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Course Content 

 Introduction to logic 

Propositional 

First order logic 

 

Theoretical foundations of computer science 

Automata Theory 

Formal languages, grammars 

Decidability 

Computational Complexity 
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Theoretical Computer Science motivation 

Overall question : 

What are the fundamental capabilities and limitations 

of computers ? 

Subquestions : 

What is the meaning of computation ? 

Automata theory 

What can be computed ? 

Computability/Decidability theory 

What can be computed efficiently ? 

Computational complexity 
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What is the meaning of computation ? 

1930-50s : Automata theory ? 

Various mathematical models of computers 

Automata theory 

Turing Machines 

Grammars (Noam Chomsky) 

Practical : 

Many devices (dishwashers, telephones, …) 

Compilers and languages 

Protocols 
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What can be computed ? 

What can be computed using Turing Machines? 

Some problems can be solved algorithmically 

E.g. sorting 

Others cannot : 

E.g. the halting problem determine whether Turing machine 

M accepts w or not 

May not terminate (if M loops) 

E.g. Goedel : no algorithm can decide in general whether 

statements in number theory are true or false 

Practical : 

It is important to know what can be computed and what not 
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What can be computed efficiently ? 

Examples 

Sorting can be done efficiently 

Scheduling cannot be done efficiently 

University lectures 

Complexity theory gives an explanation 

NP-hard problems 

Practical : 

Important to know how hard your problem is 

Cryptography 
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Some mathematical concepts: Sets 

 A set is a group of objects 

 *4,7,12+, the empty set is denoted ∅ or *+ 

 Membership is denoted with ∈ and ∈: 
 4 ∈ *4,7,12+  and  5 ∈ *4,7,12+  

 Subset ⊆ and propper subset ⊂: 

  *12, 4,7} ⊆ {4,7,12}   and *4,7} ⊂{4,7,12}  

 Union (∪) and intersection (∩): 

 𝐴 ∪ 𝐵  and  𝐴 ∩ 𝐵 
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Mathematical concepts: Sequences and Sets 

 Sequence is a list of object in some order: 

(4,7,12) is not the same as (12,7,4) 

 Finite or infinite sequences: 

 finite are often called tuples, or k-tuples (a tuple with k elements). 

A 2-tuple is called a pair. 

 Power set 

 𝐴 =  *0,1+ the power set 𝐴𝑃 =  **+, *0+, *1+, *0,1++ 

 Cartesian product or cross product 

 𝐴 =  𝑎, 𝑏    𝑎𝑛𝑑 𝐵 =  1,2,3  
𝐴 𝑥 𝐵 =  **𝑎, 1+, *𝑎, 2+, *𝑎, 3+, *𝑏, 1+, *𝑏, 2+, *𝑏, 3++ 
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Some mathematical concepts: Graphs 

 Graphs 𝐺 = (𝑉, 𝐸) 
  𝐺1 =  (*1,2,3,4,5+, **1,2+, *2,3+, *3,4+, *4,5+, *5,1++) 

 

 

 

 

 

 

  𝐺2 =  (*1,2,3,4+, **1,2+, *1,3+, *1,4+, *2,3+, *2,4+, *3,4++) 
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Some mathematical concepts: Graphs II 

 Labelled 

 

 

 

 

 

 Subgraph 

induced subgraph  
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Some mathematical concepts: Graphs III 

 Path 

 

 

 

 

 Cycle 
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Some mathematical concepts: Graphs IV 

 Trees 

 

 

 

 

 Directed Graph 
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Strings and Languages 

 Alphabet = set of symbols 

 e.g.:  =  *𝑎, 𝑏, 𝑐+ 

 String = sequence of symbols over alphabet 

 e.g. aabbabcca 

 Length |𝑤| = number of symbols in 𝑤 

 Empty string =  
 aabb is substring of aaabbbbccc 

 xy concatenation of two strings x and y 

 𝑥𝑘 =  𝑥 … 𝑥 (z.B. 𝑥3 =  𝑥𝑥𝑥) 

 Language is a set of strings (over an alphabet ) 
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Mathematical proofs 

Various types of proofs 

Direct proof 

Proof by construction/counterexample 

Proof by contradiction (indirect proof, 
reductio ad absurdum) 

Proof by induction 

How formal? 

Formal enough to be convincing to your 
audience 
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Direct proof 

 Strategy: Logically derive conclusions from your 

premises until you arrive at the desired conclusion. 

 Example: 

Let 𝑎, 𝑏, 𝑐 be integers. If 𝑎 | 𝑏 and 𝑏 | 𝑐, then 𝑎 | 𝑐. 

 Proof: 

 From 𝑎 | 𝑏, we get: (1) ex. integer 𝑘1 s.t. 𝑏 =  𝑘1 ∙ 𝑎 

 From 𝑏 | 𝑐, we get: (2) ex. integer 𝑘2 s.t. 𝑐 =  𝑘2 ∙ 𝑏 

 From (1) and (2) we get: (3) ex. integers 𝑘1, 𝑘2 s.t. 𝑐 =  𝑘2 ∙ 𝑘1 ∙ 𝑎 

 From (3) we get: (4) ex. integer 𝑘 s.t. 𝑐 =  𝑘 ∙ 𝑎 (namely, 

𝑘 =  𝑘2 ∙ 𝑘1) 

 From (4) we get that 𝑎 | 𝑐. 
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Proof by construction 

 Objective: prove that a particular type of object exists 

 Proof strategy: Demonstrate how to construct the object. 

 Example: 

 Definition: A graph is k-regular if all vertices have degree k 

 Theorem: For all even numbers n > 2, there exists a 3-regular 

graph with n nodes 
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Proof by Construction II 

 Proof: (Let n > 2 be an even number.) 

 𝐺 = (𝑉, 𝐸) with  

 𝑉 =  *0,1, … , 𝑛 − 1+ and 

 𝐸 =  **𝑖, 𝑖 + 1+ | 𝑓𝑜𝑟 0 ≤ 𝑖 ≤  𝑛 − 2 +  ∪  **𝑛 − 1, 0++ ∪ 
**𝑖, 𝑖 + 𝑛/2+ | 𝑓𝑜𝑟 0 ≤  𝑖 ≤  𝑛/2 − 1 ++ 

  every vertex has exactly three neighbours: 

 its predecessor in the cycle 0, 1, 2, . . , 𝑛 − 1, 0 

 its successor in the cycle 

 its „mirror image“ 𝑛/2 positions before/ahead in the cycle 

 

 Why do we need 𝑛 >  2 as a requirement? 
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Proof by contradiction 

 Theorem: 2 is irrational  

 Proof strategy: 

Assume that the theorem is not true. 

Show that this leads to a contradiction, 

and hence the theorem must be true. 
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Proof by Contradiction 

 Theorem:       2 is irrational  

 Proof: Assume the theorem is not true, then: 
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hence, 𝑏2 is even, hence 𝑏 is even 
 

now,  we can write 𝑏 = 2𝑐, which gives: 
 

divide by 2, gives: 
 

hence, 𝑎2 is even, hence 𝑎 must be even 
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Proof by induction 

Prove a statement 𝑆(𝑋) about a family of objects 

(e.g. integers, trees) in two parts : 

Basis: prove for one or several small values of 

𝑋 directly 

Inductive step: Assume 𝑆(𝑌) for 𝑌 smaller than 𝑋; 

prove 𝑆(𝑋) using that assumption 

Applies to 

Natural numbers 

Inductively defined objects (structured induction) 
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Inductively defined: example 

Rooted binary trees are inductively defined 

 

 Basis: a single node is a tree and that node is the root of 

the tree 

 

 Induction: if 𝑇1 and 𝑇2 are rooted binary trees, then the 

tree constructed as follows is a rooted binary tree: 

 Begin with a new node 𝑁 

 Add copies of 𝑇1 and 𝑇2 

 Add edges from 𝑁 to 𝑇1 and 𝑇2 
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Proof by induction: example 

Theorem: A binary tree with 𝑛 leaves has 2𝑛 − 1 nodes 

 Basis:  

 if a tree has one leaf, then it is a one node tree 2 ∗ 1 − 1 = 1 

 Induction:  

 assume 𝑆(𝑇) for trees with fewer nodes than 𝑇, in particular for subtrees of 

𝑇 (i.e. use the theorem as an assumption, and use the smaller trees of 𝑇, 

namely 𝑈 and 𝑉 to prove it) 

 𝑇 must be a root plus two subtrees 𝑈 and 𝑉 

 If 𝑈 and 𝑉 have 𝑥 and 𝑦 leaves respectively and 𝑇 has 𝑧 leaves, then 

𝑧 = 𝑥 + 𝑦 

 By the induction assumption, 𝑈 and 𝑉 have 2𝑥 − 1 and 2𝑦 − 1 nodes, resp. 

 Then 𝑇 has  1 + (2𝑥 − 1) + (2𝑦 − 1) nodes: 

1 + 2𝑥 − 1 + 2𝑦 − 1  

= 2 𝑥 + 𝑦 − 1 

= 2𝑧 − 1 

     (𝑞. 𝑒. 𝑑. ) 

Theoretical Computer Science II (ACS II) WS2011/12 


