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How to Use Screen Notes

These screen notes are generated from sources that were

originally intended for hypermedia, as lecture slides or online

course. Frequently, the slides contain highlighted terms that

come with an annotation, i.e., a more detailed explanation

that would usually be given by the lecturer during the lecture.

When one looks at the slides on the screen, one can click on

such a term and will be linked to the annotation. However,

there is a danger that one gets lost. In the present rendering,

Screen Notes, the annotations are realised as footnotes. Thus

the thread of the lecture can be followed without any jumping

within the document, while forward and backward references

are still realised as hyperlinks. Screen Notes are not suitable

for being printed! For printing use Lecture Notes.
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1 General Introduction
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What this Course is about

Making logic come to life by making it run on a computer,

using the tool Isabelle. Applications in

• Mathematics1 (Hilbert’s program)

1In the 1920’s, David Hilbert attempted a single rigorous

formalization of all of mathematics, named Hilbert’s program.

He was concerned with the following three questions:

1. Is mathematics complete in the sense that every statement

can be proved or disproved?

2. Is mathematics consistent in the sense that no statement

can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a

definite method to determine the truth or falsity of any

mathematical statement?

Hilbert believed that the answer to all three questions was

’yes’.

Thanks to the the incompleteness theorem of Gödel (1931)

and the undecidability of first-order logic shown by Church

and Turing (1936–37) we know now that his dream will never

be realized completely. This makes it a never-ending task to

find partial answers to Hilbert’s questions.
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• program and hardware verification2

(For the impacient: some Isabelle/HOL applications)

high level

requirem
ents
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odels
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code

For more details:

– Panel talk by Moshe Vardi

– Lecture by Michael J. O’Donnell

– Article by Stephen G. Simpson

– Original works Über das Unendliche and Die Grundlagen

der Mathematik [vH67]

– Some quotations shedding light on Gödel’s incompleteness

theorem

– Eric Weisstein’s world of mathematics explaining Gödel’s

incompleteness theorem

2Verification is the process of formally proving that a pro-

gram has the desired properties. To this end, it is necessary

to define a specification language in which the desired prop-

erties can be formulated, i.e. specified. One must define a

semantics for this language as well as for the program. These

semantics must be linked in such a way that it is meaningful
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What this Course is Useful for

After attending this course, you might . . .

• pursue an academic career focused on the topic of this

course or some other topic in formal methods;

• apply formal methods in a company3 like Intel or Gemplus;

• work in a different area in academia or industry; even

then, understanding mathematical and logical reasoning

improves understanding of how to build correct systems

and do more rigorous proofs.

to say: “Program X makes formula Φ true”.
3The last 20 years have seen spectacular hardware and soft-

ware failures (e.g. the Pentium bug) and the birth of a new

discipline: the verification engineer.
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Overview: Four Parts

1. Logics4 (propositional, first-order, higher-order): appr. 6

units

4The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
5A metalogic is a logic that allows us to express properties

of another logic.
6Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.
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Relationship to other Courses

Logic: deduction, foundations, and applications

Software engineering: specification, refinement, verification

Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reasoning,

deduction
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Requirements

• Some knowledge of logic7 is useful for this course, but

we will try to accommodate different backgrounds, e.g.

with pointers to additional material. Your feedback is

essential!

• You must be willing to participate in the labs and get your

hands dirty! Also, you must follow the course each week,

or you will quickly get lost. It is hard in the beginning

but the rewards are large.

• Being familiar with the editor emacs and basic Linux com-

mands is very helpful.

7We will introduce different logics and formal systems (so-

called calculi) used to deduce formulas in a logic. We will

neglect other aspects that are usually treated in classes or

textbooks on logic, e.g.:

– semantics (interpretations) of logics; and

– correctness and completeness of calculi.

As an introduction we recommend [vD80].
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2 Propositional Logic

2.1 Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions” us-

ing not, if...then..., and, or, etc.

• Validity8 means: no counterexample. Validity indepen-

dent of content. Depends on form of the expressions ⇒
can make patterns explicit by replacing words by symbols

From if A then B and A it follows that B.
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2 Propositional Logic

2.1 Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions” us-

ing not, if...then..., and, or, etc.

• Validity8 means: no counterexample. Validity indepen-

dent of content. Depends on form of the expressions ⇒
can make patterns explicit by replacing words by symbols
A→ B A

B

8A and B are symbols whose meaning is not “hard-wired”

into propositional logic.

From if A then B and A it follows that B

is valid because it is true regardless of what A and B “mean”,

and in particular, regardless of whether A and B stand for true

or false propositions.
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• What about9

From if A then B and B it follows that A?

9

From if A then B and B it follows that A

is invalid because there is a counterexample:

Let A be “Kim is a man” and B be “Kim is a person”.
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More Examples

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work.

2. It will rain or snow.

It will not snow.

Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

10

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work. VALID

2. It will rain or snow.

It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

NOT VALID

12



More Examples (Which are Valid?)10
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History

• Propositional logic was developed to make this all precise.

• Laws for valid reasoning were known to the Stoic philoso-

phers (about 300 BC).

• The formal system is often attributed to George Boole

(1815-1864).

Further reading: [vD80], [Tho91, chapter 1].
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More Formal Examples

Formalization allows us to “turn the crank”11.

11By formalizing patterns of reasoning, we make it possible

for such reasoning to be checked or even carried out by a

computer.

From known patterns of reasoning new patterns of reasoning

can be constructed.
12At this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right

of”. In other words, our formalization consists of geometrical

objects like trees.

We study formalization in more detail later.
13A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules

are grafted together to trees in natural deduction. We will see

this shortly, but note that natural deduction is just one style

of proof systems.

We call the rules in that particular set basic rules. Later we

will see one can also derive rules.

14
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2.2 Formalizing Propositional Logic

• We must formalize

1. Language14 and semantics

2. Deductive system

• Here we will focus on formalizing the deductive machin-

ery and say little about metatheorems15 (soundness and

completeness16).

• For labs we will carry out proofs using the Isabelle System.

14By language we mean the language of formulae. We can

also say that we define the (object) logic. Here “logic” is used

in the narrower sense.
15A metatheorem is a theorem about a proof system, as

opposed to a theorem derived within the proof system. The

statement “proof system XYZ is sound” is a metatheorem.
16A proof system is sound if only valid propositions can be

derived in it.

A proof system is complete if all valid propositions can be

derived in it.
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2.3 Propositional Logic: Language

Let a set V of (propositional) variables17 be given. LP , the18

language of propositional logic, is defined by the following
17In mathematics, logic and computer science, there are var-

ious notions of variable. In propositional logic, a variable is a

propositional variable, i.e., it stands for a proposition; it can

be interpreted as True or False.

This will be different in logics that we will learn about later.
18Strictly speaking, the definition of LP depends on V . A

different choice of variables leads to a different language of

propositional logic, and so we should not speak of the lan-

guage of propositional logic, but rather of a language of propo-

sitional logic. However, for propositional logic, one usually

does not care much about the names of the variables, or about

the fact that their number could be insufficient to write down

a certain formula of interest. We usually assume that there

are countably infinitely many variables.

Later, we will be more fussy about this point.
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grammar19 (X ∈ V ):

P ::= X | ⊥ 20 | (P∧21P ) | (P∨22P ) | (P → 23P ) | ((¬P )24)
19A notation like
P ::= X | ⊥ | (P ∧ P ) | (P ∨ P ) | (P → P ) | (¬P ))

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

e ::= x | c | (ee) | (λx. e)

τ ::= T | τ → τ

e ::= x | c | (ee) | (λxτ . e)

P ::= x | ¬P | P ∧ P | P → P . . .

for specifying syntax is called Backus-Naur form (BNF) for ex-

pressing grammars. For example, the first BNF-clause reads:

a propositional formula can be

a variable, or

⊥, or

P1 ∧ P2, where P1 and P2 are propositional formulae, or

P1 ∨ P2, where P1 and P2 are propositional formulae, or

P1 → P2, where P1 and P2 are propositional formulae, or

17



¬P1, where P1 is a propositional formula.

The symbol P is called a non-terminal, and when we apply

the rules starting from P until we reach an expression without

non-terminal we say that this expression is a production of P

or it is in the language generated by P .

The BNF is a very common formalism for specifying syntax,

e.g., of programming languages. See here or here.
20

The symbol ⊥ stands for “false”.
21The connectives are called conjunction (∧), disjunction

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

only uses the word connective for binary connective).
22The connectives are called conjunction (∧), disjunction

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

18
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The elements of LP are called (propositional) formulas26.

only uses the word connective for binary connective).
23The connectives are called conjunction (∧), disjunction

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

only uses the word connective for binary connective).
24“Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or

syntactic sugar25, for reasons of convenience. In paper-and-

pencil proofs, we are allowed to erase any occurrence of ¬P
and replace it with P → ⊥, or vice versa, at any time. How-

ever, we shall see that when proofs are automated, this process

must be made explicit.
26In logic, the word “formula” has a specific meaning. For-

mulae are a syntactic category, namely the expressions that

stand for a statement. So formulas are syntactic expressions

that are interpreted (on the semantic level) as True or False.

We will later learn about another syntactic category, that of

19



We omit unnecessary brackets27.

terms.

I propositional logic, a formula may also be called a propo-

sition.
27To save brackets, we use standard associativity and prece-

dences. All binary connectives are right-associative:

A ◦B ◦ C ≡ A ◦ (B ◦ C)

The precedences are ¬ before ∧ before ∨ before→. So for

example

A→ B ∧ ¬C ∨D ≡ A→ ((B ∧ (¬C)) ∨D)

20



Propositional Logic: Semantics

An assignment is a function A : V → {0, 1}. We say that

A assigns a truth value to each propositional variable. We

identify 1 with True and 0 with False.

A is lifted (=extended) to formulas in LP as follows . . .

21



Propositional Logic: Semantics (2)

A(⊥) = 0

A(¬φ) =

{
1 if A(φ) = 0

0 otherwise

A(φ ∧ ψ) =

{
1 if A(φ) = 1 and A(ψ) = 1

0 otherwise

A(φ ∨ ψ) =

{
1 if A(φ) = 1 or A(ψ) = 1

0 otherwise

A(φ→ ψ) =

{
1 if A(φ) = 0 or28 A(ψ) = 1

0 otherwise

22



Propositional Logic: Semantics (3)

If A(φ) = 1, we write A |= φ.

Two formulae are equivalent if they yield the same truth

value for any assignment of the propositional variables.

The semantics will be generalised later.
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2.4 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].

Designed to support ‘natural’ logical arguments:

• we make (temporary) assumptions;

• we derive new formulas by applying rules;

• there is also a mechanism for “getting rid of” assump-

tions.

24



Natural Deduction (2)

Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

29For the moment, the way to understand it is as follows:

by writing A → (B → C), A,B ` C, we assert that C

can be derived in this proof system under the assumptions

A→ (B → C), A,B.

We will say more about the ` notation later.

25
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where the leaves are called assumptions.

We write A1, ..., An ` A if there exists a derivation of A

with assumptions A1, ..., An, e.g. A → (B → C), A,B `
C29.

A proof is a derivation where we “got rid” of all assump-

tions.
29For the moment, the way to understand it is as follows:

by writing A → (B → C), A,B ` C, we assert that C

can be derived in this proof system under the assumptions

A→ (B → C), A,B.

We will say more about the ` notation later.
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Natural Deduction: an Abstract Example30

• Language L = {ª,¨,«,©}.

30Natural deduction is not just about propositional logic! We

explain here the general principles of natural deduction, not

just the application to propositional logic.

In order to emphasize that applying natural deduction is a

completely mechanical process, we give an example that is

void of any intuition.

It is important that you understand this process. Apply-

ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
31The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ©, then you are allowed

to draw a line underneath that © and write ¨ underneath that

line.

The third rule reads: if the forest you have constructed so

far contains two neighboring trees, where the left tree has root

¨ and the right tree has root «, then you are allowed to draw

a line underneath those two roots and write ª underneath

that line.
32The last rule reads: if at some root of a tree in the forest

26
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It is important that you understand this process. Apply-

ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
31The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ©, then you are allowed

to draw a line underneath that © and write ¨ underneath that

line.

The third rule reads: if the forest you have constructed so

far contains two neighboring trees, where the left tree has root

¨ and the right tree has root «, then you are allowed to draw

a line underneath those two roots and write ª underneath

that line.
32The last rule reads: if at some root of a tree in the forest
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.
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©

We make33 an assumption. The assumption is now open34.
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Proof of ª
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©

¨
α

We apply α.

you have constructed so far, there is a ª, then you are allowed
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δ

The proof:

©

¨
α

©

«
β

Similarly with β.
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0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged
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Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might
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The proof:

©

¨
α

©

«
β

ª
γ

We apply γ.

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

[©]1

¨
α

[©]1

«
β

ª
γ

ª
δ1

We apply δ, discharging two occurrences of ©. We mark the

brackets and the rule with a label so that it is clear which

assumption is discharged in which step. The derivation is

now a proof: it has no open assumptions (all discharged).

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.
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2.5 Deductive System: Rules of Propositional Logic

We have rules for conjunction, implication, disjunction, fal-

sity and negation.

Some rules introduce35, others eliminate connectives.

35It is typical that the basic rules of a proof system can be

classified as introduction or elimination rules for a particular

connective.

This classification provides obvious names for the rules and

may guide the search for proofs.

The rules for conjunction are pronounced and-introduction,

and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are

also derived rules.
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Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce connectives
A B
A ∧B ∧-I

36The letters A and B in the rules are not propositional

variables. Instead, they can stand for arbitrary propositional

formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to object

variables, i.e., variables of the language that we reason about

(here: propositional logic).

When a rule is applied, the metavariables of it must be

replaced with actual formulae. We say that a rule is being

instantiated.

We will see more about the use of metavariables later.
37A rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as

well.

This is consistent with the earlier intuitive explanation of

validity of a formula. Details can be found in any textbook

on logic [vD80].

Note that while the notation A |= . . . will be used again

later, there A will not stand for an assignment, but rather for
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Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce and eliminate connectives
A B
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A ∧B
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Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce and eliminate connectives
A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

• Rules are schematic36.

• Why valid37? If all assumptions are true, then so is con-

clusion

A |= A ∧B iff A |= A and A |= B

36The letters A and B in the rules are not propositional

variables. Instead, they can stand for arbitrary propositional

formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to object

variables, i.e., variables of the language that we reason about

(here: propositional logic).

When a rule is applied, the metavariables of it must be

replaced with actual formulae. We say that a rule is being

instantiated.

We will see more about the use of metavariables later.
37A rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as

well.

This is consistent with the earlier intuitive explanation of

validity of a formula. Details can be found in any textbook

on logic [vD80].

Note that while the notation A |= . . . will be used again

later, there A will not stand for an assignment, but rather for
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

38

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
38All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

38

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

Can we prove anything with just these three rules?38

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
38All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.
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Rules of Propositional Logic: Implication

• Rules
[A]

....
B

A→ B
→-I

A→ B A
B

→-E
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Rules of Propositional Logic: Implication

• Rules
[A]

....
B

A→ B
→-I

A→ B A
B

→-E

• →-E is also called modus ponens.
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Rules of Propositional Logic: Implication

• Rules
[A]

....
B

A→ B
→-I

A→ B A
B

→-E

• →-E is also called modus ponens.

• →-I formalizes strategy:

To derive A→ B, derive B under the additional assump-

tion A.

31



A very Simple Proof

The simplest proof we can think of is the proof of P → P .

P

39When we make the assumption P , we obtain a forest con-

sisting of one tree. In this tree, P is at the same time a leaf

and the root. Thus the tree P is a degenerate example of the

schema
[A]....
B

where both A and B are replaced with P .

Therefore we may apply rule→-I, similarly as in our abstract

example.
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A very Simple Proof

The simplest proof we can think of is the proof of P → P .

[P ]1

P → P
→-I1

Do you find this strange?39

39When we make the assumption P , we obtain a forest con-

sisting of one tree. In this tree, P is at the same time a leaf

and the root. Thus the tree P is a degenerate example of the

schema
[A]....
B

where both A and B are replaced with P .

Therefore we may apply rule→-I, similarly as in our abstract

example.

32



Examples with Conjunction and Implication

1. A→ B → A40

2. A ∧ (B ∧ C)→ A ∧ C41

40

The rule(s):

[A]
....
B

A→ B
→-I

The proof:

[A]1

B → A
→-I

A→ B → A
→-I1

41

The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

[A]
....
B

A→ B
→-I

The proof:

[A ∧ (B ∧ C)]2

A
∧-EL

[A ∧ (B ∧ C)]2

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

(A ∧ (B ∧ C))→ (A ∧ C)
→-I2
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3. (A→ B → C)→ (A→ B)→ A→ C42

Are these object or metavariables here?43

42

The rules:

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

The proof:

[(A→ B → C)]3 [A]5

B → C
→-E

[(A→ B)]4 [A]5

B
→-E

C
→-E

A→ C
→-I5

(A→ B)→ A→ C
→-I4

(A→ B → C)→ (A→ B)→ A→ C
→-I3

43In these examples, you may regardA,B,C as propositional

variables. On the other hand, the proofs are schematic, i.e.,

they go through for any formula replacing A,B, and C.
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Disjunction

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E
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Disjunction

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Formalizes case-split strategy for using A ∨B.

35



Disjunction: Example

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Example: formalize and prove

When it rains then I wear my jacket.

When it snows then I wear my jacket.

It is raining or snowing.

Therefore I wear my jacket.
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Falsity and Negation

• Falsity

⊥
A
⊥-E

No introduction rule!44



Falsity and Negation

• Falsity

⊥
A
⊥-E

No introduction rule!44

• Negation: define ¬A as A→⊥. Rules for ¬ just special

cases45 of rules for →. Convenient to have
44The symbol ⊥ stands for “false”.

It should be intuitively clear that since the purpose of a proof

system is to derive true formulae, there is no introduction rule

for falsity. One may wonder: what is the role of ⊥ then? We

will see this soon. The main role is linked to negation. We

quote from [And02, p. 152]:

⊥ plays the role of a contradiction in indirect proofs.

45The rule
¬A A
⊥

is simply an instance of →-E (since ¬A is shorthand for

A→⊥).

Likewise, the rule
[A]

....
⊥
¬A
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¬A A
B

¬-E46

derived by

¬A A
⊥ →-E

B
⊥-E

is simply an instance of→-I. Therefore, we will not introduce

these as special rules. But there is a special rule ¬-E.
46For negation, it is common to have a rule

¬A A
B

¬-E

We have seen how this rule can be derived. The concept of

deriving rules will be explained more systematically later.

This rule is also called ex falso quod libet (from the false

whatever you like).

38



Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid47? Provable48?



Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid47? Provable48?

47Yes, simply check the truth table:

A B ((A→ B)→ A)→ A

True True True

True False True

False True True

False False True

48In the proof system given so far, this is not provable. To

prove that it is not provable requires an analysis of so-called

normal forms of proofs. However, we do not do this here.
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• It is provable in classical logic49, obtained by adding

A ∨ ¬A50 or

[¬A]
....
⊥
A
RAA51 or

[¬A]
....
A

A
classical52.

49The proof system we have given so far is a proof system for

intuitionistic logic. The main point about intuitionistic logic

is that one cannot claim that every statement is either true or

false, but rather, evidence must be given for every statement.

In classical reasoning, the law of the excluded middle holds.

One also says that proofs in intuitionistic logic are construc-

tive whereas proofs in classical logic are not necessarily con-

structive.

We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar

classical logic which allows an effective interpretation

and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has

been the topic of a fundamental discourse in the literature on

logic [PM68] [Tho91, chapter 3]. Often proofs contain case

distinctions, assuming that for any statement ψ, either ψ or

¬ψ holds. This reasoning is classical; it does not apply in

intuitionistic logic.
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50A ∨ ¬A is called axiom of the excluded middle.
51The rule

[¬A]
....
⊥
A
RAA

is called reduction ad absurdum.
52The rule

[¬A]
....
A

A
classical

corresponds to the formulation is Isabelle.
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Example of Classical Reasoning

Recall the story of Oedipus from greek mythology:

• Iokaste is the mother of Oedipus.

• Iokaste and Oedipus are the parents of Polyneikes.

• Polyneikes is the father of Thersandros.

• Oedipus is a patricide.

• Thersandros is not a patricide.
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Example of Classical Reasoning (cont.)

Iokaste
XXXXXXz

HH
HHH

HHHj

Oedipus (patr.)
?

Polyneikes
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

53There exist irrational numbers a and b such that ab is

rational.



Example of Classical Reasoning (cont.)

Iokaste
XXXXXXz

HH
HHH

HHHj

Oedipus (patr.)
?

Polyneikes ( patr.)
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

Case 1: If Polyneikes is a patricide, then Iokaste has

a child (Polyneikes) that is a patricide and that itself has a

child (Thersandros) that is not a patricide.

53There exist irrational numbers a and b such that ab is

rational.

Proof: Let b be
√

2 and consider whether or not bb is

rational.

Case 1: If rational, let a = b =
√

2

Case 2: If irrational, let a =
√

2
√

2
, and then

ab =
√

2

√
2

√
2

=
√

2
(
√

2∗
√

2)
=
√

2
2

= 2



Example of Classical Reasoning (cont.)

Iokaste
XXXXXXz

HH
HHH

HHHj

Oedipus (patr.)
?

Polyneikes (¬ patr.)
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

Case 2: If Polyneikes is not a patricide, then Iokaste has

a child (Oedipus) that is a patricide and that itself has a

child (Polyneikes) that is not a patricide.

Here53 is another example.

53There exist irrational numbers a and b such that ab is

rational.

Proof: Let b be
√

2 and consider whether or not bb is

rational.

Case 1: If rational, let a = b =
√

2

Case 2: If irrational, let a =
√

2
√

2
, and then

ab =
√

2

√
2

√
2

=
√

2
(
√

2∗
√

2)
=
√

2
2

= 2

We still don’t know how to choose a and b so that ab is

rational. Hence the proof if non-constructive.
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Overview of Rules

A B
A ∧B ∧-I

A ∧B
A

∧-EL
A ∧B
B

∧-ER

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

[A]
....
B

A→ B
→-I

A→ B A
B

→-E
⊥
A
⊥-E
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2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.
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2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

It looks like this.
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2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S

¬S

R

We build a fragment of a derivation by writing the conclusion

R and the assumptions R ∨ S and ¬S.
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2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S

R ∨-E

Since we have assumption R ∨ S, using ∨-E seems a good

idea. So we should make assumptions R and S. First R. But

that is a derivation of R from R!
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2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

R ∨-E

So now S.
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2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R ∨-E

¬S and S allow us to apply →-E.
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2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R
⊥-E

R ∨-E

To apply ∨-E in the end, we need to derive R. But that’s

easy using ⊥-E!

45



2.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S [R]1

¬S [S]1

⊥ →-E

R
⊥-E

R ∨-E
1

Finally, we can apply ∨-E. The derivation with open assump-

tions is a new rule that can be used like any other rule.
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A Variation of Natural Deduction: Boxes

We have seen just one deductive system.

One variation of natural deduction is the following: A deriva-

tion is not a tree, but a sequence of numbered lines. Instead of

subtrees relying on open assumptions, a subderivation relying

on an assumption is enclosed in a box.

You find this explained in [HR04].
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2.7 Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability

judgement54, i.e., reason about Γ ` A where Γ ≡ A1, . . . , An

instead of individual formulae.
54An object like A→ (B → C), A,B ` C is called a deriv-

ability judgement. We explained it earlier as simply asserting

the fact that there exists a derivation tree with C at its root

and open assumptions A→ (B → C), A,B.

However, it is also possible to make such judgements the

central objects of the deductive system, i.e., have rules in-

volving such objects.

The notation Γ ` A is called sequent notation. However,

this should not be confused with the sequent calculus (we

will consider it later). The sequent calculus is based on se-

quents, which are syntactic entities of the form A1, . . . , An `
B1, . . . , Bm, where the A1, . . . , An, B1, . . . , Bm are all for-

mulae. You see that this definition is more general than the

derivability judgements we consider here.

What we are about to present is a kind of hybrid between

natural deduction and the sequent calculus, which we might

call natural deduction using a sequent notation.
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Sequent Rules (for → /∧ Fragment)

Rules for assumptions55 and weakening56:

Γ ` A57 (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken



Sequent Rules (for → /∧ Fragment)

Rules for assumptions55 and weakening56:

Γ ` A57 (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Rules for ∧ and →:
Γ ` A Γ ` B

Γ ` A ∧B ∧-I
Γ ` A ∧B

Γ ` A ∧-EL
Γ ` A ∧B

Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

55The special rule for assumptions takes the role in this se-

quent style notation that the process of making and discharg-

ing assumptions had in natural deduction based on trees.

It is not so obvious that the two ways of writing proofs

are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
56The rule weaken is

Γ ` B
A,Γ ` B weaken

Intuitively, the soundness of rule weaken should be clear:

having an additional assumption in the context cannot hurt

since there is no proof rule that requires the absence of some

assumption.

We will see an application of that rule later.
57An axiom is a rule without premises. We call a rule with

premises proper.
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More rules can be derived58.
One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.
58 As an example, consider

A,B,Γ ` C Γ ` A ∧B
Γ ` C ∧-E
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Example: Refinement Style with Metavariables

` A ∧ (B ∧ C)→ A ∧ C

We want to show that A∧ (B ∧C)→ A∧C is a tautology,

i.e., that it is derivable without any assumptions.

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E
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Example: Refinement Style with Metavariables
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Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-

way!

• Refinement style means we work from goals to axioms60

• metavariables used to delay commitments

Isabelle allows other refinements61/alternatives too (see labs).

60As you saw in our animation, we worked from the root of

the tree to the leaves.
61One aspect you might have noted in the proof is that the

steps at the top, where ∧-EL and ∧-ER were used, required

non-obvious choices, and those choices were based on the

assumptions in the current derivability judgement.

In Isabelle, we will apply other rules and proof techniques

that allow us to manipulate assumptions explicitly. These

techniques make the process of finding a proof more deter-

ministic.

But that is just one aspect. We will give a more theoretic

account of the way Isabelle constructs proofs later.
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3 Natural Deduction: Review
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Overview

• Short review: ND Systems and proofs

• First-Order Logic

– Overview

– Syntax

– Semantics

– Deduction, some derived rules, and examples
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How Are ND Proofs Built?

ND proofs62 build derivations under (possibly temporary) as-

sumptions.

62ND stands for Natural Deduction. It was explained in the

previous lecture.
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ND: Example for → /∧ Fragment

Rules:

A B
A ∧B ∧-I

A ∧B
A

∧-EL

A ∧B
B

∧-ER

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

Proof:

[A ∧B]1

B
∧-EL

[A ∧B]1

A
∧-ER

B ∧ A ∧-I

A ∧B → B ∧ A→-I1

55



Alternative Formalization Using Sequents63

Rules (for → /∧ fragment). Here, Γ is a set of formulae.

Γ ` A (where A ∈ Γ)

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

Two representations equivalent. Sequent notation seems

simpler in practice64.
63The judgement (Γ ` φ) means that we can derive φ from

the assumptions in Γ using certain rules. As explained in the

previous lecture, one can make such judgements the central

objects of the deductive system.
64In particular, the sequent style notation is more amenable

to automation, and thus it is closer to what happens in Is-

abelle.
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Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C
A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

We went through this example in detail last lecture.
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Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-

way!

• Refinement style means we work from goals to axioms

• Metavariables used to delay commitments

Isabelle allows other refinements/alternatives too (see labs).
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4 First-Order Logic

4.1 First-Order Logic: Overview

In propositional logic, formulae are Boolean65 combinations

of propositions. This will remain important for modeling sim-

ple patterns of reasoning.

An atomic proposition is just a letter (variable). All one can

say about it is that it is true or false. E.g. it is meaningless to

say “A and B state something similar”. Also, infinity plays

no role.
65The set (or “type”) bool contains the two truth values

True,False. A propositional formula containing n variables

can be viewed as a function booln → bool . For each com-

bination of values True,False for the variables, the whole

formula assumes the value True or False.
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First-Order Logic: the Essence

In first-order logic, an atom(ic proposition) says that “things”

have certain “properties”66. Infinitely many “things” can be

denoted, hence infinitely many atoms generated and distin-

guished. Comparisons of atoms become meaningful: “Tim is

a boy” and “Carl is a boy” state something similar.

Example reasoning: “Tim is a boy”; “boys don’t cry”;

hence “Tim doesn’t cry”.

Further reading: [vD80], [Tho91, chapter 1].
66In propositional logic, there is no notation for writing

“thing x has property p” or “things x and y are related as

follows” or for denoting the “thing obtained from thing x by

applying some operation”.

In particular, no statement about all elements of a possibly

infinite domain can be expressed in propositional logic, since

each formula involves only finitely many different variables,

and up to equivalence and for a set containing n variables,

there are only finitely many (to be precise 2(2n)) different

propositional formulae.
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Variables: Intuition

In first-order logic, we talk about “things” that have certain

“properties”.

A variable in first-order logic stands for a “thing”.
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Variables: Intuition

In first-order logic, we talk about “things” that have certain

“properties”.

A variable in first-order logic stands for a “thing”.

This is in contrast to propositional logic where variables

stand for propositions.

It is common to use letters x, y, z for variables.
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Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y
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Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x
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A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))
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Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

• x is a man and y is a woman and x loves y but not vice

versa
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Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

• x is a man and y is a woman and x loves y but not vice

versa

m(x) ∧ w(y) ∧ l(x, y) ∧ ¬l(y, x)
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Predicates: Intuition (2)

We can represent only “abstractions” of these in propositional

logic, e.g., p ∧ (d1 ∨ d2) could be an abstraction of p(x) ∧
(d(y, x) ∨ d(z, x)).

Here p stands for “x is a prime” and d1 stands for “y is

divisible by x”.

But the sense in which p(x), d(y, x), d(z, x) state some-

thing similar is lost. What it means to be divisible or to be a

prime cannot be expressed.
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Functions: Intuition

• A constant stands for a “fixed thing”67 in a domain68.

67As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.
68For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
69N denotes the natural numbers.
70So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols like

+ are denoted infix, so we write 0 + 0 instead of +(0, 0). An-

other common notation is prefix notation without brackets, as

in −2. There are also other notations.
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Functions: Intuition
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The generic notation for function application is f (t1, . . . , tn),

but note special notations70: infix, prefix, etc.

67As opposed to a variable which also stands for a “thing”.
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Quantifiers: Intuition

• A variable stands for “some71 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

71Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
72Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.
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∃x. x 6= 0 true for domains with

more than one element

(∀x. p(x, x))→ p(a, a)

71Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
72Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.
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collection of function symbols F and predicate symbols

P as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function sym-

bol f (or predicate symbol p) has arity i ∈ N.

• One often calls the pair 〈F ,P〉 a signature.
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Terms and Formulae in First-Order Logic

Consider the following grammar (x ∈ Var , fn ∈ F , pn ∈ P):

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times75

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

The productions of T are called terms (set Term76).

The productions of F are called formulae (set Form).

One often calls the pair 〈F ,P〉 a signature. Generally, a sig-

nature specifies the “fixed symbols” (as opposed to variables)

of a particular logic language.

Strictly speaking, a first-order language is also parametrised

by giving a set of variables Var , but this is inessential. Var

is usually assumed to be a countably infinite set of symbols,

and the particular choice of names of these symbols is not

relevant.
76Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the

signature, but we always assume that the signature is clear

from the context.
77We adopt the convention that the scope of a quantifier

extends as much as possible to the right, e.g.

∀x.p(x) ∨ q(x)

is

∀x.(p(x) ∨ q(x))
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Variable Occurrences

• All occurrences of a variable in a formula78 are bound or

free or binding.

• Example:

(q(x) ∨ ∃x.∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))

Which are bound?

and not

(∀x.p(x)) ∨ q(x)

This is a matter of dispute and other conventions are around,

but the one we adopt here corresponds to Isabelle.

Compare this to the precedences and associativity in propo-

sitional logic.
78All occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on

the structure of terms/formulae. This is why the following

definition is along the lines of our definition of terms and

formulae.

1. The (only) occurrence of x in the term x is a free occur-

rence of x in x;

2. the free occurrences of x in f (t1, . . . , tn) are the free oc-

currences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free oc-
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and not

(∀x.p(x)) ∨ q(x)

This is a matter of dispute and other conventions are around,

but the one we adopt here corresponds to Isabelle.

Compare this to the precedences and associativity in propo-

sitional logic.
78All occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on

the structure of terms/formulae. This is why the following

definition is along the lines of our definition of terms and

formulae.

1. The (only) occurrence of x in the term x is a free occur-

rence of x in x;

2. the free occurrences of x in f (t1, . . . , tn) are the free oc-

currences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free oc-
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4.3 First-Order Logic: Semantics

currences of x in t1, . . . , tn;

5. the free occurrences of x in ¬φ are the free occurrences

of x in φ;

6. the free occurrences of x in ψ ◦φ are the free occurrences

of x in ψ and the free occurrences of x in φ (◦ ∈ {∧,∨,→
});

7. the free occurrences of x in ∀y. ψ, where y 6= x, are the

free occurrences of x in ψ; likewise for ∃;

8. x has no free occurrences in ∀x. ψ; in ∀x. ψ, the (outer-

most) ∀ binds all free occurrences of x in ψ; the occur-

rence of x next to ∀ is a binding occurrence of x; likewise

for ∃.

A variable occurrence is bound if it is not free and not bind-

ing.

We also define

FV (φ) := {x | x has a free occurrence in φ}
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A structure79 is a pair A = 〈UA, IA〉 where UA is an

nonempty set, the universe, and IA is a mapping where

1. IA(fn) is an n-ary (total) function on UA, for fn ∈ F ,

2. IA(pn) is an n-ary relation on UA, for pn ∈ P , and

3. IA(x) is an element of UA, for each x ∈ Var .
79As usual, there isn’t just one way of formalizing things,

and so we now explain some other notions that you may have

heard in the context of semantics for first-order logic.

A universe is sometimes also called domain.

As you saw, a structure gives a meaning to functions, pred-

icates, and variables.

An alternative formalization is to have three different map-

pings for this purpose:

1. an algebra gives a meaning to the function symbols (more

precisely, an algebra is a pair consisting of a domain and

a mapping giving a meaning to the function symbols);

2. in addition, an interpretation gives a meaning also to the

predicate symbols;

3. a variable assignment, also called valuation, gives a mean-

ing to the variables.

As before, we assume that the signature is clear from the

context. Strictly speaking, we should say “structure for a
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As shorthand, write pA80 for IA(pn), etc.

particular signature”.

Details can be found in any textbook on logic [vD80].
80In the notation pA, the superscript has nothing to do with

the superscript we sometimes use to indicate the arity.
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The Value of Terms

Let A be a structure. We define the value of a term t under

A, written A(t), as

1. A(x) = xA, for x ∈ Var , and

2. A(f (t1, . . . , tn)) = fA(A(t1), . . . ,A(tn)).
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The Value of Formulae

We define the (truth-)value of the formula φ under A, written

A(φ), as

A(p(t1, . . . , tn)) =

{
1 if (A(t1), . . . ,A(tn)) ∈ pA
0 otherwise

A(∀x. φ) =

{
1 if for all u ∈ UA,A[x/u]

81(φ) = 1

0 otherwise

A(∃x. φ) =

{
1 if for some u ∈ UA,A[x/u](φ) = 1

0 otherwise

Rest as for propositional logic.

81

A[x/u] is the structure A′ identical to A, except that xA
′
=

u.
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Models

• If A(φ) = 1, we write A |= φ and say φ is true in A or

A is a model of φ.

82A structure is suitable for φ if it defines meanings for the

signature of φ, i.e., for the symbols that occur in φ. Of

course, these meanings must also respect the arities, so an

n-ary function symbols must be interpreted as an n-ary func-

tion. Without explicitly mentioning it, we always assume that

structures are suitable.
83If you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember

a different definition from your previous studies of logic, then

these comments may help.

As explained before, it is common to distinguish an interpre-

tation, which gives a meaning to the symbols in the signature,

from an assignment, which gives a meaning to the variables.

Let us use I to denote an interpretation and A to denote an

assignment.

Recall that we wrote A(.) for the meaning of a term or

formula. In the alternative terminology, we write I(A)(.) in-

stead. This makes sense since in the alternative terminology,
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An Example

∀x. p(x, s(x))

We now show a model and a non-model . . .
I and A together contain the same information as A in the

original terminology. We define:

• For a given I, we say that φ is satisfiable in I if there

exists an A so that I(A)(φ) = 1;

• for a given I, we write I |= φ and say φ is true in I or

I is a model of φ, if for all A, we have I(A)(φ) = 1;

• we say φ is satisfiable if there exists an I so that φ is

satisfiable in I;

• we write |= φ and say φ is valid if for every (suitable) I,

we have I |= φ.

Note that satisfiable (without “for . . . ”) and valid mean the

same thing in both terminologies, whereas true in . . . means

slightly different things, since a structure is not the same thing

as an interpretation.
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A model84:

UA = N
pA = {(m,n) | m < 85n}

sA(x) = x + 1

84It is true that for all numbers n, n is less than n + 1.
85In logic, we insist on the distinction between syntax and

semantics. In particular, we set up the formalism so that the

syntax is fixed first and then the semantics, and so there could

be different semantics for the same syntax.

But the dilemma is that once we want to give a particu-

lar semantics, we can only do so using again some kind of

language, hence syntax. This is usually natural language in-

terspersed with usual mathematical notation such as <, +

etc.

Some people try to mark the distinction between syntax and

semantics somehow, e.g., by saying 0 is a constant that could

mean anything, whereas 0 is the number zero as it exists in

the mathematical world.

When we give semantics, the symbols <, +, and 1 have

their usual mathematical meanings. The function that maps

x to x + 1 is also called successor function. Of course, when

we write m < n, we assume that m,n ∈ N, in this context.
86The identity function maps every object to itself.
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A model84:

UA = N
pA = {(m,n) | m < 85n}

sA(x) = x + 1

Not a model86:

UA = {a, b, c}
pA = {(a, b), (a, c)}
sA = “the identity function”
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4.4 Towards a Deductive System

In natural language, quantifiers are often implicit87: all

males don’t cry.

Some phrases in natural language proofs have the flavor of

introduction rules.

Take “boys are males” and “males don’t cry” implies “boys

don’t cry”: assume an arbitrary boy x; then x is a male; hence

x doesn’t cry; hence “x is a boy” implies “x doesn’t cry”

(→-I); since x was arbitrary, we can say this for all x. (∀-I).

See later.

Existential statements are proven by giving a witness.

It is not true that for every character α ∈ {a, b, c}, (α, α) ∈
{(a, b), (a, c)}. E.g., (a, a) /∈ {(a, b), (a, c)}.

87In the statement

if x > 2 then x2 > 4

the ∀-quantifier is implicit. It should be

for all x, if x > 2 then x2 > 4.
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4.5 First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic.

All the rules of propositional logic are “inherited”88.

But we must introduce rules for the quantifiers.

88First-order logic inherits all the rules of propositional logic.

Note however that the metavariables in the rules now range

over first-order formulae.
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Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable

condition) ∗ means: x must be arbitrary.

89Similarly as in the previous lecture, one should note that P

is not a predicate, but rather P (x) is a schematic expression:

P (x) stands for any formula, possibly containing occurrences

of x.

In the context of ∀-E, P (t) stands for the formula obtained

from P (x) by replacing all occurrences of x by t.
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

x = 0

90When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
91The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl90

∀x. x = 0
→-E

Formal meaning of side condition: x not free in any open

assumption on which P (x) depends. Violated!91

90When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
91The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).
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Another Proof? (1)

Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1
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Another Proof? (1)

Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Conclusion is not valid.

The formula is false when UA has at least 2 elements.92
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Another Proof? (1)

Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Proof is incorrect.

Reason: Substitution93 must avoid capturing94 variables. Re-

placing x with y in ∀-E is illegal because y is bound in

¬∀y. y = y. This detail concerns substitution (and renaming

of bound variables), not ∀-E. Exercise
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Another Proof? (2)

∀x.A(x) ∧B(x)

95In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.
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∀-I
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∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

95In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.
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Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

95In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.
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Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

Yes (check side conditions95 of ∀-I).

95In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.
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Boys Don’t Cry

Let φ ≡ (∀x. b(x)→ m(x)) ∧ (∀x.m(x)→ ¬c(x)).

[φ]1

∀x.m(x)→ ¬c(x)
∧-ER

m(x)→ ¬c(x)
∀-E

[φ]1

∀x. b(x)→ m(x)
∧-EL

b(x)→ m(x)
∀-E

[b(x)]2

m(x)
→-E

¬c(x)
→-E

b(x)→ ¬c(x)
→-I2

∀x. b(x)→ ¬c(x)
∀-I

φ→ (∀x. b(x)→ ¬c(x))
→-I1
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Aside: A↔ B

Define96 A↔ B as A→ B ∧B → A.

The following rule can be derived (in propositional logic,

actually):

[A]
....
B

[B]
....
A

A↔ B
↔-I

You could do this as an exercise!

96By defining we mean, use A ↔ B as shorthand for A →
B ∧ B → A, in the same way as we regard negation as a

shorthand.
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Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1
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Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

Yes, but only if x not free in A.
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Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

Yes, but only if x not free in A.

Similar requirement arises in proving (∀x.A → B(x)) ↔
(A→ ∀x.B(x)).
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Side Conditions and Proof Boxes

We mentioned previously a style of writing derivations where

subderivations based on temporary assumptions are enclosed

in boxes.

These boxes are also handy for doing derivations in first-

order logic, since one can use the very clear formulation: a

variable occurs inside or outside of a box. See [HR04].
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Existential Quantification

• We could define97 ∃x.A as ¬∀x.¬A.

• Equivalence follows from our definition of semantics.

A(¬A) =

{
1 if A(A) = 0

0 otherwise

A(∀x.A) =

{
1 if for all u ∈ UA,A[x/u](A) = 1

0 otherwise

A(∃x.A) =

{
1 if for some u ∈ UA,A[x/u](A) = 1

0 otherwise

Conclude: A(∃x.A) = A(¬∀x.¬A)

97By defining we mean, use ∃x.A as shorthand for ¬∀x.¬A,

in the same way as we regard negation as a shorthand.

However, we have already introduced ∃ as syntactic entity,

and also its semantics. If we now want to treat it as being

defined in terms of ∀, for the purposes of building a deductive

system, we must be sure that ∃x.A is semantically equivalent

to ¬∀x.¬A, i.e., that A(∃x.A) = A(¬∀x.¬A).
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Where do the Rules for ∃ Come from?

• We can98 use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

98

– We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

In this case, the soundness of the derived rules is guaran-

teed since

∗ the rules for ∀ are sound;

∗ we have proven the equivalence of ∃x.A and ¬∀x.¬A
semantically.

– Alternative: give rules as part of the deduction system and

prove the equivalence as a lemma, instead of by definition.

In this case, the soundness must be proven by hand (how-

ever, proving rules sound is an aspect we neglect in this

course). But once this is done, the equivalence of ∃x.A
and ¬∀x.¬A can be proven within the deductive system,

rather than by hand, provided that the deductive system

is complete.
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Where do the Rules for ∃ Come from?

• We can98 use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

• Alternatively, we can give rules as part of the deduction

system and prove equivalence as a lemma, instead of by

definition.

We will do the first here. The Isabelle formalization fol-

lows the second approach.
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rules for ∀ to derive ND proof rules.

In this case, the soundness of the derived rules is guaran-

teed since

∗ the rules for ∀ are sound;

∗ we have proven the equivalence of ∃x.A and ¬∀x.¬A
semantically.

– Alternative: give rules as part of the deduction system and

prove the equivalence as a lemma, instead of by definition.

In this case, the soundness must be proven by hand (how-

ever, proving rules sound is an aspect we neglect in this

course). But once this is done, the equivalence of ∃x.A
and ¬∀x.¬A can be proven within the deductive system,

rather than by hand, provided that the deductive system

is complete.
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∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∃x. P (x)

We want to have ∃x. P (x) as conclusion.
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∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

¬∀x.¬P (x)

But by definition that’s ¬∀x.¬P (x).
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∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

⊥
¬∀x.¬P (x)

We aim for applying→-I in the last step (recall ¬-definition).
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∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

¬P (t)
∀-E

⊥
¬∀x.¬P (x)

We apply ∀-E.
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∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

¬P (t)
∀-E

P (t)

⊥
→-E

¬∀x.¬P (x)
Making assumption P (t) allows us to use →-E (recall ¬-

definition).
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∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

[∀x.¬P (x)]1

¬P (t)
∀-E

P (t)

⊥
→-E

¬∀x.¬P (x)
→-I1

Finally we can apply →-I. Note that the assumption P (t) is

still open.
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∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

∃x. P (x)

We will use ∃x. P (x) as one assumption.
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∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

But by definition that’s ¬∀x.¬P (x).

90



∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

P (x)
....
R

We assume a hypothetical derivation99.
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∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

P (x)
....
R

⊥ →-E

We make an additional assumption and apply→-E (recall ¬-definition)
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∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

Now we can discharge the assumption P (x) made in the hypothetical
derivation.
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∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

∀x.¬P (x)
∀-I

At this step, the side condition from ∀-I applies. ∃-E will inherit it!100
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∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

∀x.¬P (x)
∀-I

⊥ →-E

We apply →-E.
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∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

[¬R]1

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

∀x.¬P (x)
∀-I

⊥ →-E

R
RAA1

We are done. Note that this proof uses classical101 reasoning.
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Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

91



Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

A(x)

B
→-E
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Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3
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Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

[∃x. A(x)]2

[∀x.A(x)→ B]1

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

(∃x. A(x))→ B
→-I2

(∀x.A(x)→ B)→ ((∃x. A(x))→ B)
→-I1
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4.6 Conclusion on FOL

• Propositional logic is good for modeling simple patterns

of reasoning like “if . . . then . . . else”.



4.6 Conclusion on FOL

• Propositional logic is good for modeling simple patterns

of reasoning like “if . . . then . . . else”.

• In first-order logic, one has “things” and relations on /

properties of “things”. Quantify over “things”. Powerful102!

102In first-order logic, one has “things” and relations/proper-

ties that may or may not hold for these “things”. Quantifiers

are used to speak about “all things” and “some things”.

For example, one can reason:

All men are mortal, Socrates is a man, therefore

Socrates is mortal.

The idea underlying first-order logic is so general, abstract,

and powerful that vast portions of human (mathematical) rea-

soning can be modeled with it.

In fact, first-order logic is the most prominent logic of all.

Many people know about it: not only mathematicians and

computer scientists, but also linguists, philosophers, psychol-

ogists, economists etc. are likely to learn about first-order logic

in their education.

While some applications in the fields mentioned above re-

quire other logics, e.g. modal logics103, those can often be

reduced to first-order logic, so that first-order logic remains
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the point of reference.

On the other hand, logics that are strictly more expressive

than first-order logic are only known to and studied by few

specialists within mathematics and computer science.

This example about Socrates and men is a very well-known

one. You may wonder: what is the history of this example?

In English, the example is commonly given using the word

“man”, although one also finds “human”. Like many lan-

guages (e.g., French, Italian), English often uses “man” for

“human being”, although this use of language may be con-

sidered discriminating against women. E.g. [Tho95a]:

man [. . . ] 1 an adult human male, esp. as distinct

from a woman or boy. 2 a human being; a person (no

man is perfect).

While the example does not, strictly speaking, imply that

“man” is used in the meaning of “human being”, this is

strongly suggested both by the content of the example (or

should women be immortal?) and the fact that languages
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that do have a word for “human being” (e.g. “Mensch” in

German) usually give the example using this word. In fact,

the example is originally in Old Greek, and there the word

�njrwpoc (anthropos = human being), as opposed to �n r

(anér = human male), is used.

The example is a so-called syllogism of the first figure, which

the scholastics called Barbara. It was developed by Aristotle

[Ari] in an abstract form, i.e., without using the concrete name

“Socrates”. In his terminology, �njrwpoc is the middle term

that is used as subject in the first premise and as predicate in

the second premise (this is what is called first figure). Aristotle

formulated the syllogism as follows: If A of all B and B is said

of all C, then A must be said of all C.

And why “Socrates”? It is not exactly clear how it

came about that this particular syllogism is associated with

Socrates. In any case, as far it is known, Socrates did not in-

vestigate any questions of logic. However, Aristotle frequently

uses Socrates and Kallias as standard names for individuals
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• Limitation: cannot quantify over predicates104.

• “A” world or “the” world is modeled in first-order logic

using so-called first-order theories. This will be studied

next lecture.

[Ari]. Possibly there were statutes of Socrates and Kallias

standing in the hall where Aristotle gave his lectures, so it

was convenient for him to point to the statutes whenever he

was making a point involving two individuals.
104The idea underlying first-order logic seems so general that

it is not so apparent what its limitations could be. The limi-

tations will become clear as we study more expressive logics.

For the moment, note the following: in first-order logic, we

quantify over variables (hence, domain elements), not over

predicates. The number of predicates is fixed in a particular

first-order language. So for example, it is impossible to express

the following:

For all unary predicates p, if there exists an x such

that p(x) is true, then there exists a smallest x such

that p(x) is true,

since we would be quantifying over p.
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5 First-Order Logic with Equality
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Overview

Last lecture: first-order logic.

This lecture:

• first-order logic with equality and first-order theories;

• set-theoretic reasoning.

We extend language and deductive system to formalize and

reason about the (mathematical) world.
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FOL with Equality

Equality is a logical symbol rather than a mathematical one105.

Speak of first-order logic with equality rather than adding

equality as “just another predicate”.
105

In logic languages, it is common to distinguish between log-

ical and non-logical symbols. We explain this for first-order

logic.

Recall that there isn’t just the language of first-order logic,

but rather defining a particular signature gives us a first-order

language. The logical symbols are those that are part of any

first-order language and whose meaning is “hard-wired” into

the formalism of first-order logic, like ∧ or ∀. The non-logical

symbols are those given by a particular signature, and whose

meaning must be defined “by the user” by giving a structure.

Above we say “mathematical” instead of “non-logical” be-

cause we assume that mathematics is our domain of discourse,

so that the signature contains the symbols of “mathematics”.

Now what status should the equality symbol = have? We

will assume that = is a symbol whose meaning is hard-wired

into the formalism. One then speaks of first-order logic with

equality.
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Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Alternatively, one could regard = as an ordinary (binary in-

fix) predicate. However, even if one does not give = a special

status, anyone reading = has a certain expectation. Thus it

would be very confusing to have a structure that defines = as

a, say, non-reflexive relation.
106

IA(s=t) =

{
1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.
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Semantics : recall a structure is a pair A = 〈UA, IA〉 and
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IA(s = t) =
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Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Semantics : recall a structure is a pair A = 〈UA, IA〉 and

IA(t) is the interpretation of t.

IA(s = t) =

{
1 if IA(s) = IA(t)

0 otherwise

Note the three completely different uses of “=”106 here!

Alternatively, one could regard = as an ordinary (binary in-

fix) predicate. However, even if one does not give = a special

status, anyone reading = has a certain expectation. Thus it

would be very confusing to have a structure that defines = as

a, say, non-reflexive relation.
106

IA(s=t) =

{
1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression

on the left-hand side is defined to be equal to the value of the

right-hand side.

The third = is semantic equality, i.e., the identity relation

on the domain.
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Rules107

• Equality is an equivalence relation108

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans



Rules107

• Equality is an equivalence relation108

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

• Equality is also a congruence109 on terms and all rela-

107Since = is a logical symbol in the formalism of first-order

logic with equality, there should be derivation rules for = to

derive which formulas a = b are true.
108In general mathematical terminology, a relation ≡ is an

equivalence relation if the following three properties hold:

Reflexivity: a ≡ a for all a;

Symmetry: a ≡ b implies b ≡ a;

Transitivity: a ≡ b and b ≡ c implies a ≡ c.

Example: being equal modulo 6.

“a is equal b modulo 6” is often written a ≡ b mod 6.
109In general mathematical terminology, a relation ∼= is a

congruence w.r.t. (or: on) f , where f has arity n, if

a1
∼= b1, . . . , an ∼= bn implies f (a1, . . . , an) ∼= f (b1, . . . , bn).

Example: being equal modulo 6 is congruent w.r.t. multipli-

cation.

14 ≡ 8 mod 6 and 15 ≡ 9 mod 6, hence 14 · 15 ≡ 8 ·
9 mod 6.
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tions110
r = s

T (r) = T (s)
cong1

r = s P (r)

P (s)
cong2

This can be defined in an analogous way for a property

(relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisibil-

ity by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible

by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not

divisible by 3.
110Why did we use letters T and P here?

Recall the rules for building terms and atoms.

Is T (r) a term, and P (r) an atom, obtained by one applica-

tion of such a rule, i.e.: is T a function symbol in F , applied

to s, and is P a predicate symbol in P , applied to s?



tions110
r = s

T (r) = T (s)
cong1

r = s P (r)

P (s)
cong2

This can be defined in an analogous way for a property

(relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisibil-

ity by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible

by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not

divisible by 3.
110Why did we use letters T and P here?

Recall the rules for building terms and atoms.

Is T (r) a term, and P (r) an atom, obtained by one applica-

tion of such a rule, i.e.: is T a function symbol in F , applied

to s, and is P a predicate symbol in P , applied to s?

In general, no! The notations T (r) and P (r) are metanota-

tions. T (r) stands for any term in which r occurs, and P (r)

stands for any formula in which r occurs.

And in this context, the notation T (s) stands for the term

obtained from T (r) by replacing all occurrences of r with s.
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Soundness of Rules

For any UA, equality in UA is an equivalence relation111 and

functions/predicates/logical-operators are “truth-functional”112.

In analogy the notation P (s) is defined.

Note that r and s arbitrary terms.

This description is not very formal, but this is not too prob-

lematic since we will be more formal once we have some useful

machinery for this at hand.
111On the semantic level, two things are equal if they are

identical. Semantic equality is an equivalence relation. This

semantic fact is so fundamental that we cannot explain it any

further.

So one can prove that IA(s = s) = 1 for all all terms s, be-

cause IA(s) = IA(s) for all terms, and likewise for symmetry

and transitivity.
112If T (x) is a term containing x and T (y) is the term ob-

tained from T (x) by replacing all occurrences of x with y, and

moreover IA(x = y) = 1, then IA(x) = IA(y). One can show

by induction on the structure of t that IA(T (x)) = IA(T (y)).

So by “truth-functional” we mean that the value IA(T (x))

depends on IA(x), not on x itself.
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Congruence: Alternative Formulation

One can specialize congruence rules to replace only some term

occurrences.
r = s

T [z ← r] = T [z ← s]
cong1

r = s P [z ← s]

P [z ← r]
cong2

One time z is replaced with r and one time with s.113

This can be generalized to n variables as in the rule.

An analogous proof can be done for rule cong2.
113The notation T [z ← r] stands for the term obtained from

T by replacing z with r. [z ← r] is called a substitution.

To have an unambiguous notation for “replacing some oc-

currences of r”, we start from a term T containing occur-

rences of a variable z. On the LHS, z is replaced with r,

on the RHS z is replaced with s. So on the RHS we have a

term obtained from the term on the LHS by replacing some

occurrences of r with s.

One can say that z is introduced to mark the occurrences

of r that should be replaced by s.

Note that r and s can be arbitrary terms, whereas z is a

variable (substitutions replace variables, not arbitrary terms).
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Congruence: Example

How many ways are there to choose some occurrences of x in

x2 + w2 > 12 · x?

114The atom x2 + y2 > 12 · x contains two occurrences of

x. There are four ways to choose some occurrences of x in

x2 + y2 > 12 · x.

Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with

z. That is, there are four different A’s such that A[x/z] =

x2+y2 > 12·x. Now the atom above the line in the examples

is obtained by substituting x for z, and the atom below the

line is obtained by substituting y for z.

104



Congruence: Example
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Congruence: Example

How many ways are there to choose some occurrences of x in

x2 + w2 > 12 · x? 4, namely:

A = x2 + w2 > 12 · x, A = z2 + w2 > 12 · x,

A = x2 + w2 > 12 · z, A = z2 + w2 > 12 · z.
114

We show two ways:

x = 3 x2 + w2 > 12 · x
32 + w2 > 12 · x

with A = z2 + y2 > 12 · x

x = 3 x2 + w2 > 12 · x
x2 + w2 > 12 · 3

with A = x2 + w2 > 12 · z

114The atom x2 + y2 > 12 · x contains two occurrences of

x. There are four ways to choose some occurrences of x in

x2 + y2 > 12 · x.

Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with

z. That is, there are four different A’s such that A[x/z] =

x2+y2 > 12·x. Now the atom above the line in the examples

is obtained by substituting x for z, and the atom below the

line is obtained by substituting y for z.
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Generalized Congruence

The congruence rules can be generalized to n equalities in-

stead of just 1 equality. The generalized rules are derivable

from the simple ones by n-fold application.

r1 = s1 · · · rn = sn

T [z1 ← r1, . . . , zn ← rn] = T [z1 ← s1, . . . , zn ← sn]
cong1

r1 = s1 · · · rn = sn P [z1 ← r1, . . . , zn ← rn]

P [z1 ← s1, . . . , zn ← sn]
cong2
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Isabelle Rule

The Isabelle FOL rule is simply115 (using a tree syntax)

r = s P (r)

P (s)
subst

or literally

Ja = b;P (a)K =⇒ P (b)

115The Isabelle FOL rule is:
r = s P (r)

P (s)
subst

In this rule, P is an Isabelle metavariable.

Why doesn’t the Isabelle rule contain a z to mark which

occurrences should be replaced?

We cannot understand this yet, but think of P as a formula

where some positions are marked in such a way that once we

apply P to r (we write P (r)), r will be inserted into all those

positions. This is why P (r) is a formula and P (s) is a formula

obtained by replacing some occurrences of r with s.
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Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I
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Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

P (t)

∃x. P (x)
∃-I

, “P (x)” is metanotation. In the

example, P (x) = (t = x).
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Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

P (t)

∃x. P (x)
∃-I

, “P (x)” is metanotation. In the

example, P (x) = (t = x).

Notational confusion avoided by a precise metalanguage.
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6 First-Order Theories
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What Is a Theory?

Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols

for which certain “laws” hold.

Depending on the context, these symbols may co-exist with

other symbols.

Technically, the laws are added as rules (in particular, ax-

ioms) to the proof system.

A structure in which these rules are true is then called a

model of the theory.

6.1 Example 1: Partial Orders

• The language of the theory of partial orders116: ≤117



What Is a Theory?

Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols

for which certain “laws” hold.

Depending on the context, these symbols may co-exist with

other symbols.

Technically, the laws are added as rules (in particular, ax-

ioms) to the proof system.

A structure in which these rules are true is then called a

model of the theory.

6.1 Example 1: Partial Orders

• The language of the theory of partial orders116: ≤117

116A partial order is a binary relation that is reflexive, transi-

tive, and anti-symmetric: a ≤ b and b ≤ a implies a = b.
117≤ is (by convention) a binary infix predicate symbol.

The theory of partial orders involves only this symbol, but

that does not mean that there could not be any other symbols

in the context.
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• Axioms

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z118

∀x, y. x ≤ y ∧ y ≤ x↔ x = y119



• Axioms

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z118

∀x, y. x ≤ y ∧ y ≤ x↔ x = y119

• Alternative to axioms is to use rules
x ≤ y y ≤ z

x ≤ z
trans

x ≤ y y ≤ x

x = y
antisym

x = y

x ≤ y
≤-refl

Such a conversion is possible since implication is the main

connective.120

118The axiom ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z encodes

transitivity.
119Note that ∀x, y. x ≤ y ∧ y ≤ x ↔ x = y encodes both

antisymmetry (→) and reflexivity (←). Recall that A ↔ B

as shorthand for A→ B ∧B → A.
120One can see that using →-I and →-E, one can always

convert a proof using the axioms to one using the proper

rules.

More generally, an axiom of the form ∀x1, . . . , xn. A1 ∧
. . . ∧ An → B can be converted to a rule

A1 . . . An

B .

Do it in Isabelle!
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More on Orders

• A partial order ≤ is a linear or total order121 when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation122 of this disjunction.

121We define these notions according to usual mathematical

terminology.

A partial order ≤ is a linear or total order if for all a, b,

either a ≤ b or b ≤ a.

A partial order ≤ is dense if for all a, b where a < b, there

exists a c such that a < c and c < b.
122The axiom ∀x, y. x ≤ y ∨ y ≤ x cannot be phrased as a

proper rule in the style of, for example, the transitivity axiom.
123We use s < t as shorthand for s ≤ t ∧ ¬s = t.

We say that < is the strict part of the partial order ≤.
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More on Orders

• A partial order ≤ is a linear or total order121 when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation122 of this disjunction.

• A total order ≤ is dense when, in addition

∀x, y. x < 123y → ∃z.(x < z ∧ z < y)

What does < mean?
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A partial order ≤ is a linear or total order if for all a, b,
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A partial order ≤ is dense if for all a, b where a < b, there
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Structures for Orders . . .

Give structures for orders that are . . .

1. not total:

124The ⊆-relation is partial but not total. As an example,

consider the ⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J
J
J
JJ

























J
J
J
J
JJ

Depicting partial orders by a such a graph is quite common.

Here, node a is below node b and connected by an arc if and

only if a < b and there exists no c with a < c < b.

In this example, we have the partial order

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.
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Structures for Orders . . .
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Structures for Orders . . .

Give structures for orders that are . . .

1. not total: ⊆-relation124;

2. total but not dense: integers with ≤;

3. dense: reals with ≤.
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6.2 Example 2: Groups

• Language: Function symbols · , −1, e125



6.2 Example 2: Groups

• Language: Function symbols · , −1, e125

• A group is126 a model127 of

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

125 · is a binary infix function symbol (in fact, only · is the

symbol, but the notation · is used to indicate the fact that

the symbol stands between its arguments).
−1 is a unary function symbol written as superscript. Again,

the is used to indicate where the argument goes.

e is a nullary function symbol (= constant).

Note that groups are very common in mathematics, and

many different notations, i.e., function names and fixity (infix,

prefix. . . ) are used for them.
126In general mathematical terminology, a group consists of

three function symbols · , −1, e, obeying the following laws:

Associativity (a · b) · c = a · (b · c) for all a, b, c,

Right neutral a · e = a for all a,

Right inverse a · a−1 = e for all a.

127A model of the group axioms is a structure in which the

group axioms are true.
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It is an example of an equational theory128.



It is an example of an equational theory128.

Two theorems: (1) x−1 · x = e and (2) e · x = x

We will now prove them.

However, when we say something like, “this model is a

group”, then this is a slight abuse of terminology, since there

may be other function symbols around that are also inter-

preted by the structure.

So when we say “this model is a group”, we mean, “this

model is a model of the group axioms for function symbols

· , −1,and e clear from the context”.
128An equational theory is a set of equations. Each equation

is an axiom.

Sometimes, each equation is surrounded by several ∀-

quantifiers binding all the free variables in the equation, but

often the equation is regarded as implicitly universally quan-

tified.

More generally, a conditional equational theory consists of

proper rules where the premises are called conditions [Höl90].

Note also that sometimes, one also considers the basic rules

of equality as being part of every equational theory. Whenever

one has an equational theory, one implies that the basic rules
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Equational Proofs

A typical proof in an equational theory looks very different

from the natural deduction style, but it looks very much like

the proofs you know from school mathematics.

An equational proof consists simply of a sequence of equa-

tions, written as t1 = t2 = . . . = tn, where each ti+1 is

obtained from ti by replacing some subterm s with a term s′,

provided the equality s = s′ holds.

More on the justification later.

are present; whether or not one assumes that they are formally

elements of the equational theory is just a technical detail.
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x =
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Equational Proofs Justified

Translated to natural deduction style, an equational proof

looks like this:

Axn−1

. . .
∀-E

sn−1 = s′n−1
(sym)

Ax2

. . .
∀-E

s2 = s′2
(sym)

Ax1

. . .
∀-E

s1 = s′1
(sym)

t1 = t1
refl

t1 = t2
cong2

cong2

....
t1 = tn−1

t1 = tn
cong2

where each Axi is an axiom of the equational theory129.
129The double line marked with ∀-E stands for 0 or more

applications of the ∀-E rule. Moreover, there might be an

application of sym.
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Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”130 terms are needed, etc.

• In some cases (the word problem131 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!132

130By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
131The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
132
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7 Näıve Set Theory

7.1 Näıve Set Theory: Basics

• A set is a collection of objects where order and repetition

are unimportant.

Sets are central in mathematical reasoning [Vel94].

• In what follows we consider a simple, intuitive formaliza-

tion: näıve set theory.

We will be somewhat less formal than usual. Our goal is

to understand standard mathematical practice.

Later, in HOL, we will be completely formal.

This is an example of the general scheme.

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree

consisting of a group axiom and possibly several applications

of ∀-E.
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Sets: Language

Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)}133 and a binary membership

predicate ∈.

133Set comprehension is a way of defining sets. {x|P (x)}
stands for the set of elements of the universe for which P (x)

(some formula usually containing x) holds.
134It is more adequate to regard a set as a term than as a

formula. A set is a “thing”, not a statement about “things”.

After all, we have the predicate ∈ expecting a set on the

RHS (and even the LHS may be a set!), and predicates take

terms as arguments.

However, the syntax used in set comprehensions is not legal

syntax for terms, since P (x) is a formula.

This is why we introduce a special syntactic category for

sets.
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• set-comprehension {x|P (x)}133 and a binary membership

predicate ∈.

• Term/formula distinction inadequate134: need a syntactic
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Examples

• What does the following say?

x ∈ {y|y mod 6 = 0}
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Examples

• What does the following say?

x ∈ {y|y mod 6 = 0}

Answer: x mod 6 = 0.

• What about this?

2 ∈ {w|6 /∈ {x|x is divisible by w}}

Answer: 6 /∈ {x|x divisible by 2} i.e., 6 not divisible by

2.
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Proof Rules for Sets

Introduction, elimination, extensional equality135

P (t)

t ∈ {x|P (x)}
compr-I

t ∈ {x|P (x)}
P (t)

compr-E

∀x. x ∈ A↔ x ∈ B
A = B

=-I
A = B

∀x. x ∈ A↔ x ∈ B =-E

The following equivalence is derivable136:

∀x. P (x)↔ x ∈ {y|P (y)}

135Two things are extensionally equal if they are “equal in

their effects”. Thus two sets are equal if they have the same

members, regardless of what syntactic expressions are used to

define those sets.

Note that extensional equality may be undecidable.
136

[P (x)]1

x ∈ {y|P (y)}
compr-I

[x ∈ {y|P (y)}]1

P (x)
compr-E

P (x)↔ x ∈ {y|P (y)} ↔-I1

∀x. P (x)↔ x ∈ {y|P (y)} ∀-I

Rule ∀-I was defined in a previous lecture.
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Digression: Sorts

• The following notations are common in mathematics and

logic:

{x∈ U |P (x)}
∀x∈ U. P (x)

∃x∈ U. P (x)

137We already know what a universe or domain is. To inter-

pret a particular language, we have a structure interpreting all

function symbols as functions on the universe.

However, it is often adequate to subdivide the universe into

several “sub-universes”. Those are called sorts. Note that a

sort is a set.

For example, in a usual mathematical context, one may dis-

tinguish R (the real numbers) and N (the natural numbers)

to say that
√
x requires x to be of sort R and x! requires x

to be of sort N.
138In sorted logic, sorts are part of the syntax. So the sig-

nature contains a fixed set of sorts. For each constant, it is

specified what its sort is. For each function symbol, it is spec-

ified what the sort of each argument is, and what the sort of

the result is. For each predicate symbol, it is specified what

the sort of each argument is.

Terms and formulas that do not respect the sorts are not

well-formed, and so they are not assigned a meaning.
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Digression: Sorts

• The following notations are common in mathematics and

logic:

{x∈ U |P (x)} ≡ {x | x ∈ U ∧ P (x)}
∀x∈ U. P (x) ≡ ∀x. x ∈ U → P (x)

∃x∈ U. P (x) ≡ ∃x. x ∈ U ∧ P (x)

These are syntactic sugar. One uses them when U de-

notes an “important” sub-universe137 such as R or N.

Such a U is sometimes called sort.

• There is also sorted first-order logic138.

137We already know what a universe or domain is. To inter-

pret a particular language, we have a structure interpreting all

function symbols as functions on the universe.

However, it is often adequate to subdivide the universe into

several “sub-universes”. Those are called sorts. Note that a

sort is a set.

For example, in a usual mathematical context, one may dis-

tinguish R (the real numbers) and N (the natural numbers)

to say that
√
x requires x to be of sort R and x! requires x

to be of sort N.
138In sorted logic, sorts are part of the syntax. So the sig-

nature contains a fixed set of sorts. For each constant, it is

specified what its sort is. For each function symbol, it is spec-

ified what the sort of each argument is, and what the sort of

the result is. For each predicate symbol, it is specified what

the sort of each argument is.

Terms and formulas that do not respect the sorts are not

well-formed, and so they are not assigned a meaning.
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7.2 Operations on Sets

• Functions on sets

A ∩ 139B ≡ {x|x ∈ A ∧ x ∈ B}
A ∪B ≡ {x|x ∈ A ∨ x ∈ B}
A \B ≡ {x|x ∈ A ∧ x 6∈ B}

• Predicates on sets

A ⊆ B ≡ ∀x. x ∈ A→ x ∈ B

In contrast, our logic is unsorted. The special syntax we

provide for sorted reasoning is just syntactic sugar, i.e., we

use it as shorthand and since it has an intuitive reasoning,

but it has no impact on how expressive our logic is.
139

∩ is called intersection.

∪ is called union.

\ is called set difference.

⊆ is called inclusion.
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.
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Correspondence between Set-Theoretic and Logical
Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the set-

theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.

140When we transform an expression containing set operators

∩,∪, \,⊆ into an expression using ∧,∨,¬,→, we call the

latter the logical form of the expression.
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Correspondence between Set-Theoretic and Logical
Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the set-

theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.
Example: what is the logical form140 of x ∈ ((A ∩ B) ∪

(A ∩ C))? (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

140When we transform an expression containing set operators

∩,∪, \,⊆ into an expression using ∧,∨,¬,→, we call the

latter the logical form of the expression.
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

141A Venn diagram draws sets as bubbles. Intersecting sets

are drawn as overlapping bubbles, and the overlapping area is

meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof accord-

ing to usual mathematical practice. If it is unknown whether

two sets have a non-empty intersection, how are we supposed

to draw them? Trying to make a case distinctions (drawing

several diagrams depending on the cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they

are not proofs.
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (1)

Venn diagram (Is this a proof?)141

141A Venn diagram draws sets as bubbles. Intersecting sets

are drawn as overlapping bubbles, and the overlapping area is

meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof accord-

ing to usual mathematical practice. If it is unknown whether

two sets have a non-empty intersection, how are we supposed

to draw them? Trying to make a case distinctions (drawing

several diagrams depending on the cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they

are not proofs.
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)

Natural deduction (natural language142)

142We intersperse formal notation with natural language here

in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.
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By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

For an arbitrary x, this is equivalent to establishing

(x ∈ A ∧ (x ∈ B ∨ x ∈ C))↔
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142We intersperse formal notation with natural language here

in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)

Natural deduction (natural language142)

By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

For an arbitrary x, this is equivalent to establishing

(x ∈ A ∧ (x ∈ B ∨ x ∈ C))↔
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

But that is a propositional tautology.

Do it in Isabelle!

142We intersperse formal notation with natural language here

in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.
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Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

143

Let A and B be arbitrary sets. (∀-I)
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Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

Therefore ((A ∪B) \B) ⊆ A.

143

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)

Therefore ((A ∪B) \B) ⊆ A (def of ⊆)

Concerning forward and backwards reasoning, one may look

at it as follows: we first construct the derivation step at the

root of the proof tree (∀-I), and then we jump to a leaf (by

making the temporary assumption) and work downwards from

there.
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Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

Therefore ((A ∪B) \B) ⊆ A.

Combination143 of forward reasoning with backward rea-

soning. This is common in practice and usually easy to un-

scramble.
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7.3 Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
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7.3 Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f (x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f (x)}

Example: t ∈ {x2|x > 5} equivalent to ∃x. x > 5∧t = x2.

True for t ∈ {36, 49, . . .}
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Indexing

Sometimes, it is natural to denote a function f applied to an

argument x as “f indexed by x”, so fx, rather than f (x).
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Indexing

Sometimes, it is natural to denote a function f applied to an

argument x as “f indexed by x”, so fx, rather than f (x).

Example: let S = set of students and let ms stand for “the

mother of s”, for s a student. Call S an index set.

x ∈ {ms|s ∈ S} ↔ x ∈ {y|∃s. s ∈ S ∧ y = ms}
↔ ∃s. s ∈ S ∧ x = ms

↔ ∃s ∈ S. x = ms

Uses extended comprehensions, indexing syntax, and sorted

quantification.
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