 l

2 3 l

E # x # x # ...# x x 0,1 x x i j

M x x x

x x x ,

   

f the TM 

deciding this language follows:

4M

ACS2 WS2011/12 
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Example 3.12 (ctd.) 

"On input :

         1. Place a mark on top of the leftmost tape symbol. If that symbol

             was a blank, . If that symbol was a #, continue with the

             next stage. Otherwise,

4M w

accept



 

         2. Scan right to the next # and place a second mark on top of it. If

             no # is encountered before a blank symbol, only  was present,

             so 

         3. By z

1

reject.

x

accept.

ig-zagging, compare the two strings to the right of the 

             marked #s. If they are equal, 

         4. Move the rightmost of the two marks to the next # symbol to

             the right.

reject.

 If no # symbol is encountered before a blank symbol,

             move the leftmost mark to the next # to its right and the 

             rightmost mark to the # after that. This time, if no # is available

             for the rightmost mark, all the strings have been compared, so 

             

         5. Go to Stage 3."

accept.

ACS2 WS2011/12 
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Variants of Turing Machines 

Most of them turn out to be equivalent to 
original model 

E.g. consider movements of head on tape {L,R,S} 
where S denotes “same” (for “same position” or 
“stay put”) 

Equivalent to original model (represent S 
transition by first R and then L, or vice versa) 

ACS2 WS2011/12 
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Multi-tape Turing Machines 

ACS2 WS2011/12 

 The input appears on Tape 1; the others 𝑘 tapes 
start off blank 

 Transition function is changed to: 

 𝛿: 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘 
 E.g.: 𝛿 𝑞1, 𝑎1, … , 𝑎𝑘 = (𝑞𝑗 , 𝑏1, … , 𝑏𝑘 , 𝐿, 𝑅, … , 𝐿) 
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Equivalence of multi- and single-tape TM 

Representing three tapes with a single one 
 
 

ACS2 WS2011/12 

Theorem 3.13: 
Every multitape Turing machine has an equivalent single-
tape Turing machine. 
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Proof of theorem 3.13 (outline) 

A language is Turing recognizable if and only if some multitape TM recognizes it.

Corollary

="On input 

      1. First  puts its tape into the format that represents all  tapes of . The formatted 

          tape contains

                    #

      2. To simula

1 n

• ••

1 2 n

S w w ...w :

S k M

w w ...w # # # ...#



te a single move,  scans its tape from the first #, which marks the left-hand 

          end, to the (k+1)st #, which marks the  right-hand end, in order to determine the symbols 

          under the v

S

irtual heads. Then  makes a second pass to update the tapes according 

          to the way that ´s transition function dictates.

      3. If at any point  moves one of the virtual heads to the right

S

M

S  onto a #, this action signifies 

          that  has moved the corresponding head onto the previously unread blank portion of 

          that tape. So  writes a blank symbol on this tape cell and shi

M

S fts the tape contents, from this

          cell until the rightmost #, one unit to the right. Then it continues the simulation as before."

ACS2 WS2011/12 
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Intermezzo: TMs and programming langs 

Programming language „Brainfuck“ (esoteric, 1993, Urban Müller): 

 8 language commands, each consisting of a single character 

 

 

Character Meaning 

> increment the data pointer (to point to the next cell to the right). R 

< decrement the data pointer (to point to the next cell to the left). L 

+ increment (increase by one) the byte at the data pointer. 

- decrement (decrease by one) the byte at the data pointer. 

. output a character, the ASCII value of which being the byte at the data pointer. 

, accept one byte of input, storing its value in the byte at the data pointer. 

[ 
if the byte at the data pointer is zero, then instead of moving the instruction pointer 

forward to the next command, jump it forward to the command after the matching ] 

command. 

] 
if the byte at the data pointer is nonzero, then instead of moving the instruction 

pointer forward to the next command, jump it back to the command after the 

matching [ command*. 

(http://en.wikipedia.org/wiki/Brainfuck) 

++++++++++[>+++++++>++++++++++>+++>+<<<<-

>++.>+.+++++++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>. 

++++++++++[>+++++++>++++++++++>+++>+<<<<-

>++.>+.+++++++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>. 

ACS2 WS2011/12 

http://en.wikipedia.org/wiki/Program_Counter
http://en.wikipedia.org/wiki/Branch_(computer_science)
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Intermezzo: PL BF 

+++++ +++++ initialize counter (cell #0) to 10  

[ use loop to set the next four cells to 70/100/30/10  

 > +++++ ++ add 7 to cell #1  

 > +++++ +++++ add 10 to cell #2  

 > +++ add 3 to cell #3  

 > + add 1 to cell #4  

 <<<< - decrement counter (cell #0)  

]  

> ++ . print 'H'  

> + . print 'e'  

+++++ ++ . print 'l'  

. print 'l'  

+++ . print 'o'  

> ++ . print ' '  

<< +++++ +++++ +++++ . print 'W'  
> . print 'o'  
+++ . print 'r'  
----- - . print 'l'  
----- --- . print 'd'  
> + . print '!'  
> . print '\n' 

Note: Every non-BF-
character is ignored and 
used for comments! 

(„Hello World!“; Try out „Visual brainfuck“ http://sites.google.com/site/visualbf/) 
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Nondeterministic TMs 

q1 

q1 

q3 q2 q1 

q3 q1 

q2 q1 q3 q4 

q4 

q4 

q2 q1 q3 

q3 q1 

q4 

q4 

ACS2 WS2011/12 

Transition function is changed to: 

𝛿: 𝑄 × Γ → ℘ 𝑄 × Γ × 𝐿, 𝑅  

𝛿 𝑞, 𝑎 = 𝑞1, 𝑏1, 𝐿 , … , 𝑞𝑘 , 𝑏𝑘 , 𝑅  

Same idea/method as for NFAs 
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Numbering the computation.

Work with three tapes :

1. input tape (unchanged)

2. simulator tape

3. index for computation path in the tree - 

   alphabet {1,..., }b b 

Proof idea

(Non)deterministic TMs 

q1 

q1 

q3 q2 q1 

q3 q1 

q2 q1 q3 q4 

q4 

q4 

q2 q1 q3 

q3 q1 

q4 

q4 

ACS2 WS2011/12 

Theorem 3.16: 

Every nondeterministic Turing machine has an equivalent 
deterministic Turing machine. 
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1. Initially tape 1 contains the input  and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2.

3. Use tape 2 to simulate  with input  on one branch of its non-

    deterministic computation. Before e

w,

N w

ach step of  consult the next

    symbol on tape 3 to determine which choice to make among those

    allowed by s transition function. If no more symbols remain on

    tape 3 or if this nondeterminist

N

N´

ic chice is invalid, abort this branch by

    going to stage 4. Also go to stage 4 if a rejecting configuration is

    encountered. If an accepting configuration is encountered,  

    the input.

4. 

accept

Replace the string on tape 3 with the lexicographically next string. 

    Simulate the next branch of s computation by going to stage 2.N´

q1 

q1 

q3 q2 q1 

q3 q1 

q2 q1 q3 q4 

q4 

q4 

q2 q1 q3 

q3 q1 

q4 

q4 

ACS2 WS2011/12 
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Nondeterministic TMs and languages 

Corollary 3.18: 

A language is Turing-recognizable if and only if some 
nondeterministic Turing machine recognizes it. 

 

Corollary 3.19: 

A language is decidable if and only if some 
nondeterministic Turing machine decides it. 

 

ACS2 WS2011/12 
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Enumerators 

Turing recognizable = Recursively enumerable

Therefore, alternative model of TM, 

Works with input tape (initially empty) and output tape (printer).

The language enumerated by an Enume

enumer

rator

ator

 E, is the collection of 

all strings that it eventually prints out (in any order, with possible

repetitions).

ACS2 WS2011/12 
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Theorem 3.21 

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF

First we show that if we have an enumerator  that enumerates a languages  

a TM  recognizes  

The TM  works in 

E A,

M A.

M the following way.

"On input :

          1. Run . Every time that  outputs a string, compare it with 

          2. If  ever appears in the output of  ."

Clearly,  accepts those strings th

M w

E E w.

w E, accept

M



at appear on ´s list.E

ACS2 WS2011/12 
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Theorem 3.21 (cont.) 

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF (other direction)

If TM  recognizes a language , we can construct the 

following enumerator  for  

Say that 1 2

M A

E A.

s ,s  is a list of all possible strings in 

="Ignore the input.

          1. Repeat tho following for 

          2.         Run  for  steps on each input, 

          3.    

3

1 2 i

,s ,... .

E

i 1,2,3,...

M i s ,s ,...,s .





     If any computations accept, print out the corresponding "

If  accepts a particular string , eventually it will appear on the list  genereated 

by  In fact, it will appear on the list infinit

js .

M s

E. ely many times because  runs from 

the beginning on each string for each repetition of step 1. This procedure gives 

the effect of running  in parallel on all possible input strings.

M

M

ACS2 WS2011/12 
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Equivalence with other models 

 Many variants of TMs (and related constructs) exist. 

 All of them turn out to be equivalent  in power (under 
reasonable assumptions, such as finite amount of work 
in single step) 

 Programming languages : Lisp, Haskell, Pascal, Java, C, 
… 

 The class of algorithms described is natural and identical 
for all these constructs. 

 For a given task, one type of construct may be more 
elegant. 

ACS2 WS2011/12 
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The definition of an algorithm 

David Hilbert 

Paris, 1900, Intern. Congress of Maths. 

23 mathematical problems formulated 

10th problem  

“to devise an algorithm that tests whether a 
polynomial has an integral root” 

Algorithm = “a process according to which it 
can be determined by a finite number of 
operations 

ACS2 WS2011/12 
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Integral roots of polynomials 

 There is no algorithm that solves this task.  

 A formal notion of algorithm is necessary. 

 Alonso Church : -calculus (cf. functional programming) 

 Alan Turing : Turing machines 

Church—Turing Thesis:  

Intuitive notion of algorithm = Turing machine algorithms 

3 2 36 3 10

= assignment of values to variables so that 

           val

root 

integral root 

ue of polynomial equals 0

= all values in assignment are integers

x yz xy x  

ACS2 WS2011/12 
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Integral roots of polynomials 

 

 

 

 

 

There is no algorithm that solves this task.  

A formal notion of algorithm is necessary. 

Alonso Church : -calculus (cf. functional programming) 

Allen Turing : Turing machines 

1

1

{ | is a polynomial with an integral root}

Hilbert's 10th problem : is  ?

is not decidable, but 

Consider { | is a polynomial over 

decidable

Turing recognizab

 with an integral root}

Define :

   

le

D p p

D

D

D p p x

M





1

1

"the input is a polynomial over 

    1. Evaluate wrt set to 0,1,-1,2,-2,3,-3,...

        If at any point evaluates to 0, accept"

This is a  f deciderrecogni or but not a 

can be converted

zer

 into a d

x

p x

p

D

M max

1

1 max

1

ecider using the bounds for 

: number of terms; : coefficient highest order term; : largest absol. value coeff.

Extension of exist to  but remains a recognizer

c
k x
c

k c c

M D


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Turing machines 

Three levels of description  

Formal description 

Implementation level 

High-level description  

The algorithm is described 

From now on, we use this level of description: 

<𝑂>: describes an object 
<𝑂1, … , 𝑂𝑘>: describes objects 𝑂1, … , 𝑂𝑘 

Encodings can be done in multiple manners, but this is often 
irrelevant because one encoding (and therefore TM) can be 
transformed into another one. 

STRINGS!! 

ACS2 WS2011/12 
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Connected graphs 

{ | is a connected undirected graph}

connected = every node can be reached from every other node

A G G

A (connected) graph G                              

 

 

4 

1 

2 3 

G = 

ACS2 WS2011/12 
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Connected graphs & TMs 

A (connected) graph G 

 

and its encoding 

 

<G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4)) 

4 

1 

2 3 

G = 

ACS2 WS2011/12 

M = „On input <G>, the encoding of a graph G: 
1. Select the first node of G and mark it. 
2. Repeat the following stage until no new nodes are marked. 

• For each node in G, mark it if it is attached by an edge to a 
node that is already marked. 

3. Scan all the nodes of G to determine whether thay all are 
marked. 
If yes, accept; otherwise reject.“ 
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Summary 

Turing machines  

Variants of Turing machines 

Multi-tape 

Non-deterministic 

… 

The definition of algorithm 

The Church-Turing Thesis 
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