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Overview 

Context free grammars 

 

Pushdown Automata 

 

Equivalence of PDAs and CFGs 

 

Non-context free grammars 

• Pumping lemma 
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Context free languages 

 Extend regular languages 

 

 First studied for natural languages 

 

 Often used in computer languages 

Compilers 

Parsers 

 

 Pushdown automata 
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Key concept: context-free grammar 

Example grammar 𝐺1: 

 𝐴 → 0𝐴1 

 𝐴 → 𝐵 

 𝐵 → # 

 Terminals: 0, 1, # (correspond to alphabet Σ) 

 Nonterminals / variables: 𝐴, 𝐵 

 Rules: Symbol → String 

 Startsymbol 

The sequence of substitutions to obtain a string is called a derivation. 

 E.g. derivation of 000#111: A  0A1  00A11  000A111  000#111 

 

 Language defined by 𝑮𝟏:  𝐿 𝐺1 = 0𝑛#1𝑛  𝑛 ≥ 0} 

A 

A 

A 

A 

B 

0  0  0  #  1  1  1 
Parse tree for 

000#111 in 𝐺1 
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Natural language example: 

<SENTENCE> → <NOUN-PHRASE><VERB-PHRASE> 

<NOUN-PHRASE> → <CMPLX-NOUN>|<CMPLX-NOUN><PREP-PHRASE> 

<VERB-PHRASE> → <CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE> 

<PREP-PHRASE> → <PREP><CMPLX-NOUN> 

<CMPLX-NOUN> → <ARTICLE><NOUN> 

<CMPLX-VERB> → <VERB>|<VERB><NOUN-PHRASE> 

<ARTICLE> → a | the 

<NOUN> → boy | girl | flower 

<VERB> → touches | likes | sees 

<PREP> → with 

Example sentences: 
1. a boy sees 
2. the boy sees the flower 
3. a girl with a flower likes the boy 
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Context-free grammar 

DEFINITION 2.2: 

A context-free grammar is a 4-tuple 𝑉, Σ, 𝑅, 𝑆  with: 

1. 𝑉 a finite set called the variables 

2. Σ a finite set, disjoint from 𝑉, called the terminals 

3. 𝑅 is a finite set of rules, with each rule being a variable 
and a string of variables and terminals 

4. 𝑆 ∈ 𝑉 is the start symbol 

 

Example:  𝐺3 = 𝑆 , 𝑎, 𝑏 , 𝑅, 𝑆  

   𝑆 → 𝑎𝑆𝑏  𝑆𝑆  ε 
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Parsing 

 

 

 Construct meaning (parse tree) 

 

 

 

 

 

 

 

 

 

 Parse trees for the strings a + a x a and (a + a) x a 

3 ( , , , }

{ , , }

{ , , , (, )}

is

|

|

( ) |

G V R Expr

V Expr Term Factor

a

R

Expr Expr Term Term

Term Term Factor Factor

Factor Expr a

   

      

   

      

     

   
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Constructing CFGs 

 As the union of simpler CFGs 

 

1 1

2 2

1 2

0 1| 

1 0 | 

|

S S

S S

S S S











1

2

1 2

( ) {0 1 | 0}

( ) {1 0 | 0}

( ) ( ) ( )

n n

n n

L G n

L G n

L G L G L G

 

 

 
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Constructing CFGs 

 When given a DFA (i.e. constructing a CFG for reg. languages) 

For each state 

   Make a variable 

For each transition ( , )

   Add the rule 

For each accept state 

   Add the rule  

i

i

i j

i j

i

i

q

R

q a q

R aR

q

R










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Constructing CFGs 

 Languages consisting of “linked” strings 

 

 

 

1( ) {0 1 | 0}n nL G n 

Use rules of the form

   R uRv

1 10 1| S S 
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Constructing CFGs 

 Strings that may contain structures  that appear 
recursively as part of other (or the same) structures 

 

|

|

( ) |

Expr Term Term

Term Term Factor Factor

E

Factor

xpr

Exp ar

     

     



  


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Ambiguity 

 If a CFG generates the same string in several ways, then 
the grammar is ambiguous 

 E.g. grammar G5: 

 

 

 The grammar does not capture usual precedence 
relations 

 One of the main problems in natural language processing 

 “the boy touches the girl with the flower” 

 

 

 

 

| | ( ) |Expr Expr Expr Expr Expr Expr a         
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| | ( ) |Expr Expr Expr Expr Expr Expr a         

The two parse trees for the string a + a x a in grammar G5 
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Defining ambiguity 

 Leftmost derivation : 
 At every step in the derivation the leftmost variable is replaced 

 

 A string is derived ambiguously in a CFG if it has two or 
more different leftmost derivations  

 

 A grammar is ambiguous if it generates some string 
ambiguously 

 

 Some context free languages are inherently ambiguous, 
i.e. every grammar for the language is ambiguous  

{01 2 | or }i j k i j j k 
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Chomsky Normal Form (CNF) 

DEFINITION 2.8: 

A context-free grammar is in Chomsky normal form if 
every rule is of the form 

𝐴 → 𝐵𝐶 
𝐴 → 𝑎 

where 𝑎 is any terminal and 𝐴, 𝐵, and 𝐶 are any variables—
except that 𝐵 and 𝐶 may not be the start variable. In 
addition we permit the rule 𝑆 → 𝜀, where 𝑆 is the start 
variable. 

Theorem 2.9: 

Any context-free language is generated by a context-free 
grammar in Chomsky normal form. 

ACS2 WS2011/12 
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Chomsky normal form: proof idea 

 Rewrite all rules, which are not conform with the Chomsky normal 
form 

 If necessary, introduce new variables 

Four problems: 

1. Start variable is on the right side of a rule 
 Introduce a new start variable and a new rule for the 
derivation 

2. Epsilon-rules, like 𝐴 → ε 
 If A occurs on the right part of a rule, introduce new rules 
without A on the right part of the rule 

3. Unit-rules, like 𝐴 → 𝐵  
 directly replace B by its own production 

4. Long and/or mixed rules, like 𝐴 → 𝑎𝐵𝑐𝐴𝑏𝐴  
 new variables/new rules 

ACS2 WS2011/12 
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CNF: proof by construction 

1. Add a new start symbol 𝑆0 and the rule 𝑆0 → 𝑆, where 𝑆 is the old start 
symbol. 

2. Remove all rules 𝐴 → 𝜀: 
For each occurrence of 𝐴 in a rule 𝑅 → 𝑢𝐴𝑣 add 𝑅 → 𝑢𝑣 (if 𝑢 and 𝑣 are 
𝜀, then add 𝑅 → 𝜀). Repeat this step until all such rules (except a rule 
referring to the start variable) are removed. 

3. Remove all unit rules 𝐴 → 𝐵: Whenever 𝐵 → 𝑢 appears, then add 𝐴 →
𝑢. Repeat this step until all unit rules are removed. 

4a.  Convert remaining rules 𝐴 → 𝑢1𝑢2 … 𝑢𝑘, where 𝑘 ≥ 3, into rules 
 𝐴 → 𝑢1𝐴1, 
 𝐴1 → 𝑢2𝐴2, …, 
 𝐴𝑘−2 → 𝑢𝑘−1𝑢𝑘, where the 𝐴𝑖 are new variables. 

4b. If 𝑘 = 2, then replace any terminal 𝑢𝑖 in the rules with a new variable 
𝑈𝑖  and the new rule 𝑈𝑖 → 𝑢𝑖. 

Do not allow for cycles (i.e. first remove, then add rule)! 

ACS2 WS2011/12 
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CNF: example 2.10 

Let 𝐺6 be the following CFG and convert it into CNF by using the 
conversion procedure just given. The following series of grammars 
illustrates the steps in the conversion. Rules set in bold have just been 
added. Rules or symbols struck through have just been removed. 

1. The original CFG 𝐺6 is shown below on the left. The result of 
applying the first step to make a new start symbol appears on the 
right. 

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 
𝐴 → 𝐵 | 𝑆 
𝐵 → 𝑏 | 𝜀 

𝑺𝟎 → 𝑺 
𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 
𝐴 → 𝐵 | 𝑆 
𝐵 → 𝑏 | 𝜀 

ACS2 WS2011/12 
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CNF: example 2.10 (ctd.) 

2. Remove 𝜀 rule 𝐵 → 𝜀, shown on the left, and then also 𝐴 → 𝜀, shown 
on the right. 

 

 

 

 

 

3. (a) Remove unit rules 𝑆 → 𝑆, shown left, and 𝑆0 → 𝑆, shown right. 

 

𝑆0 → 𝑆 
𝑆 → 𝐴𝑆𝐴  𝑎𝐵  𝒂 
𝐴 → 𝐵  𝑆  𝜺 
𝐵 → 𝑏 | 𝜀 

𝑆0 → 𝑆 
𝑆 → 𝐴𝑆𝐴  𝑎𝐵  𝑎  𝑺𝑨  𝑨𝑺 | 𝑺 
𝐴 → 𝐵  𝑆  𝜀 
𝐵 → 𝑏 

𝑆0 → 𝑆 
𝑆 → 𝐴𝑆𝐴  𝑎𝐵  𝑎  𝑆𝐴  𝐴𝑆 | 𝑆 
𝐴 → 𝐵 | 𝑆 
𝐵 → 𝑏 

𝑆0 → 𝑆 | 𝑨𝑺𝑨  𝒂𝑩  𝒂  𝑺𝑨  𝑨𝑺 
𝑆 → 𝐴𝑆𝐴  𝑎𝐵  𝑎  𝑆𝐴  𝐴𝑆 
𝐴 → 𝐵 | 𝑆 
𝐵 → 𝑏 

ACS2 WS2011/12 
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CNF: example 2.10 (ctd.) 

3. (b) Remove unit rules A → 𝐵 and 𝐴 → 𝑆. 

 

 

 

 

 

4. Convert the remaining rules. 

𝑆0 → 𝐴𝑆𝐴  𝑎𝐵  𝑎  𝑆𝐴  𝐴𝑆 
𝑆 → 𝐴𝑆𝐴  𝑎𝐵  𝑎  𝑆𝐴  𝐴𝑆 
𝐴 → 𝐵  𝑆  𝒃 
𝐵 → 𝑏 

𝑆0 → 𝐴𝑆𝐴  𝑎𝐵  𝑎  𝑆𝐴  𝐴𝑆 
𝑆 → 𝐴𝑆𝐴  𝑎𝐵  𝑎  𝑆𝐴  𝐴𝑆 
𝐴 → 𝑆  𝑏  𝑨𝑺𝑨  𝒂𝑩  𝒂  𝑺𝑨  𝑨𝑺 
𝐵 → 𝑏 

𝑆0 → 𝐴𝐴1  𝑈𝐵 𝑎  𝑆𝐴  𝐴𝑆 
𝑆 → 𝐴𝐴1  𝑈𝐵  𝑎  𝑆𝐴  𝐴𝑆 
𝐴 → 𝑏  𝐴𝐴1  𝑈𝐵  𝑎  𝑆𝐴 | 𝐴𝑆 
𝐴1 → 𝑆𝐴 
𝑈 → 𝑎 
𝐵 → 𝑏 

ACS2 WS2011/12 
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Pushdown automata: introduction 

 Schema of a finite automaton 

state 

control 

a a b b input 

ACS2 WS2011/12 
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Pushdown automaton 

 Includes a stack 

 Push something on top of stack 

 Pop something from top of stack 

 Last in first out principle  

 As in cafeteria – tray 

 Schematic of a pushdown automaton: 

1( ) {0 1 | 0}n nL G n 
state 

control 

a a b b input 

x 
y 
z stack 

ACS2 WS2011/12 
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An example PDA 

State diagram for the PDA 𝑀1 that recognizes 0𝑛1𝑛 𝑛 ≥ 0}  

q2 q1 

q4 q3 

є,є → $ 
0,є → 0 

1,0 → є 

1,0 → є є,$ → є 

ACS2 WS2011/12 
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Formal definition (Definition 2.13) 

 

 

 

 

 

 

 

0A  is a 6-tuple  ( , , , , , )

1. is a finite set of states

2.  is a finite set, th

3.  is a finite set, the stack alphabet 

e input alphabet

4. : P( ) is the transition 

pushdown automaton

funcQ

Q q

Q

F

Q

  





   

 



5.  is the start state

6. is the set of acc

tion

ept states

oq Q

F Q





Transition function 

 maps (state, inputsymbol, stacksymbol) 

 onto set of (nstate, nstacksymbol) 

Meaning: 

  stacksymbol is replaced by nstacksymbol 

  input, stack, and nstacksymbol can be  ! 
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Example 2.14 (PDA M1) 

The following is the formal description of a PDA  that recognizes the language 

. Let  be , where

      

      

      

       and

       

n n

1 1

1 2 3 4

1 4

{0 1 | n 0 } M ( Q, , , ,q ,F )

Q { q ,q ,q ,q },

{0,1},

{0,$},

F { q ,q },





  



 





 is given by the following table, wherein blank entries signify .

Input 0 1 є 

Stack 0 $ є 0 $ є 0 $ є 

q1                 {(q2,$)} 

q2     {(q2,0)} {(q3,є)}           

q3       {(q3,є)}       {(q4,є)}   

q4                   

ACS2 WS2011/12 
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Computation with PDA M1 

To compute, one can keep track of 

   1. rest of the input string (to read)

   2. state of PDA

   3. string on stack

Use a tree structure as for NFAs !

1

2

2

2

3

3

4

(0011, , )

(0011, ,$)

(011, ,0$)

(11, ,00$)

(1, ,0$)

( , ,$)

( , ) accept

q

q

q

q

q

q

q



















q2 q1 

q4 q3 

𝜀,𝜀 → $ 
0, 𝜀 → 0 

1,0 → 𝜀 

1,0 → 𝜀 𝜀,$ → 𝜀 
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Formal Definition of Computation 

 0

*

1

0 0

1

Let  be a pushdown automaton ( , , , , , )

Let ....  be a string over 

  if and ....  where   and a sequence of

states ,..., exist strings ,...,

accepts

existss  in  and  in 

n

n i

n n

M Q q F

w w w

M w w

s s

w w w w

r r Q



 

 

  



0 0

1 1

*

*

0

1

1.

2.for all 0,..., 1

  ( , ) ( , , )  where = and =

   for some ,   and some 

3.

No explicit test for empty stack and end o

such that

and 

f input

i i i i i

n

r q

i n

r r w s at s b

s

b

a

a t

b t

r F







  



 

 






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Another example 

PDA M2 recognizing 𝑎𝑖 𝑏𝑗 𝑐𝑘  
𝑖, 𝑗, 𝑘 0 𝑎𝑛𝑑 𝑖 =  𝑗 𝑜𝑟 𝑖 =  𝑘} 

q4 q3 

q5 q6 

𝜀,$ → 𝜀 

q7 
q2 

q1 

b, 𝜀 → 𝜀 a, 𝜀 → a c,a → 𝜀 

b,a → 𝜀 c, 𝜀 → 𝜀 

𝜀,$ → 𝜀 𝜀, 𝜀 → 𝜀 𝜀, 𝜀 → 𝜀 

State diagram for PDA M2 that recognizes  

the language {𝑎𝑖𝑏𝑗𝑐𝑘  |  𝑖. 𝑗. 𝑘 ≥  0 𝑎𝑛𝑑 𝑖 =  𝑗 𝑜𝑟 𝑖 =  𝑘} 

 Non determinism essential for this language! 

ACS2 WS2011/12 
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Another example 

PDA M3 recognizing {wwR|w 2 {0,1}*} 

q2 q1 

q4 q3 

𝜀, 𝜀 → $ 0, 𝜀 → 0 

1, 𝜀 → 1 

𝜀, 𝜀 → 𝜀 

0,0 → 𝜀 
1,1 → 𝜀 

𝜀,$ → 𝜀 

ACS2 WS2011/12 
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Theorem 2.20 and Lemma 2.21 

Theorem 2.20:  
A language is context free if and only if some pushdown automaton 
recognizes it. 

 

Lemma 2.21: If a language is context free, then some pushdown 
automaton recognizes it. (Forward direction of proof) 

 

ACS2 WS2011/12 

 A CFL accepts a string if there 
exists a derivation of the string 

 Involves intermediate strings 

 Represent intermediate strings on 
PDA 

<SENTENCE

> 
⇒ <NOUN-PHRASE><VERB-PHRASE> 

⇒ <CMPLX-NOUN><VERB-PHRASE> 

⇒ <ARTICLE><NOUN><VERB-PHRASE> 

⇒ a <NOUN><VERB-PHRASE> 

⇒ a boy <VERB-PHRASE> 

⇒ a boy <CMPLX-VERB> 

⇒ a boy <VERB> 

⇒ a boy sees 
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Lemma 2.21 Proof idea 

 Substitute variables by strings 

 Replace top variable on stack by string 

state 

control 

0 1 1 0 

A 
1 
A 0 1 
0 
$ 

0 1 A 1 A 0 0 1 A 1 A 0 

P presenting the intermediate string 01A1A0 

ACS2 WS2011/12 
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Lemma 2.21 Proof by construction 

 

1. Place the marker $ and the start symbol on the stack

2. Repeat forever

   a. if top(stack)=variable 

       then non-deterministically select one of the rules for 

       and substitute  

A

A

A

Construction

by right hand side of rule

   b. if top(stack)=terminal symbol 

       then read next input symbol be 

             if then fail

     c. if top(stack)=$ and all input read

         then enter accept s

a

i

a i

tate

ACS2 WS2011/12 
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Lemma 2.21: Proof (ctd.) 

 A construction to substitute a variable by a string  

ACS2 WS2011/12 



TS3: Context-free Languags 

34 

Lemma 2.21: Proof, resulting PDA 
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Example 2.25 

ACS2 WS2011/12 

We use the procedure to construct a PDA P1 from the following CFG G. 
𝑆 → 𝑎𝑇𝑏 | 𝑏 
𝑇 → 𝑇𝑎 | 𝜀 

The transition function is shown in the following diagram: 
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Lemma 2.27 

Lemma 2.27: 

 If a pushdown automaton recognizes some language, then it is 
context-free. (Backward direction) 

Assume PDA satisfies the following conditions

1. It has a single accept state, 

2. It empties the stack before accepting

3. Each transition either pushes symbol onto the stack

    or re

acceptq

Construction

moves a symbol from the stack

Now generate one variable for each pair of states  and 

The variable accepts all strings that lead from to with empty stack

pq

pq

Can be enforced easily !

A p q

A p q

ACS2 WS2011/12 
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Proof 

Say that  and construct . The variables

of  are  The start variable is  

Now we describe ´s rules.

   For each  and , if  

 

0 accept

0 accept

pq q ,q

P ( Q, , , q ,{ q }) G

G { A | p,q Q }. A .

G

p,q,r ,s Q;t a,b ( p,a, )





  



     

       contains  and  contains  put the 

        rule  in 

   For each  put the rule  in 

   Finally, for each  put the rule  in 

You may gain s

pq rs

pq pr rq

pp

( r ,t ) ( s,b,t ) ( q, )

A aA b G.

p,q,r Q A A A G.

p Q A G.

 



  

   

ome intuition for this construction from the following figures.
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𝑎, 𝜀 → 𝑡 𝑏, 𝑡 → 𝜀 𝐴𝑟𝑠 
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Corresponding  to: 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 
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Corresponding  to: 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏 
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2.16

If generates ,  then can bring from  with empty stack to with empty stackpqA x x P p q

Claim

Proof 

Basis: derivation has one step, i.e. 𝐴𝑝𝑞 ⇒ 𝑥 must use a rule with no 

variables in right hand side  only type 𝐴𝑝𝑝 → 𝜀. 

Induction: Assume true for derivations of length at most 𝑘 ≥ 1 and 
prove for 𝑘 + 1. 

Suppose 𝐴𝑝𝑞

∗
⇒ 𝑥 with 𝑘 + 1 steps. Then first step is either 

a) 𝐴𝑝𝑞 ⇒ 𝑎𝐴𝑟𝑠𝑏, or 

b) 𝐴𝑝𝑞 ⇒ 𝐴𝑝𝑟𝐴𝑟𝑞. 

Case a): 𝑥 = 𝑎𝑦𝑏 and 𝐴𝑟𝑠

∗
⇒ 𝑦 in 𝑘 steps with empty stack 

 Now, because 𝐴𝑝𝑞 ⇒ 𝑎𝐴𝑟𝑠𝑏 in G, we have 𝛿(𝑝, 𝑎, 𝜀) ∋ (𝑟, 𝑡) and 

𝛿 𝑠, 𝑏, 𝑡 ∋ (𝑞, 𝜀) 

Therefore,  𝑥 can bring 𝑃 from 𝑝 to 𝑞 with empty stack. 

ACS2 WS2011/12 
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2.16

If generates ,  then can bring from  with empty stack to with empty stackpqA x x P p q

Claim

Proof 

Basis: derivation has one step, i.e. 𝐴𝑝𝑞 ⇒ 𝑥 must use a rule with no 

variables in right hand side  only type 𝐴𝑝𝑝 → 𝜀. 

Induction: Assume true for derivations of length at most 𝑘 ≥ 1 and 
prove for 𝑘 + 1. 

Suppose 𝐴𝑝𝑞

∗
⇒ 𝑥 with 𝑘 + 1 steps. Then first step is either 

a) 𝐴𝑝𝑞 ⇒ 𝑎𝐴𝑟𝑠𝑏, or 

b) 𝐴𝑝𝑞 ⇒ 𝐴𝑝𝑟𝐴𝑟𝑞. 

Case b): 𝑥 = 𝑦𝑧 such that 𝐴𝑝𝑟

∗
⇒ 𝑦 and 𝐴𝑟𝑞

∗
⇒ 𝑦 and both derivations use 

at most 𝑘 steps. 

 Therefore,  𝑥 can bring 𝑃 from 𝑝 to 𝑞 with empty stack. 

(Claim 2.31 “If x can bring P from p with empty stack to q with empty 
stack, then 𝐴𝑝𝑞 generates x”, likewise. See page 123 in Sipser.) 
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Every regular language is context-free 

ACS2 WS2011/12 

regular 
languages 

Figure 2.33: Relationship of the regular and context-free languages 

(.. because NFA is PDA without a stack!) 
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Pumping lemma 

 Pumping Lemma

If  is a context free language, then there is a number 

such that if  is any string in of length at least 

then may be dived into  such that

1. For each 0;  

2.

i i

A p

s A p

s s uvxyz

i uv xy z A

v



 

Theorem

0

3.

y

vxy p




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Proof Idea 

T 

R 

R 

u v x y z 
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Proof Idea 

T 

R 

R 

u 

v 

x y z 

R 

y x 
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𝑢𝑣2𝑥𝑦2𝑧 
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Proof Idea 

T 

R 

R 

u v x y z 
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Proof Idea 

T 

R 

u 

x 

z 
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Proof of pumping lemma (outline) 

𝑏: max number of symbols on right hand side of rule 

𝑏 ≥ 2 because any CFG can be converted into CNF 

number of leaves in a parse tree of height ℎ: ≤ 𝑏ℎ 

hence, for string 𝑠 of such parse tree: |s| ≤ 𝑏ℎ 

 

|𝑉|: number of variables in CFG G 

choose  pumping length 𝑝 = 𝑏 𝑉 +2 such that 𝑝 > 𝑏 𝑉 +1 

for any 𝑠 ≥ 𝑝: possible parse trees for 𝑠 have height at least 𝑉 + 2 

let 𝜏 be the parse tree for 𝑠 with smallest number of nodes: 

 must be at least 𝑉 + 1 high  

 must contain a path P from root to a leaf of length at least 𝑉 + 1 

 P has at least 𝑉 + 2 nodes: one terminal and the rest variables 

 P has at least 𝑉 + 1 variables  some variable must be doubled! 
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Proof of pumping lemma (ctd.) 

Divide 𝑠 into 𝑢𝑣𝑥𝑦𝑧 as in picture to the right. 

Each occurance of R has subtree under it, generating 
a part of string 𝑠. Upper occurrence generates 𝑣𝑥𝑦  
with larger subtree, lower occurrence just 𝑥, with  
smaller subtree. Both are generated by R, thus, 
we can substitute one for the other. 

 pumping down gives 𝑢𝑥𝑧; pumping up gives 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 with 𝑖 ≥ 1 

 condition 1 is satisfied: for each 𝑖 ≥ 0, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 

condition 2: 𝑣𝑦 > 0 

 must be sure that both 𝑣 and 𝑦 are not 𝜀. 

 Assuming they were 𝜀, substituting smaller for bigger subtree would 
lead to parse tree with fewer nodes than 𝜏 that would still generate 𝑠. 

 contradiction: 𝜏 chosen to be parse tree with fewest number of nodes 

T 

R 

R 

u v x y z T 

R 

R 

u 

v 

x y z 

R 

y x 

T 

R 

u 

x 

z 
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Proof of pumping lemma (ctd.) 

condition 3: 𝑣𝑥𝑦 ≤ 𝑝 

 upper occurrence of R generates 𝑣𝑥𝑦 

 R chosen such that both occurrences fall within 
the bottom 𝑉 + 1 variables on the path and 
chose longest path in parse tree 

 subtree where R generates 𝑣𝑥𝑦 is at most 
𝑉 + 2 high. 

 Any such tree of height 𝑉 + 2 can only generate strings of length at 

most 𝑏 𝑉 +2 = 𝑝 
∎ 
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{ | 0} is not context freen n nB a b c n 

2 2

choose 

clearly in 

because 2) either or not empty

Consider two cases :

A. both and contain only one type of alphabet symbol

   Then (does not contain equal no. of , , )

B. either or 

p p ps a b c

B

v y

v y

uv xy z B a b c

v





2 2

 contain more than one type of symbol

   Then (does not have right order of  , , )

y

uv xy z B a b c

1. For each 0;  

2. 0

3.

i ii uv xy z A

vy

vxy p

 




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{ | 0 } is not context freei j kC a b c i j k   

choose ; clearly in 

because 2) either or not empty; Consider two cases :

A. both and contain only one type of alphabet symbol

   Three subcases :

   A1. does not appear in  and 

         T

p p ps a b c C

v y

v y

a v y



0 0

2 2

0 0

hen (contains fewer , )

   A2. does not appear in  and 

          If  appears then (contains more  than )

          If  appears then (contains more  than )

    A3. do

uv xy z B b c

b v y

a uv xy z B a b

c uv xy z B c b

c







2 2

2 2

es not appear in  and 

          Then 

B. either or  contain more than one symbol

   Then (does not have right order of  , , )

v y

uv xy z B

v y

uv xy z B a b c





1. For each 0;  

2. 0

3.

i ii uv xy z A

vy

vxy p

 




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Overview 

Context free grammars 

Pushdown Automata 

Equivalence of PDAs and CFGs 

Non-context free grammars 

Pumping lemma 
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