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Propositional Logic This week’s exercises will be on propositional logic. We will do proofs
both using Isabelle and using paper and pencil as we have learned in the lecture.

Isabelle Isabelle is an interactive theorem prover. During an Isabelle session, you will con-
struct proofs of theorems. A proof consists of a number of proof steps, and the Isabelle system
will ensure that each step is correct, and thus ultimately that the entire proof is correct. Various
degrees of automation can be realized in Isabelle: you can write each step of a proof yourself,
or you can let the system do big subproofs or even the entire proof automatically. In the be-
ginning, we will do the former, because we want to understand in detail what a proof looks
like.

Isabelle can be used with different interfaces:

1. directly from a shell;

2. using an editor, e.g. emacs; this allows you to have better control of the files that are
involved in an Isabelle session;

3. using a sophisticated specialized interface built on an editor; e.g., the ProofGeneral system
is built on top of emacs and provides many functionalities for running Isabelle.

In these exercises, we will opt for (3).
Thus you should be aware of three layers when you are working with Isabelle: there is the

programming language ML, then there is the system Isabelle built on top of it, and finally there
is the interface for using Isabelle, which might be ProofGeneral.

Configuring your system for Isabelle You will always run Isabelle by starting xemacs. If
you are not familar with xemacs you should look at

http://www.digilife.be/quickreferences/QRC/XEmacs%20Reference%20Card.pdf

Create a working directory, move to it, and type xemacs. You can customize xemacs using
the rich menus provided. Open (create) the file ex1.ML, which will be your first proof script,
that is, a file containing Isabelle proofs.

Now customize xemacs:

• Multiple Windows: Isabelle will use several xemacs subwindows (simply windows in emacs
jargon). You may choose if you want these displayed all in one window (called frame in
emacs jargon) split into several parts or as several windows. This is done by (un)ticking
the box “Proof-General → Options → Display → Multiple Windows”.

• X-Symbol: For a nice rendering of mathematical symbols, xemacs uses the X-Symbol
package. To enable it, tick the box “Proof-General → Options → X-Symbol”.

• Electric Terminator: This will save you from having to type the return key to fire proof
commands. Proceed in analogy to X-Symbol.

• Fly Past Comments: This will ignore comments when processing a proof step by step.
Proceed in analogy to X-Symbol.

You should now select “Proof-General → Options → Save Options”

http://www.digilife.be/quickreferences/QRC/XEmacs%20Reference%20Card.pdf


• Choosing the logic: We will use the logic FOL. Go to “Proof-General → Advanced →
Customize → Isabelle → Chosen Logic”. This will open a new buffer. Set the logic to
“FOL” (following the instructions given in that buffer) and click “Save”.

You are encouraged to experiment with the configuration menu to configure ProofGeneral
according to your personal preferences! You might also want to consult the documentation at
http://proofgeneral.inf.ed.ac.uk/userman.

Before actually starting Isabelle, we will explain some more points.

Files and Directories On the computers you are using, only the Isabelle binaries are in-
stalled, so that you cannot see the sources. We put some files from the sources (for Is-
abelle2005, which is the version we are using) on the course’s webpage. For the newer ver-
sion Isabelle2008, the sources can be found on the web (most of it actually stayed the same):
http://isabelle.in.tum.de/library/.

Whenever we prove something in Isabelle (or in a paper and pencil fashion), we do so in the
context of a theory. The essential parts of a theory are (1) the definition of some syntax and
(2) judgements that are postulated to be true. Point (2) will be clarified below.

In Isabelle, this theory is contained in a file whose name ends in .thy. You will find several
standard Isabelle theories on http://isabelle.in.tum.de/library/.

There is no special theory file for propositional logic in our distribution, but rather we use
the theory files of first-order logic, which is a superset of propositional logic. We have already
taken care of that above by choosing the logic. The files are named IFOL.thy (for intuitionistic
first-order logic) and FOL.thy (for classical first-order logic).

Syntax and Proofs in Isabelle Understanding the correspondence between a paper and
pencil proof and a proof in Isabelle is difficult in the beginning and will take some time.

First consider the syntax of formulae in Isabelle. The logical connectives are typed as -->,
\/ (or |), /\ (or &), and ~. Note that xemacs displays those as the connectives used in paper
and pencil proofs, thanks to the X-Symbol package. Just type some formulae in ex??.ML to
see this (but then erase them again).

Now consider the inference rules. These are listed in IFOL.thy beneath the comment
(* Propositional logic *). E.g.

conjunct1: "P&Q ==> P"

is the Isabelle FOL encoding of ∧-EL. We want to understand the correspondence between the
notation above and the Isabelle encoding of the rules, first by looking at the mere syntactic
forms.

Try to suggest how the rule conjunct1 corresponds to ∧-EL. Do the same for some of:
conjunct2 vs. ∧-ER, disjI1 vs. ∨-IL, disjI2 vs. ∨-IR, FalseE vs. ⊥-E.

Now suggest how the rule conjI corresponds to ∧-I, and how mp corresponds to →-E.
Finally, suggest how disjE corresponds to ∨-E, and how impI corresponds to →-I.
The inference rules conjI, conjunct1 etc. are examples of ‘judgements that are postulated

to be true’ (see above). Technically, each such rule is an expression of type thm (‘theorem’).
Simply type, e.g., conjI; in the file ex1.ML. The so-called Response buffer will pop up and
display ”[|?P; ?Q|] =⇒?P∧?Q” : thm, which gives the value and the type of the expression conjI.
The type thm is one of the most important datatypes of Isabelle.

Note that typing conjI; has started Isabelle. During the Isabelle session, the Response
buffer will display messages from the Isabelle system, but depending on how you configured
your system, the buffer will not be visible.

Goals The most common way of using Isabelle is by means of goals and tactics, and a first
intuitive understanding of this is that you build a proof (tree), as you would in a paper and
pencil proof, but from the bottom to the top. At any point in an Isabelle session, the Isabelle
system will be in a ‘state’, which consists of one or more goals. A goal is a statement you are
currently trying to prove. A tactic is a function you apply to manipulate the state.

We explain these ideas in detail using the formula A→ (B → A). Type

goal thy "A --> (B --> A)";
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in ex1.ML. The function goal takes two arguments: our current theory FOL, to which the
identifier thy is bound, and a formula, encoded as a string. The effect is to put the Isabelle
system in a state which says: without making any assumptions, prove A → (B → A) in the
theory FOL. The so-called Goals buffer will pop up displaying this state.

In our paper and pencil proof of A → (B → A), the only rule we used was →-I, and so in
the Isabelle proof, we will use impI. If we replace (i.e., unify) P with A and Q with B → A,
the rule impI says: in order to prove A → (B → A) without making any assumptions, prove
B → A under the assumption A. Typing

by (rtac impI 1);

has the effect of manipulating the state in this way. Look in the Goals buffer and you will see it.
What happens technically is that the current goal A =⇒ B → A is obtained by resolving the
rule impI and the previous goal A→ (B → A); rtac stands for ‘resolution tactic’. Intuitively,
our current state says: if we can prove B → A under the assumption A, we are done.

You may find it difficult to understand the difference between =⇒ and −→, since both
somehow seem to stand for implication. However, −→ is a symbol of propositional logic, which
is our object logic, i.e., the language we are talking about. In contrast, =⇒ is a symbol of
the meta-logic, i.e., the language in which we talk. A little analogy: if I say ‘in German, all
nouns are capitalized’, I am making a statement in the meta language English about the object
language German. The difference between object and meta-logic will be explained over and
over again.

Now type

by (rtac impI 1);

again. This time, we should read impI as follows: in order to prove B → A without making
any assumptions, prove A under the assumption B. Look in the Goals buffer. Our current
state says: if we can prove A under the assumptions A and B, we are done. Trivially one can
prove A under the assumption A. In Isabelle, this is made explicit by the so-called assumption
tactic. Type

by (atac 1);

The effect of this tactic is to remove the first (and in this case only) subgoal provided the
conclusion to be proven (in this case A) is one of the assumptions. This completes our proof of
A→ (B → A). Try to see that we built the proof tree starting from the bottom. We can save
the theorem by typing

qed "aba";

This makes aba a theorem (an expression of type thm) which can be used from now on in the
same way as any rule in IFOL.thy, say impI.

Shortcuts by (rtac rule n) can be abbreviated as br rule n. by (atac n) can be abbreviated
as ba n.

Metavariables Sometimes Isabelle introduces variables preceded by ‘?’. These are called
metavariables, and we now explain what they are. To understand these explanations, you must
try it out in Isabelle.

Let us prove the formula A ∧B → A. In Isabelle you would start as follows

goal thy "A /\ B --> A";
br impI 1;

The current goal will be
A ∧B =⇒ A

This reads as: If we are able to derive A assuming A ∧ B, we are done. In turn, the rule
conjunct1 reads: If we can prove ?P∧?Q, we can also prove ?P. Now, ?P and ?Q could be any
formula. In particular, ?P could be A. This is what happens when you type

br conjunct1 1;
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You are currently trying to prove A, and if you want use conjunct1, then clearly ?P must be
instantiated to A. We say that the resolution tactic unifies the conclusion of our current goal (A)
with the conclusion of the rule conjunct1 (?P), which yields a substitution that replaces ?P with
A. As new goal, we have to prove the premise of conjunct1, using the old assumptions. But the
unification did not involve the ?Q that also occurs in conjunct1, and therefore Isabelle (using
this tactic) cannot know how ?Q should be instantiated. Therefore she leaves this instantiation
open and introduces a metavariable (when I tried it was ?Q1). You may also say that the
instantiation of ?Q is delayed : we do not know yet what ?Q will be. As next step you may type

ba 1;

You can now better understand proving by assumption: the conclusion does not need to be
identical to one of the premises, but rather some instance of the conclusion must be identical
to one of the premises. Here, ?Q1 is replaced with B and the subgoal is solved. We are done.

Exercise 1
Prove the following theorems using paper and pencil and using Isabelle.

For all theorems you prove (also in later exercises), use qed to save the theorem. As name,
use the number of the exercise, e.g. ex1_1 for A ∧B → B ∧A.

1. A ∧B → B ∧A

2. A ∧B → B ∨A

3. A ∨B → B ∨A

4. (A ∧B) ∧ C → A ∧ (B ∧ C)

5. (A→ B → C)→ (A→ B)→ (A→ C)

6. (A ∨B) ∧ (B ∨ C)→ B ∨ (A ∧ C)

When you do Isabelle proofs, one question is which subgoal should be selected first. In
general, you should select the subgoal first whose conclusion is most instantiated. The reason
is that the more it is instantiated, the smaller the chance is that it gets wrongly instantiated
by unification. You may think: but if it is more instantiated, then chances are that the chosen
tactic applied to that goal fails altogether. But the point is: each subgoal must be solved
eventually anyway.

From now on, all exercises will be Isabelle exercises unless it is clear from the context that
they must be paper-and-pencil exercises or this is explicitly said.

Derived Rules We will now see that it possible to derive rules in Isabelle.
To do so, we have to understand some Isabelle and ML technicalities. Suppose we want to

derive the rule
A ∧B
B ∧A

∧ − comm

It is possible to type

goal thy "P&Q ==> Q&P";

but the problem is that Isabelle does then not display the premise P&Q, but only the desired
conclusion Q&P. In fact, we have no way of referring to the premise. The solution is to type

val [prem] = goal thy "P&Q ==> Q&P";

instead. Try to understand what happens here in terms of ML. goal is a function which takes
as arguments a theory and a string (this is the reason you always have to put ”” around a
formula), and it returns a list of thm’s. Just type goal; to see the type of goal. The list of
thm’s it returns are the premises of the goal you are trying to prove. In our example this is the
list containing only one element, namely the premise P&Q. val [prem] =. . . has the effect of
binding [prem] to the list of premises, i.e., binding prem to the one premise we have. Type

val [prem1,prem2] = goal thy "P&Q ==> Q&P";
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Why do you think things go wrong this time?
You can use the premise as a rule whose name is prem. For example, the proof of the derived

rule above would be

val [prem] = goal thy "P&Q ==> Q&P";
br conjI 1;
br conjunct2 1;
br prem 1;
br conjunct1 1;
br prem 1;
qed "conjComm";

Instead of goal, you can also use Goal. This has two advantages: the argument thy is not
required any longer (since the current theory is assumed), and it is usually not necessary to
bind the assumptions of the goal you want to prove to identifiers. So instead of val prems =
goal thy . . . you simply type Goal . . .. The assumptions will be visible in your subgoals (see [1,
Section 2.1.1]). However, this does not work if the assumptions contain premises again, i.e., if
they are of the form . . . =⇒ . . ..

Alternatively, if you have used val prems = goal thy . . . and now you want to insert prems
into the premises of your current subgoal n, you can use by (cut facts tac prems n) (see [1,
Section 3.2.2]).

You should also look in the manual [1, Section 2.1.1] what premises does.

Some common derived rules of propositional logic

P ∧Q

[P,Q]
....
R

R
∧-E

P → Q P

[Q]
....
R

R
→-E′

[P ]
....
⊥
¬P ¬-I

¬P P
R

¬-E

For ∧-E, note that the notation means: discharge zero or more occurrences of P , and discharge
zero or more occurrences of Q.

Elimination tactic Elimination rules such as conjE, impE, disjE and FalseE are designed
to be used in combination with etac (elimination tactic). In the Isabelle proofs we have
constructed so far, we have applied the proof rules “backwards”: To get rid of a connective in
the conclusion we want to prove, we used an introduction rule, and to obtain a connective in
the conclusion, we used an elimination rule. The elimination tactic allows to use eliminate a
connective in the premises. We will now explain this.

Consider the proof of A ∧B → A on Sheet 1 . We could have simply written

goal thy "A /\ B --> A";
br impI 1;
by (etac conjunct1 1);

Here, etac first does the same thing as rtac, but then it immediately proves the resulting
subgoal by assumption, so that you do not even get to see it. You should go through the two
proofs of A ∧B → A again to understand that etac simply does the last two steps of the first
proof in one go.

Note that there is the abbreviation be, in analogy to br and ba.
The pragmatics of elimination rules and the elimination tactic are that they allow you to

manipulate premises, or more precisely, break a premise into pieces. For example, when you
have the premise A∧B, you may want to replace this premise with the two premises A and B.
This is what be conjE is good for.

More generally, etac may be useful whenever you know that the first subgoal you will get
by applying a rule will be provable by assumption.

We now explain what etac does in the general case. We have to take into account that a
rule may have several premises, not just one. When you use rtac, each of those premises gives
rise to a new subgoal (explained above in the paragraph on the resolution tactic). Now etac
solves the first of those premises by assumption, but the other ones still result in new subgoals.
Moreover, in each of those subgoals, that assumption will be removed from the premises.
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So we have a current subgoal Jψ1; . . . ;ψnK =⇒ φ and a rule Jφ1; . . . ;φmK =⇒ φ. The result
of applying etac will be

Jψ1; . . . ;ψi−1;ψi+1; . . . ;ψnK =⇒ φ2

. . .
Jψ1; . . . ;ψi−1;ψi+1; . . . ;ψnK =⇒ φm

(1)

The first subgoal is missing, and the premise ψi is removed in each subgoal.

Exercise 2
Prove the following theorems using etac and disjE and conjE wherever possible.

1. A ∧ (B ∧ C)→ (A ∧B) ∧ C

2. (A ∨ C) ∧ (B ∨ C)→ (A ∧B) ∨ C

You may want to compare this to proofs without using etac.

Variable Occurrences In lecture “First-Order Logic”, it was said that all occurrences of a
variable in a term or formula are bound or free or binding. Please search for the definition in
the slides.

Exercise 3
Mark each variable occurrence in

(∀z. q(z) ∨ p(b)) ∨ p(c)→ p(x) ∧ ∀x.∃y. r(x, f(z, b), g(z, x), g(b, x))

as bound (e.g., red), free (e.g., green) or binding (e.g., blue). For each bound occurrence,
indicate the corresponding binding occurrence. Assume the common convention that x, y, z are
variables and a, b, c are constants.

Exercise 4
Apply the substitution [z ← g(x)] to (∀z. p(y, z, g(x))) ∧ ∃x. r(g(z)) following the definition of
a substitution (in the chapter on “First-Order Logic” in the slides) step by step.

First Order Logic We now have some exercises on first-order logic, and so we keep using
the theory FOL, of which propositional logic is a subset. The quantifiers are written ALL and EX
in FOL. For example, ∀y.∃x.p(x, y) is written ALL y. EX x. p(x,y). Note that (∀x.p(x)) →
∃x.p(x) has to be written (ALL x. p(x)) --> (EX x. p(x)), including the parentheses.

Please look up the rules for the quantifiers in the lecture slides! In FOL, these rules are
encoded as follows:

allI: "(!!x. P(x)) ==> (ALL x. P(x))"
spec: "(ALL x. P(x)) ==> P(x)"

exI: "P(x) ==> (EX x. P(x))"
exE: "[| EX x. P(x); !!x. P(x) ==> R |] ==> R"

The !! is the metalevel universal quantification (ProofGeneral also displays this as
∧

). If a
goal is preceded by

∧
x, this means that Isabelle must be able to prove the subgoal in a way

which is independent from x, i.e., without instantiating x. Whenever you apply a tactic and
rule to a subgoal that is preceded by

∧
x, then the metavariables of the rule, which will occur

in the new subgoals through the resolution step, will be made dependent on x. Note that the
rules with !! in Isabelle are the rules whose paper and pencil versions have side conditions.

Now, when you are doing proofs in first-order logic, it is crucial that you introduce metalevel
universal quantification into your proofs as early as possible. In other words, rules with a side
condition should be applied first. Intuitively, the idea is: if you need a proof that goes through
for every x, then you must tell Isabelle as early as possible that you want it that way, so that
she can properly make the later variables depend on x.

This implies that you should apply allI and exE, the two rules that contain !!, as early
as possible. For allI, this is clear: If you have a conclusion ∀x. . . ., to prove, br allI is the
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obvious choice anyway. But for exE, the ∃ occurs in the premises. This means that whenever
you have an ∃ in the premises of the current subgoal, you should use the rule exE, and by our
explanations about etac, you may guess that you should apply etac with this rule.

Having said that, the above are rules of thumb, so you cannot expect that they always work.
But they work for all exercises of this sheet.

Exercise 5
Try to prove the following theorems of first-order logic in Isabelle. State whenever this is
impossible.

1. (∀y.q(f(y)))→ ∃x.q(x)

2. ((∀x.p(x)) ∨ (∀x.q(x)))→ (∀x.(p(x) ∨ q(x)))

3. (∀x.(p(x) ∨ q(x)))→ ((∀x.q(x)) ∨ (∀x.p(x)))

4. ((∀x.p(x)) ∧ (∀x.q(x)))→ (∀x.(p(x) ∧ q(x)))

5. (∀x.∃y.p(x, y))→ (∃y.∀x.p(x, y))

6. (∃x.∀y.p(x, y))→ (∀y.∃x.p(x, y))

7. (∀x.p(x))→ (∀x.p(g(x)))

Forward resolution In Isabelle, there are several functions that can be used to combine
existing rules into a new rule. In terms of proof trees, this is best understood as collapsing
a fragment from a proof tree into a single application of a rule. For example, consider the
following derivation tree, which might occur in some proof tree:

A ∧B
B

∧-ER
A ∧B
A

∧-EL

B ∧A ∧-I

We may want to replace this by
A ∧B
B ∧A

∧ − comm

We have seen on Sheet 1 how such a rule can be derived and an identifier be bound to it, but
to build big proofs, one may not want to introduce identifiers for each fragment. In Isabelle,
the expression

[conjunct2,conjunct1] MRS conjI

combines the rules conjunct2, conjunct1, and conjI into the new rule

[|?P2 & ?P; ?Q & ?Q1|] ==> ?P & ?Q

More precisely, “combining” means that the conclusions of conjunct2 and conjunct1 are
unified with the premises of conjI, respectively. The result is a rule whose premises are the
premises of conjunct2 and conjunct1, and whose conclusion is the conclusion of conjI, where
the unifier is be applied. This process is called (forward) resolution.

Note that MRS is an infix function whose arguments are a list of thms and a thm.

Exercise 6
Prove the theorem A ∧B → B ∧A in Isabelle using the rule

([conjunct2,conjunct1] MRS conjI)

Generally, when we write
rule list MRS rule,

rule list may have fewer elements than the number of assumptions of rule. Try
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[conjunct2] MRS conjI;

to see what happens in this case.
There is also an infix function RS which is a special case of MRS for the first argument being

a one-element list. So instead of writing [rule1] MRS rule2, you can write rule1 RS rule2.
Since ([conjunct2,conjunct1] MRS conjI) is a rule, we can use RS to combine it with

another rule, say impI.

Exercise 7
Prove the theorem A ∧B → B ∧A in Isabelle using a combination of

([conjunct2,conjunct1] MRS conjI)

and impI with RS.

Equality In lecture “First-Order Logic with Equality” we have learned that in first-order
logic with equality, the predicate = is not just any predicate, but it has certain properties,
namely it is an equivalence relation and a congruence on all terms and relations.

Note that we have no special theory file for first-order logic with equality, since it is already
included in IFOL.thy. There, all we have is

refl: "a=a"
subst: "[| a=b; P(a) |] ==> P(b)"

In fact, it turns out that transitivity and symmetry can be derived from reflexivity and congru-
ence. Actually, even subst is a derived rule, but at this stage of the course we do not explain
how.

Exercise 8
Derive rules that state that = is symmetric and transitive:

x = y

y = x
sym

x = y y = z

x = z
trans

Do it both in Isabelle and using paper and pencil (here you may use the reflexivity axiom and
the congruence rules from the lecture).

Hint: In the rule subst, P(b) stands for any formula that might contain b; in particular,
a = b is such a formula. Both proofs are extremely short (less than 5 lines).

Instantiation Tactic We have mentioned that when you apply rtac, Isabelle unifies the
conclusion of your current subgoal with the conclusion of the rule you use. In general, this
unification is not unique, and sometimes you will have to help Isabelle to find it. For example,
suppose your current goal is [|ALL x. p(s(x)) |] ==> p(s(s(z))). Intuitively, it should be
clear that you can prove this, since p(s(x)) holds for all x, and thus in particular for x = s(z).
But when you apply br spec, Isabelle does not know that you need x to be s(z). The way of
telling her is by using

by (res_inst_tac [("x","s(z)")] spec 1);

The first argument of res inst tac is a list of pairs of strings. For each pair, the first component
should be the name of some variable occurring in the rule (in this case spec), and the second
component should be a term or formula to which you want to instantiate this variable.

Exercise 9
Prove the following theorem of first-order logic in Isabelle:

s(s(s(s(s(zero))))) = five ∧ p(zero) ∧ (∀x.p(x)→ p(s(x)))→ p(five)

As an alternative, try doing it without instantiation tactic.

There is also eres_inst_tac that is an analogous generalization of etac. There is also
instantiate_tac, which can be used to instantiate any metavariable in the entire current
proof state [1, Section 3.1.4].
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Untyped λ-calculus Recall that the syntax of the untyped λ-calculus is defined by the
following grammar:

e ::= x | c | (ee) | (λx. e)

We introduced conventions of left-associativity and iterated λ’s in order to avoid cluttering the
notation.

Exercise 10
Write out the following λ-terms with full bracketing and without iterated λ’s:

1. (λxyz. x(zy)z)(λxy. x)(λxy. y)

2. (λu. uu)(λxz. (λv. x)(λxy. xy))(c(λw.wc))

Exercise 11
Rewrite the following λ-term using left-associativity and iterated λ’s:

1. ((λx. (λy. (λz. (((zy)z)(w(xz))))))(λx. (xx)))

2. ((λx. ((λw. v)(λy. (yz))))((λz. x)(λx. (λz. (λu. (((xy)z)(uz)))))))

In a λ-term, a subterm of the form (λx.M)N is called a redex (plur. redices). It is a subterm
to which β-reduction can be applied.

Exercise 12
Reduce the terms (λxy. (λz. zw)(λw.w)x)y, (λx. xy)(λy. y), and (λxyz. zyx)(λx. x)((λw. x)c)
to β-normal form (on paper), underlining the redex in each step.

The simply-typed λ-calculus We now do some paper-and-pencil exercises on the simply-
typed λ-calculus.

Exercise 13
Derive (on paper) a type judgement for the term λfghx. f(g(hx)x)x (including inserting the
appropriate type superscripts for the variables f, g, h, x you bind with λ), as this has been done
for λfx. f x x in lecture “The λ-Calculus”.

Polymorphism We now have an exercise where a type judgement in the λ-calculus with
polymorphism must be derived.

Exercise 14
Let B = {bool/0,N/0, pair/2} (e.g., pair has arity 2) and Σ = 〈> : bool , 3 : N, 4 : N, E : α →
α→ bool , P : α→ β → (α, β) pair〉.

Derive (using paper and pencil) an appropriate type judgement for

1. (E (E 3 4) >).

2. P 4 (P > 3).

Higher-Order Unification We have seen many times by now that applying tactics in Is-
abelle usually involves unification. In the following, assume that any object term or formula
is (represented by) a λ-term, so the variables of the λ-calculus will be called metavariables, as
explained in lecture “Encoding Syntax”.

Often Isabelle will not immediately find the appropriate unifier. An example of this was the
derived rule

Goal "x=y ==> y=x";
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The paper and pencil proof of it is

x = y x = x
refl

y = x
subst

but when you try to do this proof in Isabelle starting from the bottom using rule subst, the
problem is to make her know that the metavariable ?b contained in subst should be y. The
unification problem

?P(?b) =αβη y = x

has solutions
[?P← (λz. z = x), ?b← y]
[?P← (λz. y = z), ?b← x]
[?P← (λz. y = x), ?b← t] (for any t)

If you have ever programmed in Prolog, or have taken a course on first-order logic, you may
remember that in that context, every unification problem that has a solution has a unique (up
to variable renaming) solution, called the most general unifier. So what is different here? The
difference is that the variables may assume functions as values, such as λz. z = y above. We
also speak of higher-order variables. This is why we speak of higher-order unification.

There are several ways of helping Isabelle to find the right unifier, including:

• Choosing the right subgoal.

• res inst tac: In this context, note that in Isabelle, λ is written %.

• RS and MRS: Can you explain intuitively why these are useful for finding the right unifier?

• back: Whenever Isabelle is at a point where the result of applying a tactic is non-unique
(e.g. because the unification is not unique), she creates a branch point, indicating that
there are several possibilities of action. She will try the first possibility, but you can call
the function back to go to the most recent branch point and try the next possibility that
has not been tried yet. Note that back has type unit -> unit, meaning that you have
to call it with () as argument.

Tacticals Tacticals are operations on tactics. They play an important role in automating
proofs in Isabelle. But they also fit in well here because they are helpful for finding the right
unifier (see above).

The most basic tacticals are THEN and ORELSE. Both of those tacticals are of type tactic ∗
tactic → tactic and are written infix: tac1 THEN tac2 applies tac1 and then tac2, while
tac1 ORELSE tac2 applies tac1 if possible and otherwise applies tac2 (see [1, Chapter 4]). Note
that if you invoke

by tac1 THEN tac2;

and tac1 happens to create a branch-point, and afterwards tac2 fails, Isabelle will backtrack to
this branch-point and try another possibility. Thus THEN is another way of tackling the problem
that unifications are not unique.

Exercise 15
Derive (in FOL)

x = y

y = x
sym

using

1. res inst tac, where you instantiate the metavariable ?P occurring in rule subst;

2. MRS;

3. THEN.
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Solutions to Exercise Sheet No. 1

Exercise 1

1.

[A ∧B]1

B
∧-ER

[A ∧B]1

A
∧-EL

B ∧A ∧-I

A ∧B → B ∧A →-I1

2.

[A ∧B]2

B
∧-ER

B ∨A ∨-IL

A ∧B → B ∨A →-I2

3.

[A ∨B]3
[A]4

B ∨A ∨-IR
[B]4

B ∨A ∨-IL

B ∨A ∨-E4

A ∨B → B ∨A →-I3

4.

[(A ∧B) ∧ C]5

A ∧B ∧-EL

A
∧-EL

[(A ∧B) ∧ C]5

A ∧B ∧-EL

B
∧-ER

[(A ∧B) ∧ C]5

C
∧-ER

B ∧ C ∧-I

A ∧ (B ∧ C)
∧-I

(A ∧B) ∧ C → A ∧ (B ∧ C) →-I5

5.

[A→ B → C]6 [A]8

B → C
→-E

[A→ B]7 [A]8

B
→-E

C
→-E

A→ C →-I8

(A→ B)→ (A→ C) →-I7

(A→ B → C)→ (A→ B)→ (A→ C) →-I6

6. Let φ ≡ (A ∨B) ∧ (B ∨ C):

[φ]9

A ∨B ∧-EL

[φ]9

B ∨ C ∧-ER
[B]11

B ∨ (A ∧ C)
∨-IL

[A]10 [C]11

A ∧ C ∧-I

B ∨ (A ∧ C)
∨-IR

B ∨ (A ∧ C)
∨-E11

[B]10

B ∨ (A ∧ C)
∨-IL

B ∨ (A ∧ C)
∨-E10

φ→ B ∨ (A ∧ C)
→-I9



Exercise 3
In the following, free variables are underlined, and bound variables have an index indicating
which quantifier binds them:

∀1z. q(z1) ∨ p(b)) ∨ p(c)→ p(x) ∧ ∀2x. ∃3y. r(x2, f(z, b), g(z, x2), g(b, x2))

Exercise 4
Here is the definition of a substitution from the lecture slides:

1. x[x← t] = t;

2. y[x← t] = y if y is a variable other than x;

3. f(t1, . . . , tn)[x← t] = f(t1[x← t], . . . , tn[x← t]) (where f is a function symbol, n ≥ 0);

4. p(t1, . . . , tn)[x← t] = p(t1[x← t], . . . , tn[x← t]) (where p is a predicate symbol, possibly
⊥);

5. (¬ψ)[x← t] = ¬(ψ[x← t])

6. (ψ ◦ φ)[x← t] = (ψ[x← t] ◦ φ[x← t]) (where ◦ ∈ {∧,∨,→});

7. (Qx.ψ)[x← t] = Qx.ψ (where Q ∈ {∀,∃});

8. (Qy.ψ)[x← t] = Qy.(ψ[x← t]) (where Q ∈ {∀,∃}) if y 6= x and y 6∈ FV (t);

9. (Qy.ψ)[x← t] = Qz.(ψ[y ← z][x← t]) (where Q ∈ {∀,∃}) if y 6= x and y ∈ FV (t) where
z is a variable such that z 6∈ FV (t) and z 6∈ FV (ψ).

Now the exercise:

(∀z.p(y, z, g(x)) ∧ ∃x. r(g(z)))[z ← g(x)] = (6)
(∀z.p(y, z, g(x)))[z ← g(x)] ∧ (∃x. r(g(z)))[z ← g(x)] = (7)
(∀z.p(y, z, g(x))) ∧ (∃x. r(g(z)))[z ← g(x)] = (9)
(∀z.p(y, z, g(x))) ∧ (∃u. r(g(z))[x← u][z ← g(x)]) = (4)
(∀z.p(y, z, g(x))) ∧ (∃u. r(g(z)[x← u])[z ← g(x)]) = (3)
(∀z.p(y, z, g(x))) ∧ (∃u. r(g(z[x← u]))[z ← g(x)]) = (2)
(∀z.p(y, z, g(x))) ∧ (∃u. r(g(z))[z ← g(x)]) = (4)
(∀z.p(y, z, g(x))) ∧ (∃u. r(g(z)[z ← g(x)])) = (3)
(∀z.p(y, z, g(x))) ∧ (∃u. r(g(z[z ← g(x)]))) = (1)
(∀z.p(y, z, g(x))) ∧ (∃u. r(g(g(x))))

We have to apply rule 9 in line 3 because x 6= z and x ∈ FV (g(x)). We may choose u as a new
variable name for the bound variable x because u /∈ FV (g(x)) and u /∈ FV (r(g(z))).

Exercise 5
It is not possible to prove number 3, (∀x.(p(x) ∨ q(x)))→ ((∀x.q(x)) ∨ (∀x.p(x))) and number
5, (∀x.∃y.p(x, y))→ (∃y.∀x.p(x, y)). Both are not valid.

Exercise 8
We use here the names of the rules as they were introuduced in lecture “First-Order Logic with
Equality”.

Symmetry:

x = y x = x
refl

y = x
cong2
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Transitivity:
x = y

y = x
sym

y = z

z = y
sym

z = x
cong2

x = z
sym

The last solution was suggested by Maria Vassileva.

Exercise 10

1. (((λx. (λy. (λz. ((x(zy))z))))(λx. (λy. x)))(λx. (λy. y))).

2. (((λu. (uu))(λx. (λz. ((λv. x)(λx. (λy. (xy)))))))(c(λw. (wc))))

Exercise 11

1. (λxyz. zyz(w(xz)))(λx. xx) or even (λxyz. zyz(w(xz)))λx. xx.

2. (λx. (λw. v)(λy. yz))((λz. x)(λxzu. xyz(uz)))

Exercise 12

(λxy. (λz. zw)(λw.w)x)y →β

λy′. (λz. zw)(λw.w)y →β

λy′. (λw.w)wy →β

λy′. wy.

(λx. xy)(λy. y)→β

(λy. y)y →β

y.

(λxyz. zyx)(λx. x)((λw. x)c)→β

(λxyz. zyx)(λx. x)(x)→β

(λyz. zy(λx. x))(x)→β

λz. z(x)(λx. x)

Exercise 13
For readability, we abbreviate Φ = ρ→ σ → τ and Γ = {f : Φ, g : φ→ σ → ρ, h : σ → φ, x : σ}.

Γ ` f : Φ
hyp

Γ ` g : φ→ σ → ρ
hyp

Γ ` h : σ → φ
hyp

Γ ` x : σ
hyp

Γ ` hx : φ
app

Γ ` g(hx) : σ → ρ
app

Γ ` x : σ
hyp

Γ ` (g(hx)x) : ρ
app

Γ ` f(g(hx)x) : σ → τ
app

Γ ` x : σ
hyp

Γ ` f(g(hx)x)x : τ
app

f : Φ, g : φ→ σ → ρ, h : σ → φ ` λxσ. f(g(hx)x)x : σ → τ
abs

f : Φ, g : φ→ σ → ρ ` λhσ→φxσ. f(g(hx)x)x : (σ → φ) → σ → τ
abs

f : Φ ` λgφ→σ→ρhσ→φxσ. f(g(hx)x)x : (φ→ σ → ρ) → (σ → φ) → σ → τ
abs

λfΦgφ→σ→ρhσ→φxσ. f(g(hx)x)x : (Φ) → (φ→ σ → ρ) → (σ → φ) → σ → τ
abs
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Exercise 14

1. Let Θ1 = [α← bool ] and Θ2 = [α← N].

Θ1

` E : bool → bool → bool
assum

Θ2

` E : N→ N→ bool
assum

3 : N
assum

` (E 3) : N→ bool
app

4 : N
assum

(E 3 4) : bool
app

` E (E 3 4) : bool → bool
app

` > : bool
assum

` (E (E 3 4) >) : bool
app

2. Let Θ1 = [α← N, β ← (bool ,N)pair ] and Θ2 = [α← bool , β ← N].

(Θ1)

P : N → (bool ,N)pair →
(N, (bool ,N)pair)pair

assum

4 : N
assum

` P4 : (bool ,N)pair → (N, (bool ,N)pair)pair
app

(Θ2)
P : bool → N→
(bool ,N)pair

assum

> : bool
assum

P > : N→
(bool ,N)pair

app

3 : N
assum

` (P >3) : (bool ,N)pair
app

` P4(P >3) : (N, (bool ,N)pair)pair
app
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Definitions in HOL The basic inference rules of HOL involve only the constants =, →, and
ε. All other constants are defined in terms of those three, and the rules are derived, as we saw
in lecture “HOL: Deriving Rules”. But now, we want to check the definitions semantically:

True = (λxBool.x = λx.x)
∀ = λφ.(φ = λx.True)
False = ∀φ.φ
∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ
∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ
¬ = λφ.(φ→ False)
∃ = (λφ.φ(εx.φx))

Consider True: The term λxBool.x = λx.x evaluates to T , and so it is a suitable definition
for the constant True.

Now consider ∀: Note the use of HOAS here. ∀ should be a function that expects an
argument φ of type α → Bool (generalizing the technique we used for encoding first-order
∀). So φ is such that when you pass it an argument x of type α, it will return a proposition
(something of type Bool). Now when does φx hold for all x? This is the case exactly when φx
evaluates to T for all x, which is the same as saying that φ is the function λx.True.

Exercise 1
Think about similar intuitive explanations for the other definitions. You may also have a look
at the chapter “HOL Foundations” in the lecture.

Basic HOL In this lecture we derive all well-known inference rules for logical connectives and
quantifiers in HOL. In a realistic setup of Isabelle/HOL, those rules are available by default
since they are derived from the eight basic rules once and for all. For the sake of exercise, I am
asking you to pretend that the rules are not there.

You will have to set the logic used by Isabelle to “HOL” in the same way that you set it to
“FOL” at the beginning of this course.

The following exercise illustrates an important point using a very simple example: The
unification algorithm of Isabelle is incomplete!

Exercise 2
Derive the following rules (pretending they do not exist already!):

1. f = g =⇒ f(x) = g(x) (my fun cong)

2. x = y =⇒ f(x) = f(y) (my arg cong)

Hint: For fun cong, you should first draw a derivation tree. When you translate this tree
into an Isabelle backwards proof, Isabelle will not find the unifier. You have to think of a way
of helping Isabelle find the unifier. There are at least three techniques for doing this.

Exercise 3
Derive the following rules from the lecture (pretending they do not exist already!):



1. s = t =⇒ t = s (my sym)

2. True (my TrueI)

3. (
∧
x.P x) =⇒ ∀x.P x (my allI)

4. False =⇒ P (my FalseE)

5. JP ;QK =⇒ P ∧Q (my conjI)

Working with Isabelle HOL From now on, we will work with a full-fledged Isabelle HOL
setup. You will have to set the logic used by Isabelle to “HOL” in the same way that you set it
to “FOL” at the beginning of this course. If Isabelle is currently running, you should quit and
restart it (also using menus). The HOL theory file can be found on the course’s webpage. There
you will also find some other files contained in the standard HOL library.

Simplifier Much more than the theories we have looked at previously, HOL is centered around
proving equalities. The reason for the central role of equalities is that in higher-order logic,
formulae are terms of type bool , and so rather than saying that two formulae are equivalent,
we say that they are equal.

Since equality has such a central role, the simplifier is extremely important in HOL. Generally
in Isabelle, the simplifier is a module that simplifies subgoals by rewriting using equalities. Of
course, those equalities must be true in the given theory. Even so, one should not simply apply
equalities blindly, since this may lead to inefficiencies or even non-termination. For example,
if our theory contains an equality x + y = y + x, then this equation can be applied infinitely
many times.

Note that technically, the rewriting works with metalevel equalities (==), not object level
equalities (=).

The simplifier has to be set separately for each major Isabelle theory such as FOL, ZF,
HOL. The data-structure containing the setup of the simplifier is called the simpset. For HOL,
this is built by reading the file simpdata.ML. When we work with extensions of HOL, we will
mainly rely on this setup. However, we will also sometimes modify the simpset.

Recall simpset, addsimps, delsimps, simp tac, asm simp tac (and their upper-case coun-
terparts) from lecture “Term Rewriting”.

print_ss (simpset()); will print the printable contents of the current simpset. In partic-
ular, you will see all the rewrite rules.

Tracing set trace_simp; or trace_simp := true; will set the tracer, so that you can look
at the single steps of the rewriting process. In order to look at this output, you may have
to switch to the Trace buffer. This is done by selecting “Proof-General → Buffers → Trace”.
However, we advise you to turn off the tracer most of the time, since it will slow down Isabelle
a lot and may even cause her to get hung up, probably due to some exhaustion of resources.

For more details on the simplifier, you should look at [2, Chapter 10]. In the following
exercise, you will find that using a combination of simplification and blast tac (or fast tac
if you like) is effective.

Exercise 4
The following are some theorems and non-theorems of HOL. For each of them, prove it or else
state that it is not provable.

1. (if False then A else B) = B

2. J¬E =⇒ B 6= B′K =⇒ (if E then A else B) 6= (if E then A else B ′)

3. JA 6= A′;B 6= B′K =⇒ (if E then A else B) 6= (if E then A′ else B ′)

4. f (if E then x else y) = (if E then (f x ) else (f y))

5. P ∨Q =⇒ (if P then A else B) = (if Q then B else A)
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6. J¬E =⇒ B 6= B′;¬EK =⇒ (if E then A else B) 6= (if E then A else B ′)

7. A ∨B =⇒ (if P then A else B)

It may be interesting to switch on the tracer as explained above and look at how the
simplification has worked.

Sets We will now have some exercises concerning sets. Sets are defined in Set.thy. One might
get confused about syntax here. There is the ASCII syntax vs. the X-symbol syntax. Then
there is the distinction between the higher-order abstract syntax used in operator declarations,
e.g. Ball A S, and its concrete counterpart ALL x:A. S x (declared like this in Set.thy),
which would then be displayed by X-symbols (and in the lecture slides) as ∀x ∈ A.S x.

Exercise 5
Prove the following three lemmas from lecture “Sets”:

1. P a =⇒ a ∈ Collect P (CollectI)

2. a ∈ Collect P =⇒ P a (CollectD)

3. (∀x.(x ∈ A) = (x ∈ B)) =⇒ A = B (set ext)

Hints and notes: You will have to use the axioms in Set.thy which state the isomorphism
between characteristic functions and sets (see lecture “Sets”). You may use any lemmas proven
in HOL.*, but not the lemmas in Set (since that would undermine the purpose of this exercise).
You may not use fast tac, blast tac, auto etc.! For the last lemma, another lemma called
box equals is helpful. First make a sketch of the proofs by hand (they are not very compli-
cated). Use res inst tac or RS or other means to ensure that Isabelle finds the right unifier,
since this will be the crucial problem here.

Exercise 6
Solve the following goals involving sets, using as much automation as you like.

1. J∀x ∈ A.x ∈ B;∀x ∈ B.x ∈ CK =⇒ ∀x ∈ A.x ∈ C

2. A ∩B ⊆ A

3. (A = B) = ((Pow A) = (Pow B))

4. (A ⊆ B) = (A ∈ Pow B)

5. X ⊆ insert x X

6. JX ⊆ Y ;X 6= {}K =⇒ (Y −X) ⊂ Y

7. x 6= y =⇒ {x} 6= {x, y}

8.
JS = {a, b}; a 6= bK =⇒
∃A : Pow S.(∃B : Pow S.(∃C : Pow S.(∃D : Pow S.
A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D)))

9. range(λx.False) = {False}

10. f ‘ {} = {}

11. (A 6= {}) = (((λx.True) ‘ A) = {True})

12.
⋃
{} = S, where S is a term you should choose appropriately.
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Finite Sets In lecture “Least Fixpoints”, the set of finite subsets of A was defined as lfp F
where

F = λX.{{}} ∪
⋃
x ∈ A.((insert x) ‘X)

(recall that ‘ is nice syntax for image, whose type is [α⇒ β, α set ]⇒ (β set)).
We shall try to understand this better, in particular analyze the types that are involved.

All the following statements are consequences of the typing rules of HOL and the definitions of
the occurring constants. Note first that if A is a set then this means that A is of type τ set for
some τ . Secondly note that the expression x ∈ A forces x to be of type τ . Next, the type of
(insert x) is τ set ⇒ τ set . Next, the expression (insert x) ‘X forces X to be of type τ set set ,
and (insert x) ‘X is also of type τ set set . Next,

⋃
x ∈ A.((insert x) ‘X) is also of type τ set set

(see the declaration of UNION), and the same holds for {{}}∪
⋃
x ∈ A.((insert x) ‘X). Next, F

is of type τ set set ⇒ τ set set . Finally, lfp F is of type τ set set , which is what we expect.
Such informal type checking is usually helpful to understand what an expression does and

whether it is what one intends.
In the following, we assume that we have a type nat (so τ = nat) containing constants

0, 1, 2, . . ..

Exercise 7
Let Ev be the set of even numbers and

F = λX.{{}} ∪
⋃
x ∈ Ev .((insert x) ‘X)

(i.e., we instantiate A by Ev). Give the values of the following expressions (where appropriate,
use natural language to describe them):

1. F {}

2. F (F {})

3. F (F (F {}))

4. Fn {} = F (· · · (F︸ ︷︷ ︸
n

{}))

5. F {{7}}

6. F {S | S is finite}

7. F {S | S ⊆ Ev , S is finite}

8. F {S | S ⊆ Ev}

9. F UNIV

Can you name a few fixpoints of F?

We now show that this approach can also be taken in Isabelle, although it is not the one
taken in the HOL library.

Exercise 8
Load the theory FinSet.thy in your proof script ex2.ML. Type

open FinSet;
Fin.defs;

to see how the keyword inductive was translated to a fixpoint definition. Talking (ML-)tech-
nically, Fin is a structure (module), and defs is a value (component) of this structure (and Fin
is a component of FinSet). Prove the following goal:

{0, 1} ∈ Fin {0, 1, 2}

Hints: Fin.defs gives you a rewrite rule to replace Fin by its definition. Tarski’s fixpoint
theorem is proven in FixedPoint.ML and is called lfp unfold. To apply the theorem in such
a way that it rewrites a goal using the equation exactly once, the tactic stac is useful. The
tactic combines rtac with a use of the subst rule.
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To show monotonicity, one of the automatically generated thm’s of the FinSet structure is
useful. If you have used lfp unfold the appropriate number of times, the rest of the proof is
quite automatic.

In the above, we have right from the start distinguished between a type τ and a set A (Ev
in the exercise) of type τ set , which could be thought of as a “subset” of the type τ (although
of course, sets and types are formal objects of a different kind). Alternatively, one could define
“the set of all finite sets whose elements have type τ”. In this case, no fixed A is involved,
and it is closer to what actually happens in the Isabelle library. In Finite Set.thy (see the
course’s webpage) a constant Finites is defined. It has polymorphic type α set set . We have
A ∈ Finites if and only if A is a finite set. However, it would be wrong to think of Finites as
one single set that contains all finite sets. Instead, for each τ , there is an instance of Finites of
type τ set set containing all finite sets of element type τ . In Finite Set.thy we find the lines

inductive "Finites"
intros
emptyI [simp, intro!]: "{} : Finites"
insertI [simp, intro!]: "A : Finites ==> insert a A : Finites"

The Isabelle mechanism of interpreting the keyword inductive translates this into the following
definition: Finites = lfp G where

G ≡ λS. {x | x = {} ∨ (∃A a. x = insert a A ∧A ∈ S)}

You can see this by typing in your proof script:

thm "Finites.defs";

Note that for reasons related to how ML identifiers are (not) bound, you cannot simply type

Finites.defs;

Note that the A in the above expression is existentially quantified and has nothing to do with
the even numbers as in Exercise 7.

Note that there is a convenient syntactic translation

translations "finite A" == "A : Finites"

Relations In lecture “Well-Founded Recursion”, relations and the standard operations about
them (converse, composition, identity, etc.) were introduced. A comment on the order when
writing r◦s: If r is of type (β×γ) set and s is of type (α×β) set then r◦s is of type (α×γ) set .
This may be illustrated as follows:

�

�

�

�
α set

s-

�

�

�

�
β set

r-

�

�

�

�
γ set

.
.......................................

......................................
.....................................

.................................... ................................... ................................... .................................... .....................................
.............................

.........

........................
...............j

r ◦ s

One may find this somewhat confusing but it is in analogy to function concatenation, which
is also denoted using ◦: there, (f ◦ g)(x) is defined as f(g(x)). And: if f is of type β ⇒ γ and
g is of type α ⇒ β then f ◦ g is of type α ⇒ γ. As such, a relation cannot be “applied” to an
argument: it is not a function. However, for relations we have that

(r ◦ s)“A = r“(s“A)

where A is of type α set . This is in perfect analogy to

(f ◦ g)‘X = f ‘(g‘X)

where f , g are functions as specified above. You should compare image on functions, ab-
breviated by ‘, defined in Set.thy, with Image on relations, abbreviated by “, defined in
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Relation.thy. The idea is the same in both cases. Note that in Isabelle, relation concatena-
tion is written O (see Relation.thy) and function concatenation is written o (see Fun.thy).

Exercise 9
Show in Isabelle that there is an injective function f :: ind ⇒ ind that has “two witnesses of
not being surjective”, i.e., two different values not reached by the function. This is the goal

∃(f :: ind ⇒ ind)x y. (∀w.fw 6= x) ∧ (∀w.fw 6= y) ∧ x 6= y ∧ inj f

Hints: In essential places you have to provide the instantiations. Isabelle will not be able to
guess them.

To make the axioms for ind usable, you will have to include

val inj_Suc_Rep = thm "inj_Suc_Rep";

in your proof script, and a similar line for the other axiom.
Also, in some places you should reflect about what the essential lemmas/definitions are that

you need. In particular, a lemma concerning injective functions in Fun.thy will be useful. You
should add the appropriate lemmas/definitions to the simplifier and apply asm simp tac.

There is one useful rule that requires special care: not sym. You should first do asm simp tac
without this rule, and then again with this rule added. This way you can avoid looping.

The primrec syntax In lectures “Well-Founded Recursion” and “Arithmetic”, we have seen
the primrec syntax for defining recursive functions.

Exercise 10
Consider the functional iterate defined as follows:

iterate n f a = fn(a)

Generate a theory file Iterate.thy, where you define this function iterate (its type is nat ⇒
(α⇒ α)⇒ α⇒ α) using the primrec syntax.

Try it out on the goals

1. iterate (Suc(Suc 0)) Suc (Suc 0) =?x;

2. iterate (Suc(Suc(Suc 0))) (Suc ◦ Suc) 0 =?x.

What instantiations do you obtain for ?x in each case?
Hint: Look around in any theory files to get the syntax right.

Primitive recursion Typing nat.recs; gives you a scheme for defining primitive recursive
functions on the natural numbers. Recall (from your knowledge of the theory of computation [1])
that a primitive recursive function f of type nat ⇒ nat is defined by giving a constant c (of
type nat) and a function g of type nat ⇒ nat ⇒ nat , as follows:

f 0 = c

f n+ 1 = g n (f n)

In Isabelle, the expression nat rec c g defines f . You can address the two thm’s of the recursion
scheme by the names nat rec 0 and nat rec Suc (search in Nat.ML to understand why).

Exercise 11
Define the factorial function by primitive recursion, i.e., find appropriate φ and γ, and prove
the following two goals:

Jc = φ; g = γK =⇒ nat rec c g 0 = Suc 0
Jc = φ; g = γK =⇒ nat rec c g (Suc (Suc (Suc (Suc 0)))) =

Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))))))))))
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Hint: if you find it silly to type Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))))))))))), just type 24.

Now prove the goal
Jc = φ; g = γK =⇒ nat rec c g 13 =?x

What instantiation do you obtain for ?x?
Advice: have a coffee while Isabelle calculates.

The summation operator
∑n
i=l f(i) is standard syntax in mathematics. In lecture “Encoding

Syntax”, it was suggested that it should have type sum : i⇒ i⇒ (i⇒ i)⇒ i, where i was the
type of individuals. In the context of HOL and for the sake of simplification, I want to define
a summation operator sumup of type (nat ⇒ nat) ⇒ nat ⇒ nat , where sumup f n is to stand
for

∑n
i=1 f i.

Exercise 12
Define an expresion ς for the summation operator sumup using nat rec, and test it by proving
the following goals:

1. sumup = ς =⇒ sumup (λi.i) 5 = 15

2. sumup = ς =⇒ sumup (λi.i+ 2) 6 = 33

3. sumup = ς =⇒ sumup (λi.2 ∗ i)m = m ∗ (m+ 1)

Hint: If you find it difficult to define sumup, you should start by defining it for a fixed f ; e.g.,
define an expression S such that that S n = Σni=12 ∗ i, using nat rec.

Definition by recursion asks for proofs by induction. Whenever there is a statement about
arbitrary m of type nat to be proven, it has to be proven by induction (i.e., nat induct) on m.

The last exercise is similar to a well-known theorem often used as an example for induction
proofs: ∀n.

∑n
i=1 i = n∗(n+1)

2 .
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Solutions to Exercise Sheet No. 2

Exercise 1
Explanations can be found in the slides by clicking on the connectives on the slide containing
the HOL definitions.

Exercise 7
In this exercise, it is easy to confuse {} with {{}}. Recall the definition of f ‘A: it is {y | ∃x ∈
A. y = f(x)}. From this it follows that f ‘ {} = {}.

1. F {} = (λX.{{}} ∪
⋃
x ∈ Ev .((insert x) ‘X)) {} = {{}} ∪

⋃
x ∈ Ev .((insert x) ‘ {}) =

{{}} ∪
⋃
x ∈ Ev .({}) = {{}} ∪ {} = {{}}

2. F (F {}) = F ({{}}) = {{}, {0}, {2} . . .}

3. F (F (F {})) = F ({{}, {0}, {2} . . .}) = {{}, {0}, {2}, . . . , {0, 2}, {0, 4}, . . . , {2, 4}, {2, 6}, . . .}

4. Fn {} =
⋃n−1
k=0{S | S ⊆ Ev , S contains k elements} = {S | S ⊆ Ev , |S| < n}

5. F {{7}} = {{}, {7, 0}, {7, 2}, {7, 4} . . .}

6. F {S | S is finite} = {{}} ∪ {S | S is finite and contains at least one even number}

7. F {S | S ⊆ Ev , S is finite} = {S | S ⊆ Ev , S is finite}

8. F {S | S ⊆ Ev} = {S | S ⊆ Ev}

9. F UNIV = {{}} ∪ {S | S contains at least one even number}

Observe that for an arbitrary B of type nat set set , it is not generally true that F B 6⊇ B, as
can be seen in points 5, 6, and 9. Note moreover that if S is an element of B such that S 6= {}
and S does not contain an even number, then S /∈ F B, hence F B 6= B, i.e., B cannot be
a fixpoint. The reason is that for any x ∈ Ev , we have that insert x B does contain an even
number and so

F B = {{}} ∪ {S′ ∪ {{x}} | x ∈ Ev , S′ ∈ B}.

However, based on any B of type nat set set , the following is a fixpoint:

{E | E ⊆ Ev , E is finite} ∪ {S ∪ E | S ∈ B,E ⊆ Ev , E 6= {}, E is finite}. (2)

Consider B ≡ {S | S is finite}; it turns out that (2) becomes the r.h.s. of point 6, so here just
one application of F leads to the fixpoint. Consider B ≡ {}; it turns out that (2) becomes {S |
S ⊆ Ev , S is finite} (this is the least fixpoint of F , see point 7). Consider B ≡ {S | S ⊆ Ev};
it turns out that (2) becomes {S | S ⊆ Ev} (see point 8). Consider B ≡ {{7}}; it turns out
that (2) becomes

{E | E ⊆ Ev , E is finite} ∪ {{7} ∪ E | E ⊆ Ev , E 6= {}, E is finite}.

Consider B ≡ Ev ; it turns out that (2) becomes

{S | S ⊆ Ev , S is finite} ∪ {Ev},

so again we have a fixpoint.
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AVL trees We will develop a theory of AVL trees. These are binary trees where the inner
nodes are labeled with terms of a type α. These trees can thus be used to store such a set
of labels and thereby implement finite sets, dictionaries etc. AVL trees allow for efficient
insert-algorithms of the order O(log n). The idea is to maintain a certain “balanced-ness”-
invariant during inserting by certain “rotation-operations”. We will develop the necessary
recursive functions in such a way that they can be executed in Haskell, a functional programming
language.

The first part is concerned with the basic definitions of the theory file. We have provided a
fragment of the theory file AVL.thy. The fragment is called AVL fragment.thy. Your task will
be to fill in more constants and definitions, and then save the file under the name AVL.thy.

The line

datatype ’a tree = Leaf | Node ’a (’a tree) (’a tree)

is interpreted by Isabelle as a datatype definition, as we have seen in lecture “Datatypes”. Such
a definition will cause Isabelle to prove a number of thm’s about the new type, e.g. stating that
Leaf 6= Node a t1 t2 or that there is an induction schema for this type.

So each node has a node label of type ′a, and a left and right subtree.
The fragment defines a constant height and a definition stating that the height of a tree is

the maximal number of nodes in a path from the root to a leaf. Use this as a guideline for the
following exercises.

Exercise 1 (2 points)
Give a definition of a function isin (of result type bool) such that isin a t holds iff a is a node
label contained in tree t (note that you must also add the appropriate type declaration of isin
in the fragment).

Make sure Isabelle accepts your theory file and test the function using simple examples.

Exercise 2 (3 points)
Assume that the elements of the tree belong to a type for which ≤ is defined (for example the
type nat). We call a tree ordered if for each node labeled n, all node labels in the left subtree
are smaller, and all labels in the right subtree are greater. Define a function isord (of result
type bool) such that isord t holds iff t is ordered (as above, you must also add the appropriate
type declaration of isord in the fragment).

Again, test your function with some small examples.

From an algorithmical viewpoint, the definition of isin in Exercise 1 is inefficient. Can you
suggest under which condition and how it could be made more efficient?

You should have obtained a syntactically correct Isabelle theory, and a number of thm’s of
this theory have already been proven by Isabelle. You can do

use_thy "AVL";
open AVL;

tree.cases;
tree.distinct;
tree.induct;
tree.exhaust;



to see some of them.
So far, we have reconstructed the theory of AVL trees as defined by Cornelia Pusch and

Tobias Nipkow. We have already mentioned that there are some inherent inefficiencies in the
way that the datastructure itself is defined and the procedures are implemented. This is what
computer-supported modeling and reasoning is about: one should think of the theory file so
far as a specification of AVL trees rather than an implementation. We use this specification to
prove any property about AVL trees that we consider essential for “correct” behaviour of AVL
trees.

We will now aim at implementing AVL trees in more efficient ways. For the efficient imple-
mentation to behave as the specification, we have to show that each operation behaves in the
same way.

We noted that isin traverses the entire tree, which is unnecessary in case the tree is ordered.

Exercise 3 (1 point)
Write an efficient version of isin called isin eff which works correctly on ordered trees (no
correct behaviour is required on non-ordered trees). Insert this definition into your AVL.thy
file and save it.

Exercise 4 (2 points)
Prove the following goals:

1. isord (Node n l r) −→ x < n −→ isin x (Node n l r) −→ isin x l (qed it as isin_ord_l)

2. isord (Node n l r) −→ n < x −→ isin x (Node n l r) −→ isin x r (qed it as isin_ord_r)

3. isord t −→ (isin k t = isin eff k t) (qed it as isin_eff_correct)

The last statement shows that under certain conditions, an efficient implementation of a
function is equivalent to an inefficient, “declarative” implementation.
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