Constraint Satisfaction Problems Tractable Constraint Languages #### Bernhard Nebel and Stefan Wölfl based on a slideset by Malte Helmert and Stefan Wölfl (summer term 2007) Albert-Ludwigs-Universität Freiburg November 23/25/30, 2009 Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphism Tractability over Finite Domains Maximal Tractable Constraint Languages # Expressiveness vs. Complexity - For some restricted constraint languages we know some polynomial time algorithms that solve each instance of that language - Restricting constraint languages entails restricting expressiveness, i.e., the class of problems that can be expressed in the language - How can we weight expressiveness against performance and vice versa? Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressivenes Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages #### CSP Instances aka Constraint Networks #### Definition An instance of a constraint satisfaction problem (i.e., a constraint network) is a triple $$P = \langle V, D, C \rangle,$$ #### where: - ullet V is a non-empty and finite set of variables, - D is an arbitrary set (domain), - C is a finite set of constraints C_1, \ldots, C_q , i.e., each constraint C_i is a pair (s_i, R_i) , where s_i is a tuple of variables of length m_i and R_i is an m_i -ary relation on D (s_i : constraint scope; R_i : constraint relation). Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Restricting the General CSP The general CSP decision problem is the following: Given an instance of a constraint satisfaction problem, P, determine if there exists solution to P, i.e., determine whether $$\mathsf{Sol}(P)$$:= $\big\{(d_1,\ldots,d_n)\in D^n\,:\, a(v_i)=d_i \text{ for a solution } a \text{ of } P\big\}$ (where n is the number of variables of V) is not empty. Restricting the general CSP: - structural restriction: consider just CSP instances with particular constraint scopes (e.g., where the network hypergraph has specific properties) - relational restriction: consider just CSP instances, where the constraint relations have a specific form or specific properties Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability Maximal Tractable Constraint Languages ### Restricting the General CSP The general CSP decision problem is the following: Given an instance of a constraint satisfaction problem, P, determine if there exists solution to P, i.e., determine whether ``` Sol(P) := \{(d_1, ..., d_n) \in D^n : a(v_i) = d_i \text{ for a solution } a \text{ of } P\} ``` (where n is the number of variables of V) is not empty. #### Restricting the general CSP: - structural restriction: consider just CSP instances with particular constraint scopes (e.g., where the network hypergraph has specific properties) - relational restriction: consider just CSP instances, where the constraint relations have a specific form or specific properties Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages # Constraint Language #### Definition A constraint language is an arbitrary set of relations, Γ , defined over some fixed domain (denoted by $D(\Gamma)$). #### Definition For a constraint language Γ , let $\mathsf{CSP}(\Gamma)$ be the class of CSP instances $P = \langle V, D, C \rangle$ such that for each $(s, R) \in C$, $R \in \Gamma$. $\mathsf{CSP}(\Gamma)$ is called the relational subclass associated with Γ . #### Definition A finite constraint language Γ is tractable if there exists a polynomial algorithm that solves all instances of $\mathsf{CSP}(\Gamma).$ An infinite constraint language Γ is tractable if each finite subset of the language is tractable. Following, we present some examples: Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Example: the CHIP language CHIP is a constraint language for arithmetic and other constraints. Basic constraints in CHIP are so-called: - domain constraints: unary constraints that restrict the domains of variables to a finite set of natural numbers - arithmetic constraints: constraints of one of the forms $$ax = by + c$$ $$ax \le by + c$$ $$ax \ge by + c$$ $(a, b, c \in \mathbb{N}, a \neq 0)$. If these equations are conceived of as relations, the resulting constraint language is tractable. The language is still tractable if we allow for relations expressed by $$a_1x_1 + a_2x_2 + \dots + a_nx_n \ge by + c$$ $$ax_1 \cdots x_n \ge by + c$$ $$(a_1x_1 \ge b_1) \lor \dots \lor (a_nx_n \ge b_n) \lor (ay \ge b)$$ Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages #### Example: Linear Relations Let D be any field (e.g., the field of real numbers). A linear relation on D is any relation defined by some system of linear equations: $$a_1x_1 + \dots + a_nx_n = r \qquad (a_1, \dots, a_n, r \in D).$$ Then any instance of $\mathsf{CSP}(\Gamma_\mathsf{lin})$ can be represented by a system of linear equations over D, and hence be solved in polynomial time (apply Gaussian elimination). Hence, the language of all linear relations over ${\cal D}$ is tractable. Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Example: Relations on Ordered Finite Sets Let D be an ordered and finite set. Consider the binary disequality relation $$\neq_D = \{(d_1, d_2) \in D^2 : d_1 \neq d_2\}$$ The class of CSP instances $\mathsf{CSP}(\{\neq_D\})$ corresponds to the graph colorability problem with |D| colors. $\mathsf{CSP}(\{ \neq_D \})$ is tractable if $|D| \leq 2$, and intractable, otherwise. The ternary betweenness relation over D is defined by: $$B_D = \{(a, b, c) \in D^3 : a < b < c \lor c < b < a\}$$ $\mathsf{CSP}(\{B_D\}) \text{ is tractable if } |D| \leq 4 \text{, and intractable if } |D| \geq 5.$ Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages #### Example: Connected Row-Convex Relations Let $D = \{d_1, \ldots, d_n\}$ be an ordered and finite set. For a binary relation R over D, the matrix representation of R is an $n \times n$ 0,1-matrix M, where $M_{ij} = 1$ iff $(d_i, d_j) \in R$. The pruned matrix representation of R results from the matrix representation of R, when we remove all rows and columns in which only 0's occur. R is connected row-convex, if in the pruned matrix representation of R, the pattern of 1's is connected along each column, along each row, and forms a connected 2-dimensional region. For example, $$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$ The constraint language on any class of connected row-convex relations is tractable. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractabilit over Finite Domains Maximal Tractable Constraint Languages ### Example: Boolean Constraints Let $D = \{d_0, d_1\}.$ The class of CSP instances $CSP(\{N_D\})$, where $$N_D = D^3 \setminus \{(d_0, d_0, d_0), (d_1, d_1, d_1)\}\$$ is the not-all-equal relation over D, is intractable. $\mathsf{CSP}(\{N_D\})$ corresponds to the not-all-equal satisfiability problem (NAE-3SAT), which is known to be NP-hard. The class of CSP instances $CSP(\{T_D\})$, where $$T_D = \{(d_0, d_0, d_1), (d_0, d_1, d_0), (d_1, d_0, d_0)\},\$$ is intractable. $\mathsf{CSP}(\{N_D\})$ corresponds to the one-in-three satisfiability problem (1-in-3 SAT). Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness ^Dolymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Example: 0/1/all-Relations Let D be an arbitrary finite set. A relation R over D is called 0/1/all-relation if one of the following conditions holds: - R is unary; - $R = D_1 \times D_2$ for subsets D_1, D_2 of D; - $R = \{(d, \pi(d)) : d \in D_1\}$, for some subset $D_1 \subseteq D$ and some permutation π of D; - $R = \{(a,b) \in D_1 \times D_2 : a = d_1 \vee b = d_2\}$, for some subsets D_1, D_2 of D and some elements $d_1 \in D_1, d_2 \in D_2$. The language defined by all 0/1/all-relations is tractable. It is even maximal tractable: if we add any binary relation over D that is not a $0/1/{\rm all}$ -relation, then the resulting constraint language becomes intractable. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages _iterature #### max-Closed Relations Let (D,<) be a linear order. Define $\max: D\times D\to D$ in the usual way, i.e., $\max(a,b)=a$ if a>b, and $\max(a,b)=b$, otherwise. We extend \max to a function that can be applied to tuples, i.e., we define $\max: D^k \times D^k \to D^k$ by $$\max((a_1, \dots, a_k), (b_1, \dots, b_k))$$:= $(\max(a_1, b_1), \dots, \max(a_k, b_k)).$ #### Definition An n-ary relation R over D is max-closed if for all (a_1,\ldots,a_n) , $(b_1,\ldots,b_n)\in R$, $$\max((a_1,\ldots,a_n),(b_1,\ldots,b_n))\in R.$$ Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### max-Closed Relations and Tractability #### Lemma Let Γ be a constraint language with max-closed relations only. Then $\mathit{CSP}(\Gamma)$ is tractable. #### Proof. Enforce generalized arc consistency. If any domain of the resulting network is empty, the network is inconsistent. Otherwise, set each variable to its maximal value, Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages #### Example: max-Closed Relations Consider the CHIP language. All relations of CHIP are max-closed. Hence any set of equations can be solved by establishing arc consistency. For example, consider a CSP instance with domain $\{1,\ldots,5\}$, variables $\{v,w,x,y,z\}$, and equations $$w \neq 3, \ z \neq 5, \ 3v \leq z, \ y \geq z+2,$$ $$3x+y+z \geq 5w+1, \ wz \geq 2y.$$ Enforcing arc consistency results in: $$D(v) = \{1\}, \ D(w) = \{4\}, \ D(x) = \{3,4,5\},$$ $$D(y) = \{5\}, \ D(z) = \{3\}.$$ Hence $$v\mapsto 1, w\mapsto 4, x\mapsto 5, y\mapsto 5, z\mapsto 3$$ is a solution of the constraint network. Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages # Boolean Constraint Languages The key result in the literature on tractable constraint languages is Schaefer's Dichotomy Theorem (1978). #### Definition A Boolean constraint language is a constraint language over the two-element domain $D=\{0,1\}$. Schaefer's theorem states that any Boolean constraint language is either tractable or NP-complete. Moreover, it provides a classification of all tractable constraint languages. #### Definition An arbitrary constraint language Γ is NP-complete if CSP(Δ) is NP-complete for some finite subset $\Delta \subseteq \Gamma$. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages #### Schaefer's Theorem #### Theorem (Schaefer 1978) Let Γ be a Boolean constraint language. Then Γ is tractable if at least one of the following conditions is satisfied: - **1** Each relation in Γ contains the tuple $(0, \ldots, 0)$. - **2** Each relation in Γ contains the tuple $(1, \ldots, 1)$. - **3** Each relation in Γ is definable by a formula in CNF s. t. each conjunct has at most one negative literal. - Each relation in Γ is definable by a formula in CNF s. t. each conjunct has at most one positive literal. - **Solution** Each relation in Γ is definable by a formula in CNF s. t. each conjunct has at most two literals. - **•** Each relation in Γ is the set of solutions of a system of linear equations over the finite field with 2 elements. In all other cases, Γ is NP-complete. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages # Algorithm Selector Let Γ be a Boolean constraint language. Class 1: any CSP instance P can be solved by simply assigning 0 to each variable of P. Class 2: cf. Class 1 $(v \mapsto 1)$. Class 6: any CSP instance P can be solved by applying the Gaussian elimination procedure. Class 5: any CSP instance P can be solved by resolution: in this case $\mathsf{CSP}(\Gamma)$ corresponds to the 2-SAT satisfiability problem and this can be solved efficiently by resolution. Class 4: any CSP instance P can be solved by unit resolution: here $\mathsf{CSP}(\Gamma)$ corresponds to the Horn-SAT satisfiability problem, which can be solved efficiently by unit resolution. Class 3: cf. Class 4 ("anti-Horn"). Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages # Gadgets #### Definition Let Γ be constraint language and R be a relation on $\Gamma(D)$. R is expressible in Γ if there exists a CSP instance $P \in \mathsf{CSP}(\Gamma)$ and a sequence of variables v_1, \dots, v_n such that $$R = \pi_{v_1, \dots, v_n}(\mathsf{Sol}(P)).$$ P is referred to as a gadget for expressing R in CSP(Γ), the sequence v_1, \ldots, v_n as construction site for R. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Example Which relation is expressed by the edge (v_1, v_4) ? Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphism Tractability over Finite Domains Maximal Tractable Constraint Languages #### Relational Clones Expressiveness can also be reformulated in the following way: Let Γ, Γ' be constraint languages (def. on the same domain D). #### Definition Γ' is a relational clone of Γ if Γ' contains each relation expressible by a FO-formula with - relations from $\Gamma \cup \{=_D\}$, - conjunctions, and - existential quantification. (Formulae of this form are called primitive positive formulae.) #### Definition Let Γ be a constraint language. $\langle \Gamma \rangle$ denotes the smallest relational clone containing Γ , the clone generated by Γ . Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Example Consider a Boolean constraint language with the following relations: $$R_1 = \{(0,1), (1,0), (1,1)\}$$ $R_2 = \{(0,0), (0,1), (1,0)\}.$ The relational clone generated by the set of these two relations contains all 16 binary Boolean relations. For example: $$R_{3} := \{(0,1), (1,0)\} \qquad R_{1}(v_{1}, v_{2}) \land R_{2}(v_{1}, v_{2})$$ $$R_{4} := \{(0,0), (1,0), (1,1)\} \qquad \exists y (R_{1}(v_{1},y) \land R_{2}(y,v_{2}))$$ $$R_{5} := \{(0,0), (1,1)\} \qquad v_{1} = v_{2}$$ $$R_{6} := \{(0,0)\} \qquad R_{2}(v_{1},v_{2}) \land R_{5}(v_{1},v_{2})$$ $$R_{7} := \{(1,1)\} \qquad R_{1}(v_{1},v_{2}) \land R_{5}(v_{1},v_{2})$$ $$R_{8} := \{(0,1)\} \qquad \exists y (R_{6}(v_{1},y) \land R_{1}(y,v_{2}))$$ Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphism Tractability over Finite Maximal Tractable Constraint Languages ### Reducibility I #### Theorem Let Γ be a set of relations on a fixed domain D, and let Δ be a finite subset of $\langle \Gamma \rangle$. Then there exists a polynomial time reduction from $CSP(\Delta)$ to $CSP(\Gamma)$. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphism Tue stability Tractability over Finite Domains Maximal Tractable Constraint Languages ### Reducibility II #### Proof. Let $\Delta=\{S_1,\ldots,S_k\}$ be a finite set of relations, where each S_j is expressible by a pp-formula with relations from Γ and the relation $=_D$. For each S_j fix such a formula $\phi_j(x_1,\ldots,x_{r_j})$, where r_j is the arity of S_j . Without loss of generality, we may assume that each $\phi_j(x_1,\ldots,x_{r_j})$ has the form $$\exists u_1 \dots u_m(R_1(w_1^1, \dots, w_{k_1}^1) \wedge \dots \wedge R_n(w_1^n, \dots, w_{k_n}^n))$$ (1) where $w_1^1,\ldots,w_{k_1}^1,\ldots,w_1^n,\ldots,w_{k_n}^n\in\{x_1,\ldots,x_{r_j},u_1,\ldots,u_m\}$ for some auxiliary variables u_1,\ldots,u_m , and $R_1,\ldots,R_n\in\Gamma\cup\{=_D\}$ Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Reducibility III Let $P=\langle V,D,C\rangle$ be an arbitrary instance in $\mathsf{CSP}(\Delta)$. Initially, set V':=V,D':=D,C':=C. For each constraint (s,R) (where $s=(v_1,\ldots,v_r)$) of P, proceed as follows: - **1** add the auxiliary variables u_1, \ldots, u_m to V' (always add new variables, rename variables if necessary (also in (1))) - ② remove (r,R) from C' and instead add to C' the constraints (cf. (1)): $$((w_1^1,\ldots,w_{k_1}^1),R_1),\ldots,(w_1^n,\ldots,w_{k_n}^n,R_n)$$ The CSP instance P' obtained by this procedure is contained in $\mathsf{CSP}(\Gamma \cup \{=_D\})$ and is obviously equivalent to P. Furthermore, from P' we can obtain a CSP instance P'' in $\mathsf{CSP}(\Gamma)$ by deleting constraints of the form $((v_i, v_j), =_D)$ and replacing any occurrence of v_j by v_i . Obviously, both transformation can be done in polynomial time. \square Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages #### The Indicator Problem Let $k \geq 1$ be a fixed natural number. Let $s = (x_1, \ldots, x_m)$ be a list of k-tuples in D^k . Let R be an n-ary relation on D. We say, that s matches R if n=m and if for each $1 \le i \le k$, the n-tuple $(x_1[i], \ldots, x_n[i])$ is in R. Let now Γ be a fixed constraint language. Set $I_k(\Gamma) = \langle V, D, C \rangle$, where $$V := D^k$$ $$C := \{(s, R) : s \text{ matches } R\}$$ Note: $I_k(\Gamma) \in \mathsf{CSP}(\Gamma)$ and contains constraints from Γ on every possible scope which matches some relation in Γ . #### **Definition** $I_k(\Gamma)$ is said to be the indicator problem of order k for Γ . Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus , i.e., $$R_{\oplus} = \{(0,1), (1,0)\}$$ and $R_{\neg} = \{(0)\}.$ The 3-rd order indicator problem of this language is: Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressivenes Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus , i.e., $$R_{\oplus} = \{(0,1), (1,0)\}$$ and $R_{\neg} = \{(0)\}.$ The 3-rd order indicator problem of this language is: | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |---|---|---|---|---|---|---|---| | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus , i.e., $$R_{\oplus} = \{(0,1),(1,0)\}$$ and $R_{\neg} = \{(0)\}.$ The 3-rd order indicator problem of this language is: Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus , i.e., $$R_{\oplus} = \{(0,1), (1,0)\}$$ and $R_{\neg} = \{(0)\}.$ The 3-rd order indicator problem of this language is: Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressivenes Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages # Example (cont'd): \neg , \oplus #### Solutions of this indicator problem: Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Expressiveness and the Indicator Problem #### Theorem (Jeavons (1998)) Let Γ be a constraint language over some finite domain D and let $R = \{t_1, \ldots, t_k\}$ be any n-ary relation on D. Equivalent are: - (a) R is expressible in Γ (i.e., $R \in \langle \Gamma \rangle$). - (b) $I_k(\Gamma)$ is a gadget for expressing R with construction site (v_1,\ldots,v_n) , where for each $1\leq i\leq n$, $$v_i := (t_1[i], \ldots, t_k[i]).$$ #### Proof. The direction from (b) to (a) is trivial, since $I_k(\Gamma)$ is contained in $\mathsf{CSP}(\Gamma)$. The other direction will be proved later. \square Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages Problem: Is the implication expressible in the Boolean language $\{\neg, \oplus\}$? Consider the 3rd indicator problem (since R_\Rightarrow has three elements (1,1),(0,1),(0,0)). Consider the variables v=(1,0,0) and w=(1,0,1): | 1 | 1 | 1 | 1 | | | | | | | | |---|-----------|---|---|---|---|---|--|--|--|--| | 1 | 1 | | | 1 | 1 | | | | | | | 1 | | 1 | | 1 | | 1 | | | | | | | Solutions | | | | | | | | | | | 1 | | 1 | 1 | | | 1 | | | | | | 1 | | 1 | | 1 | | 1 | | | | | | 1 | | | 1 | | 1 | 1 | | | | | | 1 | | | | 1 | 1 | 1 | | | | | | 1 | 1 | 1 | 1 | | | | | | | | | 1 | 1 | 1 | | 1 | | | | | | | | 1 | 1 | | 1 | | 1 | | | | | | | 1 | 1 | | | 1 | 1 | | | | | | Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Schaefer's Dichotomy Relational Clones Expressiveness Polymorphisms Tractability Tractability over Finite Domains Maximal Tractable Constraint Languages Problem: Is the implication expressible in the Boolean language $\{\neg, \oplus\}$? Consider the 3rd indicator problem (since R_{\Rightarrow} has three elements (1,1),(0,1),(0,0)). Consider the variables v=(1,0,0) and w=(1,0,1): | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |---|---|---|---|---|---|---|---| | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | - | | - | | - | | - | | | | |-----------|---|---|---|---|---|---|---|--|--|--| | Solutions | | | | | | | | | | | | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | | | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | | | | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | | | | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | | | | | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | | | Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages Problem: Is the implication expressible in the Boolean language $\{\neg, \oplus\}$? Consider the 3rd indicator problem (since R_{\Rightarrow} has three elements (1,1),(0,1),(0,0)). Consider the variables v=(1,0,0) and w=(1,0,1): | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |---|---|---|-------------|---|---|---|---| | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | 1 | 0 | 1 | 1
0
0 | 1 | 0 | 1 | 0 | | | Solutions | | | | | | | | | | |---|-----------|---|---|---|---|---|---|--|--|--| | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | | | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | | | | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | | | | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | | | | | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | | | Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Schaefer's Dichotomy Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages Problem: Is the implication expressible in the Boolean language $\{\neg, \oplus\}$? Consider the 3rd indicator problem (since R_\Rightarrow has three elements (1,1),(0,1),(0,0)). Consider the variables v=(1,0,0) and w=(1,0,1): | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | |---|---|---|-------------|---|---|---|---| | 1 | 0 | 1 | 1
0
0 | 1 | 0 | 1 | 0 | | | Solutions | | | | | | | | | | |---|-----------|---|---|---|---|---|---|--|--|--| | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | | | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | | | | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | | | | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | | | | | 1 | 1 | n | Ω | 1 | 1 | Ω | Ω | | | | From this we obtain that $\pi_{(v,w)}(I_3(\Gamma)) = D \times D \neq R_{\Rightarrow}$. Thus, the implication is not expressible. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains > Maximal Tractable Constraint Languages ## **Polymorphisms** Let f be a k-ary operation, i.e., a function $f:D^k\to D$. For any collection of n-tuples, $t_1,\ldots,t_k\in D^n$, let $f(t_1,\ldots,t_k)$ be defined as the n-tuple: $$(f(t_1[1],\ldots,t_k[1]),\ldots,f(t_1[n],\ldots,t_k[n])).$$ #### Definition Let $f: D^k \to D$ be a k-ary operation, and R be an n-ary relation. f is a polymorphism of R (or: R is invariant under f) if for all $t_1, \ldots, t_k \in R$, $f(t_1, \ldots, t_k) \in R$. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ## Polymorphisms and Invariant Relations Let Γ be a set of relations on a fixed domain D, and let F be a set of operations on D. Then define: $\mathsf{Pol}(\Gamma)$: the set of operations on D that preserve each relation in Γ $\operatorname{Inv}(F)$: the set of relations on D that are invariant under each operation of F #### Lemma Pol and Inv define anti-monotone functions, and are related by the following Galois connection: $$\Gamma \subseteq \operatorname{Inv}(F) \iff F \subseteq \operatorname{Pol}(\Gamma).$$ In particular, it holds: $$\Gamma \subseteq \operatorname{Inv}(\operatorname{Pol}(\Gamma))$$ and $F \subseteq \operatorname{Pol}(\operatorname{Inv}(F))$. Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ## The Indicator Problem and Polymorphisms #### Lemma Let Γ be a constraint language. The solutions of the k-th indicator problem $I_k(\Gamma)$ are precisely the k-ary polymorphisms of Γ . #### Proof. Apply the definitions . . . Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Expressiveness and Polymorphisms #### Lemma Let Γ be a constraint language over some domain D. If $f:D^k\to D$ is a polymorphism of each $R\in \Gamma$, then f is a polymorphism of each $R\in \langle \Gamma \rangle$. #### Proof. Induction on primitive positive formula (cf. blackboard). Constraint Satisfaction Problems Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ## Expressiveness and the Indicator Problem (Part 2) The following lemma completes the proof of Jeavons' theorem: #### Lemma Let $R=\{t_1,\ldots,t_k\}$ be an n-ary relation (over some finite domain D). For $1\leq i\leq n$, set $v_i:=(t_1[i],\ldots,t_k[i])$. If R is expressible in Γ , then $R=\pi_{v_1,\ldots,v_n}(\operatorname{Sol}(I_k(\Gamma)))$. #### Proof. Blackboard. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Expressiveness and Invariants #### Theorem For any constraint language Γ over some finite domain D, $$\langle \Gamma \rangle = \mathsf{Inv}(\mathsf{Pol}(\Gamma))$$ #### Proof. \subseteq is clear. For the converse let R be an n-ary relation that is invariant for each polymorphism of Γ . We have to show that $R \in \langle \Gamma \rangle$. Let $R = \{t_1, \ldots, t_k\}$ and consider the k-th indicator problem of Γ . First define $v_i := (t_1[i], \ldots, t_k[i]) \ (1 \le i \le n)$, then consider $R_t = \pi_{v_1, \ldots, v_n}(\operatorname{Sol}(I_k(\Gamma)))$. By one of the lemmas above, R is expressible if $R = R_t$. $R_t\subseteq R$ follows from the facts that every solution of $I_k(\Gamma)$ is a k-ary polymorphism and that each polymorphism of Γ preserves R. For $R\subseteq R_t$, consider t_j in R. Now the j-th projection function $p_j:D^k\to D$ is a polymorphism. Hence $t_j=p_j(t_1,\ldots,t_k)\in R$. \square Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ## Expressiveness, Polymorphisms, and Complexity ### Corollary A relation R on a finite domain is expressible by a constraint language if and only if $\operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}(\{R\})$. ### Corollary Let Γ and Δ be a constraint languages on a finite domain. If Δ is finite and $\operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}(\Delta)$, then $\operatorname{CSP}(\Delta)$ is polynomial-time reducible to $\operatorname{CSP}(\Gamma)$. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ### Operations Following, we study k-ary operations $f: D^k \to D$. #### Definition - f is idempotent, if for each $x \in D$, f(x, ..., x) = x. - Given k=3, f is a majority operation, if for all $x,y\in D$, $$f(x, x, y) = f(x, y, x) = f(y, x, x) = x.$$ ullet Given k=3, f is a Mal'tsev operation, if for all $x,y\in D$, $$f(y, y, x) = f(x, y, y) = x.$$ • f is conservative, if for all $x_1, \ldots, x_k \in D$, $$f(x_1,\ldots,x_k)\in\{x_1,\ldots,x_k\}.$$ Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ## Operations (cont'd) #### Definition - Given k=2, f is a semi-lattice operation, if it is - associative (i.e., f(x, f(y, z)) = f(f(x, y), z)), - commutative (i.e., f(x,y) = f(y,x)), and - idempotent. - Given k=3 and an Abelian group structure on D, f is affine, if for all $x,y,z\in D$, $$f(x, y, z) = x - y + z.$$ • Given $k \ge 3$, f is a near-unanimity operation, if for all $x, y \in D$, $$f(y,x,\ldots,x)=f(x,y,x\ldots,x)=\cdots=f(x,\ldots,x,y)=x.$$ Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ## Operations (cont'd) #### Definition • f is essentially unary, if there exists an $1 \le i \le k$ and a unary non-constant operation g on D such that for all $x_1, \ldots, x_k \in D$, $$f(x_1,\ldots,x_k)=g(x_i).$$ If g is the identity operation, then f is called a projection. • Given $k \geq 3$, f is a semi-projection if f is not an projection and there exists an $1 \leq i \leq k$, such that for all $x_1, \ldots, x_k \in D$ with $|\{x_1, \ldots, x_k\}| < k$, $$f(x_1,\ldots,x_k)=x_i.$$ Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### A Necessary Condition for Tractability #### Theorem Given $P \neq NP$, any tractable constraint language Γ over a finite domain has a solution to an indicator problem $I_k(\Gamma)$ that defines - a constant operation, - a majority operation, - an idempotent binary operation, - an affine operation, or - a semi-projection. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Fractable Constraint Languages ### Boolean CSPs The complexity of any language over a domain of size 2 can be determined by considering the solutions of its 3rd order indicator problem. The problem is intractable unless this indicator problem has one of the following six solutions: | Variables | | | | | | | | | | | |-----------|---|---|---|---|---|---|---|--|--|--| | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | | | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | Solutions | | | | | | | | | | | | Solutions | | | | | | | | Schaefer class | Name | |-----------|---|---|---|---|---|---|---|----------------|------------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Constant 0 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | Constant 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 3 | Anti-Horn | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | Horn-SAT | | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | 2-SAT | | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 6 | Linear | Constraint Satisfaction Problems > Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones expressiveness olymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages # Example: \neg , \oplus | • | • | • | • | • | • | • | • | | | | | |-----------|---|---|---|---|---|---|---|--|--|--|--| | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | | | | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | | Solutions | | | | | | | | | | | | | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | | | | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | | | | | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | | | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | | | | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | | | | | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | | | | | | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | | | | Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms #### Tractability over Finite Domains Maximal Tractable Constraint Languages ## Sufficient Conditions: Semi-Lattice Operations In what follows let Γ be always be a constraint language over a finite domain D. We present some sufficient criteria for (in-) tractability. #### Theorem If $\mathsf{Pol}(\Gamma)$ contains a semi-lattice operation, then - ullet Γ is tractable, and - ullet each instance of $\mathit{CSP}(\Gamma)$ can be solved by enforcing generalized arc consistency. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Examples #### Example 1: If Γ is the Boolean constraint language containing all relations expressible by conjunctions of Horn clauses, then $$\wedge : \{0,1\}^2 \to \{0,1\}$$ is a semi-lattice operation that is a polymorphism of $\Gamma.$ ### Example 2: If D is ordered, then \max is a semi-lattice operation, which is a polymorphism of each set of max-closed relations. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ## Sufficient Conditions: Conservative Operations #### Theorem If $\operatorname{Pol}(\Gamma)$ contains a conservative and commutative operation, then Γ is tractable. Note: If Γ contains all unary relations on D, then all operations in $\operatorname{Pol}(\Gamma)$ are conservative. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ## Sufficient Conditions: Near-Unanimity Operations #### Theorem If $\operatorname{Pol}(\Gamma)$ contains a k-ary near-unanimity operation, then - Γ is tractable. - Each instance of $\mathit{CSP}(\Gamma)$ can be solved by enforcing strong k-consistency. #### Proof. Blackboard. Constraint Satisfaction Problems Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Fractable Constraint Languages ### **Examples** ### Example 3: Let Γ be the Boolean constraint language that consists of all relations definable by a PL-formula in CNF s.t. each conjunct has at most two literals. Then $$d(x,y,z) := (x \land y) \lor (y \land z) \lor (x \land z)$$ is a near-unanimity operation on $\{0,1\}$ and a polym. of $\Gamma.$ ### Example 4: The 0/1/all relations are invariant under the ternary operation $$d(x,y,z) := \begin{cases} x & \text{if } y \neq z \\ y & \text{else} \end{cases}$$ which is a near-unanimity operation. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Sufficient Conditions: Mal'tsev Operations #### **T**heorem If $\operatorname{Pol}(\Gamma)$ contains a k-ary Mal'tsev operation, then $\operatorname{CSP}(\Gamma)$ is tractable. Note: Affine relations are Mal'tsev operations. Constraint Satisfaction Problems Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Reduced Constraint Languages #### Lemma Let Γ be a constraint language over D, and let f be a unary operation on $\operatorname{Pol}(\Gamma)$. Let $f(\Gamma)$ be the set of all $f(R) := \{f(t) : t \in R\}$ with $R \in \Gamma$. Then, $\operatorname{CSP}(\Gamma)$ is polynomial-time equivalent to $\operatorname{CSP}(f(\Gamma))$. #### Definition A constraint language Γ is reduced if all its unary polymorphisms are surjective. Note: Each constraint language can be transformed into a reduced language. For this find all unary polymorphisms by generating and solving the 1st order indicator problem. Choose one of these polymorphisms f with a minimal number of values in its range. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ## A Sufficient Condition for Intractability #### **Theorem** Let Γ be a constraint language over a finite domain. If $\operatorname{Pol}(\Gamma)$ contains only essentially unary operations, then $\operatorname{CSP}(\Gamma)$ is $\operatorname{NP-complete}$. #### Proof idea: We can assume that Γ is reduced. One can show that - \neq_D is in $Inv(Pol(\Gamma))$; - ullet if |D|=2, $\operatorname{Inv}(\operatorname{Pol}(\Gamma))$ contains the not-all-equal relation: $$D^3 \setminus \{(x, x, x) : x \in D\}$$ which ensures that $\mathsf{CSP}(\Gamma)$ intractable. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Towards a Classification It can be shown that for any reduced constraint language Γ on a finite domain D, one of the following conditions holds: - $Pol(\Gamma)$ contains a constant operation; - $Pol(\Gamma)$ contains a ternary near-unanimity operation; - $Pol(\Gamma)$ contains a Mal'tsev operation; - $Pol(\Gamma)$ contains an idempotent binary operation; - ullet Pol (Γ) contains a semi-projection; - ullet Pol (Γ) contains essentially unary operations only. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ## Maximal and Maximal Tractable Languages ### Definition - A constraint language Γ is maximal tractable, if it is tractable and for each relation $R \notin \Gamma$, $\Gamma \cup \{R\}$ is intractable. - A constraint language Γ is maximal, if there is a relation $R \notin \langle \Gamma \rangle$ and each proper extension of $\langle \Gamma \rangle$ contains all relations on D. Note: If Γ is a maximal language that is tractable, then $\langle \Gamma \rangle$ is maximal tractable. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Relational Clones Expressiveness Polymorphisms Tractability over Finite Maximal Tractable Constraint Languages ## Maximality vs. Tractability #### Theorem Let Γ be a constraint language on some finite domain D, and let f be a k-ary operation such that $\langle \Gamma \rangle = \operatorname{Inv}(\{f\})$. Then $\langle \Gamma \rangle$ is maximal tractable, if - f is a constant operation; - f is a ternary near-unanimity operation; - f is a semi-lattice operation; - f is an affine operation. Constraint Satisfaction Problems Nebel and Wölfl Tractable Constraint Languages Schaefer's Dichotomy Theorem Relational Clones Expressivenes Polymorphisms Tractability over Finite Domains Maximal Tractable Constraint Languages ### Literature David Cohen and Peter Jeavons. Tractable constraint languages. In: R. Dechter Constraint Processing, Chapter 11, Morgan Kaufmann, 2003 Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. The complexity of maximal constraint languages. In: Proceedings of STOC'01, 2001 Andrei Bulatov, P. Jeavons, and Andrei Krokhin. Classifying the complexity of constraint using finite algebras. SIAM J. Comput. 34(3), 2005 David Cohen and Peter Jeavons. The complexity of constraint languages. In: F. Rossi, P. v. Beek, and T. Walsh, Handbook of Constraint Programming, Elsevier, 2006 Constraint Satisfaction Problems