Informatik I

8. Mathematische Exkursion: Binäre Relationen

Jan-Georg Smaus

Albert-Ludwigs-Universität Freiburg

23. November 2010

Informatik I

Jan-Georg Smaus

Darstellung

Kompositioi

Die Relation

^ .

Ordnungen

Relationen

Definition

Eine binäre Relation R ist eine Teilmenge (\subseteq) von $A \times B$, wobei A,B Mengen sind.

Wir schreiben $(a,b) \in R$ oder a R b.

Zu einer binären Relation R ist $R^{-1} \subseteq B \times A$ die Umkehrrelation mit $R^{-1} = \{(b,a) \mid (a,b) \in R\}.$

Im Folgenden betrachten wir ausschließlich binäre Relationen.

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Die Relation

~ ^

Ordnungen

Beispiele

- $\emptyset \subseteq A \times B$, die leere Relation;
- \bullet $A \times B$, die volle Relation;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A \subseteq A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die } I_A = \{(a, a) \mid a \in A\}, \text{ di$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

~

Ordnungen

Beispiele

- $\emptyset \subseteq A \times B$, die leere Relation;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}, \text{ die Gleichheit;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N};$
- \bullet $<\subseteq \mathbb{N} \times \mathbb{N};$
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ mit } m | n \text{ falls ein } c \in \mathbb{N} \text{ existiert mit } c \cdot m = n;$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Ordnungen

Darstellung

Informatik I

Jan-Georg Smaus

${\sf Darstellung}$

Kompositio

Wichtige Eigenschaften

~

Ordnungen

Darstellung von Relationen Matrix

$$\begin{split} &\subseteq \subseteq \, \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \text{, wobei} \\ &\mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \text{, lässt sich gut als Matrix darstellen:} \end{split}$$

\subseteq	\emptyset {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
Ø	
{1}	
{2}	
{3}	
$\{1, 2\}$	
$\{1, 3\}$	
$\{2, 3\}$	
$\{1, 2, 3\}$	

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafte

~

Ordnungen

Darstellung von Relationen Matrix

$$\subseteq \subseteq \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}), \text{ wobei } \\ \mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}, \\ \text{lässt sich gut als Matrix darstellen:}$$

	∅ {1}	{2}	{3}	$\{1, 2\}$	$\{1,3\}$	$\{2, 3\}$	$\{1, 2, 3\}$
Ø	$\sqrt{}$						
{1}							
{2}							
{3}							
$\{1, 2\}$							
$\{1, 3\}$							
$\{2,3\}$							
$\{1, 2, 3\}$							

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

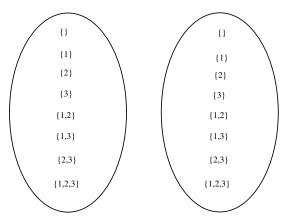
Eigenschafte

~

Natürliche

Darstellung von Relationen Pfeildiagramm

$$\begin{split} &\subseteq \subseteq \, \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \text{, wobei} \\ &\mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \text{, lässt sich auch als Pfeildiagramm darstellen:} \end{split}$$



Informatik I

Jan-Georg Smaus

 ${\sf Darstellung}$

Komposition

Wichtige Eigenschafter

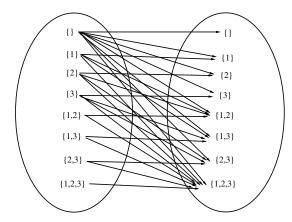
~

Oranungen

Zahlen

Darstellung von Relationen Pfeildiagramm

$$\begin{split} &\subseteq \subseteq \, \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \text{, wobei} \\ &\mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \text{, lässt sich auch als Pfeildiagramm darstellen:} \end{split}$$



Informatik I

Jan-Georg Smaus

 ${\sf Darstellung}$

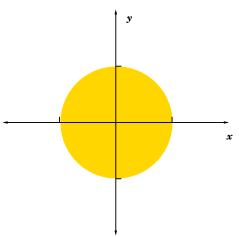
Kompositio

Die Relation

Ordnungen

Darstellung von Relationen Graph

 $K = \{(x,y) \mid x^2 + y^2 \le 1\} \subseteq \mathbb{R} \times \mathbb{R}$ (②) ist eine Kreisfläche und lässt sich gut als Graph darstellen.



Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafte

~

Ordnungen

Komposition

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafte

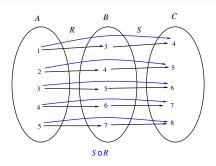
~

Ordnungen

Komposition

Definition

Seien $R\subseteq A\times B$ und $S\subseteq B\times C$. Dann ist $S\circ R$ die Komposition von R und S mit $S\circ R\subseteq A\times C$ und $S\circ R=\{(a,c)\mid \text{es gibt }b\in B\text{ mit }(a,b)\in R\text{ und }(b,c)\in S\}.$



Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafte

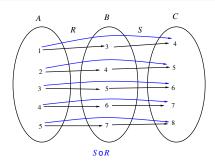
~ ______

Natürliche

Komposition

Definition

Seien $R\subseteq A\times B$ und $S\subseteq B\times C$. Dann ist $S\circ R$ die Komposition von R und S mit $S\circ R\subseteq A\times C$ und $S\circ R=\{(a,c)\mid \text{es gibt }b\in B\text{ mit }(a,b)\in R\text{ und }(b,c)\in S\}.$



Beachte: Man findet in der Literatur auch die Notation $R \circ S$.

Informatik I

Jan-Georg Smaus

Darstellulig

Komposition

Eigenschafte

~

Ordnungen

$\overline{I_A} = R^{-1} \circ R$?

• Gilt im Allgemeinen $I_A = R^{-1} \circ R$?

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

~

Ordnungen

$\overline{I_A} = R^{-1} \circ R$?

- Gilt im Allgemeinen $I_A = R^{-1} \circ R$? Nein!
- Gilt im Allgemeinen $R^{-1} \circ R \subseteq I_A$?

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

~

Ordnungen

$\overline{I_A = R^{-1}} \circ R$?

- Gilt im Allgemeinen $I_A = R^{-1} \circ R$? Nein!
- Gilt im Allgemeinen $R^{-1} \circ R \subseteq I_A$? Nein, nimm $A = \{0, 1, 2\}$ und $R = \{(0, 1), (2, 1)\}$. Dann gilt $(0, 2) \in R^{-1} \circ R$, aber $(0, 2) \notin I_A = \{(0, 0), (1, 1), (2, 2)\}$.
- Gilt im Allgemeinen $I_A \subseteq R^{-1} \circ R$?

Informatik I

Jan-Georg Smaus

Darstellang

Komposition

Ligenschafter

~

Ordnungen

$I_A = R^{-1} \circ R$?

- Gilt im Allgemeinen $I_A = R^{-1} \circ R$? Nein!
- Gilt im Allgemeinen $R^{-1} \circ R \subseteq I_A$? Nein, nimm $A = \{0, 1, 2\}$ und $R = \{(0, 1), (2, 1)\}$. Dann gilt $(0, 2) \in R^{-1} \circ R$, aber $(0, 2) \notin I_A = \{(0, 0), (1, 1), (2, 2)\}$.
- Gilt im Allgemeinen $I_A\subseteq R^{-1}\circ R$? Nein, nimm $A=\{0,1,2\}$ und $R=\emptyset$. Dann gilt $(0,0)\in I_A$, aber $(0,0)\notin R^{-1}\circ R=\emptyset$.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Ordnungen

Natürliche

$\overline{I_A} = R^{-1} \circ R$?

- Gilt im Allgemeinen $I_A = R^{-1} \circ R$? Nein!
- Gilt im Allgemeinen $R^{-1} \circ R \subseteq I_A$? Nein, nimm $A = \{0, 1, 2\}$ und $R = \{(0, 1), (2, 1)\}$. Dann gilt $(0, 2) \in R^{-1} \circ R$, aber $(0, 2) \notin I_A = \{(0, 0), (1, 1), (2, 2)\}$.
- Gilt im Allgemeinen $I_A \subseteq R^{-1} \circ R$? Nein, nimm $A = \{0,1,2\}$ und $R = \emptyset$. Dann gilt $(0,0) \in I_A$, aber $(0,0) \notin R^{-1} \circ R = \emptyset$. Oder nimm $A = \{0,1,2\}$ und $R = \{(0,1),(2,1)\}$. Dann ist $R^{-1} \circ R = \{(0,0),(0,2),(2,0),(2,2)\}$ und somit $(1,1) \notin R^{-1} \circ R$.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Ligenschafter

Ordnungen

Ordnungen

Wichtige Eigenschaften

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

Definition

Sei $R \subseteq A \times B$.

- R ist linkseindeutig (injektiv) falls gilt: wenn a R b und a' R b, dann a = a'.
- ② R ist rechtseindeutig falls gilt: wenn $a\,R\,b$ und $a\,R\,b'$, dann b=b'.

Rechtseindeutige Relationen heißen

Informatik I

Jan-Georg Smaus

Darstellung

Komposition
Wichtige

Eigenschaften

^-

Ordnungen

Definition

Sei $R \subseteq A \times B$.

- R ist linkseindeutig (injektiv) falls gilt: wenn a R b und a' R b, dann a = a'.
- ② R ist rechtseindeutig falls gilt: wenn $a\,R\,b$ und $a\,R\,b'$, dann b=b'.

Rechtseindeutige Relationen heißen partielle Funktionen.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften
Die Relation

^-

Ordnungen

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnunger

- **1** $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- \bullet $A \times B$ ist

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

- $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- $\mathbf{2} \ A \times B$ ist weder noch;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist } I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ist }$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

- $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- \bigcirc $A \times B$ ist weder noch;
- **3** $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ist links- und rechtseindeutig;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ ist

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

- **1** $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- **3** $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ist links- und rechtseindeutig;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\mathbf{0} < \subset \mathbb{N} \times \mathbb{N} \text{ ist}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

- **1** $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- **3** $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ist links- und rechtseindeutig;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}, \text{ mit } m|n \text{ falls ein } c \in \mathbb{N} \text{ existiert mit } c \cdot m = n, \text{ ist }$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Wichtige Eigenschaften

~

Ordnungen

- $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- **3** $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ist links- und rechtseindeutig;
- $\bullet < \subset \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}, \text{ mit } m | n \text{ falls ein } c \in \mathbb{N} \text{ existiert mit } c \cdot m = n, \text{ ist weder noch;}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

- **1** $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- **3** $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ist links- und rechtseindeutig;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- **1** $|\subseteq \mathbb{N} \times \mathbb{N}$, mit m|n falls ein $c \in \mathbb{N}$ existiert mit $c \cdot m = n$, ist weder noch;
- $K = \{(x,y) \mid x^2 + y^2 \le 1\} \subseteq \mathbb{R} \times \mathbb{R}$ ist weder noch;
- $\ \, \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{ist}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften

Die Relation

~ ^-d=--=

Ordnungen

- $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- \bullet $A \times B$ ist weder noch;
- **3** $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ist links- und rechtseindeutig;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $lacktriangleq \mid \subseteq \mathbb{N} \times \mathbb{N}$, mit $m \mid n$ falls ein $c \in \mathbb{N}$ existiert mit $c \cdot m = n$, ist weder noch;
- \bullet $K = \{(x,y) \mid x^2 + y^2 \le 1\} \subseteq \mathbb{R} \times \mathbb{R}$ ist weder noch;
- $\bullet \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{ist weder noch;}$
- $\bigcirc \sim \ \subseteq \ (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \ \text{mit} \ (m,n) \sim (m',n') \ \text{gdw.} \ m+n'=n+m' \ \text{ist}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften
Die Relation

Ordnungen

Natürliche

Zahlen

- $\emptyset \subseteq A \times B$ ist links- und rechtseindeutig;
- \triangle $A \times B$ ist weder noch;
- **3** $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ist links- und rechtseindeutig;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ist weder noch;
- **1** $|\subseteq \mathbb{N} \times \mathbb{N}$, mit m|n falls ein $c \in \mathbb{N}$ existiert mit $c \cdot m = n$, ist weder noch;
- $K = \{(x,y) \mid x^2 + y^2 \le 1\} \subseteq \mathbb{R} \times \mathbb{R}$ ist weder noch;
- $\bullet \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{ist weder noch};$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften

^~ ^-d-----

Ordnungen

Äquivalenzrelationen u.ä.

Definition

Sei $R \subseteq A \times A$ eine Relation über A.

- **1** R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a;$
- ② R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$;
- **3** R heißt symmetrisch, falls $(\forall x, y \in A)$: wenn x R y dann auch y R x;
- **1** R heißt antisymmetrisch, falls $(\forall x, y \in A)$: wenn x R y und y R x dann x = y;
- $\textbf{ § } R \text{ heißt transitiv, falls } (\forall x,y,z \in A) \text{: wenn } x \, R \, y \text{ und } y \, R \, z \text{ dann } x \, R \, z;$
- R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften Die Relation

Ordnungen

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{Q} A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{2} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{2} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$ ja;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{2} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ ja};$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ ja;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften

~

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ ja};$
- $\bullet \subseteq \subseteq \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})$ ja;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften
Die Relation

^~ ^-d-----

Ordnungen

R heißt reflexiv, falls $(\forall a \in A) \ a \ R \ a$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \subseteq \subseteq \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})$ ja;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften
Die Relation

~ ^------

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- $\mathbf{2} A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

Zahlen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- \triangle $A \times A$ nein
- $I_A \subseteq A \times A$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften

~

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- $\mathbf{Q} A \times \mathbf{A}$ nein
- $I_A \subseteq A \times A$ nein
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- \triangle $A \times A$ nein
- $I_A \subseteq A \times A$ nein
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- $\mathbf{Q} A \times \mathbf{A}$ nein
- $I_A \subseteq A \times A$ nein
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ja
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- \triangle $A \times A$ nein
- $I_A \subseteq A \times A$ nein
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ nein
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ja
- $\mathbf{0} \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein

Informatik I

Jan-Georg Smaus

Darstellung

Komposition
Wichtige

Eigenschaften

~

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- $\mathbf{Q} A \times \mathbf{A}$ nein
- $I_A \subseteq A \times A$ nein
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ja
- $\mathbf{0} \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften
Die Relation

~

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- \triangle $A \times A$ nein
- $I_A \subseteq A \times A$ nein
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ja
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein
- $\label{eq:poisson} \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein;}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften

^~ ^-d-----

Ordnungen

R heißt irreflexiv, falls $(\forall a \in A) \neg (a R a)$.

- \triangle $A \times A$ nein
- $I_A \subseteq A \times A$ nein
- \bullet < \subset $\mathbb{N} \times \mathbb{N}$ nein
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ ja
- $\mathbf{0} \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein
- $\label{eq:poisson} \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein;}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition Wichtige

Eigenschaften
Die Relation

^-^-d----

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{a} A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellulig

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ nein};$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\label{eq:poisson} \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein;}$
- $\bigcirc \sim \ \subseteq \ (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \ \text{mit} \ (m,n) \sim (m',n') \\ \text{gdw.} \ m+n'=n+m'$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt symmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ dann auch $y\,R\,x$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\label{eq:poisson} \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein;}$
- $\bigcirc \sim \ \subseteq \ (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \ \mathrm{mit} \ (m,n) \sim (m',n') \\ \mathrm{gdw.} \ m+n'=n+m' \ \mathrm{ja}.$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{2} A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstonang

Romposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ja};$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ ja};$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ ja;

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\ \, \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \mathsf{ja}; \\$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt antisymmetrisch, falls $(\forall x,y\in A)$: wenn $x\,R\,y$ und $y\,R\,x$ dann x=y.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{6} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\ \, \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \mathsf{ja}; \\$
- $\bullet \sim \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \text{ mit } (m,n) \sim (m',n') \\ \text{gdw. } m+n'=n+m' \text{ nein.}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\,R\,y$ und $y\,R\,z$ dann $x\,R\,z$.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\ R\ y$ und $y\ R\ z$ dann $x\ R\ z$.

- $\mathbf{Q} A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\ R\ y$ und $y\ R\ z$ dann $x\ R\ z$.

- $\mathbf{2} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\ R\ y$ und $y\ R\ z$ dann $x\ R\ z$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\ R\ y$ und $y\ R\ z$ dann $x\ R\ z$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellulig

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\ R\ y$ und $y\ R\ z$ dann $x\ R\ z$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

. tomposicion

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x, y, z \in A)$: wenn x R y und y R z dann x R z.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ ja};$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\ R\ y$ und $y\ R\ z$ dann $x\ R\ z$.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ ja};$

Informatik I

Jan-Georg Smaus

Darstellung

Wichtige

Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x, y, z \in A)$: wenn x R y und y R z dann x R z.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ja};$
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ ja};$
- $\bullet \subseteq \subseteq \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})$ ja;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt transitiv, falls $(\forall x,y,z\in A)$: wenn $x\ R\ y$ und $y\ R\ z$ dann $x\ R\ z$.

- $\mathbf{2} A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ ja};$
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ ja};$
- $\ \, \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \mathsf{ja}; \\$
- $\bullet \sim \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \text{ mit } (m,n) \sim (m',n') \\ \text{gdw. } m+n'=n+m' \text{ ja}.$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

Informatik I

Wichtige Eigenschaften

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{a} \ A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{a} \ A \times \mathbf{A}$ ja;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a,a) \mid a \in A\}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositioi

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a, a) \mid a \in A\}$ ja;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ nein};$

Informatik I

Jan-Georg Smaus

Darstellung

Wichtige

Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ ja;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\label{eq:poisson} \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein;}$
- $\bigcirc \sim \ \subseteq \ (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \ \text{mit} \ (m,n) \sim (m',n') \ \text{gdw.} \ m+n'=n+m'$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

R heißt Äquivalenzrelation, falls R reflexiv, transitiv und symmetrisch ist.

- $\mathbf{Q} A \times \mathbf{A}$ ja;
- $\bullet \le \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{6} \mid \subseteq \mathbb{N} \times \mathbb{N} \text{ nein};$
- $\label{eq:poisson} \mathbf{0} \ \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein;}$
- $\bigcirc \sim \ \subseteq \ (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \ \text{mit} \ (m,n) \sim (m',n') \\ \text{gdw.} \ m+n'=n+m' \ \text{ja}.$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

Die Relation \sim

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter
Die Relation

~

Ordnungen

Die Relation \sim

Die Relation $\sim \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ mit $(m, n) \sim (m', n')$ gdw. m + n' = n + m', kann man benutzen, um aus den natürlichen Zahlen die ganzen Zahlen zu konstruieren. Idee: stelle jede ganze Zahl als Differenz von zwei natürlichen 7ahlen dar

$$\begin{array}{ccc} 0 & \hat{=} & (0,0) \sim (1,1) \sim (150000,150000) \\ 2 & \hat{=} & (2,0) \sim (3,1) \sim (150002,150000) \\ -2 & \hat{=} & (0,2) \sim (1,3) \sim (150000,150002) \end{array}$$

Es gilt z.B. 2+1=3+0 oder 0+3=2+1. Trick: man verwendet - in der Definition nicht, denn + ist auf den natürlichen Zahlen total definiert, – aber nicht.

Informatik I

Die Relation

$$(n,m) \oplus (n',m') =$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

Die Relation \sim

Ordnungen

$$(n,m)\oplus (n',m')=(n+n',m+m')$$
 denn $(n-m)+(n'-m')=(n+n')-(m+m').$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

Die Relation

~

$$(n,m) \oplus (n',m') = (n+n',m+m')$$
 denn $(n-m) + (n'-m') = (n+n') - (m+m')$.
$$(n,m) \ominus (n',m') =$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

.

$$(n,m) \oplus (n',m') = (n+n',m+m')$$
 denn $(n-m) + (n'-m') = (n+n') - (m+m')$. $(n,m) \ominus (n',m') =$

Wir dürfen - "offiziell" nicht benutzen.

Nebenrechnung:
$$(n - m) - (n' - m') = (n + m') - (m + n')$$
.

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Die Relation

O------

$$(n,m)\oplus(n',m')=(n+n',m+m')$$

$$denn (n-m) + (n'-m') = (n+n') - (m+m').$$

$$(n,m)\ominus(n',m')=(n+m',m+n')$$

Wir dürfen — "offiziell" nicht benutzen.

Nebenrechnung:
$$(n - m) - (n' - m') = (n + m') - (m + n')$$
.

Informatik I

Jan-Georg Smaus

Darstellung

. tomposition

Die Relation

0...1.....

$$(n,m)\oplus(n',m')=(n+n',m+m')$$

 $\mathsf{denn}\ (n-m) + (n'-m') = (n+n') - (m+m').$

$$(n,m)\ominus(n',m')=(n+m',m+n')$$

Wir dürfen - "offiziell" nicht benutzen.

Nebenrechnung: (n - m) - (n' - m') = (n + m') - (m + n').

Ubung: definiere \odot , die Multiplikation auf den ganzen Zahlen.

Informatik I

Jan-Georg Smaus

Darstellung

rtomposition

Die Relation

Ordnungen

Die Relation ⋈

Definiere $\bowtie \subseteq (\mathbb{N} \times (\mathbb{Z} \setminus \{0\})) \times (\mathbb{N} \times (\mathbb{Z} \setminus \{0\}))$ mit $(m,n)\bowtie (m',n')$ gdw. $m\cdot n'=n\cdot m'$. Was ist das und wozu könnte es gut sein?

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter
Die Relation

~

Ordnungen

Die Relation ⋈

Definiere $\bowtie \subseteq (\mathbb{N} \times (\mathbb{Z} \setminus \{0\})) \times (\mathbb{N} \times (\mathbb{Z} \setminus \{0\}))$ mit $(m,n)\bowtie (m',n')$ gdw. $m\cdot n'=n\cdot m'.$ Was ist das und wozu könnte es gut sein?

Die Relation ⋈ kann man benutzen, um aus den natürlichen und ganzen Zahlen die rationalen Zahlen zu konstruieren.

Das nennen wir Bruch und schreiben normalerweise $\frac{n}{m}$. Dass eine Zahl sich auf verschiedene Arten als Bruch schreiben lässt, ist bekannt.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

Die Relation

~

Ordnungen

Informatik I

Jan-Georg Smaus

Darstellung

Kompositioi

Wichtige Eigenschafter

~

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Definition

Sei R eine Relation über A.

- ullet R ist eine Quasiordnung, falls R reflexiv und transitiv ist.
- R ist eine Halbordnung, falls R reflexiv, transitiv und antisymmetrisch ist.
- R ist eine totale Ordnung, falls R eine Halbordnung ist und $(\forall a, b \in R)$ gilt a R b oder b R a.

Informatik I

Jan-Georg Smaus

 ${\sf Darstellung}$

Komposition

Die Relation

Die Relation ∼

Ordnungen Definitionen

> maximale, größte Elemente Wohlfundiertheit Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- Totale Ordnung: Halbordnung und a R b oder b R a.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- Totale Ordnung: Halbordnung und a R b oder b R a.
- $\mathbf{2} A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Wichtige Eigenschafter

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- ullet Totale Ordnung: Halbordnung und $a\ R\ b$ oder $b\ R\ a$.
- $\mathbf{Q} A \times \mathbf{A}$ Quasiordnung;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

Die Relation \sim

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- ullet Totale Ordnung: Halbordnung und $a\ R\ b$ oder $b\ R\ a$.
- $\mathbf{Q} \quad A \times \mathbf{A} \quad Quasiordnung;$
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ Halbordnung;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschafte

Die Relation \sim

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- ullet Totale Ordnung: Halbordnung und $a\ R\ b$ oder $b\ R\ a$.
- $\mathbf{Q} A \times \mathbf{A}$ Quasiordnung;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ Halbordnung};$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ totale Ordnung;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Eigenschafter

Die Relation ∼

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- Totale Ordnung: Halbordnung und a R b oder b R a.
- $\mathbf{Q} A \times \mathbf{A}$ Quasiordnung;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ Halbordnung;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ totale Ordnung;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafte Die Polation

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- Totale Ordnung: Halbordnung und a R b oder b R a.
- $\mathbf{Q} \quad A \times \mathbf{A} \quad Quasiordnung;$
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ Halbordnung;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ totale Ordnung;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ Halbordnung;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- ullet Totale Ordnung: Halbordnung und $a\ R\ b$ oder $b\ R\ a$.
- $\mathbf{Q} A \times \mathbf{A}$ Quasiordnung;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ Halbordnung;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ totale Ordnung;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ Halbordnung;
- $\bullet \subseteq \subseteq \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})$

Informatik I

Jan-Georg Smaus

Darstellung

Nompositio

Die Relation

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- ullet Totale Ordnung: Halbordnung und $a\ R\ b$ oder $b\ R\ a$.
- \triangle $A \times A$ Quasiordnung;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ Halbordnung;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ totale Ordnung;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ Halbordnung;
- $K = \{(x,y) \mid x^2 + y^2 \le 1\} \subseteq \mathbb{R} \times \mathbb{R} \text{ nein;}$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschaften

Die Relation ∼

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Quasiordnung: reflexiv und transitiv
- Halbordnung: reflexiv, transitiv und antisymmetrisch
- ullet Totale Ordnung: Halbordnung und $a\ R\ b$ oder $b\ R\ a$.
- $\mathbf{Q} A \times \mathbf{A}$ Quasiordnung;
- \bullet $I_A \subseteq A \times A$ mit $I_A = \{(a,a) \mid a \in A\}$ Halbordnung;
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ totale Ordnung;
- $\mathbf{0} < \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ Halbordnung;
- $\bullet \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \mathsf{Halbordnung};$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositior

Ligenschafter

Die Relation ∼

Ordnungen Definitionen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Strikte (strenge) Ordnungen

Die Definitionen von Halbordnung und totale Ordnung lassen sich abwandeln, indem wir Irreflexivität statt Reflexivität annehmen:

Definition

Sei R eine Relation über A.

- R ist eine strikte (strenge) Ordnung, falls R irreflexiv, transitiv (und antisymmetrisch) ist.
- R ist eine strikte (strenge) totale Ordnung, falls R eine strikte Ordnung ist und $(\forall a,b\in R)$ gilt a R b oder b R a oder

Informatik I

Jan-Georg Smaus

Darstellung

Nompositio

Die Relation

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Strikte (strenge) Ordnungen

Die Definitionen von Halbordnung und totale Ordnung lassen sich abwandeln, indem wir Irreflexivität statt Reflexivität annehmen:

Definition

Sei R eine Relation über A.

- R ist eine strikte (strenge) Ordnung, falls R irreflexiv, transitiv (und antisymmetrisch) ist.
- R ist eine strikte (strenge) totale Ordnung, falls R eine strikte Ordnung ist und $(\forall a,b\in R)$ gilt $a\ R\ b$ oder $b\ R\ a$ oder a=b.

Was ist mit Quasiordnungen?

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Die Relation

Die Relation ∼

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Strikte (strenge) Ordnungen

Die Definitionen von Halbordnung und totale Ordnung lassen sich abwandeln, indem wir Irreflexivität statt Reflexivität annehmen:

Definition

Sei R eine Relation über A.

- R ist eine strikte (strenge) Ordnung, falls R irreflexiv, transitiv (und antisymmetrisch) ist.
- R ist eine strikte (strenge) totale Ordnung, falls R eine strikte Ordnung ist und $(\forall a,b\in R)$ gilt $a\ R\ b$ oder $b\ R\ a$ oder a=b.

Was ist mit Quasiordnungen? Es bleibt nur Transitivität übrig; hierfür führen wir keinen neuen Namen ein.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Die Polation

Die Relation ∼

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Vichtige Eigenschaften

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Natürliche

Zahlen

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- $\mathbf{Q} A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Nomposition

Eigenschafte

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlordnunge Natürliche

Zahlen

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

 $\stackrel{\text{Die Relation}}{\sim}$

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Wohlordnunge Natürliche

Zahlen

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- \triangle $A \times A$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Polation

Die Relation \sim

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

....

Die Relation

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- \bullet $<\subseteq \mathbb{N} \times \mathbb{N}$ strikte totale Ordnung;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Die Relation

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- \bullet $<\subseteq \mathbb{N} \times \mathbb{N}$ strikte totale Ordnung;
- $| \subseteq \mathbb{N} \times \mathbb{N}$ nein, aber man kann die strikte Ordnung "teilt echt" definieren;

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Die Relation

~ Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a,a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- \bullet $<\subseteq \mathbb{N} \times \mathbb{N}$ strikte totale Ordnung;
- $| \subseteq \mathbb{N} \times \mathbb{N}$ nein, aber man kann die strikte Ordnung "teilt echt" definieren;

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Die Relation

~ ^~d=========

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- \bullet $A \times A$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a,a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- \bullet $<\subseteq \mathbb{N} \times \mathbb{N}$ strikte totale Ordnung;

- $\label{eq:power_problem} \mathbf{0} \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein, aber} \subset \text{ist eine strikte Ordnung;}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

~

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

- Strikte Ordnung: irreflexiv, transitiv (und antisymmetrisch)
- Strikte totale Ordnung: strikte Ordnung und a R b oder b R a oder a = b.
- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a,a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- \bullet $<\subseteq \mathbb{N} \times \mathbb{N}$ strikte totale Ordnung;

- $\label{eq:power_problem} \mathbf{0} \subseteq \subseteq \ \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\}) \ \text{nein, aber} \subset \text{ist eine strikte Ordnung;}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Die Relation \sim

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Minimale und kleinste Elemente

Sei $R \subseteq A \times A$ eine Relation und sei $B \subseteq A$ (es hilft, sich R als \leq vorzustellen).

Definition

• Ein Element $z \in B$ heißt minimales Element von B bzgl. R falls $(\forall y \in B)$ gilt: y R z impliziert y = z.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

~

Ordnungen Definitionen Minimale,

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Induktion Wohlordnungen

Minimale und kleinste Elemente

Sei $R \subseteq A \times A$ eine Relation und sei $B \subseteq A$ (es hilft, sich R als \leq vorzustellen).

Definition

- Ein Element $z \in B$ heißt minimales Element von B bzgl. R falls $(\forall y \in B)$ gilt: y R z impliziert y = z.
- Ein Element $z \in B$ heißt kleinstes Element von B bzgl. R falls $(\forall y \in B)$ gilt: z R y.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

Die Relation ~

Ordnungen Definitionen Minimale,

kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Induktion Wohlordnungen

Minimale und kleinste Elemente

Sei $R \subseteq A \times A$ eine Relation und sei $B \subseteq A$ (es hilft, sich R als \leq vorzustellen).

Definition

- Ein Element $z \in B$ heißt minimales Element von B bzgl. R falls $(\forall y \in B)$ gilt: y R z impliziert y = z.
- Ein Element $z \in B$ heißt kleinstes Element von B bzgl. R falls $(\forall y \in B)$ gilt: z R y.
- Ein Element $z \in B$ heißt maximales Element von B bzgl. R falls $(\forall y \in B)$ gilt: z R y impliziert y = z.
- Ein Element $z \in B$ heißt größtes Element von B bzgl. R falls $(\forall y \in B)$ gilt: y R z.

Wenn R aus dem Zusammenhang klar ist, kann man den Zusatz "bzgl. R" auch weglassen.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Minimale und kleinste Elemente Beispiele

 $A=B=\mathbb{N}$ mit $R=\leq$: 0 ist sowohl ein minimales als auch das kleinste Element.

Es existieren kein maximales oder größtes Element.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafte

~

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente

Induktion Wohlordnunge

Minimale und kleinste Elemente Beispiele

 $A=B=\mathbb{N}$ mit $R=\leq$: 0 ist sowohl ein minimales als auch das kleinste Element.

Es existieren kein maximales oder größtes Element.

Betrachten wir wieder $\subseteq \subseteq \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})$ und $B = \{\{1\},\{2\},\{1,2,3\}\}.$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

ole Relation ∼

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit

Induktion Wohlordnunger

Minimale und kleinste Elemente Beispiele

 $A=B=\mathbb{N}$ mit $R=\leq$: 0 ist sowohl ein minimales als auch das kleinste Element.

Es existieren kein maximales oder größtes Element.

Betrachten wir wieder \subseteq \subseteq $\mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})$ und $B=\{\{1\},\{2\},\{1,2,3\}\}.$

 $\{1\}$ und $\{2\}$ sind beide minimal, aber keines der beiden ist das kleinste Element. Es gibt kein kleinstes.

 $\{1,2,3\}$ ist das einzige maximale, und zugleich das größte Element.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

J

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Wohlfundiertheit

Definition

Eine Relation $R\subseteq A\times A$ heißt wohlfundiert, falls R irreflexiv ist und jedes nichtleere $B\subseteq A$ mindestens ein minimales Element bzgl. R besitzt.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

~

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente

Wohlfundiertheit Induktion Wohlordnungen

Wohlordnungen

Wohlfundiertheit

Definition

Eine Relation $R\subseteq A\times A$ heißt wohlfundiert, falls R irreflexiv ist und jedes nichtleere $B\subseteq A$ mindestens ein minimales Element bzgl. R besitzt.

Definition

Sei $R \subseteq A \times A$ ein Relation. Eine unendliche absteigende Kette bzgl. R ist eine unendliche Folge a_1, a_2, \ldots , mit $a_{i+1} R a_i$.

Beispiel: < auf \mathbb{Z} . Dann ist $0,-1,-2,\ldots$ eine unendliche absteigende Kette, denn $\ldots-2<-1<0.$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Die Relation

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Induktion Wohlordnunge

Wohlfundiertheit

Definition

Eine Relation $R\subseteq A\times A$ heißt wohlfundiert, falls R irreflexiv ist und jedes nichtleere $B\subseteq A$ mindestens ein minimales Element bzgl. R besitzt.

Definition

Sei $R \subseteq A \times A$ ein Relation. Eine unendliche absteigende Kette bzgl. R ist eine unendliche Folge a_1, a_2, \ldots , mit $a_{i+1} R a_i$.

Beispiel: < auf \mathbb{Z} . Dann ist $0,-1,-2,\ldots$ eine unendliche absteigende Kette, denn $\ldots-2<-1<0.$

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Die Relation

~

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Natürliche

Beweistechniken

- Einen Beweis einer Aussage der Form "A gdw. B" führt man normalerweise, indem man im ersten Teil A annimmt und B folgert und im zweiten Teil B annimmt und A folgert.
- Einen Beweis einer Aussage der Form "aus A folgt B" wird häufig als Widerspruchsbeweis geführt: A ist die Voraussetzung; nun macht man die "Annahme" ¬B und leitet einen Widerspruch her. Da A und ¬B einen Widerspruch implizieren, folgt B aus A.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

~

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Beweis, Teil 1 ("Hinrichtung")

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

" \Rightarrow ": Sei R wohlfundiert. Um einen Widerspruch herzuleiten, nehmen wir nun an, es existiere eine unendliche absteigende Kette a_1, a_2, \ldots ,

Informatik I

Jan-Georg Smaus

Darstellung

rtomposition

Die Relation

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlfundierthei Induktion Wohlordnungen

Beweis, Teil 1 ("Hinrichtung")

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

" Sei R wohlfundiert. Um einen Widerspruch herzuleiten, nehmen wir nun an, es existiere eine unendliche absteigende Kette $a_1, a_2, \ldots,$

Definiere $B:=\{a_i\mid i\in\mathbb{N}\}$. Da R wohlfundiert und B nichtleer ist, hat B ein minimales Element a_i , d.h. $(\forall y\in B)$ gilt: $y\ R\ a_i$ impliziert $y=a_i$. Da R wohlfundiert und somit irreflexiv ist, muss gelten: $(\not\exists y)$ mit $y\ R\ a_i$. Da laut Annahme a_1,a_2,\ldots , eine unendliche absteigende Kette ist, gilt aber $a_{i+1}\ R\ a_i$. Somit haben wir einen Widerspruch.

Informatik I

Jan-Georg Smaus

Darstellung

Nomposition

Die Relation

Ordnungen Definitionen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Beweis, Teil 2 ("Rückrichtung")

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

"←": Voraussetzung: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Um einen Widerspruch herzuleiten, nehmen wir nun an, R sei nicht wohlfundiert, d.h. eine der beiden folgenden Aussagen gelte:

• R ist nicht irreflexiv, d.h., es existiert ein $a \in A$ mit $(a,a) \in R$.

Informatik I

größte Elemente Wohlfundiertheit Induktion

Beweis, Teil 2 ("Rückrichtung")

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

"←": Voraussetzung: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Um einen Widerspruch herzuleiten, nehmen wir nun an, R sei nicht wohlfundiert, d.h. eine der beiden folgenden Aussagen gelte:

- R ist nicht irreflexiv, d.h., es existiert ein $a \in A$ mit $(a,a) \in R$.
- $oldsymbol{2}$ Es existiert ein nichtleeres $B \subset A$, das kein minimales Element besitzt, d.h, ein $B \subseteq A$ derart, dass $(\forall z \in B) \ (\exists y \in B) \ (y R z) \land y \neq z.$

Informatik I

größte Elemente Wohlfundiertheit Induktion

. . .

Beweis, Teil 2a

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

" \Leftarrow ": Voraussetzung: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Um einen Widerspruch herzuleiten, nehmen wir nun an, R sei nicht wohlfundiert, d.h. eine der beiden folgenden Aussagen gelte:

- $\textbf{ } R \text{ ist nicht irreflexiv, d.h., es existiert ein } a \in A \text{ mit } \\ (a,a) \in R.$
- 2 ...

Im ersten Fall ist a, a, a, \ldots eine unendliche absteigende Kette und wir haben einen Widerspruch.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschafter

○ Netation

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Beweis, Teil 2b

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

" \Leftarrow ": Vorauss.: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Nimm an, R sei nicht wohlfundiert, d.h.:

② Es existiert ein nichtleeres $B \subseteq A$, das kein minimales Element besitzt, d.h, ein $B \subseteq A$ derart, dass $(\forall z \in B) \ (\exists y \in B) \ (y \ R \ z) \land y \neq z$.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Die Relation

^~

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit

Induktion Wohlordnungen

Beweis, Teil 2b

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

"... Vorauss.: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Nimm an, R sei nicht wohlfundiert, d.h.:

② Es existiert ein nichtleeres $B \subseteq A$, das kein minimales Element besitzt, d.h, ein $B \subseteq A$ derart, dass $(\forall z \in B) \ (\exists y \in B) \ (y \ R \ z) \land y \neq z$.

Im zweiten Fall wähle ein beliebiges Element aus B aus und nenne es a_1 . Dann existiert laut obiger Formel ein $y \in B$ sodass $(y R a_1) \wedge y \neq a_1$. Nenne dieses y fortan a_2 .

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschafter

Die Relation ∼

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Beweis, Teil 2b

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

" \Leftarrow ": Vorauss.: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Nimm an, R sei nicht wohlfundiert, d.h.:

② Es existiert ein nichtleeres $B\subseteq A$, das kein minimales Element besitzt, d.h, ein $B\subseteq A$ derart, dass $(\forall z\in B)\ (\exists y\in B)\ (y\ R\ z)\land y\neq z.$

Im zweiten Fall wähle ein beliebiges Element aus B aus und nenne es a_1 . Dann existiert laut obiger Formel ein $y \in B$ sodass $(y R a_1) \wedge y \neq a_1$. Nenne dieses y fortan a_2 . Dann existiert laut obiger Formel ein (i.A. anderes!) $y \in B$ sodass $(y R a_2) \wedge y \neq a_2$. Nenne dieses y fortan $a_3 \ldots$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschafter

Die Relation ∼

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Beweis. Teil 2b'

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

"←": Vorauss.: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Nimm an, R sei nicht wohlfundiert, d.h.:

besitzt, d.h. ein $B \subseteq A$ derart, dass $(\forall z \in B) \ (\exists y \in B) \ (y R z) \land y \neq z.$

Informatik I

größte Elemente Wohlfundiertheit Induktion

Beweis, Teil 2b'

Satz

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Beweis.

" \Leftarrow ": Vorauss.: es existiert keine unendliche absteigende Kette a_1, a_2, \ldots , bzgl. R. Nimm an, R sei nicht wohlfundiert, d.h.:

② Es existiert ein $B \subseteq A$, das kein minimales Element besitzt, d.h, ein $B \subseteq A$ derart, dass $(\forall z \in B) \ (\exists y \in B) \ (y \ R \ z) \land y \neq z.$

. . .

 a_1, a_2, \ldots ist eine unendliche absteigende Kette, also haben wir einen Widerspruch.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

Die Relation ∼

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Natürliche

Warum so kompliziert?

Warum heißt es in der Definition von Wohlfundiertheit "jedes nichtleere $B\subseteq A$ mindestens ein minimales Element bzgl. R besitzt" statt einfach "A mindestens ein minimales Element bzgl. R besitzt"?

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

VVichtige Eigenschaftei

Jie Relation ∼

Ordnungen

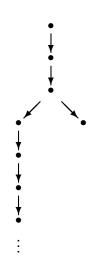
Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlfundierthe Induktion Wohlordnunger

Warum so kompliziert?

Warum heißt es in der Definition von Wohlfundiertheit "jedes nichtleere $B\subseteq A$ mindestens ein minimales Element bzgl. R besitzt" statt einfach "A mindestens ein minimales Element bzgl. R besitzt"?

Die Bedingung über Teilmengen erzwingt, dass jede Kette endlich ist. Die Existenz eines minimalen Elements in A reicht nicht aus.



Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Eine Relation $R\subseteq A\times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Wichtige Eigenschafter

~

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlfundierthei Induktion Wohlordnungen

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{a} \ A \times \mathbf{A}$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

~

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlfundierthei Induktion Wohlordnungen

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\}$

Informatik I

Jan-Georg Smaus

Darstellung

Kompositioi

Eigenschafter

~ ^-...

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlfundiertheit Induktion Wohlordnungen

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

rtomposition

Eigenschafter

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlfundierthe Induktion Wohlordnunger

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\mathbf{o} < \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Die Polation

^ ·

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Wohlfundierthe Induktion Wohlordnunger

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- \triangle $A \times A$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\mathbf{\Phi} \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- \bullet $<\subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$

Informatik I

Jan-Georg Smaus

Darstellung

rtomposition

Die Polation

^ ·

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit

Induktion Wohlordnunge

Naturiich Zahlen

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;

Informatik I

Jan-Georg Smaus

Darstellung

....

Die Relation

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Induktion Wohlordnunger

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\mathbf{0} \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;

Informatik I

Jan-Georg Smaus

Darstellung

....

Die Relation

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\mathbf{\Phi} \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;

- $\bigcirc \sim \ \subseteq \ (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \ \text{mit} \ (m,n) \sim (m',n') \\ \text{gdw.} \ m+n'=n+m'$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;

$$\subset \subseteq \mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Polation

~

Ordnungen Definitionen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Wohlordnunge Natürliche

Zahlen

Eine Relation $R \subseteq A \times A$ ist wohlfundiert gdw. keine unendliche absteigende Kette bzgl. R existiert.

- $\mathbf{Q} A \times \mathbf{A}$ nein;
- $I_A \subseteq A \times A \text{ mit } I_A = \{(a, a) \mid a \in A\} \text{ nein;}$
- $\bullet \leq \subseteq \mathbb{N} \times \mathbb{N}$ nein;
- $\bullet < \subseteq \mathbb{N} \times \mathbb{N}$ ja;
- $\bullet \mid \subseteq \mathbb{N} \times \mathbb{N}$ nein;

- $\bigcirc \sim \ \subseteq \ (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \ \text{mit} \ (m,n) \sim (m',n') \\ \text{gdw.} \ m+n'=n+m' \ \text{nein.}$

$$\subset \subseteq \mathcal{P}(\{1,2,3\}) imes \mathcal{P}(\{1,2,3\})$$
 ja;

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafte

-

Ordnungen

Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Wozu Wohlfundiertheit?

Wenn eine Menge mit einer wohlfundierten Relation ausgestattet ist, kann man Induktion benutzen, um Eigenschaften aller Elemente der Menge zu beweisen. Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

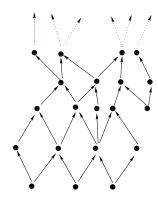
> Jie Relation ∼

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit

Induktion Wohlordnunge

Wohlordnunge



Die Menge mit wohlfundierter Relation

Informatik I

Jan-Georg Smaus

Darstellung

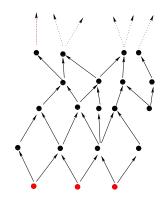
Nompositio

Die Polation

O-4----

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundierthei

Induktion Wohlordnung



Induktionsbasis (Teil des Beweises)

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

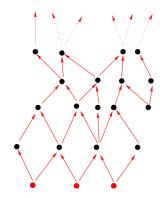
Eigenschafte

~

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundierthei

Induktion Wohlordnung



Induktionsschritt (Teil des Beweises)

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

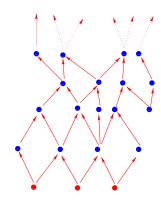
Eigenschafter

. .

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundierthei

Induktion Wohlordnunge



Eigenschaft gilt für alle Elemente (folgt automatisch)

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschafte

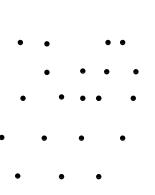
~

Definitionen Minimale,

kleinste, maximale, größte Elemente Wohlfundierthei Induktion

Induktion Wohlordnunge

Induktion mit der leeren Menge



Das Prinzip der Induktion gilt auch für die leere Relation als wohlfundierte Relation, nur nützt es einem nichts!

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

VVichtige Eigenschaftei

~

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit

Induktion Wohlordnunge

Sei $R\subseteq A\times A$ eine wohlfundierte Relation und P(x) eine zu beweisende Eigenschaft für $x\in A$.

- **1** Induktionsbasis: $(\forall x \in A) \ ((\not\exists y \in A) \ y \ R \ x) \Rightarrow P(x)$
- Induktionsschritt:

$$(\forall x \in A) \ ((\forall y \in A) \ y \ R \ x \Rightarrow P(y)) \Rightarrow P(x)$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafte

~

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente

Induktion Wohlordnungen

Sei $R\subseteq A\times A$ eine wohlfundierte Relation und P(x) eine zu beweisende Eigenschaft für $x\in A$.

- **1** Induktionsbasis: $(\forall x \in A) \ ((\not\exists y \in A) \ y \ R \ x) \Rightarrow P(x)$
- Induktionsschritt:

$$(\forall x \in A) \ ((\forall y \in A) \ y \ R \ x \Rightarrow P(y)) \Rightarrow P(x)$$

Hinweis: 1 folgt aus 2 und damit bei dieser Formulierung eigentlich überflüssig:

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

Die Relation ∼

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

nduktion Vohlordnungen

Sei $R\subseteq A\times A$ eine wohlfundierte Relation und P(x) eine zu beweisende Eigenschaft für $x\in A$.

- **1** Induktionsbasis: $(\forall x \in A) \ ((\not\exists y \in A) \ y \ R \ x) \Rightarrow P(x)$
- Induktionsschritt:

$$(\forall x \in A) \ ((\forall y \in A) \ y \ R \ x \Rightarrow P(y)) \Rightarrow P(x)$$

Hinweis: ① folgt aus ② und damit bei dieser Formulierung eigentlich überflüssig: Sei in ② ein $x \in A$ sodass $(\not\exists y \in A) \ y \ R \ x$ gilt. Was passiert dann mit $(\forall y \in A) \ y \ R \ x \Rightarrow P(y)$?

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Ordnungen Definitionen

> Minimale, Maximale, größte Elemente Wohlfundiertheit Induktion

Natürliche

Sei $R\subseteq A\times A$ eine wohlfundierte Relation und P(x) eine zu beweisende Eigenschaft für $x\in A$.

- **1** Induktionsbasis: $(\forall x \in A) \ ((\not\exists y \in A) \ y \ R \ x) \Rightarrow P(x)$
- Induktionsschritt:

$$(\forall x \in A) \ ((\forall y \in A) \ y \ R \ x \Rightarrow P(y)) \Rightarrow P(x)$$

Hinweis: ① folgt aus ② und damit bei dieser Formulierung eigentlich überflüssig: Sei in ② ein $x \in A$ sodass $(\not\exists y \in A) \ y \ R \ x$ gilt. Was passiert dann mit $(\forall y \in A) \ y \ R \ x \Rightarrow P(y)$? Es gilt trivialerweise, und wir müssen "ohne Hilfe irgendeines P(y)" P(x) zeigen, genau wie in ①.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Die Relation ∼

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Wohlordnunger Natürliche

Sei $R\subseteq A\times A$ eine wohlfundierte Relation und P(x) eine zu beweisende Eigenschaft für $x\in A.$

- **1** Induktionsbasis: $(\forall x \in A) \ ((\not\exists y \in A) \ y \ R \ x) \Rightarrow P(x)$
- Induktionsschritt:

$$(\forall x \in A) \ ((\forall y \in A) \ y \ R \ x \Rightarrow P(y)) \Rightarrow P(x)$$

Hinweis: ① folgt aus ② und damit bei dieser Formulierung eigentlich überflüssig: Sei in ② ein $x \in A$ sodass $(\not\exists y \in A)$ y R x gilt. Was passiert dann mit $(\forall y \in A)$ y R $x \Rightarrow P(y)$? Es gilt trivialerweise, und wir müssen "ohne Hilfe irgendeines P(y)" P(x) zeigen, genau wie in ①. Wir verwenden trotzdem die Formulierung mit ① und ②, weil Beweise häufig aus zwei Teilen bestehen, die ① und ② entsprechen.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschaften

Die Relation \sim

Ordnungen
Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Sei $R\subseteq A\times A$ eine wohlfundierte Relation und P(x) eine zu beweisende Eigenschaft für $x\in A$.

- **1** Induktionsbasis: $(\forall x \in A) \ ((\not\exists y \in A) \ y \ R \ x) \Rightarrow P(x)$
- Induktionsschritt:

$$(\forall x \in A) \ ((\forall y \in A) \ y \ R \ x \Rightarrow P(y)) \Rightarrow P(x)$$

Hinweis: ① folgt aus ② und damit bei dieser Formulierung eigentlich überflüssig: Sei in ② ein $x \in A$ sodass $(\not\exists y \in A) \ y \ R \ x$ gilt. Was passiert dann mit $(\forall y \in A) \ y \ R \ x \Rightarrow P(y)$? Es gilt trivialerweise, und wir müssen "ohne Hilfe irgendeines P(y)" P(x) zeigen, genau wie in ①. Wir verwenden trotzdem die Formulierung mit ① und ②, weil Beweise häufig aus zwei Teilen bestehen, die ① und ② entsprechen.

Es gibt verschiedene Formulierungen von Induktion, wie wir noch sehen werden.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschaften

Die Relation

Ordnungen
Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Wohlordnung

Definition

Eine Wohlordnung ist eine wohlfundierte strikte totale Ordnung.

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

~

Ordnungen

Definitionen Minimale, kleinste, maximale, größte Elemente Wohlfundiertheit Induktion

Wohlordnungen

Natürliche

Wohlordnung

Definition

Eine Wohlordnung ist eine wohlfundierte strikte totale Ordnung.

Beispiele

- < $\in \mathbb{N} \times \mathbb{N}$ ist eine Wohlordnung. Man sagt auch: $(\mathbb{N},<)$ ist wohlgeordnet.
- $R = \{(n, n+1) \mid n \in \mathbb{N}\}$ ist keine Wohlordnung, da nicht transitiv: $(1,2) \in R$, $(2,3) \in R$, aber $(1,3) \notin R$. Aber R ist eine wohlfundierte Relation.
- P(M) mit M ≠ Ø und Relation ⊂ (echte Teilmenge) ist keine Wohlordnung, da nicht total.
 Aber ⊂ ist eine wohlfundierte Relation.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositioi

Eigenschaften

Die Relation ∼

Ordnungen
Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion

Wohlordnungen

Striktheit

 Die Frage "strikt oder nicht strikt" (d.h., "reflexiv oder irreflexiv") wird manchmal etwas vage behandelt, siehe etwa den Wikipedia-Artikel zu Wohlordnung, wo die Beispiele offensichtlich irreflexiv sind, obwohl eine Wohlordnung eine totale Ordnung, also reflexiv sein soll. Dies ist vielleicht verwirrend. Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

~

Ordnungen

Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion
Wohlordnungen

Natürliche

Striktheit

- Die Frage "strikt oder nicht strikt" (d.h., "reflexiv oder irreflexiv") wird manchmal etwas vage behandelt, siehe etwa den Wikipedia-Artikel zu Wohlordnung, wo die Beispiele offensichtlich irreflexiv sind, obwohl eine Wohlordnung eine totale Ordnung, also reflexiv sein soll. Dies ist vielleicht verwirrend.
- Entscheidend ist folgendes: zu jeder reflexiven Relation gibt es eine korrespondierende irreflexive (Wegnahme aller Paare (a,a)). Letztere ist die, die man bei Wohlfundiertheit wirklich meint, etwa wenn man sagt: "Diese Kette ist absteigend und somit endlich".

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

Die Relation \sim

Ordnungen
Definitionen
Minimale,
kleinste,
maximale,
größte Elemente
Wohlfundiertheit
Induktion
Wohlordnungen

Natürliche Zahlen

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafte

~

Ordnungen Natürliche

Zahlen

Natürliche Zahlen

Definition (Meschkowski)

Die Menge $\mathbb N$ der natürlichen Zahlen ist eine total geordnete Menge mit

- $oldsymbol{0}$ (N,<) besitzt kein größtes Element;
- $\mathbf{2}$ $(\mathbb{N},<)$ ist wohlgeordnet;
- **3** Jedes $n \in \mathbb{N} \setminus \{0\}$ besitzt genau einen Vorgänger.

Beispiel für eine nicht-konstruktive Definition. Nicht offensichtlich, dass

- ullet es überhaupt eine solche Menge ${\mathbb N}$ gibt und
- sie durch bis bis auf Umbenennungen eindeutig definiert ist.

Informatik I

Jan-Georg Smaus

Darstellung

Nomposition

Die Relation

~

Ordnungen

Peano-Axiome

Definition (Peano-Axiome)

Die Menge ℕ der natürlichen Zahlen ist definiert durch:

P1 $0 \in \mathbb{N}$ (Null)

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

~

Ordnungen

Peano-Axiome

Definition (Peano-Axiome)

Die Menge ℕ der natürlichen Zahlen ist definiert durch:

P1 $0 \in \mathbb{N}$ (Null)

P2 $(\forall n \in \mathbb{N})$ $n' \in \mathbb{N}$ (Nachfolger)

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

^~

Ordnungen

Definition (Peano-Axiome)

Die Menge ℕ der natürlichen Zahlen ist definiert durch:

P1 $0 \in \mathbb{N}$ (Null)

P2 $(\forall n \in \mathbb{N})$ $n' \in \mathbb{N}$ (Nachfolger)

P3 $(\forall n \in \mathbb{N})$ $n' \neq 0$ (Nachfolger ist nicht Null)

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

~ ^_!

Ordnungen

Definition (Peano-Axiome)

Die Menge N der natürlichen Zahlen ist definiert durch:

P1 $0 \in \mathbb{N}$ (Null)

P2 $(\forall n \in \mathbb{N})$ $n' \in \mathbb{N}$ (Nachfolger)

P3 $(\forall n \in \mathbb{N})$ $n' \neq 0$ (Nachfolger ist nicht Null)

P4 $(\forall m, n \in \mathbb{N})$ $m \neq n \Rightarrow m' \neq n'$ (Nachfolger ist injektiv)

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschafter

~

Ordnungen

Definition (Peano-Axiome)

Die Menge ℕ der natürlichen Zahlen ist definiert durch:

- P1 $0 \in \mathbb{N}$ (Null)
- P2 $(\forall n \in \mathbb{N})$ $n' \in \mathbb{N}$ (Nachfolger)
- P3 $(\forall n \in \mathbb{N})$ $n' \neq 0$ (Nachfolger ist nicht Null)
- P4 $(\forall m, n \in \mathbb{N})$ $m \neq n \Rightarrow m' \neq n'$ (Nachfolger ist injektiv)
- P5 Für jede Menge $M\subseteq\mathbb{N}$ mit $0\in M$ und $(\forall n)\ n\in M\Rightarrow n'\in M$ gilt $M=\mathbb{N}$ (Induktionsaxiom)

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Ligenschafte

~ ^-

Ordnungen

Definition (Peano-Axiome)

Die Menge \mathbb{N} der natürlichen Zahlen ist definiert durch:

- P1 $0 \in \mathbb{N}$ (Null)
- P2 $(\forall n \in \mathbb{N})$ $n' \in \mathbb{N}$ (Nachfolger)
- P3 $(\forall n \in \mathbb{N})$ $n' \neq 0$ (Nachfolger ist nicht Null)
- P4 $(\forall m, n \in \mathbb{N})$ $m \neq n \Rightarrow m' \neq n'$ (Nachfolger ist injektiv)
- P5 Für jede Menge $M\subseteq \mathbb{N}$ mit $0\in M$ und $(\forall n)\ n\in M\Rightarrow n'\in M$ gilt $M=\mathbb{N}$ (Induktionsaxiom)

P5 schließt aus, dass man zu den natürlichen Zahlen ein "größtes Element" hinzunimmt o.Ä.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositioi

Eigenschafter

^-

Ordnungen

Das Beweisschema der vollständigen Induktion

Sei P(n) eine Eigenschaft einer Zahl $n \in \mathbb{N}$ (Prädikat).

Zeige $(\forall n \in \mathbb{N}) \ P(n)$.

Definiere $M := \{ n \in \mathbb{N} \mid P(n) \text{ gilt} \} \subseteq \mathbb{N}.$

Induktionsaxiom: Falls $0 \in M$ und $(\forall n)$ $n \in M \Rightarrow n' \in M$ dann $M = \mathbb{N}$.

Induktionsschema

Falls P(0) (Induktionsbasis, -anfang)

und

 $(\forall n) \ P(n) \Rightarrow P(n') \ (Induktionsschritt)$

dann

 $(\forall n \in \mathbb{N}) \ P(n). \ (P(n) \ \text{Induktionshypothese, -behauptung})$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \equiv P(n)$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

~

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2}$$

Informatik I

Jan-Georg Smaus

Romposition

Wichtige Eigenschafter

~

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2}$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\sum_{i=0}^{n+1} i = n+1 + \sum_{i=0}^n i \stackrel{\text{i}}{=}$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

~

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2}$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\begin{split} \sum_{i=0}^{n+1} i &= n+1 + \sum_{i=0}^{n} i \stackrel{\text{i}}{=} \\ n+1 + \frac{n \cdot (n+1)}{2} \end{split}$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

~ ^-d----

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2}$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\begin{split} \sum_{i=0}^{n+1} i &= n+1 + \sum_{i=0}^{n} i \stackrel{\text{\tiny IH}}{=} \\ n+1 + \frac{n \cdot (n+1)}{2} &= \frac{2n+2+n \cdot (n+1)}{2} = \end{split}$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

~

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2}$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\begin{split} \sum_{i=0}^{n+1} i &= n+1 + \sum_{i=0}^{n} i \stackrel{\text{IH}}{=} \\ n+1 + \frac{n \cdot (n+1)}{2} &= \frac{2n+2+n \cdot (n+1)}{2} = \frac{n^2+3n+2}{2} = \\ \frac{(n+1) \cdot (n+2)}{2} &= \end{split}$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschaften

^~ ^-d-----

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2}$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\begin{split} \sum_{i=0}^{n+1} i &= n+1 + \sum_{i=0}^{n} i \stackrel{\text{IH}}{=} \\ n+1 + \frac{n \cdot (n+1)}{2} &= \frac{2n+2+n \cdot (n+1)}{2} = \frac{n^2+3n+2}{2} = \\ \frac{(n+1) \cdot (n+2)}{2} &= \frac{(n+1) \cdot ((n+1)+1)}{2} \end{split}$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Eigenschafter

^~ ^-d-----

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \equiv P(n)$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Wichtige Eigenschafter

~

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} - 1$$

Informatik I

Jan-Georg Smaus

Darstellulig

rtomposition

Die Relation

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} - 1$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\sum_{i=0}^{n+1} 2^i = 2^{n+1} + \sum_{i=0}^{n} 2^i \stackrel{\text{IH}}{=}$$

Informatik I

Jan-Georg Smaus

Darstellung

Die Relation

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} - 1$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\sum_{i=0}^{n+1} 2^i = 2^{n+1} + \sum_{i=0}^{n} 2^i \stackrel{\text{IH}}{=} 2^{n+1} + 2^{n+1} - 1$$

Informatik I

Jan-Georg Smaus

Darstellung

Komposition

Die Relation

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} - 1$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\sum_{i=0}^{n+1} 2^i = 2^{n+1} + \sum_{i=0}^{n} 2^i \stackrel{\text{\tiny IH}}{=} \\ 2^{n+1} + 2^{n+1} - 1 = 2 \cdot 2^{n+1} - 1$$

Informatik I

Jan-Georg Smaus

Darstellung

. tomposition

Die Relation

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} - 1$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\sum_{i=0}^{n+1} 2^i = 2^{n+1} + \sum_{i=0}^{n} 2^i \stackrel{\text{IH}}{=} \\ 2^{n+1} + 2^{n+1} - 1 = 2 \cdot 2^{n+1} - 1 = 2^{n+2} - 1$$

Informatik I

Jan-Georg Smaus

Darstellung

Romposition

Die Relation

Ordnungen

Behauptung: für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \equiv P(n)$$

Induktionsbasis (P(0)):

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{0+1} - 1$$

Induktionsschritt $(P(n) \Rightarrow P(n+1) \text{ für alle } n \in \mathbb{N})$:

$$\sum_{i=0}^{n+1} 2^i = 2^{n+1} + \sum_{i=0}^{n} 2^i \stackrel{\text{IH}}{=} \\ 2^{n+1} + 2^{n+1} - 1 = 2 \cdot 2^{n+1} - 1 = 2^{n+2} - 1 = 2^{(n+1)+1} - 1$$

Informatik I

Jan-Georg Smaus

Darstellung

14*0* 1 . .

Die Relation

Ordnungen

Zusammenfassung

- Binäre Relationen und ihre Eigenschaften: Links- und Rechtseindeutigkeit, Reflexivität, Irreflexivität, Symmetrie, Antisymmetrie, Transitivität, Äquivalenzrelation, Quasiordnung, (strikte) Halbordnung, (strikte) totale Ordnung.
- Minimale, kleinste, maximale, größte Elemente
- Wohlfundiertheit und Induktion im Allgemeinen
- Natürliche Zahlen und Beweise darauf

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Die Relation

~ ^_!

Ordnungen

Zusammenfassung

- Binäre Relationen und ihre Eigenschaften: Links- und Rechtseindeutigkeit, Reflexivität, Irreflexivität, Symmetrie, Antisymmetrie, Transitivität, Äquivalenzrelation, Quasiordnung, (strikte) Halbordnung, (strikte) totale Ordnung.
- Minimale, kleinste, maximale, größte Elemente
- Wohlfundiertheit und Induktion im Allgemeinen
- Natürliche Zahlen und Beweise darauf

... und hoffentlich ein verbessertes Gespür für Mathematik und Beweisen.

Informatik I

Jan-Georg Smaus

Darstellung

Kompositio

Eigenschaften

Die Relation

~ ^--!------

Ordnungen