
Computer-Supported Modeling and
Reasoning

Jan-Georg Smaus

WS09/10

1

How to Use Lecture Notes

These lecture notes are generated from sources that were

originally intended for hypermedia, as lecture slides or online

course. Instead of hyperlinks you have footnotes and pointers

to page numbers, indicated by Ü. The online versions of this

material make heavy use of overlays. In this printout version,

overlays are usually handled by putting the items in question

side by side, separated by à.

2

1 General Introduction

3

What this Course is about

Making logic come to life by making it run on a computer,

using the tool Isabelle. Applications in

• Mathematics1 (Hilbert’s program)

1In the 1920’s, David Hilbert attempted a single rigorous

formalization of all of mathematics, named Hilbert’s pro-

gram. He was concerned with the following three questions:

1. Is mathematics complete in the sense that every state-

ment can be proved or disproved?

2. Is mathematics consistent in the sense that no statement

can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a

definite method to determine the truth or falsity of any

mathematical statement?

Hilbert believed that the answer to all three questions was

’yes’.

Thanks to the the incompleteness theorem of Gödel (1931)

and the undecidability of first-order logic shown by Church

and Turing (1936–37) we know now that his dream will never

be realized completely. This makes it a never-ending task to

find partial answers to Hilbert’s questions.

4

http://isabelle.in.tum.de/

• program and hardware verification2

(For the impacient: some Isabelle/HOL applications (Ü p.691))

high level

requirem
ents

(sem
i) form

al

m
odels

code
code

code

For more details:

– Panel talk by Moshe Vardi

– Lecture by Michael J. O’Donnell

– Article by Stephen G. Simpson

– Original works Über das Unendliche and Die Grundlagen

der Mathematik [vH67]

– Some quotations shedding light on Gödel’s incomplete-

ness theorem

– Eric Weisstein’s world of mathematics explaining Gödel’s

incompleteness theorem

2Verification is the process of formally proving that a pro-

gram has the desired properties. To this end, it is necessary

to define a specification language in which the desired prop-

erties can be formulated, i.e. specified. One must define a

semantics for this language as well as for the program. These

semantics must be linked in such a way that it is meaningful

5

http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

What this Course is Useful for

After attending this course, you might . . .

• pursue an academic career focused on the topic of this

course or some other topic in formal methods;

• apply formal methods in a company3 like Intel or Gem-

plus;

• work in a different area in academia or industry; even

then, understanding mathematical and logical reasoning

improves understanding of how to build correct systems

and do more rigorous proofs.

to say: “Program X makes formula Φ true”.
3The last 20 years have seen spectacular hardware and

software failures (e.g. the Pentium bug) and the birth of a

new discipline: the verification engineer.

6

http://www.intel.com/
http://www.gemplus.com/
http://www.gemplus.com/

Overview: Four Parts

1. Logics4 (propositional, first-order, higher-order): appr. 6

units

2. Metalogics5 (Isabelle): appr. 2 units

3. Modeling mathematics and computer science (program-

ming languages) in higher-order logic: appr. 6 units

4. Two case studies in formalizing a theory6 (functional

and imperative programming): appr. 2 units

Presentation roughly follows this structure.
4The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
5A metalogic is a logic that allows us to express properties

of another logic.
6Intuitively, whenever you do computer-supported model-

ing and reasoning, you have to formalize a tiny portion of

the “world”, the portion that your problem lives in. For

example, rational numbers may or may not exist in this por-

tion. A theory is such a formalization of a tiny portion of the

“world”. A theory extends a logic by axioms that describe

that portion of the “world”.

Theories will be considered in more detail later (Ü p.114).

7

Relationship to other Courses

Logic: deduction, foundations, and applications

Software engineering: specification, refinement, verifica-

tion

Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reason-

ing, deduction

8

Requirements

• Some knowledge of logic7 is useful for this course, but

we will try to accommodate different backgrounds, e.g.

with pointers to additional material. Your feedback is

essential!

• You must be willing to participate in the labs and get

your hands dirty! Also, you must follow the course each

week, or you will quickly get lost. It is hard in the

beginning but the rewards are large.

• Being familiar with the editor emacs and basic Linux

commands is very helpful.

7We will introduce different logics and formal systems (so-

called calculi) used to deduce formulas in a logic. We will

neglect other aspects that are usually treated in classes or

textbooks on logic, e.g.:

– semantics (interpretations) of logics; and

– correctness and completeness of calculi.

As an introduction we recommend [vD80].

9

2 Propositional Logic

2.1 Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions”

using not, if...then..., and, or, etc.

• Validity8 means: no counterexample. Validity indepen-

dent of content. Depends on form of the expressions⇒
can make patterns explicit by replacing words by sym-

bols

From if A then B and A it follows that B.à
A→ B A

B

8A and B are symbols whose meaning is not “hard-wired”

into propositional logic.

From if A then B and A it follows that B

is valid because it is true regardless of what A and B “mean”,

and in particular, regardless of whether A and B stand for

true or false propositions.

10

• What about9

From if A then B and B it follows that A?

9

From if A then B and B it follows that A

is invalid because there is a counterexample:

Let A be “Kim is a man” and B be “Kim is a person”.

11

More Examples (Which are Valid?)10

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work.

2. It will rain or snow.

It will not snow.

Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

10

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work. VALID

2. It will rain or snow.

It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

NOT VALID

12

History

• Propositional logic was developed to make this all pre-

cise.

• Laws for valid reasoning were known to the Stoic philoso-

phers (about 300 BC).

• The formal system is often attributed to George Boole

(1815-1864).

Further reading: [vD80], [Tho91, chapter 1].

13

More Formal Examples

Formalization allows us to “turn the crank”11.

Phrases like “from . . . it follows” or “therefore” are formalized12

as derivation rules, e.g.

A→ B A
B

→-E

Rules are grafted together to build trees called derivations.

This defines a proof system13 in the style of natural deduction.
11By formalizing patterns of reasoning, we make it possible

for such reasoning to be checked or even carried out by a

computer.

From known patterns of reasoning new patterns of reason-

ing can be constructed.
12At this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right

of”. In other words, our formalization consists of geometrical

objects like trees.

We study formalization in more detail later (Ü p.291).
13A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules

are grafted together to trees in natural deduction. We will

see this shortly, but note that natural deduction is just one

style of proof systems.

We call the rules in that particular set basic rules. Later

we will see one can also derive (Ü p.45) rules.

14

2.2 Formalizing Propositional Logic

• We must formalize

1. Language14 and semantics (Ü p.21)

2. Deductive system

• Here we will focus on formalizing the deductive machin-

ery and say little about metatheorems15 (soundness and

completeness16).

• For labs we will carry out proofs using the Isabelle System.

14By language we mean the language of formulae. We can

also say that we define the (object) logic. Here “logic” is

used in the narrower sense (Ü p.7).
15A metatheorem is a theorem about a proof system, as

opposed to a theorem derived within the proof system. The

statement “proof system XYZ is sound” is a metatheorem.
16A proof system is sound if only valid (Ü p.10) proposi-

tions can be derived in it.

A proof system is complete if all valid (Ü p.10) proposi-

tions can be derived in it.

15

2.3 Propositional Logic: Language

Let a set V of (propositional) variables17 be given. LP , the18

language of propositional logic, is defined by the following
17In mathematics, logic and computer science, there are

various notions of variable. In propositional logic, a variable

is a propositional variable, i.e., it stands for a proposition; it

can be interpreted as True or False.

This will be different in logics that we will learn about

later (Ü p.63).
18Strictly speaking, the definition of LP depends on V . A

different choice of variables leads to a different language of

propositional logic, and so we should not speak of the lan-

guage of propositional logic, but rather of a language of

propositional logic. However, for propositional logic, one

usually does not care much about the names of the variables,

or about the fact that their number could be insufficient to

write down a certain formula of interest. We usually assume

that there are countably infinitely many variables.

Later (Ü p.68), we will be more fussy about this point.

16

grammar19 (X ∈ V):

P ::= X | ⊥ 20 | (P∧21P) | (P∨22P) | (P → 23P) | ((¬P)24)
19A notation like
P ::= X | ⊥ | (P ∧ P) | (P ∨ P) | (P → P) | (¬P))

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

e ::= x | c | (ee) | (λx. e)

τ ::= T | τ → τ

e ::= x | c | (ee) | (λxτ . e)

P ::= x | ¬P | P ∧ P | P → P . . .

for specifying syntax is called Backus-Naur form (BNF) for

expressing grammars. For example, the first BNF-clause

reads: a propositional formula can be

a variable, or

⊥, or

P1 ∧ P2, where P1 and P2 are propositional formulae, or

P1 ∨ P2, where P1 and P2 are propositional formulae, or

P1 → P2, where P1 and P2 are propositional formulae, or

17

¬P1, where P1 is a propositional formula.

The symbol P is called a non-terminal, and when we apply

the rules starting from P until we reach an expression with-

out non-terminal we say that this expression is a production

of P or it is in the language generated by P .

The BNF is a very common formalism for speci-

fying syntax, e.g., of programming languages. See

http://cui.unige.ch/db-research/Enseignement/

analyseinfo/AboutBNF.html or

http://en.wikipedia.org/wiki/Backus-Naur form.
20

The symbol ⊥ stands for “false”.
21The connectives are called conjunction (∧), disjunction

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

only uses the word connective for binary connective).
22The connectives are called conjunction (∧), disjunction

18

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

The elements of LP are called (propositional) formulas26.

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

only uses the word connective for binary connective).
23The connectives are called conjunction (∧), disjunction

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

only uses the word connective for binary connective).
24“Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or

syntactic sugar25, for reasons of convenience. In paper-and-

pencil proofs, we are allowed to erase any occurrence of ¬P
and replace it with P → ⊥, or vice versa, at any time.

However, we shall see that when proofs are automated, this

process must be made explicit.
26In logic, the word “formula” has a specific meaning.

Formulae are a syntactic category, namely the expressions

19

We omit unnecessary brackets27.

that stand for a statement. So formulas are syntactic expres-

sions that are interpreted (on the semantic level) as True or

False.

We will later (Ü p.68) learn about another syntactic cat-

egory, that of terms.

I propositional logic, a formula may also be called a

proposition.
27To save brackets, we use standard associativity and

precedences. All binary connectives (Ü p.17) are right-

associative:

A ◦B ◦ C ≡ A ◦ (B ◦ C)

The precedences are ¬ before ∧ before ∨ before→. So for

example

A→ B ∧ ¬C ∨D ≡ A→ ((B ∧ (¬C)) ∨D)

20

Propositional Logic: Semantics

An assignment is a function A : V → {0, 1}. We say that

A assigns a truth value to each propositional variable. We

identify 1 with True and 0 with False.

A is lifted (=extended) to formulas in LP as follows . . .

21

Propositional Logic: Semantics (2)

A(⊥) = 0

A(¬φ) =

{
1 if A(φ) = 0

0 otherwise

A(φ ∧ ψ) =

{
1 if A(φ) = 1 and A(ψ) = 1

0 otherwise

A(φ ∨ ψ) =

{
1 if A(φ) = 1 or A(ψ) = 1

0 otherwise

A(φ→ ψ) =

{
1 if A(φ) = 0 or28 A(ψ) = 1

0 otherwise

22

Propositional Logic: Semantics (3)

If A(φ) = 1, we write A |= φ.

Two formulae are equivalent if they yield the same truth

value for any assignment of the propositional variables.

The semantics will be generalised later (Ü p.71).

23

2.4 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].

Designed to support ‘natural’ logical arguments:

• we make (temporary) assumptions;

• we derive new formulas by applying rules;

• there is also a mechanism for “getting rid of” assump-

tions.

24

Natural Deduction (2)

Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

We write A1, ..., An ` A if there exists a derivation of A

with assumptions A1, ..., An, e.g. A → (B → C), A,B `
C29.

A proof is a derivation where we “got rid” of all assump-

tions.
29For the moment, the way to understand it is as follows:

by writing A → (B → C), A,B ` C, we assert that C

can be derived in this proof system under the assumptions

A→ (B → C), A,B.

We will say more about the ` notation later (Ü p.48).

25

Natural Deduction: an Abstract Example30

• Language L = {ª,¨,«,©}.

• Deductive system given by rules of proof:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

How do you read these rules?31

How about this one?32

α, β, γ, δ are just names for the rules.

30Natural deduction is not just about propositional logic!

We explain here the general principles (Ü p.14) of natural

deduction, not just the application to propositional logic.

In order to emphasize that applying natural deduction is

a completely mechanical process, we give an example that is

void of any intuition.

It is important that you understand this process. Applying

rules mechanically is one thing. Understanding why this

process is semantically justified is another.
31The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ©, then you are allowed

to draw a line underneath that © and write ¨ underneath

that line.

The third rule reads: if the forest you have constructed so

far contains two neighboring trees, where the left tree has

root ¨ and the right tree has root «, then you are allowed

to draw a line underneath those two roots and write ª un-

derneath that line.
32The last rule reads: if at some root of a tree in the forest

26

Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

[©]1

¨
α

[©]1

«
β

ª
γ

ª
δ1

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath

that line. Moreover you are allowed to discharge (eliminate,

close) 0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions

other than © at the leaves. However, these must not be

discharged in this rule application. They will remain open

until they might be discharged by some other rule applica-

tion later.

27

We make33 an assumption. The assumption is now open34.

We apply α.

Similarly with β.

We apply γ.

We apply δ, discharging two occurrences of ©. We mark

the brackets and the rule with a label so that it is clear

which assumption is discharged in which step. The deriva-

tion is now a proof: it has no open assumptions (Ü p.28)

(all discharged).

33In everyday language, “making an assumption” has a con-

notation of “claiming”. This is not the case here. By making

an assumption, we are not claiming anything.

When interpreting a derivation tree, we must always con-

sider the open assumptions. We must say: under the as-

sumptions . . . , we derived

It is thus unproblematic to “make” assumptions.
34For example, all assumptions in
A→ (B → C) A

B → C
→-E

B

C
→-E

are open. For the moment, it suffices to know that when

an assumption is made, it is initially an open assumption.

28

2.5 Deductive System: Rules of Propositional

Logic

We have rules for conjunction, implication, disjunction,

falsity and negation.

Some rules introduce35, others eliminate connectives.

35It is typical that the basic (Ü p.14) rules of a proof sys-

tem can be classified as introduction or elimination rules for

a particular connective.

This classification provides obvious names for the rules and

may guide the search for proofs.

The rules for conjunction are pronounced

and-introduction, and-elimination-left, and

and-elimination-right.

Apart from the basic (Ü p.14) rules, we will later see that

there are also derived rules.

29

Rules of Propositional Logic (Ü p.14):

Conjunction

• Rules of two kinds: introduce (Ü p.29) and eliminate (Ü p.29)

connectives
A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

• Rules are schematic36.

• Why valid37? If all assumptions are true, then so is

conclusion

A |= A ∧B (Ü p.23) iff A |= A and A |= B

36The letters A and B in the rules are not propositional

variables. Instead, they can stand for arbitrary propositional

formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to

object variables, i.e., variables of the language that we reason

about (here: propositional logic).

When a rule is applied, the metavariables of it must be

replaced with actual formulae. We say that a rule is being

instantiated.

We will see more about the use of metavariables

later (Ü p.51).
37A rule is valid if for any assignment (Ü p.21) under which

the assumptions of the formula are true, the conclusion is

true as well.

This is consistent with the earlier intuitive

explanation (Ü p.10) of validity of a formula. Details

can be found in any textbook on logic [vD80].

Note that while the notation A |= . . . will be used again

30

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

Can we prove anything with just these three rules?38

later (Ü p.76), there A will not stand for an assignment,

but rather for a construct having an assignment as one con-

stituent. This is because we will generalize, and in the new

setting we need something more complex than just an as-

signment. But in spirit A |= . . . will still mean the same

thing.
38All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier (Ü p.25) that a proof is a derivation

with no open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

31

Rules of Propositional Logic: Implication

• Rules
[A]
....
B

A→ B
→-I

A→ B A
B

→-E

• →-E is also called modus ponens.

• →-I formalizes strategy:

To derive A → B, derive B under the additional as-

sumption A.

32

A very Simple Proof

The simplest proof we can think of is the proof of P → P .

[P]1

P → P
→-I1

Do you find this strange?39

39When we make the assumption P , we obtain a

forest (Ü p.26) consisting of one tree. In this tree, P is

at the same time a leaf and the root. Thus the tree P is a

degenerate example of the schema
[A]....
B

where both A and B are replaced with P .

Therefore we may apply rule →-I, similarly as in our ab-

stract example (Ü p.26).

33

Examples with Conjunction and Implication

1. A→ B → A40

2. A ∧ (B ∧ C)→ A ∧ C41

40

The rule(s):

[A]
....
B

A→ B
→-I

The proof:

[A]1

B → A
→-I

A→ B → A
→-I1

41

The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

[A]
....
B

A→ B
→-I

The proof:

[A ∧ (B ∧ C)]2

A
∧-EL

[A ∧ (B ∧ C)]2

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

(A ∧ (B ∧ C))→ (A ∧ C)
→-I2

34

3. (A→ B → C)→ (A→ B)→ A→ C42

Are these object or metavariables here?43

42

The rules:

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

The proof:

[(A→ B → C)]3 [A]5

B → C
→-E

[(A→ B)]4 [A]5

B
→-E

C
→-E

A→ C
→-I5

(A→ B)→ A→ C
→-I4

(A→ B → C)→ (A→ B)→ A→ C
→-I3

43In these examples, you may regard A,B,C as propo-

sitional variables. On the other hand, the proofs are

schematic, i.e., they go through for any formula replacing

A,B, and C.

35

Disjunction

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Formalizes case-split strategy for using A ∨B.

36

Disjunction: Example

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Example: formalize and prove

When it rains then I wear my jacket.

When it snows then I wear my jacket.

It is raining or snowing.

Therefore I wear my jacket.

37

Falsity and Negation

• Falsity

⊥ (Ü p.17)

A
⊥-E

No introduction rule!44

• Negation: define (Ü p.17) ¬A as A →⊥. Rules for ¬
just special cases45 of rules for →. Convenient to have

44The symbol ⊥ stands for “false”.

It should be intuitively clear that since the purpose of a

proof system is to derive true formulae, there is no introduc-

tion rule for falsity. One may wonder: what is the role of

⊥ then? We will see this soon. The main role is linked to

negation. We quote from [And02, p. 152]:

⊥ plays the role of a contradiction in indirect proofs.

45The rule
¬A A
⊥

is simply an instance of →-E (Ü p.32) (since ¬A is short-

hand for A→⊥).

Likewise, the rule
[A]
....
⊥
¬A

38

¬A A
B

¬-E46

derived by (Ü p.39)

¬A A
⊥ →-E

B
⊥-E

is simply an instance of →-I (Ü p.32). Therefore, we will

not introduce these as special rules. But there is a special

rule ¬-E (Ü p.39).
46For negation, it is common to have a rule

¬A A
B

¬-E

We have seen how this rule can be derived. The con-

cept of deriving rules will be explained more systematically

later (Ü p.45).

This rule is also called ex falso quod libet (from the false

whatever you like).

39

Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid47? Provable48?
47Yes, simply check the truth table:

A B ((A→ B)→ A)→ A

True True True

True False True

False True True

False False True

48In the proof system given so far (Ü p.41), this is not

provable. To prove that it is not provable requires an analysis

of so-called normal forms of proofs. However, we do not do

this here.

40

• It is provable in classical logic49, obtained by adding

A ∨ ¬A50 or

[¬A]
....
⊥
A
RAA51 or

[¬A]
....
A

A
classical52.

49The proof system we have given so far is a proof system

for intuitionistic logic. The main point about intuitionistic

logic is that one cannot claim that every statement is either

true or false, but rather, evidence must be given for every

statement.

In classical reasoning, the law of the excluded middle holds.

One also says that proofs in intuitionistic logic are

constructive whereas proofs in classical logic are not nec-

essarily constructive.

We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar

classical logic which allows an effective interpretation

and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has

been the topic of a fundamental discourse in the literature

on logic [PM68] [Tho91, chapter 3]. Often proofs contain

case distinctions, assuming that for any statement ψ, either

ψ or ¬ψ holds. This reasoning is classical; it does not apply

41

Example of Classical Reasoning

Recall the story of Oedipus from greek mythology:

• Iokaste is the mother of Oedipus.

• Iokaste and Oedipus are the parents of Polyneikes.

• Polyneikes is the father of Thersandros.

• Oedipus is a patricide.

• Thersandros is not a patricide.

in intuitionistic logic.
50A ∨ ¬A is called axiom of the excluded middle.
51The rule

[¬A]
....
⊥
A
RAA

is called reduction ad absurdum.
52The rule

[¬A]
....
A

A
classical

corresponds to the formulation is Isabelle.

42

Example of Classical Reasoning (cont.)

Iokaste
XXXXXXz

HH
HHH

HHHj

Oedipus (patr.)
?

Polyneikes (¬ patr.)
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

Case 12: If Polyneikes is not a patricide, then Iokaste has

a child (Oedipus)(Polyneikes) that is a patricide and that itself has a

child (Polyneikes)(Thersandros) that is not a patricide.

Here53 is another example.

53There exist irrational numbers a and b such that ab is

rational.

Proof: Let b be
√

2 and consider whether or not bb is

rational.

Case 1: If rational, let a = b =
√

2

Case 2: If irrational, let a =
√

2
√

2
, and then

ab =
√

2

√
2

√
2

=
√

2
(
√

2∗
√

2)
=
√

2
2

= 2

We still don’t know how to choose a and b so that ab is

rational. Hence the proof if non-constructive (Ü p.41).

43

Overview of Rules

A B
A ∧B ∧-I

A ∧B
A

∧-EL
A ∧B
B

∧-ER

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

[A]
....
B

A→ B
→-I

A→ B A
B

→-E
⊥ (Ü p.17)

A
⊥-E

44

2.6 Deductive System: Derived Rules

Using the basic (Ü p.14) rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S [R]1

¬S [S]1

⊥ →-E

R
⊥-E

R
∨-E1

45

It looks like this.

We build a fragment of a derivation by writing the con-

clusion R and the assumptions R ∨ S and ¬S.

Since we have assumption R∨S, using ∨-E seems a good

idea. So we should make assumptions R and S. First R.

But that is a derivation of R from R!

So now S.

¬S and S allow us to apply →-E (Ü p.17).

To apply ∨-E in the end, we need to derive R. But that’s

easy using ⊥-E!

Finally, we can apply ∨-E. The derivation with open

assumptions is a new rule that can be used like any other

rule.

46

A Variation of Natural Deduction: Boxes

We have seen just one deductive system.

One variation of natural deduction is the following: A

derivation is not a tree, but a sequence of numbered lines.

Instead of subtrees relying on open assumptions, a subderiva-

tion relying on an assumption is enclosed in a box.

You find this explained in [HR04].

47

2.7 Alternative Deductive System Using

Sequent Notation

One can base the deductive system around the derivability

judgement54, i.e., reason about Γ ` A where Γ ≡ A1, . . . , An

instead of individual formulae.
54An object like A → (B → C), A,B ` C is called a

derivability judgement. We explained it earlier (Ü p.25)

as simply asserting the fact that there exists a derivation

tree with C at its root and open assumptions A → (B →
C), A,B.

However, it is also possible to make such judgements the

central objects of the deductive system, i.e., have rules in-

volving such objects.

The notation Γ ` A is called sequent notation. How-

ever, this should not be confused with the sequent calculus

(we will consider it later (Ü p.263)). The sequent cal-

culus is based on sequents, which are syntactic enti-

ties of the form A1, . . . , An ` B1, . . . , Bm, where the

A1, . . . , An, B1, . . . , Bm are all formulae. You see that this

definition is more general than the derivability judgements

we consider here.

What we are about to present is a kind of hybrid between

natural deduction and the sequent calculus, which we might

48

Sequent Rules (for → /∧ Fragment)

Rules for assumptions55 and weakening56:

Γ ` A57 (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Rules for ∧ and →:
Γ ` A Γ ` B

Γ ` A ∧B ∧-I
Γ ` A ∧B

Γ ` A ∧-EL
Γ ` A ∧B

Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

call natural deduction using a sequent notation.
55The special rule for assumptions takes the role in this

sequent style (Ü p.48) notation that the process of making

and discharging assumptions had in natural deduction based

on trees (Ü p.24).

It is not so obvious that the two ways of writing proofs

are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
56The rule weaken is

Γ ` B
A,Γ ` B weaken

Intuitively, the soundness of rule weaken should be clear:

having an additional assumption in the context cannot hurt

since there is no proof rule that requires the absence of some

assumption.

We will see an application of that rule later (Ü p.259).
57An axiom is a rule without premises. We call a rule with

premises proper.

49

More rules can be derived58.
One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules (Ü p.44) for proposi-

tional logic contain no axioms. In the sequent style (Ü p.48)

formalization, having the assumption rule (axiom) is essen-

tial for being able to prove anything, but in the natural de-

duction style we learned first, we can construct proofs with-

out having any axioms.

Note also that even a proper rule in the object

logic (Ü p.15) is just an axiom at the level of Isabelle’s meta-

logic (Ü p.7). This will be explained later (Ü p.307).
58 As an example, consider

A,B,Γ ` C Γ ` A ∧B
Γ ` C ∧-E

50

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X(B ∧ C)

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` A?Z ∧ (B?Y ∧ C)

A ∧ (B ∧ C) ` (B?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

This rule can be derived as follows:

A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

51

We want to show that A∧(B∧C)→ A∧C is a tautology,

i.e., that it is derivable without any assumptions.

The topmost connective of the formula is →, so the best

rule59 to choose is →-I.

The topmost connective of the formula is ∧, so the best

rule (Ü p.52) to choose is ∧-I.

Things are becoming less obvious. To know that ∧-EL is

the best rule for the r.h.s., you need to inspect the assump-

tion A ∧ (B ∧ C).

Now it’s becoming even more difficult. To know that

∧-ER is the best rule for the l.h.s., you need to look deep

into the assumption A ∧ (B ∧ C).

Again you need to look at both sides of the ` to decide

what to do.

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

59In general, statements about which rule to choose when

building a proof are heuristics, i.e., they are not guaran-

teed to work. Building a proof means searching for a proof.

However, there are situations where the choice is clear. E.g.,

when the topmost connective of a formula is →, then →-I

is usually the right rule to apply.

The question will be addressed more systematically

later (Ü p.256).

52

Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-

way!

• Refinement style means we work from goals to axioms60

• metavariables used to delay commitments

Isabelle allows other refinements61/alternatives too (see

labs).
60As you saw in our animation, we worked from the root of

the tree to the leaves.
61One aspect you might have noted in the proof is that the

steps at the top, where ∧-EL and ∧-ER were used, required

non-obvious choices, and those choices were based on the

assumptions in the current derivability judgement.

In Isabelle, we will apply other rules and proof techniques

that allow us to manipulate assumptions explicitly. These

techniques make the process of finding a proof more deter-

ministic.

But that is just one aspect. We will give a more

theoretic account of the way Isabelle constructs proofs

later (Ü p.234).

53

3 Natural Deduction: Review

54

Overview

• Short review: ND Systems and proofs (Ü p.54)

• First-Order Logic (Ü p.61)

– Overview (Ü p.61)

– Syntax (Ü p.68)

– Semantics (Ü p.71)

– Deduction (Ü p.80), some derived rules, and exam-

ples

55

How Are ND Proofs Built?

ND proofs62 build derivations under (possibly temporary)

assumptions.

62ND stands for Natural Deduction. It was explained in

the previous lecture (Ü p.24).

56

ND: Example for → /∧ Fragment

Rules:

A B
A ∧B ∧-I

A ∧B
A

∧-EL

A ∧B
B

∧-ER

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

Proof:

[A ∧B]1

B
∧-EL

[A ∧B]1

A
∧-ER

B ∧ A ∧-I

A ∧B → B ∧ A→-I1

57

Alternative Formalization Using Sequents63

Rules (for → /∧ fragment). Here, Γ is a set of formulae.

Γ ` A (where A ∈ Γ)

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

Two representations (Ü p.57) equivalent. Sequent nota-

tion seems simpler in practice64.
63The judgement (Γ ` φ) means that we can derive φ from

the assumptions in Γ using certain rules. As explained in the

previous lecture (Ü p.48), one can make such judgements

the central objects of the deductive system.
64In particular, the sequent style notation is more amenable

to automation, and thus it is closer to what happens in Is-

abelle.

58

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C
A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

We went through this example in detail last lecture (Ü p.51).

59

Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-

way!

• Refinement style means we work from goals to axioms (Ü p.53)

• Metavariables used to delay commitments

Isabelle allows other refinements (Ü p.53)/alternatives too

(see labs).

60

4 First-Order Logic

4.1 First-Order Logic: Overview

In propositional logic, formulae are Boolean65 combina-

tions of propositions. This will remain important for model-

ing simple patterns of reasoning (Ü p.10).

An atomic (Ü p.10) proposition is just a letter (variable (Ü p.16)).

All one can say about it is that it is true or false. E.g. it is

meaningless to say “A andB state something similar”. Also,

infinity plays no role.

65The set (or “type”) bool contains the two truth values

True,False. A propositional formula containing n variables

can be viewed as a function booln → bool . For each com-

bination of values True,False for the variables, the whole

formula assumes the value True or False.

61

First-Order Logic: the Essence

In first-order logic, an atom(ic proposition) says that “things”

have certain “properties”66. Infinitely many “things” can be

denoted, hence infinitely many atoms generated and distin-

guished. Comparisons of atoms become meaningful: “Tim

is a boy” and “Carl is a boy” state something similar.

Example reasoning: “Tim is a boy”; “boys don’t cry”;

hence “Tim doesn’t cry”.

Further reading: [vD80], [Tho91, chapter 1].
66In propositional logic, there is no notation for writing

“thing x has property p” or “things x and y are related as

follows” or for denoting the “thing obtained from thing x by

applying some operation”.

In particular, no statement about all elements of a possibly

infinite domain can be expressed in propositional logic, since

each formula involves only finitely many different variables,

and up to equivalence (Ü p.23) and for a set containing n

variables, there are only finitely many (to be precise 2(2n))

different propositional formulae.

62

Variables: Intuition

In first-order logic, we talk about “things” that have certain

“properties”.

A variable in first-order logic stands for a “thing”.

This is in contrast to propositional logic (Ü p.16) where

variables stand for propositions.

It is common to use letters x, y, z for variables.

63

Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives (Ü p.17) are used to build state-

ments

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

• x is a man and y is a woman and x loves y but not vice

versa

m(x) ∧ w(y) ∧ l(x, y) ∧ ¬l(y, x)

64

Predicates: Intuition (2)

We can represent only “abstractions” of these in proposi-

tional logic, e.g., p ∧ (d1 ∨ d2) could be an abstraction of

p(x) ∧ (d(y, x) ∨ d(z, x)).

Here p stands for “x is a prime” and d1 stands for “y is

divisible by x”.

But the sense in which p(x), d(y, x), d(z, x) state some-

thing similar is lost. What it means to be divisible or to be

a prime cannot be expressed.

65

Functions: Intuition

• A constant stands for a “fixed thing”67 in a domain68.

• More generally, a function of arity (Ü p.68) n expresses

an n-ary operation over some domain, e.g.

Function arity expresses . . .

0 nullary number “0”

s unary successor in N69

+ binary function plus in N
The generic notation for function application is f (t1, . . . , tn),

but note special notations70: infix, prefix, etc.

67As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon (Ü p.67).
68For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
69N denotes the natural numbers.
70So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols

like + are denoted infix, so we write 0 + 0 instead of +(0, 0).

Another common notation is prefix notation without brack-

ets, as in −2. There are also other notations.

66

Quantifiers: Intuition

• A variable stands for “some71 thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all

or some members of this domain.

• Examples: Are they satisfiable? valid?72

∀x.∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any

dense (Ü p.117) order

∃x. x 6= 0 true for domains with

more than one element

(∀x. p(x, x))→ p(a, a) valid

71Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
72Intuitively, satisfiable means “can be made true” and

valid means “always true”.

More formally, this will be defined later (Ü p.76).

67

4.2 First-Order Logic: Syntax

• Two syntactic categories: terms73 and formulae

• A first-order language74 is characterized by giving a finite

collection of function symbols F and predicate symbols

P as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function sym-

bol f (or predicate symbol p) has arity i ∈ N (Ü p.66).

• One often calls the pair 〈F ,P〉 a signature.

73We have already learned about the syntactic category of

formulae last lecture (Ü p.19).

A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have

terms that stand for “things” and formulae that stand for

statements/propositions about those “things”.

But couldn’t a statement also be a “thing”? And couldn’t

a “thing” depend on a statement?

In first-order logic: no!
74There isn’t simply the language of first-order logic!

Rather, the definition of a first-order language is

parametrised by giving a F and a P . Each symbol in F
and P must have an associated arity, i.e., the number of

arguments the function or predicate takes. This could be

formalized by saying that the elements of F are pairs of the

form f/n, where f is the symbol itself and n, and likewise

for P . All that matters is that it is specified in some unam-

biguous way what the arity of each symbol is.

68

Terms and Formulae in First-Order Logic

Consider the following grammar (Ü p.17) (x ∈ Var , fn ∈
F , pn ∈ P):

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times75

)

F ::= . . . (Ü p.16) | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

The productions (Ü p.17) of T are called terms (set Term76).

The productions of F are called formulae (set Form).

Formulae of the form pn(. . .) are called atoms.

Note quantifier scoping77.

One often calls the pair 〈F ,P〉 a signature. Generally, a

signature specifies the “fixed symbols” (as opposed to vari-

ables) of a particular logic language.

Strictly speaking, a first-order language is also

parametrised by giving a set of variables Var , but this

is inessential. Var is usually assumed to be a countably

infinite set of symbols, and the particular choice of names

of these symbols is not relevant.
76Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the

signature (Ü p.68), but we always assume that the signature

is clear from the context.
77We adopt the convention that the scope of a quantifier

extends as much as possible to the right, e.g.

∀x.p(x) ∨ q(x)

is

∀x.(p(x) ∨ q(x))

69

Variable Occurrences

• All occurrences of a variable in a formula78 are bound

or free or binding.

• Example:

(q(x)∨∃x.∀y. p(f (x), z)∧q(y))∨∀x. r(x, z, g(x))à(q(x)∨
∃x. ∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))à(q(x) ∨
∃x. ∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))à(q(x) ∨
∃x. ∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))à

Which are bound? Which are free? Which are binding?

• A formula with no free variable occurrences is called

closed.

• There will be an exercise.

and not

(∀x.p(x)) ∨ q(x)

This is a matter of dispute and other conventions are around,

but the one we adopt here corresponds to Isabelle.

Compare this to the precedences (Ü p.20) and associativ-

ity in propositional logic.
78All occurrences of a variable in a term or formula are

bound or free or binding. These notions are defined by in-

duction on the structure of terms/formulae. This is why

the following definition is along the lines of our definition of

terms (Ü p.69) and formulae (Ü p.69).

1. The (only) occurrence of x in the term x is a free occur-

rence of x in x;

2. the free occurrences of x in f (t1, . . . , tn) are the free

occurrences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free oc-

70

4.3 First-Order Logic: Semantics

currences of x in t1, . . . , tn;

5. the free occurrences of x in ¬φ are the free occurrences

of x in φ;

6. the free occurrences of x in ψ◦φ are the free occurrences

of x in ψ and the free occurrences of x in φ (◦ ∈ {∧,∨,→
});

7. the free occurrences of x in ∀y. ψ, where y 6= x, are the

free occurrences of x in ψ; likewise for ∃;
8. x has no free occurrences in ∀x. ψ; in ∀x. ψ, the (outer-

most) ∀ binds all free occurrences of x in ψ; the occur-

rence of x next to ∀ is a binding occurrence of x; likewise

for ∃.
A variable occurrence is bound if it is not free and not

binding.

We also define

FV (φ) := {x | x has a free occurrence in φ}

71

A structure79 is a pair A = 〈UA, IA〉 where UA is an

nonempty set, the universe, and IA is a mapping where

1. IA(fn) is an n-ary (total) function on UA, for fn ∈ F ,

2. IA(pn) is an n-ary relation on UA, for pn ∈ P , and

3. IA(x) is an element of UA, for each x ∈ Var .
79As usual, there isn’t just one way of formalizing things,

and so we now explain some other notions that you may have

heard in the context of semantics for first-order logic.

A universe is sometimes also called domain (Ü p.66).

As you saw, a structure (Ü p.72) gives a meaning to

functions, predicates, and variables.

An alternative formalization is to have three different map-

pings for this purpose:

1. an algebra gives a meaning to the function symbols

(more precisely, an algebra is a pair consisting of a do-

main and a mapping giving a meaning to the function

symbols);

2. in addition, an interpretation gives a meaning also to

the predicate symbols;

3. a variable assignment, also called valuation, gives a

meaning to the variables.

As before (Ü p.69), we assume that the signature (Ü p.68)

72

As shorthand, write pA80 for IA(pn), etc.

is clear from the context. Strictly speaking, we should say

“structure for a particular signature”.

Details can be found in any textbook on logic [vD80].
80In the notation pA, the superscript has nothing to do with

the superscript we sometimes use (Ü p.68) to indicate the

arity.

73

The Value of Terms

Let A be a structure. We define the value of a term t under

A, written A(t), as

1. A(x) = xA, for x ∈ Var , and

2. A(f (t1, . . . , tn)) = fA(A(t1), . . . ,A(tn)).

74

The Value of Formulae

We define the (truth-)value of the formula φ under A, writ-

ten A(φ), as

A(p(t1, . . . , tn)) =

{
1 if (A(t1), . . . ,A(tn)) ∈ pA
0 otherwise

A(∀x. φ) =

{
1 if for all u ∈ UA,A[x/u]

81(φ) = 1

0 otherwise

A(∃x. φ) =

{
1 if for some u ∈ UA,A[x/u](φ) = 1

0 otherwise
Rest as for propositional logic (Ü p.22).

81

A[x/u] is the structure A′ identical to A, except that xA
′
=

u.

75

Models

• If A(φ) = 1, we write A |= φ and say φ is true in A or

A is a model of φ.

• If every suitable structure82 is a model, we write |= φ

and say φ is valid or φ is a tautology.

• If there is at least one model for φ, then φ is satisfiable.

• If there is no model for φ, then φ is contradictory.

There is also more differentiated terminology.83

82A structure (Ü p.72) is suitable for φ if it defines mean-

ings for the signature (Ü p.68) of φ, i.e., for the symbols

that occur in φ. Of course, these meanings must also re-

spect the arities, so an n-ary function symbols must be inter-

preted as an n-ary function. Without explicitly mentioning

it (Ü p.73), we always assume that structures are suitable.
83If you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember a

different definition from your previous studies of logic, then

these comments may help.

As explained before (Ü p.72), it is common to distinguish

an interpretation, which gives a meaning to the symbols in

the signature, from an assignment, which gives a meaning to

the variables. Let us use I to denote an interpretation and

A to denote an assignment.

Recall that we wrote A(.) for the meaning of a

term (Ü p.74) or formula (Ü p.75). In the alternative ter-

minology, we write I(A)(.) instead. This makes sense since

76

An Example

∀x. p(x, s(x))

We now show a model and a non-model . . .
in the alternative terminology, I and A together contain

the same information as A in the original terminology. We

define:

• For a given I, we say that φ is satisfiable in I if there

exists an A so that I(A)(φ) = 1;

• for a given I, we write I |= φ and say φ is true in I or

I is a model of φ, if for all A, we have I(A)(φ) = 1;

• we say φ is satisfiable if there exists an I so that φ is

satisfiable in I;

• we write |= φ and say φ is valid if for every (suitable)

I, we have I |= φ.

Note that satisfiable (without “for . . . ”) and valid mean

the same thing in both terminologies, whereas true in . . .

means slightly different things, since a structure is not the

same thing as an interpretation.

77

A model84:

UA = N (Ü p.66)

pA = {(m,n) | m < 85n}
sA(x) = x + 1 (Ü p.78)

Not a model86:

UA = {a, b, c}
pA = {(a, b), (a, c)}
sA = “the identity function”

84It is true that for all numbers n, n is less than n + 1.
85In logic, we insist on the distinction between syntax

and semantics. In particular, we set up the formalism

so that the syntax is fixed first (Ü p.68) and then the

semantics (Ü p.71), and so there could be different seman-

tics for the same syntax.

But the dilemma is that once we want to give a particu-

lar semantics, we can only do so using again some kind of

language, hence syntax. This is usually natural language in-

terspersed with usual mathematical notation such as <, +

etc.

Some people try to mark the distinction between syntax

and semantics somehow, e.g., by saying 0 is a constant that

could mean anything, whereas 0 is the number zero as it

exists in the mathematical world.

When we give semantics, the symbols <, +, and 1 have

their usual mathematical meanings. The function that maps

x to x+ 1 is also called successor function. Of course, when

78

4.4 Towards a Deductive System

In natural language, quantifiers are often implicit87: all

males don’t cry.

Some phrases in natural language proofs have the flavor

of introduction rules (Ü p.29).

Take “boys are males” and “males don’t cry” implies

“boys don’t cry”: assume an arbitrary boy x; then x is a

male; hence x doesn’t cry; hence “x is a boy” implies “x

doesn’t cry” (→-I); since x was arbitrary, we can say this

for all x. (∀-I). See later (Ü p.87).

Existential statements are proven by giving a witness.

we write m < n, we assume that m,n ∈ N (Ü p.76), in this

context.
86The identity function maps every object to itself.

It is not true that for every character α ∈ {a, b, c},
(α, α) ∈ {(a, b), (a, c)}. E.g., (a, a) /∈ {(a, b), (a, c)}.

87In the statement

if x > 2 then x2 > 4

the ∀-quantifier is implicit. It should be

for all x, if x > 2 then x2 > 4.

79

4.5 First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic.

All the rules of propositional logic (Ü p.29) are “inherited”88.

But we must introduce rules for the quantifiers.

88First-order logic inherits all the rules of propo-

sitional logic (Ü p.29). Note however that the

metavariables (Ü p.30) in the rules now range over first-

order formulae.

80

Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable

condition) ∗ means: x must be arbitrary.

Note that rules are schematic89: P (x) stands for any for-

mula, and P (t) stands for the formula obtained by substi-

tuting t for x (Ü p.84).

89Similarly as in the previous lecture (Ü p.30), one should

note that P is not a predicate, but rather P (x) is a schematic

expression: P (x) stands for any formula, possibly containing

occurrences of x.

In the context of ∀-E, P (t) stands for the formula obtained

from P (x) by replacing all occurrences of x by t (Ü p.84).

81

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl90

∀x. x = 0
→-E

Formal meaning of side condition (Ü p.81): x not free in

any open assumption on which P (x) depends. Violated!91

90When one has a predicate symbol =, it is usual to have

a rule that says that = is reflexive (Ü p.106).

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later (Ü p.102).
91The side condition is violated in the proof since in the

first ∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I (Ü p.81), the P (x) above the line will be

the root of a derivation tree constructed so far, and this tree

cannot be the trivial tree just consisting of the assumption

P (x).

82

Another Proof? (1)

Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Conclusion is not valid.

The formula is false when UA has at least 2 elements.92

Proof is incorrect.
92Here we assume that the predicate symbol = is inter-

preted by A (Ü p.72) as equality on UA. Suppose UA
contains two elements α and β and IA(x) = α and

IA(y) = β. Then A(x = y) = 0, hence A(∀y. x =

y) = 0, hence A(¬∀y. x = y) = 1. Now one can see

that A[x/u] (Ü p.75)(¬∀y. x = y) = 1 for all u ∈ UA,

and hence A(∀x.¬∀y. x = y) = 1. On the other hand,

A′(y = y) = 1 for any A′ and hence A(∀y. y = y) = 1

and hence A(¬∀y. y = y) = 0. Therefore, A((∀x.¬∀y. x =

y)→ ¬∀y. y = y) = 0.

83

Reason: Substitution93 must avoid capturing94 variables.
93The notation s[x ← t] denotes the term obtained by

substituting t for x in s. However, a substitution [x ← t]

replaces only the free occurrences of x in the term that it is

applied to. A substitution is defined as follows:

1. x[x← t] = t;

2. y[x← t] = y if y is a variable other than x;

3. f (t1, . . . , tn)[x ← t] = f (t1[x ← t], . . . , tn[x ← t])

(where f is a function symbol, n ≥ 0);

4. p(t1, . . . , tn)[x ← t] = p(t1[x ← t], . . . , tn[x ← t])

(where p is a predicate symbol, possibly ⊥);

5. (¬ψ)[x← t] = ¬(ψ[x← t])

6. (ψ ◦ φ)[x ← t] = (ψ[x ← t] ◦ φ[x ← t]) (where ◦ ∈
{∧,∨,→});

7. (Qx.ψ)[x← t] = Qx.ψ (where Q ∈ {∀,∃});

84

Replacing xwith y in ∀-E is illegal because y is bound (Ü p.70)

in ¬∀y. y = y. This detail concerns substitution (and re-

naming of bound (Ü p.70) variables), not ∀-E. Exercise

8. (Qy.ψ)[x ← t] = Qy.(ψ[x ← t]) (where Q ∈ {∀,∃}) if

y 6= x and y 6∈ FV (t);

9. (Qy.ψ)[x ← t] = Qz.(ψ[y ← z][x ← t]) (where Q ∈
{∀,∃}) if y 6= x and y ∈ FV (t) where z is a variable

such that z 6∈ FV (t) and z 6∈ FV (ψ).

94A substitution (Ü p.84) (replacement of a variable by a

term) must not replace bound (Ü p.70) occurrences of vari-

ables, and if we replace x with t in an expression φ, then

this replacement should not turn free (Ü p.70) occurrences

of variables in t into bound (Ü p.70) occurrences in φ. It is

possible to avoid this by renaming variables.

This is part of the standard definition of a

substitution (Ü p.84). The problem is not related to

∀-E in particular.

85

Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

Yes (check side conditions95 of ∀-I).

95In both cases, x does not occur free (Ü p.70) in

∀x.A(x) ∧ B(x), which is the open assumption (Ü p.82)

on which A(x), respectively B(x), depends.

86

Boys Don’t Cry

Let φ ≡ (∀x. b(x)→ m(x)) ∧ (∀x.m(x)→ ¬c(x)).

[φ]1

∀x.m(x)→ ¬c(x)
∧-ER

m(x)→ ¬c(x)
∀-E

[φ]1

∀x. b(x)→ m(x)
∧-EL

b(x)→ m(x)
∀-E

[b(x)]2

m(x)
→-E

¬c(x)
→-E

b(x)→ ¬c(x)
→-I2

∀x. b(x)→ ¬c(x)
∀-I

φ→ (∀x. b(x)→ ¬c(x))
→-I1

87

Aside: A↔ B

Define96 A↔ B as A→ B ∧B → A.

The following rule can be derived (Ü p.45) (in proposi-

tional logic, actually):

[A]
....
B

[B]
....
A

A↔ B
↔-I

You could do this as an exercise!

96By defining we mean, use A↔ B as shorthand for A→
B ∧ B → A, in the same way as we regard negation as a

shorthand (Ü p.17).

88

Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

Yes, but only if x not free (Ü p.70) in A.

Similar requirement arises in proving (∀x.A→ B(x))↔
(A→ ∀x.B(x)).

89

Side Conditions and Proof Boxes

We mentioned previously (Ü p.47) a style of writing deriva-

tions where subderivations based on temporary assumptions

are enclosed in boxes.

These boxes are also handy for doing derivations in first-

order logic, since one can use the very clear formulation: a

variable occurs inside or outside of a box. See [HR04].

90

Existential Quantification

• We could define97 ∃x.A as ¬∀x.¬A.

• Equivalence follows from our definition of semantics (Ü p.75).

A(¬A) =

{
1 if A(A) = 0

0 otherwise

A(∀x.A) =

{
1 if for all u ∈ UA,A[x/u](A) = 1

0 otherwise

A(∃x.A) =

{
1 if for some u ∈ UA,A[x/u](A) = 1

0 otherwise

Conclude: A(∃x.A) = A(¬∀x.¬A)

97By defining we mean, use ∃x.A as shorthand for

¬∀x.¬A, in the same way as we regard negation as a

shorthand (Ü p.17).

However, we have already introduced ∃ as syntactic en-

tity, and also its semantics. If we now want to treat it as

being defined in terms of ∀, for the purposes of building a

deductive system, we must be sure that ∃x.A is semantically

equivalent to ¬∀x.¬A, i.e., that A(∃x.A) = A(¬∀x.¬A).

91

Where do the Rules for ∃ Come from?

• We can98 use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive (Ü p.45) ND (Ü p.56) proof rules.

• Alternatively, we can give rules as part of the deduction

system and prove equivalence as a lemma, instead of by

definition.

We will do the first here. The Isabelle formalization

follows the second approach.

98

– We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive (Ü p.45) ND (Ü p.56) proof rules.

In this case, the soundness (Ü p.15) of the derived rules

is guaranteed since

∗ the rules for ∀ are sound;

∗ we have proven the equivalence of ∃x.A and ¬∀x.¬A
semantically.

– Alternative: give rules as part of the deduction system

and prove the equivalence as a lemma, instead of by def-

inition.

In this case, the soundness (Ü p.15) must be proven

by hand (however, proving rules sound is an aspect we

neglect (Ü p.9) in this course). But once this is done,

the equivalence of ∃x.A and ¬∀x.¬A can be proven

within the deductive system, rather than by hand, pro-

vided that the deductive system is complete (Ü p.15).

92

∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

[∀x.¬P (x)]1

¬P (t)
∀-E

P (t)

⊥ →-E

∃x. P (x)¬∀x.¬P (x)
→-I1

We want to have ∃x. P (x) as conclusion.

But by definition that’s ¬∀x.¬P (x).

We aim for applying→-I in the last step (recall¬-definition (Ü p.17)).

We apply ∀-E.

Making assumption P (t) allows us to use→-E (recall ¬-

definition (Ü p.17)).

Finally we can apply→-I. Note that the assumption P (t)

is still open.

93

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

∃x. P (x)¬∀x.¬P (x)

[¬R]1

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

∀x.¬P (x)
∀-I

⊥ →-E

R
RAA1

94

We will use ∃x. P (x) as one assumption.
But by definition that’s ¬∀x.¬P (x).
We assume a hypothetical derivation99.
We make an additional assumption and apply →-E (recall ¬-

definition (Ü p.17))
Now we can discharge the assumption P (x) made in the hypo-

thetical derivation.
At this step, the side condition from ∀-I applies. ∃-E will inherit

it!100

We apply →-E.
We are done. Note that this proof uses classical101 reasoning.

99We are constructing here a “schematic fragment” of a

derivation tree. Within this construction, we assume a hy-

pothetical derivation of R from assumption P (x). When

we are done with the construction of this fragment, we will

collapse the fragment by throwing away all the nodes in the

middle and only keep the root and leaves.

Note two points:

• We assume a hypothetical derivation of R from assump-

tion P (x). Somewhere in the middle of the constructed

fragment, we will discharge the assumption P (x). In the

final rule ∃-E, this means an application of ∃-E involves

discharging P (x). Therefore ∃-E has brackets around

the P (x).

• The hypothetical derivation of R may contain other as-

sumptions than P (x). These are not discharged in the

constructed fragment, and so in the final rule ∃-E, we

must also read the notation

P (x)....
R

as a derivation of R where one of the assumptions is

P (x). There may be other assumptions, but these

are not discharged. This is no different from previous

rules (Ü p.26) involving discharging.

100∃-E will inherit the side condition from ∀-I. Hence, the

side condition for ∃-E is:

x must not be free (Ü p.70) in R or in hypotheses of the

subderivation of R other than P (x) (occurrences in (P (x)

are allowed (Ü p.97) because the assumption P (x) was dis-

charged before the application of ∀-I). Contrast this with

∀-I (Ü p.82).

95

101Defining (Ü p.91) ∃x.A as ¬∀x.¬A is only sensible in

classical reasoning (Ü p.41), since the derivation of the rule

∃-E requires the RAA (Ü p.41) rule.

96

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B (Ü p.89).

[∃x. A(x)]2

[∀x.A(x)→ B]1

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

(∃x. A(x))→ B
→-I2

(∀x.A(x)→ B)→ ((∃x. A(x))→ B)
→-I1

97

4.6 Conclusion on FOL

• Propositional logic is good for modeling simple patterns

of reasoning (Ü p.10) like “if . . . then . . . else”.

• In first-order logic, one has “things” and relations on /

properties of “things”. Quantify over “things”. Powerful102!

102In first-order logic, one has “things” and

relations/properties that may or may not hold for these

“things”. Quantifiers are used to speak about “all things”

and “some things”.

For example, one can reason:

All men are mortal, Socrates is a man, therefore

Socrates is mortal.

The idea underlying first-order logic is so general, abstract,

and powerful that vast portions of human (mathematical)

reasoning can be modeled with it.

In fact, first-order logic is the most prominent logic of all.

Many people know about it: not only mathematicians and

computer scientists, but also linguists, philosophers, psychol-

ogists, economists etc. are likely to learn about first-order

logic in their education.

While some applications in the fields mentioned above re-

quire other logics, e.g. modal logics103, those can often be

reduced to first-order logic, so that first-order logic remains

98

the point of reference.

On the other hand, logics that are strictly more expressive

than first-order logic are only known to and studied by few

specialists within mathematics and computer science.

This example about Socrates and men is a very well-known

one. You may wonder: what is the history of this example?

In English, the example is commonly given using the word

“man”, although one also finds “human”. Like many lan-

guages (e.g., French, Italian), English often uses “man” for

“human being”, although this use of language may be con-

sidered discriminating against women. E.g. [Tho95a]:

man [. . .] 1 an adult human male, esp. as distinct

from a woman or boy. 2 a human being; a person

(no man is perfect).

While the example does not, strictly speaking, imply that

“man” is used in the meaning of “human being”, this is

strongly suggested both by the content of the example (or

should women be immortal?) and the fact that languages

99

that do have a word for “human being” (e.g. “Mensch” in

German) usually give the example using this word. In fact,

the example is originally in Old Greek, and there the word

�njrwpoc (anthropos = human being), as opposed to �n r

(anér = human male), is used.

The example is a so-called syllogism of the first figure,

which the scholastics called Barbara. It was developed by

Aristotle [Ari] in an abstract form, i.e., without using the

concrete name “Socrates”. In his terminology, �njrwpoc is

the middle term that is used as subject in the first premise

and as predicate in the second premise (this is what is called

first figure). Aristotle formulated the syllogism as follows: If

A of all B and B is said of all C, then A must be said of all

C.

And why “Socrates”? It is not exactly clear how it

came about that this particular syllogism is associated with

Socrates. In any case, as far it is known, Socrates did not

investigate any questions of logic. However, Aristotle fre-

100

• Limitation: cannot quantify over predicates104.

• “A” world or “the” world is modeled in first-order logic

using so-called first-order theories. This will be studied

next lecture (Ü p.114).

quently uses Socrates and Kallias as standard names for in-

dividuals [Ari]. Possibly there were statutes of Socrates and

Kallias standing in the hall where Aristotle gave his lectures,

so it was convenient for him to point to the statutes whenever

he was making a point involving two individuals.
104The idea underlying first-order logic seems so general that

it is not so apparent what its limitations could be. The

limitations will become clear as we study more expressive

logics.

For the moment, note the following: in first-order logic, we

quantify over variables (hence, domain elements), not over

predicates. The number of predicates is fixed in a particu-

lar first-order language. So for example, it is impossible to

express the following:

For all unary predicates p, if there exists an x such

that p(x) is true, then there exists a smallest x such

that p(x) is true,

since we would be quantifying over p.

101

5 First-Order Logic with Equality

102

Overview

Last lecture: first-order logic (Ü p.61).

This lecture:

• first-order logic with equality (Ü p.102) and first-order

theories (Ü p.114);

• set-theoretic reasoning (Ü p.126).

We extend language and deductive system to formalize

and reason about the (mathematical) world.

103

FOL with Equality

Equality is a logical symbol rather than a mathematical

one105.

Speak of first-order logic with equality rather than adding

equality as “just another predicate”.
105

In logic languages, it is common to distinguish between

logical and non-logical symbols. We explain this for first-

order logic.

Recall (Ü p.68) that there isn’t just the language of first-

order logic, but rather defining a particular signature gives

us a first-order language. The logical symbols are those that

are part of any first-order language and whose meaning is

“hard-wired” into the formalism of first-order logic, like ∧ or

∀. The non-logical symbols are those given by a particular

signature (Ü p.68), and whose meaning must be defined “by

the user” by giving a structure (Ü p.72).

Above we say “mathematical” instead of “non-logical” be-

cause we assume that mathematics is our domain of dis-

course, so that the signature (Ü p.68) contains the symbols

of “mathematics”.

Now what status should the equality symbol = have? We

will assume that = is a symbol whose meaning is hard-wired

104

Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form (Ü p.69) if t1, t2 ∈ Term (Ü p.69).

Semantics : recall a structure (Ü p.72) is a pairA = 〈UA, IA〉
and IA(t) is the interpretation of t.

IA(s = t) =

{
1 if IA(s) = IA(t)

0 otherwise

Note the three completely different uses of “=”106 here!

into the formalism. One then speaks of first-order logic with

equality.

Alternatively, one could regard = as an ordinary (binary

infix) predicate. However, even if one does not give = a

special status, anyone reading = has a certain expectation.

Thus it would be very confusing to have a structure that

defines = as a, say, non-reflexive relation.
106

IA(s==t) ==

{
1 if IA(s)==IA(t)
0 otherwise

The first == is a predicate symbol.

The second == is a definitional occurrence: The expression

on the left-hand side is defined to be equal to the value of

the right-hand side.

The third = is semantic equality, i.e., the identity relation

on the domain (Ü p.71).

105

Rules107

• Equality is an equivalence relation108

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

• Equality is also a congruence109 on terms and all rela-

107Since = is a logical symbol in the formalism of first-order

logic with equality, there should be derivation rules (Ü p.80)

for = to derive which formulas a = b are true.
108In general mathematical terminology, a relation ≡ is an

equivalence relation if the following three properties hold:

Reflexivity: a ≡ a for all a;

Symmetry: a ≡ b implies b ≡ a;

Transitivity: a ≡ b and b ≡ c implies a ≡ c.

Example: being equal modulo 6.

“a is equal b modulo 6” is often written a ≡ b mod 6.
109In general mathematical terminology, a relation ∼= is a

congruence w.r.t. (or: on) f , where f has arity n, if a1
∼=

b1, . . . , an ∼= bn implies f (a1, . . . , an) ∼= f (b1, . . . , bn).

Example: being equal modulo 6 is congruent w.r.t. multi-

plication.

14 ≡ 8 mod 6 and 15 ≡ 9 mod 6, hence 14 · 15 ≡ 8 ·
9 mod 6.

106

tions110
r = s

T (r) = T (s)
cong1

r = s P (r)

P (s)
cong2

This can be defined in an analogous way for a property

(relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisi-

bility by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible

by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not

divisible by 3.
110Why did we use letters T and P here?

Recall the rules for building terms (Ü p.69) and

atoms (Ü p.69).

Is T (r) a term, and P (r) an atom, obtained by one ap-

plication of such a rule, i.e.: is T a function symbol in F ,

applied to s, and is P a predicate symbol in P , applied to

s?

In general, no! The notations T (r) and P (r) are

metanotations (Ü p.30). T (r) stands for any term in which

r occurs, and P (r) stands for any formula in which r occurs.

107

Soundness of Rules

For any UA, equality in UA is an equivalence relation111 and

functions/predicates/logical-operators are “truth-functional”112.

And in this context, the notation T (s) stands for the term

obtained from T (r) by replacing all occurrences of r with s.

In analogy the notation P (s) is defined.

Note that r and s arbitrary terms.

This description is not very formal, but this is not too

problematic since we will be more formal once we have some

useful machinery for this at hand (Ü p.222).
111On the semantic level, two things are equal if they

are identical. Semantic equality is an equivalence

relation (Ü p.106). This semantic fact is so fundamental

that we cannot explain it any further.

So one can prove that IA(s = s) = 1 for all all terms

s, because IA(s) = IA(s) for all terms, and likewise for

symmetry and transitivity.
112If T (x) is a term containing x and T (y) is the term ob-

tained from T (x) by replacing all occurrences of x with

y, and moreover IA(x = y) = 1, then IA(x) = IA(y).

One can show by induction on the structure of t that

108

Congruence: Alternative Formulation

One can specialize congruence rules to replace only some

term occurrences.
r = s

T [z ← r] = T [z ← s]
cong1

r = s P [z ← s]

P [z ← r]
cong2

One time z is replaced with r and one time with s.113

IA(T (x)) = IA(T (y)).

So by “truth-functional” we mean that the value IA(T (x))

depends on IA(x), not on x itself.

This can be generalized to n variables as in the rule.

An analogous proof can be done for rule cong2.
113The notation T [z ← r] stands for the term obtained

from T by replacing z with r. [z ← r] is called a

substitution (Ü p.84).

To have an unambiguous notation for “replacing some oc-

currences of r”, we start from a term T containing occur-

rences of a variable z. On the LHS, z is replaced with r,

on the RHS z is replaced with s. So on the RHS we have a

term obtained from the term on the LHS by replacing some

occurrences of r with s.

One can say that z is introduced to mark the occurrences

of r that should be replaced by s.

Note that r and s can be arbitrary terms, whereas z

is a variable (substitutions replace variables, not arbitrary

109

Congruence: Example

How many ways are there to choose some occurrences of x

in x2 + w2 > 12 · x? 4, namely:

A = x2 + w2 > 12 · x, A = z2 + w2 > 12 · x,

A = x2 + w2 > 12 · z, A = z2 + w2 > 12 · z.
114

We show two ways:

x = 3 x2 + w2 > 12 · x
32 + w2 > 12 · x

with A = z2 + y2 > 12 · x

x = 3 x2 + w2 > 12 · x
x2 + w2 > 12 · 3

with A = x2 + w2 > 12 · z

terms).
114The atom x2 + y2 > 12 · x contains two occurrences of

x. There are four ways to choose some occurrences of x in

x2 + y2 > 12 · x.

Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with

z. That is, there are four different A’s such that A[x/z] =

x2+y2 > 12·x. Now the atom above the line in the examples

is obtained by substituting x for z, and the atom below the

line is obtained by substituting y for z.

110

Generalized Congruence

The congruence rules can be generalized to n equalities in-

stead of just 1 equality. The generalized rules are derivable

from the simple ones by n-fold application.

r1 = s1 · · · rn = sn

T [z1 ← r1, . . . , zn ← rn] = T [z1 ← s1, . . . , zn ← sn]
cong1

r1 = s1 · · · rn = sn P [z1 ← r1, . . . , zn ← rn]

P [z1 ← s1, . . . , zn ← sn]
cong2

111

Isabelle Rule

The Isabelle FOL rule is simply115 (using a tree syntax)

r = s P (r)

P (s)
subst

or literally

Ja = b;P (a)K =⇒ P (b)

115The Isabelle FOL rule is:
r = s P (r)

P (s)
subst

In this rule, P is an Isabelle metavariable (Ü p.30).

Why doesn’t the Isabelle rule contain a z to

mark (Ü p.109) which occurrences should be replaced?

We cannot understand this yet (Ü p.222), but think of P

as a formula where some positions are marked in such a way

that once we apply P to r (we write P (r)), r will be inserted

into all those positions. This is why P (r) is a formula and

P (s) is a formula obtained by replacing some occurrences of

r with s.

112

Proving ∃x. t = x

t = t
refl (Ü p.106)

∃x. t = x
∃-I (Ü p.93)

In the rule

P (t)

∃x. P (x)
∃-I (Ü p.93)

, “P (x)” is metanotation (Ü p.30).

In the example, P (x) = (t = x).

Notational confusion avoided by a precise metalanguage (Ü p.201).

113

6 First-Order Theories

114

What Is a Theory?

Recall our intuitive explanation of theories (Ü p.7).

A theory involves certain function and/or predicate sym-

bols for which certain “laws” hold.

Depending on the context, these symbols may co-exist

with other symbols.

Technically, the laws are added as rules (in particular,

axioms) to the proof system (Ü p.14).

A structure (Ü p.72) in which these rules are true is then

called a model (Ü p.76) of the theory.

6.1 Example 1: Partial Orders

• The language of the theory of partial orders116: ≤117

116A partial order is a binary relation that is reflexive,

transitive (Ü p.106), and anti-symmetric: a ≤ b and b ≤ a

implies a = b.
117≤ is (by convention) a binary infix predicate symbol.

The theory of partial orders involves only this symbol, but

that does not mean that there could not be any other sym-

bols in the context.

115

• Axioms (Ü p.49)

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z118

∀x, y. x ≤ y ∧ y ≤ x↔ x = y119

• Alternative to axioms is to use rules
x ≤ y y ≤ z

x ≤ z
trans

x ≤ y y ≤ x

x = y
antisym

x = y

x ≤ y
≤-refl

Such a conversion is possible since implication is the

main connective.120

118The axiom ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z encodes

transitivity.
119Note that ∀x, y. x ≤ y ∧ y ≤ x ↔ x = y encodes both

antisymmetry (→) and reflexivity (←). Recall (Ü p.88)

that A↔ B as shorthand for A→ B ∧B → A.
120One can see that using→-I and→-E (Ü p.32), one can

always convert a proof using the axioms to one using the

proper (Ü p.49) rules.

More generally, an axiom of the form ∀x1, . . . , xn. A1 ∧
. . . ∧ An → B can be converted to a rule

A1 . . . An

B .

Do it in Isabelle!

116

More on Orders

• A partial order (Ü p.115) ≤ is a linear or total order121

when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation122 of this disjunction.

• A total order ≤ is dense when, in addition

∀x, y. x < 123y → ∃z.(x < z ∧ z < y)

What does < mean?

121We define these notions according to usual mathematical

terminology.

A partial order (Ü p.115) ≤ is a linear or total order if for

all a, b, either a ≤ b or b ≤ a.

A partial order (Ü p.115) ≤ is dense if for all a, b where

a < b, there exists a c such that a < c and c < b.
122The axiom ∀x, y. x ≤ y ∨ y ≤ x cannot be phrased

as a proper (Ü p.49) rule in the style of, for example, the

transitivity axiom (Ü p.116).
123We use s < t as shorthand for s ≤ t ∧ ¬s = t.

We say that < is the strict part of the partial

order (Ü p.115) ≤.

117

Structures for Orders . . .

Give structures (Ü p.72) for orders that are . . .

1. not total: ⊆-relation124;

2. total but not dense: integers with ≤;

3. dense: reals with ≤.

124The ⊆-relation is partial but not total. As an example,

consider the ⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J
J
J
JJ

J
J
J
J
JJ

Depicting partial orders (Ü p.115) by a such a graph is

quite common. Here, node a is below node b and connected

by an arc if and only if a < (Ü p.117)b and there exists no

c with a < c < b.

118

6.2 Example 2: Groups

• Language: Function symbols · , −1, e125

In this example, we have the partial order (Ü p.115)

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.

125 · is a binary infix function symbol (in fact, only · is the

symbol, but the notation · is used to indicate the fact that

the symbol stands between its arguments).
−1 is a unary function symbol written as superscript.

Again, the is used to indicate where the argument goes.

e is a nullary function symbol (= constant) (Ü p.66).

Note that groups are very common in mathematics, and

many different notations, i.e., function names and fixity (in-

fix, prefix. . .) are used for them.

119

• A group is126 a model127 of

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

It is an example of an equational theory128.

Two theorems: (1) x−1 · x = e and (2) e · x = x

We will now prove them.
126In general mathematical terminology, a group consists of

three function symbols · , −1, e, obeying the following laws:

Associativity (a · b) · c = a · (b · c) for all a, b, c,

Right neutral a · e = a for all a,

Right inverse a · a−1 = e for all a.

127A model (Ü p.76) of the group axioms is a

structure (Ü p.72) in which the group axioms are true.

However, when we say something like, “this model is a

group”, then this is a slight abuse of terminology, since there

may be other function symbols around that are also inter-

preted by the structure.

So when we say “this model is a group”, we mean, “this

model is a model of the group axioms for function symbols

· , −1,and e clear from the context”.
128An equational theory is a set of equations. Each equation

is an axiom.

120

Equational Proofs

A typical proof in an equational theory looks very different

from the natural deduction style (Ü p.24), but it looks very

much like the proofs you know from school mathematics.

An equational proof consists simply of a sequence of equa-

tions, written as t1 = t2 = . . . = tn, where each ti+1 is ob-

tained from ti by replacing some subterm s with a term s′,

provided the equality s = s′ holds.

More on the justification later (Ü p.124).

Sometimes, each equation is surrounded by several ∀-
quantifiers binding all the free variables in the equation, but

often the equation is regarded as implicitly universally quan-

tified.

More generally, a conditional equational theory consists

of proper (Ü p.49) rules where the premises are called

conditions [Höl90].

Note also that sometimes, one also considers the basic rules

of equality (Ü p.106) as being part of every equational the-

ory. Whenever one has an equational theory, one implies

that the basic rules are present; whether or not one assumes

that they are formally elements of the equational theory is

just a technical detail.

121

Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)(assoc)(assoc)(assoc)(assoc)

∀x. x · e = x (r-neutr)(r-neutr)(r-neutr)(r-neutr)

∀x. x · x−1 = e (r-inv)(r-inv)(r-inv)(r-inv)(r-inv)(r-inv)(r-inv)

x−1 · x = e (1)

x−1 · x =x = x−1 · (x · e)(x · e)e) = x−1 · (x · (x−1 · x−1−1
))x · (x−1 · x−1−1
))x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
)(x · x−1) · x−1−1
)(x · x−1) · x−1−1
) = x−1 · (e · x−1−1

)x−1 · (e · x−1−1
)x−1 · (e · x−1−1
) =

(x−1 · e) · x−1−1
(x−1 · e) · x−1−1
(x−1 · e) · x−1−1

= x−1 · x−1−1
x−1 · x−1−1
x−1 · x−1−1

= ee.

122

Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)(assoc)(assoc)(assoc)

∀x. x · e = x (r-neutr)(r-neutr)(r-neutr)

∀x. x · x−1 = e (r-inv)(r-inv)(r-inv)

e · x = x (2)

e · x = (x · x−1) · x = x · (x−1 · x)
Thm. 1

= x · e = x

123

Equational Proofs Justified

Translated to natural deduction style (Ü p.24), an equa-

tional proof looks like this:

Axn−1

. . .
∀-E

sn−1 = s′n−1
(sym)

Ax2

. . .
∀-E

s2 = s′2
(sym)

Ax1

. . .
∀-E

s1 = s′1
(sym)

t1 = t1
refl

t1 = t2
cong2

cong2

....
t1 = tn−1

t1 = tn
cong2 (Ü p.106)

where each Axi is an axiom of the equational theory129.
129The double line marked with ∀-E stands for 0 or more ap-

plications of the ∀-E (Ü p.81) rule. Moreover, there might

be an application of sym (Ü p.106).

124

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used

in different directions, “eureka”130 terms are needed, etc.

• In some cases (the word problem131 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting (Ü p.271).

• Explicit natural deduction (Ü p.24) proofs are tedious

in practice. Try it on above examples!132

130By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular per-

fect of euriskein (heuriskein), “to find”. It was exclaimed

by Archimedes upon discovering how to test the purity of

Hiero’s crown.
131The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model (Ü p.76) of the theory.
132

r-neutr

x · e = x

Theorem 1
x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

r-inv

x · x−1 = e

e = x · x−1
sym

e · x = e · x refl

e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

This is an example of the general scheme (Ü p.124).

125

7 Näıve Set Theory

7.1 Näıve Set Theory: Basics

• A set is a collection of objects where order and repetition

are unimportant.

Sets are central in mathematical reasoning [Vel94].

• In what follows we consider a simple, intuitive formal-

ization: näıve set theory.

We will be somewhat less formal than usual. Our goal

is to understand standard mathematical practice.

Later, in HOL (Ü p.354), we will be completely formal.

Most steps use the congruence rule cong2 (Ü p.106).

Each framed box in the derivation tree stands for a sub-tree

consisting of a group axiom (Ü p.119) and possibly several

applications of ∀-E (Ü p.81).

126

Sets: Language

Assuming any first-order language with equality (Ü p.129),

we add:

• set-comprehension {x|P (x)}133 and a binary membership

predicate ∈.

• Term/formula distinction inadequate134: need a syntac-

tic category for sets.

• Comprehension is a binding operator: x bound in {x|P (x)} (Ü p.70).

133Set comprehension is a way of defining sets. {x|P (x)}
stands for the set of elements of the universe for which P (x)

(some formula usually containing x) holds.
134It is more adequate to regard a set as a term than as

a formula. A set is a “thing”, not a statement about

“things”. (Ü p.68)

After all, we have the predicate ∈ expecting a set on the

RHS (and even the LHS may be a set!), and predicates take

terms as arguments. (Ü p.69)

However, the syntax used in set comprehensions is not legal

syntax for terms (Ü p.69), since P (x) is a formula.

This is why we introduce a special syntactic category for

sets.

127

Examples

• What does the following say?

x ∈ {y|y mod 6 = 0}

Answer: x mod 6 = 0.

• What about this?

2 ∈ {w|6 /∈ {x|x is divisible by w}}

Answer: 6 /∈ {x|x divisible by 2} i.e., 6 not divisible by

2.

128

Proof Rules for Sets

Introduction, elimination, extensional equality135

P (t)

t ∈ {x|P (x)}
compr-I

t ∈ {x|P (x)}
P (t)

compr-E

∀x. x ∈ A↔ x ∈ B
A = B

=-I
A = B

∀x. x ∈ A↔ x ∈ B =-E

The following equivalence is derivable136:

∀x. P (x)↔ (Ü p.88)x ∈ {y|P (y)}
135Two things are extensionally equal if they are “equal in

their effects”. Thus two sets are equal if they have the same

members, regardless of what syntactic expressions are used

to define those sets.

Note that extensional equality may be undecidable.
136

[P (x)]1

x ∈ {y|P (y)}
compr-I

[x ∈ {y|P (y)}]1

P (x)
compr-E

P (x)↔ x ∈ {y|P (y)} ↔-I (Ü p.88)1

∀x. P (x)↔ x ∈ {y|P (y)} ∀-I

Rule ∀-I (Ü p.81) was defined in a previous lecture.

129

Digression: Sorts

• The following notations are common in mathematics and

logic:

{x∈ U |P (x)} ≡ {x | x ∈ U ∧ P (x)}
∀x∈ U. P (x) ≡ ∀x. x ∈ U → P (x)

∃x∈ U. P (x) ≡ ∃x. x ∈ U ∧ P (x)

These are syntactic sugar (Ü p.19). One uses them

when U denotes an “important” sub-universe137 such

as R or N. Such a U is sometimes called sort.

• There is also sorted first-order logic138.

137We already know what a universe (Ü p.72) or

domain (Ü p.72) is. To interpret a particular language, we

have a structure (Ü p.72) interpreting all function symbols

as functions on the universe.

However, it is often adequate to subdivide the universe into

several “sub-universes”. Those are called sorts. Note that a

sort is a set.

For example, in a usual mathematical context, one may dis-

tinguish R (the real numbers) and N (the natural numbers)

to say that
√
x requires x to be of sort R and x! requires x

to be of sort N.
138In sorted logic, sorts are part of the syntax. So the

signature (Ü p.68) contains a fixed set of sorts. For each

constant, it is specified what its sort is. For each function

symbol, it is specified what the sort of each argument is, and

what the sort of the result is. For each predicate symbol, it

is specified what the sort of each argument is.

Terms and formulas that do not respect the sorts are not

130

7.2 Operations on Sets

• Functions on sets

A ∩ 139B ≡ {x|x ∈ A ∧ x ∈ B}
A ∪B ≡ {x|x ∈ A ∨ x ∈ B}
A \B ≡ {x|x ∈ A ∧ x 6∈ B}

• Predicates on sets

A ⊆ B ≡ ∀x. x ∈ A→ x ∈ B

well-formed, and so they are not assigned a meaning.

In contrast, our logic is unsorted. The special syntax we

provide for sorted reasoning is just syntactic sugar (Ü p.19),

i.e., we use it as shorthand and since it has an intuitive

reasoning, but it has no impact on how expressive our logic

is.
139

∩ is called intersection.

∪ is called union.

\ is called set difference.

⊆ is called inclusion.

131

Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B
.

.............
..............
..............

..............

..............

..............

..............

..............
..............

.............
...............

................
...

..............
............
...

...........
....

...........
.....

..........

.....

..........

.....

...........
.....

...........
....

............
...

..............
................

...............
..............
...............

...............

................

...............

...............

................

...............

...............
..............

...............
..

.
.............
..............
..............

..............

..............

..............

..............

..............
..............

.............
.............................

.............
............
..

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...
............
..

.............

A ∩B

A B

.................
...

..............
............
...

...........
....

...........
.....

..........

.....

..........

.....

...........
.....

...........
....

............
...

..............
................

...............
..............
...............

...............

................

...............

...............

................

...............

...............
..............

...............
...

.............
............
..

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...
............
..

.............
.............
..............
..............

..............

..............

..............

..............

..............
..............

.............
..............

A ∪B

A B

.................
...

..............
............
...

...........
....

...........
.....

..........

.....

..........

.....

...........
.....

...........
....

............
...

..............
................

...............
..............
...............

...............

................

...............

...............

................

...............

...............
..............

...............
...

.............
............
..

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...
............
..

.............
.............
..............
..............

..............

..............

..............

..............

..............
..............

.............
..............

A \B

132

Correspondence between Set-Theoretic and

Logical Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the set-

theoretic operators (Ü p.131) and ∀x. P (x)↔ x ∈ {y|P (y)} (Ü p.129).

Example: what is the logical form140 of x ∈ ((A ∩ B) ∪
(A ∩ C))? (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

140When we transform an expression containing set opera-

tors ∩,∪, \,⊆ into an expression using ∧,∨,¬,→, we call

the latter the logical form of the expression.

133

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (1)

Venn diagram (Is this a proof?)141

141A Venn diagram draws sets as bubbles. Intersecting sets

are drawn as overlapping bubbles, and the overlapping area

is meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined

earlier (Ü p.14).

Moreover, it would not even be acceptable as a proof ac-

cording to usual mathematical practice. If it is unknown

whether two sets have a non-empty intersection, how are we

supposed to draw them? Trying to make a case distinctions

(drawing several diagrams depending on the cases) is error-

prone.

Venn diagrams are useful for illustration purposes, but they

are not proofs.

134

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)

Natural deduction (natural language142)

By extensionality (Ü p.129), suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

For an arbitrary x, this is equivalent to establishing

(x ∈ A ∧ (x ∈ B ∨ x ∈ C))↔
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

But that is a propositional tautology.

Do it in Isabelle!

142We intersperse formal notation with natural language

here in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.

135

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

Therefore ((A ∪B) \B) ⊆ A.

Combination143 of forward reasoning with backward rea-

soning. This is common in practice and usually easy to un-

scramble.
143

Let A and B be arbitrary sets. (∀-I)
Let x be an element of (A ∪B) \B (temporary assumption)
So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)
Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q (Ü p.45))
Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)
Therefore ((A ∪B) \B) ⊆ A (def of ⊆)

Concerning forward and backwards reasoning, one may

look at it as follows: we first construct the derivation step

at the root of the proof tree (∀-I), and then we jump to a

leaf (by making the temporary assumption) and work down-

wards from there.

136

7.3 Extending Set Comprehensions

Recall set comprehensions (Ü p.127) {x|P (x)}.
Now what do you think this is?

{f (x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f (x)}

Example: t ∈ {x2|x > 5} equivalent to (Ü p.129) ∃x. x >
5 ∧ t = x2.

True for t ∈ {36, 49, . . .}

137

Indexing

Sometimes, it is natural to denote a function f applied to an

argument x as “f indexed by x”, so fx, rather than f (x).

Example: let S = set of students and let ms stand for

“the mother of s”, for s a student. Call S an index set.

x ∈ {ms|s ∈ S} ↔ (Ü p.137) x ∈ {y|∃s. s ∈ S ∧ y = ms}
↔ (Ü p.129) ∃s. s ∈ S ∧ x = ms

↔ (Ü p.130) ∃s ∈ S. x = ms

Uses extended comprehensions (Ü p.137), indexing syn-

tax, and sorted quantification (Ü p.130).

138

Logical Forms of the New Notation

What is the logical form (Ü p.133) of {xi|i ∈ I} ⊆ A ?

∀x. x ∈ {xi|i ∈ I} → x ∈ A144, i.e.,

∀x. (∃i ∈ I. x = xi)→ x ∈ A145.

Intuition146 suggests that ∀i ∈ I. xi ∈ A (Ü p.130) is

also correct, i.e.,

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A).

Proving this would be another exercise147 on using ex-

tended comprehensions (Ü p.137), indexing syntax, and sorted

quantification (Ü p.130).
144

{xi|i ∈ I} ⊆ A ≡ ∀x. x ∈ {xi|i ∈ I} → x ∈ A

follows from the definition of ⊆ (Ü p.133).
145

We want to show

∀x. x ∈ {xi|i ∈ I} → x ∈ A ≡ ∀x. (∃i ∈ I. x = xi)→ x ∈ A

x ∈ {xi|i ∈ I} ≡ (def. of notation) (Ü p.137)

x ∈ {y|∃i. i ∈ I ∧ y = xi} ≡ compr-I (Ü p.129)

∃i. i ∈ I ∧ x = xi ≡ (Sorted quantification) (Ü p.130)

∃i ∈ I. x = xi

146It may be helpful to pronounce both forms out loud in

natural language to get an intuitive feeling that they are

equivalent.
147Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

139

Powersets

℘(A) = {x|x ⊆ A}.
What is the logical form (Ü p.133) of:

1. x ∈ ℘(A)?

x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?

∀x. x ∈ ℘(A)→ x ∈ ℘(B), i.e.,

∀x. x ⊆ A→ x ⊆ B, i.e.,

∀x. (∀y. y ∈ x→ y ∈ A)→ (∀y. y ∈ x→ y ∈ B)

Exercise: prove that the last answer is equivalent to A ⊆
B, i.e., ∀x. x ∈ A→ x ∈ B.

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the

instance xi) we have (∃j ∈ I. xi = xj) → xi ∈ A. But

premise is true for i = j, so xi ∈ A.

• “←”

Let x be arbitrary and assume ∃i ∈ I. x = xi. So for

some i ∈ I , we have x = xi. Now ∀i ∈ I. xi ∈ A.

Hence x ∈ A.

“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀i ∈ I. xi ∈ A assuming ∀x.(∃i ∈ I. x = xi)→
x ∈ A.

So we show that for arbitrary i ∈ I , assuming ∀x.(∃i ∈
I. x = xi) → x ∈ A, we have xi ∈ A. So let i ∈ I be

arbitrary.

140

7.4 Outlook

Sets can have other sets as elements.

Since we have ∀x.(∃i ∈ I. x = xi) → x ∈ A, by rule

∀-E (Ü p.81) we can specialize to (∃j ∈ I. xi = xj) →
xi ∈ A. But premise (∃j ∈ I. xi = xj) is true for i = j, and

so xi ∈ A, which is what was to be proven.

This proof could be made more formal by drawing a proof

tree or using Isabelle.

“←” in more Detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀x.(∃i ∈ I. x = xi) → x ∈ A, assuming ∀i ∈
I. xi ∈ A.

So we show that for arbitrary x, assuming ∀i ∈ I. xi ∈ A,

we have (∃i ∈ I. x = xi)→ x ∈ A. So let x be arbitrary.

To show (∃i ∈ I. x = xi) → x ∈ A, assume ∃i ∈ I. x =

xi. So for some i ∈ I , we have x = xi. Now by our earlier

assumption ∀i ∈ I. xi ∈ A, and so it follows that x ∈ A.

thus we have shown x ∈ A under the assumption (∃i ∈
I. x = xi), thus we have shown (∃i ∈ I. x = xi) → x ∈ A,

141

Implicitly assume that universe of discourse is collection148

of all sets.
which is what was to be proven.

This proof could be made more formal by drawing a proof

tree or using Isabelle.
148We speak of collection of all sets rather than set of all

sets in order to pretend that we are being careful since we

are not sure if there is such a thing as a set of all sets. There-

fore we use the “neutral” word collection whose meaning is

obvious. . .

Is it?

Recall that we have defined set as collection of

objects (Ü p.126) in the first place. So it is rather futile

to suggest now that there should be some difference between

collections and sets.

The fact of the matter is: the approach of allowing arbi-

trary collections of “objects” and regarding such collections

as “objects” themselves is näıve. We will see this shortly.

142

Russell’s Paradox

Suppose U := {x | >149}. Then150 U ∈ U .

Quite strange but no contradiction yet.

Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R := {A|A 6∈ A}.
Assume R ∈ R. By the definition of R, this means R ∈

{A|A 6∈ A}. Using compr-E (Ü p.129), this implies R /∈
R.

Now assume R /∈ R. Using compr-I (Ü p.129), this im-

plies R ∈ {A|A 6∈ A}. By the definition of R, this means

R ∈ R.

What does this tell us about sets?151

149Assume that > is syntactic sugar (Ü p.19) for a propo-

sition that is always true, say > ≡ ⊥ → ⊥. We have not

introduced this, but it is convenient.

So semantically (Ü p.75), we have IA(>) = 1 for all IA.
150Recall that a set comprehension (Ü p.127) has the form

{x|P (x)}, where P (x) is a formula usually containing x.

The set comprehension U := {x | >} is strange since >
does not contain x.

But by the introduction rule for set

comprehensions (Ü p.129), this means that x ∈ U for

any x. Thus in particular, U ∈ U .
151It tells us that there can be no such thing as the set of all

sets.

The fundamental flaw of näıve set theory is in saying that

a set is a collection of “objects” (Ü p.126) without worrying

what an object is. If we make no restriction as to what an

object is, then a set is obviously also an object. But then we

effectively base the definition of the new concept set on the

143

Where Do We Go from here?

• The λ-calculus (Ü p.145) as basis for a metalanguage (Ü p.201)

to avoid notational confusion (Ü p.113)

• Resolution (Ü p.234) and other deduction techniques (Ü p.246):

understanding Isabelle better and achieving a higher

level of automation

• Higher-order logic (Ü p.354): a formalism for (among

other things) non-näıve set theory152

existence of sets, so the definition is circular.

Note that while the proof of the contradiction looks classi-

cal (it seems that we make the assumption R ∈ R∨R /∈ R,

it is in fact not classical. There will be an exercise on this.

The intuition for the solution to this dilemma is not diffi-

cult: A set is a collection of objects of which we are already

sure that they exist. In particular, since we are only just

about to define sets, these objects may not themselves be

sets.

Once we have such sets, we can introduce “sets of second

order”, that is, sets that contain sets of the first kind. This

process can be continued ad infinitum.

The formal details will come later (Ü p.354).
152Higher-order logic (Ü p.354) is a solution to the dilemma

posed by Russell’s paradox. (Ü p.143)

It is a surprisingly simple formalism which can be

extended (Ü p.432) conservatively: this means that it can

be ensured that the extensions cannot compromise the truth

144

8 The λ-Calculus

or falsity of statements that were already expressible before

the extension.

145

The λ-Calculus: Motivation

A way of writing functions. E.g., λx. x + 5 is the function

taking any number n to n+5. Theory underlying functional

programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical)

computer science!

Why is it interesting for us? The λ-calculus is used for rep-

resenting object logics in Isabelle. It is the core of Isabelle’s

metalogic!

Further reading: [Tho91, chapter 2], [HS90, chapter 1].

146

Outline of this Lecture

• The untyped λ-calculus

• The simply typed λ-calculus (Ü p.167) (λ→)

• An extension of the typed λ-calculus (Ü p.183)

• Higher-order unification (Ü p.197)

8.1 Untyped λ-Calculus

From functional programming , you may be familiar with

function definitions such as

f x = x + 5

The λ-calculus is a formalism for writing nameless functions.

The function λx. x + 5 corresponds to f .

147

The application to say, 3, is written (λx. x + 5)(3). Its

result is computed by substituting 3 for x, yielding 3 + 5,

which in usual arithmetic evaluates to 8153.

153As you might guess, the formalism of the λ-calculus is

not directly related to usual arithmetic and so it is not built

into this formalism that 3+5 should evaluate to 8. However,

it may be a reasonable choice, depending on the context, to

extend the λ-calculus in this way, but this is not our concern

at the moment.

148

Syntax

(x ∈ Var , c ∈ Const154)

e ::= x | c | (ee) | (λx. e)155

The objects generated by this grammar (Ü p.17) are called

λ-terms or simply terms.

154Similarly as for first-order logic (Ü p.68), a language of

the untyped λ-calculus is characterized by giving a set of

variables and a set of constants.

One can think of Const as a signature.

Note that Const could be empty.

Note also that the word constant has a different meaning

in the λ-calculus from that of first-order logic (Ü p.66). In

both formalisms, constants are just symbols.

In first-order logic, a constant is a special case of a function

symbol, namely a function symbol of arity 0.

In the λ-calculus, one does not speak of function symbols.

In the untyped λ-calculus, any λ-term (including a constant)

can be applied (Ü p.148) to another term, and so any λ-

term can be called a “unary function”. A constant being

applied to a term is something which would contradict the

intuition about constants in first-order logic. So for the λ-

calculus, think of constant as opposed to a variable, an ap-

plication, or an abstraction.
155A λ-term can either be

149

Conventions: iterated λ & left-associated application156

(λx. (λy. (λz. ((xz)(yz))))) ≡ (λxyz. ((xz)(yz)))

≡ λxyz. xz(yz)

Is λx. x + 5 a λ-term?157

• a variable (case x), or

• a constant (case c), or

• an application of a λ-term to another λ-term (case (ee)),

or

• an abstraction over a variable x (case (λx. e)).

156We write λx1x2 . . . xn.e instead of λx1.(λx2.(. . . e) . . .).

e1 e2 . . . en is equivalent to (. . . (e1 e2) . . . en) . . ., not

(e1(e2 . . . en) . . .). Note that this is in contrast to the as-

sociativity of logical operators (Ü p.20). There are some

good reasons for these conventions.
157Strictly speaking, λx. x+ 5 does not adhere to the defini-

tion of syntax of λ-terms, at least if we parse it in the usual

way: + is an infix constant applied to arguments x and 5.

If we parse x+5 as ((x+)5), i.e., x applied to (the constant)

+, and the resulting term applied to (the constant) 5, then

λx. x+ 5 would indeed adhere to the definition of syntax of

150

Substitution

• Will see shortly that “computations” are based on substitutions,

defined similarly as in FOL (Ü p.84).

(g x 3)[x← 5]158 = g 5 3

• Must respect free (Ü p.152) and bound (Ü p.152) vari-

ables,

((x(λx. xy))[x← e] = e(λx. xy)

• Same problems as with quantifiers (Ü p.84)

∀x. (P (x) ∧ ∃x.Q(x, y))

P (e) ∧ ∃x.Q(x, y)
∀-E

∀x. (P (x) ∧ ∃y.Q(x, y))

P (y) ∧ ∃z.Q(y, z)
∀-E

λ-terms, but of course, this is pathological and not intended

here.

It is convenient to allow for extensions of the syntax of

λ-terms, allowing for:

• application to several arguments rather than just one;

• infix notation (Ü p.66).

Such an extension is inessential for the expressive power of

the λ-calculus. Instead of having a binary infix constant

+ and writing λx. x + 5, we could have a constant plus

according to the original syntax and write λx. ((plus x) 5)

(i.e., write + in a Curryed (Ü p.161) way).

158Here we use the notation e[x← t] for the term obtained

from e by replacing x with t. There is also the notation

e[t/x], and confusingly, also e[x/t]. We will attempt to be

consistent within this course, but be aware that you may

find such different notations in the literature.

151

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences

of variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) := ∅ = FV (c)

FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)

FV (λx.M) := FV (M) \ {x} = FV (∀x.M)

Example: FV (xy(λyz. xyz)) = {x, y}
A term with no free variable occurrences is called closed (Ü p.70).

152

Definition of Substitution

M [x← N] means substitute N for x in M

1. x[x← N] = N

2. a[x ← N] = a if a is a constant or variable other than

x

3. (PQ)[x← N] = (P [x← N]Q[x← N])

4. (λx. P)[x← N] = λx. P

5. (λy. P)[x ← N] = λy. P [x ← N] if y 6= x and y /∈
FV (N)

6. (λy. P)[x ← N] = λz. P [y ← z][x ← N] if y 6= x and

y ∈ FV (N), and z is fresh (Ü p.197): z /∈ FV (N) ∪
FV (P)

153

Cases similar to those for quantifiers: λ binding is ‘generic’159.

159Recall the definition (Ü p.84) of substitution for first-

order logic.

We observe that binding and substitution are some very

general concepts. So far, we have seen four binding opera-

tors: ∃, ∀ and λ, and set comprehensions (Ü p.127). The

λ operator is the most generic of those operators, in that it

does not have a fixed meaning hard-wired into it in the way

that the quantifiers do. In fact, it is possible to have it as

the only operator on the level of the metalogic. We will see

this later (Ü p.228).

154

Substitution: Example

(x(λx. xy))[x← λz. z]
3
= x[x← λz. z](λx. xy)[x← λz. z]
1,4
= (λz. z)λx. xy

(λx. xy)[y ← x]
6
= λz. ((xy)[x← z][y ← x])

3,1,2
= λz. (zy[y ← x])

3,2,1
= λz. zx

In the last example, clause 6 avoids capture, i.e., λx. xx160.

160If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

155

Reduction: Intuition

Reduction is the notion of “computing”, or “evaluation”, in

the λ-calculus.
f x = x + 5 (Ü p.147) f = λx. x + 5

f 3 = 3 + 5
(λx. x + 5)(3)→β (x + 5)[x← 3] = 3 + 5 (Ü p.148)

β-reduction replaces (Ü p.148) a parameter by an argu-

ment161.

This should propagate into contexts162, e.g.

λx.((λx. x + 5)(3))→β λx.(3 + 5).

161In the λ-term (λx.M)N , we say that N is an argument

(and the function λx.M is applied to this argument), and ev-

ery occurrence of x in M is a parameter (we say this because

x is bound by the λ).

This terminology may be familiar to you if you have ex-

perience in functional programming, but actually, it is also

used in the context of function and procedure declarations

in imperative programming.
162In

λx.((λx. x + 5)(3)),

the underlined part is a subterm occurring in a context. β-

reduction should be applicable to this subterm.

156

Reduction: Definition

• Axiom for β-reduction: (λx.M)N →β M [x← N]163

• Rules for β-reduction of redices164 in contexts:

M →β M
′

NM →β NM
′

M →β M
′

MN →β M
′N

M →β M
′

λz.M →β λz.M
′ ∗165

• Reduction is reflexive-transitive (Ü p.106) closure

M →β N

M →∗β N M →∗β M
M →∗β N N →∗β P

M →∗β P

• A term without redices is in β-normal form.

163As you see, β-reduction is defined using rules (two of them

being axioms (Ü p.49), the rest proper rules (Ü p.49))

in the same way that we have defined proof systems

for logic (Ü p.14) before. Note that we wrote the first

axiom (Ü p.49) defining β-reduction without a horizontal

bar.
164In a λ-term, a subterm of the form (λx.M)N is called a

redex (plural redices). It is a subterm to which β-reduction

can be applied.
165The rule for propagating→β to an abstraction, let us call

it λ-abstr,
M →β M

′

λz.M →β λz.M
′ λ-abstr

actually has a vacuous side condition:

z is not free in any open assumption on which M →β

M ′ depends.

The side condition is just like for ∀ (Ü p.81).

The side condition is vacuous because in the derivation

157

Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b
system for →β (or →∗β) we present here, there is no rule

involving discharging open assumptions, and thus there is

no point in making assumptions. The root of a derivation

tree for →β is always an application of the axiom for β-

reduction. When we consider →∗β, we may in addition have

applications of the reflexivity axiom.

However, we will have exercises on →β using an Isabelle

theory called RED, and in this theory, the above rule is called

epsi and looks as follows:

"[|!!x. M(x) --> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x))"

Observe that there is a meta-level universal quantifier in this

rule. From the exercises, you know that the meta-level uni-

versal quantifier corresponds to a side condition in paper-

and-pencil proofs.

Moreover, when we later look at the meta-logic (Ü p.291),

158

there will be a rule (Ü p.302)

a ≡ b

(λx.a) ≡ (λx.b)
≡-abstr∗

looking very similar to the λ-abstr rule and having a side

condition.

To illustrate why the side condition is needed in general,

consider a derivation system where in addition to the rules

for →β and →∗β, we also allow applications of the rule for

rules for → (Ü p.32) (implication) and ∀ (Ü p.81) of first-

order logic.

For the example we give, suppose that we have an en-

coding of the number 0 and the + function in the untyped

λ-calculus, and that these behave as expected (in fact we will

have an exercise showing this; in the following we use “0”

and “+” just for simplicity and clarity; + is written infix).

Under these assumptions, we will now derive λxy. y+x→β

λxy. y. Before looking at the derivation tree, think about

what this says intuitively: it says that + is a function that

159

takes two arguments, ignores the first argument and returns

the second argument. Clearly, this does not correspond to

the usual definition of +! The trick in the following deriva-

tion is to smuggle in an instantiation of x, namely to force

x to be 0. The derivation looks as follows:
[y + x→β y]1

λy. y + x→β λy. y
λ-abstr

λxy. y + x→β λxy. y
λ-abstr

(y + x→β y)→ λxy. y + x→β λxy. y
→-I1

∀x.(y + x→β y)→ λxy. y + x→β λxy. y
∀-I

(y + 0→β y)→ λxy. y + x→β λxy. y
∀-E

(routine)

y + 0→β y

λxy. y + x→β λxy. y
→-E

In the above derivation, the side condition for λ-abstr is

violated.

In Isabelle, such a “smuggling in” of an instantiation can be

achieved using instantiate tac, see RED wrongepsi.thy

160

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy

Shows Currying166

(λx. xx)(λx. xx)→β (λx. xx)(λx. xx)→β . . .

Shows divergence167

But (λx. λy. y)((λx. xx)(λx. xx))→β λy. y

and wrongepsi.ML.
166You may be familiar with functions taking several argu-

ments, or equivalently, a tuple of arguments, rather than just

one argument.

In the λ-calculus, but also in functional programming, it

is common not to have tuples and instead use a technique

called Currying (Schönfinkeln in German). So instead of

writing g(a, b), we write g a b, which is read as follows: g is

a function which takes an argument a and returns a function

which then takes an argument b.

Recall that application associates to the left (Ü p.150), so

g a b is read (g a) b.

Currying will become even clearer once we introduce the

typed λ-calculus (Ü p.168).
167We say that a β-reduction sequence diverges if it is infi-

nite.

Note that for (λxy. y)((λx. xx)(λx. xx)), there is a finite

161

file:wrongepsi.ML

Conversion

• β-conversion: “symmetric closure” (Ü p.106) of β-reduction

M →∗β N
M =β N

M =β N

N =β M

• α-conversion: bound variable renaming (usually implicit168)

λx.M =α λz.M [x← z] where z 6∈ FV (M)

• η-conversion: for normal-form analysis169

M =η λx. (Mx) if x 6∈ FV (M)

β-reduction sequence

(λxy. y)((λx. xx)(λx. xx))→β λy. y

but there is also a diverging sequence

(λxy. y)((λx. xx)(λx. xx))→β (λxy. y)((λx. xx)(λx. xx))→β . . .

168α-conversion is usually applied implicitly, i.e., without

making it an explicit step. So for example, one would simply

write:

λz. z =β λx. x

169η-conversion is defined as

M =η λx. (Mx) if x 6∈ FV (M)

It is needed for reasoning about normal forms.

g x =η λy. g x y reflects g x b =β (λy. g x y)b

162

More specifically: if we did not have the η-conversion rule,

then g x and λy. g x y would not be “equivalent” up to con-

version. But that seems unreasonable, because they behave

the same way when applied to b. Applied to b, both terms

can be converted to g x b. This is why it is reasonable to

introduce a rule such that g x and λy. g x y are “equivalent”

up to conversion.

One also says that the η-conversion expresses the idea of

extensionality (Ü p.129) [HS90, chapter 7].

Note that with the help of β-reduction and

transitivity (Ü p.157), η-conversion can be generalized to

more than one variable, i.e. M =βη λx1 . . . xn.M x1 . . . xn.

163

λ-Calculus Meta-Properties170

Confluence (equivalently171, Church-Rosser): reduction is

order-independent.

For all M,N1, N2, if M →∗β N1 and M →∗β N2, then

there exists a P where N1 →∗β P and N2 →∗β P .

Here,←:= (→)−1 is the inverse of→, and↔:=← ∪ → is

the symmetric closure of →, and
∗↔:= (↔)∗ is the reflexive

transitive symmetric closure of →.

So for example, if we have

M1 →M2 →M3 →M4 ←M5 ←M6 →M7 ←M8 ←M9

then we would write M1
∗↔M9.

Confluence is equivalent to the Church-Rosser property

[BN98, page 10].
E.g. we can derive λxyz.M x y z =βη M :

λz.M x y z =η M xy

λyz.M x y z =βη λy.M x y λy.M x y =η M x

λyz.M x y z =βη M x

λxyz.M x y z =βη λx.M x λx.M x =η M

λxyz.M x y z =βη M

For any n, we call λx1 . . . xn.M x1 . . . xn an η-expansion of

164

P

N1 N2

M

J
J
J
Ĵ

�

�

J
J
J
Ĵ

∗ ∗

∗ ∗

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then N1 =α N2.

Example:

(λxy. y)((λx. xx)a)→β (λxy. y)(aa)→β λy. y

(λxy. y)((λx. xx)a)→β λy. y

M .
170

By metaproperties, we mean properties about reduction

and conversion sequences in general.
171A reduction → is called confluent if

for all M,N1, N2, if M →∗ N1 and M →∗ N2, then

there exists a P where N1 →∗ P and N2 →∗ P .

A reduction is called Church-Rosser if

for all N1, N2, if N1
∗↔ N2, then there exists a P

where N1 →∗ P and N2 →∗ P .

165

Turing Completeness

The λ-calculus can represent all computable functions.172

172The untyped λ-calculus is Turing complete. This is usu-

ally shown not by mimicking a Turing machine in the λ-

calculus, but rather by exploiting the fact that the Turing

computable functions are the same class as the µ-recursive

functions [HS90, chapter 4]. In a lecture on theory of compu-

tation, you have probably learned that the µ-recursive func-

tions are obtained from the primitive recursive functions by

so-called unbounded minimalization, while the primitive re-

cursive functions are built from the 0-place zero function,

projection functions and the successor function using com-

position and primitive recursion [LP81].

The proof that the untyped λ-calculus can compute all µ-

recursive functions is thus based on showing that each of

the mentioned ingredients can be encoded in the untyped

λ-calculus. While we are not going to study this, one crucial

point is that it should be possible to encode the natural

numbers and the arithmetic operations in the untyped λ-

calculus.

166

8.2 Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped λ-calculus, we have syntactic objects173 called

terms (Ü p.149).

We now introduce syntactic objects called types174.

We will say “a term has a type” or “a term is of a type”.
173We also say that we have defined a term

language (Ü p.149). A particular language is given by

a signature, although for the untyped λ-calculus this is

simply the set of constants Const .
174We can say that we define a type language, i.e., a language

consisting of types. A particular type language is character-

ized by giving a set of base types B. One might also call B
a type signature.

A typical example of a set of base types would be {N, bool},
where N represents the natural numbers and bool the

Boolean values ⊥ (Ü p.17) and >.

All that matters is that B is some fixed set “defined by the

user”.

167

Two Syntaxes

• Syntax for types (B a set of base types (Ü p.167), T ∈
B)

τ ::= T | τ → τ (Ü p.17)

Examples: N, N → 175N, (N → N) → N, N → N →
N176

• Syntax for (raw177) terms: λ-calculus (Ü p.149) augmented

with types178

e ::= (Ü p.17) x | c | (ee) | (λxτ . e)

175The type N → N is the type of a function that takes a

natural number and returns a natural number.

The type (N → N) → N is the type of a function that

takes a function, which takes a natural number and returns

a natural number, and returns a natural number.
176To save parentheses, we use the following convention:

types associate to the right, so N → N → N stands for

N→ (N→ N).

Recall that application associates to the left (Ü p.150).

This may seem confusing at first, but actually, it turns out

that the two conventions concerning associativity fit together

very neatly.
177In the context of typed versions of the λ-calculus,

raw terms are terms built ignoring any typing

conditions (Ü p.173). So raw terms are simply terms

as defined for the untyped λ-calculus (Ü p.149), possibly

augmented with type superscripts.
178So far, this is just syntax!

168

(x ∈ Var , c ∈ Const179)

The notation (λxτ . e) simply specifies that

binding (Ü p.152) occurrences of variables in simple type

theory are tagged with a superscript, where the use of the

letter τ makes it clear (in this particular context) that the

superscript must be some type, defined by the grammar we

just gave.
179Var and Const are the sets of variables and constants,

respectively, as for the untyped λ-calculus (Ü p.149).

169

Signatures and Contexts

Generally (in various logic-related formalisms180) a signature

defines the “fixed” symbols of a language, and a context

defines the “variable” symbols of a language. In λ→,

180For propositional logic (Ü p.16), we did not use the no-

tion of signature, although we mentioned that strictly speak-

ing, there is not just the language of propositional logic, but

rather a language of propositional logic which depends on

the choice of the variables (Ü p.16).

In first-order logic (Ü p.68), a signature was a pair (F ,P)

defining the function and predicate symbols, although

strictly speaking, the signature should also specify the ar-

ities of the symbols in some way. Recall that we did not

bother to fix a precise technical way of specifying those ari-

ties. We were content with saying that they are specified in

“some unambiguous way”.

In sorted logic (Ü p.130), the signature must also specify

the sorts of all symbols. But we did not study sorted logic

in any detail.

In the untyped λ-calculus, the signature is simply the set

of constants (Ü p.149).

Summarizing, we have not been very precise about the

170

• a signature Σ is a sequence (c ∈ Const (Ü p.169))

Σ ::= 〈 〉 | Σ, c : τ 181

• a context Γ is a sequence (x ∈ Var)

Γ ::= 〈 〉 | Γ, x : τ

notion of a signature so far.

For λ→, the rules for “legal” terms become more tricky,

and it is important to be formal about signatures.

In λ→, a signature associates a type with each constant

symbol by writing c : τ .

Usually, we will assume that Const is clear from the con-

text, and that Σ contains an expression of the form c : τ for

each c ∈ Const , and in fact, that Σ is clear from the context

as well. Since Σ contains an expression of the form c : τ for

each c ∈ Const , it is redundant to give Const explicitly. It

is sufficient to give Σ.
181We call an expression of the form x : τ (Ü p.171) or

c : τ (Ü p.171) a type binding.

The use of the letter τ makes it clear (in this particular

context) that the superscript must be some type, defined by

the grammar we just gave.

171

Type Assignment Calculus

We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ

and a context Γ. For example

Γ `Σ c x : σ182

where Σ = c : τ → σ and Γ = x : τ .

We usually leave Σ implicit (Ü p.171) and write ` instead

of `Σ.

If Γ is empty it is omitted.
182The expression

Γ `Σ c x : σ

is called a type judgement. It says that given the signature

Σ = c : τ → σ and the context Γ = x : τ , the term

c x has type σ or

c x is of type σ or

c x is assigned type σ.

Recall that you have seen other judgements (Ü p.48) be-

fore.

172

Type Assignment Calculus: Rules183

c : τ ∈ 184Σ

Γ ` c : τ
assum Γ, x : τ,∆ ` x : τ hyp185

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ186 ` e : τ

Γ ` λxσ. e : σ → τ
abs

Note that due to requiring x : σ to occur at the end, rule
183Type assignment is defined as a system of rules for

deriving type judgements (Ü p.172), in the same way

that we have defined derivability judgements (Ü p.48) for

logics (Ü p.14), and β-reduction (Ü p.157) for the untyped

λ-calculus.
184Recall that Σ is a sequence. By abuse of notation, we

sometimes identify this sequence with a set and allow our-

selves to write c : τ ∈ Σ.

We may also write Σ ⊆ Σ′ meaning that c : τ ∈ Σ implies

c : τ ∈ Σ′.
185One could also formulate hyp as follows:

x : τ ∈ Γ

Γ ` x : τ
hyp

That would be in close analogy to LF, a system not treated

here.
186A sequence is a collection of objects which differs from sets

in that a sequence contains the objects in a certain order, and

there can be multiple occurrences of an object.

173

abs is deterministic187 when applied bottom-up.

We write a sequence containing the objects o1, . . . , on as

〈o1, . . . , on〉, or sometimes simply o1, . . . , on.

If Ω is the sequence o1, . . . , on, then we write Ω, o

for the sequence 〈o1, . . . , on, o〉 and o,Ω for the sequence

〈o, o1, . . . , on〉.
An empty sequence is denoted by 〈 〉.

187S (Ü p.170)ignatures and contexts are sequences, and in-

tuitively, the order in which the type bindings (Ü p.171) oc-

cur in these sequences does not matter.

Now, the way we have set up the type assignment calculus,

it would seem that the order does matter, namely since in

rule abs, the binding x : σ above the horizontal line must be

the last binding in the context. An alternative formulation

would be
Γ, x : σ,∆ ` e : τ

Γ,∆ ` λxσ. e : σ → τ
abs

However, the original formulation is more straightforward in

light of the fact that type derivations are usually constructed

174

Also note the analogy to minimal logic over →188.

bottom-up. The bottom-up application of the original abs

is deterministic, whereas the alternative formulation would

confront us with the choice of how to split up the context.

For example, we could start a derivation of y : ρ, z : ω `
λxσ. c : σ → τ in three ways:

x : σ, y : ρ, z : ω ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

or
y : ρ, x : σ, z : ω ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

or
y : ρ, z : ω, x : σ ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

188Recall the sequent rules (Ü p.49) of the “→ /∧” frag-

ment of propositional logic. Consider now only the “→”

fragment. We call this fragment minimal logic over →.

175

β-Reduction in λ→

β-reduction defined as before (Ü p.157), has subject reduc-

If you take the rule

Γ, x : τ,∆ ` x : τ hyp

of λ→ and throw away the terms (so you keep only the types),

you obtain essentially the rule for assumptions

Γ ` A (where A ∈ Γ) (Ü p.49)

of propositional logic.

Likewise, if you do the same with the rule

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

of λ→, you obtain essentially the rule
Γ ` A→ B Γ ` A

Γ ` B →-E

(Ü p.49)of propositional logic.

Finally, if you do the same with the rule
Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

176

of λ→, you obtain essentially the rule
A,Γ ` B

Γ ` A→ B
→-I

(Ü p.49)of propositional logic.

Note that in this setting, there is no analogous proposi-

tional logic rule for
c : τ ∈ Σ

Γ ` c : τ
assum

So for the moment, we can observe a close analogy between

λ→, for Σ being empty, and the→ fragment of propositional

logic, which is also called minimal logic over → (Ü p.175).

Such an analogy between a type theory (of which λ→ is

an example) and a logic is referred to in the literature as

Curry-Howard isomorphism [Tho91]. One also speaks of

propositions as types [GLT89]. The isomorphism is so fun-

damental that it is common to characterize type theories by

the logic they represent, so for example, one might say:

177

tion property189 and is strongly normalizing190.

λ→ is the type theory of minimal logic over →.

Note that for this analogy, it is quite crucial that we have

no constants (Σ is empty). Namely, this condition implies

that for some types, we cannot give a closed (Ü p.152) term

that has this type. For example, we can give a closed term

of type τ → σ → τ , namely λxy. x, while we cannot give a

closed term of type (τ → τ)→ τ . We say that τ → σ → τ

is inhabited (Ü p.371) while (τ → τ)→ τ is not inhabited.

The inhabited types correspond exactly to the formulas

that are derivable in minimal logic over →, and the inhab-

iting term is regarded as a proof.
189Subject reduction is the following property:

reduction (Ü p.157) does not change the type of a term, so

if `Σ M : τ and M →β N , then `Σ N : τ .
190The simply-typed λ-calculus, unlike the untyped λ-

calculus (Ü p.147), is normalizing, that is to say, every term

has a normal form. Even more, it is strongly normalizing,

that is, this normal form is reached regardless of the reduc-

178

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Note the use of schematic types191!

For simplicity, applications of hyp (Ü p.173) are usually

not explicitly marked in proof.

tion order.
191In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbi-

trary types. Whatever types you substitute for σ and τ , you

obtain a derivation of a type judgement.

This is in analogy to schematic derivations in a

logic (Ü p.34).

Note also that Σ (Ü p.171) is irrelevant for the example

and hence arbitrary.

179

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f : σ → σ → τ Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

180

Example 3

Σ = f : σ → σ → τ

Γ = x : σ

f : σ → σ → τ ∈ Σ

Γ ` f : σ → σ → τ
assum

Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant192.

We will often suppress applications of assum (Ü p.173).
192In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is

a constant (Ü p.171).

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a

variable (Ü p.171).

Looking at the different derivations of the type judgement

Γ ` f x x : τ in Examples 2 and 3, you may find that they

are very similar, and you may wonder: What is the point?

Why do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When

setting up a type theory or programming language, there

are choices to be made about whether there should be a dis-

tinction between variables and constants, and what it should

look like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make

the distinction. For example, if we want to introduce the nat-

ural numbers in our λ→ language, then it is intuitive that

there should be constants 1, 2, . . . denoting the numbers. If

181

http://en.wikiquote.org/wiki/Alan_Perlis

Type Assignment and αβη-Conversion

Type construction:

• Type construction193 is decidable.

• There is a practically useful implementation for type-

construction (Hindley-Milner algorithmW [Mil78, NN99]).

Term congruence194 (e =αβη e
′? (Ü p.162)) is decidable.

1, 2, . . . were variables, then we could write strange expres-

sions like λ2N→N. y, so we could use 2 as a variable of type

N→ N.
193Type construction is the problem of given a Σ, Γ and e,

finding a τ such that Γ `Σ e : τ .

Sometimes one also considers the problem where Γ is un-

known and must also be constructed.
194αβη-conversion is defined as for λ→ (Ü p.162). Given

two (extended) λ-terms e and e′, it is decidable whether

e =αβη e
′.

182

8.3 Polymorphism and Type Classes

We will now look at the typed λ-calculus extended by

polymorphism (Ü p.184) and type classes (Ü p.187).

As we will see later (Ü p.201), this is the universal repre-

sentation for object logics in Isabelle.

183

Polymorphism: Intuition

In functional programming, the function append for con-

catenating two lists works the same way on integer lists and

on character lists: append is polymorphic195.

Type language (Ü p.167) must be generalized to include

type variables (denoted by α, β . . .) and type constructors.

Example: append has type α list → α list → α list , and

by type instantiation, it can also have type, say, int list →
int list → int list .

195In functional programming, you will come across func-

tions that operate uniformly on many different types. For

example, a function append for concatenating two lists works

the same way on integer lists and on character lists. Such

functions are called polymorphic.

More precisely, this kind of polymorphism, where a func-

tion does exactly the same thing regardless of the type in-

stance, is called parametric polymorphism, as opposed to

ad-hoc polymorphism (Ü p.188).

In a type system with polymorphism, the notion of base

type (Ü p.168) (which is just a type constant, i.e., one sym-

bol) is generalized to a type constructor with an arity ≥ 0.

A type constructor of arity n applied to n types is then a

type. For example, there might be a type constructor list of

arity 1, and int of arity 0. Then, int list is a type.

Note that application of a type constructor to a type is

written in postfix notation, unlike any notation for function

application we have seen (Ü p.66). However, other conven-

184

Polymorphism: Two Syntaxes

• Syntax for polymorphic types (B a set of type construc-

tors196 including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T (Ü p.17)

Examples: N, N→ (Ü p.168)N, α list , N list , (N, bool) pair .

• Syntax for (raw (Ü p.168)) terms as before (Ü p.168):

e ::= (Ü p.17) x | c | (ee) | (λxτ (Ü p.168). e)

(x ∈ Var , c ∈ Const (Ü p.169))

tions exist, even within Isabelle (Ü p.193).

A type constructor of arity > 0 is called type operator by

some authors [GM93, page 196], but we do not follow this

terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),

but again, we do not follow this terminology: for us a type

constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
196As before (Ü p.167), we define a type language, i.e., a

language consisting of types, and a particular type language

is characterized by giving a certain set of symbols B. But

unlike before, B is now a set of type constructors. Each

type constructor has an arity associated with it just like a

function in first-order logic (Ü p.68). The intention is that

a type constructor may be applied to types.

Following the conventions of ML [Pau96], we write types

in postfix notation (Ü p.66), something we have not seen

185

Polymorphic Type Assignment Calculus

Type substitutions (denoted Θ) defined in analogy to sub-

stitutions in FOL197. Apart from application of Θ in rule

assum, type assignment is as for λ→ (Ü p.173):

c : τ ∈ (Ü p.173)Σ

Γ ` c : τΘ
assum∗ Γ, x : τ,∆ ` x : τ hyp (Ü p.173)

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ (Ü p.173) ` e : τ

Γ ` λxσ. e : σ → τ
abs

∗: Θ is any type substitution.

before. I.e., the type constructor comes after the arguments

it is applied to.

It makes perfect sense to view the function construction

arrow → as type constructor (Ü p.193), however written

infix rather than postfix.

So the B is some fixed set “defined by the user”, but it

should definitely always include →.
197A type substitution replaces a type variable by a type,

just like in first-order logic (Ü p.84), a substitution replaces

a variable by a term.

186

Type Classes: Intuition

Type classes198 are a way of . . .
198Type classes are a way of “making ad-hoc

polymorphism (Ü p.188) less ad-hoc”[HHPW96, WB89].

Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are

defined.

For example, for some types, a symbol≤ (which is a binary

infix predicate (Ü p.66)) may exist and for some it may not,

and we could have a type class ord containing all types for

which it exists.

Suppose you want to sort a list of elements (smaller el-

ements should come before bigger elements). This is only

defined for elements of a type for which the symbol ≤ exists.

Note that while a symbol such as ≤ may have a similar

meaning for different types (for example, integers and reals),

one cannot say that it means exactly the same thing regard-

less of the type of the argument to which it is applied. In

fact, ≤ has to be defined separately for each type in ord .

This is in contrast to parametric poymorphism (Ü p.184),

187

“making ad-hoc polymorphism199 less ad-hoc”[HHPW96, WB89].

Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are

defined.

We only sketch the formalization here, and refer to [HHPW96,

Nip93, NP93] for details.

but also somewhat different from ad-hoc

polymorphism (Ü p.188): The types of the symbols must

not be declared separately. E.g., one has to declare only

once that ≤ is of type (a :: ord (Ü p.189), α).
199Ad-hoc polymorphism, also called overloading, refers to

functions that do different (although usually similar) things

on different types. For example, a function≤may be defined

as ’a’ ≤ ’b’ . . . on characters and 1 ≤ 2 . . . on integers.

In this case, the symbol ≤ must be declared and defined

separately for each type.

This is in contrast to parametric pomorphism (Ü p.184),

but also somewhat different from type classes.

Type classes are a way of “making ad-hoc polymorphism

less ad-hoc”[HHPW96, WB89].

188

Type Classes in Isabelle

• Syntactic classes200 (similarly as in Haskell): E.g., de-

clare that there exists a class ord which is a subclass of

class term, and that for any τ :: ord , the constant ≤
is defined and has type τ → τ → bool . Isabelle has

syntax for this.

200A syntactic class is a class of types for which certain

symbols are declared to exist. Isabelle has a syntax for such

declarations. E.g., the declaration

sort ord < term

const <= : [’a::ord, ’a] => bool

may form part of an Isabelle theory file. It declares a type

class ord which is a subclass (that’s what the < means; in

mathematical notation it will be written ≺) of a class term,

meaning that any type in ord is also in term. We will write

the “class judgement” ord ≺ term. The class term must

be defined elsewhere.

The second line declares a symbol <=. Such a declaration

is preceded by the keyword const. The notation α :: ord

stands for a type variable constrained to be in class ord . So

<= is declared to be of type [α :: ord , α] ⇒ bool , meaning

that it takes two arguments of a type in the class ord and

returns a term of type bool . The symbol ⇒(=>) is the

function type arrow (Ü p.168) in Isabelle. Note that the

189

• Axiomatic classes201: Declare (axiomatize) that certain

theorems should hold for a τ :: κ where κ is a type class.

E.g., axiomatize that ≤ is reflexive by an (Isabelle) the-

orem ”x ≤ x”. Isabelle has syntax for this (Ü p.190).

second occurrence of α is written without :: ord . This is

because it is enough to state the class constraint once.

Note also that [α :: ord , α] => bool is in fact just another

way of writing α :: ord => α => bool , similarly as for

goals (Ü p.242).

Haskell [HHPW96] has type classes but ML [Pau96] hasn’t.
201In addition to declaring the syntax of a type class, one

can axiomatize the semantics of the symbols. Again, Isabelle

has a syntax for such declarations. E.g., the declaration

axclass order < ord

order refl: ’’x <= x ’’

order trans: ’’[| x <= y; y <= z |] ==> x <= z’’

...

may form part of an Isabelle theory file. It declares an

axiomatic type class order which is a subclass of ord de-

fined above.

The next two lines are the axioms. Here, order refl

and order trans are the names of the axioms. Recall that

190

To use a class, we can declare members202 of it, e.g., N is

a member of ord.

=⇒ is the implication symbol in Isabelle (that is to say, the

metalevel implication).

Whenever an Isabelle theory declares (Ü p.191) that a

type is a member of such a class, it must prove those ax-

ioms.

The rationale of having axiomatic classes is that it allows

for proofs that hold in different but similar mathematical

structures to be done only once. So for example, all theorems

that hold for dense orders can be proven for all dense orders

with one single proof.
202One also speaks of a type being an instance of a type

class, but this is slightly confusing, since we also say that a

type can be an instance of another type, e.g., N → N is an

instance of α, since α[α← (N→ N)] = N→ N (Ü p.186).

So it is better to speak of a member of a type class.

Isabelle provides a syntax for declaring that a type is a

member of a type class, e.g.

instance nat :: ord

191

Syntax: Classes, Types, and Terms

Based on

• a set of type classes203, sayK = {ord , order , lattice, . . .},

• a set of type constructors204, say

declares that type nat is a member of class ord.

If the class κ is a syntactic class, such a declaration must

come with a definition of the symbols (Ü p.189) that are

declared to exist for κ.

In addition, if κ is an axiomatic class, such a declaration

must come with a proof of the axioms.

If a type τ is (by declaration) a member of class κ, we write

the “class judgement” τ :: κ.
203The set K we gave is incomplete and just exemplary.

So the set of type classes involved in an Isabelle theory is

a finite set of names (written lower-case), typically including

ord , order , and lattice.

We have seen some Isabelle syntax for declaring the type

classes previously (Ü p.189).

In grammars and elsewhere, κ is the letter we use for “type

class”.
204As before, the set B we gave is is incomplete (there

are “. . .”) and just exemplary. We might call B a type

192

B = {bool , → 205, ind , list , set . . .},

• a set of constants (Ü p.169) Const and a set of

variables (Ü p.169) Var ,

we define

signature (Ü p.167).

Note also that an is used to denote the arity of a type

constructor (Ü p.184).

– list means that list is unary type constructor;

– → means that → is a binary infix type constructor.

The notation using is slightly abusive since the is not

actually part of the type constructor. list is not a type

constructor; list is a type constructor.

So the set of type constructors involved in an Isabelle the-

ory is a finite set of names (written lower-case) with each

having an arity associated, typically including bool ,→, and

list . Note however that bool is fundamental (since object

level predicates are modeled as functions taking terms to

a Boolean), and so is →, the constructor (Ü p.193) of the

function space between two types (Ü p.168).

In grammars and elsewhere, T is the letter we use for “type

constructor”.
205In λ→, types were built from base types using a “special

193

• Polymorphic types206:

τ ::= (Ü p.17) α | α:: κ | (τ, . . . , τ) T

• Raw (Ü p.168) terms (as before (Ü p.168)):

e ::= (Ü p.17) x | c | (ee) | (λxτ (Ü p.168). e)

(α is type variable, T ∈ B (Ü p.192), κ ∈ K (Ü p.192),

x ∈ Var , c ∈ Const (Ü p.169))

symbol” → (Ü p.168).

When we generalize λ→ to a λ-calculus with polymor-

phism, this “special symbol” becomes a type constructor.

However, the syntax is still special, and it is interpreted in a

particular way (Ü p.168).
206τ ::= (Ü p.17) α | α:: κ | (τ, . . . , τ) T

(α is type variable)

is a grammar defining what polymorphic types are

(syntactically). As before (Ü p.171), τ is the non-

terminal (Ü p.17) we use for (now: polymorphic) types.

This grammar is not exemplary but generic, and it deserves

a closer look.

A type variable is a variable that stands for a type, as

opposed to a term. We have not given a grammar for type

variables, but assume that there is a countable set of type

variables disjoint from the set of term variables. We use α as

the non-terminal for a type variable (abusing notation, we

194

Type Assignment Calculus with Type Classes

Assume some syntax for declaring τ :: κ (Ü p.191) and κ ≺
κ′ (Ü p.189). In addition introduce the rule

τ :: κ κ ≺ κ′

τ :: κ′
subclass

Type assignment rules as before (Ü p.186), but type substi-

tution Θ in
c : τ ∈ (Ü p.173)Σ

Γ ` c : τΘ
assum

must respect class constraints (Ü p.189): for each α :: κ

occurring in τ where αΘ = σ, judgement (Ü p.192) σ :: κ

must hold.

often also use α to denote an actual type variable).

First, note that a type variable may be followed by a class

constraint (Ü p.189) :: κ (recall (Ü p.192) that κ is the non-

terminal for type classes). However, a type variable is not

necessarily followed by such a constraint, for example if the

type variable already occurs elsewhere and is constrained in

that place. We have already seen this (Ü p.189).

Moreover, a polymorphic type is obtained by preceding a

type constructor with a tuple of types. The arity of the tuple

must be equal to the declared arity of the type constructor.

It is not shown here that for some special type constructors,

such as →, the argument may also be written infix.

195

Example

Suppose that by virtue of declarations, we have N :: order,

order ≺ ord, and ≤: α :: ord→ α→ bool ∈ Σ. Derive

N :: order order ≺ ord

N :: ord
subclass

and then (Θ = [α← N])

(≤: (α :: ord)→ α→ bool) ∈ Σ

` ≤: N→ N→ bool
assum

which respects the class constraint since the judgement N ::

ord was derived above.

196

8.4 Higher-Order Unification

The λ-calculus is “the” (Ü p.146) metalogic. Hence we

now (sometimes) call its variables “metavariables” (Ü p.30)

for emphasis and we precede them with “?”. E.g. they can

stand for object (Ü p.30)-level formulae (Ü p.19). More de-

tails later (Ü p.201).

Two issues concerning metavariables are:

• suitable renamings207 of metavariables;

• unification208 before rule application.

207Whenever a rule is applied, the metavariables occurring

in it must be renamed to fresh variables to ensure that no

metavariable in the rule has been used in the proof before.

The notion fresh is often casually used in logic, and it

means: this variable has never been used before. To be

more precise, one should say: never been used before in the

relevant context.
208The mechanism to instantiate metavariables as needed is

called (higher-order) unification. Unification is the process

of finding a substitution (Ü p.153) that makes two terms

equal.

We will now see more formally what it is and later also

where it is used (Ü p.234).

197

What Is Higher-Order Unification?

Unification of terms e, e′: find substitution (Ü p.151) θ for

metavariables such that eθ =αβη e
′θ.

Examples209:

?X + ?Y =αβη x + x

?P?P (x) =αβη x + x

f (?X x) =αβη ?Y x

?F (?Gx) =αβη f (g(x))

Why higher-order (Ü p.225)? Metavariables may be in-

stantiated to functions, e.g. [?P ← λy.y + y].
209

A solution for ?X + ?Y =αβη x + x is [?X ← x, ?Y ← x].

A solution for ?P (x) =αβη x + x is [?P ← (λy.y + y)].

A solution for f (?Xx) =αβη?Y x is [?X ← (λz.z), ?Y ←
f].

Three solutions for ?F (?Gx) =αβη f (g(x)) are

[?F ← f, ?G← g],

[?F ← (λx.f (g x)), ?G← (λx.x)],

[?F ← (λx.x), ?G← (λx.f (g x))],

198

Higher-Order Unification: Facts

• Unification modulo210 αβ (HO-unification) is semi-decidable

(in Isabelle: incomplete).

• Unification modulo αβη is undecidable (in Isabelle: in-

complete).

• HO-unification is well-behaved for most practical cases.

• Important fragments (like HO-patterns (Ü p.281)) are

decidable.

• HO-unification has possibly infinitely many solutions.

We will look at some of these issues again later (Ü p.271).

210Unification of terms e, e′ modulo αβ means finding a sub-

stitution θ for metavariables such that θ(e) =αβ θ(e′).

Likewise, unification of terms e, e′ modulo αβη means find-

ing a substitution σ for metavariables such that σ(e) =αβη

σ(e′).

199

8.5 Summary on λ-Calculus

• λ-calculus is a formalism for writing functions (Ü p.147).

• β-reduction (Ü p.157) is the notion of “computing” in

λ-calculus.

• λ-calculus is Turing-complete (Ü p.166).

• λ→ (Ü p.167) restricts syntax to “meaningful” λ-terms.

• Add-on features: Polymorphism and type classes (Ü p.183).

• The λ-calculus will be used to represent syntax of object

logics. λ-terms211 stand for object terms/formulae. This

will be explained next lecture (Ü p.201).

• HO-unification (Ü p.197) is important in applying proof

rules.

211So just like first-order logic (Ü p.68), the λ-calculus has

a syntactic category called terms. Bit the word “term” has a

different meaning for the λ-calculus than for first-order logic,

and so one can say λ-term for emphasis.

Note that at this stage (Ü p.296), we have no syntactic

category called “formula” for the λ-calculus.

200

9 Encoding Syntax

201

Metatheory: Motivation

Previously (Ü p.145), we have seen the (polymorphically (Ü p.184))

typed λ-calculus (Ü p.167) (with type classes (Ü p.187)).

Now, we will see how the typed λ-calculus can be used as

a metalanguage (Ü p.113) (“metalogic”) for representing212

the syntax of an object logic, e.g. first-order logic (Ü p.61).

Idea: An object-level proposition is a meta-level term.

Metalogic type o for propositions.

The terms of type o encode object level propositions: φ ∈
Prop iff pφq : o213.

Later (Ü p.291): representing proofs/provability. Then

we will really have a metalogic, not just metalanguage.
212In the following, we will distinguish between the object

logic and the metalogic. We have already seen this kind of

distinction before (Ü p.30).

The object logic, or user-defined theory if you like, has

a syntax and has a notion of proof. Both must be repre-

sented in the metalogic. This is what this lecture and a later

lecture (Ü p.291) are about.
213

φ ∈ Prop iff pφq ∈ o means: The object level formula

φ is a well-formed (according to the syntactic rules of the

object logic) proposition if and only if its encoding in the

metalogic, written pφq, has type o.

202

Why Have a Metalogic?

Why should we have a meta- or framework logic rather than

implementing provers for each object logic individually?

+ Implement ‘core’214 only once

+ Shared support for automation215

+ Conceptual framework216 for exploring what a logic is

But

+/− Metalayer217 between user and logic

− Makes assumptions218 about structure of logic

9.1 λ→: Review
214By the core we mean the syntax and proof rules of the

metalogic. These should be simple, so that one can be rea-

sonably confident that the implementation is correct.
215There are some general techniques involved in automating

the search for a proof that work for various object logics. It

is therefore useful to implement these techniques on a higher

level, rather than considering each object logic individually.
216By implementing various object logics within the same

metalogic, we can compare the object logics in a more formal

way.
217Having a logic and a metalogic can be very mind-boggling.

We already experienced that when working with Isabelle, it is

sometimes confusing to know whether we are at the level of a

particular theory, or at the level of general Isabelle syntax, or

at the level of ML, the programming language that Isabelle

is implemented in.
218Designing a metalogic is a bold endeavor.

How are we supposed to know that the metalogic is ex-

pressive enough to encode any object logic someone might

203

λ→ is sufficient for presentation here (no polymorphism (Ü p.184),

type classes (Ü p.187)).

• Syntax for types (B a set of base types (Ü p.167), T ∈
B)

τ ::= T | τ → τ (Ü p.17)

Examples: N, N → (Ü p.168)N, (N → N) → N,

N→ N→ N (Ü p.168)

• Syntax for terms: λ-calculus (Ü p.149) augmented with

types (Ü p.168)

e ::= (Ü p.17) x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const (Ü p.169))

invent?

There is probably no general satisfactory answer to this

question.

In fact, we make assumptions that object logics are of a

certain kind.

This is related to the nature of implication. Roughly

speaking, we assume logics and proof systems for which the

deduction theorem holds, i.e., for which A ` B (B is deriv-

able under assumption A) holds if and only if ` A → B

(A→ B is derivable without any assumption).

There are logics (modal, relevance logics (Ü p.98)) for

which the theorem does not hold [BM00].

204

Type Assignment

• Signature (Ü p.170) Σ ::= 〈 〉 | Σ, c : τ (Ü p.171).

• Context (Ü p.170) Γ ::= 〈 〉 | Γ, x : τ (Ü p.171).

• Type assignment rules (Ü p.173)

c : τ ∈ Σ

Γ ` c : τ
assum Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

205

9.2 Representing Syntax of Propositional Logic

Let Prop219 be our object logic (Ü p.202):

P ::= (Ü p.17) x | ¬P | P ∧ P | P → P

Let λ→ be our metalogic (Ü p.202). Declare

• B = {o} (Ü p.202).

• Signature (Ü p.171) assigns types to constants220:

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉
219We consider here the fragment of propositional logic con-

taining the logical symbols (Ü p.104) ¬,∧,→, and we call

it Prop. We chose this small fragment because it is sufficient

for our purposes, namely to demonstrate how encoding syn-

tax in λ→ works. It would be trivial to adapt everything in

the sequel to include ∨ or ⊥ (Ü p.17).
220Now the object/meta distinction starts becoming mind-

boggling!

We declare

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉,
and so on the level of our metalogic (Ü p.202) λ→, not, and,

and imp are constants (Ü p.171). However, these constants

represent the logical symbols (Ü p.104) of the object logic.

Note the types of the constants:

not has type o→ o, so it takes a proposition and returns a

proposition.

and and imp have type o → o → o, so each takes

two (Ü p.161) propositions and returns a proposition.

206

• Context (Ü p.171) assigns types to variables221.

This approach is called first-order syntax (see later (Ü p.226)).

221We identify metalevel variables and object level proposi-

tional variables. Hence Γ should contain expressions of the

form a : o, where a is a λ→ variable, representing a propo-

sitional variable. Note that under this agreement, Γ should

not contain expressions like, e.g., a : o→ o.

207

Digression: Programming Languages

λ→ is the theory underlying typed functional programming.

Our declaration of B and Σ on the previous slide corresponds

to the declaration of an algebraic datatype (Ü p.608) in a

functional programming language [Pau96]:

datatype Prop =

VarInject of Variable | not of Prop

| and of Prop ∗ Prop | imp of Prop ∗ Prop

208

Example of First-Order Syntax

a : o ` imp (not a) a : o222

a : o ` imp : o→ o→ o
a : o ` not : o→ o a : o ` a : o

a : o ` not a : o

a : o ` imp (not a) : o→ o a : o ` a : o

a : o ` imp (not a) a : o

Applications of hyp (Ü p.179) and assum (Ü p.181) sup-

pressed. Otherwise always rule app (Ü p.173).

222a : o ` imp (not a) a : o is a judgement (Ü p.172) in

λ→, which may or may not be provable.

If we set up everything correctly and if a : o `
imp (not a) a : o is provable, then the judgement repre-

sents the fact ¬a→ a is a proposition.

In this sense, we could then say that derivability in λ→

captures the syntax of Prop, i.e., it can distinguish a legal

proposition from a “non-proposition”.

Note that this has nothing to do with the question of

whether it is a true proposition! So far, we are only talk-

ing about the representation of syntax.

209

Non-example of First-Order Syntax

a : o ` not (imp a) a : o223

a : o ` not : o→ o

a : o ` imp : o→ o→ o a : o ` a : o

a : o ` imp a : o→ o

???

No proof possible! (Requires analysis of normal forms224.)

223a : o ` not (imp a) a : o is a judgement (Ü p.172) in

λ→ which may or may not be provable.

If we set up everything correctly and if a : o `
not (imp a) a : o is provable, then the judgement repre-

sents the fact that (→ a)¬a is a proposition.

However, you may observe that (→ a)¬a is gibberish.

In fact, there is no formal sense whatsoever in saying that

not (imp a) a corresponds to (→ a)¬a.

We will see that a : o ` not (imp a) a : o isn’t prov-

able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
224Generally, it is difficult to prove that a proof of a given

judgement within a given proof system (Ü p.14) does not

exist, since there are infinitely many possible proofs and it is

not obvious to predict how big an existing proof might be.

However, under certain conditions, there are techniques

for simplifying proofs. In fact, there may be normal form

proofs, i.e., proofs simplified as much as possible. One can

210

Bijection between Prop and o

We desire bijection225 p·q : Prop → o that is

• adequate: each proposition in Prop can be represented

by a λ→-term of type o:

If P ∈ Prop then Γ ` pPq : o

• faithful: each λ→ term of type o represents a proposition

in Prop:

If Γ ` t : o then ptq−1 ∈ Prop

then argue: if a proof of a certain judgement exists, it must

be no bigger than a certain size. By searching through all

proofs smaller than this size, one can prove that no proof

exists.

In this lecture, we do not go into the details of this topic

[GLT89, Pra65].
225In general mathematical terminology, a bijection between

A and B is a mapping f : A→ B such that for all a, a′ ∈ A,

where a 6= a′, we have f (a) 6= f (a′), and for each b ∈ B,

there exists an a ∈ A such that f (a) = b.

For a bijection f , the inverse f−1 is always defined, and we

have f (f−1(b)) = b for all b ∈ B and f−1(f (a)) = a for all

a ∈ A.

211

Adequacy of Bijection

Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o

Formalize mapping p·q:
pxq = x for x a variable

p¬Pq = not pPq
pP ∧Qq = and pPq pQq
pP → Qq = imp pPq pQq

Formal statement accounts for variables:

If P ∈ Prop, and if for each propositional variable x in P ,

we have x : o ∈ Γ, then Γ ` pPq : o. Proof by induction226.
226If P ∈ Prop, and if for each propositional variable x in

P , we have x : o ∈ Γ, then Γ ` pPq : o.

Proof : By structural induction on Prop.

Base case: P is a propositional variable.

Then pPq = P , and so if P : o ∈ Γ, then we have Γ `
pPq : o by rule hyp (Ü p.173).

Induction step: Suppose the claim holds for P ∈ Prop and

Q ∈ Prop.

Consider the propositional formula ¬P . We have p¬Pq =

not pPq. Assume that for each propositional variable x

in P , we have x : o ∈ Γ. By the induction hypoth-

esis, Γ ` pPq : o. Moreover Γ ` not : o → o by

rule assum (Ü p.173), and so Γ ` not pPq : o by rule

app (Ü p.173).

Now consider the propositional formula P ∧ Q. We have

pP ∧ Qq = and pPq pQq. Assume that for each propo-

sitional variable x in P or Q, we have x : o ∈ Γ. By the

induction hypothesis, Γ ` pPq : o and Γ ` pQq : o. More-

212

Faithfulness of Bijection

Define p·q−1

pxq−1 = x for x a variable

pnot Pq−1 = ¬pPq−1

pand P Qq−1 = pPq−1 ∧ pQq−1

pimp P Qq−1 = pPq−1 → pQq−1

For bijection (Ü p.211), should have ppPqq−1 = P and

pptq−1q = t. Former is trivial227, but what about latter?

over Γ ` and : o → o → o by rule assum (Ü p.173),

and so Γ ` and pPq pQq : o by two applications of rule

app (Ü p.173).

The case P → Q is completely analogous.

227By the definition of Prop (Ü p.206) and the definition

of p·q (Ü p.212), it is clear that pPq is defined for all P ∈
Prop. It is very easy to show by induction on Prop that

ppPqq−1 = P .

Here is an example of a proof by induction on

Prop. (Ü p.212)

Obviously, everything we say here depends on the partic-

ular fragment (Ü p.206) of propositional logic, but in an

inessential way. It would be trivial to adapt to other frag-

ments.

213

ptq−1 Is not Total

Example: For t = not ((λxo. x)a), we have a : o ` t : o

a : o ` not : o→ o

a : o, x : o ` x : o

a : o ` λxo. x : o→ o
abs

a : o ` a : o

a : o ` (λxo. x) a : o
app

a : o ` not ((λxo. x) a) : o
app

But ptq−1 is undefined!

214

Normal Forms

If t : o, then there exists a t′ such that t =βη (Ü p.162)t′,

where t′ : o and t′ is in canonical (βη-long) normal228 form,

e.g.

not ((λxo. x) a) =βη not a

not =βη λxo. not x

imp (not ((λxo. x) a)) =βη λxo. imp (not a)x

228

A canonical βη-long normal form of a λ-term is obtained

by applying first β-reduction as long as possible, and then

computing the maximal η-expansion (Ü p.162).

You may wonder: Why is there such a thing as a

maximal η-expansion? Can’t I expand a λ-term to

λx1 . . . xn.M x1 . . . xn for arbitrary n? In the untyped λ-

calculus, this is indeed the case. But in the typed λ-calculus,

the answer is no! Consider this example:

not can be expanded to λx. not x since not is of function

type: it has type o→ o (Ü p.206). Therefore, not x can be

assigned a type (Ü p.173), which is an intermediate step in

typing λx. not x:
Γ, x : o ` not : o→ o Γ, x : o ` x : o

Γ, x : o ` not x : o
app

Γ ` λx. not x : o→ o
abs

But we cannot, say, expand not to λxy. not x y since it is

impossible to assign a type to not x y.

215

Bijection Theorem

The encoding p·q is a bijection between propositional for-

mulae with variables in Γ229 and canonical terms t′, where

Γ ` t′ : o.

Proof : Based on normalization (Ü p.210)

x : σ ` e : τ
` λxσ. e : σ → τ

abs ` e′ : σ

` (λxσ. e)e′ : τ
app

⇒ 230 ` e[x← e′] : τ

Corollary: If t : o231 then t =βη t
′ and pt′q−1 ∈ Prop for

some canonical t′.
Effectively, when a term of type τ1 → τn → τ is η-

expanded, it will have the form λx1x2 . . . xn.e.

Normal forms are unique (Ü p.165).
229Saying that a propositional formula has variables in Γ is

an abuse of terminology, i.e., it isn’t exactly true, but it is

trusted that the reader can guess the exact formulation.

What we mean is: a propositional formula such that for

each propositional variable x occurring in the formula, we

have x : o ∈ Γ.
230What this picture says is that if the left hand side is a frag-

ment from a proof tree, deriving the judgement (Ü p.172)

` (λxσ. e)e′ : τ , then there exists a proof of the judgement

` e[x← e′] : τ .

Be aware however that our argument here is very sketchy.

We do not go into the details in this course.
231Simply writing t : o is again a bit sloppy. We should

write: Γ ` t : o for some Γ containing only expressions of

the form x : o, where x is a propositional variable in Prop.

216

9.3 Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category (Ü p.19) of

formulae (propositions), represented in λ→ by the type o (Ü p.202).

In first-order232 logic, we also have the syntactic category (Ü p.68)

of terms. For representation in λ→, we now introduce type

i, so B = {i, o}.
Just like Γ ` a : omeans that a represents a proposition (Ü p.209),

Γ ` t : i means that t represents a term.
232In the previous section (Ü p.206), we have seen how we

can use first-order syntax (of λ→) to represent the syntax of

an object logic, then Prop. We haven’t really understood

yet why we speak of first-order syntax, but note that the

notion “first-order” refers to λ→, i.e., the metalevel.

We will now consider first-order logic as object language.

So we will now attempt to represent the syntax of first-order

logic (the object language) using first-order λ→ syntax (the

metalanguage). To avoid confusion, it is best to imagine

that it is a mere coincidence that both the object and the

metalanguage (Ü p.226) are described as “first-order”. Of

course there are reasons why both languages are called like

that, but it is best to understand this separately for both

levels. We will come back to this.

217

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object (Ü p.202) level

language233:

Terms T ::= (Ü p.17) x | 0 | s234 T | T + T | T × T
Formulae F ::= T = T | ¬F | F ∧ F | F → F

In λ→ (on metalevel), define signature (Ü p.206) Σ =

ΣF
235 ∪ ΣP ∪ ΣC:

ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i,

times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉
ΣC = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉
233With this grammar, we specify a certain language of a

fragment (since quantifiers, ∨, and ⊥ are missing) of first-

order logic.

Alternatively, we could say that F =

{0, s,+,×} (Ü p.68) and P = {=} (Ü p.68). How-

ever, the way we defined first-order logic (Ü p.69), the

language thus obtained would also include quantifiers, ∨,

and ⊥. For the moment we want to restrict ourselves to the

fragment given by the grammar for FOA.
234s is a unary prefix (Ü p.66) function, so s applied to T

is written s T .
235We have defined
ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i, times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉
zero : i means: viewed on the object level, 0 is a term.

plus : i → i → i means: viewed on the object level, plus

is a function that takes two (Ü p.161) terms and returns a

term. eq : i→ i→ o means: viewed on the object level, =

218

Example: px + s 0q236 = plus x (succ zero).

is a predicate that takes two (Ü p.161) terms and returns a

proposition.

On the metalevel (level of λ→), zero, plus and eq are con-

stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical (Ü p.104) symbols

of an object logic as constants. It would however be possible

to set up the encoding in such a way that the non-logical

symbols are encoded as variables, so we would have a con-

text ΓF ∪ ΓP and instead of our ΣF ∪ ΣP . This is in line

with Perlis’ epigram (Ü p.181). We will sometimes take this

approach in the exercises as the encoding of λ→ in Isabelle

makes it more straightforward to play around with different

Γ’s than with different Σ’s.
236We extend the definition of p·q (Ü p.212) as follows:

pxq = x

p0q = zero

219

Encoding FOL in General

In general, to encode some first-order language (Ü p.68), we

must define ΣF and ΣP so that for each n-ary f ∈ F , p ∈ P
fenc : i→ . . .→ i︸ ︷︷ ︸

n times

→ i ∈ ΣF ,

penc : i→ . . .→ i︸ ︷︷ ︸
n times

→ o ∈ ΣP ,

and then pf (t1, . . . , tn)q = fenc pt1q . . . ptnq and pp(t1, . . . , tn)q =

penc pt1q . . . ptnq.
Abusing notation, we might skip the subscript enc.

ps tq = succ ptq

pr + tq = plus prq ptq

pr × tq = times prq ptq

Note that here, on the object level, x is a first-order variable

(a variable is a term (Ü p.63)), and hence on the metalevel,

it has type i (Ü p.217).

220

Quantifiers in First-Order Syntax

Along the same lines (Ü p.218), one might suggest

all : var → o→ o, so p∀x. Pq = all x pPq

But this approach has some problems:

• Variables are also terms, so “var ⊆ i”237? No subtyp-

ing!

• all is not a binding operator (Ü p.70) in λ→. E.g.,

(p(x) ∧ ∀x. q(x))[x ← a] cannot be modeled238 as

(and (p x)(all x (q x)))[x← a].

237In first-order logic, variables are not a syntactic

category (Ü p.68) of their own, but rather they are a “sub-

category” of terms. Therefore one should expect that var

should be a “subtype” of i, that is to say, every term of type

var is automatically also of type i. However, there is no such

notion in λ→.

238There is a notion of substitution (Ü p.153) in λ→,

hence on the metalevel. But all is just a con-

stant like any other on the level of λ→, and hence

(and (p x)(all x (q x)))[x← a] = (and (p a)(all a (q a))),

and not (and (p a)(all x (q x))) as one should

expect (Ü p.151).

That is to say, the standard operation of substitution,

which exists on the metalevel, is of no use for implement-

ing substitution on the object level. Instead, substitution on

the object level must be “programmed explicitly”.

Note that the following question arises: on the λ→ level,

221

9.4 Higher-Order Abstract Syntax (HOAS)

Example, full FOA (Ü p.218): F ::= . . . ∀x.A | ∃x.A
Σ = ΣF (Ü p.218) ∪ ΣP (Ü p.218) ∪ ΣC (Ü p.218) ∪ ΣQ:

ΣQ = 〈all : (i→ o239)→ o, exists : (i→ o)→ o〉
Extend the definition of p.q (Ü p.212):

p∀x. Pq = all (λxi. pPq)
p∃x. Pq = exists (λxi. pPq)

should the terms of type var be variables or constants?

One could imagine that they are variables. This means

that the signature Σ (Ü p.171) would not contain any con-

stants of type var or . . . → var. The only terms of

type var would be variables. In this case, a λ→ term like

(and (p x)(all x (q x))) could only be typed in a context Γ

containing x : var.

Alternatively, one could imagine that they are constants.

The signature signature Σ (Ü p.171) would contain expres-

sions of the form x : var, where x would be a λ→ constant.

One thing that isn’t nice about this approach is that Σ can-

not be an infinite sequence, and so we would have to fix a

finite set of variables that can be represented in λ→.

In either case, the operation of substitution on the met-

alevel is of no use for implementing substitution on the ob-

ject level.
239Some intuition: a proposition is represented by a term of

type o. Now a term of type i → o represents a proposition

222

Adequacy and faithfulness as before240.

where some positions are marked in a special way. For exam-

ple, in λxi. eq x x, the positions where x occurs are marked

in a special way, by virtue of the fact that the λ in front of the

expression binds the x. This “marking” allows us to “insert”

other terms in place of x. We will see this soon (Ü p.228).

all is a constant which can be applied to a term of type

i→ o.
240Terms and formulae are represented by (canonical)

members of i and o. The principle is similar as for

Prop (Ü p.211).

223

Examples

p∀x. x = xq (Ü p.222) = all(λxi. eq x x (Ü p.222))

p∀x.∃y.¬(x + x = y) (Ü p.222)q =

all(λxi. exists(λyi. not (eq (plus x x) y)))

Example derivation (all but one steps use rule app (Ü p.173)):

` all : (i→ o)→ o

x : i ` eq : i→ i→ o x : i ` x : i

x : i ` eq x : i→ o x : i ` x : i

x : i ` eq x x : o

` λxi. eq x x : i→ o
abs

` all(λxi. eq x x) : o

224

Order

Order of a type: For type τ written τ1 → . . . → τn, right

associated (Ü p.168), τn ∈ B:

• Ord(τ) = 0 if τ ∈ B, i.e., if n = 1;

• Ord(τ) = 1 + max(Ord(τi)),

Intuition: “functions as arguments”241.

A type of order 1 is first-order, of order 2 second-order

etc.

A type of order > 1 is called higher order (although in

higher-order unification (Ü p.197) or higher-order rewriting (Ü p.271),

even order 1 is considered higher-order).

241A term of first-order type is a function taking (an arbi-

trary number of (Ü p.161)) arguments all of which must be

of base type.

A term of second-order type is a function taking (an arbi-

trary number of (Ü p.161)) arguments some of which may

be functions (of first order type).

A term of third-order type is a function taking (an arbi-

trary number of (Ü p.161)) arguments some of which may

be functions, which again take functions (of first order type)

as arguments.

. . .

Obviously, it would be wrong to think of the order as “num-

ber of arrows in a type”. Instead, one can think of order as

the “nesting depth of arrows in a type”.

Sometimes, the notion “second-order” is used in the con-

text of type theories for quite a different concept, but we will

avoid that other use here.

225

Why “Higher Order”?

Constants representing propositional operators (Ü p.206) (log-

ical symbols) or non-logical symbols (Ü p.218) are first-order

(hence first-order syntax):

and : o→ o→ o

Variable binding operators are higher-order (hence higher-order

syntax):

all : (i→ o)→ o

226

Exercise: Summation Operator

What is the order of the summation operator
∑

?

sum : i→ i→ (i→ i)→ i

p
n∑
x=0

(x + 2)q = sum zero n (λxi. plus x (succ succ zero))

So the order is 2.

227

Why “Abstract”?

HOAS looks quite different from the concrete object level

syntax and hence “abstracts” from this object level syntax.

More specifically, different object level binding operators

are represented by a combination of a constant (all, exists)

and the generic (Ü p.154) λ-operator.

Thanks to this technique, standard operations on syntax

need no special encoding (Ü p.221), but are supported im-

plicitly by λ→.

We will now see this.

228

Binding

Binding (Ü p.70) on the object level and metalevel coincide.

So in ∀x. P , all occurrences of x in P are bound, and

likewise, in all(λxi. pPq), all occurrences of x in pPq are

bound.

This provides support for substitution (Ü p.221).

229

Substitution

Recall rules for ∀ (Ü p.81):

∀x. P (x)

P (t)
∀-E

all P

P (t)
∀-E

∀x. x = x

0 = 0x = x[x← 0]
∀-E

all (λxi. eq x x)

eq zero zero(λxi. eq x x) zero
∀-E

Now apply substitution. . .

Now apply β-reduction. . .

We now understand “marked positions in a formula” (Ü p.112).

230

Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming

of bound variables:

(∀x. P ↔ (Ü p.88)∀y. P [x← y])

Likewise, on the metalevel, formulae obtained by bound

variable renaming are α-equivalent (Ü p.162):

all(λxi. P) =α all(λy
i. P [x← y])

231

9.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic

category (Ü p.217) Term,

Prop

Type

declaration (Ü p.217)

B = {i, o}
Variable x

Variable242 x

Non-logical

symb. (Ü p.218) +

1st-order

constant (Ü p.218)

plus : i→ i→ i

Logical symbol (Ü p.206)

∧
1st-order

constant (Ü p.206)

and : o→ o→ o

242Although propositional variables (Ü p.16) and first-order

variables (Ü p.63) are quite different concepts, the rep-

resentation in λ→ uses λ→-variables for both. Techni-

cally however, there is a difference between the represen-

tations of propositional variables (Ü p.207) and first-order

variables (Ü p.219). In particular, propositional variables

are represented as λ→-variables of type o, and first-order

variables are represented as λ→-variables of type i.

232

Object Language Metalanguage

Binding

operator (Ü p.222) ∀
2nd-order

const. (Ü p.222) all :

(i→ o)→ o

Meaningful

expr. (Ü p.206)

a ∧ b ∈ Prop

Member of type (Ü p.209)

(and a b) : o

233

10 Resolution

234

Three Sections on Deduction Techniques

After encoding syntax (Ü p.201), the next topic in the the-

ory is encoding proofs (Ü p.291).

But before, we look at some more practical issues:

• Resolution (Ü p.234)

• Proof search (Ü p.246)

• Term rewriting (Ü p.271)

We will explain many techniques relevant for Isabelle, but

not in extreme detail and rigor. We want to understand

better how Isabelle works, but not provide a formal proof

that she works correctly, or be able to rebuild her.

235

Resolution

Resolution is the basic mechanism for transforming proof

states in Isabelle in order to construct a proof.

It involves unifying (Ü p.197) a certain part of the current

goal (state) with a certain part of a rule, and replacing that

part of the current goal.

We have already explained this in the labs and you have

been working with it all the time, but now we want to un-

derstand it more thoroughly (in the next lecture (Ü p.291),

we will look at it more abstractly).

We look at several variants of resolution.

Note: The following slides on Resolution rely heavily on

animation features. It is therefore advised that you study

them on a screen in slide or screen-notes form.

236

Resolution (rtac, as in Prolog243)

243Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

237

ψ

φ1
. . . φi . . . φn

ψ′

φ′1 . . . φ′i . . . φ′n

β

α1 . . .αm

β′

α′1 . . .α
′
m

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

�

1

........
........
...........
..............

..................
.....................

........................
............................

...............................
...................................

......................................
...

ψ′

φ′1 . . .α
′
1
. . .α′m. . .φ

′
n

φ1, . . . , φn are current sub-

goals and ψ is original goal.

Isabelle displays

Level . . . (n subgoals)

ψ

1. φ1
...

n. φn

Jα1; . . . ;αmK =⇒ β is rule.

Simple scenario where φi
has no premises244. Now β

must be unifiable with se-

lected subgoal φi.

We apply the unifier (′245)

We replace φ′i by the premises

of the rule.
244φi is the selected subgoal. In Isabelle, the number i of the

selected subgoal is always one of the arguments of a tactic.

One writes:

by (tactic rule i);

We assume here that φi is a formula, i.e., it contains no

=⇒ (metalevel implication). The form of the other subgoals

φ1, . . . , φi−1, φi+1, . . . , φn is arbitrary.
245In all illustrations that follow, we use ′ to suggest the

application of the appropriate unifier.

238

Resolution (with Lifting over Parameters)

ψ

φ1
. . .

∧
x.φi . . . φn

ψ′

φ′1 . . .
∧
x.φ′i . . . φ′n

∧
x.β[x]

∧
x.α1[x]. . .

∧
x.αm[x]∧

x.β′[x]

∧
x.α′1[x]. . .

∧
x.α′m[x]

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

9

*

. ...
..

...
...

..
.......................................

...................................
................................

............................
.........................

......................
..................

ψ′

φ′1 . . .
∧
x.α′1[x]. . .

∧
x.α′m[x]. . .φ′n

Now suppose the i’th (selected) subgoal is preceded by
∧

(metalevel universal quantifier246).

Rule is lifted247 over x: Apply [?X ←?X(x)].

As before, β must be unifiable with φi; apply the unifier.

We replace φ′i by the premises of the rule. α′1, . . . , α
′
m are

preceded by
∧
x.

246
∧

is the metalevel universal quantification (also written

!!). If a goal is preceded by
∧
x, this means that Isabelle must

be able to prove the subgoal in a way which is independent

from x, i.e., without instantiating x.
247The metavariables of the rule are made dependent on x.

That is to say, each metavariable ?X is replaced by a ?X(x).

You may also say that ?X is now a Skolem function of x.

This process is called lifting the rule over the parameter x.

We denote by ρ[x] the result of lifting ρ over x.

239

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki]

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1. . .φ
′
iki

]

α1 . . . αm

β

α1 . . . αm

...

[φi1 . . .φiki]
.

[φi1 . . .φiki]

β

...

[φi1 . . .φiki]

α′1 . . . α′m

...

[φ′i1 . . .φ
′
iki

]
.

[φ′i1 . . .φ
′
iki

]

β′
...

[φ′i1 . . .φ
′
iki

]
.
.............

..............

..............

..............
.............

.............
.............

.............
..............

..
.............

............
.

...........
...

...........
...

...........
...

..........

...

..........

...

...........
...

...........
...

...........
...
............
.

.............
..............
.............
.............
.............
.............
..............

..............

..............

.............
.
.............

..............

..............

..............
.............

.............
.............

.............
..............

..
.............

............
.

...........
...

...........
...

...........
...

..........

...

..........

...

...........
...

...........
...

...........
...
............
.

.............
..............
.............
.............
.............
.............
..............

..............

..............

.............

9
z

.
...

..........

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)
R

.
...

..

..
...

...
.......................................

......

..............................
...............

........................
......................

.....................
.....................

.....

.

.............

..............

..............

..............
.............

.............
.............

.............
..............

..
.............

............
.

...........
...

...........
...

...........
...

..........

...

..........

...

...........
...

...........
...

...........
...
............
.

.............
..............
.............
.............
.............
.............
..............

..............

..............

.............

.

.............

..............

..............

..............
.............

.............
.............

.............
..............

..
.............

............
.

...........
...

...........
...

...........
...

..........

...

..........

...

...........
...

...........
...

...........
...
............
.

.............
..............
.............
.............
.............
.............
..............

..............

..............

.............
.
.............

..............

..............

..............
.............

.............
.............

.............
..............

..
.............

............
.

...........
...

...........
...

...........
...

..........

...

..........

...

...........
...

...........
...

...........
...
............
.

.............
..............
.............
.............
.............
.............
..............

..............

..............

.............

ψ′

φ′1 . . .φ
′
i−1 α

′
1

. . . α′m φ
′
i+1
. . .φ′n

...

[φ′i1 . . .φ
′
iki

]
.

[φ′i1 . . .φ
′
iki

]

Now, suppose the i’th (selected) subgoal has assumptions

φi1, . . . , φiki.

As before, we have a rule. Here, β is (hopefully) unifiable

with φi, but β is not248 unifiable with the entire i’th subgoal.

Rule must be lifted over assumptions249. No unification

so far!
248The selected subgoal is Jφi1, . . . , φikiK =⇒ φi where

φi1, . . . , φiki, φi are object-level formulae. So the se-

lected subgoal is not an object-level formula, but it has

=⇒ (Ü p.191) as “top-level constructor” and is hence a for-

mula in the metalogic.

Moreover, β is a formula. It is clear that an object-level

formula cannot be unifiable with a formula in the metalogic

having =⇒ as“top-level constructor’.
249Each premise of the rule, as well as the conclusion of the

rule, are preceded by the assumptions Jφi1, . . . , φikiK of the

current subgoals. Actually, the rule

α1 . . . αm

...

[φi1 . . .φiki]
.

[φi1 . . .φiki]

β

...

[φi1 . . .φiki]

240

Now, subgoal and rule conclusion (below the bar) are

unifiable250.

Non-trivially251, β must be unifiable with φi.

We apply the unifier.

We replace the subgoal.

may look different from any rules you have seen so far, but

it can be formally derived from the rule:

α1 . . . αm

β

The derived rule should be read as: If for all j ∈
{1, . . . ,m}, we can derive αj from φi1, . . . , φiki, then we

can derive β from φi1, . . . , φiki.
250Still assuming that φi and β are unifiable.
251Both the subgoal and the conclusion of the lifted rule are

preceded by assumptions φi1, . . . , φiki. Hence the assump-

tion list of the subgoal and the assumption list of the rule

are trivially unifiable since they are identical.

241

Rule Premises Containing =⇒

ψ′

φ′1 . . . α′jJγ1; . . . ; γlK =⇒ δδ′ . . . φ′n

...

[φ′i1 . . .φ
′
iki

]; γ′1. . . γ
′
l]

What if some α′j has the form Jγ1; . . . ; γlK =⇒ δ?

Is this what we get?

Well, we write ... for =⇒, and use A =⇒ B =⇒ C ≡
JA;BK =⇒ C252.

252Generally, Isabelle makes no distinction between

Jψ1; . . . ;ψnK =⇒ Jµ1; . . . ;µkK =⇒ φ

and

Jψ1; . . . ;ψn;µ1; . . . ;µkK =⇒ φ

and displays the second form. Semantically, this corresponds

to the equivalence of A1 ∧ . . . ∧ An → B and A1 → . . .→
An → B.

We have seen this in the exercises.

242

Elimination-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . .φiki]

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i,1. . . φ
′
il
. . .φ′iki] β

α1 . . .αm

β′

α′1 . . .α
′
m

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
...

..
..

...
..

..
...

..

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
.....................................

...
..

..
..

...
...

..
..

ψ′

φ′1 . . . φ
′
i−1 α

′
2

. . . α′m φ
′
i+1

. . .φ′n

... ...

[φ′i1 . . . φ
′
i,l−1,φ

′
i,l+1

. . .φ′iki] [φ′i1 . . . φ
′
i,l−1,φ

′
i,l+1

. . .φ′iki]

Same scenario as before253, but now β must be unifiable

with φi, and α1 must be unifiable with φil, for some l.

Apply the unifier.

We replace φ′i by the premises of the rule except the

first254. α′2, . . . , α
′
m inherit the assumptions of φ′i, except

φ′il.
253So the scenario looks as for resolution with lifting over

assumptions (Ü p.240). However, this time we do not show

the lifting over assumptions in our animation.
254Elimination-resolution is used to eliminate a connective

in the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

243

Destruct-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . .φiki]

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1 . . . φ
′
ilβ
′ . . .φ′iki] β

α

β′

α′

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

+

:

.
........................

..........................
.............................

...............................
.................................

....................................
......................................

Simple rule, and α must be unifiable with φil, for some l.

We apply the unifier.

We replace premise255 φ′il with the conclusion of the rule.

10.1 Summary on Resolution

• Build proof resembling sequent style notation (Ü p.48);

• technically: replace goals with rule premises, or goal

premises with rule conclusions;

then the result of elimination resolution is
[A;B]

....
B

A ∧B → B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any

information away”. Before we had the assumption A ∧ B.

This was replaced by the components A and B as separate

assumptions.
255Destruct-resolution is used to eliminate a connective in

the premises. The difference compared to elimination-

resolution (Ü p.243) can be seen in the following example.

Unlike elimination-resolution, destruct-resolution “throws

information away”.

244

• metavariables and unification (Ü p.197) to obtain ap-

propriate instance of rule, delay commitments;

• lifting over parameters (Ü p.239) and assumptions (Ü p.240);

• various techniques to manipulate premises or conclu-

sions, as convenient: rtac (Ü p.237), etac (Ü p.??),

dtac (Ü p.244).

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is
P ∧Q
Q

conjunct2

then the result of destruct-resolution is
[B]

....
B

A ∧B → B

If we had instead used rule
P ∧Q
P

conjunct2

245

11 Automation by Proof Search

the result would have been

[A]
....
B

A ∧B → B

and we would be stuck. We accidentally “threw away” the

assumption B.

246

Outline of this Part

• Proof search and backtracking

• Classifying rules (Ü p.256)

• Proof procedures (Ü p.268)

11.1 Proof Search and Backtracking

• Need for more automation256

• Some aspects in proof construction are highly non-deterministic:

– unification: which unifier (Ü p.197) to choose?

256We have seen in the exercises that doing a proof step by

step is very tedious and often involves difficult guessing or

alternatively, backtracking. We cannot hope to prove any-

thing about realistic systems if proving simple theorems is

so tedious.

Efficiency considerations are important for automation.

The non-determinacy in proof search obviously leads to in-

efficiencies as many possibilities have to be explored.

247

– resolution: where257 to apply a rule (which ’sub-

goal’)?

– which rule to apply?

• How to organize proof-search technically258?

257We have seen in the exercises (and also in the

lecture (Ü p.234)) that one can choose the subgoal to which

one wants to apply a rule.
258We have seen in the previous lecture (Ü p.234) that res-

olution transforms a proof state into a new proof state. But

how does one organize all those potential proof states in or-

der to find proofs?

248

Organizing Proof Search Conceptually

Organize proof search as a tree259 of theorems260 (thm’s).

s1
�����
HHHHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
�����

s2
�
�	
s4

?
s7
?

s1
�����

s2
�
�	
s4

s1
�����

s2
@
@R
s5

?
s8
?

��
��√

• Tactic applications move us along

leftmost path.

• Using undo();261 moves us up-

wards (previous proof state).

• Using back(); moves us (up and)

right (alternative successors262 due

to different unifiers (Ü p.199)).

• This can be understood as tableau

proving (Ü p.258) [Pau97a].

259We have seen in the previous lecture (Ü p.234) that reso-

lution transforms a proof state into a new proof state. Since

in general, a proof state has several successor states (states

that can be obtained by one resolution step), conceptually

one obtains a tree where the children of a state are the suc-

cessors.
260Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

261For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
262Note that when there are no more successors (you can-

not go right) anymore, back(); will go to the previous proof

state, i.e., go up one level (just like undo();), and then try

alternative successors.

249

Problems

The search space of proof search can be thought of as such

a tree, but it cannot be implemented like this straightaway:

• Branching of the tree infinite in general (HO-unification (Ü p.197)).

• Explicit tree representation263 expensive in time and

space.

As an aside264, it is also possible to understand proof search

more abstractly. But we are interested in the operational

aspects.
263Obviously, an infinite tree cannot be represented explic-

itly. But even if the tree is finite, it is generally expensive

to represent it explicitly. In particular, the tree may contain

many failing branches and only few successful ones, which

begs the question if representing the unsuccessful branches

cannot be avoided somehow.
264The explicit tree representation is not very abstract in

that each node has a defined order of the children (first suc-

cessor, second successor, . . .). This order is an artefact of

the order in which unifiers are enumerated (Ü p.197) by the

unification algorithm used. It is inessential for the proofs

that are contained in the tree.

As a more abstract understanding of proof search, one can

organize proof search as a relation on theorems (thm’s)

prooftrees = P(thm× thm)

More precisely, one can look at a fragment of a tree of theo-

rems as before (Ü p.249).

One could say that each tactic application (with a particu-

250

Organizing Proof Search Operationally

lar rule) gives rise to a relations on theorems. That is to say,

s and s′ are in the relation if s′ is a successor proof state of

s.

This is abstract in that there is no order among the suc-

cessors of a proof state.

Also, one does not represent a tree explicitly.

Advantage: we have an abstract algebra.

• PT1 ◦ PT2: sequential composition (“then”).

Given two relations between thm’s (Ü p.249), PT1 and

PT2, we define composition PT1 ◦ PT2 as the relation

{(s, s′) | there is s′′ such that (s, s′′) ∈ PT1 and (s′′, s′) ∈ PT2}

• PT1 ∪ PT2: alternative of proof attempts (“or”)

The union of two relations is defined as usual for sets. If

PT1 and PT2 each model the application of a particular

tactic, then PT1 ∪ PT2 models the application of “first

tactic or second tactic”.

251

• PT ∗ : reflexive transitive closure (“repeat ”)

PT ∗ is inductively defined as the smallest set where

– (s, s) ∈ PT ∗ for all s;

– if (s, s′) ∈ PT and (s, s′′) ∈ PT ∗ then (s′′, s′) ∈
PT ∗.

So if PT models the application of a particular tactic,

then PT ∗ models the application of that tactic arbitrar-

ily many times.

• (φ⇒ φ, φ) ∈ PT ∗ ≡ “there is a proof for φ”

Note that the initial proof state is φ =⇒ φ.

Isabelle (Ü p.249) will display this as

Level 1 : (1 subgoal)

φ

1. φ

It might contradict your intuition and experience with

Isabelle to think that the initial proof state is φ =⇒ φ.

252

Shouldn’t it be just φ? However, this seeming contra-

diction can be resolved.

The way Isabelle displays the proof state focuses on what

has to be proven, the subgoals. The proof state should

be read as: if I have proven φ (the φ occurring after the

1.), I am done.

Technically, the proof state is an Isabelle theorem (thm),

i.e. something which Isabelle regards as true. Now of

course, she cannot initially regard φ as true, as φ is

what is to be proven. But she can regard φ =⇒ φ as

true. The aim of a proof search is to transform φ =⇒ φ

(φ can be shown if I assume φ) into φ (φ can be shown

if I assume nothing).

However, this also has some disadvantages:

• Union ∪ is difficult to implement (needs comparison

with all previous results since one wants to avoid du-

plicates).

253

Organize proof search as a function on theorems265 (thm’s)

type tactic = thm→ thm seq

where seq266 is the type constructor for infinite lists.

• More operational (Ü p.251), strategic interpretations of

union ∪ are desirable (try this — then that, interleave

attempts in PT1 with attempts in PT2, and so forth).

265This way of understanding and origanizing proof search is

not so abstract (Ü p.250), but rather operational. Instead

of saying that φ and φ′ are in a relation, one says that φ′ is

in the sequence returned by the tactic applied to φ. There

is an order among the successors of a proof state.

One still does not represent a tree explicitly, al-

though conceptually, proof search is about exploring this

tree (Ü p.249).
266For any type τ , the type τ seq (recall the

notation (Ü p.184)) is the type of (possibly) infinite lists of

elements of type τ . This is of course an abstract datatype.

There should be functions to return the head and the tail of

such an infinite list.

An abstract datatype is a type whose terms cannot be rep-

254

This allows us to have tacticals267:

• THEN

• ORELSE

• REPEAT

• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .

resented explicitly and accessed directly, but only via certain

functions for that type.
267

• THEN

• ORELSE

• REPEAT

• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .

are called tacticals.

Tacticals are operations on tactics. They play an impor-

tant role in automating proofs in Isabelle (Ü p.249). The

most basic tacticals are THEN and ORELSE. Both of those

tacticals are of type tactic ∗ tactic → tactic and are

written infix: tac1 THEN tac2 applies tac1 and then tac2,

while tac1 ORELSE tac2 applies tac1 if possible and other-

wise applies tac2 [Pau05, Ch. 4].

255

11.2 Classifying Rules

In your early Isabelle exercises, you only used backward

reasoning (rtac) (Ü p.237). You experienced that some

rules can be applied blindly most of the time, e.g.→-I (Ü p.49)

or∧-I (Ü p.49). Others involve “guessing”, e.g.∧-EL (Ü p.49)

or ∧-ER (Ü p.49) (you do not know which to apply to deal

with a ∧ in the premises).

Later on you learned about etac (Ü p.243) combined

with specially tailored rules (they have an “E” in their name).

That helps reduce the “guessing”.

In the following we will explain some underlying principles

of this using sequent style notation (Ü p.48).

256

Review: Sequent Notation

Γ ` A (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

Γ ` A
Γ ` A ∨B ∨-IL

Γ ` B
Γ ` A ∨B ∨-IR

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C ∨-E

257

Example: ∧-E′

In the sequent calculus268, one writes ∧-E269 as:
A,B,Γ ` C
A ∧B,Γ ` C ∧-E′

This mimics270 the effect of using ∧-E (conjE of Isabelle)

in combination with etac (Ü p.??). The rule ∧-E′ can be

formally derived271.
268Tableau proving is a derivation system [Fit96].

It turns out that the language of tableaux is equivalent

to the sequent calculus (Ü p.263) (recall our use of sequent

style notation (Ü p.48)) [Pau97a]. The techniques Isabelle

uses for automating proofs can thereby be understood as

tableau proving [Pau97a].
269In Isabelle (Ü p.249) notation, it looks as follows:

JP&Q; JP ; QK =⇒ RK =⇒ R

(see IFOL lemmas.ML (Ü p.266)).
270That is to say, ∧-E′ behaves for the sequent notation as

conjE+etac (Ü p.??) behaves for Isabelle.
271Let us first derive the rule ∧-E (conjE of Isabelle), here

written in sequent style notation (Ü p.48):

Γ ` A ∧B A,B,Γ ` C
Γ ` C

∧-E (Ü p.45)

258

A Proof by Blind Rule Application

ρ, φ, ψ ` φ
ρ ∧ φ, ψ ` φ ∧-E′

ρ ∧ φ ` ψ → φ
→-I

` (ρ ∧ φ)→ ψ → φ
→-I

The topmost connective is→, which asks for→-I (Ü p.52).

Again →-I.

The derivation looks as follows:
A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` A→ C
→-E

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` C →-E

Now based on ∧-E, the derivation of ∧-E′ is:

A ∧B,Γ ` A ∧B
A,B,Γ ` C

A,B,A ∧B,Γ ` C
weaken (Ü p.49)

A ∧B,Γ ` C ∧-E′

If we replace Γ with A∧B,Γ (just instantiation (Ü p.30)),

then one part holds by the assumption rule (Ü p.49), and

we can apply weakening (Ü p.49).

Alternatively, we can derive ∧-E′ directly:

259

To decompose272 the assumption ρ∧φ, use∧-E′ (Ü p.258).

The proof can now be completed by the assumption rule (Ü p.49).

A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

A ∧B,Γ ` B → A→ C
weaken

A ∧B,Γ ` A ∧B
A ∧B,Γ ` B ∧-ER

A ∧B,Γ ` A→ C
→-E

A ∧B,Γ ` A ∧B
A ∧B,Γ ` A ∧-EL

A ∧B,Γ ` C →-E

272See now that we first derived the rule ∧-E′ (Ü p.258),

which is a rule that can be used blindly to decompose a

conjunction in the assumptions. This was not something ad-

hoc to prove this particular formula. The rule ∧-E′ should

be used generally instead of ∧-EL or ∧-EL, because it has

the advantage that it can be applied blindly.

The essential point about being able to apply a rule blindly

is that the application does not throw any information

away (Ü p.243). This is indeed the case for ∧-E′. We re-

move the assumption φ∧ψ, but we get the two conjuncts φ

and ψ as assumptions instead.

260

Safe and Unsafe Rules

Combined tactics (Ü p.269) rely on classification of rules,

maintained in Isabelle (Ü p.249) data structure claset273,

and accessed by functions274 of type claset ∗ thm list→ claset.

Class: To add use function:

Safe introduction rules addSIs

Safe elimination rules addSEs

Unsafe introduction rules addIs

Unsafe elimination rules addEs

The rule ∧-E′ mimics the effect of using ∧-E in combi-

nation with etac (Ü p.??), which you can see by looking

again at the exercises on etac.
273claset is an abstract datatype. Overloading notation,

claset is also an ML unit function which will return a term

of that datatype when applied to (), namely, the current

classifier set.

A classifier set determines which rules are safe and un-

safe introduction, respectively elimination rules. The cur-

rent classifier set is a classifier set used by default in certain

tactics.

The current classifier set can be accessed via special func-

tions for that purpose.
274The functions addSIs, addSEs, addIs, addEs are all of

type claset ∗ thm list→ claset. They add rules to the

current classifier set. For example, addSIs adds a rule as

safe introduction rule.

261

Adapting Rules for Automated Proof Search

As seen for ∧-E (Ü p.258), rules must be suitably adapted

in order to be useful in automated proof search. Another

example:

¬α, α, β ` β
¬(α→ β), β ` α

→-swapE276

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
∨-swap275

Neither∨-IL nor∨-IR would work here. Uses classical (Ü p.41)

logic.
275The rule ∨-swap is

¬A,Γ ` B
Γ ` A ∨B

∨-swap

To derive it you need classical (Ü p.41) reasoning, as the

rule exploits the equivalence of A→ B and ¬A ∨B.

This is a derived rule which is explicitly contained in the

Isabelle classifier set as the clasical introduction rule for ∨.

It is called disjCI (check out FOL lemmas1.ML (Ü p.266))!
276The rule →-swapE is

A,¬C,Γ ` B
¬(A→ B),Γ ` C

→-swapE

To derive it you need classical (Ü p.41) reasoning, as the

rule exploits the equivalence of ¬(A→ B) and A ∧ ¬B.

This is a standard technique in Isabelle, based on

swapping (Ü p.263). For dealing with negated formulas in

the premises of the current subgoal, introduction rules are

combined with swap using etac.

262

Principle: Emulate sequent calculus277 with derived rules.

Generally, we have a formula ¬(A ◦ B) in the premises,

where ◦ is some binary connective. Swapping will put (A◦B)

in the conclusion and put the old conclusion into the premises

after negating it. Afterwards, an introduction rule for ◦ will

be used [Pau05, Section 11.2].
277The sequent calculus works with expressions of the form

A1, . . . , An ` B1, . . . , Bm which should be interpreted

as: under the assumptions A1, . . . , An, at least one of

B1, . . . , Bm can be proven. So as a formula, this would be

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨Bm.

In Isabelle (and the proof trees we have seen, e.g,. in

this lecture), we only have sequents with one formula to

the right of the `. We have said that we use sequent

notation (Ü p.48).

The important point to note here is that in the sequent

calculus, one can shift a formula from left to right or vice

versa, but one has to negate it, or more precisely, turn A

into ¬A and ¬A into A. This is called swapping and is an

263

Handling Quantifiers

Can derive278 ∀-E′ (≡ allE279) using ∀-E (≡ spec):

∀x.A(x)

[A(x),∀x.A(x)]
....
B

B
∀-E′∀-dupE

This is effective for getting rid of a ∀ in the premises.

Problem: ∀x.A(x) may still be needed.

important technique for combined tactics (Ü p.269).

The sequent calculus inherently relies on classical (Ü p.41)

reasoning [Pau05, Ch. 11].

278You should do it in Isabelle. The rule is:

JALL x. P (x); P (x) =⇒ RK =⇒ R

279As you may have noticed earlier, there is a confusion be-

tween the names of proof rules as we present them for the

theory and the names used in Isabelle. For example, rule

→-E is called mp in Isabelle. This confusion concerns elimi-

nation rules.

There is however a good reason for these choices. In tradi-

tional presentations of logic, one sets up the simplest possible

elimination rules for the connectives which naturally arise

from the meaning of those connectives. This is what we

have done as well. However, as we see in this lecture, these

264

Solution: Introduce duplicating280 rules. Turns search

rules cannot be applied blindly and are thus not very suit-

able for automation. Therefore, combined tactics (Ü p.269)

in Isabelle use derived rules such as ∧-E (Ü p.258) (called

conjE in Isabelle).

Since this is of such central importance for Isabelle, one

prefers to have the obvious names conjE, allE etc. for the

rules that are actually used in “advanced” applications of

Isabelle.

280You should recall that elimination rules are used in com-

bination with etac (Ü p.??). Using allE will eliminate the

quantifier.

You should try a proof of the formula (∀x.P (x)) →
(P (a) ∧ P (b)) in Isabelle to convince yourself that this is

a problem since the quantified formula ∀x.P (x) is needed

twice as an assumption, with two different instantiations of

x.

The duplicating rule ∀-dupE has the effect that the univer-

265

infinite281!

Check out allE and all dupE in IFOL lemmas.ML282!

sally quantified formula will still remain as an assumption.
281Given only the rules so far (in combination with

the appropriate tactics, rtac and etac (Ü p.234), and

swapping (Ü p.263)), excluding ∀-dupE, the proof search

would be finite.

The rule ∀-dupE is responsible for making the proof search

infinite. This can be no surprise however, as first-order logic

is undecidable [And02], and so there can be no automatic

procedure for proving all true first-order formulas.
282These files should be contained in your Isabelle (Ü p.249)

distribution. Or, if you only have an Isabelle executable, you

can find the sources here:

http://isabelle.in.tum.de/library/

266

http://isabelle.in.tum.de/library/

Side question: What is the difference283 to ∃-E284?
283The difference between

∃x.A(x)

[A(x)]
....
B

B
∃-E

and

∀x.A(x)

[A(x)]
....
B

B
∀-E′

is that the first rule has a side condition: x must not occur

free in any assumption on which B depends. See also what

this means in terms of Isabelle (Ü p.267).
284The rule

∃x.A(x)

[A(x)]
....
B

B
∃-E

267

11.3 Proof Procedures (Simplified)

Tactics in Isabelle (Ü p.249) are performed in order285:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules)

2. canonize: propagate “x = t” throughout subgoal

3. rtac unsafe I rules ORELSE etac unsafe E rules

4. atac

There are variants of this. We do not study them in detail,

we just use them . . .

was derived previously (Ü p.94) (but in Isabelle, it is a basic

rule in IFOL.ML). It is

JALL x. P (x); !!x. P (x) =⇒ RK =⇒ R

Note that the rule allE (Ü p.264) (∀-E′) is

JALL x. P (x); P (x) =⇒ RK =⇒ R

The difference is that the former rule contains a metalevel

universal quantifier. In terms of paper-and-pencil proofs,

∃-E has the side condition that x must not occur free in any

assumption on which B (see tree!) depends. There is no

such side condition for ∀-E′.
285Tactics in Isabelle (Ü p.249) are performed in order:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules);

2. canonize: propagate “x = t” . . . throughout subgoal;

3. rtac unsafe I rules ORELSE etac unsafe E rules ;

4. atac.

268

Combined Proof Search Tactics (Ü p.249)

• step tac : claset→ int→ tactic

(just safe steps)

• fast tac : claset→ int→ tactic

(safe and unsafe steps in depth-first stategy)

• best tac : claset→ int→ tactic

(safe and unsafe steps in breadth-first stategy)

• slow tac : claset→ int→ tactic

(like fast tac, but with backtracking atac’s)

• blast tac : claset→ int→ tactic

(like fast tac, but often more powerful)

One elementary proof step consists of trying a safe intro-

duction rule with rtac (Ü p.234), or, if that is not possible,

a safe elimination rule with etac (Ü p.??). This will be

repeated as long as possible.

Then in the current subgoal, any assumption of the form

x = t (where x is a metavariable) will be propagated

throughout the subgoal, i.e., all occurrences of x wil be re-

placed by t.

Then Isabelle will try one application of an unsafe intro-

duction rule with rtac (Ü p.234), or, if that is not possible,

an unsafe elimination rule with etac (Ü p.??).

Finally, she will use atac. Note that atac is unsafe. In

general, there are several premises in a subgoal and atac

may unify the conclusion of the subgoal with the wrong

premise.

269

11.4 Summary on Automated Proof Search

• Proof search can be organized as a tree of theorems (Ü p.249).

• Calculi can be set up to facilitate proof search (although

this must be done by specialists).

• Combined with search strategies (Ü p.269), powerful au-

tomatic procedures arise. Can prove well-known hard

problems such as

((∃y.∀x.J(y, x) ∨ ¬J(x, x)) → ¬(∀x.∃y.∀z.J(z, y) ∨
¬J(z, x))

• Unfortunately, failure is difficult to interpret286.

286fast tac, blast tac just tell you that the tactic

failed, but not why. And it would be difficult to do

that, since backtracking means that all attempts failed.

This can have several reasons: a rule is missing, a

rule has been classified (Ü p.261) wrongly, the search

strategy (Ü p.269) was not adequate for the problem, enu-

meration of unifiers (Ü p.197) in a bad order. Or a com-

bination thereof. Or it might be that too many unsafe

steps (Ü p.268) are needed, since fast tac limits their

number.

270

12 Term Rewriting

12.1 Higher-Order Rewriting

Motivation: Recall equational proofs (Ü p.121). They

work by replacing equals by equals. They can be formally

justified (Ü p.124).

It is practical to view deduction to some extent as equational

proving and give it some attention algorithmically. This

will be even more true later. We speak of simplification

or (higher-order) (Ü p.273) rewriting.

271

Simplification: Examples

• In a FOL proof: rewrite (∀x.Px ∧ Qx) to (∀x.Px) ∧
(∀x.Qx).

• In school arithmetic: simplify 0 + (x + 0)287 to x.

• In functional programming: simplify [a, b, d] @ [a, b]288

to [a, b, d, a, b].

This is all based on rewrite rules as in functional program-

ming289:
[] @ X = X

(x :: X) @ Y = x :: (X @ Y)

287Simplifying 0+(x+0) to x is something you have learned

in school. It is justified by the usual semantics of arithmetic

expressions. Here, however, we want to see more formally

how such simplification works, rather than why it is justified.
288Lists are a common datatype in functional programming.

[a, b, d, a, b] is a list. Actually, this notation is syntactic

sugar (Ü p.19) for a :: (b :: (d :: (a :: (b :: [])))). Here,

[] is the empty list and :: is a term constructor taking an

alement and a list and returning a list. @ stands for list

concatenation.

Intuitively, it is clear that [a, b, d] concatenated with [a, b]

yields [a, b, d, a, b].

Term constructor is usual terminology in functional pro-

gramming. In first-order logic, we would speak of a func-

tion symbol (Ü p.68). In the λ-calculus, we would speak

of a (special kind of) constant (this will become clear

later (Ü p.276)).
289For example, the lines

[] @ X = X

(x :: X) @ Y = x :: (X @ Y)

272

Why Higher-Order?

• Formally, rewriting operates on λ-terms, since we use

the λ-calculus to encode object logics (Ü p.201).

• We speak of higher-order rewriting because the variables

in the rewriting rules might have functional type such as

i → o or (i → o) → o. Higher-order rewriting involves

higher-order unification (Ü p.197).

define the list concatenation function @.

273

Term Rewriting: Foundation

• Recall (Ü p.120): An equational theory consists of rules (Ü p.106)

x = x
refl

x = y

y = x
sym

x = y y = z

x = z
trans

x = y P (x)

P (y)
subst (Ü p.112)

• plus additional (possibly conditional) rules of the form

φ1 = ψ1, . . . , φn = ψn ⇒ φ = ψ.

The additional rules can be interpreted as rewrite rules290,

i.e. they are applied from left to right.
290An equational theory is a formalism based on equational

rules of the form φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ.

A term rewriting system (to be defined shortly) is another

formalism, based of rewrite rules. They also have the form

φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ, but they have a different

flavor in that = must be interpreted as a directed symbol.

One could also write instead of = to emphasize this.

274

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equal-

ity)

2. make a rewrite step:

(a) pick a subterm t in e(t) (Ü p.112) (resp. e′(t) (Ü p.112))

(b) for a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ,

match291 (unify) φ against t , i.e., find θ such that

φθ = t

(c) solve292 (φ1 = ψ1, . . . , φn = ψn)θ

(d) replace e(t) (Ü p.112) by e(ψθ) (Ü p.112) (resp. e′(t) (Ü p.112)

by e′(ψθ) (Ü p.112))

291Given two terms s and t, a unifier (Ü p.197) is a sub-

stitution θ such that sθ = tθ. A match is a substitution

which only instantiates one of s or t, so sθ = t or s = tθ

(one should usually clarify in the given context which of the

terms is instantiated).
292This means that the procedure is called recusively for the

conditions of the rewrite rule.

275

3. goto 1

This procedure + the rules define a term rewriting sys-

tem293.
293The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we

must agree on some terminology. In particular, the words

term, function, predicate, constant and variable are used

somewhat differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle (Ü p.183) for representing object

logics. In particular:

• A term is a λ-term; object-level formulae (including

equations) as well as object-level terms are all repre-

sented as λ-terms, and so for example, when we rewrite

an equation, we rewrite a term.

• One could say that a function is any λ-term of functional

type, i.e., of type containing at least one →. Apart

276

Rewriting: Example

x + 0 = x (neutr)(neutr)(neutr)

x + y = y + x (comm)(comm)(comm)

(x + y) + z = x + (y + z) (assoc)(assoc)(assoc)

(1 + 3) + 5(1 + 3) + 5 = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + (5 + 3)

1 + (3 + 5) = 1 + (3 + 5)

Similar to equational proofs (Ü p.122).

from that, there may be function symbols (Ü p.68) in

some object logic. On the metalevel (and hence also

for the purpose of term rewriting), these would be

constants (Ü p.279).

• There may be predicate symbols (Ü p.68) in some

object logic. On the metalevel (and hence also

for the purpose of term rewriting), these would be

constants (Ü p.279).

• A constant is a λ-term consisting of just one symbol from

a set Const . Constants (Ü p.279) of the λ-calculus may

be used to represent connectives, quantifiers, functions,

predicates or any other symbols that an object logic may

contain.

• The notion of variable is that of the metalevel, and so

we usually mean “variables including metavariables”.

Nevertheless, some confusion may arise wherever we use

the terminology from the point of view of an object logic.

277

Term Rewriting is Non-Trivial

• There are two major problems: this decision procedure

may fail because:

– it diverges (the rules are not terminating), e.g. x +

y = y + x or x = y =⇒ x = y;

– rewriting does not yield a unique normal form (the

rules are not confluent (Ü p.163)), e.g. rules a = b,

See the following example:

The following is an example rewrite sequence, using the

rules (Ü p.272) for lists (Ü p.272). The picked subterm

which is being replaced is underlined in each step:

(a :: (b :: (d :: []))) @ (a :: (b :: [])) = [a, b, d, a, b]
a :: ((b :: (d :: [])) @ (a :: (b :: []))) = [a, b, d, a, b]
a :: (b :: ((d :: []) @ (a :: (b :: [])))) = [a, b, d, a, b]
a :: (b :: (d :: ([] @ (a :: (b :: []))))) = [a, b, d, a, b]
a :: (b :: (d :: (a :: (b :: [])))) = [a, b, d, a, b]

Note the we are done now, as the right-hand side is iden-

tical to the left-hand side, modulo the use of syntactic

sugar (Ü p.272).

Note that generally, a term rewriting sequence rewrites ar-

bitrary terms. Here we only rewrite equations. From the

point of view of term rewriting, an equation is just a special

case (Ü p.276) of a term.

One could also imagine that object-level function and pred-

278

a = c294.

• Providing criteria for terminating and confluent rule sets

is an active research area (see [BN98, Klo93], RTA, . . .).

icate symbols are represented as variables, as is done in LF.

Recall Perlis’ epigram (Ü p.181).

294For a rewriting system consisting of rules a = b, a = c,

one cannot rewrite b = c to prove the equality, although it

holds:
a = b
b = a

sym
a = c

b = c
trans

279

http://rewriting.loria.fr/rta/

12.2 Extensions of Rewriting

• Symmetric rules are problematic, e.g. ACI:295

(x + y) + z = x + (y + z) (A)

x + y = y + x (C)

x + x = x (I)

• Idea: apply only if replaced term gets smaller w.r.t. some

term ordering. In example, if (y + x)θ (Ü p.275) is

smaller than (x + y)θ (Ü p.275).

• Ordered rewriting solves rewriting modulo ACI296, using

derived rules (exercise).

295ACI stands for associative, commutative and idempotent.

In
(x + y) + z = x + (y + z) (A)

x + y = y + x (C)

x + x = x (I)

the constant + (Ü p.276) is written infix (Ü p.66).
296Consider an equational theory consisting only of those

rules (apart from refl, sym, trans, subst (Ü p.120)). Apart

from that, the language may contain arbitrary other constant

symbols. For such a language, it is possible to give a term

ordering that will assign more weight to the same term on

the left-hand-side of a + than on the right-hand side. We can

base such a term ordering on a norm297. For example, the

inductive definition of a norm | | (Ü p.281) might include

the line:

|s + t| := 2|s| + |t|
This means that if |s| > |t|, then |s + t| = 2|s| + |t| >
2|t| + |s| = |t + s|.

280

Extension: HO-Pattern Rewriting

Rules such as F (Gc) = . . .298 lead to highly ambiguous

matching (Ü p.275) and hence inefficiency.

Solution is to restrict to higher-order pattern rules:

A term t is a HO-pattern if

• it is in β-normal form (Ü p.157); and

• any free (Ü p.152) F in t occurs in a subterm F x1 . . . xn
where the xi are η-equivalent (Ü p.162) to distinct bound

variables.

Matching (unification) (Ü p.275) is decidable, unitary (’unique’)

and efficient algorithms exist.

This has two effects:

– Applications of (A) or (I) always decrease the weight of

a term (provided the weight of s is > 0):

|(s + t) + r| = 2|s + t| + |r| = 4|s| + 2|t| + |r| >
2|s| + 2|t| + |r| = 2|s| + |t + r| = |s + (t + r)|.

– Applications of (C) are only possible if the left-hand side

is heavier than the right-hand side.

We haven’t worked out here how the norm should be de-

fined for the other symbols of the language. This would have

to depend on that language.

The notation | | (the argument is between the

bars (Ü p.119)) is used in standard mathematics for the ab-

solute value of a number and is standard for norms as well.
298For higher-order rewriting, it is very problematic to have

rules containing terms of the form F (Gc) on the left-hand

side, where F and G are free variables and c is a constant

or bound variable. The reason can be seen in an example:

281

HO-Pattern Rewriting (Cont.)

A rule . . .⇒ φ = ψ is a HO-pattern rule if:

• φ is a HO-pattern;

• all free (Ü p.152) variables in ψ occur also in φ; and

• φ is constant-head, i.e. of the form λx1..xm.c p1 . . . pn
(where c is a constant (Ü p.276), m ≥ 0, n ≥ 0).

Example:299 (∀x.Px ∧Qx) = (∀x.Px) ∧ (∀x.Qx)

Result: HO-pattern rules allow for very effective quantifier

reasoning.

Suppose you want to rewrite the term f (g(h(i c))) where f ,

g, h, i are all constants. There are four unifiers of F (Gc)

and f (g(h(i c))):

[F ← f, G← (λx.g(h(i x)))],

[F ← (λx.f (g x)), G← (λx.h(i x))],

[(F ← λx.f (g(hx))), G← (λx.i x)],

[(F ← λx.f (g(h(i x)))), G← (λx.x)].

This ambiguity makes such TRSs (Ü p.276) very inefficient.
299Further examples:

• (∃x.Px ∨Qx) = (∃x.Px) ∨ (∃x.Qx)

• (∃x.P → Qx) = P → (∃x.Qx)

• (∃x.Px→ Q) = (∀x.Px)→ Q

In these examples, you may assume that first-order logic is

our object logic.

On the metalevel (Ü p.183), and hence also for the sake of

term rewriting, ∀,∃ are constants (Ü p.276).

282

Extensions Related to if− then− else

The if-then-else construct will play an important role

later (Ü p.395). It asks for special rewrite rules.

In the notation (∀x.Px ∧ Qx), the symbols P and Q are

metavariables (as far as term rewriting is concerned, simply

think: variables).

Actually, (∀x.Px∧Qx) mixes object and metalevel syntax

in a way which is typical for Isabelle: (∀x.Px ∧ Qx) is a

“pretty-printed” version of ALL (P & Q).

You may want to look at a theory file (say,

IFOL.thy (Ü p.266)) to get a flavor of this. The principle

was explained thoroughly before (Ü p.222).

283

Extension: Congruence Rewriting

Problem :
ifA thenP elseQ = ifA thenP ′ elseQ

where P = P ′ under condition A

is not a rule300.

Solution in Isabelle (Ü p.249): explicitely admit this ex-

tra class of rules (congruence rewriting)

JA =⇒ P = P ′K =⇒
ifA thenP elseQ = ifA thenP ′ elseQ

300Rewrite rules (Ü p.274) have the form φ1 =

ψ1, . . . , φn = ψn =⇒ φ = ψ (several equations imply

one equation). It is not possible that any of the equations

φ1 = ψ1, . . . , φn = ψn again depend on some condition, as

in
ifA thenP elseQ = ifA thenP ′ elseQ

where P = P ′ under condition A

284

Extension: Splitting Rewriting

Problem:

P (ifA thenx else y) = ifA then (P x) else (P y)

is not a HO-pattern rule (since it is not constant-head (Ü p.282)).

Solution in Isabelle (Ü p.249): explicitely admit this ex-

tra class of rules (case splitting).

285

12.3 Organizing Simplification Rules

• Standard (HO-pattern conditional ordered rewrite (Ü p.281))

rules;

• congruence rules (Ü p.284);

• splitting rules (Ü p.285).

Isabelle (Ü p.249) data structure: simpset301. Some op-

erations302:

• addsimps : simpset ∗ thm list→ simpset

• delsimps : simpset ∗ thm list→ simpset

• addcongs : simpset ∗ thm list→ simpset

• addsplits : simpset ∗ thm list→ simpset

301The simpset is an abstract datatype and at the same

time an ML unit function for returning the current simplifier

set. This is in analogy to the classifier set (Ü p.261).
302These function manipulate the simplifier set, in analogy

to the classifier set (Ü p.261).

286

Commutativity (Ü p.280) can be added without losing ter-

mination.

287

How to Apply the Simplifier?

Several versions (Ü p.249) of the simplifier:

• simp tac : simpset→ int→ tactic

• asm simp tac : simpset→ int→ tactic

(includes assumptions into simpset)

• asm full simp tac : simpset→ int→ tactic

(rewrites assumptions, and includes them into simpset)

Using global303 simplifier sets: Simp tac, Asm simp tac,

Asm full simp tac.
303Simp tac, Asm simp tac, Asm full simp tac work like

their lower-case counterparts but use the current (global)

simplifier set and hence do not take a simplifier set as first

argument (e.g., Simp tac has type int→ tactic)

There are analogous capitalized versions for the tactics of

the classical reasoner (Ü p.269).

288

12.4 Summary on Term Rewriting

Simplifier is a powerful proof tool for

• conditional equational formulas (Ü p.281)

• ACI-rewriting (Ü p.280)

• quantifier reasoning (Ü p.282)

• congruence rewriting (Ü p.284)

• automatic proofs by case splitting (Ü p.285).

Fortunately, failure is quite easy to interpret304.

304When you use simp tac, usually you can just look at the

term that you get to understand which simplification has not

worked although you think that it should have worked.

289

12.5 Summary on Last Three Sections

• Although Isabelle is an interactive theorem prover, it is

a flexible environment with powerful automated proof

procedures.

• For classical (Ü p.41) logic and set theory, tableau (Ü p.258)-

like procedures (Ü p.268) like blast tac and fast tac

decide many tautologies.

• For equational theories (datatypes (Ü p.606), evaluat-

ing functional programs (Ü p.575), but also higher-order

logic (Ü p.354)) simp tac (Ü p.288) decides many tau-

tologies (and is fairly easy to control).

290

13 Isabelle’s Metalogic

291

Representing Syntax and Proofs

• Previously (Ü p.201), we have seen how the

(polymorphically (Ü p.183)) typed λ-calculus (Ü p.167)

can be used to represent the syntax of an object logic.

• Today, we will extend the λ-calculus to a logic (with for-

mulae and inference rules): Isabelle’s metalogic, which

goes under the names ofM, Pure305, HOL.

This lecture is based on Paulson’s work [Pau89]. It is

maybe the most challenging lecture of this course.
305In Isabelle jargon, the metalogic is called Pure.

In this course, we will avoid calling the Isabelle metalogic

HOL, although you may find such uses in the literature.

In the literature and in Isabelle formalizations, we find var-

ious definitions of higher-order logic (HOL) that differ more

or less substantially.

But the important point to remember here is this: The

Isabelle metalogic M we study here is not identical to the

logic w (Ü p.354)e will study during the entire second half

of this course. And the most important difference between

M and HOL is not in the logics themselves, but in the way

we use them:

M is a (the) metalogic!

HOL is an object logic!

292

What Is Formality anyway?

• Ultimately, logic and formal reasoning have to resort to

natural language. Proofs of, say, the soundness of a

derivation system employ the usual mathematical rigor,

but that’s all. Imagine this for the situation that we just

want to do reasoning306 in propositional logic (Ü p.10)

and nothing else.

• We will now introduce a logicM. Its proof system (Ü p.14)

is small!

306We would formalize the language and the proof system

as we did in the first lecture (Ü p.15). Any proofs of sound-

ness and completeness or other meta-properties should be

rigorous, but they still resort to natural language.

293

Proof Techniques = Meta-Theorems

• When constructing proofs, there are

– aspects that are specific to certain logics and its log-

ical symbols (Ü p.104): the proof rules (Ü p.29);

– aspects that reflect general principles (Ü p.14) of

proof building: making and discharging assumptions,

substitution (Ü p.84), side conditions (Ü p.81),

resolution (Ü p.234).

It seems that the latter must be justified by complicated

(and thus error-prone) explanations in natural language.

• Using a metalogic such asM has two benefits:

– Shared implementational support for the “general

principles”;

294

– to a wide extent, the “general principles” are for-

mally derived in M. This gives a high degree of

confidence.

13.1 The Logic M

We first introduceM just like any other logic, without con-

sidering its special role as metalogic. Nonetheless, we use

the qualification “meta” to avoid confusion later (Ü p.304).

Some variations are possible (mainly: polymorphism/type

classes or not), but those are not so important for us.

M will be based on λ→. Would you call λ→ (Ü p.167) a

logic?

So far, λ→ (Ü p.167) is not a logic (no connectives, no

formulae). We will now define a particular language (Ü p.170)

of λ→ that can be called a logic.

295

Logic Based on λ→

Assume some B (Ü p.167) where bool ∈ B, and some307

signature Σ (Ü p.170) where

• ⇒: bool → bool → bool (Ü p.168) ∈ Σ,

• ≡σ: σ → σ → bool ∈ Σ for all types σ, and

•
∧
σ : (σ → bool)→ bool ∈ Σ for all types σ.

We usually omit type subscripts308 and write ≡,
∧

.

⇒, ≡, and
∧

309 are the logical symbols (Ü p.104) ofM.

⇒ and ≡ are written infix (Ü p.66).

Terms of type bool are called (meta-)formulae: types gen-

eralize syntactic categories (Ü p.68).

307Σ contains ⇒, ≡ and
∧

, but in addition, Σ may specify

other symbols.
308Alternatively, we could define that

• ≡α: α→ α→ bool ∈ Σ, and

•
∧
α : (α→ bool)→ bool ∈ Σ,

where α is a type variable (Ü p.185).
309⇒ is called meta-implication, ≡ is called meta-equality,

and
∧

is called meta-universal-quantification.

296

Proof System for M
The proof system will be presented in the style of natural

deduction (Ü p.24).

This is as formal as we get (for the metalogic): derivation

trees in natural deduction style are authoritative.

The judgements310, just like for natural deduction proofs (Ü p.24)

in propositional logic or first-order logic, are formulae, i.e.,

terms of type bool (Ü p.296). This is in contrast to deriv-

ability judgements (Ü p.48) or type judgements (Ü p.172).

310We define our proof system for M using natural

deduction (Ü p.24).

The judgements are formulae, i.e., term of type

bool (Ü p.296). This means that a node φ in a derivation

tree, as in . . .
φ
. . .

must be a term of type bool . It cannot be a derivability

judgement (Ü p.48) or type judgement (Ü p.172) or a term

of type, say bool → bool .

297

Rules for ⇒

[φ]
....
ψ

φ⇒ ψ
⇒-I

φ⇒ ψ φ

ψ
⇒-E

Just like rules for → (Ü p.32)!

For layout reasons we sometimes swap left and right:

φ φ⇒ ψ

ψ
⇒-E

298

Rules for
∧

Meta-universal-quantification is formalized in the style of

higher-order abstract syntax (Ü p.222) (
∧
σ : (σ → bool)→

bool (Ü p.296)); may write
∧
x.φ as syntactic sugar (Ü p.19)

for
∧

(λx.φ).

Note: quantification over terms of arbitrary type!

Rules:
φ∧
x.φ

∧
-I∗

∧
x.φ

φ[x← b]

∧
-E

Side (eigenvariable) condition ∗: x is not free in any assump-

tion on which φ depends.

Just like rules for ∀ (Ü p.81).

299

Rules for ≡: Equivalence Relation

a ≡ a
≡-refl

a ≡ b
b ≡ a

≡-symm

a ≡ b b ≡ c
a ≡ c

≡-trans

Just like rules for = (Ü p.106).

300

Rules for ≡: λ (i.e., α, β, η) Conversions

(λx.a) ≡ (λy.a[x← y])
α∗

(λx.a)b ≡ (a[x← b])
β

(λx.f x) ≡ f
η∗∗

Side condition ∗: y is not free in a.

Side condition ∗∗: x is not free in f .

Just like rules for =α,β,η (Ü p.162).

η is equivalent to extensionality311.
311Extensionality is the rule

f x ≡ g x

f ≡ g

where the side condition is that x must not be free in f or g

or any assumption on which the proof of f x ≡ g x depends.

It is equivalent to the η-axiom [HS90, pages 72-74].

Recall that we have used the notion of extensionality be-

fore, for sets (Ü p.129). The idea is the same here.

301

Rules for ≡: Abstraction, Combination

a ≡ b

(λx.a) ≡ (λx.b)
≡-abstr∗

f ≡ g a ≡ b

f a ≡ g b
≡-comb

Side (eigenvariable) condition ∗: x is not free in any assump-

tion on which a ≡ b depends. Compare with β-reduction (Ü p.157).

As defined for→β before (Ü p.157), ≡ is propagated into

contexts.

Conversion is built into the proof system!

Recall (Ü p.182) that e ≡ e′ is decidable in λ→ (≡-rules

so far).

However, e ≡ e′ is not decidable inM (see next slide).

302

Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ
≡-I

φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here? φ and ψ are formulae,

hence (Ü p.297) bool (Ü p.296).

What object-level connective does≡ correspond to? ↔ (Ü p.88).

Using ≡-E, when we have a derivation of φ, and φ ≡
ψ can also be derived, we get a derivation of ψ. We will

sometimes use this tacitly (Ü p.316).

303

13.2 Encoding Syntax and Provability

We use FOL (Ü p.61) and its subset propositional logic (Ü p.10)

(which we call here Prop) as exemplary object logic.

We already know how to encode syntax (Ü p.201).

We will now see how to encode proof rules and mimic

proofs of the object logic.

To encode a particular object logic L, we have to extend

M by extending the type language (Ü p.167), the term lan-

guage (the signature (Ü p.206)) and the proof rules. The

thus extended logic will be calledML.

304

Encoding Syntax: Review

As before, i, o ∈ B (Ü p.217). Previously:

Σ ⊇ 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o,

all : (i→ o (Ü p.222))→ o, exists : (i→ o)→ o〉

Two types312 for truth values: o and bool .

We now need a more concise (sweeter (Ü p.19)) syntax

or things will become hopelessly unreadable.

But this is also quite demanding: you should always be

able to “unsugar” the syntax.

312So we have truth values in the metalogic (type bool) and

in the object logic (type o). To distinguish them clearly there

are two different types for them.

305

Encoding Syntax Readably

Σ ⊇ 〈⊥ : o,

¬ : o→ o,

∧,∨,→ 313 : o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉.
• → is both a constant declared in Σ and the function

type arrow (Ü p.168).

• ∧,∨,→will be written infix (Ü p.66), and we may write

∀x.φ for ∀(λx.φ), and likewise for ∃.

• true A314 is usually written [[A]].

313We write
〈⊥ : o,

∧,∨,→: o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉
as shorthand for

〈⊥ : o,

∧ : o→ o→ o,

∨ : o→ o→ o,

→: o→ o→ o,

∀ : (i→ o)→ o,

∃ : (i→ o)→ o

true : o→ bool〉
314So we have truth values in the metalogic (type bool) and

in the object logic (type o).

Paulson [Pau89] says: “the meta-formula [[A]] abbreviates

true A and means that A is true”. More precisely, we can

306

Encoding the Rules

The rules of the object logic are encoded as axioms of the

metalogic. These axioms are added to the proof system of

M (to obtainML).

To avoid confusion, we will use distinctive terminology:

• There is a meta-rule called ⇒-E.

• There is a similar object rule that we call the→-E rule.

• It is encoded as a meta-axiom that we call the →-E

axiom.

say that [[A]] is a meta-formula that may or may not be deriv-

able inML (Ü p.304), and that this should reflect derivabil-

ity of A in L (Ü p.309).

In the file IFOL.thy in your Isabelle

distribution (Ü p.266), you find

Trueprop :: "o => prop"

Trueprop corresponds to true.

307

Encoding of the Rules of Propositional Logic∧
AB.[[A]]⇒ ([[B]]⇒ [[A ∧B]]) (∧-I)∧
AB.[[A ∧B]]⇒ [[A]] (∧-EL)∧
AB.[[A ∧B]]⇒ [[B]] (∧-ER)∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL)∧
AB.[[B]]⇒ [[A ∨B]] (∨-IR)∧
ABC.[[A ∨B]]⇒

([[A]]⇒ [[C]])⇒ ([[B]]⇒ [[C]])⇒ [[C]]
(∨-E)∧

AB.([[A]]⇒ [[B]])⇒ [[A→ B]] (→-I)∧
AB.[[A→ B]]⇒ [[A]]⇒ [[B]] (→-E)∧
A.[[⊥]]⇒ [[A]] (⊥-E)

308

Faithful Metalogics

For any object logic L, we define:

• ML is sound for L if, for every proof of [[B]] from as-

sumptions [[A1]], . . . , [[Am]] inML, there is a proof of B

from assumptions A1, . . . , Am in L.

• ML is complete for L if, for every proof of B from as-

sumptions A1, . . . , Am in L, there is a proof of [[B]] from

assumptions [[A1]], . . . , [[Am]] inML.

• ML is faithful for L if ML is sound and complete for

L.

Using concepts of Prawitz [Pra65, Pra71], one can show by

structural induction thatMProp is faithful for Prop (Ü p.304).

309

An Example Proof

∧
AB.([[A]]⇒ [[B]])
⇒ [[A→ B]]

→-I (Ü p.308)

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E (Ü p.299)

([[P ∧Q]]⇒ [[P]])
⇒ [[P ∧Q→ P]]

∧
-E (Ü p.299)

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL (Ü p.308)

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E (Ü p.299)

[[P ∧Q]]⇒ [[P]]

∧
-E (Ü p.299)

[[P]]
⇒-E⇒-E

[[P ∧Q]]⇒ [[P]]
⇒-I⇒-I1

[[P ∧Q→ P]]
⇒-E (Ü p.298)

310

Example Proof Simplified

∧
AB.([[A]]⇒ [[B]])
⇒ [[A→ B]]

→-I (Ü p.308)

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E (Ü p.299)

([[P ∧Q]]⇒ [[P]])
⇒ [[P ∧Q→ P]]

∧
-E (Ü p.299)

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL (Ü p.308)

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E (Ü p.299)

[[P ∧Q]]⇒ [[P]]

∧
-E (Ü p.299)

[[P ∧Q→ P]]
⇒-E (Ü p.298)

311

Remarks about Example Proof

• ∧-EL (Ü p.308) and→-E (Ü p.308) are not object rules

but (Ü p.307) meta-axioms!

• The first, more complicated proof corresponds to the

construction one would use to show thatMProp is com-

plete for Prop (Ü p.309).

• Proof fragments of the form

φ⇒ ψ [φ]

ψ
⇒-E (Ü p.298)

φ⇒ ψ
⇒-I (Ü p.298)

can be collapsed into φ⇒ ψ: proof normalization.

312

13.3 Reasoning with Resolution

In Isabelle, we mainly use backwards reasoning: we con-

struct a proof tree starting from the root working to the

leaves.

On the meta-level, this proof is in fact a forwards proof:

working from the leaves to the root.

This is achieved by starting the proof of ψ with the trivial

meta-theorem ψ ⇒ ψ315 and using a technique called

resolution (Ü p.234).

315We have seen this before (Ü p.33) as a proof in proposi-

tional logic.
[ψ]1

ψ → ψ
⇒-I (Ü p.298)1

313

Folding Assumptions

We need another syntactic convention:

Lists of (meta-)formulae are denoted by Φ,Ψ,Ω. If Φ is

the list [φ1, . . . , φn], then

[φ1, . . . , φn]⇒ ψ, i.e.

Φ⇒ ψ

abbreviates the meta-formula φ1 ⇒ . . .⇒ φn ⇒ ψ.

You have seen this in the exercises.

Note that [φ1, . . . , φn] on its own is not a term inM!

314

The Resolution Rule

For any formulae ψ1, . . . , ψn, ψ, φ1, . . . , φm, φ where

FV (Ü p.152)(φ1, . . . , φm, φ) ⊆ {x1, . . . , xk}, and φθ ≡ ψi
for some i ∈ {1, . . . , n}, resolution is the following rule:∧

x1 . . . xk.[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

Intuition:
∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ is a meta-axiom (Ü p.307)

such as ∧-EL (Ü p.308), [ψ1, . . . , ψn] ⇒ ψ is the current

goal (proof state).

Compare to phrasing using ∨316!

We will now derive the rule.
316You may have seen the following formulation of the reso-

lution rule:
A1 ∨ . . . ∨ An B1 ∨ . . . ∨Bm

(A1 ∨ . . . ∨ Ai−1, Ai+1 ∨ . . . ∨ An ∨B1 ∨ . . . ∨Bj−i, Bj+1 ∨ . . . ∨Bm)θ

where either Aiθ = ¬Bjθ or ¬Aiθ = Bjθ.

You can see the correspondence to the rule given here by re-

calling that in first-order logic (Ü p.61), φ1 → . . .→ φm →
φ is equivalent to φ1∧ . . .∧φm → φ, which is in turn equiv-

alent to ¬φ1 ∨ . . . ∨ ¬φm ∨ φ.

You may still be wondering though why in the rule res, we

only allow instantiation of [φ1, . . . , φm] ⇒ φ. This restric-

tion will in fact be lifted later (Ü p.349).

315

Resolution as Derived Meta-Rule

[φ1θ]2 . . . [φmθ]2

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E (Ü p.299)

φθ
⇒-E (Ü p.298)

[ψ1]1 . . . [ψi−1]1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E (Ü p.298)

[ψi+1, . . . , ψn]⇒ ψ
⇒-E317

[φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I (Ü p.298)2

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I (Ü p.298)1

Here we assume that φθ and ψi are syntactically identical,

but in fact it is enough that318 φθ ≡ ψi.
317Recall that φθ ≡ ψi.
318This means, we do not show any applications of the con-

version rules (Ü p.301) explicitly. Otherwise, we would have

to show subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules (Ü p.301).

Note that this suppressing is the reason why you find the

≡-symbol so rarely in this part of this chapter.

316

Deriving Resolution: Remarks

• We collapsed iterated applications of rules (denoted by

double horizontal line).

• This is not just a matter of simplicity. The derivation

is schematic not just in the sense that the Greek letters

could stand for arbitrary formulae (Ü p.30); we don’t

even know how many formulae are involved (k,m, n, i

could be any natural numbers).

• But for any concrete ψ1, . . . , ψn, ψ, φ1, . . . , φm, φ, you

could do the formal derivation inM.

317

Dropping Outer Quantifiers

We adopt the convention that outer quantifiers in meta-

formulae are dropped. E.g. [[A]] ⇒ [[B]] ⇒ [[A ∧B]] instead

of
∧
AB.[[A]]⇒ [[B]]⇒ [[A ∧B]].

In addition: use renaming for freshness319.

Then we can write the resolution rule as follows:
[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

where φθ ≡ ψi.

We will now work with this schematic form.
319The schematic form of the resolution rule (Ü p.315) is:

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

where φθ ≡ ψ.

We will work with this schematic form, but remember: if

necessary, you could construct an actual derivation inM.

In this schematic form, it is always assumed

that the free variables in [φ1, . . . , φm] ⇒ φ are

fresh (Ü p.197), i.e. FV (Ü p.152)([φ1, . . . , φm] ⇒
φ) ∩ FV (Ü p.152)([ψ1, . . . , ψn]⇒ ψ) = ∅.

This assumption may be justified considering the formal

derivation of the resolution rule (Ü p.316). Suppose that

the free variables in [φ1, . . . , φm] ⇒ φ are not all fresh,

and consider
∧
x′1 . . . x

′
k.[φ

′
1, . . . , φ

′
m] ⇒ φ′, obtained from∧

x1 . . . xk.[φ1, . . . , φm] ⇒ φ by replacing each xi with x′i,

where the x′i are fresh.

It is easy to see that in the formal derivation of the reso-

318

Proof of A ∧B → C → A ∧ C (1)

Let’s prove A∧B → (C → A∧C) by resolution. We start
by resolution with →-I (Ü p.308):
([[A1]]⇒ [[B1]])
⇒ [[A1 → B1]]

(Ü p.308)
[[A ∧B → (C → A ∧ C)]]

⇒ [[A ∧B → (C → A ∧ C)]]
(Ü p.313)

([[A ∧B]]⇒ [[C → A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]

res (Ü p.318)

lution rule (Ü p.316), one can replace∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E (Ü p.299)

with ∧
x′1 . . . x

′
k.[φ

′
1, . . . , φ

′
m]⇒ φ′

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E (Ü p.299)

Therefore we can assume without loss of generality that the

free variables in [φ1, . . . , φm]⇒ φ are fresh.

The next question is: why do we want fresh variables?

Maybe this is clear intuitively: A rule is always meant to

be schematic and the choice of variables names in a rule

should be irrelevant. More concretely, one may say that if

one does not rename the variables in a rule and hence there

is some variable, say A, that occurs in the current subgoal,

then resolution may lead to a subgoal containing occurrences

of A originating from the goal and others originating from

319

What to do next320? Again resolution with →-I (Ü p.308).

Problem: the conclusion of →-I (Ü p.308) is not unifi-

able321 with [[A ∧B]]⇒ [[C → A ∧ C]].

the rule, and these are inadvertently identified, leading to a

proof state that is more instantiated than it should be.
320On the one hand, we want to resolve

([[A ∧B]]⇒ [[C → A ∧ C]])⇒ [[A ∧B → (C → A ∧ C)]],

i.e., we have to match ([[A ∧B]] ⇒ [[C → A ∧ C]]) against

the conclusion of some meta-axiom.

On the other hand, think what Isabelle would display in

this situation. The (only) subgoal would be

1. A ∧B ⇒ C → A ∧ C,
so we have to show C → A∧C (using assumption A∧B).

So you should look atC → A∧C to guess which meta-axiom

should be used now.
321In our current situation, Isabelle would display:

Level 1(1 subgoal)

A ∧B → (C → A ∧ C)

1. A ∧B =⇒ C → A ∧ C

320

Lifting over Assumptions

The rule for lifting an object rule (meta-axiom (Ü p.307))

[φ1, . . . , φm]⇒ φ over a list of assumptions Ψ is

[φ1, . . . , φm]⇒ φ

[Ψ⇒ φ1, . . . ,Ψ⇒ φm]⇒ (Ψ⇒ φ)
a-lift

We will now derive it for one assumption, so Ψ = [ψ].

From your experience with Isabelle, it is clear that since the

top-level symbol in C → A ∧ C is →, you would use →-I.

But look at the resolution rule (Ü p.318) again. We

would take a fresh instance of →-I, say ([[A2]] ⇒ [[B2]]) ⇒
[[A2 → B2]]. The problem is that [[A2 → B2]] is not unifiable

with [[A ∧B]]⇒ [[C → A ∧ C]], and so res is not applicable.

321

Deriving Assumption Lifting for one

Assumption

[φ1, . . . , φm]⇒ φ

[ψ ⇒ φ1]
1 [ψ]2

φ1

⇒-E (Ü p.298)
· · ·

[ψ ⇒ φm]1 [ψ]2

φm

⇒-E (Ü p.298)

φ
⇒-E (Ü p.298)

ψ ⇒ φ
⇒-I (Ü p.298)2

[ψ ⇒ φ1, . . . , ψ ⇒ φm]⇒ (ψ ⇒ φ)
⇒-I (Ü p.298)1

This process can be repeated for any number of assumptions

to get the general rule.

322

Proof of A ∧B → (C → A ∧ C) (2)

We do resolution using the→-I axiom322 lifted over [[A ∧B]]:

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))
⇒ ([[A ∧B]]⇒ [[A2 → B2]])

... (Ü p.319)

([[A ∧B]]⇒ [[C → A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]ω

(Ω[[A ∧B]]⇒ [[C]]⇒ [[A ∧ C]])
⇒ ω[[A ∧B → (C → A ∧ C)]]

res (Ü p.318)

Before we proceed, we introduce the abbreviations

ω = [[A ∧B → (C → A ∧ C)]], Ω = [[[A ∧B]], [[C]]]

322

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))⇒ ([[A ∧B]]⇒ [[A2 → B2]])

is the →-I-rule (meta-axiom (Ü p.307)) lifted over the as-

sumption A ∧B (Ü p.321).

323

Proof of A ∧B → (C → A ∧ C) (3)

We do resolution using the ∧-I axiom323 lifted over Ω:

(Ω⇒ [[A3]])⇒ (Ω⇒ [[B3]])
⇒ (Ω⇒ [[A3 ∧B3]])

... (Ü p.323)

(Ω⇒ [[A ∧ C]])⇒ ω

(Ω⇒ [[A]])⇒ (Ω⇒ [[C]])⇒ ω
res (Ü p.318)

At this point, Isabelle would display Ω⇒ [[A]] and Ω⇒ [[C]]

as two subgoals.

The next step is to solve Ω ⇒ [[C]] by assumption, but

this must be formalized.
323

(Ω⇒ [[A3]])⇒ (Ω⇒ [[B3]])⇒ (Ω⇒ [[A3 ∧B3]])

is the ∧-I-rule (meta-axiom (Ü p.307)) lifted over the as-

sumption list Ω (Ü p.321). Recall that Ω was an abbrevi-

ation for [[[A ∧B]], [[C]]], but this is obviously irrelevant for

the process of lifting.

324

The Assumption Axiom

The assumption axiom is: for any i ∈ {1, . . . ,m}

[φ1, . . . , φm]⇒ φi
assum

It has a simple (schematic324) derivation:

[φi]
1

[φi+1, . . . , φm]⇒ φi
⇒-I

[φi, . . . , φm]⇒ φi
⇒-I (Ü p.298)1

[φ1, . . . , φm]⇒ φi
⇒-I325

324The assumption axiom

[φ1, . . . , φm]⇒ φi
assum

is schematic in two senses:

• the Greek letters could stand for arbitrary

formulae (Ü p.30);

• just like for resolution rule (Ü p.317), we don’t even

know how many formulae are involved (m, i could be

any natural numbers).

However, one could also write the axiom as

[A1, . . . , Am]⇒ Ai

assum

where the A’s are variables (of type bool (Ü p.296)) and in-

stantiate it later when it is used (Ü p.326) in some resolution

step.
325Recall here that the rule⇒-I, just like→-I, allows you to

325

Proof of A ∧B → (C → A ∧ C) (4)

We do resolution using the assumption axiom (Ü p.325):

Ω⇒ [[C]] (Ü p.325)

... (Ü p.324)

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res (Ü p.318)

We used the correct instance of the assumption axiom.

Alternatively326, we could have use the more generic [A4, B4]⇒
B4.

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].) Res-

olution with ∧-EL.

discharge zero or more (Ü p.26) assumptions. In the present

derivation, we discharge the assumption φi at some point but

we do not discharge any other assumptions.
326As explained previously (Ü p.325), we could use a more

generic variant of the assumption axiom, in that we have

variables in it that may become instantiated upon resolution.

As in previous proof steps we assume that these variables are

suitably renamed; for this purpose we index them by 4.

Note however that the variant is still specific in the sense

that m = 2. Like in meta-axioms used before, we use letters

from the beginning of the alphabet, so the variant of the

assumption axiom that we use is [A4, B4]⇒ B4. The proof

fragment would then look as follows:

[A4, B4]⇒ B4 (Ü p.325)

... (Ü p.324)

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res (Ü p.318)

where θ = {A4 ← [[A ∧B]], B4 ← [[C]]}.

326

Proof of A ∧B → (C → A ∧ C) (5)

Magically, we guess the right instance of ∧-EL and lift it

over Ω:

(Ω⇒ [[A ∧B]])⇒ (Ω⇒ [[A]])

... (Ü p.326)

(Ω⇒ [[A]])⇒ ω

(Ω⇒ [[A ∧B]])⇒ ω
res (Ü p.318)

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].) Prove

the subgoal by assumption.

327

Proof of A ∧B → (C → A ∧ C) (6)

We do resolution using the assumption axiom (Ü p.325):

Ω⇒ [[A ∧B]] (Ü p.325)

... (Ü p.327)

(Ω⇒ [[A ∧B]])⇒ ω

ω
res (Ü p.318)

Recall that ω = [[A ∧B → (C → A ∧ C)]]. Done!

328

Getting Rid of the Magic

In one step (Ü p.327), we had to guess the right instance of

∧-EL. This is not practical.

Solutions:

• Generalize (Ü p.349) the resolution rule (Ü p.318) to

allow for instantiation of the current proof state and not

just of meta-axioms.

• Derive∧
ABC.[[[A ∧B]], ([[[A]], [[B]]]⇒ [[C]])]⇒ [[C]]

which encodes the ∧-E object rule (Ü p.50).

329

The Whole Proof at a Glance

Compare proof inMProp with corresponding proof in Prop:

a. (Ü p.325)

∧-EL

a. (Ü p.325)

∧-I

→-I
→-I ω ⇒ ω
. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

ω

[A ∧B]1

A
∧-EL

[C]2

A ∧ C ∧-I

C → A ∧ C →-I2

A ∧B → (C → A ∧ C)
→-I1

“The meta-level proof is the object level proof upside-

330

down327.”
327Intuitively, as far as the order in which the object

rules (Ü p.307), resp. meta-axioms (Ü p.307), are applied,

the proof inMProp is the proof in Prop turned upside-down.

However, this may seem suspicious for two reasons:

• In derivation trees, the direction of implication (forget-

ting about whether it is meta- or object implication)

is “downwards”: whatever is above implies whatever is

below. So it seems strange that this order should be re-

versed just because we go from the object to the meta-

level.

• In general, a derivation tree in the object level is a proper

tree, i.e., there are nodes where it branches. So what

sense does it make to “turn it upside-down”? The result

would not be any tree at all.

These points will now be addressed (Ü p.332).

331

Direction of the Implication

Is the direction of the implication reversed just because we

go from the object to the meta-level?

No! The direction is reversed because we start from the

trivial meta-theorem ω ⇒ ω, and the resolution steps mod-

ify the left-hand side of this meta-theorem.

332

How Can One Turn a Tree Upside-Down?

A proper tree has nodes where it branches. Also, in Isabelle

proofs, we frequently have to prove several subgoals. So how

is this branching reflected in the meta-proof?

A meta-formula of the form ψ1 ⇒ . . . ⇒ ψn ⇒ ψ cor-

responds to a branching point in the object level proof. It

means that there are subgoals (Ü p.324) ψ1, . . . , ψn. But in

the derivation tree inMProp, there is no branching.

In the construction of a meta-proof (just like in Isabelle),

one is always free to choose which subgoal to solve next.

Interleaving328 is possible.
328If one pictures the object level proof and how it is modeled

in MProp, one intutive way of thinking of it is as follows:

Each rule application in the object level proof must also be

performed at the meta-level. Now, starting at the root of

the object level proof, we may do any rule application that

is the child of a rule application we have done previously.

Take for example the following object level proof:

[A ∧ (B ∧ C)]1

A
∧-EL3

[A ∧ (B ∧ C)]1

B ∧ C ∧-ER5

C
∧-ER4

A ∧ C ∧-I2

A ∧ (B ∧ C)→ A ∧ C →-I1

Then in the meta-proof, the meta-axioms might be applied

in the following orders:

→-I1, ∧-I2, ∧-ER4, ∧-ER5, ∧-EL3, or

→-I1, ∧-I2, ∧-EL3, ∧-ER4, ∧-ER5, or

→-I1, ∧-I2, ∧-ER4, ∧-EL3, ∧-ER5.

333

13.4 Quantification

We add the following meta-axioms to obtain

MFOL (Ü p.304):∧
F.(
∧
x.[[F x]])⇒ [[∀x.F x]] (∀-I)∧

Fy.[[∀x.F x]]⇒ [[F y]] (∀-E)∧
Fy.[[F y]]⇒ [[∃x.F x]] (∃-I)∧
FB.[[∃x.F x]]⇒ (

∧
x.[[F x]]⇒ [[B]])⇒ [[B]] (∃-E)

Similarly as for Prop (Ü p.309), one can show thatMFOL
is faithful for FOL.

Side condition checking is shifted to the meta-level (Ü p.347).

We now consider resolution proofs (Ü p.313) for FOL.

But this is not new to you: In Isabelle, you are always free

to choose the subgoal that you want to work on next, and

so you can interleave the proofs of the different subgoals.

334

Proof of (∀z.G z)→ (∀z.G z ∨H z) (1)

([[A1]]⇒ [[B1]])
⇒ [[A1 → B1]]

(Ü p.308)
[[(∀z.G z)→ (∀z.G z ∨H z)]]

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
(Ü p.313)

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res (Ü p.318)

What to do next? Resolution with ∀-I (Ü p.334) lifted over

assumption [[∀z.G z]].

335

Proof of (∀z.G z)→ (∀z.G z ∨H z) (2)

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

... (Ü p.335)

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res (Ü p.318)

The substitution θ (Ü p.318) is [F1 ← λw.Gw ∨H w].

We suppress conversion (Ü p.316), assuming terms are in

normal form (Ü p.215).

What to do next? Resolution with ∨-IL after lifting

over assumption (Ü p.321). Problem: the conclusion of

∨-IL (Ü p.308) is not unifiable with
∧
z.[[Gz ∨H z]]).

336

Lifting over Parameters

Lifting over parameters seems easier to explain if outer
∧

’s

are not dropped (Ü p.318). The rule for lifting a meta-

axiom (Ü p.307)
∧
y1 . . . yk.[φ1, . . . , φm] ⇒ φ over a pa-

rameter z is∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ∧

f1 . . . fk.[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒ (

∧
z.φ′)

p-lift

where ′ stands for application of the substitution [y1 ←
f1 z, . . . , yk ← fk z].

We will now derive it.

337

Deriving Parameter Lifting for one Parameter

′ stands for application of [y1 ← f1(z), . . . , yk ← fk(z)].∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E (Ü p.299)

[
∧
z.φ′1]

1

φ′1

∧
-E (Ü p.299)

· · ·
[
∧
z.φ′m]1

φ′m

∧
-E (Ü p.299)

φ′
⇒-E (Ü p.298)∧

z.φ′
∧

-I (Ü p.299)

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′

⇒-I (Ü p.298)1∧
f1 . . . fk.[

∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′

∧
-I (Ü p.299)

After parameter lifting, we drop (Ü p.318) outer quantifiers

again.

338

Lifting ∨-IL

Lifting
∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL (Ü p.308)) over z gives∧
G2H2.(

∧
z.[[G2 z]])⇒ (

∧
z.[[G2 z ∨H2 z]]).

We drop (Ü p.318) outer quantifiers and lift over assumption (Ü p.321)

[[∀z.G z]] to obtain

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

This rule will be applied in the next step.

339

Proof of (∀z.G z)→ (∀z.G z ∨H z) (3)

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

(Ü p.339)

... (Ü p.336)

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res (Ü p.318)

What to do next? Resolution with ∀-E (Ü p.334) lifted

over z. However, this cannot be guessed from looking at∧
z.[[Gz]], but rather from looking at premise [[∀z.G z]].

340

Lifting of ∀-E over z

Lifting
∧
Fy.[[∀x.F x]] ⇒ [[F y]] (∀-E (Ü p.334)) over

parameter (Ü p.337) z gives∧
G3f3.(

∧
z.[[∀x.(G3 z)x]])⇒ (

∧
z.[[G3 z(f3 z)]]).

We drop (Ü p.318) outer quantifiers and lift over assumption (Ü p.321)

[[∀z.G z]] to obtain

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

This rule will be applied in the next step.

341

Proof of (∀z.G z)→ (∀z.G z ∨H z) (4)

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

(Ü p.341)

... (Ü p.340)

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res (Ü p.318)

The substitution θ (Ü p.318) is [f3 ← λw.w, G3 ← λvw.Gw].

We suppress conversion (Ü p.316), assuming terms are in

normal form (Ü p.215).

What to do next? Since z /∈ FV (Ü p.152)(∀x.Gx), we

can use a modified assumption axiom (Ü p.325).

342

Modified Assumption Axiom

[φ1, . . . , φm]⇒
∧
z.φi

assum
where z /∈ FV (φi).

It has the following derivation:

[φi]
1∧

z.φi

∧
-I

[φi+1, . . . , φm]⇒
∧
z.φi
⇒-I (Ü p.325)

[φi, . . . , φm]⇒
∧
z.φi

⇒-I (Ü p.298)1

[φ1, . . . , φm]⇒
∧
z.φi
⇒-I (Ü p.325)

343

Instance of Modified Assumption Axiom

In the next step, we will use the instance

[[∀z.G z]]⇒
∧

z.[[∀x.Gx]]

of

[φ1, . . . , φm]⇒
∧

z.φi.

We identified ∀z.G z and ∀x.Gx by conversion (Ü p.301).

344

Proof of (∀z.G z)→ (∀z.G z ∨H z) (5)

... (Ü p.344)

[[∀z.G z]]⇒∧
z.[[∀x.Gx]]

... (Ü p.342)

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

[[(∀z.G z)→ (∀z.G z ∨H z)]]
res (Ü p.318)

Done!

345

Remark on Step 2

Recall Step 2 (Ü p.336):

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

... (Ü p.335)

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res (Ü p.318)

One could have obtained
∧
z.([[∀z.G z]] ⇒ ([[Gz ∨H z]]))

instead of ([[∀z.G z]] ⇒ (
∧
z.[[Gz ∨H z]])) by lifting ∀-I in

a different way329. This will be an exercise.
329In our proof, we lifted ∀-I (Ü p.334) over assumption

[[∀z.G z]] as follows:

([[∀z.G z]]⇒ (
∧

x.[[F1 x]]))⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

It would have been possible to derive (formally, in M) the

following rule instead:

(
∧

x.[[∀z.G z]]⇒ [[F1 x]])⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

This is essentially so since z /∈ FV (Ü p.152)[[∀z.G z]]. If
we had done it like that, step 2 (Ü p.336) would have looked
as follows

(
∧
x.[[∀z.G z]]⇒ [[F1 x]])

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

... (Ü p.335)

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

(
∧
z.[[∀z.G z]]⇒ [[Gz ∨H z]])

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res (Ü p.318)

The rest of the proof would then have looked slightly differ-

ently due to the different scope of the
∧

. For example, it

346

Checking Side Conditions

To demonstrate how side conditions are checked, we show a

proof attempt that fails due to a side condition.

Take ∃u.∀w. w = u in FOL with equality (Ü p.102), so

assume we have a meta-axiom (Ü p.307) for reflexivity (Ü p.106):∧
z. [[z = z]] (refl)

would have been necessary to lift ∨-IL (Ü p.339) over as-

sumptions before lifting it over parameters.

In fact, if we denote a vector of variables by overlining, then

we can derive the following rule for lifting over assumptions:

[(
∧
x̄1.φ1), . . . , (

∧
x̄m.φm)]⇒ φ

[(
∧
x̄1.Ψ⇒ φ1), . . . , (

∧
x̄1.Ψ⇒ φm)]⇒ (Ψ⇒ φ)

where x̄1, . . . x̄m /∈ FV (Ψ). Compare this to rule

a-lift (Ü p.321). Using the more complicated rule, where

the assumption list Ψ is pulled into the scope of
∧

’s sur-

rounding each rule premise φi, would probably have made

the presentation here somewhat more complicated. On the

other hand, this is indeed what happens in Isabelle (try to

do the proof of (∀z.G z)→ (∀z.G z ∨H z) in Isabelle).

347

Failed Proof Attempt of ∃u.∀w.w = u

(
∧
x.[[F2 x]])

⇒ [[∀x.F2 x]]
(Ü p.334)

[[F1 y1]]⇒
[[∃x.F1 x]]

(Ü p.334)
[[∃u.∀w.w = u]]⇒
[[∃u.∀w.w = u]]

(Ü p.313)

[[∀w.w = y1]]⇒ [[∃u.∀w.w = u]]
res (Ü p.318)

(
∧
x.[[x = y1]])⇒ [[∃y.∀x. x = y]]

res (Ü p.318)

Substitution? [F1 ← λv.∀w.w = v, F2 ← λv. v = y1].

What to do next? Resolution with refl (Ü p.347) lifted

over parameter x (Ü p.337):
∧
x.[[g3 x = g3 x]]330. But

∧
x.[[x = y1]]

and
∧
x.[[g3 x = g3 x]] are not unifiable331. Proof fails!

330Note that lifting refl (Ü p.337)∧
z.[[z = z]]

over x gives ∧
g3.
∧

x.[[g3 x = g3 x]].

Here the variable z in refl was replaced by the variable g3

that depends on x. However, we drop (Ü p.318) the outer

quantification
∧
g3. In this particular case,

∧
x is also an

outer quantification, but we keep it, since obtaining this

quantification was the very purpose of lifting (recall that

lifting is done to achieve unifiability (Ü p.336)).
331Recall (Ü p.299) that

∧
x.φ is syntactic sugar (Ü p.19)

for
∧
x.(λx.φ).

So we have to unify λx.[[x = y1]] and λx.[[g3 x = g3 x]].

It turns out that this task can be decomposed into having

to unify λx.x and λx.g3 x on the one hand, and λx.y1 and

λx.g3 x on the other hand. Unification of λx.x and λx.g3 x

forces g3 to be λx.x, so we are left with having to unify λx.y1

348

13.5 Free Variables in Goals

The resolution rule can be generalized to allow for instanti-

ation of variables in goals:

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

([ψ1, . . . , ψi−1, φ1, . . . , φm, ψi+1, . . . , ψn]⇒ ψ)θ
res

where φθ ≡ ψiθ.

But then we must distinguish the status of the free vari-

ables. Denote the universal closure332 of ψ by
∧

.ψ. Then

. . .
and λx.x. But these terms are not unifiable!

This was just a semi-formal argument that
∧
x.[[x = y1]]

and
∧
x.[[g3 x = g3 x]] are not unifiable, but it gives you the

idea.
332The universal closure of a meta-formula ψ is the formula∧
x1 . . . xn.ψ where FV (Ü p.152)(ψ) = {x1 . . . xn}.

As might be expected, the same concept is also used for

FOL (Ü p.61) formulae where it is defined in analogy using

∀ instead of
∧

.

349

Instantiation of the Initial Goal

Previously, when we proved ψ we in fact proved
∧

.ψ.

Now, allowing for instantiation of ψ, we in fact prove∧
.ψθ.

...

∧
.ψ ⇒ ψ

ψ ⇒ ψ

∧
-E (Ü p.299)

...

ψθ∧
.ψθ

∧
-I (Ü p.299)

This may not be what we want333.

Problem: more unifiers, hence bigger search space334.
333Suppose we want to prove ((A → B) → A) → A. If

we allow for instantiation of the free variables A and B, we

could easily end up proving ((A→ A)→ A)→ A. This is

probably not what we want. In fact the proof has little to do

with the proof of ((A → B) → A) → A that is schematic

in A and B (Ü p.35).

In terms of MProp, we want to prove∧
AB.[[((A→ B)→ A)→ A]]

Recall that ((A → B) → A) → A is Peirce’s

law (Ü p.40).
334The more free variables in the goal we allow Isabelle to

instantiate, the more unifiers there are. This may increase

the search space to the extent of making it impossible to find

a proof.

350

Two Kinds of Free Variables

In Isabelle, control over instantiation is given by having two

kinds of free variables:

• ordinary variables must not become instatiated;

• metavariables (unknowns, schematic variables) may be-

come instantiated.

In goals we can have both kinds, in rules we have metavari-

ables. Try it out in Isabelle!335

Once a theorem is proven, any free variables will be made

metavariables336, and the reading is as for rules (Ü p.318):

The theorem is implicitly universally quantified over the free

variables.
335To understand the difference, try proving A ∧ B → P

and A ∧ B →?P in Isabelle. The first won’t succeed while

the second may succeed in various ways.
336Prove A ∧ B →?P in Isabelle and save (qed) it as a

theorem and then have a look at the theorem.

351

13.6 Conclusion on Isabelle’s Metalogic

The logicM and its proof system are small.

What makesM powerful enough to encode a large variety

of object logics?

• The λ-calculus (Ü p.167) is very powerful for expressing

syntax and syntactic manipulations (→ substitution).

Mmust be extended by appropriate signature (Ü p.170)

for an object logic.

• Rules of the object logic can be encoded and added to

M337 as axioms.
337In some course on propositional logic, you may have

learned that the connective → is not really necessary since

A → B is equivalent to ¬A ∨ B. Likewise, we considered

¬A as syntactic sugar (Ü p.17) for A→ ⊥.

Therefore, when we introduce a logic M that is

so extremely simple as far as the number of logical

symbols (Ü p.296) is concerned (just ⇒, ≡,
∧

), one might

think that the idea is that all the other logical symbols one

usually needs are just syntactic sugar. This is not the case!

To encode propositional logic (Ü p.10) or FOL (Ü p.61)

inM, we must add their rules as axioms.

Later (Ü p.354), we will be working with a logic just

slightly richer than M but still quite simple, and there the

idea is indeed that all the other logical symbols one usually

needs are just syntactic sugar.

352

Conclusion (2)

General principles of proof building (e.g. resolution, proving

by assumption, side condition checking) are not something

that must be justified by complicated (and thus error-prone)

explanations in natural language — they are formal deriva-

tions in the metalogic.

This has two big advantages (Ü p.294): shared support

and high degree of confidence.

353

14 HOL: Foundations

14.1 Overview

HOL is expressive foundation338 for

• Mathematics: analysis, algebra, . . .

• Computer science: program correctness, hardware veri-

fication, . . .

HOL is very similar toM (Ü p.291), but it “is” an object

logic339!

• HOL is classical340.

• Still341 important: modeling of problems/domains (now

within HOL).

• Still important: deriving relevant reasoning principles.

338Theorem proving in higher-order logic is an active re-

search area with some impressive applications.
339The differences betweenM (Ü p.291) and HOL are sub-

tle and the matter is further complicated by the fact that

there are some variations in the way in which the Isabelle

metalogicM on the one hand and the object logic HOL on

the other hand are presented.

But what matters for us here is that HOL is an object

logic, i.e., it is one of the object logic that can be represented

by M, just like propositional logic (Ü p.10) or first-order

logic (Ü p.61). That is to say, we use HOL as object logic.
340Recall (Ü p.41) the distinction between classical and in-

tuitionistic logics. There is a particular rule (Ü p.384) in

HOL from which the rule of the excluded middle (Ü p.424)

can be derived. This is in contrast to constructive (Ü p.355)

(intuitionistic) logics.
341We have previously looked at metatheory (Ü p.291), i.e.,

how can one logic be represented/modeled in a metalogic.

354

http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/
http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/

Isabelle/HOL vs. Alternatives

We will use Isabelle/HOL342.

• Could forgo the use of a metalogic343 and employ al-

ternatives, e.g., HOL system or PVS, or constructive

provers344 such as Coq or Nuprl.

• Choice depends on culture and application.

In particular, we have seen how general reasoning

principles (Ü p.294) can be derived in the metalogic.

We now set aside the issue of metalogics, but there is still

an issue of modeling one system within another: how do we

model problems/domains within HOL? How do we derive

reasoning principles?
342We use Isabelle/HOL, and this means that HOL is an

object logic represented by the metalogicM (Ü p.291).
343There are theorem proving systems that have no meta-

logic, but rather have a particular logic hard-wired into them,

e.g. a HOL system or PVS.
344Constructive provers are based on intuitionistic logic.

The rationale is that one has to give evidence (Ü p.41) for

any statement. Coq and Nuprl are examples of such systems.

355

http://www.cl.cam.ac.uk/research/hvg/HOL/
http://pvs.csl.sri.com/
http://coq.inria.fr/
http://www.cs.cornell.edu/info/Projects/Nuprl/

Safety through Strength

Safety345 via conservative (definitional) extensions (Ü p.432):

• Small kernel of constants and rules;

• extend theory with new constants and types defined us-

ing existing ones;

• derive properties/theorems.

Contrast with:

• Weak logics (e.g., propositional logic): can’t define much;

• axiomatic extensions346: can lead to inconsistency.

Bertrand Russell once likened the advantages of postula-

tion over definition to the advantages of theft over honest

toil!
345The principle is simple: the smaller a system is, the easier

it is to check that it is correct, and the more confident one

can be about it.

We have seen this before when we argued for the use of

metalogics (Ü p.294). However, in that context, we still had

to add further axioms (Ü p.352) toM. Here this is not the

case.

Safety through strength means: HOL is strong enough to

model interesting systems without having to add further ax-

ioms – that’s what makes it safe.
346What we attempt to do here has similarities to the process

of representing (Ü p.291) an object logic in a metalogic. But

an important difference must be noted.

We will see many extensions of the HOL kernel by

constants (and types). The definitions of those constants

and types involve axioms that must be added according to

a strict discipline (Ü p.432). Other than that, we will not

add any axioms (Ü p.352)!

356

Set Theory as Alternative?

Set theory is the logician’s choice as basis for modern

mathematics.

• ZFC347 [Zer07, Frä22]: has been implemented in Is-

abelle, with impressive applications!

• Neumann-Bernays-Gödel [Ber91]: equivalent to ZFC,

but finitely axiomatizable348.

Set theories (both) distinguish between sets and classes.

• Consistency maintained as some collections are “too big”

to be sets, e.g., class of all sets V is not a set (Ü p.141).

• A class cannot belong to another class (let alone a set)!

347ZFC stands for Zermelo-Fränkel set theory with

choice [Dev93, Ebb94].
348Strictly speaking, an axiom (Ü p.49) within the object

language in question. In this sense, the axiom of the ex-

cluded middle (Ü p.41) from propositional logic, A ∨ ¬A
(for example) is not an axiom, because A is a meta-variable

which could stand for an arbitrary formula, and thus A∨¬A
is not within the object language of propositional logic. One

says that A ∨ ¬A is an axiom schema that represents in-

finitely many axioms.

So far we have not made this distinction explicit in

most places, although we have raised this issue very early

on (Ü p.30).

Now a theory is finitely axiomatizable if it only uses axioms,

but no axiom schemata.

357

Finally: We Choose HOL!

HOL developed by [Chu40, Hen50] and rediscovered by [And02,

GM93].

• Rationale: one usually works (Ü p.145) with typed en-

tities.

• Reasoning is then easier with support for types.

HOL is classical logic based on λ→ (Ü p.364).

• Isabelle/HOL also supports “mod cons”349 like

polymorphism (Ü p.184) and type classes (Ü p.187)!

HOL is weaker than ZF set theory, but for most

applications this does not matter. If you prefer ML

to Lisp, you will probably prefer HOL to ZF. (Larry

Paulson)

349“Mod cons” stands for “modern conveniences”.

358

What Does Higher-Order Mean?

“Type” order350 Logic order
Example

Just o 0? A ∧B → B ∧ A
1 1 ∀x, y. R(x, y)→ R(y, x)

+ quantification 2 False ≡ ∀P. P
P ∧Q ≡ ∀R. (P → Q→ R)

2 3

+ quantification 4 ∀X. (X(R, S)↔ (∀x.R(x)→ S(x)))
→ X(R′, S ′) (≡ subrel(R′, S ′))

...
...

...

350Recall the definition of an order on types (Ü p.225)

and assume here, as we did in the lecture on representing

syntax (Ü p.217), that there is a type i of individuals and a

type o for truth values.

In the sequel, we follow [And02, §50], who uses a definition

of order slightly different from ours (Ü p.225). I will phrase

his definition using the concept of predicate type:

• i is a type of order 0.

• every type of the form

i→ . . . i→︸ ︷︷ ︸
n times

o,

where n ≥ 0, is a predicate type of order 1.

• If τ1, . . . , τn are predicate types, then τ1 → . . .→ τn →
o is a predicate type whose order is 1+ the maximum of

the orders of τ1, . . . , τn.

359

Note that this means that there are no function symbols,

since we did not consider types of the form . . . → i. How-

ever it is better to say that we simply disregard them in the

subsequent explanations, for simplicity.

In the table, we classify logics by the order of the non-

logical symbols (Ü p.104) (e.g., for first-order logic: vari-

ables, predicate symbols).

A hierarchy of logics is obtained by the following alterna-

tion:

• admit an additional order for the non-logical symbols in

the logic;

• admit quantification over symbols of that order.

We start this hierarchy with first-order logic.

It has symbols of first-order type (predicate symbols), but

quantification is allowed only over individuals, which are of

order 0.

Now, if one admits quantification over symbols of first-

360

order type, i.e., over symbols of type o or i→ . . .→ i→ o,

one obtains second-order logic.

Now, if one admits symbols of second-order type (sym-

bols taking predicate symbols as arguments), one obtains

third-order logic.

Now, if one admits quantification over symbols of second-

order type, one obtains fourth-order logic.

Hence quantification over nth-order variables corresponds

to (2n)th-order logic.

In the end, one will never bother to discuss, say, 7th-order

logic, since higher-order logic is the union of all logics of finite

order, and this is what we will be working with.

Andrews has said that propositional logic might be re-

garded as zeroth order logic, but unfortunately, propositional

logic cannot be found in this hierarchy in a straightforward

way. According to the hierarchy, below first-order logic there

should be a logic where the symbols are of order 0 and quan-

tification over such symbols is allowed. But in fact, in propo-

361

Explanation for subrel(R′, S ′).351

sitional logic the symbols are of type o, which is of order 1

but is not the only type of order 1, and no quantification is

allowed at all.

However, once you take higher-order logic as your point

of reference and not propositional or first-order logic, which

can just be viewed as special cases, you will probably not

find this bothering anymore.
351Consider the binary predicate subrel which takes two

unary relations as arguments. subrel(R, S) is defined as

true whenever R is a subrelation of S, i.e. when ∀x.R(x)→
S(x).

Now instead of defining such a predicate and writing, say,

a formula subrel(R′, S ′), one could abstract from that name

and write

∀X. (X(R, S)↔ (∀x.R(x)→ S(x)))→ X(R′, S ′)

The subformula X(R, S) ↔ (∀x.R(x) → S(x)) is true if

and only ifX is indeed the predicate subrel and so the entire

formula is true if R′ is indeed a subrelation of S ′.

362

HOL = Union of All Finite Orders

ω-order logic, also called finite-type theory or higher-order

logic (HOL), includes logics of all finite orders.

363

14.2 Syntax

Syntactically, HOL is a polymorphic (although not nec-

essarily) variant of λ→ (Ü p.167) with certain default types

and constants.

Default constants can be called logical symbols (Ü p.104).

364

Types (Review)

Given a set of type constructors (Ü p.192), say B352 = {bool , →
(Ü p.193), ind 353, × 354, list , set , . . .}, polymorphic

types (Ü p.194) are defined by τ ::= (Ü p.17) α | (τ, .., τ) T (Ü p.192),

where α is a type variable.

• bool is also called o in literature [Chu40, And02].

Confusingly (Ü p.305), the truth value type in Isabelle/HOL

(i.e., object-level) is called bool .

• bool and → always present in HOL; ind will also play

a special role; other type constructors may be defined.

• Note polymorphism355!

352As before (Ü p.192), we use the letter B to denote a par-

ticular set of type constructors.

Note that this set is not hard-wired into HOL, but can

be specified as part of a particular HOL language. One can

therefore speak of B as a type signature (Ü p.167).

B is some fixed set “defined by the user”. In Isabelle, there

is a syntax provided for this purpose.

However, some type constructors are always present.
353ind (“indefinite”) is a type constructor which stands for

a type with infinitely many members, a concept which is

central in HOL, as we will see later (Ü p.368).
354For any two types τ and σ, we write τ ×σ for the type of

pairs where the first component is of type τ and the second

component is of type σ.

The infix syntax is in analogy to → (Ü p.193).

The pair type is not in the core of HOL, but it can be

defined (Ü p.454) in it.
355We have seen the generalization (Ü p.186) of λ→ to poly-

365

Terms

Reminder (Ü p.168): e ::= (Ü p.17) x | c | (ee) |
(λxτ

356
. e)

Typing rules as in polymorphic λ-calculus (Ü p.186), with

Σ defining and typing (Ü p.170) constants.

Terms of type bool are called (well-formed) formulae.

In HOL, Σ always includes:

True,False357 : bool

= : α→ α→ bool (polymorphic, or set358)

→ : bool → bool → bool

ε : (α→ bool)→ α (in Isabelle: Eps or SOME359)

morphism.

Note that in order to simplify the presentation, we neglect

polymorphism in the section on semantics (Ü p.367). In

that section, τ and σ will be metavariables (used in the

description of the formalism) ranging over types, rather than

type variables of a polymorphic type system.

366

14.3 Semantics

Intuitively: many-sorted semantics (Ü p.130) + functions

• FOL: structure (Ü p.72) is domain and functions/rela-

tions. Many-sorted FOL: domains are sort-indexed

A = 〈D1, . . . ,Dn, IA〉

• HOL extends idea: D indexed by (infinitely many) types.

• Complications due to polymorphism (Ü p.365) [GM93].

• We only give a monomorphic variant of semantics here!

367

Model Based on Universe of Sets U
U is a collection of sets (domains), fulfilling closure conditions:

Inhab: Each X ∈ U is a nonempty set

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U

Prod: If X, Y ∈ U then X × Y ∈ U .

Pow: If X ∈ U then ℘(X) = {Y | Y ⊆ X} ∈ U

Infty: U contains a distinguished infinite set360 I

Choice: There is a function ch ∈ ΠX∈U .X (Ü p.370).

360The infinity axiom

∃f (ind→ind) (Ü p.397).injective f ∧ ¬surjective f
infty

says that there is a function from I to I (the postulated in-

finite set in U) which is injective (any two different elements

e, e′ of I have different images under f) but not surjective

(there exists an element of I which is not the image of any

element).

Such a function can only exist if I is infinite, and in fact

the axiom expresses the very essence of infinity, as we will

see later (Ü p.585).

Think of the natural numbers and the successor function

as an example: for any two different natural numbers, the

successors are different, and the number 0 is not the successor

of any number.

368

Prod: Encoding X × Y
X × Y is the Cartesian product, i.e., the set of pairs (x, y)

such that x ∈ X and y ∈ Y .

One can actually “encode” a tuple (x, y) without explic-

itly postulating the “existence of tuples”361. E.g.: (x, y) ≡
{{x}, {x, y}}.

361According to usual mathematical practice, one would ar-

gue that if two sets A and B are well-defined, then the set

A×B of pairs (tuples) (a, b) where a ∈ A and b ∈ B is also

well-defined.

That is, we assume that if one understands what a and b

are, then one also understands what the pair (a, b) is. A pair

is a “semantic object”.

Ultimately, semantics can only be understood using

one’s intuition, and only be explained using natural

language (Ü p.293). (One can only “hope” [GM93, page

193] that no confusion arises.) One should try to base the

semantics on a very small number of fundamental concepts.

Therefore, one might want to avoid having a concept “pair”

(“tuple”) explicitly, or put differently, one might want to

reduce “pairs” to something even more fundamental. That’s

what is intended by the encoding {{x}, {x, y}}.
Note that this reduction step somehow makes the type

discipline (Ü p.374) invisible, because x and y might be se-

369

Choice: Picking a Member

The function ch takes a set X ∈ U as argument and returns

a member of X .

We hence write ch ∈ ΠX∈U .X
362, i.e., ch is of dependent

type.

Essentially, the constant ε will be interpreted as ch, but

you will see the technical details later (Ü p.376).

mantic objects “of different type”.
362When we write ch ∈ ΠX∈U .X , i.e., ch is of dependent

type, then this is a statement on the semantic level. The

expression ΠX∈U .X is not part of the formal syntax of HOL

(unlike in LF, a system we have not treated here), and its

meaning is only described in plain English, by saying that

ch takes a set X ∈ U as argument and returns a member of

X .

370

Function Space in U
Define set X → Y as (graphs of) functions363 from X to Y .

• For nonempty X and Y 364, this set is nonempty and is

a subset of ℘(X × Y).

• From closure conditions (Ü p.368): X, Y ∈ U then

X → Y ∈ U .
363In any basic math course on algebra, we learn that a

binary relation between X and Y is set of a pairs of tuples

of the form (x, y) where x ∈ X and y ∈ Y . One also calls

such a set a graph since one can view pairs (x, y) as edges.

We also learn that a relation R is called a function from X

to Y if for each x ∈ X , there exists exactly one y ∈ Y such

that (x, y) ∈ R. Provided that Y is nonempty, a function

from X to Y always exists.

Thus the set of functions from X to Y , denoted X → Y ,

is a nonempty subset of the set of relations on X and Y , i.e.,

℘(X×Y). Since X → Y is nonempty, by Prod (Ü p.368)

we have that X → Y ∈ U .
364It is crucial in the semantics that any type is

inhabited (Ü p.368), i.e., has an element. The reason for

this is that otherwise, there would be terms (Ü p.366) for

which we cannot give a semantics:

Suppose ρ was an empty (non-inhabited) type. Then

we cannot give any semantics to the term xρ. Moreover,

371

Distinguished Sets

From

Infty: U contains a distinguished infinite set (Ü p.368) I

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U
it follows that the following sets exist in U :

if the signature (Ü p.366) includes a constant cρ, then we

cannot give a semantics to cρ. Even if we only consider

closed (Ü p.438) terms (i.e., terms without free variables),

and we explicitly forbid the existence of a constant cρ for an

empty type ρ, there will be terms for which we cannot give

a semantics. The simplest example is the term λxρ.x.

We know (Ü p.146) that λ-terms denote functions, as in

λxρ.x, and so it is natural to expect that all functions we

can write in the λ-calculus actually exist in the semantics.

Generally, the function space X → Y is empty if X or Y is

empty. This means that Dτ→σ (Ü p.374) would necessarily

be empty if τ is empty.

One way of understanding why it would be bad if some

λ-terms denoting functions had no semantics is by looking

at β-reduction: for any types τ ,σ and a constant c of type

σ, we expect (λxτ .c)x = c. But this wouldn’t hold if we

cannot give a semantics to (λxτ .c) since Dτ→σ is empty.

Therefore: inhabitation.

372

Unit: A distinguished 1-element365 set {1}

Bool: A distinguished 2-element set {T, F}.

One specific point where inhabitation is crucial is related

to the ε-operator (Ü p.376), as we will see later.

In the book [GM93] that is one of the sources for this

lecture, inhabitation is mentioned, but it is not explained

why it is crucial.

Here we speak of semantic inhabitation, i.e., our semantic

universe must be big enough so that all terms (of type τ)

can be given a meaning (in Dτ). This is a different ques-

tion from whether there might be types that are not inhab-

ited (syntactically) in the first place, i.e., types for which

there exists no term of this type (compare this to the Curry-

Howard isomorphism (Ü p.177)). Thus we are concerned

with making sure that every term has a meaning, not that

every meaning has a term. However, it turns out that that

in HOL, each type τ is also syntactically inhabited, namely

e.g. by the term ε(τ→bool)→τ (λx
τ .True).

365Of course, the conditions on U do not per se enforce the

existence of sets containing the elements 1 or T or F . Just

373

Frames

For semantics, we neglect polymorphism (Ü p.365). τ and

σ range over types.

A frame is a collection {Dτ}τ of non-empty sets (domains (Ü p.368))

Dτ ∈ U , one for each type τ , where:

• Dbool = {T, F};

• Dτ→σ ⊆ Dτ → Dσ, i.e., some collection of functions (Ü p.371)

from Dτ to Dσ.

• Dind (Ü p.365) = I (Ü p.368).

Note: for fundamental reasons discussed later (Ü p.387),

one cannot simply define Dτ→σ = Dτ → Dσ at this stage.

as well, one could say that they enforce the existence of sets

containing elements K or ® or o.

It is only because the name of a semantic element is ulti-

mately irrelevant that we claim, without loss of generality,

that there is a 1-element set {1} and a 2-element set {T, F}.
We say that these sets are distinguished because they play a

special role in the setup of the semantics.

374

Interpretations

An interpretation M = 〈{Dτ}τ ,J 〉 is a frame {Dτ}τ and a

denotation function J mapping each constant of type τ to

an element of Dτ where:

• J (True) = T and J (False) = F ;

• J (=τ→τ→bool)
366 is equality on Dτ ;

• J (→) is implication function over Dbool . For b, b′ ∈
{T, F},

J (→)(b, b′) =

{
F if b = T and b′ = F

T otherwise

366For = and ε, we give type subscripts in the presentation

of the semantics since we assume, conceptually, that there

are infinitely many copies (Ü p.366) of those constants, one

for each type. We do this to avoid explicit polymorphism in

this presentation.

375

Interpretations (Cont.)

• J (ε
(τ→bool)→τ (Ü p.375)) is defined by (for f ∈ (Dτ →

Dbool)):

J (ε(τ→bool)→τ)(f)367 =

{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

Note: If a frame {Dτ}τ does not contain all of the functions

used above, then {Dτ}τ cannot belong to any interpreta-

tion.
367We have

J (ε(τ→bool)→τ)(f) =

{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

ch is a (semantic) function (Ü p.370) which takes a

nonempty set and returns an element from that set. f

is a semantic function from Dτ to Dbool . However, f can

be interpreted as set. This is done in all formality here:

we write f−1({T}). One says that f is the characteristic

function (Ü p.450) of the set f−1({T}).
Now the type of ε is (τ → bool) → τ (for any τ), so ε

expects a function as argument, which can be interpreted as

a set as just stated. This set can be empty or nonempty.

In case it is nonempty, an element is picked from the set

non-deterministically. If the set is empty, an element from

the type τ (which must be nonempty since each type is

interpreted (Ü p.374) as nonempty set (Ü p.368)). Note

the importance of inhabitation (Ü p.371).

376

A Terminological Note

The terminology is slightly different from FOL:

In FOL, “〈{Dτ}τ ,J 〉” is called structure (Ü p.72) and

“J ” is called interpretation (Ü p.72).

In HOL, 〈{Dτ}τ ,J 〉 is called interpretation and J is

called denotation function.

377

The Value of Terms (Näıve)

In analogy to FOL (Ü p.74), given an interpretation M =

〈{Dτ}τ ,J 〉 and a type-indexed collection of assignments368

A = {Aτ}τ , define VM
A such that VM

A (tρ) ∈ Dρ for all t, as

follows:

1. VM
A (xτ) = A(xτ);

2. VM
A (c) = J (c) for c a constant;

3. VM
A (sτ→σ

369tτ) = (VM
A (s))(VM

A (t)), i.e., the value of the

function VM
A (s) at the argument VM

A (t);

4. VM
A (λxτ . tσ) = the function from Dτ into Dσ whose

value for each e ∈ Dτ is VM
A[x←e]

370(t).

What is the problem? Condition 4!
368An assignment (previously called valuation (Ü p.72))

maps variables to elements of a domain (Ü p.368).

A type-indexed collection of assignments is an assignment

that respects the types: a variable of type τ will be assigned

to a member of Dτ [GM93]. Note that a variable has a

type by virtue of a context Γ, which is suppressed in our

presentation of models.
369In the presentation of models, we give type subscripts for

the cases VM
A (sτ→σtτ) and VM

A (λxτ . tσ) to indicate the types

of s and t in those definitions. Note that a term has a type in

a certain context Γ, which is suppressed in our presentation

of models. The semantics is only defined for well-formed

terms, in particular, applications and abstractions having

types of the indicated forms.
370A[x ← e] denotes the assignment that is identical to A

except that A(x) = e.

378

Condition 4 Is Critical

For VM
A to be well-defined, the function from Dτ into Dσ in

condition 4 must live

• in some domain (Ü p.368) of U (since it is required that

VM
A (tρ) ∈ Dρ for all t, and Dρ ∈ U (Ü p.374)): this is

guaranteed by closure conditions on U (Ü p.368);

• in a certain domain (Ü p.368) of U , namely Dτ→σ371;

for this, Dτ→σ must be big enough.

If VM
A is well-defined, we call M = 〈Dτ ,J 〉 a (general)372

model.
371In condition 4, the semantics of λxτ . tσ is defined unam-

biguously as a certain function. But in general, there is no

guarantee that this function is actually in Dτ→σ, and in this

case, M = 〈{Dτ}τ ,J 〉 would not be a model.
372General models must be distinguished from standard

models, as we will see later (Ü p.380).

We sometimes omit the word “general” in general model.

379

Models

Hence: Not all interpretations are general models, but we

restrict our attention to the general models.

If Dτ→σ is the set of all functions from Dτ to Dσ, then it is

certainly “big enough”. In this case, we speak of a standard

model. Important for completeness (Ü p.387).

If M is a general model and A an assignment, then VM
A

is uniquely determined.

VM
A (t) is value of t in M wrt. A.

Note that in contrast to first-order logic (Ü p.76), “model”

does not mean “an interpretation that makes a formula true”.

380

Satisfiability and Validity

A formula (term of type bool) φ is satisfiable wrt. a model

M (Ü p.378) if there exists an assignmentA such that VM
A (φ) =

T .

A formula φ is valid wrt. a model M (Ü p.378) if for all

assignments A, we have VM
A (φ) = T .

A formula φ is valid in the general sense if it is valid in

every general model (Ü p.379).

A formula φ is valid in the standard sense if it is valid in

every standard model (Ü p.380).

381

Existence of Values

Closure conditions (Ü p.378) for general models guarantee

every well-formed term has a value under every assignment,

and this means that certain values must exist, e.g.,

• Closure under functions: since VM
A (λxτ . x) is defined,

the identity function from Dτ to Dτ must always belong

to Dτ→τ .

• Closure under application: if DN is natural numbers,

andDN→N→N contains addition function p where p x y =

x + y, then DN→N must contain k where k x = 2x + 5,

since k = VM
A (λxN. f (f x x) y) where A(f) = p and

A(y) = 5.

382

14.4 Basic Rules

We now give the core calculus of HOL. Its rules can be

stated using only the constants =,→, and ε. However, there

will be one rule, tof (Ü p.384) (“true or false”), which would

be hard to read if we did that.

So we allow ourselves to “cheat”373 and also use constants

True, False, ∨ to write rule tof (Ü p.384).

Later we will define those constants, i.e., regard them as

syntactic sugar (Ü p.19).

373Rule tof (Ü p.384) can be written as follows:

(λψ. (φ = (λx.x = λx.x)→ ψ)→
(φ = ((λη.η) = λx.(λx.x = λx.x))→ ψ)→ ψ) =

(λx.(λx.x = λx.x))

tof

Our notation for rule tof (Ü p.384) is thus based on the

following definitions:

True (Ü p.395) = (λxbool (Ü p.395).x = λx.x)

False (Ü p.395) = ∀φbool (Ü p.395).φ (Ü p.395)

∨ (Ü p.395) = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

383

Basic Rules in Sequent Notation

Γ ` φ = φ
refl

Γ ` φ = η Γ ` P (φ)

Γ ` P (η)
subst

Γ ` φx = η x

Γ ` φ = η
ext∗374

Γ, φ ` η
Γ ` φ→ η

impI

Γ ` φ→ η Γ ` φ
Γ ` η

mp

Γ ` (φ→ η)→ (η → φ)→ (φ = η)
iff

φ = True ∨ φ = False
tof (Ü p.383)

Γ ` φx
Γ ` φ(εx.φx376)

selectI375

374The rule
Γ ` φx = η x

Γ ` φ = η
ext

has the side condition that x /∈ FV (Γ).

Phrased like
φx = η x

φ = η
ext

the rule has the side condition that x must not occur

freely (Ü p.70) in the derivation of φx = η x.
375You may wonder why there is no rule for eliminating ε.

We will later (Ü p.419) see a rule derivation where an ε is

effectively eliminated, and we will also see that this is done

without requiring a rule explicitly for this purpose.

Apart from that, the ε-operator is used in HOL as basis for

defining (Ü p.394) ∃ and the if-then-else constructs. Once

we have derived the appropriate rules for those, we will not

explicitly encounter ε anymore.
376For readability, we will frequently use a syntax that one is

384

Axiom of Infinity

There is one additional rule (axiom) that will give us the

existence of infinite sets (Ü p.368):

∃f (ind→ind).injective377 f ∧ ¬surjective f
infty

Has special role. Interesting to look at HOL with or with-

out infinity (Ü p.387). Won’t (Ü p.585) consider infinity

today.

Note “cheating” (Ü p.394) (use of ∃).
These eight (nine) rules are the entire basis!

more used to than higher-order abstract syntax (Ü p.222):

εx.φx stands for ε(φ).

∀x.φ(x) stands for ∀(φ), and likewise for ∃.
We have done the same previously (Ü p.306) forM.

385

Soundness and Completeness

Soundness is straightforward [And02, p. 240].

386

Soundness and Completeness

Completeness only follows w.r.t. general models (Ü p.379),

as opposed to standard (Ü p.380) models. Recall that a

standard model is one where Dτ→σ is always the set of all

functions from Dτ to Dσ.

There are formulas that are valid (Ü p.381) in all stan-

dard models, but not in all general models, and which cannot

be proven in our calculus (Ü p.383). Our calculus can prove

the formulas that are true in all general models including

non-standard ones (Henkin models [Hen50]). This recon-

ciles HOL with Gödel’s incompleteness theorem378 [Hen50,

Mil92].

If we consider a version of HOL without infinity (Ü p.368),

then every model is a standard model379 and so completeness

holds.
378This is a standard trick when faced with the problem

that a deductive system is not complete. One can either

enlarge the set of axioms, or one can weaken the models

by permitting more models. If we allow more models, then

fewer theorems will be valid (i.e., hold in all models), and

so fewer theorems will have to be provable in the derivation

system.

Here, completeness is based on general models, and

not standard (Ü p.380) models. This resolves the ap-

parent contradiction with Gödel’s incompleteness theorem:

HOL with infinity contains I (Ü p.368), hence the natural

numbers (Ü p.590), hence arithmetic By Gödel’s in-

completeness theorem, there cannot be a consistent deriva-

tion system that can prove all valid theorems in the natural

numbers.

A readable account on this problem can be found in

[And02, ch. 7].
379We might consider a version of HOL without infinity, i.e.,

387

14.5 Isabelle/HOL

We now look at a particular instance of HOL (given by

defining certain types and constants) which essentially cor-

responds to the HOL theory of Isabelle380.

one where each domain (Ü p.368) is finite (note that U is

still infinite, since there are infinitely many types, e.g., bool ,

bool → bool , bool → bool → bool , . . .)).

One can see that every function in such a finite domain is

representable as a λ-term, and so for any σ and τ , we must

have (Ü p.378) Dτ→σ = Dτ → Dσ.

For details consult [And02, §54].
380This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

There you will also find all the derivations of the rules

presented in this lecture.

However, the presentation of this lecture is partly based on

HOL.thy of Isabelle 98, which in turn is based on a standard

book [GM93]. E.g., the definition of Ex def is now different

from the one presented here.

Note also that here in the slides, we use a style of display-

388

http://isabelle.in.tum.de/library/
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0506/csmr/HOL.thy

We present language and rules381 using “mathematical”

syntax, but also comparing with Isabelle (concrete/HOAS (Ü p.222))

syntax.

We take polymorphism (Ü p.365) back on board.

ing Isabelle files which uses some symbols beyond the usual

ASCII set (Ü p.397).
381We will mix natural deduction (Ü p.24) (with discharg-

ing assumptions), natural deduction written in sequent

style (Ü p.48), and Isabelle syntax.

For a thorough account of this, consult [SH84].

Some general remarks about the correspondence: A rule

ψ

φ

in ND notation corresponds to an Isabelle rule ψ =⇒ φ.

A rule
[ρ]
....
ψ

φ

is written as
ρ,Γ ` ψ

Γ ` φ

389

(Central Parts of the) Language

in sequent style or
ρ =⇒ ψ

φ

using the Isabelle meta-implication =⇒.

A rule
ψ

φ(x)

with side condition that x must not occur free in any undis-

charged assumption on which ψ depends is written as
Γ ` ψ

Γ ` φ(x)

in sequent style, where the side condition reads: x must not

occur free in Γ. Using the Isabelle meta-universal quantifi-

cation, the rule is written ∧
x.ψ

φ(x)

390

Σ0 =

{ True, False382 : bool ,

¬ 383 : bool → bool ,

∧ , ∨ , → : bool → bool → bool ,

∀ , ∃ : (α→ bool)→ bool ,

ε : (α→ bool)→ α,

if then else : bool → α→ α→ α,

= : α→ α→ bool}
We will switch between the various ways of writing the rules!

This means in particular that we will use =⇒ and
∧

from

Isabelle’s metalogic (Ü p.291).
382For convenience (and to save space, we write . . . a : τ, b :

τ . . . as . . . a, b : τ . . . in a signature. This is of course

syntactic sugar (Ü p.19).
383We use a notation with to indicate the arity and

fixity of constants, as this has been done for type

constructors (Ü p.192) before.

The whole matter of arity of fixity is one of notational

convenience. For example, as the type of ∧ indicates, we

should write (∧φ)ψ (Curryed notation (Ü p.161)), but we

write φ ∧ ψ since it is more what we are used to.

391

Basic Rules in Isabelle Notation

refl: "t = t"

subst: "[| s = t; P(s) |] ==> P(t)"

ext: "(!!x. (f x) = g x) ==>

(%x. f x) = (%x. g x)"

impI: "(P ==> Q) ==> P-->Q"

mp: "[| P-->Q; P |] ==> Q"

iff: "(P-->Q) --> (Q-->P) --> (P=Q)"

True_or_False: "(P=True) | (P=False)"

selectI: "P (x) ==> P (@x. P x)"

See HOL.thy (Ü p.388).

392

Basic Rules in Mixed (Ü p.389) Notation

φ = φ
refl

φ = η P (φ)

P (η)
subst

φx = η x

φ = η
ext∗ (Ü p.384)

φ =⇒ η

φ→ η
impI

φ→ η φ

η
mp

(φ→ η)→ (η → φ)→ (φ = η)
iff

φ = True ∨ φ = False
tof

φx

φ(εx.φx)
selectI

393

No more “Cheating”: The Definitions

394

True384 = 385 (λxbool (Ü p.395).x = λx.x)

∀386 = λφα→bool (Ü p.366).(φ = λx.True)

False387 = ∀φbool
388
.φ389

∨390 = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

∧391 = λφη.∀ψ.(φ→ η → ψ)→ ψ

¬392 = λφ.(φ→ False)

∃393 = (λφ.φ(εx.φx))

If 394 = λφboolxy.εz.(φ = True → z = x)∧
(φ = False → z = y)

384

True = (λxbool .x = λx.x)

The term λxbool .x = λx.x evaluates to T (Ü p.375), and so

it is a suitable definition for the constant True.

Note that we give the type for x once. The right-hand side

λx.x will thereby also be forced to be of type bool → bool .

This is necessary for reasons that will become clear

later (Ü p.438).

Note that (λxbool .x = λx.x) is closed (Ü p.438). Defini-

tions must always be closed (Ü p.438).
385It is a design choice if we want to add these definitions at

the level of the object logic (HOL) (Ü p.354) or at the level

of the M (Ü p.291). In the first case, we would use = and

have axioms such as

True = (λxbool .x = λx.x)

In the second case, we would have meta-axioms

True ≡ (λxbool .x = λx.x)

This would mean that we would regard True merely as syn-

tactic sugar (Ü p.19). The second way corresponds to what

is done in Isabelle, see HOL.thy (Ü p.388). It is technically

more convenient since rewriting (Ü p.271) is based on meta-

level equalities.

Logically, it is not a big difference which way one chooses.

We will have an exercise on this.
386

∀ = λφ.(φ = λx.True)

Note the use of HOAS (Ü p.222) here. ∀ should be a

function that expects an argument φ of type α → bool

(generalizing the technique we used for encoding first-order

∀ (Ü p.222)). So φ is such that when you pass it an argu-

ment x of type α, it will return a proposition (something of

type bool).

The expected semantics (Ü p.75) of ∀φ wrt. a model

M (Ü p.378) and an assignment A is: VM
A (∀φ) = T

iff VM
A[x←e] (Ü p.378)

(φx) = T for any e (from the

domain (Ü p.368) of x’s type).

Now when does φx hold for all x? This is the case exactly

when φx evaluates to T for all x, which is the same (applying

some HOL rules) as saying that φ is the function λx.True.

Here α could be arbitrarily instantiated to some type.

387

False = ∀φ.φ

The essence of False is that anything can be derived from

it. But this is exactly what ∀φ.φ says.
388In HOL, the quantifiers, which one expects to be variable

binders, are realized using λ in the style of HOAS (Ü p.222).

We have said binding occurrences of variables in a λ-term

should, strictly speaking, be annotated with a type, but that

this type can often be omitted (Ü p.366).

Now whenever we use concrete quantifier syntax for con-

venience, so we write ∀x.ψ instead of ∀(λx.ψ) (and likewise

for ∃), we may annotate the variable in the obvious way:

∀xτ .ψ is concrete syntax for ∀(λxτ .ψ).

Sometimes we will annotate variables for clarity, sometimes

we trust that the type is clear from the context.
389The HOL constant ∀ is defined first in the style of

HOAS (Ü p.395). But we also use concrete syntax, so we

write ∀x.ψ instead of ∀(λx.ψ). In the concrete syntax, one

may also annotate (Ü p.395) the variable with a type.
390

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

First, observe the similarity of this definition with the ∨-E

rule (Ü p.36) of propositional logic.

Secondly, just go through the cases:

• If φ is true, then:

– If ψ is false, then φ→ ψ is false and so (φ→ ψ)→
(η → ψ)→ ψ is true;

– If ψ is true, then (η → ψ) → ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ

is true.

• Otherwise, if η is true, then:

– If ψ is false, then η → ψ is false and so (η → ψ)→
ψ is true and so (φ→ ψ)→ (η → ψ)→ ψ is true.

– If ψ is true, then (η → ψ) → ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ

is true.

• Otherwise (if both φ and η are false), then for all ψ,

both φ→ ψ and η → ψ are true, and so there exists a

ψ, say ψ ≡ False, such that (φ→ ψ)→ (η → ψ)→ ψ

is false.

Thus it is not the case that for all ψ, (φ→ ψ)→ (η →
ψ)→ ψ is true.

So the definition of ∨ behaves exactly as it should.
391

∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ

Similarly as for ∨ (Ü p.395), we can go through the cases:

• If η is false, then there exists a ψ, namely ψ ≡ False,

such that η → ψ is true, hence φ → η → ψ is true,

hence (φ→ η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ

is true.

• Otherwise, if φ is false, then φ → η → ψ is true, and

there exists a ψ, namely ψ ≡ False, such that (φ →
η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ

is true.

• Otherwise (if φ and η are true), then:

– If ψ is false, then η → ψ is false, hence φ→ η → ψ

is false, hence (φ→ η → ψ)→ ψ is true.

– If ψ is true, then (φ→ η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ η → ψ)→ ψ is true.

So the definition of ∧ behaves exactly as it should.
392

¬ = λφ.(φ→ False)

We know that one already from propositional logic (Ü p.17).
393

∃ = (λφ.φ(εx.φx))

Using the abstract syntax for ε (Ü p.384), one could also

write

∃ = (λφ.φ(εφ))

Recall first the definition of ∀ (Ü p.395) to understand the

type of ∃.
The expected semantics (Ü p.75) of ∃φ wrt. a model

M (Ü p.378) and an assignment A is: VM
A (∀φ) = T

iff VM
A[x←e] (Ü p.378)

(φx) = T for some e (from the

domain (Ü p.368) of x’s type).

The semantics of ε (Ü p.376) is such that φ(εφ) is true, if

and only if a term t exists for which φ(t) is true.

So this is exactly the expected semantics of ∃φ.

395

394

If = λφxy.εz.(φ = True → z = x)∧(φ = False → z = y)

The constant If stands for the if-then-else construct. Note

first that εz.(φ = True → z = x) ∧ (φ = False → z = y)

is η-equivalent to εz.(λz.(φ = True → z = x) ∧ (φ =

False → z = y)) z, which is written ε(λz.(φ = True →
z = x) ∧ (φ = False → z = y)) in the “real” HOL syntax,

which uses the concept of HOAS (Ü p.222).

The expression ε(λz.(φ = True → z = x)∧(φ = False →
z = y)) picks a term from the set of terms z such that

(φ = True → z = x) ∧ (φ = False → z = y) holds. But

this means that z = x if φ = True, or z = y if φ = False.

Since If should be a function which takes φ, x and y as

arguments, we must abstract over those variables, giving

λφxy.εz.(φ = True → z = x) ∧ (φ = False → z = y).

396

Note: Different Syntaxes

Mathematical vs. Isabelle, e.g.

¬φ Not Phi

λxbool .P %395x :: 396bool. P

HOAS (Ü p.222) vs. concrete, e.g.

∀ (λxτ .(∧p(x) q(x))) ∀xτ .p(x) ∧ q(x)

ε (P) εx.P (x)
We use all those forms as convenient. For displaying Is-

abelle files, we will sometimes use a style where some ASCII

words (e.g. %) are replaced with mathematical symbols (e.g. λ).

395Note that the λ-binder of the object logic HOL is

not distinguished from the λ-binder of Isabelle’s metalogic

M (Ü p.291). One could introduce an object level constant

lambda, but one quickly sees that it would be an unnecessary

overhead.
396As we have learned previously (Ü p.168), λ-abstracted

variables should have a type superscript, although this

superscript is often omitted since the type can be

inferred (Ü p.366).

Since ∀x.p(x) ∧ q(x) is the “concrete syntax” version of

∀ (λx.(∧p(x) q(x))), it makes sense that we allow an optional

superscript also for ∀-bound (and likewise for ∃-bound) vari-

ables.

In Isabelle the optional type annotation is written using ::

instead of a superscript.

397

14.6 Conclusions on HOL

• HOL generalizes semantics of FOL:

– bool serves as type of propositions;

– Syntax/semantics allows for higher-order functions.

• Logic is rather minimal: 8 or 9 rules, based on 3 con-

stants, soundness (Ü p.386) straightforward.

• Logic complete (Ü p.387) (w.r.t. general models, but

not standard (Ü p.380) models).

• Next lecture we will see how all well-known inference

rules can be derived.

398

15 HOL: Deriving Rules

399

Outline

Last lecture (Ü p.354): Introduction to HOL

• Basic syntax (Ü p.364) and semantics (Ü p.367)

• Basic eight (or nine) rules (Ü p.384)

• Definitions (Ü p.394) of True, False, ∧, ∨, ∀ . . .

Today:

• Deriving rules (Ü p.399) for the defined constants

• Outlook on the rest of this course (Ü p.427)

400

Reminder: Different Syntaxes

Mathematical vs. Isabelle, e.g.

¬φ Not Phi

λxbool .P % (Ü p.397)x :: bool. P

HOAS (Ü p.222) vs. concrete, e.g.

∀ (λxτ (Ü p.397).(∧p(x) q(x))) ∀xτ (Ü p.397).p(x) ∧ q(x)

ε (P) εx.P (x)

We use all those forms as convenient. For displaying Is-

abelle files, we will sometimes use a style where some ASCII

words (e.g. %) are replaced with mathematical symbols (e.g. λ).

401

Reminder: Definitions

True (Ü p.395) = (λxbool (Ü p.395).x = λx.x)

∀ (Ü p.395) = λφα→bool (Ü p.366).(φ = λx.True)

False (Ü p.395) = ∀φbool (Ü p.395).φ (Ü p.395)

∨ (Ü p.395) = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

∧ (Ü p.395) = λφη.∀ψ.(φ→ η → ψ)→ ψ

¬ (Ü p.395) = λφ.(φ→ False)

∃ (Ü p.395) = (λφ.φ(εx.φx))

If (Ü p.395) = λφxy.εz.(φ = True → z = x)∧
(φ = False → z = y)

402

Derived Rules

The definitions (Ü p.402) can be understood either semanti-

cally (checking if each definition captures the usual meaning

of that constant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for

them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving

a constant, then replace the constant with its definition (if

applicable), then show the derivation.

15.1 Equality

• Rule sym and ND derivation397

s = t s = s
refl (Ü p.384)

t = s
symsubst (Ü p.384)

397We present most of those proofs by giving a derivation

tree (Ü p.24) for it, but sometimes, we also give an Isabelle

proof script.

Note also the mix of syntaxes (Ü p.389).

403

• Isabelle rule s=t ==> t=s. Proof script:

Goal "s=t ==> t=s";

by (etac subst 1); (* P is %x.x=s *)

by (rtac refl 1); (* s=s *)

qed "sym";

404

Equality: Transitivity and Congruences

• Rule trans and ND derivation (Ü p.403)

r = s
s = r

sym (Ü p.403)
s = t

r = t
transsubst (Ü p.384)

Isabelle rule [| r=s; s=t |] ==> r=t

• Congruences (only Isabelle forms):

(f::’a=>’b) = g ==> f(x)=g(x) (fun cong)

x=y ==> f(x)=f(y) (arg cong)

Isabelle proofs using subst (Ü p.384) and refl (Ü p.384).

405

Equality of Booleans (iffI)

Rule iffI and ND derivation (Ü p.403)

(P → Q)→ (Q→ P)→ (P = Q)
iff

[P]
....
Q

P → Q
impI

(Q→ P)→ (P = Q)
mp

[Q]
....
P

Q→ P
impI

P = Q
iffImp

Isabelle rule [| P ==> Q; Q ==> P |] ==> P=Q.

Uses mp (Ü p.384), iff (Ü p.384), impI (Ü p.393).

406

Equality of Booleans (iffD2)

Rule iffD2 and ND derivation (Ü p.403)

P = Q

Q = P
sym (Ü p.403)

Q

P
iffD2subst (Ü p.384)

Isabelle rule [| P=Q; Q |] ==> P.

407

15.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI and ND derivation (Ü p.403)

True(λx.x) = (λx.x)
TrueIrefl (Ü p.384)

• Rule eqTrueE and ND derivation (Ü p.403)

P = True True
TrueI

P
eqTrueEiffD2 (Ü p.407)

Isabelle rule P=True ==> P.

408

True (Cont.)

• Rule eqTrueI and ND derivation (Ü p.403)

True
TrueI (Ü p.408)

P

P = True
eqTrueIiffI (Ü p.406)

Note that 0 assumptions were discharged.

Isabelle rule P ==> P=True.

409

15.3 Universal Quantification

∀P = (P = (λx.True))

• Rule allI and ND derivation (Ü p.403)

P (x)

P (x) = True
eqTrueI (Ü p.409)

∀PP = λx.True
allIext (Ü p.384)

Inherits (Ü p.95) the side condition of ext (Ü p.384):

x must not occur freely in the derivation of P (x).

Isabelle rule (!!x. P(x)) ==> ALL x. P(x).

410

Example Illustrating Side Condition

[r(x)]1

r(x)→ r(x)
→-I1

∀x. r(x)→ r(x)
allI

Why is this correct? Let’s do it without using allI explicitly:

[r(x)]2

r(x)→ r(x)
→-I2

(r(x)→ r(x)) = True
eqTrueI

λx. (r(x)→ r(x)) = λx.True
ext

The side condition is respected.

411

Universal Quantification (Cont.)

• Rule spec (recall (Ü p.384) ∀P means ∀x.Px) and ND

derivation (Ü p.403)

∀PP = λx.True

P (t) = True
fun cong (Ü p.405)

P (t)
speceqTrueE (Ü p.408)

Isabelle rule ALL x::’a. P(x) ==> P(x).

Note: Need universal quantification to reason about False

(since False = (∀P.P)).

412

15.4 False

False = (∀P.P) (= ∀(λP.P) (Ü p.384))

• FalseI: No rule!

• Rule FalseE and ND derivation (Ü p.403)

False∀P. P
P

FalseEspec (Ü p.412)

Isabelle rule False ==> P.

413

False (Cont.)

• Rule False neq True and ND derivation (Ü p.403)

False = True
False

eqTrueE (Ü p.408)

P
False neq TrueFalseE (Ü p.413)

Isabelle rule False=True ==> P.

• Similar:
True = False

P
True neq False

414

15.5 Negation

¬P = P → False

• Rule notI and ND derivation (Ü p.403)

[P]
....

False

¬PP → False
notIimpI (Ü p.393)

Isabelle rule (P ==> False) ==> ∼P.

415

Negation (2)

• Rule notE and ND derivation (Ü p.403)

¬PP → False P
False

mp (Ü p.384)

R
notEFalseE (Ü p.413)

Isabelle rule [| ∼P; P |] ==> R.

416

Negation (3)

• Rule True Not False and ND derivation (Ü p.403)

[True = False]1

False
True neq False (Ü p.414)

¬(True = False)(True = False)→ False
True Not FalsenotI1

Isabelle rule True ∼= False.

Uses notI (Ü p.415)

417

15.6 Existential Quantification

∃P = P (εx.P (x))

• Rule existsI and ND derivation (Ü p.403)

P (x)

∃PP (εx.P (x))
existsIselectI (Ü p.384)

Isabelle rule P(x) ==> EX x::’a.P(x).

418

Existential Quantification (Cont.)

• Rule existsE and ND derivation (Ü p.403)

∃PP (εx.P (x))

[P (x)]1
....
Q

P (x)→ Q
impI1

∀x.(P (x)→ Q)
allI

P (εx.P (x))→ Q
spec

Q
existsEmp398

Inherits side condition from allI (just like in FOL (Ü p.94)).

On the meta-level399, this derivation is extremely simple.

Isabelle rule [| EX x.P(x); !!x.P(x)==>Q |] ==>

Q.

399One can write the derivation of existsE as follows:

P (εx.P (x))

∧
x. P (x) =⇒ Q

P (εx.P (x)) =⇒ Q

∧
−E

Q
existsE=⇒-E

This is an attempt to capture in an ad-hoc tree notation how

this derivation can be done in Isabelle. In particular, existsE

inherits a side condition from the meta-level universal quan-

tification. However, while this may help to understand how

this derivation works in Isabelle, it is not very rigorous and

you could not be expected to believe that the side condition

checking is correct.

For a thorough account of side conditions in ND proofs,

consult [SH84].

You might also justify existsE in plain English words, i.e.,

completely on the meta-level: If I have a derivation ofQ from

P (x) not making any assumptions about x, and in addition

I have a derivation of P (εx.P (x)), then I can combine these

419

15.7 Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI and ND derivation (Ü p.403)

[P → Q→ R]1 P

Q→ R
mp (Ü p.384)

Q

R
mp (Ü p.384)

(P → Q→ R)→ R
impI (Ü p.393)1

P ∧Q∀R.(P → Q→ R)→ R
conjIallI

Isabelle rule [| P; Q |] ==> P & Q.

two derivations: modify the first one by instantiating x with

εx.P (x). This justifies having existsE.

What happens in our rather complicated derivation is that

we are turning a meta-level reasoning into an object-level

one, which is more trustworthy for an ND derivation.

420

Conjunction (Cont.)

• Rule conjEL and ND derivation (Ü p.403)

P ∧Q∀R.(P → Q→ R)→ R

(P → Q→ P)→ P
spec

[P]1

Q→ P
impI

P → Q→ P
impI1

P
conjELmp (Ü p.384)

Isabelle rule P & Q ==> P.

Uses spec, impI.

421

Conjunction (Cont.)

• P ∧Q =⇒ Q (conjER)

• JP ∧Q; JP ;QK =⇒ RK =⇒ R (conjE) (rule anal-

ogous to disjE (Ü p.424))

422

15.8 Disjunction

P ∨Q = ∀R.(P → R)→ (Q→ R)→ R

• Rule disjIL and ND derivation (Ü p.403)

[P → R]1 P

R
mp (Ü p.384)

(Q→ R)→ R
impI (Ü p.393)

(P → R)→ (Q→ R)→ R
impI (Ü p.393)1

P ∨Q∀R.(P → R)→ (Q→ R)→ R
disjILallI

Isabelle rule P ==> P|Q.

423

Disjunction (Cont.)

• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE and ND derivation (Ü p.403)

P ∨Q∀R.(P → R)→ (Q→ R)→ R

(P → R)→ (Q→ R)→ R
spec

[P]
....
R

P → R
impI

(Q→ R)→ R
mp

[Q]
....
R

Q→ R
impI

R
disjEmp

Isabelle rule [| P | Q; P ==> R; Q ==> R |] ==>

R.

• P ∨ ¬P (excl midd). Follows using tof (Ü p.384).

Uses spec (Ü p.412),mp (Ü p.384), impI (Ü p.393).

424

15.9 Miscellaneous Definitions

See HOL.thy (Ü p.388)!

Typical example (if-then-else (Ü p.395)):

If = λφboolxy.εz. (φ = True → z = x)

∧ (φ = False → z = y)

The way rules are derived should now be clear. E.g.,

P = True

(If P x y) = x

P = False

(If P x y) = y

425

15.10 Summary on Deriving Rules

HOL is very powerful in terms of what we can represen-

t/derive:

• All well-known inference rules can be derived.

• Other “logical” syntax (e.g. if-then-else (Ü p.425)) can

be defined.

• Rich theories can be obtained by a method we see next

lecture (Ü p.432).

426

15.11 Mathematics and Software Engineering in

HOL

In coming weeks, we will see how Isabelle/HOL can be

used as foundation for mathematics and software engineer-

ing.

Outline:

• The central method for making HOL scale up: conser-

vative extensions (Ü p.432) (< 1 week)

• How the different parts of mathematics are encoded in

the Isabelle/HOL library (Ü p.461) (several weeks)

• How software systems are embedded in Isabelle/HOL

(several weeks)

427

Outlook on Mathematics

After some historical background, we will look at how central

parts of mathematics are encoded as Isabelle/HOL theories:

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

428

Outlook on Software Engineering

Some weeks from now, we will look at case studies of how

HOL can be applied in software engineering, i.e. how software

systems can be embedded in Isabelle/HOL:

• Foundations, functional languages and denotational se-

mantics

• Imperative languages, Hoare logic (Ü p.628)

• Z400 and data-refinement, CSP and process-refinement

• Object-oriented languages (Java-Light . . .)

Of the last three items, we want to treat only one in depth,

depending on the audience’s preferences.
400Z and CSP are specification languages. CSP stands for

communicating sequential processes.

429

Conservative Extensions: Motivation

But first, conservative extensions.

Stage of our course before studying HOL:

• fairly small theories,

• “intuitive” models, (e.g. näıve set theory (Ü p.126)),

• but inconsistent (Ü p.143) (due to foundational prob-

lems).

How can we use HOL to

• reason about a reasonably large part of mathematics and

software engineering;

• prevent inconsistencies?

430

What Is Needed for Scaling up?

Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

• Reuse: Isabelle supports libraries and retrieval utilities.

• Safe, well-understood integration mechanisms: Isabelle

supports conservative theory extensions.

Topic of next lecture (Ü p.432).

431

16 Conservative Theory Extensions

432

Outline

In the previous lecture (Ü p.399), we have derived all well-

known inference rules. There is now the need to scale up.

Today we look at conservative theory extensions, an impor-

tant method for this purpose.

In the weeks to come, we will look at how mathematics is

encoded in the Isabelle/HOL library.

16.1 Conservative Theory Extensions: Basics

Some definitions [GM93, Hué]

Definition (theory):

A (syntactic) theory T is a triple (B,Σ, A), where B is a

type signature (Ü p.365), Σ a signature (Ü p.366) and A a

set of axioms401.

Definition (theory extension):
401The definition of theory extension requires thatA consists

of axioms, not proper rules (Ü p.49). However, we have

seen (Ü p.116) that any rule one might wish to postulate

can also be phrased as an axiom (using → rather than ⇒).

433

A theory T ′ = (B′,Σ′, A′) is an extension of a theory T =

(B,Σ, A) iff B ⊆ B′ and Σ ⊆ Σ′ and A ⊆ A′.

434

Definitions (Cont.)

Definition (conservative extension):

A theory extension T ′ = (B′,Σ′, A′) of a theory T = (B,Σ, A)

is conservative iff for the set of derivable formulas402 Th we

have

Th(T) = Th(T ′) |Σ,
where |Σ filters away all formulas not belonging to Σ.

Counterexample:

∀fα→α. Y f = f (Y f)
fix403

402The derivable formulas are terms of type bool deriv-

able using the inference rules of HOL (Ü p.384). We write

Th(T) for the derivable formulas of a theory T .
403Given a function f : α → α, a fixpoint of f is a term

t such that f t = t. Now Y is supposed to be a fixpoint

combinator, i.e., for any function f , the term Y f should be

a fixpoint of f . This is what the rule

∀fα→α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom al-

lows us to infer Y (¬) = ¬(Y (¬)), and it is easy to derive

False from this. This axiom is a standard example of a

non-conservative extension of a theory.

It is not surprising that this goes wrong: Not every function

has a fixpoint, so there cannot be a combinator returning a

fixpoint of any function.

Nevertheless, fixpoints are important and must be realized

in some way, as we will see later (Ü p.501).

435

Consistency Preserved

Corollary (consistency):

If T ′ is a conservative extension of T , then

False /∈ Th(T)⇒ False /∈ Th(T ′).

436

Syntactic Schemata for Conservative Extensions

• Constant definition (Ü p.438)

• Type definition (Ü p.444)

• Constant specification

• Type specification

Will look at first two schemata now.

For the other two see [GM93].

437

16.2 Constant Definition

Definition (constant definition):

A theory extension T ′ = (B′,Σ′, A′) of a theory T = (B,Σ, A)

is a constant definition, iff

• B′ = B and Σ′ = Σ ∪ {c : τ}, where c /∈ dom404(Σ);

• A′ = A ∪ {c = E};

• E does not contain405 c and is closed406;

• no subterm ofE has a type containing a type variable (Ü p.440)

that is not contained in the type of c.

404The domain of Σ, denoted dom(Σ), is {c | c : A ∈
Σ for some A}.

Likewise, the domain of Γ, denoted dom(Γ), is {x | x :

A ∈ Γ for some A}.
Note the abuse of notation (Ü p.173).

405If E did contain c then we would speak of a recursive def-

inition, but at this stage, recursion (Ü p.533) is forbidden.
406A term is closed or ground if it does not contain any

free (Ü p.70) variables.

438

Constant Definitions Are Conservative

Lemma (constant definitions):

Constant definitions are conservative [GM93, page 223].

Proof Sketch:

• Th(T) ⊆ Th(T ′) |Σ : trivial.

• Th(T) ⊇ Th(T ′) |Σ : let π′ be a proof for φ ∈ Th(T ′) |Σ.

We unfold any subterm in π′ that contains c via c = E

into π. Then π must be a proof in T , implying φ ∈
Th(T).

439

The Need for the Side Conditions407

Here is a counterexample concerning closedness (Ü p.438)

of E: Define c : bool by the axiom c = x.

c = x
axiom

∀x.c = x
allI (Ü p.410)

c = False
spec (Ü p.412)

c = x
axiom

∀x.c = x
allI (Ü p.410)

c = True
spec (Ü p.412)

False = True
subst (Ü p.384)

False
False neq True (Ü p.414)

Intuition: when you define c as the variable x, then c just

isn’t a constant! Usually taken for granted.
407By side conditions we mean

• E does not contain c and is closed;

• no subterm of E has a type containing a type variable

that is not contained in the type of c;

in the definition (Ü p.438).

The second condition also has a name: one says that the

definition must be type-closed.

The notion of having a type is defined by the type assign-

ment calculus (Ü p.195). SinceE is required to be closed, all

variables occurring in E must be λ-bound, and so the type of

those variables is given by the type superscripts (Ü p.168).

440

The Need for the Side Conditions (2)

Now type-closedness (Ü p.440): Let E ≡ ∃xαyα. x 6= y

and suppose σ is a type inhabited (Ü p.371) by only one

term, and τ is a type inhabited (Ü p.371) by at least two

terms. Then we would have:

c = c holds by refl (Ü p.384)

=⇒ (∃xσyσ. x 6= y) = (∃xτyτ . x 6= y)

=⇒ False = True

=⇒ False

This explains definition of True408. Other (standard) exam-

ple later (Ü p.587).

408True is defined as λxbool .x = λx.x (Ü p.395) and

not λxα.x = λx.x. The definition must be type-

closed (Ü p.440).

441

Constant Definition: Examples

Definitions of True, False, ∧, ∨, ∀ . . . (Ü p.394)

Here the original (Ü p.388) Isabelle syntax (Ex def changed (Ü p.388)).

Note the use of !409 and meta-level (Ü p.395) equality.

True_def: "True == ((%x::bool. x) = (%x. x))"

All_def: "All(P) == (P = (%x. True))"

Ex_def: "Ex(P) == P (SOME x. P x)"

False_def: "False == (!P. P)"

not_def: "~ P == P-->False"

and_def: "P & Q == !R. (P-->Q-->R) --> R"

or_def: "P | Q == !R. (P-->R) --> (Q-->R)

--> R"

409“!” is just another Isabelle notation for ALL, and

“?” is just another Isabelle notation for EX. See

HOL.thy (Ü p.388) in the section “syntax (HOL)” (this is

Isabelle 2005).

442

More Constant Definitions in Isabelle

Function application (Let), if-then-else, unique existence410:

consts

Let :: [’a, ’a => ’b] => ’b

If :: [bool, ’a, ’a] => ’a

defs

Let_def "Let s f == f(s)"

if_def "If P x y == @z::’a.(P=True-->z=x) &

(P=False-->z=y)"

Ex1_def "Ex1(P) == ?x. P(x) & (!y. P(y) --> y=x)"

Note use of ? (Ü p.442).

Recall: => is function type arrow (Ü p.189); also recall []

syntax (Ü p.190).
410We have never used unique existential quantification

(∃!) before. ∃!x1, . . . , xn.φ(x1, . . . , xn) is defined as

∃x1, . . . , xn.φ(x1, . . . , xn) ∧ (∀y1, . . . , yn.φ(y1, . . . , yn) →
x1 = y1 ∧ . . . ∧ xn = yn).

Note that in general ∃!x.(∃!y.φ) is not the same as ∃!xy.φ).

443

16.3 Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

• a predicate S : ρ→ bool , defining a non-empty “subset”411

of ρ;

• axioms stating an isomorphism between S and the new

type τ .

411Although a set is formally a different object than a pred-

icate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true.

444

...
.............
.

............
...

............
...

...........
....

..........
.....

..........

.....

..........

.....

..........

.....

..........
.....

...........
....

...........
....

............
...

............
..

..............
...............
...............
...............
..............
..............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............
..............

..............
...............

...............
..............................ρ

..
...........
.
...........
.
..........
.
...........
.
...........
.
...........

...........
...........
...........
............
............
...........
............
............
...........

...........
...........

........................S ..
...........
.
...........
.
..........
.
...........
.
...........
.
............

...........
...........
............
............
............
...........
............
............
...........

...........
...................................τ.

...

..

...

..
...

..
.....................................

.....

.............................
..............

.........................
...................

.....................
.....................

...
s

Absτ : ρ→ τ

.
.....................

.....................
...

.........................
...................

.............................
..............

.....................................
.....

...
...

..

...

..

...k

Repτ : τ → ρ

Type Definition: Definition

Definition (type definition):

Assume a theory T = (B,Σ, A) and a type ρ and a term

S412 such that Σ ` (Ü p.195)S : ρ→ bool .

A theory extension T ′ = (B′,Σ′, A′) of T is a type definition

for type τ 413 (where τ fresh414), iff

412Here, S is any “predicate” (Ü p.359), i.e., term of type

ρ→ bool , not necessarily a constant.
413A type definition is supposed to define a type

constructor (Ü p.365) (where the arity and fixity are indi-

cated in some way). We abuse notation here: we use τ

to denote a type constructor, but also the type obtained

by applying the type constructor to a vector of different

type variables (Ü p.194) (as many as the type constructor

requires).

So think of τ as either being a type constructor or a

“generic” type (just a type constructor being applied to type

variables).

We do the same in examples.
414The type constructor τ must not occur in B.

445

B′ = B]415 {τ},
Σ′ = Σ ∪ {Absτ 416 : ρ→ τ, Repτ (Ü p.446) : τ → ρ}
A′ = A ∪ {∀x.Absτ (Repτ x) = x417,

∀x.S x→ Repτ (Absτ x) = x (Ü p.446)}
Proof obligation418 ∃x. S x can be proven inside HOL!

415The symbol] denotes disjoint union, so the expression

A]B is well-formed only when A and B have no elements

in common. One thus uses this notation to indicate this fact.
416Of course we are giving a schematic definition here, so

any letters we use are metanotation.

Notice that Absτ and Repτ stand for new constants. For

any new type τ to be defined, two such constants must be

added to the signature to provide a generic way of obtaining

terms of the new type. Since the new type is isomorphic

to the “subset” (Ü p.444) S, whose members are of type ρ,

one can say that Absτ and Repτ provide a type conversion

between (the subset S of) ρ and τ .

So we have a new type τ , and we can obtain members of

the new type by applying Absτ to a term t of type ρ for

which S t holds.
417The formulas

∀x.Absτ (Repτ x) = x

∀x.S x→ Repτ (Absτ x) = x

446

Type Definitions Are Conservative

Lemma (type definitions):

Type definitions are conservative.

Proof see [GM93, pp.230].

state that the “set” S (Ü p.444) and the new type τ are

isomorphic. Note that Absτ should not be applied to a term

not in “set” S (Ü p.444). Therefore we have the premise

S x in the above equation.

Note also that S could be the “trivial filter” λx.True. In

this case, Absτ and Repτ would provide an isomorphism

between the entire type ρ and the new type τ .
418We have said previously (Ü p.444) that S should be

a non-empty “subset” (Ü p.444) of τ . Therefore it

must be proven that ∃x. S x. This is related to the

semantics (Ü p.368).

Whenever a type definition is introduced in Isabelle, the

proof obligation must be shown inside Isabelle/HOL. Is-

abelle provides the typedef syntax for type definitions,

as we will see later (Ü p.456). Using this syntax, the

“author” of a type definition can either explicitly pro-

vide a proof (see Product Type.thy (Ü p.457)), or the

proof is so easy that Isabelle can do it automatically (see

447

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to

a subset of an existing type, how is this construction going

to lead to a “rich” collection of types for large-scale applica-

tions?

But in fact, due to ind (Ü p.365) and → (Ü p.365), the

types in HOL are already very rich.

We now give three examples to convince you.

Sum Type.thy (Ü p.459)).

448

Example: Typed Sets

General scheme, substituting ρ ≡ α→ bool (α is any type

variable (Ü p.194)), τ ≡ α set (Ü p.445) (or set (Ü p.445)),

S ≡ λxα→bool .True
B′ = B] {τset},
Σ′ = Σ ∪ {Absτset : ρ(α→ bool)→ τα set ,

Repτset : τα set → ρ(α→ bool)}
A′ = A ∪ {∀x.Absτset(Repτset x) = x,

∀x.S xTrue → Repτset(Absτset x) = x}
Simplification since S ≡ λx.True. Proof obligation (Ü p.446):

(∃x.Sx) trivial since (∃x.True) = True. Inhabitation prop-

agates419!

419We have S ≡ λxα→bool .True, and so in (∃x.Sx), the

variable x has type α → bool . The proposition (∃x.Sx) is

true since the type α→ bool is inhabited (Ü p.371), e.g. by

the term λxα.True or λxα.False.

Beware of a confusion: This does not mean that the

new type α set, defined by this construction, is the type

of non-empty sets. There is a term for the empty set: The

empty set is the term Absset (λx.False).

So we see that inhabitation of types propagates in the fol-

lowing sense: since each type τ is inhabited, the type τ set

is inhabited as well.

449

Sets: Remarks

Any function r : α → bool can be interpreted as a set of

α; r is called characteristic function. That’s what Absset r

does; Absset is a wrapper saying “interpret r as set”.

S ≡ λx.True and so S is trivial420 in this case.
420We said that in the general formalism for defining a new

type, there is a term S of type ρ → bool that defines a

“subset” (Ü p.444) of a type ρ. In other words, it filters

some terms from type ρ. Thus the idea that a predicate can

be interpreted as a set is present in the general formalism for

defining a new type.

Now we are talking about a particular example, the type

α set. Having the idea “predicates are sets” in mind, one is

tempted to think that in the particular example, S will take

the role of defining particular sets, i.e., terms of type α set.

This is not the case!

Rather, S is λx.True and hence trivial in this example.

Moreover, in the example, ρ is α→ bool , and any term r of

type ρ defines a set whose elements are of type α; Absset r

is that set.

450

More Constants for Sets

For convenient use of sets, we define more constants:

451

{x | f x} = Collect421 f = Absset f

x ∈ A = (Repset A)422 x

A ∪B (Ü p.131) = {x | x ∈ A ∨ x ∈ B}
...

Consistent set theory423 adequate for most of mathematics
421We have seen Collect before in the theory file NSet.thy

(näıve set theory (Ü p.126)).

Collect f is the set whose characteristic

function (Ü p.450) is f . There is also a concrete (Ü p.397)

(i.e., according to mathematical practice) syntax {x | f x}.
It is called set comprehension. The correspondence between

the HOAS (Ü p.397) Collect f and the concrete syntax

{x | f x} also makes it clear that set comprehension is a

binding operator, as we learned some time ago (Ü p.127).

Note also that Collect is the same (Ü p.477) as Absset
here.

The file Set.thy should be contained in your Isabelle dis-

tribution. Or, if you only have an Isabelle executable, you

can find the sources here:

http://isabelle.in.tum.de/library/

422We define

x ∈ A = (Repset A) x

452

http://isabelle.in.tum.de/library/

and computer science.

In Isabelle/HOL however, sets are a special case (Ü p.477).

Here, sets are just an example to demonstrate type defi-

nitions. Later (Ü p.474) we study them for their own sake.

Since Repset has type (Ü p.449) α set → (α → bool), this

means that (Ü p.195) x is of type α and A is of type (α→
bool). Therefore ∈ is of type α → (α set) → bool (but

written infix (Ü p.66)).

In the Isabelle theory file Set.thy (Ü p.452), you will in-

deed find that the constant : (Isabelle syntax for ∈) has type

α→ (α set)→ bool .

However, you will not find anything (Ü p.477) directly cor-

responding to Repset.
423Typed set theory is a conservative extension (Ü p.447)

of HOL and hence consistent (Ü p.436).

Recall the problems with untyped set theory (Ü p.143).

453

Example: Pairs

Consider type α → β → bool . We can regard a term f :

α → β → bool as a representation of the pair (a, b), where

a : α and b : β, iff f x y is true exactly for x = a and y = b.

Observe:

• For given a and b, there is exactly one424 such f (namely,

λxαyβ. x = a ∧ y = b).

• Some functions of type α → β → bool represent pairs

and others don’t (e.g., the function λxy.True does not

represent a pair). The ones that do are exactly the ones

that have the form λxαyβ. x = a ∧ y = b, for some a

and b.
424When we say that there is “exactly one” f , this is meant

modulo equality in HOL. This means that e.g. λxαyβ.y =

b∧x = a is also such a term since (λxαyβ.x = a∧ y = b) =

(λxαyβ.y = b ∧ x = a) is derivable in HOL.

454

Type Definition for Pairs

This gives rise to a type definition where S (Ü p.444) is

non-trivial:
ρ ≡ α→ β → bool

S ≡ λfα→β→bool .∃ab.f = λxαyβ.x = a ∧ y = b

τ ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be

confused with Rep×
425) as λaαbβ.λxαyβ. x = a ∧ y = b426.

Then Pair Rep a b = λxαyβ. x = a ∧ y = b.
425Rep× would be the generic name for one of the two

isomorphism-defining functions (Ü p.446).

Since Rep× looks funny, the definition scheme for type

definitions in Isabelle is such that it provides two names

for a type, one if the type is used as such, and one for the

purpose of generating the names of the isomorphism-defining

functions.
426We write λaαbβ.λxαyβ.x = a ∧ y = b rather than

λaαbβxαyβ.x = a ∧ y = b to emphasize the idea that one

first applies Pair Rep to a and b, and the result is a func-

tion representing a pair, wich can then be applied to x and

y.

455

Now in Isabelle

Isabelle has a special set-based427 syntax for type definitions:

typedef (T)

〈typevars〉 ”T ′” 〈fixity〉
= ”{x.φ}”

How is this linked to our scheme (Ü p.445):

• the new type is called T ′ (Ü p.455);

• ρ is the type of x (inferred (Ü p.366));

• S is λx.φ;

• constants (Ü p.455) Abs T and Rep T are automati-

cally generated.

427The syntax ”{x.φ}” does not just look like a set

comprehension (Ü p.452), it is one!

So, since the typedef syntax is based on sets, sets

themselves could not have been defined using that syntax.

This is the reason why in Isabelle/HOL, sets are a special

case (Ü p.477) of a type definition.

See Typedef.thy, which should be contained in your Is-

abelle distribution. Or, if you only have an Isabelle exe-

cutable, you can find the sources here:

http://isabelle.in.tum.de/library/

456

http://isabelle.in.tum.de/library/

Isabelle Syntax for Pair Example

constdefs

Pair_Rep :: [’a, ’b] => [’a, ’b] => bool

"Pair_Rep == (%a b. %x y. x=a & y=b)"

typedef (Prod)

(’a, ’b) "*" (infixr 20) =

"{f.?a b. f=Pair_Rep(a::’a)(b::’b)}"

The keyword constdefs428 introduces a constant defini-

tion. The definition and use of Pair Rep (Ü p.455) is for

convenience. There are “two names” (Ü p.455) ∗ and Prod.

See Product Type.thy429.
428In Isabelle theory files, consts is the keyword preceding

a sequence of constant declarations (i.e., this is where the

Σ (Ü p.433) is defined), and defs is the keyword preceding

the axioms that define these constants (i.e., this is where the

A (Ü p.433) is defined).

constdefs combines the two, i.e. it allows for a sequence

of both constant declarations and definitions. When the

constdefs syntax is used to define a constant c, then the

identifier c def is generated automatically. E.g.

constdefs

id :: "’a => ’a"

"id == %x. x"

will bind id def to id ≡ λx.x.
429This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

457

http://isabelle.in.tum.de/library/

Example: Sums

An element of (α, β) sum430 is either Inl a where a : α or

Inr b where b : β.

So think of Inl a and Inr b as syntactic objects that we

want to represent.

Consider type α → β → bool → bool . We can regard

f : α→ β → bool → bool as a
representation of . . . iff f x y i is true for . . .

Inl a x = a, y arbitrary, and i = True

Inr b x arbitrary, y = b, and i = False.
Similar to pairs (Ü p.454).

430Idea of sum or union type: t is in the sum of τ and σ

if t is either in τ or in σ. To do this formally in our type

system (Ü p.183), and also in the type system of functional

programming languages like ML, tmust be wrapped to signal

if it is of type τ or of type σ.

For example, in ML one could define

datatype (α, β) sum = Inl α | Inr β

So an element of (α, β) sum is either Inl a where a : α or

Inr b where b : β.

458

Isabelle Syntax for Sum Example

constdefs

Inl_Rep :: [’a, ’a, ’b, bool] => bool

"Inl_Rep == (%a. %x y p. x=a & p)"

Inr_Rep :: [’b, ’a, ’b, bool] => bool

"Inr_Rep == (%b. %x y p. y=b & ~p)"

typedef (Sum)

(’a,’b)"+" =

"{f. (?a. f = Inl_Rep(a::’a)) |

(?b. f = Inr_Rep(b::’b))}"

See Sum Type.thy431.

How would you define432 a type even based on nat?
431This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

432Suppose we have a type nat and a constant + with the

expected meaning. We want to define a type even of even

numbers. What is an even number?

The following choice of S (Ü p.445) is adequate:

S ≡ λx.∃n.x = n + n

Using the Isabelle scheme, this would be

typedef (Even)

even = "{x. ?y. x=y+y}"
We could then go on by defining an operation PLUS on even,

459

http://isabelle.in.tum.de/library/

16.4 Summary on Conservative Extensions

We have seen two schemata:

• Constant definition (Ü p.438): new constant must be

defined using old constants. No recursion! Subtle side

condition (Ü p.441) concerning types.

• Type definition (Ü p.444): new type must be isomor-

phic to a “subset” (Ü p.444) S of an existing type ρ.

Not possible to define any type that is “structurally”

richer than the types one already has. But HOL is rich

enough (Ü p.448).

say as follows:

constdefs

PLUS::[even,even] => even (infixl 56)

PLUS def "PLUS ==

%xy. Abs Even (Rep Even(x)+Rep Even(x))"

Note that we chose to use names even and Even (Ü p.455),

but we could have used the same name twice as well.

460

17 Mathematics in the Isabelle/HOL
Library: Introduction

461

Isabelle/HOL at Work

We have seen how the mechanism of conservative extensions

works in principle.

For several lectures, we will now look at theories of the Is-

abelle/HOL library, all built by conservative extensions and

modelling significant portions of mathematics.

462

Sets: The Basis of Principia Mathematica

Sets are ubiquitious in mathematics:

• 17th century: geometry can be reduced to numbers [Des16,

vL16].

• 19th century: numbers can be reduced to sets [Can18,

Pea18, Fre93, Fre03].

• 20th century: sets can be represented in logics [Zer07,

Frä22, WR25, Göd31, Ber91, Chu40].

We call this the Principia Mathematica Structure [WR25].

The libraries of theorem provers follow this Principia Math-

ematica Structure — in reverse order!433

433It is not surprising that the logical built-up of theorem

prover is reversed w.r.t. to the historical development of

mathematics and logics. Research usually starts from ap-

plications and the intuition and works its way back to the

foundations.

463

The Roadmap

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

464

18 Orders

465

The Roadmap

We are looking at how the different parts of mathematics are

encoded in the Isabelle/HOL library (Ü p.461).

• OrdersOrders

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

466

Three Order Classes

We first define a syntactic class (Ü p.189) ord. It is the

class of types for which symbols < and <= exist.

We then define two axiomatic classes (Ü p.190) order

and linorder for which < and <= are required to have

certain properties, that of being a partial order (Ü p.115),

or a linear order (Ü p.117), resp.

467

Orders (in Orderings.thy434)

axclass

ord < type

consts

"op <" :: [’a::ord, ’a] => bool

"op <=" :: [’a::ord, ’a] => bool

constdefs

min :: "[’a::ord, ’a] => ’a"

"min a b == (if a <= b then a else b)"

max :: "[’a::ord, ’a] => ’a"

"max a b == (if a <= b then b else a)"

Recall constdefs (Ü p.457) syntax and note two uses of

<435.
434 In previous versions of Isabelle (Ü p.388), there used to

be a theory file Ord.thy. Nowadays orders are defined in

Orderings.thy.
435The line

axclass order < ord

in the theory file states that order is a subclass (Ü p.189)

of ord.

The line

"op <" :: [’a::ord, ’a] => bool ("(<)" [50, 51] 50)

in the theory file declares a constant < with a certain type.

type is the class containing all types. In previous versions

of Isabelle (Ü p.388), it used to be called term.

468

Orders (Cont.)

axclass order < ord

order_refl "x <= x"

order_trans "[|x <= y; y <= z|] ==> x <= z"

order_antisym "[|x <= y; y <= x|] ==> x = y"

order_less_le "x < y = (x <= y & x ~= y)"

%

axclass linorder < order

linorder_linear "x <= y | y <= x"

469

Least Elements

In Orderings.thy (Ü p.468), least elements used to be de-

fined as:

Least :: "(’a::ord => bool) => ’a"

Least_def "Least P == @x. P(x) &

(ALL y. P(y) ==> x <= y)"

Now it is done without using the Hilbert operator (Ü p.366).

470

Monotonicity

In Orderings.thy (Ü p.468), monotonicity used to be de-

fined as:

mono :: [’a::ord => ’b::ord] => bool

mono_def "mono(f) ==

(!A B. A <= B --> f(A) <= f(B))

Now it is done using a completely different syntax, but

one can still use monotonicity as before.

471

Some Theorems436 about Orders

monoI (
∧
AB.A ≤ B =⇒ f A ≤ f B)

=⇒ mono f

monoD Jmono f ;A ≤ BK =⇒ f A ≤ f B

order eq refl x = y =⇒ x ≤ y

order less irrefl ¬x < x

order le less (x ≤ y) = (x < y ∨ x = y)

linorder less linear x < y ∨ x = y ∨ y < x

linorder neq iff (x 6= y) = (x < y ∨ y < x)

min same minxx = x

le min iff conj (z ≤ min x y) = (z ≤ x ∧ z ≤ y)

18.1 Summary on Orders

Type classes are a structuring mechanism in Isabelle:

436In the rest of the course, we will mostly be dealing

with Isabelle HOL, and so when we speak of a theorem,

we ususally mean an Isabelle theorem, i.e., a theorem

in Isabelle’s metalogic (Ü p.291), what we also call a

thm (Ü p.249). Such theorems may contain the meta-level

implication =⇒ and universal quantifier
∧

.

So they are not theorems within HOL. Logically, this is not

a big deal as one switches between object and meta-level by

the introduction and elimination rules for→ (Ü p.384) and

∀ (Ü p.410). But technically (for the proof procedures), it

makes a difference.

To see a theorem displayed in Isabelle, simply type the

name of the theorem followed by “;”.

472

• Syntactic classes (Ü p.189) (e.g. t :: α :: ord as in

Haskell [HHPW96]): merely a mechanism to structure

visibility of operations.

• Axiomatic classes (Ü p.190) (e.g. t :: α :: order): a

mechanism for structuring semantic knowledge437 in types

(foundation to be discussed later (Ü p.485)).

437The Isabelle type system records for any type variable

what class constraints (Ü p.189) there are for this type vari-

able. These class constraints may arise from the types of the

constants used in an expression, or they may be given ex-

plicitly by the user in a goal. E.g. one might type

Goal "(x::’a::order)<y ==> x<=y";

to specify that x must be of a type in the type class order.

The axioms of an axiomatic class can only be applied if

any constant declared in the axiomatic class (or a syntactic

superclass) is applied to arguments of a type in the axiomatic

class. E.g. order refl (Ü p.469) can only be used to prove

y <= y if the type of y is in the type class order.

In this sense the type information (y is of type in class

order) is semantic knowledge (y <= y holds).

473

19 Sets

474

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library (Ü p.461).

• Orders (Ü p.465)

• SetsSets

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

475

Set.thy

theory Set = HOL:

typedecl ’a set

instance set :: (type) ord ..

consts

"{}" :: ’a set ("{}")

UNIV :: ’a set

insert :: [’a, ’a set] => ’a set

Collect :: (’a => bool) => ’a set

"op :" :: "’a => ’a set => bool"

Note that Collect and “:” correspond (Ü p.451) toAbsset (Ü p.452)

and Repset (Ü p.452).

476

Sets Are a Special Case

Recall that the typedef (Ü p.456) syntax is based on set

comprehension (Ü p.456). Therefore, sets are a special case

of type definitions.

In deviation from our conservative approach (Ü p.383),

sets are axiomatized as follows:

axioms

mem Collect eq [iff]438: "(a : {x. P(x)}) = P(a)"

Collect mem eq [simp]: "{x. x:A} = A"

One can see though that this is equivalent439 to the type

definition scheme (Ü p.444).

439We earlier (Ü p.451) presented a definition of α set ac-

cording to the scheme of type definitions (Ü p.444). How-

ever, in Isabelle/HOL (Set.thy (Ü p.452)), it is not done

exactly like that. The reason lies in the special set-based

syntax (Ü p.456) used for type definitions.

The type α set is defined in Isabelle/HOL in a way which

essentially corresponds to the type definition scheme, but

is different in the technical details. In particular, there

are no constants Absset and Repset. Instead, we have

Collect (Ü p.452) and the ∈-sign (Ü p.452). We will now

explain how.

Concerning Absset, there is no worry, since it corresponds

exactly to Collect (Ü p.452).

Repset is related to the ∈-sign (Ü p.452) via

x ∈ A = (Repset A) x

Let us see that this setup is equivalent to the scheme

of type definitions (Ü p.444). There are two axioms in

477

Set.thy: More Constant Declarations

Un, Int :: [’a set, ’a set] => ’a set

Ball, Bex :: [’a set, ’a => bool] => bool

UNION, INTER:: [’a set, ’a => ’b set] => ’b set

Union, Inter:: ((’a set) set) => ’a set

Pow :: ’a set => ’a set set

"image" :: [’a => ’b, ’a set] => (’b set)

We use old syntax (Ü p.388) here but only since it is more

concise.

In what follows, recall that

{x | f x} = Collect (Ü p.452) f = Absset f

Set.thy (Ü p.452):

axioms

mem Collect eq [iff]: "(a : {x. P(x)}) = P(a)"

Collect mem eq [simp]: "{x. x:A} = A"

We translate these axioms using the definitions (Ü p.451):

a ∈ {x | P x} = P a
a ∈ (Collect P) = P a
a ∈ (Absset P) = P a
Repset(Absset P) a = P a
Repset(Absset P) = P

The last step uses extensionality (Ü p.384).

Now the second one:
{x | x ∈ A} = A
{x | (RepsetA)x} = A
Collect(RepsetA) = A

Ignoring some universal quantifications (these are implicit in

Isabelle), these are the isomorphy axioms for set (Ü p.449).

478

Set.thy: Constant Definitions

empty_def: "{} == {x. False}"

UNIV_def: "UNIV == {x. True}"

Un_def: "A Un B == {x. x:A | x:B}"

Int_def: "A Int B == {x. x:A & x:B}"

insert_def: "insert a B == {x. x=a} Un B"

Ball_def: "Ball A P == ALL x. x:A --> P(x)"

Bex_def: "Bex A P == EX x. x:A & P(x)"

Nice syntax:
{x, y, z} for insert x (insert y (insert z {}))
ALL x : A. Sx for Ball A S

EX x : A. Sx for Bex A S

479

Set.thy: Constant Definitions (2)

subset_def: "A <= B == ALL x:A. x:B"

Compl_def: "- A == {x. ~x:A}"

set_diff_def: "A - B == {x. x:A & ~x:B}"

UNION_def: "UNION A B == {y. EX x:A. y: B(x)}"

INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}"

Note use of <=440 instead of ⊆!

Nice syntax:
UN x : A. S x or

⋃
x∈A . S x for UNION A S

INT x : A. S x or
⋂
x∈A . S x for INTER A S

440Sets are an instance of the type class ord (Ü p.465),

where the generic constant <= is the subset relation in this

particular case.

In fact, the subset relation is reflexive, transitive and anti-

symmetric, and so sets are an instance of the axiomatic

class (Ü p.190) order. This is non-obvious and must be

proven, which is done not in Set.thy itself but in Fun.thy,

later (Ü p.485). This is a technicality of Isabelle.

480

Set.thy: Constant Definitions (3)

Union_def: "Union S == (UN x:S. x)"

Inter_def: "Inter S == (INT x:S. x)"

Pow_def: "Pow A == {B. B <= A}"

image_def: "f‘A == {y. EX x:A. y = f(x)}"

Nice syntax:⋃
S for Union S⋂
S for Inter S

481

Some Theorems (Ü p.472) in Set.thy

CollectI P a =⇒ a ∈ {x.P x}
CollectD a ∈ {x.P x} =⇒ P a

set ext (
∧
x.(x ∈ A) = (x ∈ B)) =⇒ A = B

subsetI (
∧
x.x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

eqset imp iff A = B =⇒ (x ∈ A) = (x ∈ B)

UNIV I x ∈ UNIV

subset UNIV A ⊆ UNIV

empty subsetI {} ⊆ A

Pow iff (A ∈ PowB) = (A ⊆ B)

IntI Jc ∈ A; c ∈ BK =⇒ c ∈ A ∩B

482

More Theorems (Ü p.472) in Set.thy

insert iff (a ∈ insert b A) = (a = b ∨ a ∈ A)

image Un f ‘(A ∪B) = f ‘A ∪ f ‘B

Inter lower B ∈ A =⇒
⋂
A ⊆ B

Inter greatest (
∧
X.X ∈ A =⇒ C ⊆ X) =⇒ C ⊆

⋂
A

19.1 Summary on Sets

Rich and powerful set theory available in HOL:

• No problems with consistency (Ü p.452)

• Weaker than ZFC (Ü p.357) (since typed set-theory:)

there is no “union of sets441”; but: complement-closed442

• Good mechanical support (Ü p.246) for many set tau-

tologies (Fast tac (Ü p.269), fast tac set cs, fast tac eq cs,

. . . simp tac set ss (Ü p.288) . . .)

441In typed set theory (what we have here in HOL), it is not

possible to form the union of two sets of different type. This

is in contrast to ZFC (Ü p.357).
442The complement of a typed set A, i.e.

{x | x /∈ A}
is again a set, whose type is the same as the type of

A. In ZFC (Ü p.357), the complement construction is

not generally allowed since it opens the door to Russell’s

Paradox (Ü p.143).

483

• Powerful basis for many problems in modeling

484

20 Functions

485

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library (Ü p.461).

• Orders (Ü p.465)

• Sets (Ü p.474)

• FunctionsFunctions

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

486

Fun.thy

The theory Fun.thy443 defines some important notions on

functions, such as concatenation, the identity function, the

image of a function, etc.

We look at it briefly.

443This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

Fun.thy builds on Set.thy (Ü p.452), and it is here that

it is proven and used that sets are an instance of the type

class order.

487

http://isabelle.in.tum.de/library/

Two Extracts from Fun.thy

Composition and the identity function:

constdefs

id :: "’a => ’a"

"id == %x. x"

comp :: "[’b => ’c, ’a => ’b, ’a] => ’c"

"f o g == %x. f(g(x))"

Recall constdefs (Ü p.457) syntax.

488

Instantiating an Axiomatic Class

Sets are partial orders (Ü p.115): set is an instance of the

axiomatic class order (Ü p.467).

For some reason (Ü p.480), this is proven in Fun.thy.

instance set :: (type) order

by (intro_classes,

(assumption | rule subset_refl

subset_trans subset_antisym psubset_eq)+)

• Axiomatic classes result in proof obligations444.

• These are discharged445 whenever instance is stated.

• Type-checking (Ü p.473) has access to the established

properties.

444To claim that a type is an instance of an ax-

iomatic class (Ü p.190), it has to be proven that the ax-

ioms (in the case of order: order refl, order trans,

order antisym, and order less le) are indeed fulfilled

by that type.
445The Isabelle mechanism is such that the line
instance set :: (type) order

by (intro classes,

(assumption | rule

subset refl subset trans subset antisym psubset eq)+)

instructs Isabelle to prove the axioms using the previously

proven theorems (Ü p.472) subset refl, subset trans,

subset antisym, and psubset eq.

489

20.1 Conclusion of Orders, Sets, Functions

• Theory says: conservative extensions can be used (Ü p.432)

to build consistent libraries.

• Sets as one important package (Ü p.474) of Isabelle/HOL

library:

– Set theory is typed, but very rich and powerfully

supported.

– Sets are instance of ord (Ü p.465) and order (Ü p.489)

type class, demonstrates type classes as structuring

mechanism in Isabelle.

• Will see more examples: Isabelle/HOL contains some

10000 thm (Ü p.249)’s.

490

21 Background: Recursion, Induction,
and Fixpoints

491

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library (Ü p.461).

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction(Least) fixpoints and induction

• (Well-founded) recursion(Well-founded) recursion

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

492

Recursion Based on Set Theory

Current stage of our course:

• On the basis of conservative extensions (Ü p.432), set

theory (Ü p.474) can be built safely.

• But: our mathematical world is still quite small and

quite remote from computer science: we have no means

of introducing recursive definitions (recursive programs,

recursive set equations, . . .).

How can we benefit from set theory to introduce recur-

sion?

493

Recursion and General Fixpoints

Näıve Approach: One could axiomatize fixpoint combinator

Y as

Y = λF.F (Y F)
fix

This axiom is not a constant definition446.

Then we could easily derive

∀F α→α.Y F = F (Y F)447.

• Why are we interested in Y ?

• What is the problem with such a definition?

446The axiom

Y = λF.F (Y F)

is not a constant definition (Ü p.438), since Y occurs again

on the right-hand side.
447In words, this says that Y F is a fixpoint of F .

494

Why Are We Interested in Y ?

First, why are we interested in recursion (solutions to recursive

equations448)?

• Recursively defined (Ü p.561) functions are solutions of

such equations (example: fac449).

• Inductively defined (Ü p.523) sets are solutions of such

448By a recursive equation, we mean an equation of the form

f = e

where f occurs in e. A fortiori, such an equation does not

qualify as constant definition (Ü p.438).
449In the following explanations, any constants like 1 or +

or if-then-else are intended to have their usual meaning.

A fixpoint combinator (Ü p.494) is a function Y that re-

turns a fixpoint of a function F , i.e., Y must fulfill the equa-

tion Y F = F (Y F). Doing λ-abstraction over F on both

sides and η-conversion (backwards) on the left-hand side, we

have

Y = λF.F (Y F)

This is a recursive equation. We will now demonstrate how a

definition of a function fac (factorial) using a recursive equa-

tion can be transformed to a definition that uses Y instead

of using recursion directly.

495

In a functional programming language we might define

fac n = (if n = 0 then 1 else n ∗ fac (n− 1)).

We now massage this equation a bit. Doing λ-

abstraction (Ü p.157) on both sides we get

λn. fac n = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which is the η-conversion (Ü p.162) of

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which in turn is a β-reduction (Ü p.157) of

fac = ((λf. λn. if n = 0 then 1 else n ∗ f (n− 1)) fac)

(3)

We are looking for a solution to (3). We abbreviate the

underlined expression by Fac. We claim fac = Y Fac, i.e.,

it is a solution to (3). Simply replacing fac with Y Fac in

(3) we get

Y Fac = Fac (Y Fac)

496

equations (example: Fin A450, all finite subsets of A).

We are interested in Y because it is the mother of all
which holds by the definition of Y .

Thus we see that a recursive definition of a function can be

transformed so that the function is the fixpoint of an appro-

priate functional (a function taking a function as argument).
450We want to define a function Fin such that Fin A is the

set of all finite subsets of A.

How do you construct the set of all finite subsets of A?

The following pseudo-code suggests what you have to do:

S := {{}};
forever do

foreach a ∈ A do

foreach B ∈ S do

add ({a} ∪B) to S

od od od

This means that you have to add new sets forever (however,

when you actually do this construction for a finite set A,

it will indeed reach a fixpoint, i.e., adding new sets won’t

change anything).

497

Generally (even if A is infinite), Fin A is a set such

that adding new sets as suggested by the pseudo-code won’t

change anything. Written as recursive equation:

Fin A = {{}}∪
⋃

x ∈ A.((insert (Ü p.479)x) ‘ (Fin A))

Recall that ‘ is nice syntax for image (Ü p.481), defined in

Set.thy (Ü p.452).

The above is a β-reduction (Ü p.157) of

Fin A = (λX. {{}} ∪
⋃

x ∈ A.((insert (Ü p.479)x) ‘X)) (Fin A)

(4)

We are looking for a solution to (4). We abbreviate the

underlined expression by FA. We claim

Fin A = Y FA,

i.e., it is a solution to (4). Simply replacing Fin A with

Y FA in (4) we get

Y FA = FA(Y FA),

498

recursions. With Y , recursive axioms can be converted451

into constant definitions (Ü p.438).

which holds by the definition of Y .

You should compare this to what we said about fac. Note

that in this example, there is no such thing as a recursive

call to a “smaller” argument as in fac example.

451Any recursive function can be defined by an expression

(functional) which is not itself recursive, but instead relies

on the recursive equation defining Y .

Consider fac (Ü p.495) or Fin A as an example.

499

What’s the Problem with such an Axiom?

Such a definition would lead to inconsistency (Ü p.435).

This is not surprising because not all functions have a

fixpoint.

Therefore we only consider special forms (Ü p.579) of fix-

point combinators.

We consider two approaches: Least fixpoints (Ü p.501)

(Tarski) and well-founded (Ü p.533) orderings.

500

22 Least Fixpoints

501

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library (Ü p.461).

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction(Least) fixpoints and induction

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

22.1 First Approach: Least Fixpoints (Tarski)

502

• Recall: (Ü p.494) We would like to define Y = λF.F (Y F),

where F is of arbitrary type α → α, but we must

not (Ü p.500).

• Restriction: F (Ü p.494) is of set type (α set → α set).

• Instead of Y define lfp by an equation which is not re-

cursive.

• lfp is fixpoint combinator, but only under additional

condition that F is monotone452, and: this is not obvious

(requires non-trivial proof)!

This leads us towards recursion and induction (Ü p.523).

452A function f is monotone w.r.t. a partial order (Ü p.115)

≤ if the following holds: A ≤ B implies f (A) ≤ f (B).

In particular, we consider the order given by the subset

relation.

503

Lfp.thy453

Lfp = Product_Type +

constdefs

lfp :: [’a set => ’a set] => ’a set

"lfp(f) == Inter({u. f(u) <= u})"

• => is function type arrow (Ü p.189).

• <= (“⊆” (Ü p.480)) is a partial order (Ü p.115).

• Inter (“
⋂

”) (Ü p.481) gives a “minimum”: ∀A ∈ S.(
⋂
S) ⊆

A. Note that

–
⋂
∅ = UNIV (Ü p.479), i.e., if {u|f (u) ⊆ u} = ∅,

then lfp(f) = UNIV;
453These files should be contained in your Isabelle distribu-

tion. Or, if you only have an Isabelle executable, you can

find the sources here:

http://isabelle.in.tum.de/library/

504

http://isabelle.in.tum.de/library/

– If f has a fixpoint a, then f (a) = a and hence a

fortiori f (a) ⊆ a, and so {u|f (u) ⊆ u} 6= ∅.

505

Is it a Fixpoint?

We have

lfp(f) :=
⋂
{u|f (u) ⊆ u}

Definition of lfp is conservative (Ü p.438). That’s fine. But

is it a fixpoint combinator? (Ü p.512)

506

22.2 Tarski’s Fixpoint Theorem

Theorem (Tarski):

If f is monotone (Ü p.503), then lfp f = f (lfp f).

In Isabelle, the theorem is shown in Lfp.ML (Ü p.504)

and called lfp unfold.

We show the theorem using mathematical notation and a

graphical illustration to help intuition.

The proof has four steps.

Side remark: if f is monotone, then clearly f has some

fixpoint, since f UNIV = UNIV and thus UNIV is always a

fixpoint.

507

Tarski’s Fixpoint Theorem (1)

Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

The box denotes “the set” α454. The

three circles455 denote the sets A for

which f A ⊆ A.

By definition (Ü p.504), lfp f is the

intersection.

Pick an A for which f A ⊆ A.

Clearly, lfp f ⊆ A.

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................
.
................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

.
...............
...............
...............
...............

..............
...

...............
..............
.

..............
.
.............
..
.

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

Or as proof tree (Ü p.514).

454α is not a set but a type (variable). But we can consider

the set of all terms of that type (UNIV of type α).

The polymorphic constant UNIV was defined in

Set.thy (Ü p.479). UNIV of type τ set is the set

containing all terms of type τ .
455In general, needless to say, there could be any number of

such sets, but the picture is to be understood in the sense

that the three circles are all the sets A with the property

f A ⊆ A.

508

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ Ufor all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

(1st, 2nd, 3rd . . .).

By definition (Ü p.504), lfp f is the

intersection.

Clearly, A ⊆ lfp f .

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.......
.......
............

..
............
.......
......

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.
...............

...............

...............

...............
..............

..............

.
..............

............
..

............
...

...........
....

...........
....

..........
.....
.

Or as proof tree (Ü p.515).

509

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone (Ü p.503) then f (lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ Uf U ⊆ U implies f (lfp f) ⊆ U .

Let the circle be such a U . By Claim

1 (Ü p.508), lfp f ⊆ U .

f U ⊆ U (hypothesis).

f (lfp f) ⊆ f U

(monotonicity (Ü p.503)).

f (lfp f) ⊆ U

(transitivity (Ü p.485) of ⊆).

Claim 3∗ shown.

By Claim 2 (Ü p.509) (letting A :=

f (lfp f)), f (lfp f) ⊆ lfp f .

.

...................

...................

....................

....................

...................

..................

..................
...................

....................
....................

..
.................
..

..............
....

............
......

............
.......

...........
.........

...........
.........

..........
.........

..........

.........

..........

.........

..........
.........

...........
.........

...........
.........

............
.......

............
......

..............
....

.................
..

....................
....................

....................
...................
..................

..................

...................

....................

....................

...................

...................

.
..................

..................

..................

.................

.................

.................

.
..............
...

.............
....

...........
......

...........
.......

...........
.......

..........
........
.

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

...........
......

..........

......

..........

......

...........
......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

.................
...................

..................

.
............
......

...........
........
.

.
...................

..................

.
............
......

...........
........
.

510

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone (Ü p.503) then lfp f ⊆ f (lfp f).

By Claim 3 (Ü p.510), f (lfp f) ⊆
lfp f .

By monotonicity (Ü p.503),

f (f (lfp f)) ⊆ f (lfp f).

By Claim 1 (Ü p.508) (letting A :=

f (lfp f)), lfp f ⊆ f (lfp f). .

..............................

..............................

..............................

..............................

............................

............................

.
..............
..............

............
............
....

...........
...........
.......

...........
...........
........

...........
...........
........

..........
..........
..........

.
...............................

.

...........................

...........................

..........................

.........................

.
............
............
.

............
............
..

...........
...........
.....

...........
...........
.....

.
.

......................

.....................

.....................

.
............
.........

...........
..........

...........
............

.

............................

............................

............................

............................

............................

...........................

..........................

..........................

...........................

.
................
...........

..............
............

............
............
..

............
............
...

............
............
....

...........
...........
......

..........
..........
........

..........
..........
........

..........

..........

........

.
........................

....
............................

............................
............................

Or as proof tree (Ü p.517).

511

Tarski’s Fixpoint Theorem: QED

Claim 3 (Ü p.510) (lfp f ⊆ f (lfp f)) and Claim 4 (Ü p.511)

(f (lfp f) ⊆ lfp f) together give the result:

If f is monotone, then lfp f = f (lfp f).

So under appropriate conditions, lfp is a fixpoint combinator (Ü p.495).

We will later reuse Claim 1 (Ü p.508).

512

Alternative: A Natural-Deduction Style Proof

The proof can also be presented in natural deduction style (Ü p.24).

513

Tarski’s Fixpoint Theorem (1)

Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

[f A ⊆ A]1

A ∈ {u.fu ⊆ u}
CollectI (Ü p.482)⋂

{u.fu ⊆ u} ⊆ A
Inter lower (Ü p.482)

lfp f ⊆ A
Def. lfp (Ü p.504)

f A ⊆ A→ lfp f ⊆ A
→-I (Ü p.393)1

514

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For all A, if for all U , f U ⊆ U

implies A ⊆ U , then A ⊆ lfp f .

[∀x.fx ⊆ x→ A ⊆ x]1

∀x.x ∈ {u.fu ⊆ u} → A ⊆ x
subst (Ü p.393),CollectI (Ü p.482)

A ⊆ ∩{u.fu ⊆ u}
Inter greatest (Ü p.482)

A ⊆ lfpf
Def. lfp (Ü p.504)

(∀x.fx ⊆ x→ A ⊆ x)→ A ⊆ lfpf
→-I (Ü p.393)1

515

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone (Ü p.503) then f (lfp f) ⊆ lfp f .

[mono f]1
[fx ⊆ x]2

lfp f ⊆ x

f (lfp f) ⊆ f x [fx ⊆ x]2

f (lfp f) ⊆ x
order trans (Ü p.469)

∀x.fx ⊆ x→ f (lfp f) ⊆ x
∀-I (Ü p.388),→-I (Ü p.393)2

f (lfp f) ⊆ lfp f
lfp greatest (Ü p.515), →-E (Ü p.393)

mono f → f (lfp f) ⊆ lfp f
→-I (Ü p.393)1

516

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone (Ü p.503) then lfp f ⊆ f (lfp f).

[mono f]1
[mono f]1

f (lfp f) ⊆ lfp f
Claim 3 (Ü p.516),→-E (Ü p.393)

f (f (lfp f)) ⊆ f (lfp f)
monoD (Ü p.472)

lfp f ⊆ f (lfp f)
lfp lowerbound (Ü p.514), →-E (Ü p.393)

mono f → lfp f ⊆ f (lfp f)
→-I (Ü p.393)1

517

Completing Proof Tree

[mono f]1

lfp f ⊆ f (lfp f)
Claim 4 (Ü p.517)

[mono f]1

f (lfp f) ⊆ lfp f
Claim 3 (Ü p.516)

lfp f = f (lfp f)
equalityI

mono f → lfp f = f (lfp f)
→-I (Ü p.393)1

518

22.3 Induction Based on Lfp.thy

Theorem (lfp induction):

If

• f is monotone (Ü p.503), and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x},
then lfp f ⊆ {x | P x}.

In Isabelle456, it is called lfp induct:

Ja ∈ lfp f ;mono f ;
∧
x.x ∈ f (lfp f ∩ {x.P x}) =⇒ P xK

=⇒ P a

We now show the theorem similarly as Tarski’s Theorem (Ü p.507).
456The theorem is phrased a bit differently in the “mathe-

matical” version we give here and in the Isabelle version (see

Lfp.ML (Ü p.504)). This is convenient for the graphical il-

lustration of the proof.

The “mathematical phrasing” corresponding closely to the

Isabelle version would be the following:

Theorem (Induct (alternative)):

If

• a ∈ lfp f , and

• f is monotone (Ü p.503), and

• for all x, x ∈ f (lfp f ∩ {x | P x}) implies P x

then P a holds.

Other phrasings, which may help to get some intuition

about the theorem:

Theorem (Induct (alternative)):

If

519

Showing lfp induct

• a ∈ lfp f , and

• f is monotone (Ü p.503), and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}

then P a holds.

Theorem (Induct (alternative)):

If

• f is monotone (Ü p.503), and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}

then for all x in lfp f , we have P x.

520

Circles denote lfp f and {x | P x}.
By monotonicity457,

f (lfp f ∩ {x | P x}) ⊆ f (lfp f). By

Tarski (Ü p.507), lfp f = f (lfp f). Hence

f (lfp f ∩ {x | P x}) ⊆ lfp f .

By hypothesis (Ü p.519), f (lfp f ∩ {x |
P x}) ⊆ {x | P x}, and so we must ad-

just picture: f (lfp f ∩ {x | P x}) ⊆
lfp f ∩ {x | P x}.
By Claim 1458, lfp f ⊆ lfp f ∩ {x | P x}
and so459 lfp f = lfp f ∩ {x | P x}.
Conclusion: lfp f ⊆ {x | P x}.

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.
...............
...

................
.

.................
..................
.................
.................
.................
..................
.

..................
.................

.................
.................

..................
..

................
.

...............
...

.

.............
.............
.............
............

............
..

.............

.......................................
............
............
.............
.............
.............

.

.............
.............
.............
............

............
..

.............

.......................................
............
............
.............
.............
..............

...............
..

.................
.................
.................
................
.................
.................
.

.................
.................

................
.................

.................
..

................
.

...............
..

457lfp f ∩ {x | P x} ⊆ lfp f , so by

monotonicity (Ü p.519), f (lfp f ∩ {x | P x}) ⊆ f (lfp f).
458We have just seen f (lfp f ∩ {x | P x}) ⊆

lfp f ∩ {x | P x}.
By Claim 1 (Ü p.508)

If f A ⊆ A then lfp f ⊆ A

(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆
lfp f ∩ {x | P x}.

459We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆
lfp f ∩ {x | P x}, and so lfp(f) = lfp f ∩ {x | P x} by the

antisymmetry of ⊆ (Ü p.485).

521

Approximating Fixpoints

Looking ahead: Suppose we have the set N of natural

numbers (the type is formally introduced later (Ü p.590)).

The theorem approx

(∀S. f (
⋃

(Ü p.481)S) =
⋃

(f ‘ (Ü p.481) S)) =⇒
⋃
n∈N

(fn{})) = lfp f

shows a way of approximating lfp, which is important for

algorithmic solutions460 (e.g. in program analysis).

There will be an exercise on this.
460The theorem

(∀S. f (
⋃

(Ü p.481)S) =
⋃

(f ‘ (Ü p.481) S)) =⇒
⋃
n∈N

(fn{})) = lfp f

says that under a certain condition, lfp f can be computed

by applying f to the empty set over and over again:

• although the expression uses the union over all natural

numbers, which is an infinite set, this can sometimes

effectively be computed. Under certain conditions, there

exists a k such that f k {} = f k+1{}.

• Even if
⋃
n ∈ N.fn {} cannot be effectively computed,

it can still be approximated: for any k, we know that⋃
i ≤ k.f i {} ⊆

⋃
n ∈ N.fn {}.

522

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S?

It has the form: S is the smallest set such that:

• ∅ ⊆ S (just mentioned for emphasis);

• if S ′ ⊆ S then F (S ′) ⊆ S (for some appropriate F).

At the same time, S is the smallest solution of the recur-

sive equation (Ü p.495) S = F (S).

Induction and recursion are two faces of the same coin.

523

Lfp.thy for Inductive Definitions (Ü p.504)

Least fixpoints are for building inductive definitions of sets

in a definitional way461: S := lfp F .

This is obviously (Ü p.504) well-defined, so why this fuss

about monotonicity (Ü p.503) and Tarski (Ü p.507)?

Tarski (Ü p.507) allows us to exploit the equation lfp f =

f (lfp f) in proofs about S! That’s what lfp is all about.

461Recall why we were interested (Ü p.495) in fixpoints.

The problem with Y (Ü p.500) is that

it leads to inconsistency (Ü p.435) (and of

course (Ü p.439), the definition of Y is not a constant

definition (Ü p.438)/conservative extension.).

The definition of lfp is conservative.

And in appropriate situations, it can be used to define

recursive functions.

Compared to Y (Ü p.491), the type of lfp is

restricted (Ü p.503).

This restriction means that there is no obvious way to

use lfp for defining recursive numeric functions such as

fac (Ü p.495).

524

Example (from Motivation) (Ü p.497)

The set of all finite subsets of a set A:

Fin A = lfp F

where F = λX.{{}}∪
⋃
x ∈ A.((insert (Ü p.479)x) ‘X).

Thus we can do using lfp what we would have wanted to

do using Y (Ü p.497).

To show: F is monotone462!

In the Isabelle library463, this is done a bit differently464.

There will be an exercise on this.
462This proof is of course done in Isabelle.
463This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

464Above, we defined the set of finite subsets of a set A. Al-

ternatively, one could define “the set of all finite sets whose

elements have type τ”. In this case, no fixed set A is in-

volved, and it is closer to what actually happens in Isabelle.

In Finite Set.thy a constant Finites is defined. It has

polymorphic type α set set . We have A ∈ Finites if and

only if A is a finite set. However, it would be wrong to think

of Finites as one single set that contains all finite sets. In-

stead, for each τ , there is a polymorphic instance (Ü p.365)

of Finites of type τ set set containing all finite sets of ele-

ment type τ .

In Finite Set.thy we find the lines

525

http://isabelle.in.tum.de/library/

22.4 The Package for Inductive Sets

Since monotonicity proofs can be automated, Isabelle has

special proof support for inductive definitions. Example:

consts Fin :: ’a set => ’a set set

inductive "Fin(A)"

intrs

emptyI "{} : Fin(A)"

insertI "[| a: A; b: Fin(A) |] ==>

insert a b : Fin(A)"

Translated (Ü p.525) into expression using lfp.

inductive "Finites"

intros

emptyI [simp, intro!]: "{} : Finites"

insertI [simp, intro!]: "A : Finites ==>

insert a A : Finites"

The Isabelle mechanism of interpreting the keyword

inductive translates this into the following definition:

Finites = lfp G where

G ≡ λS. {x | x = {} ∨ (∃A a. x = insert a A ∧ A ∈ S)}
You can see this by typing in your proof script:

open Finites;

defs;

Talking (ML-)technically, Finites is a structure (Ü p.527)

(module), and defs is a value (component) of this

structure (Ü p.527).

526

As a sanity-check, consider the type (Ü p.364) of this ex-

pression. The expression insert aA forces A to be of type

τ set for some τ and a to be of type τ . Next, insert aA is

of type τ set , and hence x is also of type τ set . Moreover,

the expression A ∈ S forces S to be of type τ set set . The

expression {x | x = {} ∨ (∃Aa. x = insert aA ∧ A ∈ S)}
is of type τ set set . Next, G is of type τ set set → τ set set ,

and so finally, Finites is of type τ set set . But actually, since

τ is arbitrary, we can replace it by a type variable α.

Note that there is a convenient syntactic translation

translations "finite A" == "A : Finites"

When does Isabelle generate ML-structures, and what are

the names of those structures?

This question is highly Isabelle-technical, related to differ-

ent formats used for writing theory files, which is in turn

partly due to mere historic reasons.

It used to be the case that for a theory file called F .thy,

527

a structure F would be generated. Certain keywords in

F .thy such as inductive, recursive, and datatype,

would trigger the creation of substructures, so for example

inductive I would call for the creation of a substructure

I .

For a newer format of theory files, this is no longer the

case.

The treatment of the keyword constdefs, followed by the

declaration and definition of a constant C, also depends on

the format used for writing theory files.

• Sometimes (when an older format is used), it will auto-

matically generate a thm (Ü p.249) called C def which

is the definition of C.

• Sometimes (when a newer format is used), it will insert

the definition of C into a database which can be accessed

by a function called thm taking a string as argument. In

this case, not C def would be the definition of C, but

528

Package relies on proven lemma465 lfp unfold (Ü p.507).

rather

thm ”C def”

You should be aware of such problems, but we do not treat

them in this course.
465If you look around in the ML-files of the Is-

abelle/HOL library, you might not find any uses of

lfp unfold (Ü p.507), so you may wonder: why is it im-

portant then? But you must bear in mind that the package

for inductive sets relies on these lemmas.

This is a general insight about proven results in the library:

Even though you might not find them being used in other

ML-files, special packages of Isabelle/HOL might use those

results.

529

Technical Support for Inductive Definitions

Support important in practice since many constructions are

based on inductively defined sets (datatypes (Ü p.606), . . .).

Support provided for:

• Automatic proof of monotonicity

• Automatic proof of induction rule (Ü p.519), for exam-

ple466:

Jxa ∈ Fin A;P {};
∧
a b.Ja ∈ A; b ∈ Fin A;P bK =⇒

P (insert a b)K =⇒ P xa

466The theorem
Jxa ∈ Fin A;P {};

∧
ab.Ja ∈ A; b ∈ Fin A;P bK =⇒ P (insert a b)K

=⇒ P xa

is an instance of the general induction scheme (Ü p.519).

That is to say, if we take the general induction scheme

lfp induct (Ü p.519)

Ja ∈ lfp f ;mono f ;
∧

x.x ∈ f (lfp f∩{x.P x}) =⇒ P xK =⇒ P a

and instantiate f to λX.{{}} ∪
⋃
x ∈

A.((insertx) ‘X) (Ü p.525) then some massaging us-

ing the definitions will give us the first theorem.

Note here that monotonicity has disappeared from the as-

sumptions. This is because the monotonicity of F (Ü p.525)

is shown by Isabelle once and for all. This is one aspect

of what we mean by special proof support for inductive

definitions (Ü p.526).

The least fixpoint of the functional is Fin A (the set of

finite subsets of A) in this case.

530

This works also for mutually recursive467 definitions, co-

inductive468 definitions, . . .

467Two functions f and g are mutually recursive if f is de-

fined in terms of g and vice versa.
468Co-induction is a construction analogous to induction but

using greatest fixpoints.

531

22.5 Summary on Least Fixpoints

We are interested in recursion because inductively defined

sets and recursively defined functions are solutions to recur-

sive equations.

We cannot have general fixpoint operator Y (Ü p.500),

but we have, by conservative extension (Ü p.438), least fix-

points for defining sets.

There is an induction scheme (lfp induction (Ü p.519))

for proving theorems about an inductively defined set.

Restriction of F to set type (Ü p.503) (α set → α set)

means that least fixpoints are not generally suitable for defin-

ing functions . . .

532

23 Well-Founded Recursion

533

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library (Ü p.461).

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion(Well-founded) recursion

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

534

Well-Founded Recursion

After least fixpoints (Ü p.501), well-founded recursion is our

second concept of recursion (and fixpoint combinator).

Idea: Modeling “terminating” recursive functions, i.e. re-

cursive definitions that use “smaller” arguments for the re-

cursive call.

23.1 Prerequisite: Relations

We need some standard operations on binary relations (sets

of pairs (Ü p.454)), such as converse, composition, image of

a set and a relation, the identity relation, . . .

These are provided by Relation.thy469.
469 This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

535

http://isabelle.in.tum.de/library/

Relation.thy (Fragment)

constdefs

converse :: "(’a * ’b) set => (’b * ’a) set"

"r^-1 == {(y, x). (x, y):r}"

rel_comp :: "[(’b * ’c) set, (’a * ’b) set] =>

(’a * ’c) set"

"r O s == {(x,z). EX y. (x, y):s & (y, z):r}"

Image :: "[(’a * ’b) set, ’a set] => ’b set"

"r ‘‘ s == {y. EX x:s. (x,y):r}"

Id :: "(’a * ’a) set"

"Id == {p. EX x. p = (x,x)}"

Somewhat similar to Fun.thy (Ü p.485).

536

23.2 Prerequisite: Closures

We need the transitive, as well as the reflexive transitive

closure of a relation.

These are provided by Transitive Closure.thy470.

How would you define those inductively, ad-hoc?471

470 This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

471r∗ is the smallest set such that:

• Id (Ü p.536) ⊆ r∗;

• if r′ ⊆ r∗ then r′ ∪ r ◦ r′ ⊆ r′.

Or, in line with the schema for inductive

definitions (Ü p.523):

• ∅ ⊆ r∗;

• if r′ ⊆ r∗ then (λs.Id (Ü p.536) ∪ (r ◦ s))r′ ⊆ r∗.

The latter form corresponds to the definition in

Transitive Closure.thy (Ü p.538).

The definition of r+ is similar.

537

http://isabelle.in.tum.de/library/

Transitive Closure.thy (Fragment)

consts

rtrancl :: "(’a * ’a) set => (’a * ’a) set"

("(_^*)" [1000] 999)

inductive "r^*"

intros

rtrancl_refl [...]: "(a, a) : r^*"

rtrancl_into_rtrancl [...]: "(a, b) : r^* ==>

(b, c) : r ==> (a, c) : r^*"

538

Transitive Closure.thy (Fragment Cont.)

consts

trancl :: "(’a * ’a) set => (’a * ’a) set"

("(_^+)" [1000] 999)

inductive "r^+"

intros

r_into_trancl [...]: "(a, b) : r ==>

(a, b) : r^+"

trancl_into_trancl [...]: "(a, b) : r^+ ==>

(b, c) : r ==> (a,c) : r^+"

539

23.3 Well-Founded Orderings

Defined in Wellfounded Recursion.thy472.

Wellfounded_Recursion = Transitive_Closure +

constdefs

wf :: "(’a * ’a) set => bool"

"wf(r) ==

(!P. (!x. (!y. (y,x):r --> P(y)) --> P(x))

--> (!x. P(x)))"

What does this mean? r is well-founded if well-founded

(Noetherian) induction based on r is a valid proof scheme473.
472This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

In older versions the file used to be called WF.thy.
473For a moment, forget everything you have ever heard

about proofs using induction! The definition of wf has the

form

wf (r) ≡ ∀P.φ(r, P)→ ∀x.P (x)

That is, it says: a relation r is well-founded if a certain

scheme φ can be used to show a property P that holds for

all x.

By the fact that this is a constant definition (Ü p.438)

(conservative extension), it is immediately clear that this

gives us a correct method of proving ∀x.P (x). To

prove ∀x.P (x) for some given P , find some r such that

∀P.φ(r, P)→ ∀x.P (x) holds, and show φ(r, P).

540

http://isabelle.in.tum.de/library/

Once again, this method is correct regardless of what φ is.

Forget about induction!

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any

old φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

541

Example: Is ∅ well-founded474? < on the integers475?
474The definition of wf is:

wf (r) ≡ (∀P.(∀x.(∀y.(y, x) ∈ r → P (y))→ P (x))→ (∀x.P (x)))

Let’s instantiate r to ∅.
wf (∅) ≡ (∀P.(∀x.(∀y.(y, x) ∈ ∅ → P (y))→ P (x))→ (∀x.P (x)))

wf (∅) ≡ (∀P.(∀x.(∀y.False → P (y))→ P (x))→ (∀x.P (x)))

wf (∅) ≡ (∀P.(∀x.(∀y.True)→ P (x))→ (∀x.P (x)))

wf (∅) ≡ (∀P.(∀x.True → P (x))→ (∀x.P (x))) (∗)
wf (∅) ≡ (∀P.True)

wf (∅) ≡ True

So the empty set is well-founded.

Note the line marked (∗). Note that the well-foundedness

of ∅ is useless for proving any P , because the induction step

degenerates to the proof obligation ∀x.P (x).

475Let us check (in an intuitive way) whether < on the in-

542

Intuition of Well-Foundedness

Intuition of wf : All descending chains are finite.

tegers is well-founded. So we must check whether

(∀P.(∀x.(∀y.y < x→ P (y))→ P (x))→ (∀x.P (x)))

holds. Instantiating P to λx.False we obtain

(∀x.(∀y.y < x→ False)→ False)→ (False)

Now since for every x there exists a y with y < x, it follows

that (∀y.y < x → False) is equivalent to False and hence

we obtain

(∀x.False → False)→ (False)

and thus

False

Thus, assuming that < on the integers is well-founded, we

derived a contradiction. You might think of (∀y.y < x →
False) as being a conjunction containing infinitely many

Falses, and such a non-empty conjunction is False.

543

But: Cannot express infinity; must look for alternatives476.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+ (Ü p.535)?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?

Note: Trivial for r = ∅.

• Any subrelation must have minimal ele-

ment: ∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p?

“Minimal element” badly formalized477 (al-

ready in previous point).

• - •

6

•

?

•�

•
•
•
•
•
•
•
•
•
•

?

?

?

?

?

?

?

?

?

...

•
•
•
•
•
•

?

?

?

?

?

	 R

•
•
•
•

?

?

?
•

...

•
•
•
•
•
•

?

?

?

?

?

	

•
•
•
•

?

?

?
•

...

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiva-

lent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
476We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
477In this attempt, we formalized the “minimal element in

p” as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

544

A Characterization

All these attempts are just necessary but not sufficient con-

ditions for well-foundedness.

The following theorem wf eq minimal gives a characterization

of well-foundedness478.:

wf r = (∀Q . x ∈ Q→ (∃z ∈ Q.∀y.(y, z) ∈ r → y /∈ Q))

Proof uses split =479, wf def (Ü p.540), rest routine.

Ergo: Definition of wf (Ü p.540) meets textbook defini-

tions “every non-empty set Q has a minimal element in r”.

definition.

In fact, this problem was already present for the previous

attempt where we just required ∃x.∀y.(y, x) /∈ r (i.e., r has

a minimal element).
478The final condition

(∀Q . x ∈ Q→ (∃z ∈ Q.∀y.(y, z) ∈ r → y /∈ Q))

expresses the absence of infinite descending chains without

explicitly using the concept of infinity.

It is a characterization of well-foundedness. One could say

that the above formula expresses what well-foundedness is,

while the “official” (Ü p.540) definition is somewhat indirect

since it defines well-foundedness by what one can do with

it (Ü p.540).
479By this we simply mean to split a proof of φ = ψ into

two proofs φ =⇒ ψ and ψ =⇒ φ.

545

Alternative Characterization

Here is an alternative characterization (exercise):

(∀r.r 6= {} ∧ r ⊆ p→ (∃x ∈ Domain r.∀y.(y, x) /∈ r))

Let’s see some theorems to confirm our intuition, including

the characterization attempts just seen.

546

A Theorem480 on the Empty Set

wf empty wf {}
Proof sketch: wf empty: substitute r into definition, simplify.

480The theorems (Ü p.472) we present here are proven in

Wellfounded Recursion.ML.

This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

but in older versions the file used to be called WF.ML

547

http://isabelle.in.tum.de/library/

A Theorem (Ü p.547) for Induction

By massage481 of the definition of well-foundedness

∀P.(∀x.(∀y.(y, x) ∈ r → P y)→ P x)→ (∀x.P x)

one obtains the theorem wf induct

Jwf r;
∧

x.∀y.(y, x) ∈ r → P y =⇒ P xK =⇒ P a.

This is a form suitable for doing induction proofs in Isabelle.
481As far as the induction principle is concerned, induct wf

states the same as the very definition of wf (Ü p.540).

All that happens is that some explicit universal object-

level quantifiers are removed (Ü p.472) and the accord-

ing variables are (implicitly) universally quantified on

the meta-level, and some shifting (Ü p.472) from object-

level implications to meta-level implications using mp.

This is why we dare say “logical massage”. See

Wellfounded Recursion.ML (Ü p.547).

548

Induction Theorem as Proof Rule

The Isabelle theorem wf induct (Ü p.548)

Jwf r;
∧

x.∀y.(y, x) ∈ r → P y =⇒ P xK =⇒ P a.

as proof rule (Ü p.24):

wf r

[∀y.(y, x) ∈ r → P y]
....
P x

P a
wf induct

549

A Theorem (Ü p.547) on Antisymmetry

wf not sym Jwf r; (a, x) ∈ rK =⇒ (x, a) /∈ r
Proof sketch:

wf r

[∀y.(y, x) ∈ r → (∀z.(y, z) ∈ r → (z, y) /∈ r)]
....

∀z.(x, z) ∈ r → (z, x) /∈ r
∀z.(a, z) ∈ r → (z, a) /∈ r

wf induct

The induction part needs classical reasoning (Ü p.263).

We will first give an intuitive proof.

550

The Induction Part Intuitively

Notation: Write a < b instead of (a, b) ∈ r.
Hypothesis: for every y < x have ∀zw. y < zw → zw 6< y.

To show: It holds that ∀z. x < z → z 6< x. Renaming.

We make a case distinction on z.

Case 1: z 6< x. Then trivially x < z → z 6< x.

Case 2: z < x. Then setting y := z and w := x in the

hypothesis, we get z < x → x 6< z, which is equivalent to

x < z → z 6< x.

In both cases x < z → z 6< x holds, and thus ∀z. x <
z → z 6< x.

551

The Induction Part Formally

We will now give the induction part at a level of detail that

shows the essential reasoning but hides all the swapping (Ü p.263)

involved in the Isabelle proof.

A variation will be done as exercise.

552

The Induction Part in More Detail

∀y.(y, x) ∈ r → (∀z.(y, z) ∈ r → (z, y) /∈ r)
(w, x) ∈ r → (∀z.(w, z) ∈ r → (z, w) /∈ r) ∀-E

(w, x) /∈ r ∨ (∀z.(w, z) ∈ r → (z, w) /∈ r) ≡ φ
(c)482

“(c)” stands for classical reasoning steps.

φ

[(w, x) /∈ r]1

(x,w) ∈ r → (w, x) /∈ r impI2

[∀z.(w, z) ∈ r → (z, w) /∈ r]1

∀z.(z, w) ∈ r → (w, z) /∈ r
(c)483

(x,w) ∈ r → (w, x) /∈ r ∀-E

(x,w) ∈ r → (w, x) /∈ r disjE1

∀z.(x, z) ∈ r → (z, x) /∈ r ∀-I

553

Theorems (Ü p.547) on Absence of Cycles

wf not refl wf r =⇒ (a, a) /∈ r
wf trancl wf r =⇒ wf (r+)

wf acyclic wf r =⇒ acyclic r
(acyclic r ≡ ∀x.(x, x) /∈ r+ (Ü p.540))

Proof sketch:

wf not refl: Corollary of wf not sym.

wf trancl: Uses induction.

wf acyclic: Apply wf not refl and wf trancl

Ergo: Definition of wf (Ü p.540) really meets our intu-

ition of “no cycles”.

554

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

[φ]2

[¬φ]2

∀x.∃y.(y, x) ∈ r+
. . .

[¬φ]2 [
∀w.(w, v)
∈ r+ → φ

]1

¬∃w.(w, v) ∈ r+ •484

False
. . .

φ
FalseE (Ü p.413)

φ
disjE (Ü p.424)2

φ
wf minimalwf induct (Ü p.548)1

484In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof (Ü p.557))

In detail, the sub-proof looks as follows:

¬φ
[∃w.(w, v) ∈ r+]3

[(w, v) ∈ r+]4
∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

φ
existsE (Ü p.419)4

False
notE (Ü p.416)

¬∃w.(w, v) ∈ r+ notI (Ü p.415)3

Uses mp (Ü p.384), spec (Ü p.412)

555

This is what we must construct.

Note “special case”: w and v do not occur in φ!

This is wf trancl.

We now try a proof by case distinction on φ.

Classical (Ü p.354) reasoning.
Using some elementary equivalences485.

This subproof works for any φ. Think semantically or

check (5 rule applications)!

It is routine to derive False.

This completes the proof by case distinction . . .

. . . and the proof by induction.
See (Ü p.554) and (Ü p.424).

556

Remarks on the Proof

We used an instance of wf induct (Ü p.548), where we

instantiated x by v, y by w, and P by λw.(∃x.∀y.(y, x) /∈
r+). I.e., φ does not contain the “induction variables” w and

v.

Still this is a “proper” induction proof: Although φ does

not contain the “induction variables”, the proof does depend

on the actual form of φ! (Try doing it without induction . . .)

Scoping of quantifiers (e.g., in general (∀w.(w, v) ∈ r+ →
φ) 6≡ (∀w.(w, v) ∈ r+) → φ) and side conditions (Ü p.81)

are very subtle in this proof. Underlines the importance of

machine-checked proofs.

557

Remarks on wf minimal

Ergo: Definition of wf (Ü p.540) fulfills

the condition corresponding to our first

attempt (Ü p.543) of characterizing well-

foundedness using minimal elements.

However, this formalization had a problem:

there could be local minima, and isolated points

are also always minima. In particular, if r is

empty, then any element is trivially a minimum.

•
•
•
•
•
•

?

?

?

?

?

	 R

•
•
•
•

?

?

?
•

...

558

A Theorem (Ü p.547) on Subsets

wf subset Jwf r; p ⊆ rK =⇒ wf p

Proof sketch: wf subset: simplification tactic using

wf eq minimal (Ü p.??).

559

A Theorem on Subrelations

wf subrel

wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p+

Proof sketch:

Combine wf minimal (Ü p.555) and wf subset (Ü p.559).

This implies wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(x, y) /∈
p (Ü p.543).

Ergo: Definition of wf (Ü p.540) fulfills the condition cor-

responding to our second attempt (Ü p.543) of characteriz-

ing well-foundedness using minimal elements.

However, this formalization still (Ü p.558) had a prob-

lem: The minimum could be an isolated element, unrelated

to the subrelation.

560

23.4 Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive

equation (Ü p.495) f = e, e.g. (Ü p.495)

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Define F = λf.e, e.g. (α-conversion (Ü p.162) of what you

have seen (Ü p.496))

Fac = (λfac. λn. if n = 0 then 1 else n ∗ fac(n− 1))

We say: F is the functional defining f .

Recall (Ü p.495) that Y F would solve f = e, but we

don’t have (Ü p.500) Y , so what can we do?

561

Coherent Functionals

A functional F is coherent w.r.t. < if all recursive calls are

with arguments “smaller” than the original argument. This

means that if F has the form

λf.λn.e′

then for any (f m) occurring in e′, we have m < n.

Here < could be any relation (although the idea is that it

should be a well-founded ordering).

(Simplification, assumes that recursion is on the first ar-

gument of f .)

562

Using Bad f ’s

Let f |<a be a function that is like f on all values < a, and

arbitrary elsewhere. f |<a is an approximation, a “bad” f .

If F is coherent, then we would expect that for any a,

f a = (F f) a = (F f |<a) a. (5)

It’s not that we are ultimately interested in constructing

such a “bad” f , but our formalization of well-founded recur-

sion defines coherence by the fact that one could use such a

“bad” f , i.e., via (5).

563

“Bad” f ’s: Example

Consider fac (Ü p.495). On the right-hand side, we show

one possibility486 for fac|<4):

- -

6 6

•••

•

•

fac

•••

•

fac|<4

••••••••••••••••••••

486For the construction we have in mind, it would be fine

that f |<a be a function that is like f on all values < a, and

arbitrary elsewhere. E.g., fac|<4 could be

- -

6 6

•••

•

•

fac

•••

•

fac|<4

•

•

••

•

••

•

However, such a fac|<4 could not be in a model (Ü p.378)

for HOL (with the extensions we consider here).

The way that arbitrary elements are formalized in

HOL.thy (Ü p.388), it turns out that in any model and for

each type, there must be one specific domain element for the

constant arbitrary (you don’t have to understand why this

is so). That is, in different models we could have different

ones, but within each model the element must be a specific

564

cut (in Wellfounded Recursion.thy (Ü p.540))

constdefs

cut :: "(’a => ’b) => (’a * ’a) set =>

’a => ’a => ’b"

"cut f r x ==

(%y. if (y,x):r then f y else arbitrary)"

cut f r x is what we denoted by f |<x (taking < for r).

arbitrary (Ü p.564) is defined in HOL.thy (Ü p.388).

The function cut f r x is unspecified for arguments y

where (y, x) /∈ r, but for each such argument, (cut f r x) y

must be the same (in any particular model (Ü p.378)).

one. Since the value of fac|<4 is “arbitrary” for all argu-

ments ≥ 4, this means that in each model, this value must

be the same for all arguments ≥ 4, ruling out the function

above.

Of course, these are considerations taking place only in

our heads. In the actual deduction machinery, one never

constructs these “arbitrary” terms.

565

Theorems (Ü p.547) Involving cut

cuts eq
(cut f r x = cut g r x) =

(∀y.(y, x) ∈ r → f y = g y)

cut apply (x, a) ∈ r =⇒ cut f r a x = f x

Or, using the more intuitive notation:

cuts eq (f |<x = g|<x) = (∀y.y < x→ f y = g y)

cut apply x < a =⇒ f |<a x = f x

566

wfrec rel (in

Wellfounded Recursion.thy (Ü p.540))

Auxiliary construction: “approximate” f by a relation wfrec rel RF .

wfrec_rel :: "(’a * ’a) set =>

((’a => ’b) => ’a => ’b) => (’a * ’b) set"

inductive "wfrec_rel R F"

intrs

wfrecI

"ALL z. (z, x) : R -->

(z, g z) : wfrec_rel R F

==> (x, F g x) : wfrec_rel R F"

567

wfrec rel Explained

∀z.(z, x) ∈ R→ (z, g z) ∈ wfrec rel RF =⇒
(x, F g x) ∈ wfrec rel RF

• For R and F arbitrary, wfrec rel RF is defined but we

wouldn’t want to know what it is.

• But ifR is well-founded and F is coherent, wfrec rel RF

defines a recursive “function”487.

Show that (4, 24) ∈ (wfrec rel ‘< ’ Fac)!

Now let us really turn wfrec rel RF into a function . . .

487When we say that a binary relation r : τ × σ is in fact a

function, we mean that for t : τ , there is exactly one s : σ

such that (t, s) ∈ r.

568

wfrec (in Wellfounded Recursion.thy (Ü p.540))

wfrec :: "(’a * ’a) set =>

((’a => ’b) => ’a => ’b) => ’a => ’b"

"wfrec R F == %x. THE y.

(x, y) : wfrec_rel R (%f x. F (cut f R x) x)"

THEx.P x488 picks the unique a such that P a holds, if it

exists. We don’t care what it does otherwise (see HOL.thy (Ü p.388)).

488The operator THE is similar to the Hilbert

operator (Ü p.366), but it returns the unique element

having a certain property rather than an arbitrary one. The

Isabelle formalization of HOL nowadays heavily relies on

THE rather than the Hilbert operator.

569

wfrec Explained

wfrec RF ≡
λx.THE y.(x, y) ∈ wfrec rel R (λfx.F (cut f Rx)x)

We don’t care what this means for arbitrary R and F .

But ifR is well-founded and F is coherent, then F (cut f Rx)x =

F f x (by (5)), and so λfx.F (cut f Rx)x = F , and so

λx.THE y.(x, y) ∈ wfrec rel R (λfx.F (cut f Rx)x) is the

function defined by wfrec rel RF in the obvious way.

wfrecRF is the recursive function defined by functional

F .

570

The “Fixpoint” Theorem (Ü p.547)

wfrec wf r =⇒ wfrec r H a = H(cut(wfrec r H) r a) a

Note that wfrec is used here both as a name of a constant

(defined above (Ü p.569)) and a theorem.

So if r is well-founded and H is coherent, we have (by (5))

wfrec r H a = H(wfrec r H) a

Theorem states that wfrec is like a fixpoint combinator

(disregarding the additional argument r).

Thus we can do using wfrec what we would have liked to

do using Y (Ü p.495).

571

23.5 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for defin-

ing recursive functions. We illustrate this using nat, the type

of natural numbers (pretending we have it (Ü p.590)).

wfrec is applied to a well-founded order and a functional

to define a function.

First, define predecessor relation:

constdefs

pred_nat :: "(nat * nat) set"

pred_nat_def "pred_nat == {(m,n). n = Suc m}"

572

Defining Addition and Subtraction

add :: [nat, nat] => nat (infixl 70)

"m add n == wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Recursive in first argument489.

subtract :: [nat, nat] => nat (infixl 70)

"m subtract n == wfrec (pred nat^+)

(%f j. if j=0 then m else pred (f (pred j))) n"

Recursive in second argument.
489

add :: [nat, nat] => nat (infixl 70)

"m add n == wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Here we suppose that we have a predecessor function pred.

The implementation in Isabelle is different (Ü p.577), but

conceptually, the above is a definition of the add function.

Note that add is a function of type nat → nat → nat

(written infix), but it is only recursive in one argument,

namely the first one.

You may be confused about this and wonder: how do I

know that it is the first? Is this some Isabelle mechanism

saying that it is always the first? The answer is: no. You

must look at the two sides in isolation. On the right-hand

side, we have

wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j)))

573

Defining Division and Modulus

div :: [’a::div, ’a] => ’a (infixl 70)

"m div n == wfrec (pred_nat^+)

(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"

mod :: [’a::div, ’a] => ’a (infixl 70)

"m mod n == wfrec (pred_nat^+)

(%f j. if j<n | n=0 then j else f (j-n)) m"

Here, div is a syntactic class for which division is defined

(don’t worry about it). We know how to define− (Ü p.573).

The functions are recursive in one argument (just like

add (Ü p.573)).

By the definitions (of wfrec (Ü p.569) most importantly),

this expression is a function of type nat → nat , namely the

function that adds n (which is not known looking at this

expression alone; it occurs on the left-hand side) to its argu-

ment. The function is recursive in its argument (and hence

not in n). Now, this function is applied to m. Therefore we

say that the final function add is recursive in m but not in

n.

Now look at subtraction:
subtract :: [nat, nat] => nat (infixl 70)

"m subtract n == wfrec (pred nat^+)

(%f j. if j=0 then m else pred (f (pred j))) n"

Note that subtract is recursive in its second argument,

simply because the right-hand side of the defining equation

was constructed in a different way than for add.

Similar considerations apply for other binary functions de-

fined by recursion in one argument.

574

Theorems (Ü p.547) of the Example

wf pred nat wf pred nat

mod if
mmod n =

(if m < n then m else (m− n) mod n)

div if
0 < n =⇒ m div n =

(if m < n then 0 else Suc((m− n) div n))

This is very similar to functional programming code and

hence lends itself to real computations (rewriting), as op-

posed to only doing proofs.

575

23.6 Conclusion on Well-founded Recursion

Well-founded recursion allows us to define recursive functions

in HOL and thus reason about computations.

We can derive recursive theorems (Ü p.472) that can be

used for rewriting just like in a functional programming lan-

guage.

576

Isabelle Package for Primitive Recursion

For primitive recursion490, finding a well-founded ordering is

simple enough for automation491!

Examples (use nat (Ü p.590) and case (Ü p.596)-syntax):

. . .
490A function is primitive recursive if the recursion is based

on the immediate predecessor w.r.t. the well-founded order

used (e.g., the predecessor on the natural numbers, as op-

posed to any arbitrary smaller numbers).

This is not the same concept as used in the context of

computation theory, where primitive recursive is in contrast

to µ-recursive [LP81].
491The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for

functions on the natural numbers, it will use the usual <

ordering.

577

Recursion and Arithmetic

primrec

add_0: "0 + n = n"

add_Suc: "Suc m + n = Suc (m + n)"

primrec

diff_0: "m - 0 = m"

diff_Suc: "m - Suc n =

(case m - n of 0 => 0 | Suc k => k)"

primrec

mult_0: "0 * n = 0"

mult_Suc: "Suc m * n = n + (m * n)"

578

23.7 Conclusion on Recursion and Induction

We are interested in recursion because inductively defined

sets and recursively defined functions are solutions to recur-

sive equations.

We cannot have general fixpoint operator Y (Ü p.500),

but we have, by conservative extension (Ü p.438):

• Least fixpoints for defining sets (Ü p.501);

• well-founded orders for defining functions (Ü p.533).

Both concepts come with induction schemes (lfp induction (Ü p.519)

and definition of well-foundedness (Ü p.540)) for proving

properties of the defined objects.

579

Summary: Proof Support

The methodological overhead can be faced by powerful me-

chanical support in Isabelle, since many proof-tasks are rou-

tine.

580

24 Arithmetic

581

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library (Ü p.461).

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• ArithmeticArithmetic

• Datatypes (Ü p.606)

582

Current Stage of our Course

• On the basis of conservative embeddings, set theory (Ü p.474)

can be built safely.

• Inductive sets (Ü p.525) can be defined using least fixpoints (Ü p.501)

and suitably supported by Isabelle (Ü p.526).

• Well-founded orderings (Ü p.533) can be defined with-

out referring to infinity (Ü p.543). Recursive functions

can be based on these. Needs inductive sets (Ü p.567)

though. Support by Isabelle (Ü p.577) provided.

Next important topic: arithmetic.

583

Which Approach to Take?

• Purely definitional (Ü p.432)?

Not possible with eight basic rules (Ü p.384) (cannot

enforce infinity492 of HOL model)!

• Heavily axiomatic? I.e., we state natural numbers by

Peano axioms493 and claim analogous axioms for any

other number type?

Danger of inconsistency!

• Minimally axiomatic? We construct an infinite set, and

define numbers etc. as inductive subset (Ü p.501)?

Yes. Finally use infinity (Ü p.368) axiom.

24.1 What is Infinity? Cantor’s Hotel
492Our intuition/knowledge about arithmetics clearly re-

quires that there are infinite sets, e.g., the set of infinite

numbers. Technically, the HOL model of the set of natural

numbers must be an infinite set, otherwise we would not be

willing to say that have “modeled” arithmetic.
493The Peano axioms are

– 0 ∈ nat

– ∀x.x ∈ nat → Suc(x) ∈ nat

– ∀x.Suc(x) 6= 0

– ∀x y.Suc(x) = Suc(y)→ x = y

– ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).

However, there are various ways of phrasing the Peano ax-

ioms.

584

Cantor’s hotel has infinitely many rooms. New guest ar-

rives.

The doors open, and all guests come out of their rooms.

They move one room forward494, the new guest walks to-

wards the first room, they turn around, enter their new

rooms. The doors close, all guests are accomodated.

494This means, there must be a successor function on rooms.

To each room, it assigns the “next” room.

585

Axiom of Infinity

The axiomatic core495 of datatypes (and hence, numbers496):

∃f :: (ind→ ind). injective f ∧ ¬surjective f
infty (Ü p.385)

where

injective497 f = ∀xy. f x = f y → x = y

surjective f = ∀y.∃x. y = f x

Forces ind to be “infinite type” (Ü p.368) (called “I” in

[Chu40]).

We will see soon (Ü p.590) how this is done in Isabelle.
495Note that theoretically, it is not needed to add the infinity

axiom (or some equivalent formulation (Ü p.590)) to HOL.

Instead one could add the infinity axiom as premise to each

arithmetic theorem that one wants to prove.

However this would not be a viable approach since the

resulting formulas would be very, very complicated.
496The natural numbers can be built as an algebraic

datatype by having a constant 0 and a term constructor

Suc (for successor).
497These constants (actually called inj and sur (Ü p.588))

are defined in Fun.thy (Ü p.487).

586

24.2 Type-Closed Conservative Extensions

Why must conservative extensions be type-closed [GM93,

page 221]?

Consider H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f

Then the type of H is bool , but H contains a subterm of

type α⇒ α (H is not type-closed).

Then we could reason as follows . . .

587

Type-Closed Conservative Extensions (2)

(H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f)

H = H holds by refl (Ü p.384)

⇒ ∃f :: bool ⇒ bool .inj 498 f ∧ ¬sur f =

∃f :: ind ⇒ ind .inj f ∧ ¬sur f

⇒ False = True

⇒ False
(unfolding H using two different type instantiations, and

then using axiom of infinity (Ü p.385) and the fact that

there are only finitely many functions on bool).

498We use inj and sur as abbreviations for injective and

surjective.

588

Types Affect the Semantics

Type instantiations may change semantic values, and hence

cause inconsistency!

This example was somewhat more concrete than our pre-

vious simpler example (Ü p.441).

589

24.3 Natural Numbers: Nat.thy

consts

Zero_Rep :: ind

Suc_Rep :: "ind => ind"

axioms

inj_Suc_Rep: "inj Suc_Rep"

Suc_Rep_not_Zero_Rep: "Suc_Rep x ~= Zero_Rep"

So the axiom of infinity (Ü p.385) is formulated by defining

a constant Suc Rep having the two required properties.

inj (Ü p.588) is defined in Fun.thy (Ü p.487).

Think of Zero Rep, Suc Rep as provisional 0, successor.

590

Defining the Set Nat

Want to define new type nat. How?

Must define a set isomorphic (Ü p.444) to the natural

numbers. How?

By induction using the inductive syntax (Ü p.526):

inductive Nat

intros

Zero_RepI: "Zero_Rep : Nat"

Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"

Translated by Isabelle to:

Nat = lfp (λX.{Zero Rep} ∪ (Suc Rep ‘X))

591

Defining the Type nat

Now we have the set Nat . What next?

Define the type nat , isomorphic to Nat , using the typedef (Ü p.456)

syntax:

typedef (open Nat)

nat = "Nat" by (rule exI, rule Nat.Zero_RepI)

After these two steps499 we have the type nat .
499

Note the two ingredients for defining the type nat:

• An inductively defined set (Ü p.519) Nat, i.e., a

set defined as fixpoint of a monotone function.

In Isabelle (Nat.thy (Ü p.594)), the inductive

syntax (Ü p.526) is used for this purpose. This auto-

matically generates an induction rule (Ü p.530) for the

set.

• A type definition (Ü p.444) based on this set, defined

using the typedef syntax (Ü p.456).

Recall (Ü p.456) that this process automatically gen-

erates the two constants Abs Nat (Ü p.455) and

Rep Nat (Ü p.455).

But note: the induction theorem is not inherited auto-

matically. More precisely, the typedef syntax does not

cause the type nat to inherit the inductive theorem of the

set Nat. The theorem nat induct is explicitly proven in

592

Constants in nat

Moreover, define500:

consts

Suc :: "nat => nat"

pred_nat :: "(nat * nat) set"

defs

Zero_nat_def: "0 == Abs_Nat Zero_Rep"

Suc_def: "Suc ==

(%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"

pred_nat_def: "pred_nat == {(m, n). n = Suc m}"

Nat.thy (Ü p.594).
500Based on the generic constants Abs Nat (Ü p.455) and

Rep Nat (Ü p.455), we define all the constants that we need

to work conveniently with nat, most importantly, 0 and Suc.

593

Some Theorems (Ü p.472) in Nat.thy501

nat induct JP 0;
∧
n.P n =⇒ P (Suc n)K =⇒ P n

diff induct

J
∧
x.P x 0;

∧
y.P 0 (Suc y);∧

xy.P x y =⇒ P (Suc x) (Suc y)K
=⇒ P mn

We can now exploit that nat is defined based on a set (Ü p.523)

defined using least fixpoints (Ü p.502). In particular, nat induct

follows (but not “automatically”! (Ü p.592)) from the induct (Ü p.519)

theorem (Ü p.472) of Lfp (Ü p.504).
501This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

594

http://isabelle.in.tum.de/library/

Nat (Ü p.594) and Well-Founded Orders

Examples of theorems (Ü p.472) involving well-founded orders (Ü p.533):

wf pred nat wf pred nat

less linear m < n ∨m = n ∨ n < m

Suc less SucD Suc m < Suc n =⇒ m < n

595

Using Primitive Recursion

Nat.thy (Ü p.594) defines rich theory on nat . Uses primrec (Ü p.577)
syntax for defining recursive functions (Ü p.533), and case502

construct.

primrec

add_0 "0 + n = n"

add_Suc "Suc m + n = Suc(m + n)"

primrec

diff_0 "m - 0 = m"

diff_Suc "m - Suc n =

(case m - n of 0 => 0 | Suc k => k)"

primrec

mult_0 "0 * n = 0"

mult_Suc "Suc m * n = n + (m * n)"

502The case statement for nat is a function of type nat ⇒
(nat ⇒ nat) ⇒ nat ⇒ nat . case z f n is defined as

follows (using a common mathematical notation):

case z f n =

{
z if n = 0

f k if n = Suc k

The syntax

diff Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"

used on the slide is a paraphrasing (“concrete

syntax” (Ü p.397)) of the original (“abstract”) syntax.

In the original syntax it would read case 0 (λx.x) (n−m).

596

Some Theorems (Ü p.472) in Nat (Ü p.594)

add 0 right m + 0 = m

add ac m + n + k = m + (n + k)

m + n = n + m

x + (y + z) = y + (x + z)

mult ac m ∗ n ∗ k = m ∗ (n ∗ k)

m ∗ n = n ∗m
x ∗ (y ∗ z) = y ∗ (x ∗ z)

Note third part503 of add ac, mult ac, respectively.

Technically, add ac and mult ac are lists of thm (Ü p.249)’s.

503The theorems x+ (y+ z) = y+ (x+ z) and x ∗ (y ∗ z) =

y ∗ (x ∗ z) are called left-commutation laws and are crucial

for (ordered (Ü p.280)) rewriting (Ü p.271).

Suppose we have the term shown below. Using associa-

tivity (m + n + k = m + (n + k)) this will be rewritten

to the second term. Using left-commutation, this will

be rewritten to the third term. This is a so-called AC-

normal form (Ü p.278), for an appropriately chosen term

ordering (Ü p.280).

+
�

�
�
��

@
@
@
@@+

�
�

@
@

+
�
�

@
@+ + + +

1 8 4 2 7 5 6 3

+
+

+
+

+
+

+

1
8

4
2

7
5

6 3

+
+

+
+

+
+

+

1
2

3
4

5
6

7 8

597

Proof of add 0 right

add 0
0 + 0 = 0

add Suc

Suc n+ 0 = Suc(n+ 0)

Suc(n+ 0) = Suc n+ 0
sym

[n+ 0 = n]1

Suc(n+ 0) = Suc n
arg cong

Suc n+ 0 = Suc n
subst

m+ 0 = m
add 0 rightnat induct1

Note that Suc n+0 = Suc(n+0) is an instance of Suc m+

n = Suc(m + n).

598

24.4 Integers

The integers are implemented504 as equivalence classes505

over nat × nat .

IntDef = Equiv + NatArith +

constdefs

intrel :: "((nat * nat) * (nat * nat)) set"

"intrel == {p. EX x1 y1 x2 y2.

p=((x1::nat,y1),(x2,y2)) & x1+y2 = x2+y1}"

typedef (Integ)

int = "UNIV//intrel" (quotient_def)

504The file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

505Recall the general concept of an equivalence

relation (Ü p.106). Generally, for a set S and an equiva-

lence relation R defined on the set, one can define S//R,

the quotient of S w.r.t. R.

S//R = {A | A ⊆ S ∧ ∀x, y ∈ A.(x, y) ∈ R}
That is, one partitions the set S into subsets such that each

subset collects equivalent elements. This is a standard math-

ematical concept.

We do not go into the Isabelle details here, but we explain

how this works for the integers. One can view a pair (n,m) of

natural numbers as representation of the integer n−m. But

then (n,m) and (n′,m′) represent the same integer if and

599

http://isabelle.in.tum.de/library/

Some Theorems (Ü p.472) in IntArith

zminus zadd distrib −(z + w) = −z +−w
zminus zminus −(−z) = z

zadd ac z1 + z2 + z3 = z1 + (z2 + z3)

z + w = w + z

x + (y + z) = y + (x + z)

zmult ac z1 ∗ z2 ∗ z3 = z1 ∗ (z2 ∗ z3)

z ∗ w = w ∗ z
z1 ∗ (z2 ∗ z3) = z2 ∗ (z1 ∗ z3)

Compare to nat theorems (Ü p.597).

only if n−m = n′−m′, or equivalently, n+m′ = n′+m. In

this case (n,m) and (n′,m′) are said to be equivalent. The

construction of the integer type is based on this equivalence

relation, called intrel. More precisely, the definition of

the integers will be based on (Ü p.444) the set of all pairs of

naturals (which corresponds to the UNIV (Ü p.479) constant

on the type nat × nat (Ü p.454)) modulo the equivalence

intrel. In other words, it will be based on the quotient of

the set of pairs of naturals w.r.t. intrel.

600

24.5 Further Number Theories

• Binary Integers (Integ/Bin.thy506, for fast computa-

tion)

• Rational Numbers (Real/PRat.thy507)

506This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

507This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

601

http://isabelle.in.tum.de/library/
http://isabelle.in.tum.de/library/

• Reals508 (Real/PReal.thy509: based on Dedekind-cuts

of rationals [Fle00])

508The reals have been axiomatized by Dedekind by stating

that a set R is partitioned into two sets A and B such that

R = A∪B and for all a ∈ A and b ∈ B, we have a < b. Now

there is a number s such that a ≤ s ≤ b for all a ∈ A and

b ∈ B. The irrational numbers are characterised by the fact

that there exists exactly one such s. This axiomatization

has been used as a basis for formalizing real numbers in

Isabelle/HOL.
509This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

602

http://isabelle.in.tum.de/library/

• Hyperreals510 (Real/RealDef.thy511 for non-standard

analysis)

• Machine numbers (floats); see work for Intel’s Pentiu-

mIV; built in HOL-light [Har98, Har00]

510In non-standard analysis, one works with sequences that

are not necessarily converging. This is a relatively new field

in mathematics and Isabelle/HOL has been successfully ap-

plied in it [FP98]. We just mention this here to say that

Isabelle/HOL is used for “cutting-edge” mathematics and

not just toy examples.
511This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

603

http://www.intel.com/
http://isabelle.in.tum.de/library/

24.6 Conclusion on Arithmetic

Using conservative extensions (Ü p.432) in HOL, we can

build

• the naturals (Ü p.590) (as type definition (Ü p.444) based

on ind), and

• higher number theories (Ü p.601) (via equivalence con-

struction).

Potential for

• analysis of processor arithmetic units, and

• function analysis in HOL (combination with computer

algebra systems such as Mathematica).

Future: analysis of hybrid systems512.
512Hybrid systems is a field in software engineering con-

cerned with using finite automata for controlling physical

systems such as ABS in cars etc.

604

The methodological overhead can be tackled by powerful

mechanical support, since many proof-tasks are routine.

605

25 Datatypes

606

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library (Ü p.461).

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• DatatypesDatatypes

607

What Are Datatypes?

We have seen types, but what are data513types?

• Order 0 (Ü p.225) (no → in type).

• Terms defined by finite set of term constructors (Ü p.272).

• Typically inductive definition.

• Term constructed by syntactic rule is unique.
513We have seen types, but what are datatypes?

First of all, a datatype must be of order 0 (Ü p.225), so it

must be a non-functional type. Note that if we do not have

polymorphism, this means that a datatype must be a in

B (Ü p.167). But if we have polymorphism, it just means

that the type must not contain →. E.g., α list could be

a datatype. However, when one describes a datatype, one

would usually speak about generic instances such as α list ,

and not about, say, nat list .

Secondly, the terms that inhabit a datatype τ must be de-

fined using a finite set of term constructors (Ü p.272) that

have τ as result type. At least one term constructor should

just have type τ . E.g., Nil : α list and Cons : α →
(α list) → α list are the term constructors that define the

list datatype. One also finds a syntax where Nil is written []

and Cons is written ::. Intuitively, we could say: the terms

of a datatype are exactly the terms that can be constructed

by some finite syntactic construction rule.

608

Counterexample514: α set (Ü p.474).

Whenever we have a term constructor that has τ as ar-

gument as well as result, the construction rule is inductive.

E.g., we have

• Nil is a list;

• if t is a list h is of type α, then Cons(h, t) is a list.

This is an inductive construction of lists. Usually, when one

speaks about datatypes, one has inductively defined ones

in mind. Examples are lists, natural numbers (Ü p.586),

trees. One could say that e.g. bool is also a datatype defined

by the constants True and False, but it is not particularly

interesting in this context.

At the same time, each term constructed by such a syntac-

tic rule is unique. So if we say: lists are defined by the above

inductive construction, then we imply that Cons(1,Nil)

must not be equal to Cons(1,Cons(1,Nil)).
514To understand better the distinction of a datatype

from another type, consider the following counterexample:

609

Datatypes: Motivation

We will now construct “datatypes (Ü p.608)” (as in ML

[Pau96]). This construction is based on so-called S-expressions

[Pau97b].

Caveat: We will only sketch the construction and we

will simplify, meaning that the technical details will not be

α set (Ü p.474). Sets are not a datatype:

1. While the type α set does not contain an →, it is

isomorphic (Ü p.449) to α → bool which does contain

an →.

2. The most basic way of defining “what a set is” is: if f

is of type τ → bool , then Absset f (Ü p.450) (alter-

natively: Collect f (Ü p.451)) is a set. This is not an

inductive syntactic construction rule.

3. One could define sets similarly to lists by an induc-

tive rule saying: {} is a set; if S is a set and

h is some term of type α, then Insert(h, S) is a

set. But then Insert(1, {}) would be different from

Insert(1, Insert(1, {})), which is not what we want!

Moreover, we could not define infinite sets this way.

4. In point 2 we say: the definition of the terms called

“sets” is not an inductive definition. This is not in con-

610

strictly correct! See Datatype Universe.thy515 and [Wen99].

tradiction to the inductive definition (Ü p.523) of par-

ticular sets. These inductive definitions have the form:

If foo is in the set then bar is in the set, e.g., if n is in

the set then Suc n is in the set. This is in contrast to

what is suggested in point 3, where we say: If foo is a

set then bar is a set.

515This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

611

http://isabelle.in.tum.de/library/

S-Expressions as Basis

In the end we want to have datatypes such as lists (Ü p.272)

and trees.

It turns out that LISP-like S-expressions are a datatype

that is so rich that other datatypes can nicely be embedded

in it.

Since we do not have the concept of datatype yet, we

must first represent S-expressions using constructs we al-

ready have.

25.1 S-Expressions

LISP-like S-expressions516 are a kind of of binary trees.

We call the type α dtree. This uses α + nat (Ü p.458).
516The datastructure we have in mind here consists of binary

trees where the inner nodes are not labeled, and the leaves

are labeled

• either with a term of arbitrary type, in which case the

leaf would be an actual “piece of content” in the datas-

tructure,

• or with a natural number, in which case the leaf serves

special purposes for organizing our datastructure, as we

will see later.

I.e., such binary trees have a type parametrized by a type

variable α, the type of the latter kind of leaves. Let us call

the type of such trees α dtree.

As always with parametric polymorphism (Ü p.184),

when we consider how the datastructure as such works, we

are not interested in what the values in the former kind of

leaves are. This is just like the type and values of list ele-

ments are irrelevant for concatenating (Ü p.184) two lists.

612

� JĴ

h

� JĴ

h

a b

c

This is encoded as a set of “nodes”517 (defined by their

path from the root and a value in the leaves), e.g.:

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}
The type definition (Ü p.444) of α dtree uses such an en-

coding.

Of course, α could, by coincidence, be instantiated to type

nat .

Think of a label of the first kind as content label and a

label of the second kind as administration label.

Technically, if something is either of this type or of that

type, we are talking about a sum type (Ü p.458). So a leaf

label has type α + nat (written (α, nat) sum (Ü p.458)

before), and it has the form either Inl (Ü p.458)(a) for some

a :: α, or Inr (Ü p.458)(n) for some n :: nat .
517 The set

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}
represents the tree

The path 〈0, 0〉 means: from the root take left subtree,

then again left subtree. The path 〈1〉 means: take right

subtree.

613

Building Trees

• Atom(n)518

n

• Scons X Y 519

� JĴ

h

� JĴ

h
+

� JĴ

h

� JĴ

h
=

� JĴ

h

� JĴ

h

� JĴ

h

� JĴ

h��� HHj

h

How can a path 〈p0, . . . , pn〉 be represented? One idea is

to use the function f :: nat ⇒ nat defined by

f i =

{
pi if i ≤ n

2 otherwise

as representation of 〈p0, . . . , pn〉.
518Atom takes a leaf label (Ü p.613) and turns it into a

(simplest possible) S-expression (Ü p.612) (tree).

So it has type α + nat ⇒ α dtree.
519Scons takes two S-expressions (Ü p.612) and creates a

new S-expression as illustrated below:

=

So it has type [α dtree, α dtree] (Ü p.190)⇒ α dtree.

614

Tagging Trees

We want to tag an S-expression by either 0 or 1. This can be

done by “Scons” (Ü p.614)-ing it with an S-expression con-

sisting of an administration label (Ü p.613). By convention,

the tag is to the left.

• In0 def In0 (X) ≡ SconsAtom(Inr (Ü p.458)(0))X

� JĴ

h →

� JĴ

h

� JĴ

h
0

• In1 def In1 (X) ≡ SconsAtom(Inr (Ü p.458)(1))X

� JĴ

h →

� JĴ

h

� JĴ

h
1

615

Products and Sums on Sets of S-Expressions

Product of two setsA andB of S-expressions: All Scons (Ü p.614)-

trees where left subtree from A, right subtree from B.

uprod def uprod AB ≡
⋃
x∈A

⋃
y∈B

{(Scons x y)}

Sum of two sets A and B of S-expressions: union of A and

B after S-expressions in A have been tagged 0 (Ü p.615)

and S-expressions in B have been tagged 1 (Ü p.615), so

that one can tell where they come from.

usum def usum AB ≡ In0 ‘ 520A ∪ In1 ‘B

520 Recall that ‘ denotes the image (Ü p.481) of a function

applied to a set.

616

Some Properties of Trees and Tree Sets

• Atom, In0 , In1 , Scons are521 injective (Ü p.385).

• Atom and Scons are pairwise distinct. In0 are In1

pairwise distinct.

• Tree sets represent a universe that is closed under products

and sums: usum, uprod have type

[(α dtree) set , (α dtree) set] (Ü p.190)⇒ (α dtree) set .

• uprod and usum are monotone (Ü p.503).

• Tree sets represent a universe that is closed under prod-

ucts and sums522 combined with arbitrary applications

of lfp (Ü p.502).

Reminder: we simplified!
521This means that any of Atom, In0 , In1 , Scons applied

to different S-expressions will return different S-expressions.

Moreover, a term with root Scons is definitely different

from a term with root Atom, and a term with root In0 is

definitely different from a term with root In1 .

Why is this important? It is an inherent character-

istic of a datatype (Ü p.608). A datatype consists of

terms constructed using term constructors (Ü p.272) and

is uniquely defined by what it is syntactically (one also

says that terms are generated freely using the constructors).

For example, (Ü p.586) injectivity of Suc and pairwise-

distinctness of 0 and Suc mean for any two numbers m and

n, the terms Suc(. . . Suc︸ ︷︷ ︸
m times

(0) . . .) and Suc(. . . Suc︸ ︷︷ ︸
n times

(0) . . .) are

different.
522Given a set T of trees (S-expressions), the closure of T

under Atom, In0 , In1 , Scons , usum, uprod is the smallest

set T ′ such that T ⊆ T ′ and given any tree (or two trees,

617

25.2 Lists in Isabelle

Similar to the construction of nat (Ü p.592), we first con-

struct a set of S-expressions having the “structure of lists”.

We start by defining “provisional” (Ü p.590) list construc-

tors:

constdefs

NIL :: ’a dtree

"NIL == In0(Atom(Inr(0)))"

CONS :: [’a dtree, ’a dtree] => ’a dtree

"CONS M N == In1(Scons M N)"

What type do you expect523 Cons to have, and how does

CONS compare? Must wrap list elements by Atom ◦ Inl .

as applicable) from T ′, any tree constructable using Atom,

In0 , In1 , Scons , usum, uprod is also contained in T ′.

Remembering the construction of inductively defined

sets (Ü p.501), the closure is the least fixpoint of a mono-

tone function adding trees to a tree set. This function must

be constructed using Atom, In0 , In1 , Scons , usum, uprod .

We do not go into the details, but note that it is crucial that

uprod and usum are monotone (Ü p.503), and note as well

that slight complications arise from the fact that usum and

uprod have type [(α dtree) set , (α dtree) set] (Ü p.190) ⇒
(α dtree) set rather than (α dtree) set ⇒ (α dtree) set .

523Cons should have the polymorphic type [α, α list] ⇒
α list . The important point is: the first argument is of dif-

ferent type than the second argument. If the first is of type

τ , then the second must be of type τ list .

In contrast, CONS is of type [(α dtree), (α dtree)] ⇒
α dtree.

In order to apply CONS to a “list” (in fact an S-

618

Lists as S-Expressions: Intuition

Examples of how lists would be represented as S-expressions:

Nil 524 []

In0 (Atom(Inr 0))

Cons(7,Nil) [7]

CONS (Atom(Inl 7)) In0 (Atom(Inr 0))

Cons(5,Cons(7,Nil)) [5, 7]

CONS (Atom(Inl 5))

(CONS (Atom(Inl 7)) In0 (Atom(Inr 0)))

Now let’s construct the S-expressions having this form.

expression) and a “list element”, we must first wrap the list

element by Atom ◦ Inl , so that it becomes an S-expression.
524Nil , Cons(7,Nil), Cons(5,Cons(7,Nil)) are lists writ-

ten according to what some programming languages intro-

duce as the first, “official” syntax for lists.

For convenience, programming languages typically allow

for the same lists to be written as [], [7], [5, 7].

619

Lists as S-Expressions: Inductive Construction

Idea: let A :: (α dtree) set be the set of all “wrapped” ele-

ments, e.g. for α = nat , the set {(Atom Inl 0), (Atom Inl 1), . . .}.
Then define list(A), the set of S-expressions that represent

lists of element type α:

list :: "’a dtree set => ’a dtree set"

inductive "list(A)"

intrs

NIL_I "NIL : list(A)"

CONS_I "[|a : A; M : list(A) |] ==>

CONS a M : list(A)"

See SList.thy525 for how it’s really done!
525This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

620

http://isabelle.in.tum.de/library/

Defining the “Real” List Type

We now apply the type definition mechanism (Ü p.444) us-

ing the typedef (Ü p.456) syntax. How do we define A

formally?

typedef (List)

’a list =

"list(range (Atom o Inl)) :: ’a dtree set"

by ...

Choosing A as range (Atom ◦ Inl) together with the ex-

plicit type declaration forces A to be the set containing all

Atom (Inl t), for each t :: α.

Example of a definition of a polymorphic (Ü p.184) type.

621

List Constructors

We define the real constructor names for lists:

Nil_def "Nil::’a list == Abs_list(NIL)"

Cons_def "x#(xs::’a list) ==

Abs_list(CONS (Atom(Inl(x))) (Rep_list xs))"

We then forget about NIL and CONS .

622

Isabelle’s Datatype Package

Similar to the typedef syntax (Ü p.456), Isabelle provides

the datatype syntax to support the construction (Ü p.444)

of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.

The package also works for mutually and indirectly recursive

datatype definitions.

Question: Why didn’t we use this package to define nat526?

526The datatype syntax is very convenient since the com-

plex construction we have seen today is transparent to the

normal user.

In particular, proofs of the induction theorem are auto-

mated. This is in contrast to the construction of nat where

this theorem was not generated automatically (Ü p.592).

So why didn’t we use the datatype syntax to define nat ,

since it is so much more convenient?

The reason is that we needed nat (Ü p.613) to define S-

expressions, so the type nat must exist before there can be

a datatype package, and so the datatype package cannot be

used to define nat .

623

26 Summary of HOL Library / Outlook
on Modeled Systems

624

Summary

In the previous weeks, we looked at how the different parts of

mathematics are encoded in the Isabelle/HOL library (Ü p.461):

• Orders (Ü p.465)

• Sets (Ü p.474)

• Functions (Ü p.485)

• (Least) fixpoints and induction (Ü p.501)

• (Well-founded) recursion (Ü p.533)

• Arithmetic (Ü p.581)

• Datatypes (Ü p.606)

625

Summary (Cont.)

We conclude: HOL is a logical framework for theoretical

computer science. Its features are:

• a clean methodology, which can be supported automat-

ically to a surprising extent;

• a powerful set theory and proof support;

• adequate theories for arithmetics (proof-support: not

quite satisfactory so far);

• a package for induction;

• a package for recursion;

• a package for datatypes.

626

Outline

We will now look at how various formalisms (specification

and programming languages) can be embedded in HOL:

• Z and data-refinement

• Imperative languages (Ü p.628)

• Denotational semantics and functional languages

• Object-oriented languages (Java-Light . . .)

627

27 IMP

27.1 IMP: Introduction

IMP is a small imperative programming language. We

study how its syntax and semantics are represented in HOL.

Semantics come in different flavors527:

• operational,

• denotational,

• axiomatic (Hoare-logic).

527One distinguishes

• operational,

• denotational,

• axiomatic

semantics.

For operational semantics (Ü p.633), the idea is that our

machine is always in some state, essentially consisting of

the values of the program variables. The instructions of a

program transform a state into a new state. Operational

semantics are useful for compiler construction.

For denotational semantics (Ü p.644), the idea is that the

meaning of a particular program is a relation between “in-

put” states and “output” states.

Axiomatic semantics (Ü p.649) consist of a calculus for

constructing proof obligations. This allows us to state the

desired behavior of a program as a logic formula and check

it.

628

Imperative Languages in the Isabelle/HOL

Library

There are several embeddings of imperative languages in

Isabelle/HOL [Nip02]:

• Hoare528: shallowish529, good examples

• IMPIMP: deepish, good theory

• IMPP: extends IMP with procedures

• MicroJava: complex, powerful, state-of-the-art

We choose IMP to learn a bit about “good ole imperative

languages”.

629

Semantics Provided for IMP

IMP offers:

• operational (Ü p.633) semantics;

– natural semantics (Ü p.635);

– transition semantics (Ü p.639);

• denotational semantics (Ü p.644);

• axiomatic semantics (Ü p.649) (Hoare logic);

• equivalence proofs530;

• weakest preconditions (Ü p.680) and verification condi-

tion generator (Ü p.685).

It closely follows the standard textbook [Win96].
530Summarizing, we have the following equivalence results:

– natural vs. transition semantics (Ü p.643)

– denotational vs. natural semantics (Ü p.648).

630

An Imperative Language Embedding

We will now define the syntax and various semantics of IMP,

but in fact, we define those as Isabelle theories. We say that

we embed IMP in Isabelle/HOL.

You will see that such an embedding is more abstract and

less detailed than if we were really going to define IMP for

use as a programming language, i.e., if we were going to

define a compiler for it.

631

The Command Language (Syntax)

The (abstract) syntax is defined in Com.thy531.
Com = Main +

types

loc

val = nat (*e.g.*)

state = loc => val

aexp = state => val

bexp = state => bool

datatype com =

SKIP

| ":==" loc aexp (infixl 60)

| Semi com com ("_ ; _" [60, 60] 10)

| Cond bexp com com

("IF _ THEN _ ELSE _" 60)

| While bexp com ("WHILE _ DO _" 60)

The type loc stands for locations532.

Note the abstractness533 of aexp and bexp.

The datatype com stands for command(sequence)s.
531This file defines the command syntax. An Isabelle term

of type com is an IMP program.

You should find the files in your Isabelle distribution. Or,

if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

532We realize program variables via pointers (locations).

The type of pointers is an abstract datatype (Ü p.254).

We take the type of values to be nat (Ü p.590), just to

have something simple.

A state is a function taking a location to a value, i.e. intu-

itively, each program variable has a value in a state.
533

In a formalization of the syntax of an imperative language,

there will usually be some grammar saying that (Ü p.17) 1,

x + 1 (provided that x is an arithmetic variable) etc. are

arithmetic expressions and that True, x == 1 etc. are

632

http://isabelle.in.tum.de/library/

27.2 Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states534):

state -a :== b
state ′ �

���
���

���:

WHILE . . .
XXXXXXXXXXz

SKIP
state ′′

state ′′′

evalc :: (com ∗ state ∗ state) set

Boolean expressions. Such expressions can only be evalu-

ated if the state, i.e. the value of the program variables, is

given.

Now, our notion of expressions (as realized by the types

aexp and bexp) is much more abstract than that. An ex-

pression is e function taking a state to a value or Boolean,

as applicable.

The fact that IMP has no explicit expression language al-

lows for simple and abstract proofs.
534The idea of the natural semantics is that a program relates

two states, the “input state” and the “output state”.

This may remind you of denotational (Ü p.628) semantics,

and in fact, the natural semantics is a kind of hybrid between

operational and denotational semantics.

The fact that the natural semantics just relates an “input

state” and an “output state” means, so to say, that it does

not record what happens in between, i.e. at the single steps

of a computation. In that respect, it resembles denotational

633

Transition semantics (idea: sequence of “configurations”535):

a :== b;X, state - X, state ′ ��
��

���
��:

XXXXXXXXXzX ′′′, state ′′′

X ′′, state ′′

evalc1 :: ((com ∗ state) ∗ (com ∗ state)) set

semantics.

But the way the meaning of a whole program is de-

fined is still operational in nature. Essentially, it is

defined (Ü p.636) in terms of the meaning of the first ex-

ecution step and the meaning of the rest of the program.
535

Unlike the natural semantics, the transition semantics

records the single steps of the computation. A configuration

is a pair consisting of a program and a state, and one step

reaches a new program and a new state.

Why “reaching a new program”? This realizes a program

counter (Ü p.640). For example, if the first line of the pro-

gram is an assignment, then the new program is obtained by

removing that line from the old program.

634

27.3 Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:

consts evalc :: ”(com ∗ state ∗ state) set”

translations ”〈c, s0〉
c−→ s1” ≡ ”(c, s0, s1) ∈ evalc”

Note that
c−→ (in ASCII: -c->) is one fixed (Ü p.642)

arrow symbol.

We now start giving the actual inductive definition. It

defines the
c−→ transitions (implicit: these are the only

c−→
transitions) . . .

635

Inductive Definition: Skip and Assignment

inductive evalc

intrs

Skip: 〈SKIP, s〉 c−→ s

Assign: 〈x :== a, s〉 c−→ s[x ::= (a s)]

Skip and Assign are just names for the clauses of the

inductive definition.

s[x ::= v] is short for update s x v, where

update s x v ≡ λy. if y = x then v else (s y)

Note that a is of type aexp or bexp (Ü p.632).

636

Inductive Definition: Semicolon

Semi : J〈c0, s〉
c−→ s1; 〈c1, s1〉

c−→ s2K
=⇒ 〈c0; c1, s〉

c−→ s2

The rationale of natural semantics: To figure out the

meaning of a program consisting of a “first instruction” c0

and a “rest” c1, starting from state s, you have to show two

subgoals: c0 starting from state s goes to some state s1, and

c1 starting in state s1 goes to some state s2.

Note that by the definition of Semi (Ü p.632), c0 does

not have to be “atomic” (whatever this means).

637

Inductive Definition: Control

IfTrue: Jb s; 〈c0, s〉
c−→ s1K

=⇒ 〈IF b THEN c0 ELSE c1, s〉
c−→ s1

IfFalse: J¬b s; 〈c1, s〉
c−→ s1K

=⇒ 〈IF b THEN c0 ELSE c1, s〉
c−→ s1

WhileFalse: J¬b sK =⇒ 〈WHILE b DO c, s〉 c−→ s

WhileTrue: Jb s; 〈c, s〉 c−→ s1; 〈WHILE b DO c, s1〉
c−→ s2K

=⇒ 〈WHILE b DO c, s〉 c−→ s2

Note the termination problem in WhileTrue! Simplest

example: b ≡ λx.True. Then, no proof is possible and no

s2 can effectively be computed.

638

27.4 Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also (Ü p.635)

given by an inductive definition. We first declare its type and

define a paraphrasing, as before (Ü p.635):

consts evalc1 :: ”((com ∗ state) ∗ (com ∗ state)) set”

translations ”cs0
1−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 ”

Note that
1−→ is one fixed (Ü p.642) arrow symbol.

We now start giving the actual inductive definition . . .

639

Inductive Definition

inductive evalc1

intrs

Assign: ”(x :== a, s)
1−→ (SKIP, s[x ::= (a s)])”

Semi1: ”(SKIP; c, s)
1−→ (c, s)”

Semi2: ”(c0, s)
1−→ (c′0, s

′) =⇒ (c0; c1, s)
1−→ (c′0; c1, s

′)”

So far, we see that the component of com type in the con-

figuration corresponds to a program stack (built by ”;” (Ü p.632)),

which represents a program counter (Ü p.634).

640

Inductive Definition: Control

IfTrue: ”b s =⇒ (IF b THEN c1 ELSE c2, s)
1−→ (c1, s)”

IfFalse: ”¬b s =⇒ (IF b THEN c1 ELSE c2, s)
1−→ (c2, s)”

WhileFalse: ”¬b s =⇒ (WHILE b DO c, s)
1−→ (SKIP, s)”

WhileTrue: ”b s =⇒ (WHILE b DO c, s)
1−→ (c; WHILE b DO c, s)”

Termination problem as before (Ü p.638), but somehow

less disturbing: we cannot be shocked about the fact that

some computations are infinite, and at least, the transition

semantics assigns a meaning to any finite prefix of an infinite

computation.

641

Generalizations to more than one Step

n-step semantics:

”cs0
n−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 n”

Unlike
c−→ (Ü p.635) and

1−→ (Ü p.639),
n−→ is not a fixed

arrow symbol, but meta-notation: for any number n, there

is the paraphrasing536 n−→ defined as above. Here, evalc1 n

(ASCII: ^n) is defined in Relation Power.thy537.

multistep-semantics:

”cs0
∗−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 ∗”

∗−→ is a fixed arrow symbol.
536As you see, paraphrasing in Isabelle is very powerful.

One can think of
c−→ (Ü p.635) and

1−→ (Ü p.639) as in-

fix symbols (Ü p.66). But
n−→ is by no means one single

symbol. In fact the term cs0
n−→ cs1 is a paraphrasing of

(cs0, cs1) ∈ evalc1 n.
537This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

642

http://isabelle.in.tum.de/library/

Equivalence of Semantics

Natural semantics vs. transition semantics.

Theorem (evalc1 eq evalc):

(c, s)
∗−→ (SKIP, t) = (〈c, s〉 c−→ t)

The proof is by induction on the structure of programs.

643

27.5 Embedding of the Denotational Semantics

Domain: A semantics relates states (similar to natural (Ü p.633)

semantics)

com den = (state ∗ state) set

Semantic function: assigns semantics to a program

consts C :: com⇒ com den

Before (Ü p.633), semantics were relations.

644

Characteristics of Denotational Semantics

A denotational semantics is a function (here: C) assigning

a meaning to a program. More precisely, the meaning of a

program is some “mathematical” function of the meanings

of its components.

This is in contrast to the operational view where computation

order (“first do this, then that. . . ”) and logical reasoning

using proof rules (“if (. . .) computes (. . .) then (. . .) com-

putes (. . .)”) are focused.

The “mathematics” uses the lfp (Ü p.502) operator.

645

The Recursive Definition

The semantics C is defined recursively538:

primrec

C skip ”C(SKIP) = Id”

C assign ”C(x :== a) = {(s, t) | t = s[x ::= (a s)]}”
C comp ”C(c0; c1) = C(c1) ◦ C(c0)”

C if ”C(IF b THEN c1 ELSE c2) =

{(s, t) | (s, t) ∈ C(c1) ∧ b(s)}∪
{(s, t) | (s, t) ∈ C(c2) ∧ ¬b(s)}”

C while ”C(WHILE b DO c) = lfp(Γ b (C c))”

where539 ”Γ b cd ≡ (λφ.{(s, t) | (s, t) ∈ (φ ◦ cd) ∧ b(s)}∪
{(s, t) | s = t ∧ ¬b(s)})”

538Recall (Ü p.577) that the primrec syntax is used for

defining functions recursively. Here, the argument type of

the function C is the datatype com (Ü p.632). It is char-

acteristic for the definition of a datatype that its elements

are defined by (structural) induction, i.e., its elements are

syntactic terms formed from previously generated syntac-

tic forms using a specific set of term constructors. For

datatypes, it is clear that the subterm relation is a well-

founded order. Hence it is legitimate to define C using re-

cursion.

646

Equivalence of Programs

We have seen an equivalence result relating different

semantics (Ü p.643).

The following is an equivalence relating program frag-

ments.

Theorem (C While If):

C(WHILE b DO c) = C(IF b THEN (c; WHILE b DO c) ELSE SKIP)

Such a result is important because it justifies a program

transformation (the two fragments have the same semantics

and so they are interchangeable).

647

Equivalence of Semantics

We have already suggested that the natural semantics is a

hybrid (Ü p.633) between operational and denotational se-

mantics. In fact, there is a simple equivalence relationship

between the two:

Theorem (denotational is natural):

((s, t) ∈ C c) = (〈c, s〉 c−→ t)

648

27.6 Axiomatic (Hoare) Semantics

Idea: we relate “legal states” before and after a program

execution. A set of legal states is modeled as “assertion”:

types assn = state⇒ bool

So rather than reasoning about single states, we reason

about properties or sets of states. This is what we really

need for verification of programs.

Semantics called axiomatic for historic reasons540. It is

also called Hoare semantics.

540

In terms of Isabelle/HOL, the semantics is not defined by

axioms, but is an inductive definition (Ü p.526).

649

Embedding of the Hoare Semantics

The Hoare semantics encoding in Isabelle is also (Ü p.635)

given by an inductive definition. We first declare its type

and a paraphrasing:

consts hoare :: ”(assn ∗ com ∗ assn) set”

translations ” ` {P} c {Q}” ≡ ”(P, c,Q) ∈ hoare”
An object of the form {P} c {Q} is called a Hoare-triple.

We now start giving the actual inductive definition . . .

650

Inductive Definition: SKIP

inductive hoare

intrs

skip ” ` {P} SKIP {P}”
No surprise here.

651

The Inductive Definition

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
This may be counter-intuitive, why not the other way

round?

Consider an example: a ≡ λs.1 and P ≡ λs. s x = 1
{λs.(λs.s x = 1)(s[x ::= 1])} x :== λs.1 {λs.s x = 1} −→β

{λs.(s[x ::= 1])x = 1} x :== λs.1 {λs.s x = 1} −→β

{λs.(1 = 1)} x :== λs.1 {λs.s x = 1} −→β

{λs.True} x :== λs.1 {λs.s x = 1}
What do we see? (You might also check the types541.)

The ass rule is such that it relates the pre-state True with

the post-state λs. s x = 1, which is what we expect542.
541Things are getting a bit complicated, maybe it helps to

recall the types of the terms occurring in

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
P has type assn, which is (Ü p.649) state ⇒ bool . In

turn , state is (Ü p.632) loc ⇒ val .

x has type loc (Ü p.632).

a has type aexp, which is (Ü p.632) state ⇒ val .

s has type state.
542You can also argue a bit more generally. Let Q be an

arbitrary assertion, and let

P ≡ λs. ∃s′. s = s′[x ::= (a s′)] ∧Q s′

Intuitively: P is an assertion allowing any state obtained

from a state allowed by Q by updating that state at location

x with the expression a. Now consider the rule for assign-

ment:

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”

652

Inductive Definition: Semi and

IF − THEN − ELSE

semi ”J` {P} c {Q};` {Q} d {R}K =⇒` {P} c; d {R}”
If ”J` {λs.P s ∧ b s} c {Q};` {λs.P s ∧ ¬b s} d {Q}K

=⇒` {P} IF b THEN c ELSE d {Q}”

Since we are reasoning about sets of states, b s may some-

times be true and sometimes false, and so we have two

premises for those two cases. It turns out that if b s is triv-

ially true or trivially false, then one of the premises will be

trivial to prove.

in particular the assertion on the left-hand side. It reduces

as follows:
λs. P (s[x ::= (a s)]) −→β

λs. (∃s′. Q s′ ∧ s[x ::= (a s)] = s′[x ::= (a s′)]) −→β . . .

λs. (∃s′. Q s′ ∧ s = s′) −→β . . . λs. (Q s) −→η Q

So you see that any pre-stateQ will be related to a post-state

P as given above.

By this argument, we have only shown which post-states

are possible given an arbitrary pre-state, not which post-

states are not. Such an argument is more complicated.

653

Inductive Definition: WHILE

While ” ` {λs.P s ∧ b s} c {P} =⇒
` {P} WHILE b DO c {λs.P s ∧ ¬b s}”

This has a flavor of loop invariants: in the pre-state, b s

holds, in the post-state, b s does not hold, and P holds all

the time.

654

Inductive Definition: Weakening and

Strengthening

conseq ”J∀s.P ′s→ P s;` {P} c {Q};∀s.Q s→ Q′ sK
=⇒` {P ′} c {Q′}”

One can always strengthen the pre-condition or weaken

the post-condition.

655

The Rules at a Glance

inductive hoare

intrs

skip ” ` {P} SKIP {P}”
ass ” ` {λs.P (s[x ::= a s])} x :== a {P}”
semi ”J` {P} c {Q};` {Q} d {R}K =⇒` {P} c; d {R}”
If ”J` {λs.P s ∧ b s} c {Q};` {λs.P s ∧ ¬b s} d {Q}K =⇒

` {P} IF b THEN c ELSE d {Q}”
While ” ` {λs.P s ∧ b s} c {P} =⇒

` {P} WHILE b DO c {λs.P s ∧ ¬b s}”
conseq ”J∀s.P ′s→ P s;` {P} c {Q}; ∀s.Q s→ Q′ sK =⇒

` {P ′} c {Q′}”

656

Validity Relation

We define a validity relation:

|= {P} c {Q} ≡ ∀s t.(s, t) ∈ C(c)→ (P s)→ (Q t)

A Hoare triple {P}c{Q} is valid if it relates a set of input

states and a set of output states correctly w.r.t. the deno-

tational (or equivalently (Ü p.648), operational) semantics:

for any input state s and output state t related by the deno-

tational semantics (Ü p.644), if P holds for s, then Q must

hold for t.

Why543 do we raise the issue of a semantics being valid,

why don’t we just say “it’s defined like this, full stop”?
543You may wonder: Why do we raise the issue of a se-

mantics being valid, why don’t we just say “it’s defined like

this, full stop”? After all, we didn’t question the operational

and denotational semantics in the same way. So why do we

take the denotational semantics as the real semantics of a

program that another semantics such as the Hoare seman-

tics has to be somehow equivalent to in order to be correct?

Couldn’t we do it the other way round?

First: If you want to accept anything as the real

semantics of a program, it would be the transition

semantics (Ü p.639), since we believe that by the transition

semantics, we have modeled what the compiler of the pro-

gramming language actually does. The transition semantics

records the actual computation steps (Ü p.634).

Secondly, we have shown that the transition semantics is

equivalent to the natural semantics (Ü p.643), which in turn

is equivalent to the denotational semantics (Ü p.648).

Thirdly, someone might claim that the Hoare semantics

657

Relating Hoare and Denotational Semantics

Theorem (Hoare soundness):

` {P} c {Q} =⇒|= {P} c {Q}
Theorem (Hoare relative completeness):

|= {P} c {Q} =⇒` {P} c {Q}
Why relative544?

So the Hoare relation is in fact compatible with the deno-

tational semantics of IMP.
“obviously” reflects the real semantics of a program, but that

would seem quite far-fetched, because the semantics speaks

about properties of states rather than about states directly.

Together this explains why we call a Hoare triple valid if

it is correct w.r.t. the denotational semantics.
544We will not give any details here, but the completeness

result is restricted in the same way that the completeness of

HOL (Ü p.387) is restricted to general models, as opposed

to standard models.

658

27.7 Example Program

tm :== λx.1;

sum :== λx.1;

i :== λx.0;

WHILE λs.(s sum) <= (s a) DO

(i :== λs.(s i) + 1;

tm :== λs.(s tm) + 2;

sum :== λs.(s tm) + (s sum))

What does this program do?

Try a = 1, a = 2, . . . , and look at i!545

545a is not modified anywhere. You should think of a as

input of the program.

i counts the number of times the loop is entered, i.e. the

final value of i is the number of times the loop was entered.

This number depends on a. The following table shows that

final values of i, tm and sum depending on the value of a:

i tm sum

0 ≤ a < 1 0 1 1

1 ≤ a < 4 1 3 4

4 ≤ a < 9 2 5 9

9 ≤ a < 16 3 7 16

16 ≤ a < 25 4 9 25

25 ≤ a < 36 5 11 36

36 ≤ a < 49 6 13 49

sum takes the values of all squares successively, computed

by the famous binomial formula:

(i + 1)2 = i2 + 2i + 1

659

Square Root

Answer: The program computes the square root. Informally:

Pre ≡ ”True”

Post ≡ ”i2 ≤ a < (i + 1)2”

Formally

Pre ≡ λs. True

Post ≡ λs. (s i)546 ∗ (s i) ≤ (s a) ∧
s a < (s i + 1) ∗ (s i + 1)

Since tm takes the value 2i+1 for all i successively, it follows

that sum + tm always gives the next value of sum.

660

Proving {Pre} . . . {Post}

We will now construct a proof tree showing that the program

computes the square root.

Generally, the difficulty547 is to know when to apply

conseq (Ü p.656).

We try to illustrate the search for the proof tree by anima-

tion. Still you may not understand each choice immediately,

but only in hindsight!

We use two metavariables: Inv for the loop invariant, PW

for the enter condition of the loop. We instantiate later.

Abbreviation: ExC ≡ λs.Inv s ∧ ¬s sum ≤ s a (“exit

condition”). We omit `!

547The conseq (Ü p.655) rule can always be applied. If one

decides not to apply the conseq rule, then the choice of any

other rule (Ü p.656) is deterministic.

661

Proof

I1 549

A1
551

A2
554

A3
557

I3 559 {Inv} WH . . . {ExC} I4 560

{PW} WH . . . 558{ExC}
conseq

{λs.PW (s[”i”]555)} i . . . 556{ExC}
semi

{λs.PW (s[”i, sum”]552)} sum . . . 553{ExC}
semi

{λs.PW (s[”i, sum, tm”]550)} tm . . . {ExC}
semi

I2 561

{Pre} tm . . . 548{Post}
conseq

662

This is what we want to prove.

Nothing happens after the loop, so intuition says (Ü p.661)

that ExC must imply Post .

Apply semi three times. PW (“pre while”) is just a

sensible choice of name: we don’t know yet what it is.

This application of ass (Ü p.652) will allow us to recon-

struct the precondition in the line just below.

And likewise A2 .

And likewise A1 .

We now know (by the form of conseq) what I1 is.

Intuition says (Ü p.661) that PW must imply Inv .

Of course, we are not ready yet. . .

663

Completing the Proof

A1 (Ü p.662), A2 (Ü p.662) and A3 (Ü p.662) are com-

plete, and I4 (Ü p.662) is trivial.

I1 (Ü p.662), I2 (Ü p.662), I3 (Ü p.662), and

{Inv}WH . . . (Ü p.662){ExC (Ü p.661)} remain to be

shown.

This also involves the question of how the metavariables

must be instantiated.

664

What is PW?

The metavariable PW (“precondition of WHILE ”) must ful-

fill (to show I1 (Ü p.662))

∀s.Pre (Ü p.660) s→ PW (s[i ::= 0][sum ::= 1][tm ::= 1])

where

s[i ::= 0][sum ::= 1][tm ::= 1] (Ü p.636) =

λy. if y = tm then 1 else

(if y = sum then 1 else(if y = i then 0 else (s y)))

Solution (recall (Ü p.660) that Pre ≡ λs.True):

PW = λs.s i = 0 ∧ s sum = 1 ∧ s tm = 1

665

What is Inv?

Continuing our proof tree construction:

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}

{P ′′}sum :== λs.s tm+ s sum{Inv}

{λs.Inv s ∧ s sum ≤ s a} ”body” 562{Inv}
semi2

{Inv}WH . . . (Ü p.662){ExC (Ü p.661)}
While (Ü p.654)

Just blindly applying semi twice gives three formulas563 to

be proven using ass (Ü p.652), one for each assignment in

the loop.

Now what are P ′ and P ′′? Have a look at rule ass (Ü p.652)

first!

563Of course, these three formulas should be side by side in

the proof tree, but this cannot be displayed.

666

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv (s[sum ::= s tm + s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm + 2]) (rule ass (Ü p.652))

= λs′.(λs.Inv (s[sum ::= s tm + s sum]))

(s′[tm ::= s′ tm + 2])

= λs′.Inv ((s′[tm ::= s′ tm + 2])

[sum ::= (s′[tm ::= s′ tm + 2]) tm+

(s′[tm ::= s′ tm + 2]) sum])

= λs′.Inv (s′[tm ::= s′ tm + 2]

[sum ::= s′ tm + 2 + s′ sum]).

667

Applying ass to i :== λs.s i + 1

Now treat i :== λs.s i + 1 in the same way. Temporarily,

let’s write P for λs.Inv s∧ s sum ≤ s a (Ü p.666). Recall

P ′ = (Ü p.667)

λs (Ü p.162).Inv (s (Ü p.162)[tm ::= s (Ü p.162) tm +

2][sum ::= s (Ü p.162) tm + 2 + s (Ü p.162) sum]).

P = λs′.P ′(s′[i ::= s′ i + 1]) (by rule ass (Ü p.652))

= λs′.(λs.Inv (s[tm ::= s tm + 2][sum ::= s tm + 2 + s sum]))

(s′[i ::= s′ i + 1])

= λs′.Inv ((s′[i ::= s′ i + 1])

[tm ::= (s′[i ::= s′ i + 1]) tm + 2]

[sum ::= (s′[i ::= s′ i + 1]) tm + 2 + (s′[i ::= s′ i + 1]) sum]))

= λs (Ü p.162).Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum]).

668

So Inv must solve564 this equation.

564Recall (Ü p.666) that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
{P ′}tm :== λs.s tm + 2{P ′′}
{P ′′}sum :== λs.s tm + s sum{Inv}

all by ass (Ü p.652). Dealing with the second and third

formula using ass , we found that

P ′ = λs′.Inv (s′[tm ::= s′ tm+2][sum ::= s′ tm + 2+s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}

as well, Inv must have such a form that the formula becomes

an instance of ass .

669

Inv Must Fulfill the Equation

Inv must fulfill the equation

λ∀s.Inv s ∧ s sum ≤ s a = ↔
λ∀s.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum])

Don’t think syntactically! We are in HOL (Ü p.406): =

means ↔, and we can replace λ by ∀ (Ü p.395).

Guessing the right Inv is obviously difficult! Informally (Ü p.660)

Inv ≡ ”(i + 1)2 = sum ∧ tm = (2 ∗ i) + 1 ∧ i2 ≤ a”

670

Checking that Inv Fulfills Equation

s sum ≤ s a ∧ (6)

(s i + 1)2 = (s sum) ∧ (7)

s tm = (2 ∗ (s i)) + 1 ∧ (8)

(s i)2 ≤ (s a) ∧ (9)

(recall: = means ↔) = (10)

((s i + 1) + 1)2 = (s sum) + (s tm) + 2 ∧ (11)

(s tm + 2) = (2 ∗ (s i + 1)) + 1 ∧ (12)

(s i + 1)2 ≤ (s a) (13)

671

Proof Sketch

First show the “→”-direction:

(8) → (12) and (6) ∧ (7) → (13) by simple arithmetic.

(11) is shown as follows:

((s i + 1) + 1)2 = (s i + 1)2 + 2 ∗ (s i + 1) + 1
(7)
= (s sum) + 2(s i) + 1 + 2
(8)
= (s sum) + (s tm) + 2

672

Proof Sketch (Cont.)

Now show the “←”-direction:

(12) → (8) and (13) → (9) by simple arithmetic. (7) is

shown as follows:

(s i + 1)2 = ((s i + 1) + 1)2 − 2 ∗ (s i + 1)− 1
(11)
= (s sum) + (s tm) + 2− 2 ∗ (s i + 1)− 1

(12)
= (s sum) + 2 ∗ (s i + 1) + 1

−2 ∗ (s i + 1)− 1

= s sum

Finally, (7) ∧ (13) → (6). So Inv (Ü p.670) is indeed an

invariant!

673

The WHILE Loop: Remarks

We have shown (Ü p.670)

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

One would definitely expect →, but ← is remarkable!

We can show this because our invariant is so strong: for

showing →, the weaker invariant (7) ∧ (8), i.e.

”(i + 1)2 = sum ∧ tm = (2 ∗ i) + 1

would do (check it!).

But the extra condition i2 ≤ a is needed for showing

Post (Ü p.660), which states what the program actually

computes.

674

Taking Care of Post

We have shown I1 (Ü p.662) and

{Inv (Ü p.670)}WH . . . (Ü p.662){ExC (Ü p.661)}. Now

continue with I2 (Ü p.662).

Does Post (Ü p.660) s follow from Inv (Ü p.670) s ∧
¬s sum ≤ s a?

Yes!

(s i)2 ≤ (s a) follows from (9)

(s a) < (s i + 1)2 follows from ¬s sum ≤ (s a) and (7).

675

The Final Missing Part

I3 (Ü p.662) remains to be shown, i.e.

∀s.PW s→ Inv (Ü p.670) s

or, expanding the solutions for PW (Ü p.665) and Inv (Ü p.670)

∀s. s i = 0 ∧ s sum = 1 ∧ s tm = 1→
(s i + 1)2 = s sum ∧
s tm = (2 ∗ (s i)) + 1 ∧
(s i)2 ≤ (s a)

This is easy to check.

676

An Alternative for Tackling the Loop Part

Recall that our loop invariant was “too strong” (Ü p.674).
An alternative:

∀s.(Inv s∧
s sum ≤ s a)→
Inv ′ s

{Inv ′}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}
{P ′′}sum :== λs.s tm+ s sum{Inv}

{Inv ′} ”body” (Ü p.666){Inv}
semi2

{λs.Inv s ∧ s sum ≤ s a} ”body” (Ü p.666){Inv}
conseq

{Inv}WH . . . (Ü p.662){ExC (Ü p.661)}
While (Ü p.654)

677

Alternative (Cont.)

Applying ass (Ü p.652) as before gives

Inv ′ = λs.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum])

We are left with the proof obligation

∀s.(Inv s ∧ s sum ≤ s a)→ Inv (s[i ::= s i + 1]

[tm ::= s tm + 2][sum ::= s tm + 2 + s sum])

Just this could be shown setting weak Inv ≡ (Ü p.674) (7)

∧ (8), but for actually showing Post (Ü p.660), i2 ≤ a is

still needed.

678

27.8 Automating Hoare Proofs

In the example (Ü p.659), we have verified a program com-

puting the square root.

But this was tedious, and parts of the task can be auto-

mated.

679

Weakest Liberal Preconditions

Observation: the Hoare relation is deterministic to a certain

extent.

Idea: we use this fact for the generation of (weakest liberal)

preconditions.

Weakest liberal preconditions are:

constdefs wp :: com⇒ assn ⇒ assn

”wp c Q ≡ (λs.∀t.(s, t) ∈ C(c)→ Q t)”

So wp c Q returns the set of states (Ü p.649) containing

all states s such that if t is reached from s via c, then the

post-condition Q holds for t. Computable? Not obvious.

680

Equivalence Proofs

Main results of the wp-generator are:
wp SKIP: wp SKIP Q = Q
wp Ass: wp (x :== a) Q = (λs. Q (s[x ::= a s]))
wp Semi: wp (c; d) Q = wp c (wp d Q)
wp If: wp (IF b THEN c ELSE d) Q =

(λs.(b s→ wp c Q s) ∧ (¬b s→ wp d Q s))
wp While True: b s =⇒ wp (WHILE b DO c) Q s =

wp (c; WHILE b DO c) Q s
wp While False: ¬b s =⇒ wp (WHILE b DO c) Q s = Q s
wp While if: wp (WHILE b DO c) Q s =

(if b s then wp(c; WHILE b DO c) Q s else Q s)

Last case summarises the two before.

681

WP-Semantics

Except for termination problem due to While, (weakest lib-

eral) precondition wp can be computed.

This fact can be used for further proof support by verifi-

cation condition generation.

682

Verification Condition Generation

First, we must enrich the syntax by loop-invariants:

datatype acom =

Askip

| Aass loc aexp

| Asemi acom acom

| Aif bexp acom acom

| Awhile bexp assn acom

Almost same as com (Ü p.632), but While gets an ad-

ditional argument for asserting a loop invariant. Asserting

this is the difficult, creative step to be done by a human.

683

Computing a Weakest Liberal Precondition

We define a function that computes a wp (Ü p.680):
primrec

”awp Askip Q = Q”

”awp (Aass x a) Q = (λs.Q(s[x ::= as]))”

”awp (Asemi c d) Q = awp c (awp d Q)”

”awp (Aif b c d) Q = (λs.(b s→ awp c Q s)∧
(¬b s→ awp d Q s))”

”awp (Awhile b Inv c) Q = Inv”
Idea: for all statements, the exact wp (Ü p.680) is com-

puted, except for While, where the assertion provided by

the user is taken as approximation. Proof obligation: show

that such an assertion is compatible with the program and

the desired property . . .

684

A Verification Condition

Construct a formula vc c Q s with the intuitive reading: as

far as the invariant assertions are concerned, s is a good pre-

state for reaching desired post-property Q using annotated

program (Ü p.683) c.

This is not about distinguishing good pre-states from bad

pre-states! It is about formalising well-chosen invariants. For

an annotated program with well-chosen invariants, ∀s.vc c Q s

holds, i.e. vc c Q ≡ λs.True.

685

The Definition of vc

Roughly, an annotated programm has well-chosen invariants

if its components have well-chosen invariants, so most of the

definition is saying just that:
primrec

”vc Askip Q = (λs.True)”

”vc (Aass x a) Q = (λs.True)”

”vc (Asemi c d) Q = (λs.vc c (awp d Q) s ∧ vc d Q s)”

”vc (Aif b c d) Q = (λs.vc c Q s ∧ vc d Q s)”

”vc (Awhile b Inv c) Q = (λs.(Inv s ∧ ¬b s→ Q s)∧
(Inv s ∧ b s→ awp c Inv s) ∧ vc c Inv s)”

Only the case for While is non-trivial . . .

686

vc: The While case

”vc (Awhile b Inv c)Q = (λs.(Inv s ∧ ¬b s→ Q s)∧
(Inv s ∧ b s→ awp c Inv s)∧
vc c Inv s)”

Why is Inv a well-chosen invariant?

• Inv + exit condition imply Q: Inv s ∧ ¬(b s)→ Q s;

• Inv + loop condition imply precondition of Inv (so that

Inv will hold after one execution of c): Inv s∧ (b s)→
awp c Inv s.

• vc c Inv s is in the spirit of the rest of the definition of

vc: call vc recursively for the component.

687

Results of the wp-Generator

vc sound: ∀Q.(∀s.vc ac Q s)→
` {awp ac Q} astrip565 ac {Q}
vc complete: ` {P} c {Q} =⇒ ∃ac.astrip ac = c∧
(∀s.vc ac Q s) ∧ (∀s.P s→ awp ac Q s)

To prove that c has propertyQ after execution, annotate (Ü p.683)

it with loop invariants (ac) and show ∀s. vc ac Q s. This

implies that a Hoare proof exists, for the computable precon-

dition awp ac Q. For good (robust) programs, awp ac Q =

λs.True.

688

Summary

IMP closely follows the standard textbook [Win96].

Isabelle/HOL is a powerful framework for embedding im-

perative languages.

Isabelle/HOL is also a framework for state-of-the-art lan-

guages like JAVA including interfaces, inheritance, dynamic

methods.

It works in theory and for non-trivial problems in practice

(but of modest size).

689

28 A Taste of some Isabelle and HOL
Applications

690

Just a few Isabelle or HOL Applications

We briefly introduce two Isabelle/HOL applications, and one

application of HOL Light:

• Java bytecode verification;

• floating-point arithmetic (Ü p.695);

• red-black trees (Ü p.700).

This is just to stimulate you to look for more applications

on your own!

28.1 Java Bytecode Verification

Typically, Java programs are delivered as bytecode, as op-

posed to source code on the one hand and machine code on

the other hand. Bytecode is machine-independent.

691

http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/projects.html

A Java runtime system provides the Java Virtual Machine,

i.e., an interpreter for Java bytecode.

Java is a typed language: the type system forbids things

like pointer arithmetic, thus preventing illegal566 memory

access.

However, bytecode is not type-safe by itself. For various

reasons, bytecode could be corrupted. This is obviously crit-

ical for security and possibly safety.

566By “illegal memory access”, we mean access to regions

not assigned to the program.

692

Ensuring Type Safety

The loader of a typical JVM has a bytecode verifier: A pro-

gram that checks whether bytecode is type-safe.

Klein and Nipkow have specified a JVM and a bytecode

verifier in Isabelle and proved its correctness using Isabelle

[KN03, Nip03].

Such applications may have big impact since they are con-

cerned with the correctness of not just some particular pro-

gram, but rather the programming language (implementa-

tion) itself.

693

JavaCard

JavaCard is a subset of Java employed on smart cards. As-

pects in contrast to full Java:

• Memory on smart cards is limited567.

• Security is vital for smart card applications (banking

etc.).

Project Verificard concerned with ensuring reliability of

smart card applications.

Verificard @ Munich have applied the work on bytecode

verification (using Isabelle) to JavaCard.

End user panel includes Ericsson, France Télécom R&D,

and Gemplus.
567The memory on smart cards is limited. A full-fledged

bytecode verifier would be too large/slow. One approach

to tackling this problem is to work with bytecode programs

with type annotations. Checking if a bytecode program is

consistent with its type annotations is a much simpler task

than computing these type annotations, which is what a

bytecode verifier is supposed to do. The task can therefore

be performed on a smart card more easily than full bytecode

verification.

694

http://www.verificard.org/
http://isabelle.in.tum.de/verificard/
http://www.ericsson.com
http://www.francetelecom
http://www.gemplus.com/

28.2 Floating Point Arithmetic

John Harrison has done much work on verifying arithmetic

functions operating on various number types adhering to cer-

tain standards [Har98, Har99, Har00].

He has used HOL Light, not Isabelle. This means: no

metalogic, specialized theorem prover for HOL.

He formally proved that the floating point operations of

an Intel processor behave according to the IEEE standard

754 [IEE85]. First machine-checked proof of this kind.

We briefly review his work [Har99] using an Isabelle-like

syntax where helpful.

695

http://www.cl.cam.ac.uk/users/jrh/
http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html

What Are Floats?

Conventionally: floats have the form ±2e · k.

e is called exponent, Emin ≤ e ≤ Emax.

k is called mantissa, can be represented with p bits.

696

Floats in HOL

For formalization in HOL, equivalent representation

(−1)s · 2e−N · k

with k < 2p and 0 ≤ e < E.

Thus a particular float format is characterized by maximal

exponent E, precision p, and exponent offset (“ulpscale”) N .

The set of real numbers representable by a triple is:

format (E, p,N) =

{x | ∃s e k. s < 2 ∧ e < E ∧ k < 2p ∧ x = (−1)s · 2e · k/2N}

697

Rounding

Rounding takes a real to a representable real nearby. E.g. round-

ing up:

round fmt x = εa. a ∈ format fmt ∧ a ≤ x∧
∀b ∈ format fmt . b ≤ x→ b ≤ a

Formalization of the Standard [IEE85].

Useful lemmas such as:

x ≤ y =⇒ round fmt x ≤ round fmt y

a ∈ format fmt ∧ b ∈ format fmt ∧ 0.5 ≤ a
b ≤ 2 =⇒

(b− a) ∈ format fmt

698

Operations

For operations such as addition, multiplication etc., it is

proven in HOL that they behave as if they computed the

exact result and rounded afterwards.

However, there are some debatable questions related to

the sign of zeros.

699

28.3 Red-Black Trees

Red-black trees are trees that can be used for implement-

ing sets/dictionaries, just like AVL trees. To formulate “balanced-

ness” invariants, nodes are colored:

1. Every red node has a black parent.

2. Each path from the root to a leaf has the same number

of black nodes.

Together these invariants ensure that maximal paths can

differ in length by at most factor 2.

These invariants must be maintained by insertion and

deletion operations.

700

Red-Black Trees in SML

Red-black trees provided in New Jersey SML library [Pau96].

Angelika Kimmig568 tried to verify the insertion operation

of red-black trees using Isabelle. Findings?

• There is a mistake in the implementation of red-black

trees in New Jersey SML! Insertion may lead to a vio-

lation of the first invariant, since the root may become

red.

• As long as one just inserts, this is just a slight constant

deterioration.

• Angelika has suggested a fix and proven the correctness

of red-black tree insertion using Isabelle.

568Angelika Kimmig is a student who took this course in

Wintersemester 02/03 in Freiburg. She then continued work-

ing with Isabelle in a Studienarbeit (a project required by

computer science students in Freiburg).

701

http://www.smlnj.org/

Node Deletion

• Deletion is also wrongly implemented!

• With deletion, not just the root can become red, but the

tree coloring can become completely wrong.

• Angelika has an idea for fixing deletion as well, but no

proof (yet?).

Read the Studienarbeit for more details [Kim03]!

References

[Acz77] Peter Aczel. Handbook of Mathematical Logic,

chapter An Introduction to Inductive Defini-

tions, pages 739–782. North-Holland, 1977.

702

[AHMP92] Arnon Avron, Furio Honsell, Ian A. Mason, and

Robert Pollack. Using typed lambda calculus to

implement formal systems on a machine. Journal

of Automated Reasoning, 9(3):309–354, 1992.

[And02] Peter B. Andrews. An Introduction to

Mathematical Logic and Type Theory: To Truth

Through Proofs. Kluwer Academic Publishers,

2002. Second Edition.

[Apt97] Krzysztof R. Apt. From Logic Programming to

Prolog. Prentice Hall, 1997.

[Ari] Aristotle. Analytica priora I, chapter 4.

[Ber91] Paul Bernays. Axiomatic Set Theory. Dover

Publications, 1991.

703

[BM00] David A. Basin and Seàn Matthews. Structuring

metatheory on inductive definitions. Information

and Computation, 162(1-2):80–95, 2000. Down-

load.

[BN98] Franz Baader and Tobias Nipkow. Term

Rewriting and All That. Cambridge University

Press, 1998.

[Can18] Georg Cantor. ?? ??, 18??

[Chu40] Alonzo Church. A formulation of the simple the-

ory of types. Journal of Symbolic Logic, 5:56–68,

1940.

[dB80] Nicolaas G. de Bruijn. A survey of the project

AUTOMATH. In Essays in Combinatory Logic,

704

http://www.informatik.uni-freiburg.de/~basin/pubs/metaind.ps.Z
http://www.informatik.uni-freiburg.de/~basin/pubs/metaind.ps.Z

Lambda Calculus, and Formalism. Academic

Press, 1980.

[Des16] Rene Descartes. ?? ??, 16??

[Dev93] Keith Devlin. The Joy of Sets. Fundamentals

of Contemporary Set Theory. Undergraduate

Texts in Mathematics. Springer-Verlag, 1993.

[Ebb94] Heinz-Dieter Ebbinghaus. Einführung in die

Mengenlehre. BI-Wissenschaftsverlag, 1994.

[Fit96] M. Fitting. First-order Logic and Automated

Theorem Proving. Springer-Verlag, 1996.

[Fle00] Jacques D. Fleuriot. On the mechanization of

real analysis in isabelle/hol. In Proceedings of

the 13th International Conference on Theorem

705

Proving in Higher Order Logics, volume 1869 of

Lecture Notes in Computer Science, pages 145–

161. Springer, 2000.

[FP98] Jacques D. Fleuriot and Lawrence C. Paulson.

A combination of nonstandard analysis and ge-

ometry theorem proving, with application to

newton’s principia. In Claude Kirchner and

Hélène Kirchner, editors, Proceedings of the

15th CADE, volume 1421 of LNCS, pages 3–16.

Springer-Verlag, 1998.

[Frä22] Adolf Fränkel. Zu den Grundlagen der Cantor-

Zermeloschen Mengenlehre. Mathematische

Annalen, 86:230–237, 1922. See [vH67].

[Fre93] Gottlob Frege. Grundgesetze der Arithmetik,

706

volume I. Verlag Hermann Pohle, 1893. Trans-

lated in part in [Fur64].

[Fre03] Gottlob Frege. Grundgesetze der Arithmetik,

volume II. Verlag Hermann Pohle, 1903. Trans-

lated in part in [Fur64].

[Fur64] Montgomery Furth. The Basic Laws of

Arithmetic. Berkeley: University of California

Press, 1964. Translation of [Fre03].

[Gen35] Gerhard Gentzen. Untersuchungen über das

logische Schliessen. Mathematische Zeitschrift,

39:176–210, 405–431, 1935. English translation

in [Sza69].

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor.

Proofs and Types. Cambridge University Press,

707

1989.

[GM93] Michael J. C. Gordon and Tom F. Melham, ed-

itors. Introduction to HOL. Cambridge Univer-

sity Press, 1993.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze

der Principia Mathematica und verwandter Sys-

teme. Monatshefte für Mathematik und Physik,

38:173–198, 1931.

[Har98] John Harrison. Theorem Proving with the Real

Numbers. Springer-Verlag, 1998.

[Har99] John Harrison. A machine-checked theory of

floating point arithmetic. In Yves Bertot, Gilles

Dowek, André Hirschowitz, C. Paulin, and Lau-

rent Théry, editors, Proceedings of the 12th

708

TPHOLs, volume 1690 of LNCS, pages 113–130.

Springer-Verlag, 1999.

[Har00] John Harrison. Formal verification of the IA/64

division algorithms. In Mark Aagaard and

John Harrison, editors, Proceedings of the 13th

TPHOLs, volume 1869 of LNCS, pages 233–251.

Springer-Verlag, 2000.

[HC68] George E. Hughes and Maxwell John Cresswell.

An Introduction to Modal Logic. Muthuen and

Co. Ltd, London, 1968.

[Hen50] Henkin. Completeness in the theory of types.

Journal of Symbolic Logic, 15(2):81–91, 1950.

[HHP93] Robert Harper, Furio Honsell, and Gordon D.

Plotkin. A framework for defining logics. JACM,

709

40(1):143–184, 1993.

[HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L.

Peyton Jones, and Philipp Wadler. Type classes

in Haskell. ACM Transactions on Programming

Languages and Systems, 18(2):109–138, 1996.

[Höl90] Steffen Hölldobler. Conditional equational the-

ories and complete sets of transformations.

Theoretical Computer Science, 75(1&2):85–110,

1990.

[HP93] G. Huet and G. Plotkin, editors. Logical

Environments. Cambridge University Press,

1993.

[HR04] Michael Huth and Mark Ryan. Logic in

Computer Science. Modelling and Reasoning

710

about Systems. Cambridge University Press,

2nd edition edition, 2004.

[HS90] J. Roger Hindley and Jonathan P. Seldin.

Introduction to Combinators and λ-Calculus.

Cambridge University Press, 1990.

[Hué] Gerard Huét. ?? ??, ??

[IEE85] The Institute of Electrical and Electronic En-

gineers, Inc. IEEE. Standard for binary

floating point arithmetic. ANSI/IEEE Standard

754-1985, 1985.

[Kim03] Angelika Kimmig. Red-black trees of slmnj. Stu-

dienarbeit at Universität Freiburg, Download,

2003.

711

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0506/csmr/rbt.pdf

[Klo93] Jan Willem Klop. Handbook of Logic in

Computer Science, chapter ”Term Rewriting

Systems”. Oxford: Clarendon Press, 1993.

[KN03] Gerwin Klein and Tobias Nipkow. Verified byte-

code verifiers. Theoretical Computer Science,

3(298):583–626, 2003.

[LP81] Harry R. Lewis and Christos H. Papadim-

itriou. Elements of the Theory of Computation.

Prentice-Hall, 1981.

[Mil78] Robin Milner. A theory of type polymorphism in

programming. Journal of Computer and System

Sciences, 17(3):348–375, 1978.

712

[Mil92] Dale Miller. Logic, higher-order. In Stu-

art C. Shapiro, editor, Encyclopedia of Artificial

Intelligence. John Wiley & Sons, 2 edition, 1992.

[Min00] Grigori Mints. A Short Introduction to

Intuitionistic Logic. Kluwer Academic/Plenum

Publishers, 2000.

[Nip93] Tobias Nipkow. Order-Sorted Polymorphism in

Isabelle, pages 164–188. Cambridge University

Press, 1993. In [HP93].

[Nip98] Tobias Nipkow. Winskel is (almost) right: To-

wards a mechanized semantics. Formal Aspects

of Computing, 10(2):171–186, 1998.

[Nip02] Tobias Nipkow. Hoare logics in Isabelle/HOL.

In H. Schwichtenberg and R. Steinbrüggen, ed-

713

itors, Proof and System-Reliability, pages 341–

367. Kluwer, 2002.

[Nip03] Tobias Nipkow. Java bytecode verification.

Journal of Automated Reasoning, 30(3-4):233–

233, 2003.

[NN99] Wolfgang Naraschewski and Tobias Nipkow.

Type inference verified: Algorithm W in Is-

abelle/HOL. Journal of Automated Reasoning,

23(3-4):299–318, 1999.

[NP93] Tobias Nipkow and Christian Prehofer. Type

checking type classes. In Proceedings of the 20th

ACM Symposium Principles of Programming

Languages, pages 409–418. ACM Press, 1993.

714

[Pau89] Lawrence C Paulson. The foundation of a

generic theorem prover. Journal of Automated

Reasoning, 5(3):363–397, 1989.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic

Theorem Prover, volume 828 of LNCS. Springer,

1994.

[Pau96] Lawrence C. Paulson. ML for the Working

Programmer. Cambridge University Press, 1996.

[Pau97a] Lawrence C. Paulson. Generic automatic proof

tools. In Robert Veroff, editor, Automated

Reasoning and its Applications: Essays in Honor

of Larry Wos, chapter 3. MIT Press, 1997.

[Pau97b] Lawrence C. Paulson. Mechanizing coinduction

and corecursion in higher-order logic. Journal

715

of Logic and Computation, 7(2):175–204, 1997.

Download.

[Pau05] Lawrence C. Paulson. The Isabelle Reference

Manual. Computer Laboratory, University of

Cambridge, October 2005.

[Pea18] Guiseppe Peano. ?? ??, 18??

[Plo81] Gordon D. Plotkin. A structural approach to

operational semantics. Technical Report DAIMI

FN-19, Computer Science Department, Aarhus

University, Denmark, 1981.

[PM68] Dag Prawitz and Per-Erik Malmnäs. A sur-

vey of some connections between classical, in-

tuitionistic and minimal logic. In A. Schmidt

and H. Schütte, editors, Contributions to

716

http://arxiv.org/pdf/cs.LO/9711105

Mathematical Logic, pages 215–229. North-

Holland, 1968.

[Pra65] Dag Prawitz. Natural Deduction: A proof

theoretical study. Almqvist and Wiksell, 1965.

[Pra71] Dag Prawitz. Ideas and results in proof theory.

In Jens Erik Fenstad, editor, Proceedings of the

Second Scandinavian Logic Symposium, pages

235–308. North-Holland, 1971.

[SH84] Peter Schroeder-Heister. A natural extension of

natural deduction. Journal of Symbolic Logic,

49(4):1284–1300, 1984.

[Sza69] M. E. Szabo. The Collected Papers of Gerhard

Gentzen. North-Holland, 1969.

717

[Tho91] Simon Thompson. Type Theory and Functional

Programming. Addison-Wesley, 1991.

[Tho95a] Della Thompson, editor. The Concise Oxford

Dictionary. Clarendon Press, 1995.

[Tho95b] Simon Thompson. Miranda: The Craft

of Functional Programming. Addison-Wesley,

1995.

[Tho99] Simon Thompson. Haskell: The Craft of

Functional Programming. Addison-Wesley,

1999. Second Edition.

[vD80] Dirk van Dalen. Logic and Structure. Springer-

Verlag, 1980. An introductory textbook on logic.

718

[Vel94] Daniel J. Velleman. How to Prove It. Cambridge

University Press, 1994.

[vH67] Jean van Heijenoort, editor. From Frege to

Gödel: A Source Book in Mathematical Logic,

1879-193. Harvard University Press, 1967. Con-

tains translations of original works by David

Hilbert and Adolf Fraenkel and Ernst Zermelo.

[vL16] Gottfried Wilhelm von Leibniz. ?? ??, 16??

[WB89] Phillip Wadler and Stephen Blott. How to

make ad-hoc polymorphism less ad-hoc. In

Conference Record of the 16th ACM Symposium

on Principles of Programming Languages, pages

60–76, 1989.

719

[Wen99] Markus Wenzel. Inductive datatypes in HOL -

lessons learned in formal-logic engineering. In

Yves Bertot, Gilles Dowek, André Hirschowitz,

and and Laurent Théry C. Paulin, editors,

Proceedings of TPHOLs, volume 1690 of LNCS,

pages 19–36. Springer-Verlag, 1999.

[Win96] Glynn Winskel. The Formal Semantics of

Programming Languages – An Introduction.

MIT Press, 1996. 3rd ed.

[WR25] Alfred N. Whitehead and Bertrand Russell.

Principia Mathematica, volume 1. Cambridge

University Press, 1925. 2nd edition.

[Zer07] Ernst Zermelo. Untersuchungen über die

Grundlagen der Mengenlehre. Mathematische

720

Annalen, 65:261–281, 1907. See [vH67].

721

	1. General Introduction
	2. Propositional Logic
	2.1. Propositional Logic: Overview
	2.2. Formalizing Propositional Logic
	2.3. Propositional Logic: Language
	2.4. Deductive System: Natural Deduction
	2.5. Deductive System: Rules of Propositional Logic
	2.6. Deductive System: Derived Rules
	2.7. Alternative Deductive System Using Sequent Notation

	3. Natural Deduction: Review
	4. First-Order Logic
	4.1. First-Order Logic: Overview
	4.2. First-Order Logic: Syntax
	4.3. First-Order Logic: Semantics
	4.4. Towards a Deductive System
	4.5. First-Order Logic: Deductive System
	4.6. Conclusion on FOL

	5. First-Order Logic with Equality
	6. First-Order Theories
	6.1. Example 1: Partial Orders
	6.2. Example 2: Groups

	7. Naïve Set Theory
	7.1. Naïve Set Theory: Basics
	7.2. Operations on Sets
	7.3. Extending Set Comprehensions
	7.4. Outlook

	8. The -Calculus
	8.1. Untyped -Calculus
	8.2. Simple Type Theory
	8.3. Polymorphism and Type Classes
	8.4. Higher-Order Unification
	8.5. Summary on -Calculus

	9. Encoding Syntax
	9.1. : Review
	9.2. Representing Syntax of Propositional Logic
	9.3. Representing Syntax of First-Order Logic
	9.4. Higher-Order Abstract Syntax (HOAS)
	9.5. Summary of Encoding Syntax

	10. Resolution
	10.1. Summary on Resolution

	11. Automation by Proof Search
	11.1. Proof Search and Backtracking
	11.2. Classifying Rules
	11.3. Proof Procedures (Simplified)
	11.4. Summary on Automated Proof Search

	12. Term Rewriting
	12.1. Higher-Order Rewriting
	12.2. Extensions of Rewriting
	12.3. Organizing Simplification Rules
	12.4. Summary on Term Rewriting
	12.5. Summary on Last Three Sections

	13. Isabelle's Metalogic
	13.1. The Logic M
	13.2. Encoding Syntax and Provability
	13.3. Reasoning with Resolution
	13.4. Quantification
	13.5. Free Variables in Goals
	13.6. Conclusion on Isabelle's Metalogic

	14. HOL: Foundations
	14.1. Overview
	14.2. Syntax
	14.3. Semantics
	14.4. Basic Rules
	14.5. Isabelle/HOL
	14.6. Conclusions on HOL

	15. HOL: Deriving Rules
	15.1. Equality
	15.2. True
	15.3. Universal Quantification
	15.4. False
	15.5. Negation
	15.6. Existential Quantification
	15.7. Conjunction
	15.8. Disjunction
	15.9. Miscellaneous Definitions
	15.10. Summary on Deriving Rules
	15.11. Mathematics and Software Engineering in HOL

	16. Conservative Theory Extensions
	16.1. Conservative Theory Extensions: Basics
	16.2. Constant Definition
	16.3. Type Definitions
	16.4. Summary on Conservative Extensions

	17. Mathematics in the Isabelle/HOL Library: Introduction
	18. Orders
	18.1. Summary on Orders

	19. Sets
	19.1. Summary on Sets

	20. Functions
	20.1. Conclusion of Orders, Sets, Functions

	21. Background: Recursion, Induction, and Fixpoints
	22. Least Fixpoints
	22.1. First Approach: Least Fixpoints (Tarski)
	22.2. Tarski's Fixpoint Theorem
	22.3. Induction Based on Lfp.thy
	22.4. The Package for Inductive Sets
	22.5. Summary on Least Fixpoints

	23. Well-Founded Recursion
	23.1. Prerequisite: Relations
	23.2. Prerequisite: Closures
	23.3. Well-Founded Orderings
	23.4. Defining Recursive Functions
	23.5. Example for wfrec: Natural Numbers
	23.6. Conclusion on Well-founded Recursion
	23.7. Conclusion on Recursion and Induction

	24. Arithmetic
	24.1. What is Infinity? Cantor's Hotel
	24.2. Type-Closed Conservative Extensions
	24.3. Natural Numbers: Nat.thy
	24.4. Integers
	24.5. Further Number Theories
	24.6. Conclusion on Arithmetic

	25. Datatypes
	25.1. S-Expressions
	25.2. Lists in Isabelle

	26. Summary of HOL Library / Outlook on Modeled Systems
	27. IMP
	27.1. IMP: Introduction
	27.2. Operational Semantics: Two Kinds
	27.3. Embedding of the Natural Semantics
	27.4. Embedding of the Transition Semantics
	27.5. Embedding of the Denotational Semantics
	27.6. Axiomatic (Hoare) Semantics
	27.7. Example Program
	27.8. Automating Hoare Proofs

	28. A Taste of some Isabelle and HOL Applications
	28.1. Java Bytecode Verification
	28.2. Floating Point Arithmetic
	28.3. Red-Black Trees

