ACS II: Regular Languages

Regular Languages

Bernhard Nebel und Christian Becker-Asano

ACS II: Regular Languages

Overview

» Deterministic finite automata

» Regular languages

» Nondeterministic finite automata
» Closure operations

» Regular expressions

» Nonregular languages

» The pumping lemma

ACS II: Regular Languages

Finite automata

» An intuitive example: supermarket door controller

ACS II: Regular Languages

Finite automata (ctd.)

rear front

both rear
front rean, neither front both

door neither

» Example M, (figure 1.4) DEFINITION 1.5:

A finite automaton M is a 5-tuple
M= (Q;Z.(S:QO:F)

M,

0 1
/\ A
}0 : @ where,

1. Q is afinite set called the states
(plotted with JFLAP: www.jflap.org) 2 ¥ is a finite set called the

Top view of an automatic door State diagram for the automatic door controler

» Probabilistic counterparts exist
» Markov chains, Bayesian nets, etc.
» Not in this course

Transition table for the automatic door
controler:

neither front rear both

closed | closed open closed closed

open closed open open open

states: q1, 92, g3 alphabet

start state: g4
acceptance state: g,
transitions

output: accept or reject

3. 6:Q XX - Q is the transition
function
4. qo € Q is the start state

5. F < Q is the set of accept states
(also called final states)

ACS II: Regular Languages

Finite automata: example

Describe M;:

M; 1. Q = {q1: qzi q3}
2 5= 01

Which kind of input does M, accept:
1. ,abbbaaa“?

2.,000000"?
3. the empty string ¢ ?
4.,1000111"7?

4. q startstate

5. F ={q,)
- Which language is accepted by M, ?

ACS II: Regular Languages

Finite automaton M, and language A

3. 6 defined by transition table:

> Let A be the set of strings that a machine M accepts, then
» “M recognizes A”
> A is the language L(M)

» In case of M, let

A ={w | w contains at least one 1 and
an even number of 0s follow the last 1}.

then
L(M;) = A, or equivalently,
M, recognizes A. My

o)

(>
O

ACS II: Regular Languages

Finite automata M, and M,

oﬂ1

v
0

@D

State diagram of the two-state finite automaton M,

0 1

(o)

State diagram of the two-state finite automaton M,

.

/1\
-
0

ACS II: Regular Languages

Finite automaton M,

Finite automaton M, (figure 1.12)

ACS II: Regular Languages

Finite automaton M,

M;:

> keeps a running count of
the sum of all numerical
input symbols of its
alphabet
¥ ={0,1,2, RESET} that it
reads, modulo 3.

> resets the count, every
time it receives <RESET>.

> accepts, if the sum is a
multiple of 3.

<RESET>

Finite automaton Mj; (figure 1.14)

ACS II: Regular Languages

Formal definition of computation

> Let M be a finite automaton M = (Q, %, §, qo, F)

» Let w = wy ...w),, be a string over X
» M accepts w if a sequence of states 1y, ... 1, exists in Q such that
1. 19 =1qo
2. 8(r,wiy) =ryforalli=0,...,n—1
3 1m€EF
» M recognizes language A if A = {w | M accepts w}

DEFINITION 1.16:

Alanguage is called regular language if some finite
automaton recognizes it.

ACS II: Regular Languages

Designing finite automata

» Design automaton for language consisting of binary
strings with an odd number of 1s

> Design first states
» Then transitions
» Start state and accept states

ACS II: Regular Languages

Another example

> Design an automaton to recognize the language of binary strings
containing the string 001 as substring

» We have four possibilities:
1. we haven'‘t seen any symbol of the pattern yet, or
2. we have seen a o, or
3. we have seen a 00, or
4. we have seen the pattern oo1

ACS II: Regular Languages

The regular operations

> Let A and B be languages.
» We define:
»Union: AUB ={x|x € Aorx € B}
» Concatenation: 4 o B ={xy|x € Aand y € B}
» Star: A* = {x1x; ...x, | n = 0and each x; € A}
* note thatalsoe € A
« Example: A = {empty, full}; B = {cup, bottle}
c AUB = ..
* AoB= ..
c AY= ..

ACS II: Regular Languages

Regular languages are closed under ...

A set S is closed under an operation o if applying o on
elements of S yields elements of S.

+ example: multiplication on natural numbers
» counterexample: division of natural numbers

Theorem 1.25:

The class of regular languages is closed under the union
operation.

(In other words: If A; and A, are regular languages, so is
AjUA,)

ACS II: Regular Languages

Proof 1.25 (by construction)

ACS II: Regular Languages

Proof 1.25 (by construction, ctd.)

Let M, recognize A; where M; = (Q4,%, 61,91, F,), and
M, recognize A, where M; = (Q5,%, 85,5, F,).

Construct M to recognize A; U A,, where M = (Q, %, §, qq, F).

1. Q={(y,m)lr € Qyandr, € Q).
This set is the cartesian product of the sets Q; and Q, (written
Q1 X Q,). Tt is the set of all pairs of states with the first from Q, and
the second from Q,.

2. %, the alphabet, is the same as in case of M; and M,. The theorem
remains true if they have different alphabets, ¥, and Z,. We would
then modify the prooftolet £ =%, UZ,.

3. 8, the transistion function, is defined as follows.
Foreach (r;,1,) € Q and eacha € I, let

5((7’1: 1), a) = (61(ry,a), 85(r2, a)).
Hence § gets a state of M (which actually is a pair of states from M,
and M,), together with an input symbol, and returns M's next state.
4. qy is the pair (g4, q2)-
5. F is the set of pairs, in which at leadt one member is an accept state of
either M, or M,. We can write this as

F={(r,r)|lr €Forne F,}.
This expression is the same as F = (F; X Q,) U (Q; X F,).

(Note: itis not the same as F = F; X F,. What would that give us?)
]

M=(0.2,6,9,F)
ACS II: Regular Languages

Define

Example 1.0 ={(r,5) | £ €0,nd £, EQ,)

23-3,US,

3.0((r,1).a) = (9,(17,0),0,(;, @)
4.9 =(q,.9,)
S.F={(n.n,)|[hEF or L, ER}

constructed from M, = (Q, .Z,.0,.q,.F,) and M, = (0, ,%,,9,.4,.F,)|

ACS II: Regular Languages

Regular languages are closed under ...

M, with L(M,) = M, with L(M,) =
{w|w contains a 1} {w|w contains at least two 0s}

1 1 0

m ,
(o)) ()
(e

S

1

om 011
—(" ()

Theorem 1.26:

The class of regular languages is closed under the

concatenation operation.
(In other words: If A; and A, are regular languages, so is A; 4,.)

V

Non deterministic finite automata

ACS II: Regular Languages

Non deterministic finite automata (NFA)

» Deterministic (DFA)
* One successor state
* ¢ transitions not allowed
» Non deterministic (NFA)
* Several successor states possible
* ¢ transitions possible

NFA N, |

ACS II: Regular Languages

Deterministic vs. non deterministic

computation
Figure 15 Deterministic Nondeterministic
computation computation

S
reject (\'

s acceptor I'CjCCY * accept

L"\.L’\.K‘\ o~

20

ACS II: Regular Languages

Example run

(@) (@))

0,1
|

Input: w=010110

NFA N, | 1

ACS II: Regular Languages

Another NFA

/
X

ﬂka\
&) -@re)r®

2

X
e
O-©-€

GION
K@

22

ACS II: Regular Languages

Nondeterministic finite automaton

DEFINITION 1.37:

A nondeterministic finite automaton is a 5-tuple

(Q; 2; 6; qo, F) With:
1. Q afinite set of states

N W N

qo € Q is the start state

Y a finite set, the alphabet
5: Q X X, - P(Q) is the transition function

5. F c Q is the set of accept states

Y includes ¢
P(Q) the powerset of Q

ACS II: Regular Languages

Example 1.18

~ 0,1 0,1
RO O O
[NFA N,

23

The formal description of N; is (Q, %, 8, q4, F), where

1. Q = {4192, 93, 4},
2. £={0,1}
3. 6 isgiven as 0 1

€

a1 {q1} {91, a2} {
q: {az} { {az}
qs { {94} {
s {q4} {q4} {3

4. q, is the start state

24

ACS II: Regular Languages

Formal definition of computation

Let M be a finite automaton (Q, %, 5, qo, F).
Let w = w; ...w,, be a string over X.

M accepts w if a sequence of states ry, ..., 1;, exists in Q such that
1. 19=qo

2. 8(rywiyq) =r4qforalli=0,..,n—-1

3 n €F

M recognizes language A if A = {w | M accepts w}.

A language is regular if some finite automaton recognizes it.

25

ACS II: Regular Languages

Every NFA has an equivalent DFA

0,1
)\ NFA recognizing
0,1 0,1
— (figure 1.31)

DFA recognizing
language A
1 (figure 1.32)

26

ACS II: Regular Languages

Equivalence NFA and DFA

Two machines are equivalent if they recognize the same
language

Theorem 1.39:
Every nondeterministic finite automaton has an equivalent
deterministic finite automaton.

Corollary 1.40:
Alanguage is regular if and only if some nondeterministic
finite automaton recognizes it.

ACS II: Regular Languages

Proof: Theorem 1.39

Let N = (Q, %, 69, qo, F) be the NFA recognizing some
language A.

Idea: We show how to construct a DFA M recognizing A for
any such NFA.

We start by only considering the easier case first, wherein N
has no ¢ transitions. The ¢ transitions are taken into
account later.

27

28

ACS II: Regular Languages

Proof: Theorem 1.39 (ctd.)

Construct M = (Q',%, 84,90, F")-

1. Q' =P(Q).
Every state of M is a set of states of N.
(Recall that P(Q) is the power set of Q).

2. ForRe Q' anda € Xlet
§'(R,a) ={q€Qlqe (@, a)forsomer € R}.
If R is a state of M, it is also a set of states of N. When M reads a
symbol a in state R, it tells us where a takes each state in R.
Because each state leads to a set of states, we take the union of all
these sets. Alternatively we can write:

§'(Ra) = U 6(r,a)
TER
. . . .
3. q4 ={qo}- M starts in the state corresponding to the collection

rontainino inct the ctart ctate nf N

ACS II: Regular Languages

Proof: Theorem 1.39 (ctd.)

4. F'={R € Q'| R contains an accept state of N}.

The machine M accepts if one of the possible states that N could be
in at any given moment in an accept state.

The ¢ transitions need some extra notation:

a) For any state R of M we define E(R) to be the collection of states
that can be reached from R by means of any number of ¢
transitions alone, including the members of R themselves.
Formally, for R < Q let

E(R) ={q | q can be reached from R along 0 or more ¢ transitions}.

b) The transition function M is then modified to take into account all
states that can be reached by going along ¢ transitions after every
step. Replacing & (r, a) by E(8(r, a)) achieves this. Thus,

§'(R,a)={q € QlqeE(8(, a)) for somer € R}.

29

30

ACS II: Regular Languages

Proof: Theorem 1.39 (ctd.)

ACS II: Regular Languages

An example

¢) Finally, the start state of M has to cater for all possible states that
can be reached from the start state of N along the ¢ transitions.
Changing g, to be E({q,}) achieves this effect.

We have now completed the construction of the DFA M that simulates

the NFA N.

Example:
The NFA N, (figure 1.42)

Construct an equivalent DFA!

The resulting DFA b

o
-

P /,L /
ey,

The resulting DFA
(after removing
redundant states)

31

32

ACS II: Regular Languages

Closure under the regular operations

Theorem 1.45:

The class of regular languages is closed under the union operation. In
other words, if A; and A, are regular languages, so is A, U 4,.

Theorem 1.47:

The class of regular languages is closed under the concatenation
operation.

Theorem 1.49:

The class of regular languages is closed under the star operation.

ACS II: Regular Languages

Proof of Theorem 1.45

33

The class of regular languages is closed under the union

operation.
1den; g

“log -0 ©

08 O ¥ 02 &)
| SR
N, f_..@ € o@’—d

O 0]

%0 %0
—— o/

34

ACS II: Regular Languages

Proof of Theorem 1.45 (ctd.)

Let N; = (Q4,%, 84,94, F;) recognize A, and
N, = (Q2,%, 85,95, F,) recognize A,.

Construct N = (Q,Z, 8, qo, F) to recognize A; U A, as follows:

1. Q ={qo}V Q, U Q,. The states of N are all the states of N; and N,,

with the addition of the new start state q,.

The state q, is the start state of N.
The accept states F = F; U F,. The accept states are all the accept
states of N; and N,. That way N accepts if either N; or N, accepts.

4. Define § sothatforany g € Q and anya € X,

81(q, @) qEQ

8,(q, @) q€Q;

{91,942} a=qoanda=c¢
[0] q=qoanda # ¢

8(g,a) =

ACS II: Regular Languages

Proof of Theorem 1.47

35

The class of regular languages is closed under the
concatenation operation.

Idea: s N,

©
o808
oo@ & & (@)
N
<) “f_‘ @
‘E-G) o o ozo@J

36

ACS II: Regular Languages

Proof of Theorem 1.47 (ctd.)

Let N; = (Q4,%, 61,94, F,) recognize 4,, and
N, = (Q2,%, 82,95, F,) recognize A,.
Construct N = (Q, %, 8, q1, F) to recognize A, o A, as follows:
1. Q = Qq U Q,. The states of N are all the states of N; and N,.

2. The state g, is the start state of N, which is the same as the start
state of N;.

3. The accept states F, are the same as the accept states of N,.

4. Define § sothatforany g € Q and anya € X,
81(q,a) qEQiandq & F;

_) 61(q2) gEF anda # ¢
8(q.a)= 5:(qa)U{q,} q€EFianda=¢
52(‘1;@) qE€ QZ

ACS II: Regular Languages

Proof of Theorem 1.49

The class of regular languages is closed under the star
operation.

Idea:

1\7
N,

Q0O

37

38

ACS II: Regular Languages

Proof of Theorem 1.49 (ctd.)

ACS II: Regular Languages

Regular expressions

Let N; = (Q41,%, 841,94, F1) recognize A;.
Construct N = (Q, %, 8, qo, F) to recognize A7 as follows:
1 Q={qo}V Q1.
The states of N are the states of N, plus a new start state q,.
2. The state q, is the new start state of N.
3. F ={qo}V F,. The accept states are the old accept states plus the
new start state.
4. Define § so thatforany q € Q and anya € Z,
61(¢a) q€Qiandq¢F,

6,(q,a) qEF anda # ¢
6(q,a) =61(qa) U{q:} g€ Franda=¢
{q.} g=qoanda=¢

0] q=qoanda # &

DEFINITION 1.52:
Say that R is a regular expression if R is

a for some a in the alphabet %,

&,

2,

(R{ UR;), where R, and R, are regular expressions,
(Ry ° R;), where R, and R, are regular expressions, or

N A WN N

(RY), where R, is a regular expression.

39

40

ACS II: Regular Languages

Regular expressions: examples (1)

LetX ={0,1}:

0*10* = {w | w has exactly a single 1}.

Y*1%* = {w | w has at least one 1}.

2*001%Z* = {w | w contains 001 as a substring}.

(017)* ={w | every O inw is followed by at least one 1}.
(ED)* ={w |wis astring of even length}.

(Zz2)* = {w | thelength of w is a multiple of three}.
01U 10 = {01,10}.

0Z*0U 1Z*1U0uUl =

{w | w starts and with the same symbol as it ends}.

RN S R NN

ACS II: Regular Languages

Regular expressions: examples (2)

41

LetX ={0,1}:

9. (0uegl*=01"u1
The expression 0 U ¢ describes the language {0, €}, so the
concatenation operation adds either 0 or ¢ before every string

in 17,
70.(0U €)(1 U €) = {&,0,1,01}.
11.1"¢ = @.

Concatenating the empty set to any set yields the empty set.
12. ¢ = {&}.

The star operation puts together any number of strings from
the language to get a string in result. If the language is empty,
the star operator can only put o strings together, giving only

Ahn mcndes Al

42

ACS II: Regular Languages

Applications of regular expressions

» Design of compilers
{+,—,e}(DD* U DD*.D U D*.DD*)
where D = {0, ...,9}
> awk, grep, vi, ... in *nix systems (search for strings)
» Programming lanugages (e.g. Perl, Python, C++, Java)

» Bioinformatics
» So-called motifs (patterns occuring in sequences)

ACS II: Regular Languages

Equivalence of RE and NFA

43

Theorem 1.54 (page 66):
Alanguage is regular if and only if some regular expression describes it.

Two directions to consider:

Lemma 1. age 67):
If a language is described by some regular expression, then it is regular.

Lemma 1.60 (page 69):

If a language is regular, then it can be described by some regular
expression.

44

ACS II: Regular Languages

Proof of Lemma 1.55

» Idea: Given a regular expression R describing a regular
language A. We show how to convert R into an NFA
recognizing A.

> Six cases have to be considered:

1. R = aforsome a € I, then L(R) = {a}.

2. R =g, then L(R) = {e}.
3. R=0,thenL(R) = 0.
4 R=R,UR,.

5 R=RyoR,.

6. R =R..

ACS II: Regular Languages

Proof of Lemma 1.55, case 1

45

Given: R = a for some a € Z, then L(R) = {a}

The NFA N = ({q1, 42}, 2,6, q1,{q2})
recognizes L(R) with:

a
1. 8(q1,a) ={q,}, and %.%Q

2. 6(r,b) =@, forr # g, orb # a.

Note: this machine fits the definition of an NFA, but not
that of a DFA, as not all input symbols have exiting arrows.

46

ACS II: Regular Languages

Proof of Lemma 1.55, cases 2 & 3

Given: R = ¢, then L(R) = {¢}.
The NFAN = ({¢1},%,6,q1,{q:})
recognizes L(R) with: - O
1. §(r,b) = @, for any r and b.

Given: R = @, then L(R) = 0.

The NFA N = ({q},%,8,9,0) .

recognizes L(R) with:

ACS II: Regular Languages

Proof of Lemma 1.55, cases 4,5 & 6

47

Given:

4. R = R{UR,.
5. R=Rq°R,.
6. R=Rj.

The proofs for Theorems 1.45, 1.47, and 1.49 (slide 35,
sclosure of regular lanugages®) can be used to construct the
NFA R from the NFAs for R, and R, (or just R; in case 6).

[

48

ACS II: Regular Languages

Example 1.56: (ab U a)*

» Convert regular expression (ab U a)* into an NFA in a
sequence of stages.

» Build up from the smallest subexpressions to larger
subexpressions until NFA for the original expression is
achieved.

» Note: This procedure generally does not result in the
NFA with the fewest states!

ACS II: Regular Languages

Example 1.56: NFA for (ab U a)*

49

> a: -@2@
- b 0@
> ab: -0+@0 0@
> abUa .;\»A.j’.L.Jl’O

> (abUay e i eid
Bpare LR
AL

50

ACS II: Regular Languages

Exercise: NFA for (aUb)*aba

> a: @@
> b: —~@ @

> aUb
0@
— 0

ACS II: Regular Languages

Example: NFA for (aU b)*aba (cont.)

51

> aba:

H.ﬁ».J_..‘b».J—».ﬁO

» (aUb)*aba:

p—
H.L.i:;/ g

¢ o000 0@

52

ACS II: Regular Languages

Lemma 1.60

Lemma 1.60 (page 69):

If a language is regular, then it can be described by a
regular expression.

» Two steps
* DFA into GNFA (generalized nondeterministic finite automaton)
* Convert GNFA into regular expression

ACS II: Regular Languages

GNFAs

53

> Labels are regular
expressions

» Two states q and r are
connected in both
directions (fully
connected)

» Exception:
* One direction only
* Start state (exiting
transition arrows)
* Accept state (only one!)
(only incoming transition
arrows)

54

ACS II: Regular Languages

Generalized NFA

A generalized nondeterministic finite automaton is a

5'tuple (Qv Z, & Astart, Qaccept)a where:

1. Q afinite set of states

2. X afinite set, the alphabet

3. 6 (Q\{qaccept}) X (Q\{Gqstart}) » Ris the transition
function

4. Qstart € Q is the start state

5. Qaccept € Q is the accept state

R represents the collection of all regular expressions over
the alphabet Z.

ACS II: Regular Languages

A generalized NFA accepts string w...

55

A GNFA accepts string w € * if w = wyw, ... wy, where each

w; € * and a sequence of states qg, ¢4, ..., g €xists such that
1. q¢ = qstqre 1S the start state,
2. Qi = qaccept 15 the accept state, and

3. for each i, we have w; € L(R;), where R; = 6(q;_1,q;); in
other words, R; is the expression on the arrow from ¢q;_;

to q;.

56

ACS II: Regular Languages

Convert DFA into GNFA

> add new start state, with ¢ transition to old start state

» add new accept state, with ¢ transitions from old accept states

» if any transitions have multiple labels a and b, replace them
byaub

» add transitions with label @ between states that had no
transitions before

57

ACS II: Regular Languages

Convert GNFA into regular expression

3state DFA | 5state GNFA —> | 4 state GNFA

'

==+ 2state GNFA | €= 3 state GNFA

Regular

Expression

58

ACS II: Regular Languages

Ripping of states

ACS II: Regular Languages

Convert(G)

Replace one state by the corresponding RE

N

. ’ (R1)(Ry)" (Rs) UR'

Rs

1. Let k be the number of states of G.

2. Ifk = 2, then G must consists of a start state, an accept state, and a
single transition connecting them, which is labeled with a regular
expression R. Return the expression R and exit.

3. Ifk > 2, we select any state q,;, € Q different from g4, and
Qaccept and let G’ ne the GNFA (Q',%, 8", 4start) Qaccept), Where

Q' = Q\{qrip}'
and for any q; € QI\{qaccept} and any q; € Q,\{qstart} let
8'(41,9;) = RDR)* (R U (Ry),
for Ry = 6(qi' qrip)rRZ = S(qripr qrip)'RZi = 5(qrip' qj)' and
R, = 6(q:,9))-
4. Compute Convert(G") and return this value.

59

60

ACS II: Regular Languages

Example

DFA: Step 1: convert into GNFA
ab

(D

ab

YO o Bia

Step 2: rip state 2

Step 3: rip state 1:

}Q a'ban'

ACS II: Regular Languages

Another Example

61

a

b b
DFA: é& GNFA: /\,3
o 09,
b b /'
b >/ @ g ®
aa Ub
Rip 1: (\' Rip 2: . a(aa Ub)*

. @,
4./%;@@ AN i
b\‘./": a(aa Ub)‘ab Ub . (ba Ua) (aa Ub)* Ue

() oo (ba Ua) (aa Ub)*ab U bb %

RIB 3:. (a(aa Ub)*ab Ub)((ba Ua) (aa Ub)*ab U bb)*((ba Ua) (aa Ub)* Ug) Ua(aa Ub)* "O

62

ACS II: Regular Languages

A
. . (Ri)(R)* (Rs) UR, .
Induction Proof R, r,
O

Claim 1.65: For any GNFA G, Convert(G) igzequivalent toG.

Procedure: We proof this claim by induction on k, the number of states
of the GNFA.

Basis: Prove the claim true for k = 2 states. If G has only two states, it
can have only a single transition, which goes from the start state to the
accept state. The regular expression label on this transition describes
all the strings that allow G to get to the accept state. Hence, this
expression is equivalent to G.

Induction step: Assume that the claim is true for k — 1 states and use
this assumption to prove that the claim is true for k states. First we
show that G and G’ recognize the same language. Suppose that ¢
accepts an input w. Then in an accepting branch of the computation G
enters a sequence of states

Aetart: 01,029,042, ooy Aarront.

ACS II: Regular Languages

Induction Proof (ctd.)

63

Astart» 91, 92,93, qaccept-
If none of them is the removed state q,;,, clearly G’ also accepts w,
because each of the new regular expressions labeling the transitions of
G' contains the old regular expression as part of a union.
If g4, does appear, removing each run of consecutive q,, states forms
an accepting computation for G'. The states q; and g; bracketing a run
have a new regular expression on the transition between them that
describes all strings taking g; to q; via g, on G. So G’ accepts w.
For the other direction, suppose that G’ accepts an input w. As each
transition between any two states q; and q; in G’ describes the
collection of strings taking q; and q; in G, either directly or via g, G
must also accept w. Thus, G and G’ are equivalent.

64

ACS II: Regular Languages

Induction Proof (ctd.)

The induction hypothesis states that when the algorithm calls itself
recursively on input G’, the result is a regular expression that is
equivalent to G', because G’ has k — 1 states. Hence this regular
expression also is equivalent to G, and the algorithm is proved correct.
[

TN

. . (R)(R)" (Rg) UR, .

R,

O

65

ACS II: Regular Languages

Nonregular Languages

> Finite Automata have a finite memory

> Are the following languages regular ?
B={0"1"|n=0}
C = {w| whas an equal number of Os and 1s}

D = {w|w has an equal number of occurences of 01 and 10}

» Mathematical proof necessary

66

ACS II: Regular Languages

The pumping lemma

If A is a regular language, then there is a number p (the
pumping length), such that any string s of length at least p
may be divided into three pieces, s = xyz, such that

1. foreachi > 0,xyiz € 4,
2. |y] >0, and
3 |xy| <p.

Note: from 2 follows that y # ¢.

ACS II: Regular Languages

Proof Idea

Let M be a DFA recognizing A.
Assign p to be the number of states in M.
Show that string s, with length at least p, can be broken into xyz.

8§ = 81 S2 83 S4 55 Sg e
(U P
Q@ 4B 4 8\“'9 7 @9 96 35 913

Now prove that all three conditions are met.

67

68

ACS II: Regular Languages

Proof: Pumping Lemma

v

Let M = (Q,%,8,q4, F) be a DFA recognizing A and |Q| = p.
Let s = s;5; ...s, bea string in A, with |s| = n,andn>p

v Vv

Let r = ry, ..., 1,41 be the sequence of states that M enters for s,

S0 741 = 8(r, s)with1<i<n.|ry, ...,y =n+1,n+12p+1.

> Among the first p + 1 elements in r, there must be a r;and a r, being the
same state q,,,, with j # L.

As r;occursin thefirst p + 1 states: [<p + 1.

> Letx = s;..5_1,y = sj..5jand z = 5,..5,:

* as x takes M from r, to ry, y from r; to 1, and z from r; to ry, 44, being an
accept state, M must accept xyiz for i > 0.

* with j#1 |yl >0

* withl<p+1,|xy|<p

69

ACS II: Regular Languages

Pumping Lemma (cont.)

Use pumping lemma to prove that a language A is not
regular:

Assume that 4 is regular (Proof by contradiction)

2. usethe lemma to guarantee the existence of p, such that
strings of length p or greater can be pumped

3. find string s of A, with |s| > p that cannot be pumped

4. demonstrate that s cannot be pumped using all
different ways of dividing s into x,y, and z (using
condition 3 is here very useful)

5. the existence of s contradicts the assumption, therefore
A is not a regular language

70

ACS 11 Roemtar L 1. foreachi=>0,xy'z € A,
: Regular Languages 2. |yl > 0,and

3. |xy| <p.

Nonregular languages: example 1

B ={0"1"|n =0}
> Choose string s = 0P1? for p € N* being the pumping length
> If we were to consider condition 2, then we would have that:

1. string y consists only of 0s > xyyz has more 0s than 1s - not a
member of B - violates condition 1 - contradiction!

2. string y consists only of 1s = similar argument as in case 1 >
contradiction!

3. string y consists of both 0s and 1s = xyyz may have same
number of 0s and 1s, but out of order with some 1s before
0s - contradiction!

Intuitive argument: A DFA M would need to be able to remember how
many 0s have been seen so far as it reads the input. As the number of
0Os isn’t limited and all DFAs onlv have a finite number of states. B

71

ACS 11 Roetr L 1. foreachi>0,xy'z € A,
: Regular Languages 2. |yl > 0,and

3 |xy| <p.

Nonregular languages: example 2

C = {w | w has an equal number of 0s and 1s}
> Choose string s = 0P1? for p € N* being the pumping length
» Pumping s seems possible, but only if we ignored condition 3!
» Condition3: [xy| <p
» Thus, y consists of 0s only
» Then xyyz ¢ C - Contradiction!
Alternative proof:
» We know that B = {0"1" | n = 0} is not regular.

» If C were regular, then C N 0*1* = B also regular, because
regular languages are closed under intersection (cp. slide 14)!
- Contradiction!

72

NS I oo 1. foreachi>0,xy'z € 4,
: Regular Languages 2 |y| >0,and

3. |xy| <p.

Nonregular languages: example 3

F={ww|we{0,1}"}
> Choose string s = 0P1? for p € N* being the pumping length
» Does NOT WORK, because it CAN be pumped! Try again..
» Choose string s = 0P1071 for p € N* being the pumping
length
» We use condition 3 again:
» Condition3s: [xy| <p
> Thus, y consists of 0s only
» Then xyyz ¢ F - Contradiction!
» Choice of s is crucial
> If some s does not work, try another one!

73

S I oo 1. foreachi>0,xy'z € 4,
: Regular Languages 2 |y| >0, and

3. |xy| <p.

Nonregular languages: example 4

E={017]i>j}
> Choose string s = 0P*11? for p € N* being the pumping length
» We use condition 3 again:
» Condition3: |xy| < p
» Thus, y consists of 0s only
> Then xy°z = xz ¢ E - Contradiction!
> Here we use xy°z instead of xyyz as argument. This is
commonly called ,,pumping down*.

74

ACS 11 Roemtar L 1. foreachi=>0,xy'z € A,
: Regular Languages 2. |yl > 0,and

3. |xy| <p.

Example exam question

Q: Use the pumping lemma to prove that
L ={0%U|k,j = 0andk > 2j}is not regular.

A: Assumethat L = {0¥U | k,j = 0 and k > 2j} is regular. Let p be the
pumping length of L. The pumping lemma states that for any string s € L of
at least length p, there exist strings x, y, and z such that s = xyz, |xy| <
p, |yl > 0,and foralli > 0: xy'z € L.

Choose s = 0%P1P. Because s € L and |s| = 3p > p, we obtain from the
pumping lemma the strings x, y, and z with the above properties. As

s = xyz, |xy| < p, and s begins with 2p zeros, one can see that xy can only
consist of zeros. If we pump s down, i.e. select i = 0, the string xy’z = xz =
02r-1yl1p,

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros.

Hence xz ¢ L = CONTRADICTION.

Therefore L is not regular!

75

ACS II: Regular Languages

Summary

» Deterministic finite automata

> Regular languages

» Nondeterministic finite automata
> Closure operations

> Regular expressions

» Nonregular languages

» The pumping lemma

76

