(* Title: HOL/Fun.thy ID: $Id: Fun.thy,v 1.44 2005/09/22 21:56:15 nipkow Exp $ Author: Tobias Nipkow, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge Notions about functions. *) theory Fun imports Typedef begin instance set :: (type) order by (intro_classes, (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) constdefs fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" "fun_upd f a b == % x. if x=a then b else f x" nonterminals updbinds updbind syntax "_updbind" :: "['a, 'a] => updbind" ("(2_ :=/ _)") "" :: "updbind => updbinds" ("_") "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _") "_Update" :: "['a, updbinds] => 'a" ("_/'((_)')" [1000,0] 900) translations "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" "f(x:=y)" == "fun_upd f x y" (* Hint: to define the sum of two functions (or maps), use sum_case. A nice infix syntax could be defined (in Datatype.thy or below) by consts fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80) translations "fun_sum" == sum_case *) constdefs override_on :: "('a => 'b) => ('a => 'b) => 'a set => ('a => 'b)" "override_on f g A == %a. if a : A then g a else f a" id :: "'a => 'a" "id == %x. x" comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "o" 55) "f o g == %x. f(g(x))" text{*compatibility*} lemmas o_def = comp_def syntax (xsymbols) comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\" 55) syntax (HTML output) comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\" 55) constdefs inj_on :: "['a => 'b, 'a set] => bool" (*injective*) "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" text{*A common special case: functions injective over the entire domain type.*} syntax inj :: "('a => 'b) => bool" translations "inj f" == "inj_on f UNIV" constdefs surj :: "('a => 'b) => bool" (*surjective*) "surj f == ! y. ? x. y=f(x)" bij :: "('a => 'b) => bool" (*bijective*) "bij f == inj f & surj f" text{*As a simplification rule, it replaces all function equalities by first-order equalities.*} lemma expand_fun_eq: "(f = g) = (! x. f(x)=g(x))" apply (rule iffI) apply (simp (no_asm_simp)) apply (rule ext, simp (no_asm_simp)) done lemma apply_inverse: "[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)" by auto text{*The Identity Function: @{term id}*} lemma id_apply [simp]: "id x = x" by (simp add: id_def) lemma inj_on_id[simp]: "inj_on id A" by (simp add: inj_on_def) lemma inj_on_id2[simp]: "inj_on (%x. x) A" by (simp add: inj_on_def) lemma surj_id[simp]: "surj id" by (simp add: surj_def) lemma bij_id[simp]: "bij id" by (simp add: bij_def inj_on_id surj_id) subsection{*The Composition Operator: @{term "f \ g"}*} lemma o_apply [simp]: "(f o g) x = f (g x)" by (simp add: comp_def) lemma o_assoc: "f o (g o h) = f o g o h" by (simp add: comp_def) lemma id_o [simp]: "id o g = g" by (simp add: comp_def) lemma o_id [simp]: "f o id = f" by (simp add: comp_def) lemma image_compose: "(f o g) ` r = f`(g`r)" by (simp add: comp_def, blast) lemma image_eq_UN: "f`A = (UN x:A. {f x})" by blast lemma UN_o: "UNION A (g o f) = UNION (f`A) g" by (unfold comp_def, blast) subsection{*The Injectivity Predicate, @{term inj}*} text{*NB: @{term inj} now just translates to @{term inj_on}*} text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*} lemma datatype_injI: "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)" by (simp add: inj_on_def) theorem range_ex1_eq: "inj f \ b : range f = (EX! x. b = f x)" by (unfold inj_on_def, blast) lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" by (simp add: inj_on_def) (*Useful with the simplifier*) lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)" by (force simp add: inj_on_def) subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*} lemma inj_onI: "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" by (simp add: inj_on_def) lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" by (unfold inj_on_def, blast) lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" by (blast dest!: inj_onD) lemma comp_inj_on: "[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" by (simp add: comp_def inj_on_def) lemma inj_on_imageI: "inj_on (g o f) A \ inj_on g (f ` A)" apply(simp add:inj_on_def image_def) apply blast done lemma inj_on_image_iff: "\ ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y); inj_on f A \ \ inj_on g (f ` A) = inj_on g A" apply(unfold inj_on_def) apply blast done lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" by (unfold inj_on_def, blast) lemma inj_singleton: "inj (%s. {s})" by (simp add: inj_on_def) lemma inj_on_empty[iff]: "inj_on f {}" by(simp add: inj_on_def) lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A" by (unfold inj_on_def, blast) lemma inj_on_Un: "inj_on f (A Un B) = (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})" apply(unfold inj_on_def) apply (blast intro:sym) done lemma inj_on_insert[iff]: "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))" apply(unfold inj_on_def) apply (blast intro:sym) done lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)" apply(unfold inj_on_def) apply (blast) done subsection{*The Predicate @{term surj}: Surjectivity*} lemma surjI: "(!! x. g(f x) = x) ==> surj g" apply (simp add: surj_def) apply (blast intro: sym) done lemma surj_range: "surj f ==> range f = UNIV" by (auto simp add: surj_def) lemma surjD: "surj f ==> EX x. y = f x" by (simp add: surj_def) lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C" by (simp add: surj_def, blast) lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" apply (simp add: comp_def surj_def, clarify) apply (drule_tac x = y in spec, clarify) apply (drule_tac x = x in spec, blast) done subsection{*The Predicate @{term bij}: Bijectivity*} lemma bijI: "[| inj f; surj f |] ==> bij f" by (simp add: bij_def) lemma bij_is_inj: "bij f ==> inj f" by (simp add: bij_def) lemma bij_is_surj: "bij f ==> surj f" by (simp add: bij_def) subsection{*Facts About the Identity Function*} text{*We seem to need both the @{term id} forms and the @{term "\x. x"} forms. The latter can arise by rewriting, while @{term id} may be used explicitly.*} lemma image_ident [simp]: "(%x. x) ` Y = Y" by blast lemma image_id [simp]: "id ` Y = Y" by (simp add: id_def) lemma vimage_ident [simp]: "(%x. x) -` Y = Y" by blast lemma vimage_id [simp]: "id -` A = A" by (simp add: id_def) lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}" by (blast intro: sym) lemma image_vimage_subset: "f ` (f -` A) <= A" by blast lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" by blast lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" by (simp add: surj_range) lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" by (simp add: inj_on_def, blast) lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" apply (unfold surj_def) apply (blast intro: sym) done lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" by (unfold inj_on_def, blast) lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" apply (unfold bij_def) apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) done lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" by blast lemma image_diff_subset: "f`A - f`B <= f`(A - B)" by blast lemma inj_on_image_Int: "[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" apply (simp add: inj_on_def, blast) done lemma inj_on_image_set_diff: "[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" apply (simp add: inj_on_def, blast) done lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" by (simp add: inj_on_def, blast) lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" by (simp add: inj_on_def, blast) lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" by (blast dest: injD) lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" by (simp add: inj_on_def, blast) lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" by (blast dest: injD) lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))" by blast (*injectivity's required. Left-to-right inclusion holds even if A is empty*) lemma image_INT: "[| inj_on f C; ALL x:A. B x <= C; j:A |] ==> f ` (INTER A B) = (INT x:A. f ` B x)" apply (simp add: inj_on_def, blast) done (*Compare with image_INT: no use of inj_on, and if f is surjective then it doesn't matter whether A is empty*) lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" apply (simp add: bij_def) apply (simp add: inj_on_def surj_def, blast) done lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" by (auto simp add: surj_def) lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" by (auto simp add: inj_on_def) lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" apply (simp add: bij_def) apply (rule equalityI) apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) done subsection{*Function Updating*} lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" apply (simp add: fun_upd_def, safe) apply (erule subst) apply (rule_tac [2] ext, auto) done (* f x = y ==> f(x:=y) = f *) lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard] (* f(x := f x) = f *) lemmas fun_upd_triv = refl [THEN fun_upd_idem] declare fun_upd_triv [iff] lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" by (simp add: fun_upd_def) (* fun_upd_apply supersedes these two, but they are useful if fun_upd_apply is intentionally removed from the simpset *) lemma fun_upd_same: "(f(x:=y)) x = y" by simp lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" by simp lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" by (simp add: expand_fun_eq) lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" by (rule ext, auto) lemma inj_on_fun_updI: "\ inj_on f A; y \ f`A \ \ inj_on (f(x:=y)) A" by(fastsimp simp:inj_on_def image_def) lemma fun_upd_image: "f(x:=y) ` A = (if x \ A then insert y (f ` (A-{x})) else f ` A)" by auto subsection{* @{text override_on} *} lemma override_on_emptyset[simp]: "override_on f g {} = f" by(simp add:override_on_def) lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a" by(simp add:override_on_def) lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" by(simp add:override_on_def) subsection{* swap *} constdefs swap :: "['a, 'a, 'a => 'b] => ('a => 'b)" "swap a b f == f(a := f b, b:= f a)" lemma swap_self: "swap a a f = f" by (simp add: swap_def) lemma swap_commute: "swap a b f = swap b a f" by (rule ext, simp add: fun_upd_def swap_def) lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" by (rule ext, simp add: fun_upd_def swap_def) lemma inj_on_imp_inj_on_swap: "[|inj_on f A; a \ A; b \ A|] ==> inj_on (swap a b f) A" by (simp add: inj_on_def swap_def, blast) lemma inj_on_swap_iff [simp]: assumes A: "a \ A" "b \ A" shows "inj_on (swap a b f) A = inj_on f A" proof assume "inj_on (swap a b f) A" with A have "inj_on (swap a b (swap a b f)) A" by (iprover intro: inj_on_imp_inj_on_swap) thus "inj_on f A" by simp next assume "inj_on f A" with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) qed lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)" apply (simp add: surj_def swap_def, clarify) apply (rule_tac P = "y = f b" in case_split_thm, blast) apply (rule_tac P = "y = f a" in case_split_thm, auto) --{*We don't yet have @{text case_tac}*} done lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f" proof assume "surj (swap a b f)" hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) thus "surj f" by simp next assume "surj f" thus "surj (swap a b f)" by (rule surj_imp_surj_swap) qed lemma bij_swap_iff: "bij (swap a b f) = bij f" by (simp add: bij_def) text{*The ML section includes some compatibility bindings and a simproc for function updates, in addition to the usual ML-bindings of theorems.*} ML {* val id_def = thm "id_def"; val inj_on_def = thm "inj_on_def"; val surj_def = thm "surj_def"; val bij_def = thm "bij_def"; val fun_upd_def = thm "fun_upd_def"; val o_def = thm "comp_def"; val injI = thm "inj_onI"; val inj_inverseI = thm "inj_on_inverseI"; val set_cs = claset() delrules [equalityI]; val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))]; (* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *) local fun gen_fun_upd NONE T _ _ = NONE | gen_fun_upd (SOME f) T x y = SOME (Const ("Fun.fun_upd",T) $ f $ x $ y) fun dest_fun_T1 (Type (_, T :: Ts)) = T fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) = let fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) = if v aconv x then SOME g else gen_fun_upd (find g) T v w | find t = NONE in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end val current_ss = simpset () fun fun_upd_prover ss = rtac eq_reflection 1 THEN rtac ext 1 THEN simp_tac (Simplifier.inherit_bounds ss current_ss) 1 in val fun_upd2_simproc = Simplifier.simproc (Theory.sign_of (the_context ())) "fun_upd2" ["f(v := w, x := y)"] (fn sg => fn ss => fn t => case find_double t of (T, NONE) => NONE | (T, SOME rhs) => SOME (Tactic.prove sg [] [] (Term.equals T $ t $ rhs) (K (fun_upd_prover ss)))) end; Addsimprocs[fun_upd2_simproc]; val expand_fun_eq = thm "expand_fun_eq"; val apply_inverse = thm "apply_inverse"; val id_apply = thm "id_apply"; val o_apply = thm "o_apply"; val o_assoc = thm "o_assoc"; val id_o = thm "id_o"; val o_id = thm "o_id"; val image_compose = thm "image_compose"; val image_eq_UN = thm "image_eq_UN"; val UN_o = thm "UN_o"; val datatype_injI = thm "datatype_injI"; val injD = thm "injD"; val inj_eq = thm "inj_eq"; val inj_onI = thm "inj_onI"; val inj_on_inverseI = thm "inj_on_inverseI"; val inj_onD = thm "inj_onD"; val inj_on_iff = thm "inj_on_iff"; val comp_inj_on = thm "comp_inj_on"; val inj_on_contraD = thm "inj_on_contraD"; val inj_singleton = thm "inj_singleton"; val subset_inj_on = thm "subset_inj_on"; val surjI = thm "surjI"; val surj_range = thm "surj_range"; val surjD = thm "surjD"; val surjE = thm "surjE"; val comp_surj = thm "comp_surj"; val bijI = thm "bijI"; val bij_is_inj = thm "bij_is_inj"; val bij_is_surj = thm "bij_is_surj"; val image_ident = thm "image_ident"; val image_id = thm "image_id"; val vimage_ident = thm "vimage_ident"; val vimage_id = thm "vimage_id"; val vimage_image_eq = thm "vimage_image_eq"; val image_vimage_subset = thm "image_vimage_subset"; val image_vimage_eq = thm "image_vimage_eq"; val surj_image_vimage_eq = thm "surj_image_vimage_eq"; val inj_vimage_image_eq = thm "inj_vimage_image_eq"; val vimage_subsetD = thm "vimage_subsetD"; val vimage_subsetI = thm "vimage_subsetI"; val vimage_subset_eq = thm "vimage_subset_eq"; val image_Int_subset = thm "image_Int_subset"; val image_diff_subset = thm "image_diff_subset"; val inj_on_image_Int = thm "inj_on_image_Int"; val inj_on_image_set_diff = thm "inj_on_image_set_diff"; val image_Int = thm "image_Int"; val image_set_diff = thm "image_set_diff"; val inj_image_mem_iff = thm "inj_image_mem_iff"; val inj_image_subset_iff = thm "inj_image_subset_iff"; val inj_image_eq_iff = thm "inj_image_eq_iff"; val image_UN = thm "image_UN"; val image_INT = thm "image_INT"; val bij_image_INT = thm "bij_image_INT"; val surj_Compl_image_subset = thm "surj_Compl_image_subset"; val inj_image_Compl_subset = thm "inj_image_Compl_subset"; val bij_image_Compl_eq = thm "bij_image_Compl_eq"; val fun_upd_idem_iff = thm "fun_upd_idem_iff"; val fun_upd_idem = thm "fun_upd_idem"; val fun_upd_apply = thm "fun_upd_apply"; val fun_upd_same = thm "fun_upd_same"; val fun_upd_other = thm "fun_upd_other"; val fun_upd_upd = thm "fun_upd_upd"; val fun_upd_twist = thm "fun_upd_twist"; val range_ex1_eq = thm "range_ex1_eq"; *} end