
TS3: Context-free Languags

1 ACS2 WS2011/12

Context-free Languages

Bernhard Nebel and Christian Becker-Asano

TS3: Context-free Languags

2

Overview

Context free grammars

Pushdown Automata

Equivalence of PDAs and CFGs

Non-context free grammars

• Pumping lemma

ACS2 WS2011/12

TS3: Context-free Languags

3

Context free languages

 Extend regular languages

 First studied for natural languages

 Often used in computer languages

Compilers

Parsers

 Pushdown automata

ACS2 WS2011/12

TS3: Context-free Languags

4

Key concept: context-free grammar

Example grammar 𝐺1:

 𝐴 → 0𝐴1

 𝐴 → 𝐵

 𝐵 → #

 Terminals: 0, 1, # (correspond to alphabet Σ)

 Nonterminals / variables: 𝐴, 𝐵

 Rules: Symbol → String

 Startsymbol

The sequence of substitutions to obtain a string is called a derivation.

 E.g. derivation of 000#111: A  0A1  00A11  000A111  000#111

 Language defined by 𝑮𝟏: 𝐿 𝐺1 = 0𝑛#1𝑛 𝑛 ≥ 0}

A

A

A

A

B

0 0 0 # 1 1 1
Parse tree for

000#111 in 𝐺1

ACS2 WS2011/12

TS3: Context-free Languags

5

Natural language example:

<SENTENCE> → <NOUN-PHRASE><VERB-PHRASE>

<NOUN-PHRASE> → <CMPLX-NOUN>|<CMPLX-NOUN><PREP-PHRASE>

<VERB-PHRASE> → <CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>

<PREP-PHRASE> → <PREP><CMPLX-NOUN>

<CMPLX-NOUN> → <ARTICLE><NOUN>

<CMPLX-VERB> → <VERB>|<VERB><NOUN-PHRASE>

<ARTICLE> → a | the

<NOUN> → boy | girl | flower

<VERB> → touches | likes | sees

<PREP> → with

Example sentences:
1. a boy sees
2. the boy sees the flower
3. a girl with a flower likes the boy

ACS2 WS2011/12

TS3: Context-free Languags

6

Context-free grammar

DEFINITION 2.2:

A context-free grammar is a 4-tuple 𝑉, Σ, 𝑅, 𝑆 with:

1. 𝑉 a finite set called the variables

2. Σ a finite set, disjoint from 𝑉, called the terminals

3. 𝑅 is a finite set of rules, with each rule being a variable
and a string of variables and terminals

4. 𝑆 ∈ 𝑉 is the start symbol

Example: 𝐺3 = 𝑆 , 𝑎, 𝑏 , 𝑅, 𝑆

 𝑆 → 𝑎𝑆𝑏 𝑆𝑆 ε

ACS2 WS2011/12

TS3: Context-free Languags

7

Parsing

 Construct meaning (parse tree)

 Parse trees for the strings a + a x a and (a + a) x a

3 (, , , }

{ , , }

{ , , , (,)}

is

|

|

() |

G V R Expr

V Expr Term Factor

a

R

Expr Expr Term Term

Term Term Factor Factor

Factor Expr a

   

      

   

      

     

   

ACS2 WS2011/12

TS3: Context-free Languags

8

Constructing CFGs

 As the union of simpler CFGs

1 1

2 2

1 2

0 1|

1 0 |

|

S S

S S

S S S











1

2

1 2

() {0 1 | 0}

() {1 0 | 0}

() () ()

n n

n n

L G n

L G n

L G L G L G

 

 

 

ACS2 WS2011/12

TS3: Context-free Languags

9

Constructing CFGs

 When given a DFA (i.e. constructing a CFG for reg. languages)

For each state

 Make a variable

For each transition (,)

 Add the rule

For each accept state

 Add the rule

i

i

i j

i j

i

i

q

R

q a q

R aR

q

R











ACS2 WS2011/12

TS3: Context-free Languags

10

Constructing CFGs

 Languages consisting of “linked” strings

1() {0 1 | 0}n nL G n 

Use rules of the form

 R uRv

1 10 1| S S 

ACS2 WS2011/12

TS3: Context-free Languags

11

Constructing CFGs

 Strings that may contain structures that appear
recursively as part of other (or the same) structures

|

|

() |

Expr Term Term

Term Term Factor Factor

E

Factor

xpr

Exp ar

     

     



  



ACS2 WS2011/12

TS3: Context-free Languags

12

Ambiguity

 If a CFG generates the same string in several ways, then
the grammar is ambiguous

 E.g. grammar G5:

 The grammar does not capture usual precedence
relations

 One of the main problems in natural language processing

 “the boy touches the girl with the flower”

| | () |Expr Expr Expr Expr Expr Expr a         

ACS2 WS2011/12

TS3: Context-free Languags

13

| | () |Expr Expr Expr Expr Expr Expr a         

The two parse trees for the string a + a x a in grammar G5

ACS2 WS2011/12

TS3: Context-free Languags

14

Defining ambiguity

 Leftmost derivation :
 At every step in the derivation the leftmost variable is replaced

 A string is derived ambiguously in a CFG if it has two or
more different leftmost derivations

 A grammar is ambiguous if it generates some string
ambiguously

 Some context free languages are inherently ambiguous,
i.e. every grammar for the language is ambiguous

{01 2 | or }i j k i j j k 

ACS2 WS2011/12

TS3: Context-free Languags

15

Chomsky Normal Form (CNF)

DEFINITION 2.8:

A context-free grammar is in Chomsky normal form if
every rule is of the form

𝐴 → 𝐵𝐶
𝐴 → 𝑎

where 𝑎 is any terminal and 𝐴, 𝐵, and 𝐶 are any variables—
except that 𝐵 and 𝐶 may not be the start variable. In
addition we permit the rule 𝑆 → 𝜀, where 𝑆 is the start
variable.

Theorem 2.9:

Any context-free language is generated by a context-free
grammar in Chomsky normal form.

ACS2 WS2011/12

TS3: Context-free Languags

16

Chomsky normal form: proof idea

 Rewrite all rules, which are not conform with the Chomsky normal
form

 If necessary, introduce new variables

Four problems:

1. Start variable is on the right side of a rule
 Introduce a new start variable and a new rule for the
derivation

2. Epsilon-rules, like 𝐴 → ε
 If A occurs on the right part of a rule, introduce new rules
without A on the right part of the rule

3. Unit-rules, like 𝐴 → 𝐵
 directly replace B by its own production

4. Long and/or mixed rules, like 𝐴 → 𝑎𝐵𝑐𝐴𝑏𝐴
 new variables/new rules

ACS2 WS2011/12

TS3: Context-free Languags

17

CNF: proof by construction

1. Add a new start symbol 𝑆0 and the rule 𝑆0 → 𝑆, where 𝑆 is the old start
symbol.

2. Remove all rules 𝐴 → 𝜀:
For each occurrence of 𝐴 in a rule 𝑅 → 𝑢𝐴𝑣 add 𝑅 → 𝑢𝑣 (if 𝑢 and 𝑣 are
𝜀, then add 𝑅 → 𝜀). Repeat this step until all such rules (except a rule
referring to the start variable) are removed.

3. Remove all unit rules 𝐴 → 𝐵: Whenever 𝐵 → 𝑢 appears, then add 𝐴 →
𝑢. Repeat this step until all unit rules are removed.

4a. Convert remaining rules 𝐴 → 𝑢1𝑢2 … 𝑢𝑘, where 𝑘 ≥ 3, into rules
 𝐴 → 𝑢1𝐴1,
 𝐴1 → 𝑢2𝐴2, …,
 𝐴𝑘−2 → 𝑢𝑘−1𝑢𝑘, where the 𝐴𝑖 are new variables.

4b. If 𝑘 = 2, then replace any terminal 𝑢𝑖 in the rules with a new variable
𝑈𝑖 and the new rule 𝑈𝑖 → 𝑢𝑖.

Do not allow for cycles (i.e. first remove, then add rule)!

ACS2 WS2011/12

TS3: Context-free Languags

18

CNF: example 2.10

Let 𝐺6 be the following CFG and convert it into CNF by using the
conversion procedure just given. The following series of grammars
illustrates the steps in the conversion. Rules set in bold have just been
added. Rules or symbols struck through have just been removed.

1. The original CFG 𝐺6 is shown below on the left. The result of
applying the first step to make a new start symbol appears on the
right.

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏 | 𝜀

𝑺𝟎 → 𝑺
𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏 | 𝜀

ACS2 WS2011/12

TS3: Context-free Languags

19

CNF: example 2.10 (ctd.)

2. Remove 𝜀 rule 𝐵 → 𝜀, shown on the left, and then also 𝐴 → 𝜀, shown
on the right.

3. (a) Remove unit rules 𝑆 → 𝑆, shown left, and 𝑆0 → 𝑆, shown right.

𝑆0 → 𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝒂
𝐴 → 𝐵 𝑆 𝜺
𝐵 → 𝑏 | 𝜀

𝑆0 → 𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑺𝑨 𝑨𝑺 | 𝑺
𝐴 → 𝐵 𝑆 𝜀
𝐵 → 𝑏

𝑆0 → 𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆 | 𝑆
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏

𝑆0 → 𝑆 | 𝑨𝑺𝑨 𝒂𝑩 𝒂 𝑺𝑨 𝑨𝑺
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏

ACS2 WS2011/12

TS3: Context-free Languags

20

CNF: example 2.10 (ctd.)

3. (b) Remove unit rules A → 𝐵 and 𝐴 → 𝑆.

4. Convert the remaining rules.

𝑆0 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝐵 𝑆 𝒃
𝐵 → 𝑏

𝑆0 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝑆 𝑏 𝑨𝑺𝑨 𝒂𝑩 𝒂 𝑺𝑨 𝑨𝑺
𝐵 → 𝑏

𝑆0 → 𝐴𝐴1 𝑈𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝑆 → 𝐴𝐴1 𝑈𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝑏 𝐴𝐴1 𝑈𝐵 𝑎 𝑆𝐴 | 𝐴𝑆
𝐴1 → 𝑆𝐴
𝑈 → 𝑎
𝐵 → 𝑏

ACS2 WS2011/12

TS3: Context-free Languags

21

Pushdown automata: introduction

 Schema of a finite automaton

state

control

a a b b input

ACS2 WS2011/12

TS3: Context-free Languags

22

Pushdown automaton

 Includes a stack

 Push something on top of stack

 Pop something from top of stack

 Last in first out principle

 As in cafeteria – tray

 Schematic of a pushdown automaton:

1() {0 1 | 0}n nL G n 
state

control

a a b b input

x
y
z stack

ACS2 WS2011/12

TS3: Context-free Languags

23

An example PDA

State diagram for the PDA 𝑀1 that recognizes 0𝑛1𝑛 𝑛 ≥ 0}

q2 q1

q4 q3

є,є → $
0,є → 0

1,0 → є

1,0 → є є,$ → є

ACS2 WS2011/12

TS3: Context-free Languags

24

Formal definition (Definition 2.13)

0A is a 6-tuple (, , , , ,)

1. is a finite set of states

2. is a finite set, th

3. is a finite set, the stack alphabet

e input alphabet

4. : P() is the transition

pushdown automaton

funcQ

Q q

Q

F

Q

  





   

 



5. is the start state

6. is the set of acc

tion

ept states

oq Q

F Q





Transition function

 maps (state, inputsymbol, stacksymbol)

 onto set of (nstate, nstacksymbol)

Meaning:

 stacksymbol is replaced by nstacksymbol

 input, stack, and nstacksymbol can be  !

ACS2 WS2011/12

TS3: Context-free Languags

25

Example 2.14 (PDA M1)

The following is the formal description of a PDA that recognizes the language

. Let be , where

 and

n n

1 1

1 2 3 4

1 4

{0 1 | n 0 } M (Q, , , ,q ,F)

Q { q ,q ,q ,q },

{0,1},

{0,$},

F { q ,q },





  



 





 is given by the following table, wherein blank entries signify .

Input 0 1 є

Stack 0 $ є 0 $ є 0 $ є

q1 {(q2,$)}

q2 {(q2,0)} {(q3,є)}

q3 {(q3,є)} {(q4,є)}

q4

ACS2 WS2011/12

TS3: Context-free Languags

26

Computation with PDA M1

To compute, one can keep track of

 1. rest of the input string (to read)

 2. state of PDA

 3. string on stack

Use a tree structure as for NFAs !

1

2

2

2

3

3

4

(0011, ,)

(0011, ,$)

(011, ,0$)

(11, ,00$)

(1, ,0$)

(, ,$)

(,) accept

q

q

q

q

q

q

q



















q2 q1

q4 q3

𝜀,𝜀 → $
0, 𝜀 → 0

1,0 → 𝜀

1,0 → 𝜀 𝜀,$ → 𝜀

ACS2 WS2011/12

TS3: Context-free Languags

27

Formal Definition of Computation

 0

*

1

0 0

1

Let be a pushdown automaton (, , , , ,)

Let be a string over

 if and where and a sequence of

states ,..., exist strings ,...,

accepts

existss in and in

n

n i

n n

M Q q F

w w w

M w w

s s

w w w w

r r Q



 

 

  



0 0

1 1

*

*

0

1

1.

2.for all 0,..., 1

 (,) (, ,) where = and =

 for some , and some

3.

No explicit test for empty stack and end o

such that

and

f input

i i i i i

n

r q

i n

r r w s at s b

s

b

a

a t

b t

r F







  



 

 







ACS2 WS2011/12

TS3: Context-free Languags

28

Another example

PDA M2 recognizing 𝑎𝑖 𝑏𝑗 𝑐𝑘
𝑖, 𝑗, 𝑘 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘}

q4 q3

q5 q6

𝜀,$ → 𝜀

q7
q2

q1

b, 𝜀 → 𝜀 a, 𝜀 → a c,a → 𝜀

b,a → 𝜀 c, 𝜀 → 𝜀

𝜀,$ → 𝜀 𝜀, 𝜀 → 𝜀 𝜀, 𝜀 → 𝜀

State diagram for PDA M2 that recognizes

the language {𝑎𝑖𝑏𝑗𝑐𝑘 | 𝑖. 𝑗. 𝑘 ≥ 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘}

 Non determinism essential for this language!

ACS2 WS2011/12

TS3: Context-free Languags

29

Another example

PDA M3 recognizing {wwR|w 2 {0,1}*}

q2 q1

q4 q3

𝜀, 𝜀 → $ 0, 𝜀 → 0

1, 𝜀 → 1

𝜀, 𝜀 → 𝜀

0,0 → 𝜀
1,1 → 𝜀

𝜀,$ → 𝜀

ACS2 WS2011/12

TS3: Context-free Languags

30

Theorem 2.20 and Lemma 2.21

Theorem 2.20:
A language is context free if and only if some pushdown automaton
recognizes it.

Lemma 2.21: If a language is context free, then some pushdown
automaton recognizes it. (Forward direction of proof)

ACS2 WS2011/12

 A CFL accepts a string if there
exists a derivation of the string

 Involves intermediate strings

 Represent intermediate strings on
PDA

<SENTENCE

>
⇒ <NOUN-PHRASE><VERB-PHRASE>

⇒ <CMPLX-NOUN><VERB-PHRASE>

⇒ <ARTICLE><NOUN><VERB-PHRASE>

⇒ a <NOUN><VERB-PHRASE>

⇒ a boy <VERB-PHRASE>

⇒ a boy <CMPLX-VERB>

⇒ a boy <VERB>

⇒ a boy sees

TS3: Context-free Languags

31

Lemma 2.21 Proof idea

 Substitute variables by strings

 Replace top variable on stack by string

state

control

0 1 1 0

A
1
A 0 1
0
$

0 1 A 1 A 0 0 1 A 1 A 0

P presenting the intermediate string 01A1A0

ACS2 WS2011/12

TS3: Context-free Languags

32

Lemma 2.21 Proof by construction

1. Place the marker $ and the start symbol on the stack

2. Repeat forever

 a. if top(stack)=variable

 then non-deterministically select one of the rules for

 and substitute

A

A

A

Construction

by right hand side of rule

 b. if top(stack)=terminal symbol

 then read next input symbol be

 if then fail

 c. if top(stack)=$ and all input read

 then enter accept s

a

i

a i

tate

ACS2 WS2011/12

TS3: Context-free Languags

33

Lemma 2.21: Proof (ctd.)

 A construction to substitute a variable by a string

ACS2 WS2011/12

TS3: Context-free Languags

34

Lemma 2.21: Proof, resulting PDA

ACS2 WS2011/12

TS3: Context-free Languags

35

Example 2.25

ACS2 WS2011/12

We use the procedure to construct a PDA P1 from the following CFG G.
𝑆 → 𝑎𝑇𝑏 | 𝑏
𝑇 → 𝑇𝑎 | 𝜀

The transition function is shown in the following diagram:

TS3: Context-free Languags

36

Lemma 2.27

Lemma 2.27:

 If a pushdown automaton recognizes some language, then it is
context-free. (Backward direction)

Assume PDA satisfies the following conditions

1. It has a single accept state,

2. It empties the stack before accepting

3. Each transition either pushes symbol onto the stack

 or re

acceptq

Construction

moves a symbol from the stack

Now generate one variable for each pair of states and

The variable accepts all strings that lead from to with empty stack

pq

pq

Can be enforced easily !

A p q

A p q

ACS2 WS2011/12

TS3: Context-free Languags

37

Proof

Say that and construct . The variables

of are The start variable is

Now we describe ´s rules.

 For each and , if

0 accept

0 accept

pq q ,q

P (Q, , , q ,{ q }) G

G { A | p,q Q }. A .

G

p,q,r ,s Q;t a,b (p,a,)





  



     

 contains and contains put the

 rule in

 For each put the rule in

 Finally, for each put the rule in

You may gain s

pq rs

pq pr rq

pp

(r ,t) (s,b,t) (q,)

A aA b G.

p,q,r Q A A A G.

p Q A G.

 



  

   

ome intuition for this construction from the following figures.

ACS2 WS2011/12

p r s q
𝑎, 𝜀 → 𝑡 𝑏, 𝑡 → 𝜀 𝐴𝑟𝑠

TS3: Context-free Languags

38 ACS2 WS2011/12

Corresponding to: 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞

TS3: Context-free Languags

39 ACS2 WS2011/12

Corresponding to: 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏

TS3: Context-free Languags

40

2.16

If generates , then can bring from with empty stack to with empty stackpqA x x P p q

Claim

Proof

Basis: derivation has one step, i.e. 𝐴𝑝𝑞 ⇒ 𝑥 must use a rule with no

variables in right hand side  only type 𝐴𝑝𝑝 → 𝜀.

Induction: Assume true for derivations of length at most 𝑘 ≥ 1 and
prove for 𝑘 + 1.

Suppose 𝐴𝑝𝑞

∗
⇒ 𝑥 with 𝑘 + 1 steps. Then first step is either

a) 𝐴𝑝𝑞 ⇒ 𝑎𝐴𝑟𝑠𝑏, or

b) 𝐴𝑝𝑞 ⇒ 𝐴𝑝𝑟𝐴𝑟𝑞.

Case a): 𝑥 = 𝑎𝑦𝑏 and 𝐴𝑟𝑠

∗
⇒ 𝑦 in 𝑘 steps with empty stack

 Now, because 𝐴𝑝𝑞 ⇒ 𝑎𝐴𝑟𝑠𝑏 in G, we have 𝛿(𝑝, 𝑎, 𝜀) ∋ (𝑟, 𝑡) and

𝛿 𝑠, 𝑏, 𝑡 ∋ (𝑞, 𝜀)

Therefore, 𝑥 can bring 𝑃 from 𝑝 to 𝑞 with empty stack.

ACS2 WS2011/12

2.30

TS3: Context-free Languags

41

2.16

If generates , then can bring from with empty stack to with empty stackpqA x x P p q

Claim

Proof

Basis: derivation has one step, i.e. 𝐴𝑝𝑞 ⇒ 𝑥 must use a rule with no

variables in right hand side  only type 𝐴𝑝𝑝 → 𝜀.

Induction: Assume true for derivations of length at most 𝑘 ≥ 1 and
prove for 𝑘 + 1.

Suppose 𝐴𝑝𝑞

∗
⇒ 𝑥 with 𝑘 + 1 steps. Then first step is either

a) 𝐴𝑝𝑞 ⇒ 𝑎𝐴𝑟𝑠𝑏, or

b) 𝐴𝑝𝑞 ⇒ 𝐴𝑝𝑟𝐴𝑟𝑞.

Case b): 𝑥 = 𝑦𝑧 such that 𝐴𝑝𝑟

∗
⇒ 𝑦 and 𝐴𝑟𝑞

∗
⇒ 𝑦 and both derivations use

at most 𝑘 steps.

 Therefore, 𝑥 can bring 𝑃 from 𝑝 to 𝑞 with empty stack.

(Claim 2.31 “If x can bring P from p with empty stack to q with empty
stack, then 𝐴𝑝𝑞 generates x”, likewise. See page 123 in Sipser.)

ACS2 WS2011/12

2.30

TS3: Context-free Languags

42

Every regular language is context-free

ACS2 WS2011/12

regular
languages

Figure 2.33: Relationship of the regular and context-free languages

(.. because NFA is PDA without a stack!)

TS3: Context-free Languags

43

Pumping lemma

 Pumping Lemma

If is a context free language, then there is a number

such that if is any string in of length at least

then may be dived into such that

1. For each 0;

2.

i i

A p

s A p

s s uvxyz

i uv xy z A

v



 

Theorem

0

3.

y

vxy p





ACS2 WS2011/12

TS3: Context-free Languags

44

Proof Idea

T

R

R

u v x y z

ACS2 WS2011/12

TS3: Context-free Languags

45

Proof Idea

T

R

R

u

v

x y z

R

y x

ACS2 WS2011/12

v

𝑢𝑣2𝑥𝑦2𝑧

TS3: Context-free Languags

46

Proof Idea

T

R

R

u v x y z

ACS2 WS2011/12

TS3: Context-free Languags

47

Proof Idea

T

R

u

x

z

ACS2 WS2011/12

𝑢𝑣0𝑥𝑦0𝑧 = 𝑢𝑥𝑧

TS3: Context-free Languags

48

Proof of pumping lemma (outline)

𝑏: max number of symbols on right hand side of rule

𝑏 ≥ 2 because any CFG can be converted into CNF

number of leaves in a parse tree of height ℎ: ≤ 𝑏ℎ

hence, for string 𝑠 of such parse tree: |s| ≤ 𝑏ℎ

|𝑉|: number of variables in CFG G

choose pumping length 𝑝 = 𝑏 𝑉 +2 such that 𝑝 > 𝑏 𝑉 +1

for any 𝑠 ≥ 𝑝: possible parse trees for 𝑠 have height at least 𝑉 + 2

let 𝜏 be the parse tree for 𝑠 with smallest number of nodes:

 must be at least 𝑉 + 1 high

 must contain a path P from root to a leaf of length at least 𝑉 + 1

 P has at least 𝑉 + 2 nodes: one terminal and the rest variables

 P has at least 𝑉 + 1 variables  some variable must be doubled!

ACS2 WS2011/12

T

R

R

u v x y z T

R

R

u

v

x y z

R

y x

T

R

u

x

z

TS3: Context-free Languags

49

Proof of pumping lemma (ctd.)

Divide 𝑠 into 𝑢𝑣𝑥𝑦𝑧 as in picture to the right.

Each occurance of R has subtree under it, generating
a part of string 𝑠. Upper occurrence generates 𝑣𝑥𝑦
with larger subtree, lower occurrence just 𝑥, with
smaller subtree. Both are generated by R, thus,
we can substitute one for the other.

 pumping down gives 𝑢𝑥𝑧; pumping up gives 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 with 𝑖 ≥ 1

 condition 1 is satisfied: for each 𝑖 ≥ 0, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴

condition 2: 𝑣𝑦 > 0

 must be sure that both 𝑣 and 𝑦 are not 𝜀.

 Assuming they were 𝜀, substituting smaller for bigger subtree would
lead to parse tree with fewer nodes than 𝜏 that would still generate 𝑠.

 contradiction: 𝜏 chosen to be parse tree with fewest number of nodes

T

R

R

u v x y z T

R

R

u

v

x y z

R

y x

T

R

u

x

z

ACS2 WS2011/12

TS3: Context-free Languags

50

Proof of pumping lemma (ctd.)

condition 3: 𝑣𝑥𝑦 ≤ 𝑝

 upper occurrence of R generates 𝑣𝑥𝑦

 R chosen such that both occurrences fall within
the bottom 𝑉 + 1 variables on the path and
chose longest path in parse tree

 subtree where R generates 𝑣𝑥𝑦 is at most
𝑉 + 2 high.

 Any such tree of height 𝑉 + 2 can only generate strings of length at

most 𝑏 𝑉 +2 = 𝑝
∎

ACS2 WS2011/12

T

R

R

u v x y z T

R

R

u

v

x y z

R

y x

T

R

u

x

z

TS3: Context-free Languags

51

{ | 0} is not context freen n nB a b c n 

2 2

choose

clearly in

because 2) either or not empty

Consider two cases :

A. both and contain only one type of alphabet symbol

 Then (does not contain equal no. of , ,)

B. either or

p p ps a b c

B

v y

v y

uv xy z B a b c

v





2 2

 contain more than one type of symbol

 Then (does not have right order of , ,)

y

uv xy z B a b c

1. For each 0;

2. 0

3.

i ii uv xy z A

vy

vxy p

 





ACS2 WS2011/12

TS3: Context-free Languags

52

{ | 0 } is not context freei j kC a b c i j k   

choose ; clearly in

because 2) either or not empty; Consider two cases :

A. both and contain only one type of alphabet symbol

 Three subcases :

 A1. does not appear in and

 T

p p ps a b c C

v y

v y

a v y



0 0

2 2

0 0

hen (contains fewer ,)

 A2. does not appear in and

 If appears then (contains more than)

 If appears then (contains more than)

 A3. do

uv xy z B b c

b v y

a uv xy z B a b

c uv xy z B c b

c







2 2

2 2

es not appear in and

 Then

B. either or contain more than one symbol

 Then (does not have right order of , ,)

v y

uv xy z B

v y

uv xy z B a b c





1. For each 0;

2. 0

3.

i ii uv xy z A

vy

vxy p

 





ACS2 WS2011/12

TS3: Context-free Languags

53

Overview

Context free grammars

Pushdown Automata

Equivalence of PDAs and CFGs

Non-context free grammars

Pumping lemma

ACS2 WS2011/12

