Computer-Supported Modeling and
Reasoning

Jan-Georg Smaus

WS09/10

How to Use Lecture Notes

These lecture notes are generated from sources that were
originally intended for hypermedia, as lecture slides or online
course. Instead of hyperlinks you have footnotes and pointers
to page numbers, indicated by =¥. The online versions of this
material make heavy use of overlays. In this printout version,
overlays are usually handled by putting the items in question
side by side, separated by m.

1 General Introduction

What this Course is about

Making logic come to life by making it run on a computer,

using the tool Isabelle. Applications in
e Mathematicq!| (Hilbert’s program)

tIn the 1920’s, David Hilbert attempted a single rigorous
formalization of all of mathematics, named Hilbert’s pro-
gram. He was concerned with the following three questions:

1. Is mathematics complete in the sense that every state-
ment can be proved or disproved?

2. Is mathematics consistent in the sense that no statement
can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a
definite method to determine the truth or falsity of any
mathematical statement?

Hilbert believed that the answer to all three questions was
yes'.

Thanks to the the incompleteness theorem of Godel (1931)
and the undecidability of first-order logic shown by Church
and Turing (1936-37) we know now that his dream will never
be realized completely. This makes it a never-ending task to

find partial answers to Hilbert’s questions.

http://isabelle.in.tum.de/

program and hardware verification?]

(]
(For the impacient: some Isabelle/HOL applications (=¥ p.

%

691

For more details:

— Panel talk by Moshe Vardi

— Lecture by Michael J. O’'Donnell
— Article by Stephen G. Simpson

— Original works Uber das Unendliche and Die Grundlagen
der Mathematik [vHGT]

— Some (quotations shedding light on Godel’s incomplete-

ness theorem

— Eric Weisstein’s world of mathematics explaining Godel’s
incompleteness theorem

2Verification is the process of formally proving that a pro-
gram has the desired properties. To this end, it is necessary
to define a specification language in which the desired prop-

erties can be formulated, i.e. specified. One must define a
semantics for this language as well as for the program. These
semantics must be linked in such a way that it is meaningful

http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

What this Course is Useful for
After attending this course, you might . ..

e pursue an academic carecer focused on the topic of this
course or some other topic in formal methods;

e apply formal methods in a companyf’ like Intel or Gem-
plus;

e work in a different area in academia or industry; even
then, understanding mathematical and logical reasoning
improves understanding of how to build correct systems

and do more rigorous proofs.

to say: “Program X makes formula ¢ true”.
3The last 20 years have seen spectacular hardware and

software failures (e.g. the Pentium bug) and the birth of a
new discipline: the verification engineer.

http://www.intel.com/
http://www.gemplus.com/
http://www.gemplus.com/

Overview: Four Parts
1. Logicﬂ (propositional, first-order, higher-order): appr. 6
units

2. Metalogics| (Isabelle): appr. 2 units

3. Modeling mathematics and computer science (program-
ming languages) in higher-order logic: appr. 6 units

4. Two case studies in formalizing a theory{’ (functional
and imperative programming): appr. 2 units

Presentation roughly follows this structure.

“The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,
it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-
guage allowing to write down statements, together with a
predefined meaning for some of the syntactic entities of this
language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
s A metalogic is a logic that allows us to express properties

of another logic.
sIntuitively, whenever you do computer-supported model-

ing and reasoning, you have to formalize a tiny portion of
the “world”, the portion that your problem lives in. For
example, rational numbers may or may not exist in this por-
tion. A theory is such a formalization of a tiny portion of the
“world”. A theory extends a logic by axioms that describe
that portion of the “world”.

Theories will be considered in more detail later (=¥ p|114).

Relationship to other Courses

Logic: deduction, foundations, and applications

Software engineering: specification, refinement, verifica-
tion

Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reason-
ing, deduction

Requirements

e Some knowledge of logid’] is useful for this course, but
we will try to accommodate different backgrounds, e.g.
with pointers to additional material. Your feedback is
essential!

e You must be willing to participate in the labs and get
your hands dirty! Also, you must follow the course each

week, or you will quickly get lost. It is hard in the
beginning but the rewards are large.

e Being familiar with the editor emacs and basic Linux

commands is very helpful.

"We will introduce different logics and formal systems (so-
called calculi) used to deduce formulas in a logic. We will

neglect other aspects that are usually treated in classes or
textbooks on logic, e.g.:

— semantics (interpretations) of logics; and
— correctness and completeness of calculi.

As an introduction we recommend [vD8()].

2 Propositional Logic
2.1 Propositional Logic: Overview

e System for formalizing certain valid patterns of reasoning

e Expressions built by combining “atomic propositions”
using not, if...then..., and, or, etc.

e Validity¥ means: no counterexample. Validity indepen-
dent of content. Depends on form of the expressions =
can make patterns explicit by replacing words by sym-

bols
A— B A

From if A then B and A it follows that B.m B

*A and B are symbols whose meaning is not “hard-wired”

into propositional logic.

From if A then B and A it follows that B
is valid because it is true regardless of what A and B “mean”,
and in particular, regardless of whether A and B stand for
true or false propositions.

10

e What about!

From if A then B and B it follows that A?

From if A then B and B it follows that A

is invalid because there is a counterexample:
Let A be “Kim is a man” and B be “Kim is a person”.

11

More Examples (Which are Valid?)™

. If it is Sunday, then I don’t need to work.

[t is Sunday:.
Therefore I don’t need to work.

. It will rain or snow.

[t will not snow.
Therefore it will rain.

The Butler is guilty or the Maid is guilty.
The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty.

10

. It it is Sunday, then I don’t need to work.

[t is Sunday.
Therefore I don’t need to work. VALID

It will rain or snow.

[t is too warm for snow.
Therefore it will rain. VALID

. The Butler is guilty or the Maid is guilty:.

The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty:.
NOT VALID

12

History

e Propositional logic was developed to make this all pre-
cise.

e Laws for valid reasoning were known to the Stoic philoso-

phers (about 300 BC).

e The formal system is often attributed to George Boole
(1815-1864).

Further reading: [vD80], [Tho91l, chapter 1].

13

More Formal Examples

Formalization allows us to “turn the crank”[l]
Phrases like “from . . . it follows” or “therefore” are formalized!?
as derivation rules, e.g.
A—B A
B

Rules are grafted together to build trees called derivations.

—-F

This defines a proof systemﬁ in the style of natural deduction.

1By formalizing patterns of reasoning, we make it possible
for such reasoning to be checked or even carried out by a
computer.

From known patterns of reasoning new patterns of reason-

ing can be constructed.
2At this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right
of”. In other words, our formalization consists of geometrical
objects like trees.

We study formalization in more detail later (=¥ p[291)).
A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules
are grafted together to trees in natural deduction. We will
see this shortly, but note that natural deduction is just one
style of proof systems.

We call the rules in that particular set basic rules. Later

we will see one can also derive (=» p{4f) rules.

14

2.2 Formalizing Propositional Logic

e We must formalize

1. Languagd'] and semantics (=% p 1))
2. Deductive system

e Here we will focus on formalizing the deductive machin-
ery and say little about metatheoremﬂ (soundness and

completenes@ :

e For labs we will carry out proofs using the Isabelle System.

1uBy language we mean the language of formulae. We can
also say that we define the (object) logic. Here “logic” is

used in the narrower sense (=¥ pl7)).
A metatheorem is a theorem about a proof system, as

opposed to a theorem derived within the proof system. The
statement “proof system XY7Z is sound” is a metatheorem.
1A proof system is sound if only valid (=¥ pJL0]) proposi-
tions can be derived in it.
A proof system is complete if all valid (=» p[10) proposi-
tions can be derived in it.

15

2.3 Propositional Logic: Language

Let a set V' of (propositional) variableg’| be given. Lp, the'§
language of propositional logic, is defined by the following

"In mathematics, logic and computer science, there are
various notions of variable. In propositional logic, a variable
is a propositional variable, i.e., it stands for a proposition; it

can be interpreted as True or Fualse.

This will be different in logics that we will learn about
later (=¥ p[63).

18Strictly speaking, the definition of Lp depends on V. A
different choice of variables leads to a different language of
propositional logic, and so we should not speak of the lan-
guage of propositional logic, but rather of a language of
propositional logic. However, for propositional logic, one
usually does not care much about the names of the variables,
or about the fact that their number could be insufficient to
write down a certain formula of interest. We usually assume
that there are countably infinitely many variables.

Later (=¥ pl68)), we will be more fussy about this point.

16

grammaiV (X € V):
P o= X | 12 | (PAEIP) | (PVEEP) | (P —{2P) | ((=P))

A notation like

P =X |L|(PAP)| (PVP)| (P—P)| (=P))
T =2 | f"T,...,7)

n times
Fo=...| pMT,...;T) | Ve. F | Jx. F

R

=x | ¢ | (ee) | (A\z.e)

To=T | 7—7

e =z | c| (ee) | (A\x7.¢)

P:=z | -P| P\P| P—P...

for specifying syntax is called Backus-Naur form (BNF) for

N

expressing grammars. For example, the first BNF-clause
reads: a propositional formula can be

a variable, or

1, or

Py N\ Py, where P, and P, are propositional formulae, or
P,V Py, where P; and P, are propositional formulae, or

P, — P, where P; and P, are propositional formulae, or

17

=Py, where P; is a propositional formula.
The symbol P is called a non-terminal, and when we apply

the rules starting from P until we reach an expression with-
out non-terminal we say that this expression is a production

of P or it is in the language generated by P.

The BNF is a very common formalism for speci-
fying syntax, e.g., of programming languages. See
http://cui.unige.ch/db-research/Enseignement/
analyseinfo/AboutBNF.html or
http://en.wikipedia.org/wiki/Backus—-Naur form.

20

The symbol L stands for “false”.
2The connectives are called conjunction (A), disjunction

(V), implication (—) and negation (—).

The connectives A, V, — are binary since they connect two
formulas, the connective = is unary (most of the time, one

only uses the word connective for binary connective).
2The connectives are called conjunction (A), disjunction

18

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

The elements of Lp are called (propositional) formulaﬂ.

(V), implication (—) and negation (—).
The connectives A, V, — are binary since they connect two

formulas, the connective = is unary (most of the time, one

only uses the word connective for binary connective).
2The connectives are called conjunction (A), disjunction

(V), implication (—) and negation (—).

The connectives A, V, — are binary since they connect two
formulas, the connective — is unary (most of the time, one

only uses the word connective for binary connective).
20“Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or
syntactic sugai™| for reasons of convenience. In paper-and-
pencil proofs, we are allowed to erase any occurrence of =P
and replace it with P — 1, or vice versa, at any time.
However, we shall see that when proofs are automated, this

process must be made explicit.
%[n logic, the word “formula” has a specific meaning.

Formulae are a syntactic category, namely the expressions

19

We omit unnecessary brackets'|

that stand for a statement. So formulas are syntactic expres-
sions that are interpreted (on the semantic level) as True or
False.

We will later (=¥ p[6§) learn about another syntactic cat-
egory, that of terms.

[propositional logic, a formula may also be called a
proposition.

2To save brackets, we use standard associativity and
precedences. All binary connectives (=¥ plI7)) are right-
assoclative:

AoBo(C=Ao(Bo()

The precedences are — before A before V before —. So for
example

A— BAN-CVD=A— ((BAN(=C))V D)

20

Propositional Logic: Semantics

An assignment is a function A : V' — {0,1}. We say that
A assigns a truth value to each propositional variable. We
identify 1 with True and 0 with False.

A is lifted (=extended) to formulas in Lp as follows . ..

21

Propositional Logic: Semantics (2)

A(L) =0

400 = {) i
Alp AY) = {(1) gt}iifv)j; 1 and A() = 1
A0V = {5 e
469) e

22

Propositional Logic: Semantics (3)

If A(¢p) =1, we write A [¢.
Two formulae are equivalent if they yield the same truth

value for any assignment of the propositional variables.
The semantics will be generalised later (=» p|71)).

23

2.4 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].
Designed to support ‘natural’ logical arguments:

e we make (temporary) assumptions;

e we derive new formulas by applying rules;

e there is also a mechanism for “getting rid of” assump-
tions.

24

Natural Deduction (2)

Derivations are trees

A—-(B—-C) A
B—C —t g
C

where the leaves are called assumptions.

We write Ay, ..., A, = A if there exists a derivation of A
with assumptions Ay, ..., 4,, eg. A — (B — C),A,B I
c?

A proof is a derivation where we “got rid” of all assump-
tions.

—-F

»For the moment, the way to understand it is as follows:
by writing A — (B — (), A, B F C, we assert that C
can be derived in this proof system under the assumptions
A— (B—C),AB.

We will say more about the - notation later (=¥ p/g).

25

Natural Deduction: an Abstract Example
o Language L = {V,d & ¢}

e Deductive system given by rules of proof:

o]
R ¢ & 4 v
2 a7 v T e

How do you read these rules?P]]
How about this one?*?

a, 3,7, 0 are just names for the rules.

s0Natural deduction is not just about propositional logic!
We explain here the general principles (=¥ p[l4)) of natural
deduction, not just the application to propositional logic.

In order to emphasize that applying natural deduction is
a completely mechanical process, we give an example that is
void of any intuition.

[t is important that you understand this process. Applying
rules mechanically is one thing. Understanding why this

process is semantically justified is another.
s1'The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ¢, then you are allowed
to draw a line underneath that ¢ and write # underneath
that line.

The third rule reads: if the forest you have constructed so
far contains two neighboring trees, where the left tree has
root ¥ and the right tree has root #, then you are allowed
to draw a line underneath those two roots and write ¥ un-

derneath that line.
32The last rule reads: if at some root of a tree in the forest

26

Proof of ¥

The rules: The proof:

¢

4 T

: — 0 —
¢ 0. x sV S 4
— *J) 20 v
* & v Ya

\ 4

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath
that line. Moreover you are allowed to discharge (eliminate,
close) 0 or more occurrences of 4 at the leaves of the tree.

Discharging is marked by writing [] around the discharged
formula.

Note that generally, the tree may contain assumptions
other than 4 at the leaves. However, these must not be
discharged in this rule application. They will remain open
until they might be discharged by some other rule applica-
tion later.

27

We makﬂ an assumption. The assumption is now open@.

We apply a.

Similarly with (.

We apply 7.

We apply 9, discharging two occurrences of ¢. We mark
the brackets and the rule with a label so that it is clear
which assumption is discharged in which step. The deriva-
tion is now a proof: it has no open assumptions (=¥ p.
(all discharged).

33[n everyday language, “making an assumption” has a con-

notation of “claiming”. This is not the case here. By making
an assumption, we are not claiming anything.

When interpreting a derivation tree, we must always con-
sider the open assumptions. We must say: under the as-
sumptions ..., we derived

[t is thus unproblematic to “make” assumptions.
sFor example, all assumptions in

A—(B—C) A
B—C —E g
C

are open. For the moment, it suffices to know that when

—-k

an assumption is made, it is initially an open assumption.

28

2.5 Deductive System: Rules of Propositional
Logic

We have rules for conjunction, implication, disjunction,
falsity and negation.
Some rules introducd®] others eliminate connectives.

[t is typical that the basic (=¥ p[14)) rules of a proof sys-
tem can be classified as introduction or elimination rules for
a particular connective.

This classification provides obvious names for the rules and
may guide the search for proofs.

The rules for conjunction are pronounced
and-introduction, and-elimination-left, and

and-elimination-right.
Apart from the basic (=¥ p[14)) rules, we will later see that
there are also derived rules.

29

Rules of Propositional Logic (= p.14)):

Conjunction
e Rules of two kinds: introduce (=» p29) and eliminate (=% p)29)
connectives
A B ANB AANB
ANDB N-1 P N-EL B N-ER

e Rules are schematid®|

e Why valid®? If all assumptions are true, then so is
conclusion

AEAANB (2pR3)if AEAand AE B

s6The letters A and B in the rules are not propositional
variables. Instead, they can stand for arbitrary propositional
formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to
object variables, i.e., variables of the language that we reason

about (here: propositional logic).

When a rule is applied, the metavariables of it must be
replaced with actual formulae. We say that a rule is being
instantiated.

We will see more about the use of metavariables

later (=¥ ppl]).

7 A rule is valid if for any assignment (=¥ p[21]) under which
the assumptions of the formula are true, the conclusion is

true as well.

This is consistent with the earlier intuitive
explanation (=¥ pJ10) of validity of a formula. Details
can be found in any textbook on logic [vD80].

Note that while the notation A = ... will be used again

30

Example Derivation with Conjunction

The rules:
A B Al
AND AN(BAC)
ANB | oo AN (BAC) Brc VBER
A 1 N-EL C) ;\-ER
A lA} B A_ER ANC

Can we prove anything with just these three rulesﬁ

later (=¥ pJ76]), there A will not stand for an assignment,
but rather for a construct having an assignment as one con-
stituent. This is because we will generalize, and in the new
setting we need something more complex than just an as-
signment. But in spirit A = ... will still mean the same
thing.

38 All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier (=¥ p[25) that a proof is a derivation
with no open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

31

Rules of Propositional Logic: Implication

e Rules
4]
B
A—>B_>_I AHBB A_>_E

e —-F is also called modus ponens.

e —-[formalizes strategy:
To derive A — B, derive B under the additional as-
sumption A.

32

A very Simple Proof
The simplest proof we can think of is the proof of P — P.
P!
P— P

L

Do you find this strange?”

»When we make the assumption P, we obtain a
forest (=¥ pl26]) consisting of one tree. In this tree, P is
at the same time a leaf and the root. Thus the tree P is a
degenerate example of the schema

A
B
where both A and B are replaced with P.

Therefore we may apply rule —-I, similarly as in our ab-
stract example (=¥ p[26)).

33

Examples with Conjunction and Implication

1.A— B — A9
2. AN(BANC)— ANCH
The rule(s):
The proof:
A
40 { :] [A]l
B B— A —- I
Ao A—-B— A"
The rules:
A B
AnB™t
The proof:
AANB
4 MEL [AN(BAC)
ad A B [AN(BACO)? Brc VER
s A-ER p N-EL C ;\—ER
. ANC - 2
{ﬂ (AN(BAC)) — (ANC)
B
A— B o

34

3(A-B—-0C)—(A—-B)—A—CH

Are these object or metavariables here?™

The rules: The proof:
A (A= B—CO)P [4P (A= B)' (AP
: B0 —- B —-F
N B H_I C —-F
A— B Ao F a
A—-B A | (A=B)~A=C B
5 — L ASBSCO) S (A-B -A-C

#]n these examples, you may regard A, B,C' as propo-
sitional variables. On the other hand, the proofs are
schematic, i.e., they go through for any formula replacing

A, B, and C.

39

Disjunction

e Rules
Al (B
A B AV B C C
AV B V-1L AV B V-IR C V-E

e Formalizes case-split strategy for using AV B.

36

Disjunction: Example

e Rules
4] (B
A B AVB C C
AVBV'IL AVBV'IR C

e Example: formalize and prove

When it rains then I wear my jacket.
When it snows then I wear my jacket.
[t is raining or snowing.

Therefore I wear my jacket.

37

Falsity and Negation
e Falsity

L (= p.
1 1-FE

No introduction rulel*}

e Negation: define (=» p[17) =A as A —_L. Rules for —
just special caseq™| of rules for —. Convenient to have

“The symbol L stands for “false”.
It should be intuitively clear that since the purpose of a

proof system is to derive true formulae, there is no introduc-
tion rule for falsity. One may wonder: what is the role of
L then? We will see this soon. The main role is linked to

negation. We quote from [And02, p. 152]:
L plays the role of a contradiction in indirect proofs.

5 The rule
-A A

il
is simply an instance of —-E (= p32) (since —A is short-
hand for A —_1).

Likewise, the rule

38

-A A

A4 T —-K
B ~-H derived by (= pBJ) B Lk

is simply an instance of —-I (=¥ p[32). Therefore, we will
not introduce these as special rules. But there is a special

rule —=-E (=¥ p39).

“For negation, it is common to have a rule

-A A
B

-1

We have seen how this rule can be derived. The con-
cept of deriving rules will be explained more systematically

later (=¥ pl45).

This rule is also called ex falso quod libet (from the false

whatever you like).

39

Intuitionistic versus Classical Logic

e Peirce’s Law: (A — B) — A) — A.
Is this valid®™? Provabld™?

“Yes, simply check the truth table:

A B |[(A—=B)— A — A
True | True True
True | False True
False | True True
Fualse | False True

#In the proof system given so far (=» pfl)), this is not
provable. To prove that it is not provable requires an analysis

of so-called normal forms of proofs. However, we do not do
this here.

40

e It is provable in classical logid"], obtained by adding

-4 -4
L AA A lassical
AV -=Aor A k Pl or Acassma?

®The proof system we have given so far is a proof system
for intuitionistic logic. The main point about intuitionistic

logic is that one cannot claim that every statement is either
true or false, but rather, evidence must be given for every
statement.
In classical reasoning, the law of the excluded middle holds.
One also says that proofs in intuitionistic logic are
constructive whereas proofs in classical logic are not nec-

essarily constructive.
We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar
classical logic which allows an effective interpretation
and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has
been the topic of a fundamental discourse in the literature
on logic [PMG68] [Tho91l, chapter 3]. Often proofs contain
case distinctions, assuming that for any statement v, either
1 or =1 holds. This reasoning is classical; it does not apply

41

Example of Classical Reasoning
Recall the story of Oedipus from greek mythology:
e Jokaste is the mother of Oedipus.

e [okaste and Oedipus are the parents of Polyneikes.
e Polyneikes is the father of Thersandros.
e Oedipus is a patricide.

e Thersandros is not a patricide.

in intuitionistic logic.
0 AV —=A is called axiom of the excluded middle.
si'The rule
A

- RAA
A

1s called reduction ad absurdum.

2The rule
A

A
— classical

A

corresponds to the formulation is Isabelle.

42

Example of Classical Reasoning (cont.)

lokaste
§ Oedipus (patr.)
;
Polyneikes (— patr.)
:
Thersandros (— patr.)

Does Iokaste have a child that is a patricide and that itself
has a child that is not a patricide?

Case 2: If Polyneikes is not a patricide, then Iokaste has
a child (Peblipeikps) that is a patricide and that itself has a
child (TPblynseikdsgs) that is not a patricide.

Herd™¥ is another example.

s There exist irrational numbers a and b such that a’ is
rational.

Proof: Let b be v/2 and consider whether or not 8” is
rational.

Case 1: If rational, let a = b = /2
Case 2: If irrational, let a = ﬂﬂ, and then

2
=V2 =2
We still don’t know how to choose a and b so that a’ is
rational. Hence the proof if non-constructive (=¥ pJ1]).

b \/é\/gﬂ _ \/é(x/?*\/?)

a =

43

Overview of Rules

A B ANDB ANDB

g M o A-EL 5 NER
Al [B]
A B AVB C C
Tug VI g, VR - V-E
[A]
B A=DB A L (= pll7)
a-p ! B —-kb A Lk

44

2.6 Deductive System: Derived Rules

Using the basic (=¥ p[14) rules, we can derive new rules.
Example: Resolution rule.

-5 [9]'
.~k

RVS =S RvS [R} R
\-Fl

R R

45

It looks like this.

We build a fragment of a derivation by writing the con-
clusion R and the assumptions RV S and —.S.

Since we have assumption RV .S, using V-FE seems a good
idea. So we should make assumptions R and S. First R.
But that is a derivation of R from R!

So now S.

=S and S allow us to apply —-E (=¥ p[17).

To apply V-E in the end, we need to derive R. But that’s
casy using | -F!

Finally, we can apply V-E. The derivation with open
assumptions is a new rule that can be used like any other
rule.

46

A Variation of Natural Deduction: Boxes

We have seen just one deductive system.

One variation of natural deduction is the following: A
derivation is not a tree, but a sequence of numbered lines.
Instead of subtrees relying on open assumptions, a subderiva-
tion relying on an assumption is enclosed in a box.

You find this explained in [HR04].

47

2.7 Alternative Deductive System Using
Sequent Notation

One can base the deductive system around the derivability
judgementP?], i.c., reason about I' = A where I' = Ay, ..., A,
instead of individual formulae.

“An object like A — (B — (), A, B F C is called a
derivability judgement. We explained it earlier (=¥ p25)
as simply asserting the fact that there exists a derivation

tree with C' at its root and open assumptions A — (B —
(), A, B.

However, it is also possible to make such judgements the
central objects of the deductive system, i.e., have rules in-
volving such objects.

The notation I' = A is called sequent notation. How-
ever, this should not be confused with the sequent calculus
(we will consider it later (=®» p263)). The sequent cal-
culus is based on sequents, which are syntactic enti-
ties of the form A,...,A, + Bi,...,B,, where the
A, ... A, By, ..., B, are all formulae. You see that this
definition is more general than the derivability judgements

we consider here.
What we are about to present is a kind of hybrid between
natural deduction and the sequent calculus, which we might

48

Sequent Rules (for — /A Fragment)
Rules for assumptions®| and weakening}

I'-B
[+ (where A € T) ATLR weaken

Rules for A and —:

I'-A I'HB I'FAADB I'FAADB

rrang M e a AMEL g AER
ATFB g '-A— B FI—A_}E
'-A—B '+ B i

call natural deduction using a sequent notation.
%“The special rule for assumptions takes the role in this

sequent style (=» p[48) notation that the process of making
and discharging assumptions had in natural deduction based
on trees (=» p24).

It is not so obvious that the two ways of writing proofs
are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
The rule weaken is

'R
ATFB

Intuitively, the soundness of rule weaken should be clear:

weaken

having an additional assumption in the context cannot hurt
since there is no proof rule that requires the absence of some

assumption.

We will see an application of that rule later (=¥ p259).
7 An axiom is a rule without premises. We call a rule with

premises proper.

49

More rules can be derivedPs.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules (=¥ pJi4]) for proposi-
tional logic contain no axioms. In the sequent style (=¥ p[4g)
formalization, having the assumption rule (axiom) is essen-
tial for being able to prove anything, but in the natural de-
duction style we learned first, we can construct proofs with-
out having any axioms.

Note also that even a proper rule in the object
logic (=¥ pJ19)) is just an axiom at the level of Isabelle’s meta-

logic (=¥ p[7]). This will be explained later (=» p[307).
% As an example, consider

ABTHC TFHAAB
I-C

N-E

50

Example: Refinement Style with Metavariables
ANBANC)EV AN (B AC)

AN(BAC)FAANTRAC) ANBAOE (@ aco) VER
AnBrOoFa MEL ANBrO EC VER
ANBAC)FANC A
AN(BAC) = ANC
This rule can be derived as follows:
A BTFC
A,FI—B—>O_>_I ' AAB
rrass-c 1 "1ra ML p
FB—C -k r-p (VBB
—-I

I'=C

51

We want to show that AA(BAC) — AAC is a tautology,
i.e., that it is derivable without any assumptions.

The topmost connective of the formula is —, so the best
rule® to choose is —-IL.

The topmost connective of the formula is A, so the best
rule (=¥ ppH2) to choose is A-L.

Things are becoming less obvious. To know that A-EL is
the best rule for the r.h.s., you need to inspect the assump-
tion AN (B AC).

Now it’s becoming even more difficult. To know that
A-ER is the best rule for the lLh.s., you need to look deep
into the assumption A A (B A C).

Again you need to look at both sides of the F to decide
what to do.

Solution for 77 = A, 7Y = Band 7X = (B A C).

“[n general, statements about which rule to choose when
building a proof are heuristics, i.e., they are not guaran-
teed to work. Building a proof means searching for a proof.
However, there are situations where the choice is clear. E.g.,
when the topmost connective of a formula is —, then —-I
is usually the right rule to apply.

The question will be addressed more systematically
later (=¥ p{250]).

52

Comments about Refinement
This crazy way of carrying out proofs is the (standard) Isabelle-
way!
e Refinement style means we work from goals to axioms"
e metavariables used to delay commitments

[sabelle allows