
1: Motivation

Motivation

Bernhard Nebel und Christian Becker-Asano

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Course Content

 Introduction to logic

Propositional

First order logic

Theoretical foundations of computer science

Automata Theory

Formal languages, grammars

Decidability

Computational Complexity

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Theoretical Computer Science motivation

Overall question :

What are the fundamental capabilities and limitations

of computers ?

Subquestions :

What is the meaning of computation ?

Automata theory

What can be computed ?

Computability/Decidability theory

What can be computed efficiently ?

Computational complexity

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

What is the meaning of computation ?

1930-50s : Automata theory ?

Various mathematical models of computers

Automata theory

Turing Machines

Grammars (Noam Chomsky)

Practical :

Many devices (dishwashers, telephones, …)

Compilers and languages

Protocols

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

What can be computed ?

What can be computed using Turing Machines?

Some problems can be solved algorithmically

E.g. sorting

Others cannot :

E.g. the halting problem determine whether Turing machine

M accepts w or not

May not terminate (if M loops)

E.g. Goedel : no algorithm can decide in general whether

statements in number theory are true or false

Practical :

It is important to know what can be computed and what not

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

What can be computed efficiently ?

Examples

Sorting can be done efficiently

Scheduling cannot be done efficiently

University lectures

Complexity theory gives an explanation

NP-hard problems

Practical :

Important to know how hard your problem is

Cryptography

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Some mathematical concepts: Sets

 A set is a group of objects

 *4,7,12+, the empty set is denoted ∅ or *+

 Membership is denoted with ∈ and ∈:
 4 ∈ *4,7,12+ and 5 ∈ *4,7,12+

 Subset ⊆ and propper subset ⊂:

 *12, 4,7} ⊆ {4,7,12} and *4,7} ⊂{4,7,12}

 Union (∪) and intersection (∩):

 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Mathematical concepts: Sequences and Sets

 Sequence is a list of object in some order:

(4,7,12) is not the same as (12,7,4)

 Finite or infinite sequences:

 finite are often called tuples, or k-tuples (a tuple with k elements).

A 2-tuple is called a pair.

 Power set

 𝐴 = *0,1+ the power set 𝐴𝑃 = **+, *0+, *1+, *0,1++

 Cartesian product or cross product

 𝐴 = 𝑎, 𝑏 𝑎𝑛𝑑 𝐵 = 1,2,3
𝐴 𝑥 𝐵 = **𝑎, 1+, *𝑎, 2+, *𝑎, 3+, *𝑏, 1+, *𝑏, 2+, *𝑏, 3++

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Some mathematical concepts: Graphs

 Graphs 𝐺 = (𝑉, 𝐸)
 𝐺1 = (*1,2,3,4,5+, **1,2+, *2,3+, *3,4+, *4,5+, *5,1++)

 𝐺2 = (*1,2,3,4+, **1,2+, *1,3+, *1,4+, *2,3+, *2,4+, *3,4++)

1

4

2 5

3

1 2

3 4

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Some mathematical concepts: Graphs II

 Labelled

 Subgraph

induced subgraph

98

378

378

109

New

York

San

Diego
Boston

Oswego

Ithaca

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Some mathematical concepts: Graphs III

 Path

 Cycle

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Some mathematical concepts: Graphs IV

 Trees

 Directed Graph

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Strings and Languages

 Alphabet = set of symbols

 e.g.:  = *𝑎, 𝑏, 𝑐+

 String = sequence of symbols over alphabet

 e.g. aabbabcca

 Length |𝑤| = number of symbols in 𝑤

 Empty string = 
 aabb is substring of aaabbbbccc

 xy concatenation of two strings x and y

 𝑥𝑘 = 𝑥 … 𝑥 (z.B. 𝑥3 = 𝑥𝑥𝑥)

 Language is a set of strings (over an alphabet )

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Mathematical proofs

Various types of proofs

Direct proof

Proof by construction/counterexample

Proof by contradiction (indirect proof,
reductio ad absurdum)

Proof by induction

How formal?

Formal enough to be convincing to your
audience

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Direct proof

 Strategy: Logically derive conclusions from your

premises until you arrive at the desired conclusion.

 Example:

Let 𝑎, 𝑏, 𝑐 be integers. If 𝑎 | 𝑏 and 𝑏 | 𝑐, then 𝑎 | 𝑐.

 Proof:

 From 𝑎 | 𝑏, we get: (1) ex. integer 𝑘1 s.t. 𝑏 = 𝑘1 ∙ 𝑎

 From 𝑏 | 𝑐, we get: (2) ex. integer 𝑘2 s.t. 𝑐 = 𝑘2 ∙ 𝑏

 From (1) and (2) we get: (3) ex. integers 𝑘1, 𝑘2 s.t. 𝑐 = 𝑘2 ∙ 𝑘1 ∙ 𝑎

 From (3) we get: (4) ex. integer 𝑘 s.t. 𝑐 = 𝑘 ∙ 𝑎 (namely,

𝑘 = 𝑘2 ∙ 𝑘1)

 From (4) we get that 𝑎 | 𝑐.

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Proof by construction

 Objective: prove that a particular type of object exists

 Proof strategy: Demonstrate how to construct the object.

 Example:

 Definition: A graph is k-regular if all vertices have degree k

 Theorem: For all even numbers n > 2, there exists a 3-regular

graph with n nodes

Theoretical Computer Science II (ACS II) WS2011/12

1 2

3 4

1: Motivation

Proof by Construction II

 Proof: (Let n > 2 be an even number.)

 𝐺 = (𝑉, 𝐸) with

 𝑉 = *0,1, … , 𝑛 − 1+ and

 𝐸 = **𝑖, 𝑖 + 1+ | 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛 − 2 + ∪ **𝑛 − 1, 0++ ∪
**𝑖, 𝑖 + 𝑛/2+ | 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛/2 − 1 ++

  every vertex has exactly three neighbours:

 its predecessor in the cycle 0, 1, 2, . . , 𝑛 − 1, 0

 its successor in the cycle

 its „mirror image“ 𝑛/2 positions before/ahead in the cycle

 Why do we need 𝑛 > 2 as a requirement?

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Proof by contradiction

 Theorem: 2 is irrational

 Proof strategy:

Assume that the theorem is not true.

Show that this leads to a contradiction,

and hence the theorem must be true.

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Proof by Contradiction

 Theorem: 2 is irrational

 Proof: Assume the theorem is not true, then:

2
b

a
 where 𝑎 and 𝑏 are integers and

𝑏

𝑎
 is reduced.

hence, 𝑏2 is even, hence 𝑏 is even

now, we can write 𝑏 = 2𝑐, which gives:

divide by 2, gives:

hence, 𝑎2 is even, hence 𝑎 must be even

CONTRADICTION

2

2

2 2

2 2

2 2

2

2 =

2 4

2

b

a

a b

a c

a c







Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Proof by induction

Prove a statement 𝑆(𝑋) about a family of objects

(e.g. integers, trees) in two parts :

Basis: prove for one or several small values of

𝑋 directly

Inductive step: Assume 𝑆(𝑌) for 𝑌 smaller than 𝑋;

prove 𝑆(𝑋) using that assumption

Applies to

Natural numbers

Inductively defined objects (structured induction)

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Inductively defined: example

Rooted binary trees are inductively defined

 Basis: a single node is a tree and that node is the root of

the tree

 Induction: if 𝑇1 and 𝑇2 are rooted binary trees, then the

tree constructed as follows is a rooted binary tree:

 Begin with a new node 𝑁

 Add copies of 𝑇1 and 𝑇2

 Add edges from 𝑁 to 𝑇1 and 𝑇2

Theoretical Computer Science II (ACS II) WS2011/12

1: Motivation

Proof by induction: example

Theorem: A binary tree with 𝑛 leaves has 2𝑛 − 1 nodes

 Basis:

 if a tree has one leaf, then it is a one node tree 2 ∗ 1 − 1 = 1

 Induction:

 assume 𝑆(𝑇) for trees with fewer nodes than 𝑇, in particular for subtrees of

𝑇 (i.e. use the theorem as an assumption, and use the smaller trees of 𝑇,

namely 𝑈 and 𝑉 to prove it)

 𝑇 must be a root plus two subtrees 𝑈 and 𝑉

 If 𝑈 and 𝑉 have 𝑥 and 𝑦 leaves respectively and 𝑇 has 𝑧 leaves, then

𝑧 = 𝑥 + 𝑦

 By the induction assumption, 𝑈 and 𝑉 have 2𝑥 − 1 and 2𝑦 − 1 nodes, resp.

 Then 𝑇 has 1 + (2𝑥 − 1) + (2𝑦 − 1) nodes:

1 + 2𝑥 − 1 + 2𝑦 − 1

= 2 𝑥 + 𝑦 − 1

= 2𝑧 − 1

 (𝑞. 𝑒. 𝑑.)

Theoretical Computer Science II (ACS II) WS2011/12

