Bernhard Nebel und Christian Becker-Asano

Course Content

Introduction to logic
 * Propositional
 * First order logic

Theoretical foundations of computer science
 * Automata Theory
 * Formal languages, grammars
 * Decidability
 * Computational Complexity

Theoretical Computer Science motivation

> Overall question :

What are the fundamental capabilities and limitations of computers ?

> Subquestions :

***** What is the meaning of computation ?

★ Automata theory

- * What can be computed ?
 - ★ Computability/Decidability theory
- * What can be computed efficiently ?

★ Computational complexity

What is the meaning of computation ?

> 1930-50s : Automata theory ?

***** Various mathematical models of computers

- ★ Automata theory
- ★ Turing Machines
- ★ Grammars (Noam Chomsky)
- ★ Practical :
 - Many devices (dishwashers, telephones, ...)
 - Compilers and languages
 - + Protocols

What can be computed ?

> What can be computed using Turing Machines?

* Some problems can be solved algorithmically

- ★E.g. sorting
- ★ Others cannot :
 - ★ E.g. the halting problem determine whether Turing machine M accepts w or not

May not terminate (if M loops)

★E.g. Goedel : no algorithm can decide in general whether statements in number theory are true or false

* Practical :

★ It is important to know what can be computed and what not

What can be computed efficiently ?

Examples

***** Sorting can be done efficiently

* Scheduling cannot be done efficiently

★ University lectures

* Complexity theory gives an explanation

★ NP-hard problems

* Practical :

★ Important to know how hard your problem is

★ Cryptography

Some mathematical concepts: Sets

Mathematical concepts: Sequences and Sets

Sequence is a list of object in some order:

(4,7,12) is not the same as (12,7,4)

- > Finite or infinite sequences:
 - finite are often called *tuples*, or *k-tuples* (a tuple with *k* elements).
 A 2-tuple is called a *pair*.
- Power set

* $A = \{0,1\}$ the power set $A^P = \{\{\}, \{0\}, \{1\}, \{0,1\}\}$

Cartesian product or cross product

$$A = \{a, b\} and B = \{1, 2, 3\} A x B = \{\{a, 1\}, \{a, 2\}, \{a, 3\}, \{b, 1\}, \{b, 2\}, \{b, 3\} \}$$

Some mathematical concepts: Graphs

 \succ Graphs G = (V, E)

 $G_1 = \ (\{1,2,3,4,5\},\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\}\})$

 $G_2 = (\{1,2,3,4\}, \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\})$

1: Motivation

Some mathematical concepts: Graphs II

Labelled

1: Motivation

Some mathematical concepts: Graphs III

Some mathematical concepts: Graphs IV

Trees

Directed Graph

Strings and Languages

- Alphabet = set of symbols
 - ***** e.g.: $\Sigma = \{a, b, c\}$
- String = sequence of symbols over alphabet
 - \star e.g. aabbabcca
- > Length |w| = number of symbols in w
- \succ Empty string = ε
- > aabb is substring of aaabbbbccc
- > xy concatenation of two strings x and y

>
$$x^k = x \dots x$$
 (z.B. $x^3 = xxx$)

> Language is a set of strings (over an alphabet Σ)

Mathematical proofs

Various types of proofs * Direct proof * Proof by construction/counterexample * Proof by contradiction (indirect proof, reductio ad absurdum) * Proof by induction > How formal? * Formal enough to be convincing to your audience

Direct proof

- Strategy: Logically derive conclusions from your premises until you arrive at the desired conclusion.
- > Example:

Let a, b, c be integers. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof:

- ***** From $a \mid b$, we get: (1) ex. integer k_1 s.t. $b = k_1 \cdot a$
- ***** From $b \mid c$, we get: (2) ex. integer k_2 s.t. $c = k_2 \cdot b$
- ***** From (1) and (2) we get: (3) ex. integers k_1 , k_2 s.t. $c = k_2 \cdot k_1 \cdot a$
- * From (3) we get: (4) ex. integer k s.t. $c = k \cdot a$ (namely, $k = k_2 \cdot k_1$)
- ***** From (4) we get that $a \mid c$.

Proof by construction

- Objective: prove that a particular type of object exists
 * Proof strategy: Demonstrate how to construct the object.
- > Example:
 - * Definition: A graph is *k*-regular if all vertices have degree *k*
 - * Theorem: For all even numbers n > 2, there exists a 3-regular graph with n nodes

Proof by Construction II

Proof: (Let n > 2 be an even number.)

- + its successor in the cycle
- + its "mirror image" n/2 positions before/ahead in the cycle
- > Why do we need n > 2 as a requirement?

Proof by contradiction

> **Theorem**: $\sqrt{2}$ is irrational

Proof strategy:

*Assume that the theorem is not true.

Show that this leads to a contradiction, and hence the theorem must be true.

Proof by Contradiction

- > **Theorem**: $\sqrt{2}$ is irrational
- Proof: Assume the theorem is not true, then:

 $\sqrt{2} = \frac{b}{a}$ where a and b are integers and $\frac{b}{a}$ is reduced. $2 = \frac{b^2}{a^2}$ hence, b^2 is even, hence b is even $2a^2 = b^2$ hence, b^2 is even, hence b is evennow, we can write b = 2c, which gives: $2a^2 = 4c^2$ divide by 2, gives: $a^2 = 2c^2$ hence, a^2 is even, hence a must be even

CONTRADICTION

Proof by induction

- Prove a statement S(X) about a family of objects (e.g. integers, trees) in two parts :
 - * Basis: prove for one or several small values of X directly
 - Inductive step: Assume S(Y) for Y smaller than X; prove S(X) using that assumption

> Applies to

★ Natural numbers

***** Inductively defined objects (structured induction)

Inductively defined: example

Rooted binary trees are inductively defined

- Basis: a single node is a tree and that node is the root of the tree
- > **Induction**: if T_1 and T_2 are rooted binary trees, then the tree constructed as follows is a rooted binary tree:
 - * Begin with a new node N
 - ***** Add copies of T_1 and T_2
 - ***** Add edges from N to T_1 and T_2

Proof by induction: example

Theorem: A binary tree with *n* leaves has 2n - 1 nodes

- Basis:
 - ***** if a tree has one leaf, then it is a one node tree 2 * 1 1 = 1
- Induction:
 - assume S(T) for trees with fewer nodes than T, in particular for subtrees of T (i.e. use the theorem as an assumption, and use the smaller trees of T, namely U and V to prove it)
 - * T must be a root plus two subtrees U and V
 - * If U and V have x and y leaves respectively and T has z leaves, then z = x + y
 - ***** By the induction assumption, U and V have 2x 1 and 2y 1 nodes, resp.

* Then T has
1 +
$$(2x - 1) + (2y - 1)$$
 nodes:
1 + $(2x - 1) + (2y - 1)$
= $2(x + y) - 1$
= $2z - 1$
(q.e.d.)