
Robocup Rescue Simulation - Communication

Protocol

Cameron Skinner

Department of Computer Science

The University of Auckland

October 29, 2008

1 Introduction

This protocol describes the data exchange between the kernel, gis, simulators
and agents in the Robocup Rescue Simulation software. The protocol has two
layers, the transport layer and the content layer.

All numbers in both layers are encoded with the most significant byte first
(big-endian).

2 Transport Layer

The transport layer is responsible for sending a message (i.e. a number of
bytes) between simulator components. There are two transport mechanisms
at present: UDP/IP or TCP/IP. The sending of a message may or may not
block. Implementers are encouraged to provide both blocking and non-blocking
implementations of the transport layer.

2.1 UDP

UDP packets may not be larger than 65536 bytes. Messages that are sent
over UDP might be larger than this limit, so the UDP layer is wrapped in the
LongUDP protocol.

LongUDP breaks the message into pieces and adds an 8 byte header to each
piece. The size of the pieces is arbitrary but is guaranteed to be less than 65528.
Each message is assigned a unique ID and each piece of the message is assigned
a sequence number. Sequence numbers start from zero. All values are unsigned.

Note that UDP does not guarantee delivery so partial packets may result
from the use of LongUDP. These should be discarded after a suitable timeout.

The 8 byte header is as shown in Table ??.

1



Once all total pieces have been received the data segments can be concate-
nated in order of sequence number to reconstruct the original message.

2.2 TCP

The TCP protocol sends the data prefixed by a 32-bit integer specifying the
length of the message.

3 Content Layer

The content layer describes the format of the messages that are exchanged
between simulator components.

There are several types of data that can be encoded. Integers are encoded
big-endian. Lists of integers are encoded by writing the length of the list as a
32-bit integer followed by the content of the list.

Properties are encoded as shown in Table ??. Lists of properties are zero-
terminated. Similarly, objects are encoded as shown in Table ?? and lists of
objects are zero terminated. It is possible to encode only those properties that
have changed, when appropriate. Implementors are encouraged to provide func-
tions for writing all properties and for writing only those properties that have
been modified.

An example of a list of one object is shown in Figure ??.
Strings are encoded in ASCII and prefixed with the length of the string in

bytes. Figure ?? has an example of this encoding.
The list of possible object types is shown in Table ??. The list of property

types is shown in Tables ?? and ??.

3.1 Commands

Commands consist of a 32-bit header describing the type of the command, a 32-
bit integer containing the size of the command in bytes followed by the content
of the command. Commands can be concatenated into a zero-terminated list.
An example of a list of two fictional commands is shown in Table ??. When
encoding objects, generally only those properties that have been changed will
be written.

The list of possible command types and their header values is shown in Table
?? and is broken down into those that concern the GIS, simulators and agents.

3.1.1 GIS Commands

When the kernel starts it needs to connect to the GIS with a KG CONNECT
command. The GIS replies with either a GK CONNECT OK or GK CONNECT ERROR.
The kernel replies with a KG ACKNOWLEDGE if the connection was success-
ful. The formats of these messages are shown in Table ??

2



Byte Offset Value Meaning
0 0x0008 Magic number
2 ID The ID of the message
4 Sequence number The ID of this piece of the message
6 Total The total number of pieces

Table 1: The LongUDP header

Field Data type Meaning
Header int Property type
Length int Size of property data in bytes
Value int OR int list Property value

Table 2: Property encoding format

Field Data type Meaning
Header int Object type
Length int Size of object data in bytes
ID int Object ID
Data Property list Properties of this object

Table 3: Object encoding format

Byte Offset Value Meaning
0 0xE8 Object header: TYPE CIVILIAN
4 0x22 Length of object data (40 bytes)
8 0x10 ID of the object
12 0x06 Property header: POSITION
16 0x04 Length of property data (4 bytes)
20 0xAABBCCDD Value of property
24 0x07 Property header: POSITION HISTORY
28 0x0C Length of property data (12 bytes)
32 0x02 Number of entries
36 0x11223344 Entry 1
40 0x55667788 Entry 2
44 0x00 Property header: NULL
48 0x00 Object header: NULL

Figure 1: An example object encoding

3



Byte Offset Value Meaning
0 0x0D Length of the string
4 0x48 H
5 0x65 e
6 0x6c l
7 0x6c l
8 0x6f o
9 0x20
10 0x57 W
11 0x6f o
12 0x72 r
13 0x6c l
14 0x64 d
15 0x21 !

Figure 2: An example string encoding

Byte Offset Value Meaning
0 0x99 Command type (fictional command “99”)
4 4 Length in bytes
8 1234 Data
12 0x99 Command type (another fictional “99” command)
16 8 Length in bytes
20 4321 Data
24 8765 Data
28 0 The list is zero-terminated

Table 4: A list of two fictional commands

Data type Meaning Notes

KG CONNECT
int Version Unused

GK CONNECT OK
Object list The objects in the world

GK CONNECT ERROR
string The reason for the error

KG ACKNOWLEDGE

Table 5: GIS commands

4



3.1.2 Viewer Commands

Viewers connect to the kernel with a VK CONNECT command. The kernel
replies with KV CONNECT OK or KV CONNECT ERROR and the viewer
acknowledges a successful connection with VK ACKNOWLEDGE. The message
formats are shown in Table ??.

3.1.3 Simulator Commands

Simulators connect to the kernel with an SK CONNECT command. The ker-
nel replies with KS CONNECT OK or KS CONNECT ERROR and the sim-
ulator acknowledges a successful connection with SK ACKNOWLEDGE. Each
timestep the simulators will receive a COMMANDS message (described in sec-
tion ??) and must reply with an SK UPDATE. Once all simulators have replied
the kernel will send an UPDATE message (also described in section ??). The
message formats are shown in Table ??.

3.1.4 Agent Commands

Agents connect to the kernel with an AK CONNECT command. The kernel
replies with KA CONNECT OK or KA CONNECT ERROR and the agent ac-
knowledges a successful connection with AK ACKNOWLEDGE. The message
formats are shown in Tables ?? and ??.

3.1.5 Broadcast Commands

Each timestep the kernel collects all agent commands and broadcasts them
to simulators, viewers and log files via a COMMANDS messages. Similarly,
updates from simulators are broadcast to simulators, viewers and log files with
an UPDATE message. These messages are described in Table ??.

5



Data type Meaning Notes

VK CONNECT
int Version Unused

KV CONNECT OK
Object list The objects in the world

KV CONNECT ERROR
string The reason for the error

VK ACKNOWLEDGE

Table 6: Viewer commands

Data type Meaning Notes

SK CONNECT
int Version Unused

KS CONNECT OK
int The ID of the simulator
Object list The objects in the world

KS CONNECT ERROR
string The reason for the error

SK ACKNOWLEDGE
int The ID of the simulator Taken from KS CONNECT OK

SK UPDATE
int The ID of the simulator Taken from KS CONNECT OK
int Time
Object list Changed objects

Table 7: Simulator commands

6



Data type Meaning Notes

AK CONNECT
int Temporary ID Unique temporary ID
int Version Unused
int Agent type Logical OR of requested types

KA CONNECT OK
int Temporary ID Taken from AK CONNECT
int The real ID of the agent Assigned by kernel
Object Self Object controlled by this agent
Object list The objects in the world

KA CONNECT ERROR
int Temporary ID Taken from AK CONNECT
string The reason for the error

AK ACKNOWLEDGE
int Agent ID Taken from KA CONNECT OK

KA SENSE
int Agent ID
int Time
Object list All changed objects

KA HEAR
int Agent ID
int ID of sender
int Channel number
int Message length
byte array The message

Table 8: Agent commands

7



Data type Meaning Notes

AK REST
int Agent ID

AK MOVE
int Agent ID
int list Path to be moved

AK EXTINGUISH
int Agent ID
nozzle list List of nozzles to be used

Nozzle format
int Target ID
int Target direction Unused
int Nozzle x coordinate Unused
int Nozzle y coordinate Unused
int Amount of water

AK LOAD
int Agent ID
int Target ID

AK UNLOAD
int Agent ID

AK RESCUE
int Agent ID
int Target ID

AK CLEAR
int Agent ID
int Target ID

AK TELL
int Agent ID
int Target channel ∈ [0, 255]
int Message length
byte array Message body

AK CHANNEL
int Agent ID
int Desired channels length
byte array Desired channels

Table 9: Agent commands (continued)

8



Data type Meaning Notes

COMMANDS
int Time
Command list List of all commands

UPDATE
int Time
Object list All changed objects

Table 10: Broadcast commands

9



Appendix A Tables of Constants

Type Value
WORLD 0x01
ROAD 0x02
RIVER 0x03
NODE 0x04
RIVERNODE 0x05
BUILDING 0x20
REFUGE 0x21
FIRE STATION 0x22
AMBULANCE CENTER 0x23
POLICE OFFICE 0x24
CIVILIAN 0x40
CAR 0x41
FIRE BRIGADE 0x42
AMBULANCE TEAM 0x43
POLICE FORCE 0x44

Table 11: All possible object types

10



Type Value
START TIME 1
LONGITUDE 2
LATITUDE 3
WIND FORCE 4
WIND DIRECTION 5
HEAD 6
TAIL 7
LENGTH 8
ROAD KIND 9
CARS PASS TO HEAD 10
CARS PASS TO TAIL 11
HUMANS PASS TO HEAD 12
HUMANS PASS TO TAIL 13
WIDTH 14
BLOCK 15
REPAIR COST 16
MEDIAN STRIP 17
LINES TO HEAD 18
LINES TO TAIL 19
WIDTH FOR WALKERS 20
SIGNAL 21
X 25
Y 26
FLOORS 28
BUILDING ATTRIBUTES 29
IGNITION 30
FIERYNESS 31
BROKENNESS 32
BUILDING CODE 34
BUILDING AREA GROUND 35
BUILDING AREA TOTAL 36
POSITION 38
POSITION EXTRA 39
DIRECTION 40
STAMINA 42
HP 43
DAMAGE 44
BURIEDNESS 45
WATER QUANTITY 46

Table 12: All property types that have integer data

11



Type Value
SHORTCUT TO TURN 22
POCKET TO TURN ACROSS 23
SIGNAL TIMING 24
EDGES 27
ENTRANCES 33
POSITION HISTORY 41

Table 13: All property types that have lists of integer data

12



Command Header Use
KG CONNECT 0x10 Kernel connects to GIS
KG ACKNOWLEDGE 0x11 Kernel acknowledges connection
GK CONNECT OK x012 GIS accepts kernel connection
GK CONNECT ERROR 0x13 GIS rejects kernel connection
SK CONNECT 0x20 Simulator connects to kernel
SK ACKNOWLEDGE 0x21 Simulator acknowledges connection
SK UPDATE 0x22 Simulator sends update to kernel
KS CONNECT OK 0x23 Kernel accepts simulator connection
KS CONNECT ERROR 0x24 Kernel rejects simulator connection
VK CONNECT 0x30 Viewer connects to kernel
VK ACKNOWLEDGE 0x31 Viewer acknowledges connection
KV CONNECT OK 0x32 Kernel accepts viewer connection
KV CONNECT ERROR 0x33 Kernel rejects viewer connection
AK CONNECT 0x40 Agent connects to kernel
AK ACKNOWLEDGE 0x41 Agent acknowledges connection
KA CONNECT OK 0x42 Kernel accepts agent connection
KA CONNECT ERROR 0x43 Kernel rejects agent connection
KA SENSE 0x44 Kernel sends update to agent
KA HEAR 0x45 Kernel sends an audio input to agent
UPDATE 0x50 Kernel broadcasts an update
COMMANDS 0x51 Kernel broadcasts agent commands
AK REST 0x80 Agent does nothing
AK MOVE 0x81 Agent moves
AK LOAD 0x82 Agent loads a victim
AK UNLOAD 0x83 Agent unloads a victim
AK TELL 0x85 Agent sends a message
AK EXTINGUISH 0x86 Agent extinguishes a fire
AK RESCUE 0x88 Agent rescues a buried victim
AK CLEAR 0x89 Agent clears a blocked road
AK CHANNEL 0x90 Agent listens to channels

Table 14: All commands

13


