Motivation

Bernhard Nebel und Christian Becker-Asano

Course Content

$>$ Introduction to logic

* Propositional
* First order logic
$>$ Theoretical foundations of computer science
* Automata Theory
* Formal languages, grammars
* Decidability
* Computational Complexity

Theoretical Computer Science motivation

$>$ Overall question :

* What are the fundamental capabilities and limitations of computers?
$>$ Subquestions :
* What is the meaning of computation?
* Automata theory
* What can be computed?
\star Computability/Decidability theory
* What can be computed efficiently ?

夫 Computational complexity

What is the meaning of computation?

$>1930-50$ s : Automata theory ?

* Various mathematical models of computers
* Automata theory
\star Turing Machines
\star Grammars (Noam Chomsky)
\star Practical :
+ Many devices (dishwashers, telephones, ...)
+ Compilers and languages
+ Protocols

What can be computed?

$>$ What can be computed using Turing Machines?

* Some problems can be solved algorithmically
\star E.g. sorting
* Others cannot :

ڤ E.g. the halting problem determine whether Turing machine M accepts w or not

+ May not terminate (if M loops)
\star E.g. Goedel : no algorithm can decide in general whether statements in number theory are true or false
* Practical :
\star It is important to know what can be computed and what not

What can be computed efficiently ?

> Examples

* Sorting can be done efficiently
* Scheduling cannot be done efficiently

夫 University lectures

* Complexity theory gives an explanation
\star NP-hard problems
* Practical:
* Important to know how hard your problem is
* Cryptography

Some mathematical concepts: Sets

$>$ A set is a group of objects

* $\{4,7,12\}$, the empty set is denoted \emptyset or $\}$
$>$ Membership is denoted with \in and \notin :

$$
* 4 \in\{4,7,12\} \quad \text { and } \quad 5 \notin\{4,7,12\}
$$

$>$ Subset \subseteq and propper subset \subset :

$$
\text { * }\{12,4,7\} \subseteq\{4,7,12\} \quad \text { and }\{4,7\} \subset\{4,7,12\}
$$

$>$ Union (U) and intersection (n):

* $A \cup B$
and
$A \cap B$

Mathematical concepts: Sequences and Sets

$>$ Sequence is a list of object in some order:

* $(4,7,12)$ is not the same as $(12,7,4)$
$>$ Finite or infinite sequences:
* finite are often called tuples, or k-tuples (a tuple with k elements). A 2-tuple is called a pair.
$>$ Power set

$$
* A=\{0,1\} \text { the power set } A^{P}=\{\{ \},\{0\},\{1\},\{0,1\}\}
$$

$>$ Cartesian product or cross product

$$
\begin{array}{rl}
* & A= \\
& \{a, b\} \text { and } B=\{1,2,3\} \\
& A \times B=\{\{a, 1\},\{a, 2\},\{a, 3\},\{b, 1\},\{b, 2\},\{b, 3\}\}
\end{array}
$$

Some mathematical concepts: Graphs

$>$ Graphs $G=(V, E)$

$$
G_{1}=(\{1,2,3,4,5\},\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\}\})
$$

$$
G_{2}=(\{1,2,3,4\},\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\})
$$

Some mathematical concepts: Graphs II

> Labelled

$>$ Subgraph induced subgrap

Some mathematical concepts: Graphs III

\Rightarrow Path

> Cycle

Some mathematical concepts: Graphs IV

> Trees

$>$ Directed Graph

Strings and Languages

> Alphabet $=$ set of symbols

* e.g.: $\Sigma=\{a, b, c\}$
$>$ String $=$ sequence of symbols over alphabet
* e.g. aabbabcca
$>$ Length $|w|=$ number of symbols in w
$>$ Empty string $=\varepsilon$
$>$ aabb is substring of aaabbbbccc
$>x y$ concatenation of two strings x and y
$>x^{k}=x \ldots x\left(\right.$ z.B. $\left.x^{3}=x x x\right)$
$>$ Language is a set of strings (over an alphabet Σ)

Mathematical proofs

$>$ Various types of proofs

* Direct proof
* Proof by construction/counterexample
*Proof by contradiction (indirect proof, reductio ad absurdum)
* Proof by induction
>How formal?
* Formal enough to be convincing to your audience

Direct proof

> Strategy: Logically derive conclusions from your premises until you arrive at the desired conclusion.
> Example:
Let a, b, c be integers. If $a \mid b$ and $b \mid c$, then $a \mid c$.
> Proof:

* From $a \mid b$, we get: (1) ex. integer k_{1} s.t. $b=k_{1} \cdot a$
* From $b \mid c$, we get: (2) ex. integer k_{2} s.t. $c=k_{2} \cdot b$
* From (1) and (2) we get: (3) ex. integers k_{1}, k_{2} s.t. $c=k_{2} \cdot k_{1} \cdot a$
* From (3) we get: (4) ex. integer k s.t. $c=k \cdot a$ (namely,

$$
\left.k=k_{2} \cdot k_{1}\right)
$$

* From (4) we get that $a \mid c$.

Proof by construction

> Objective: prove that a particular type of object exists

* Proof strategy: Demonstrate how to construct the object.
> Example:
* Definition: A graph is k-regular if all vertices have degree k
* Theorem: For all even numbers $n>2$, there exists a 3-regular graph with n nodes

Proof by Construction II

$>$ Proof: (Let $\mathrm{n}>2$ be an even number.)
$>G=(V, E)$ with
$\star V=\{0,1, \ldots, n-1\}$ and
$\star E=\{\{i, i+1\} \mid$ for $0 \leq i \leq n-2\} \cup\{\{n-1,0\}\} \cup$ $\{\{i, i+n / 2\} \mid$ for $0 \leq i \leq n / 2-1\}\}$
$\star \rightarrow$ every vertex has exactly three neighbours:

+ its predecessor in the cycle $0,1,2, . ., n-1,0$
+ its successor in the cycle
+ its „mirror image" $n / 2$ positions before/ahead in the cycle
$>$ Why do we need $n>2$ as a requirement?

Proof by contradiction

$>$ Theorem: $\sqrt{2}$ is irrational
$>$ Proof strategy:

* Assume that the theorem is not true.
* Show that this leads to a contradiction, and hence the theorem must be true.

Proof by Contradiction

> Theorem: $\sqrt{2}$ is irrational
$>$ Proof: Assume the theorem is not true, then:
$\sqrt{2}=\frac{b}{a}$ where a and b are integers and $\frac{b}{a}$ is reduced.
$2=\frac{b^{2}}{a^{2}}$
$2 a^{2}=b^{2} \quad$ hence, b^{2} is even, hence b is even now, we can write $b=2 c$, which gives:
$2 a^{2}=4 c^{2} \quad$ divide by 2 , gives:
$a^{2}=2 c^{2} \quad$ hence, a^{2} is even, hence a must be even
CONTRADICTION

Proof by induction

$>$ Prove a statement $S(X)$ about a family of objects (e.g. integers, trees) in two parts :

* Basis: prove for one or several small values of X directly
* Inductive step: Assume $S(Y)$ for Y smaller than X; prove $S(X)$ using that assumption
\rightarrow Applies to
* Natural numbers
* Inductively defined objects (structured induction)

Inductively defined: example

Rooted binary trees are inductively defined
$>$ Basis: a single node is a tree and that node is the root of the tree
$>$ Induction: if T_{1} and T_{2} are rooted binary trees, then the tree constructed as follows is a rooted binary tree:

* Begin with a new node N
* Add copies of T_{1} and T_{2}
* Add edges from N to T_{1} and T_{2}

Proof by induction: example

Theorem: A binary tree with n leaves has $2 n-1$ nodes
> Basis:

* if a tree has one leaf, then it is a one node tree $2 * 1-1=1$
> Induction:
* assume $S(T)$ for trees with fewer nodes than T, in particular for subtrees of T (i.e. use the theorem as an assumption, and use the smaller trees of T, namely U and V to prove it)
* T must be a root plus two subtrees U and V
* If U and V have x and y leaves respectively and T has z leaves, then $z=x+y$
* By the induction assumption, U and V have $2 x-1$ and $2 y-1$ nodes, resp.
* Then T has

$$
\begin{aligned}
& 1+(2 x-1)+(2 y-1) \text { nodes: } \\
& 1+(2 x-1)+(2 y-1) \\
& =2(x+y)-1 \\
& =2 z-1
\end{aligned}
$$

(q.e.d.)

