Theoretical Computer Science II (ACS II) 3. First-order logic

Bernhard Nebel Christian Becker-Asano

Albert-Ludwigs-Universität Freiburg

November 14th, 2011

ACS II

B. Nebel, C. Becker-Asano

Introduction Syntax Semantics Further topics Wrap-up

Propositional logic does not allow talking about structured objects.

A famous syllogism

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

It is impossible to formulate this in propositional logic. ~> first-order logic (predicate logic)

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax Semantics Further topics Wrap-up The same questions as before:

- Which elements are well-formed? ~> syntax
- What does it mean for a formula to be true? \rightsquigarrow semantics

• When does one formula follow from another? \rightsquigarrow inference We will now discuss these questions for first-order logic (but only touching the topic of inference briefly). ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax Semantics Further topics Wrap-up

Building blocks of first-order logic

In propositional logic, we can only talk about formulae (propositions).

An interpretation tells us which formulae are true (or false).

In first-order logic, there are two different kinds of elements under discussion:

- terms identify the object under discussion
 - "Socrates"
 - "the square root of 5"
- formulae state properties of the objects under discussion
 - "All men are mortal."
 - "The square root of 5 is greater than 2."

An interpretation tells us which object is denoted by a term, and which formulae are true (or false).

ACS II

B. Nebel, C. Becker-Asano

Introduction Syntax

Semantics

Further topics

Syntax of first-order logic: signatures

Definition (signature)

A (first-order) signature is a 4-tuple $S = \langle V, C, F, R \rangle$ consisting of the following four (disjoint) parts:

- a finite or countable set \mathcal{V} of variable symbols,
- a finite or countable set C of constant symbols,
- a finite or countable set \mathcal{F} of function symbols,
- a finite or countable set \mathcal{R} of relation symbols (also called predicate symbols)

Each function symbol $f \in \mathcal{F}$ and relation symbol $R \in \mathcal{R}$ has an associated arity (number of arguments) $arity(f), arity(R) \in \mathbb{N}_1$.

Terminology: A *k*-ary (function or relation) symbol is a symbol s with arity(s) = k. Also: unary, binary, ternary

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics Wrap-up

Signatures: examples

Example: arithmetic

- $\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\bullet \ \mathcal{C} = \{ \mathsf{zero}, \mathsf{one} \}$
- $\mathcal{F} = \{sum, product\}$
- $\mathcal{R} = \{ \mathsf{Positive}, \mathsf{PerfectSquare} \}$

```
arity(sum) = arity(product) = 2,
arity(Positive) = arity(PerfectSquare) = 1
```

Conventions:

- variable symbols are typeset in *italics*, other symbols in an upright typeface
- relation symbols begin with upper-case letters, other symbols with lower-case letters

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax Semantics

Further topics

Signatures: examples

Example: genealogy

•
$$\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$$

• $C = \{queen-elizabeth, donald-duck\}$

•
$$\mathcal{F} = \emptyset$$

• $\mathcal{R} = \{\text{Female}, \text{Male}, \text{Parent}\}$

arity(Female) = arity(Male) = 1, arity(Parent) = 2

Conventions:

- variable symbols are typeset in *italics*, other symbols in an upright typeface
- relation symbols begin with upper-case letters, other symbols with lower-case letters

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Further topics

Vrap-up

Syntax of first-order logic: terms

Definition (term)

Let $S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature. A term (over S) is inductively constructed according to the following rules:

- Each variable symbol $v \in \mathcal{V}$ is a term.
- Each constant symbol $c \in C$ is a term.
- If t₁,..., t_k are terms and f ∈ F is a function symbol with arity k, then f(t₁,..., t_k) is a term.

Examples:

- x₄
- donald-duck
- $sum(x_3, product(one, x_5))$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Syntax of first-order logic: formulae

Definition (formula)

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature. A formula (over S) is inductively constructed as follows: Svntax • $\mathsf{R}(t_1,\ldots,t_k)$ (atomic formula; atom) where $R \in \mathcal{R}$ is a k-ary relation symbol and t_1, \ldots, t_k are terms (over S) • $t_1 = t_2$ (equality; also an atomic formula) where t_1 and t_2 are terms (over S) (universal quantification) • $\forall x \varphi$ • $\exists x \varphi$ (existential quantification) where $x \in \mathcal{V}$ is a variable symbol and φ is a formula over \mathcal{S} Ο...

ACS II

B. Nebel, C. Becker-

Syntax of first-order logic: formulae

Definition (formula)

•	
•	(truth)
• 1	(falseness)
• $\neg \varphi$	(negation)
where $arphi$ is a formula over ${\cal S}$	
• $(\varphi \wedge \psi)$	(conjunction)
• $(\varphi \lor \psi)$	(disjunction)
• $(\varphi \rightarrow \psi)$	(material conditional)
• $(\varphi \leftrightarrow \psi)$	(biconditional)
where $arphi$ and ψ are formulae over ${\cal S}$	

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax Semantics Further topics

Syntax: examples

Example: arithmetic and genealogy

- Positive (x_2)
- $\forall x \operatorname{PerfectSquare}(x) \to \operatorname{Positive}(x)$
- $\exists x_3 \operatorname{PerfectSquare}(x_3) \land \neg \operatorname{Positive}(x_3)$
- $\forall x (x = y)$
- $\forall x (\operatorname{sum}(x, x) = \operatorname{product}(x, \operatorname{one}))$
- $\forall x \exists y (sum(x, y) = zero)$
- $\forall x \exists y \operatorname{Parent}(y, x) \land \operatorname{Female}(y)$

Conventions: When we omit parentheses, \forall and \exists bind less tightly than anything else.

 $\stackrel{\rightsquigarrow}{\rightarrow} \frac{\forall x P(x) \rightarrow Q(x) \text{ is read as } \forall x (P(x) \rightarrow Q(x)), \\ \text{not as } (\forall x P(x)) \rightarrow Q(x).$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Terminology and notation

- ground term: term that contains no variable symbol examples: zero, sum(one, one), donald-duck counterexamples: x₄, product(x, zero)
- similarly: ground atom, ground formula example: PerfectSquare(zero) ∨ one = zero counterexample: ∃x one = x

Abbreviation:

sequences of quantifiers of the same kind can be collapsed

- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall xyz \varphi$
- $\forall x_3 \forall x_1 \exists x_2 \exists x_5 \varphi \rightsquigarrow \forall x_3 x_1 \exists x_2 x_5 \varphi$

Sometimes commas and/or colons are used:

- $\forall x, y, z : \varphi$
- $\forall x_3, x_1 \exists x_2, x_5 \varphi$

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Semantics of first-order logic: motivation

- In propositional logic, an interpretation was given by assigning to the atomic propositions.
- In first-order logic, there are no proposition variables; instead we need to interpret the meaning of constant, function and relation symbols.
- Variable symbols also need to be given meaning.
- However, this is not done through the interpretation itself, but through a separate variable assignment.

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Further topics

Interpretations and variable assignments

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature.

Definition (interpretation, variable assignment)

An interpretation (for S) is a pair $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ consisting of

- a nonempty set *D* called the domain (or universe) and
- a function $\cdot^{\mathcal{I}}$ that assigns a meaning to constant, function and relation symbols:
 - $\mathbf{c}^{\mathcal{I}} \in D$ for constant symbols $\mathbf{c} \in \mathcal{C}$
 - $f^{\mathcal{I}}: D^k \to D$ for k-ary function symbols $f \in \mathcal{F}$
 - $\mathsf{R}^{\mathcal{I}} \subseteq D^k$ for k-ary relation symbols $\mathsf{R} \in \mathcal{R}$

A variable assignment (for S and domain D) is a function $\alpha : \mathcal{V} \to D$.

Idea: extend ${\mathcal I}$ and α to general terms, then to atoms, then to arbitrary formulae

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Semantics of first-order logic: informally

Example: $(\forall x \operatorname{Block}(x) \to \operatorname{Red}(x)) \land \operatorname{Block}(a)$ "For all objects x: if x is a block, then x is red. Also, the object denoted by a is a block."

- Terms are interpreted as objects.
- Unary predicates denote properties of objects (being a block, being red, ...)
- General predicates denote relations between objects (being the child of someone, having a common multiple, ...)
- Universally quantified formulae ("∀") are true if they hold for all objects in the domain.
- Existentially quantified formulae ("∃") are true if they hold for at least one object in the domain.

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Interpreting terms in first-order logic

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature.

Definition (interpretation of a term)

Let $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and domain D. Let t be a term over \mathcal{S} . The interpretation of t under \mathcal{I} and α , in symbols $t^{\mathcal{I},\alpha}$ is an element of the domain D defined as follows:

- If t = x with $x \in \mathcal{V}$ (t is a variable term): $x^{\mathcal{I},\alpha} = \alpha(x)$
- If t = c with $c \in C$ (t is a constant term): $c^{\mathcal{I},\alpha} = c^{\mathcal{I}}$
- If $t = f(t_1, \ldots, t_k)$ (t is a function term): $(f(t_1, \ldots, t_k))^{\mathcal{I}, \alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, \ldots, t_k^{\mathcal{I}, \alpha})$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics

i di tiloi copie

Interpreting terms: example

Example

Signature: $S = \langle V, C, F, R \rangle$ with $V = \{x, y, z\}$, $C = \{\text{zero, one}\} \mathcal{F} = \{\text{sum, product}\}$, *arity*(sum) = *arity*(product) = 2

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics

Wran-un

Interpreting terms: example

Example

Signature:
$$S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$$

with $\mathcal{V} = \{x, y, z\}, C = \{\text{zero, one}\} \mathcal{F} = \{\text{sum, product}\},$
 $arity(\text{sum}) = arity(\text{product}) = 2$
 $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ with
• $D = \{d_0, d_1, d_2, d_3, d_4, d_5, d_6\}$
• $\text{zero}^{\mathcal{I}} = d_0$
• $\text{one}^{\mathcal{I}} = d_1$

•
$$sum^{\mathcal{I}}(d_i, d_j) = d_{(i+j) \mod 7}$$
 for all $i, j \in \{0, \dots, 6\}$

• product^{$$\mathcal{I}$$} $(d_i, d_j) = d_{(i \cdot j) \mod 7}$ for all $i, j \in \{0, \dots, 6\}$

$$\alpha = \{ x \mapsto d_5, y \mapsto d_5, z \mapsto d_0 \}$$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Interpreting terms: example (ctd.)

Example (ctd.) B. Nebel. • $zero^{\mathcal{I},\alpha} =$ • $y^{\mathcal{I},\alpha} =$ Semantics • $\operatorname{sum}(x, y)^{\mathcal{I}, \alpha} =$ • product(one, sum(x, zero)) $\mathcal{I}^{,\alpha} =$

19 / 48

Satisfaction/truth in first-order logic

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature.

. . .

Definition (satisfaction/truth of a formula)

Let $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and domain D. We say that \mathcal{I} and α satisfy a first-order logic formula φ (also: φ is true under \mathcal{I} and α), in symbols: $\mathcal{I}, \alpha \models \varphi$, according to the following inductive rules:

$$\begin{split} \mathcal{I}, \alpha &\models \mathsf{R}(t_1, \dots, t_k) \quad \text{iff } \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in \mathsf{R}^{\mathcal{I}} \\ \mathcal{I}, \alpha &\models t_1 = t_2 \quad \text{iff } t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha} \end{split}$$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Satisfaction/truth in first-order logic

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature.

. .

Definition (satisfaction/truth of a formula)

$$\mathcal{I}, \alpha \models \forall x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := d] \models \varphi \text{ for all } d \in D$$
$$\mathcal{I}, \alpha \models \exists x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := d] \models \varphi \text{ for at least one } d \in \mathcal{I}$$

where $\alpha[x := d]$ is the variable assignment which is the same as α except for x, where it assigns d. Formally:

$$(\alpha[x := d])(z) = \begin{cases} d & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Wrap-up

D

Satisfaction/truth in first-order logic

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature.

. . .

Definition (satisfaction/truth of a formula)

 $\begin{array}{ll} \mathcal{I}, \alpha \models \top & \text{always (i. e., for all } \mathcal{I}, \alpha) \\ \mathcal{I}, \alpha \models \bot & \text{never (i. e., for no } \mathcal{I}, \alpha) \\ \mathcal{I}, \alpha \models \neg \varphi & \text{iff } \mathcal{I}, \alpha \not\models \varphi \\ \mathcal{I}, \alpha \models \varphi \land \psi & \text{iff } \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi \\ \mathcal{I}, \alpha \models \varphi \lor \psi & \text{iff } \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi \\ \mathcal{I}, \alpha \models \varphi \rightarrow \psi & \text{iff } \mathcal{I}, \alpha \not\models \varphi \text{ or } \mathcal{I}, \alpha \models \psi \\ \mathcal{I}, \alpha \models \varphi \leftrightarrow \psi & \text{iff } \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi \\ \end{array}$

ACS II

B. Nebel, C. Becker-Asano

Syntax Semantics Further topics

Example

Signature:
$$S = \langle V, C, F, R \rangle$$

with $V = \{x, y, z\}$, $C = \{a, b\}$, $F = \emptyset$, $R = \{Block, Red\}$,
arity(Block) = *arity*(Red) = 1.

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics

Further topics

Example

Signature:
$$S = \langle V, C, F, R \rangle$$

with $V = \{x, y, z\}$, $C = \{a, b\}$, $F = \emptyset$, $R = \{Block, Red\}$
arity(Block) = arity(Red) = 1.

$$\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle \text{ with}$$
• $D = \{d_1, d_2, d_3, d_4, d_5\}$
• $\mathbf{a}^{\mathcal{I}} = d_1$
• $\mathbf{b}^{\mathcal{I}} = d_3$
• $\mathsf{Block}^{\mathcal{I}} = \{d_1, d_2\}$
• $\mathsf{Red}^{\mathcal{I}} = \{d_1, d_2, d_3, d_5\}$
 $\alpha = \{x \mapsto d_1, y \mapsto d_2, z \mapsto d_1\}$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models \mathsf{Block}(\mathsf{b}) \lor \neg \mathsf{Block}(\mathsf{b})$?
- $\mathcal{I}, \alpha \models \mathsf{Block}(x) \to (\mathsf{Block}(x) \lor \neg \mathsf{Block}(y))$?

•
$$\mathcal{I}, \alpha \models \mathsf{Block}(\mathsf{a}) \land \mathsf{Block}(\mathsf{b})$$
?

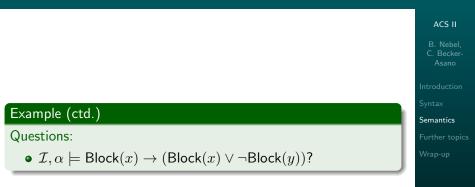
• $\mathcal{I}, \alpha \models \forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))$?

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics



Satisfaction/truth of sets of formulae

Definition (satisfaction/truth of a set of formulae)

Consider a signature S, a set of formulae Φ over S, an interpretation \mathcal{I} for S, and a variable assignment α for Sand the domain of \mathcal{I} .

We say that \mathcal{I} and α satisfy Φ (also: Φ is true under \mathcal{I} and α), in symbols: $\mathcal{I}, \alpha \models \Phi$, if $\mathcal{I}, \alpha \models \varphi$ for all $\varphi \in \Phi$.

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and consider any interpretation \mathcal{I} .
- To decide if

 $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2),$ which parts of the definition of α matter?

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and consider any interpretation \mathcal{I} .
- To decide if

 $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2),$ which parts of the definition of α matter?

 α(x₁), α(x₅), α(x₆), α(x₇), ... do not matter because these variable symbols do not occur in the formula

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and consider any interpretation \mathcal{I} .
- To decide if

 $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2),$ which parts of the definition of α matter?

- $\alpha(x_1)$, $\alpha(x_5)$, $\alpha(x_6)$, $\alpha(x_7)$, ... do not matter because these variable symbols do not occur in the formula
- α(x₄) does not matter either: it occurs in the formula, but all its occurrences are bound by a surrounding quantifier

ACS II

B. Nebel,
 C. Becker Asano

Introduction

Syntax

Semantics

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and consider any interpretation \mathcal{I} .
- To decide if

 $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2),$ which parts of the definition of α matter?

- α(x₁), α(x₅), α(x₆), α(x₇), ... do not matter because these variable symbols do not occur in the formula
- α(x₄) does not matter either: it occurs in the formula, but all its occurrences are bound by a surrounding quantifier
- \rightsquigarrow only the assignments to the free variables x_2 and x_3 matter

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Definition (variables of a term)

Let t be a term. The set of variables occurring in t, written vars(t), is defined as follows:

- $vars(x) = \{x\}$ for variable symbols x
- $vars(c) = \emptyset$ for constant symbols c
- $vars(f(t_1, ..., t_k)) = vars(t_1) \cup \cdots \cup vars(t_k)$ for function terms

Example: vars(product(x, sum(c, y))) =

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics

Free and bound variables of a formula

Definition (free variables)

Let φ be a logical formula. The set of free variables of φ , written *free*(α), is defined as follows:

• $free(\mathsf{R}(t_1,\ldots,t_k)) = vars(t_1) \cup \cdots \cup vars(t_k)$

•
$$free(t_1 = t_2) = vars(t_1) \cup vars(t_2)$$

•
$$\mathit{free}(\top) = \mathit{free}(\bot) = \emptyset$$

•
$$free(\neg \varphi) = free(\varphi)$$

=

•
$$free(\varphi \land \psi) = free(\varphi \lor \psi) = free(\varphi \rightarrow \psi)$$

= $free(\varphi \leftrightarrow \psi) = free(\varphi) \cup free(\psi)$

•
$$free(\forall x \varphi) = free(\exists x \varphi) = free(\varphi) \setminus \{x\}$$

Example: free($(\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2))$

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics Further topics Remark: Let φ be a formula, and let α and β be variable assignments such that $\alpha(x) = \beta(x)$ for all free variables of φ . Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Further topics

Remark: Let φ be a formula, and let α and β be variable assignments such that $\alpha(x) = \beta(x)$ for all free variables of φ . Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

In particular, if $free(\varphi) = \emptyset$, then α does not matter at all.

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics Further topic

Remark: Let φ be a formula, and let α and β be variable assignments such that $\alpha(x) = \beta(x)$ for all free variables of φ . Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

In particular, if $free(\varphi) = \emptyset$, then α does not matter at all.

Definition (closed formulae/sentences)

A formula φ with no free variables (i. e., $free(\varphi) = \emptyset$) is called a closed formula or sentence.

If φ is a sentence, we often use the notation $\mathcal{I} \models \varphi$ instead of $\mathcal{I}, \alpha \models \varphi$ because the definition of α does not affect whether or not φ is true under \mathcal{I} and α .

Formulae with at least one free variable are called open.

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics Further topics Question: Which of the following formulae are sentences?

- $\bullet \ \mathsf{Block}(\mathsf{b}) \vee \neg \mathsf{Block}(\mathsf{b})$
- $\bullet \ \mathsf{Block}(x) \to (\mathsf{Block}(x) \lor \neg \mathsf{Block}(y))$
- $Block(a) \land Block(b)$
- $\forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))$

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Further topics

For convenience, from now on we implicitly assume that we use matching signatures and that variable assignments are defined for the correct domain.

Example: Instead of

Consider a signature S, a set of formulae Φ over S, an interpretation \mathcal{I} for S, and a variable assignment α for S and the domain of \mathcal{I} .

we write:

Consider a set of formulae Φ , an interpretation \mathcal{I} and a variable assignment α .

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

The terminology we introduced for propositional logic can be reused for first-order logic:

- interpretation \mathcal{I} and variable assignment α form a model of formula φ if $\mathcal{I}, \alpha \models \varphi$.
- formula φ is satisfiable if $\mathcal{I}, \alpha \models \varphi$ for at least one \mathcal{I}, α (i. e., if it has a model)
- formula φ is falsifiable if $\mathcal{I}, \alpha \not\models \varphi$ for at least one \mathcal{I}, α
- formula φ is valid if $\mathcal{I}, \alpha \models \varphi$ for all \mathcal{I}, α
- formula φ is unsatisfiable if $\mathcal{I}, \alpha \not\models \varphi$ for all \mathcal{I}, α
- formula φ entails (also: implies) formula ψ, written φ ⊨ ψ, if all models of φ are models of ψ
- formulae φ and ψ are logically equivalent, written φ ≡ ψ, if they have the same models (equivalently: if φ ⊨ ψ and ψ ⊨ φ)

ACS II

B. Nebel, C. Becker-Asano

Introduction

Syntax

Semantics

Further topic

Terminology for formula sets and sentences

- All concepts from the previous slide also apply to sets of formulae instead of single formulae. Examples:
 - formula set Φ is satisfiable if $\mathcal{I}, \alpha \models \Phi$ for at least one \mathcal{I}, α
 - formula set Φ entails formula ψ , written $\Phi \models \psi$, if all models of Φ are models of ψ
 - formula set Φ entails formula set Ψ , written $\Phi \models \Psi$, if all models of Φ are models of Ψ
- All concepts apply to sentences (or sets of sentences) as a special case. In this case, we usually omit α.
 Examples:
 - interpretation $\mathcal I$ is a model of a sentence φ if $\mathcal I\models\varphi$
 - sentence φ is unsatisfiable if $\mathcal{I} \not\models \varphi$ for all \mathcal{I}

ACS II

B. Nebel, C. Becker-Asano

Introduction

yntax

Semantics

Further topics

Using these definitions, we could discuss the same topics as for propositional logic, such as:

- important logical equivalences
- normal forms
- entailment theorems (deduction theorem etc.)
- proof calculi
- (first-order) resolution

We will mention a few basic results on these topics, but we do not cover them in detail.

ACS II

B. Nebel, C. Becker-Asano

ntroduction

Syntax

Semantics

Further topics

Logical equivalences

- All propositional logic equivalences also apply to first-order logic (e. g., φ ∨ ψ ≡ ψ ∨ φ).
- Additionally, here are some equivalences and entailments involving quantifiers:

$$\begin{array}{ll} (\forall x\varphi) \land (\forall x\psi) \equiv \forall x(\varphi \land \psi) \\ (\forall x\varphi) \lor (\forall x\psi) \models \forall x(\varphi \lor \psi) & \text{but not vice versa} \\ (\forall x\varphi) \land \psi \equiv \forall x(\varphi \land \psi) & \text{if } x \notin free(\psi) \\ (\forall x\varphi) \lor \psi \equiv \forall x(\varphi \lor \psi) & \text{if } x \notin free(\psi) \\ \neg \forall x\varphi \equiv \exists x \neg \varphi \\ \exists x(\varphi \lor \psi) \equiv (\exists x\varphi) \lor (\exists x\psi) \\ \exists x(\varphi \land \psi) \models (\exists x\varphi) \land (\exists x\psi) & \text{but not vice versa} \\ (\exists x\varphi) \lor \psi \equiv \exists x(\varphi \lor \psi) & \text{if } x \notin free(\psi) \\ (\exists x\varphi) \land \psi \equiv \exists x(\varphi \land \psi) & \text{if } x \notin free(\psi) \\ \neg \exists x\varphi \equiv \forall x \neg \varphi \end{array}$$

ACS II

B. Nebel,
 C. Becker Asano

ntroduction

Syntax

Semantics

Further topics

Similar to DNF and CNF for propositional logic, there are some important normal forms for first-order logic, such as:

• negation normal form (NNF):

negation symbols may only occur in front of atoms

- prenex normal form: quantifiers must be the outermost parts of the formula
- Skolem normal form:

prenex normal form with no existential quantifiers

Polynomial-time procedures transform formula φ

- into an equivalent formula in negation normal form,
- into an equivalent formula in prenex normal form, or
- into an equisatisfiable formula in Skolem normal form.

ACS II

B. Nebel, C. Becker-Asano

Introduction Syntax Semantics Further topics

Entailment, proof systems, resolution...

- The deduction theorem, contraposition theorem and contradiction theorem also hold for first-order logic. (The same proofs can be used.)
- Sound and complete proof systems (calculi) exist for first-order logic (just like for propositional logic).
- Resolution can be generalized to first-order logic by using the concept of unification.
- This first-order resolution is refutation-complete, and hence with the contradiction theorem gives a general reasoning algorithm for first-order logic.
- However, the algorithm does not terminate on all inputs.

ACS II

B. Nebel, C. Becker-Asano

ntroduction Syntax

Semantics

Further topics

Nrap-up

- First-order logic is a richer logic than propositional logic and allows us to reason about objects and their properties.
- Objects are denoted by terms built from variables, constants and function symbols.
- Properties are denoted by formulae built from predicates, quantification, and the usual logical operators such as negation, disjunction and conjunction.
- As with all logics, we analyze
 - syntax: what is a formula?
 - semantics: how do we interpret a formula?
 - reasoning methods: how can we prove logical consequences of a knowledge base?

We only scratched the surface. Further topics are discussed in the courses mentioned at the end of the previous chapter.

ACS II

B. Nebel, C. Becker-Asano

Introduction Syntax Semantics Further topics Wrap-up