
Pearls of Computer-Supported Modeling
and Reasoning

Jan-Georg Smaus

II Semestre A.A.2009/2010

1

How to Use Screen Notes

These screen notes are generated from sources that were

originally intended for hypermedia, as lecture slides or online

course. Frequently, the slides contain highlighted terms that

come with an annotation, i.e., a more detailed explanation

that would usually be given by the lecturer during the lecture.

When one looks at the slides on the screen, one can click on

such a term and will be linked to the annotation. However,

there is a danger that one gets lost. In the present rendering,

Screen Notes, the annotations are realised as footnotes. Thus

the thread of the lecture can be followed without any jumping

within the document, while forward and backward references

are still realised as hyperlinks. Screen Notes are not suitable

for being printed! For printing use Lecture Notes.

2

1 History and Organization

3

Organizational Matters

• PD Dr. Jan-Georg Smaus

• This three-week course Pearls of Computer-Supported

Modeling and Reasoning is integrated in the Corso in-

tegrato di Metodi Formali e di Verifica by Daniele Maga-

zzeni and Monica Nesi.

• Language: English (domande anche in italiano!).

• Oral exam at the end?

• See webpage for further organizational info.

4

http://www.informatik.uni-freiburg.de/~smaus/
http://informatica.di.univaq.it/infoataq.php?corso=107&pid=86&lid=it

Organizational Matters (2)

• Timetable:

Day March . . . Times Aula

Monday 15th, 22nd, 29th 16.30 - 18.30 1.7

Tuesday 16th, 23rd, 30th 11.30 - 13.30 2.5

Tuesday 16th, 23rd, 30th 14.30 - 18.30 1.2?

• Bus problems: let’s go from 16:30 to 18:00 without break;

otherwise, let’s start each hour at x:30 sharp and have a

break after 45 minutes. I am available for questions until

18:30.

5

History of this Course

This course covers around 25% of the course Computer-Supported

Modeling and Reasoning. Jan-Georg Smaus gave this course

at the University of Freiburg in each winter semester from

WS03/04.

In previous years, this course was given by Prof. Dr. David

Basin and Prof. Dr. Burkhart Wolff.

As of 2003, David Basin moved to ETH Zürich.

Jan-Georg Smaus is now in the group of Prof. Dr. Bernhard

Nebel.

6

http://www.inf.ethz.ch/people/detail?id=19
http://www.inf.ethz.ch/people/detail?id=19
http://www.lri.fr/~wolff/
http://www.ethz.ch/
http://www.informatik.uni-freiburg.de/~gkiabt/
http://www.informatik.uni-freiburg.de/~gkiabt/

The Slides

The slides are available at http://www.informatik.uni-freiburg.de/˜ki/teaching/ws0910/csmr/aquila.html.

You might take notes of things written on the blackboard.

If you note mistakes or have suggestions, please tell me!

7

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0910/csmr/aquila.html

The Slides (2)

The slides are actually an online course. They are also avail-

able as lecture notes that can be printed out, and as screen

notes.

For easy reference, the slides/notes contain the material of

the full course as appendix, marked by pink background color.

Do not get lost there!

The documents are huge! The lecture notes are designed

for being printed at a rate of four pages per sheet side. So

please be mindful of resources when you print. In particular,

do not print the pink pages.

8

Exercises

We will mix lectures and exercises as seems fit. Since we have

no computer pool here at l’Aquila, please bring your laptops.

9

2 General Introduction

10

What this Course is about

Making logic come to life by making it run on a computer,

using the tool Isabelle. Applications in

• Mathematics1

1In the 1920’s, David Hilbert attempted a single rigorous

formalization of all of mathematics, named Hilbert’s program.

He was concerned with the following three questions:

1. Is mathematics complete in the sense that every statement

can be proved or disproved?

2. Is mathematics consistent in the sense that no statement

can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a

definite method to determine the truth or falsity of any

mathematical statement?

Hilbert believed that the answer to all three questions was

’yes’.

Thanks to the the incompleteness theorem of Gödel (1931)

and the undecidability of first-order logic shown by Church

and Turing (1936–37) we know now that his dream will never

be realized completely. This makes it a never-ending task to

find partial answers to Hilbert’s questions.

11

http://isabelle.in.tum.de/

• program and hardware verification2

(For the impacient: some Isabelle/HOL applications)

high level

requirem
ents

(sem
i) form

al

m
odels

code
code

code

For more details:

– Panel talk by Moshe Vardi

– Lecture by Michael J. O’Donnell

– Article by Stephen G. Simpson

– Original works Über das Unendliche and Die Grundlagen

der Mathematik [vH67]

– Some quotations shedding light on Gödel’s incompleteness

theorem

– Eric Weisstein’s world of mathematics explaining Gödel’s

incompleteness theorem

2Verification is the process of formally proving that a pro-

gram has the desired properties. To this end, it is necessary

to define a specification language in which the desired prop-

erties can be formulated, i.e. specified. One must define a

semantics for this language as well as for the program. These

semantics must be linked in such a way that it is meaningful

12

http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

What this Course is Useful for

After attending this course, you might . . .

• pursue an academic career focused on the topic of this

course or some other topic in formal methods;

• apply formal methods in a company3 like Intel or Gemplus;

• work in a different area in academia or industry; even

then, understanding mathematical and logical reasoning

improves understanding of how to build correct systems

and do more rigorous proofs.

to say: “Program X makes formula Φ true”.
3The last 20 years have seen spectacular hardware and soft-

ware failures (e.g. the Pentium bug) and the birth of a new

discipline: the verification engineer.

13

http://www.intel.com/
http://www.gemplus.com/

Overview: Three Parts

1. Logics4 (propositional, first-order, higher-order)

4The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
5Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.

14

Overview: Three Parts

1. Logics4 (propositional, first-order, higher-order)

2. Modeling mathematics and computer science (program-

ming languages) in higher-order logic

4The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
5Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.

14

Overview: Three Parts

1. Logics4 (propositional, first-order, higher-order)

2. Modeling mathematics and computer science (program-

ming languages) in higher-order logic

3. Case studies in formalizing a theory5 (functional and im-

perative programming).

4The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
5Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.

14

3 Propositional Logic

3.1 Propositional Logic: Language

Let a set V of (propositional) variables6 be given. LP , the7

language of propositional logic, is defined by the following
6In mathematics, logic and computer science, there are var-

ious notions of variable. In propositional logic, a variable is a

propositional variable, i.e., it stands for a proposition; it can

be interpreted as True or False.

This will be different in logics that we will learn about later.
7Strictly speaking, the definition of LP depends on V . A

different choice of variables leads to a different language of

propositional logic, and so we should not speak of the lan-

guage of propositional logic, but rather of a language of propo-

sitional logic. However, for propositional logic, one usually

does not care much about the names of the variables, or about

the fact that their number could be insufficient to write down

a certain formula of interest. We usually assume that there

are countably infinitely many variables.

Later, we will be more fussy about this point.

15

grammar8 (X ∈ V):

P ::= X | ⊥ 9 | (P∧10P) | (P∨P) | (P → P) | ((¬P)11)
8A notation like

P ::= X | ⊥ | (P ∧ P) | (P ∨ P) | (P → P) | (¬P))

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

e ::= x | c | (ee) | (λx. e)

τ ::= T | τ → τ

e ::= x | c | (ee) | (λxτ . e)

P ::= x | ¬P | P ∧ P | P → P . . .

for specifying syntax is called Backus-Naur form (BNF) for ex-

pressing grammars. For example, the first BNF-clause reads:

a propositional formula can be

a variable, or

⊥, or

P1 ∧ P2, where P1 and P2 are propositional formulae, or

P1 ∨ P2, where P1 and P2 are propositional formulae, or

P1 → P2, where P1 and P2 are propositional formulae, or

16

¬P1, where P1 is a propositional formula.

The symbol P is called a non-terminal, and when we apply

the rules starting from P until we reach an expression without

non-terminal we say that this expression is a production of P

or it is in the language generated by P .

The BNF is a very common formalism for specifying syntax,

e.g., of programming languages. See here or here.
9

The symbol ⊥ stands for “false”.
10The connectives are called conjunction (∧), disjunction

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

only uses the word connective for binary connective).
11“Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or

syntactic sugar12, for reasons of convenience. In paper-and-

pencil proofs, we are allowed to erase any occurrence of ¬P

17

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

The elements of LP are called (propositional) formulas13.

and replace it with P → ⊥, or vice versa, at any time. How-

ever, we shall see that when proofs are automated, this process

must be made explicit.
13In logic, the word “formula” has a specific meaning. For-

mulae are a syntactic category, namely the expressions that

stand for a statement. So formulas are syntactic expressions

that are interpreted (on the semantic level) as True or False.

We will later learn about another syntactic category, that of

terms.

I propositional logic, a formula may also be called a propo-

sition.

18

3.2 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].

Designed to support ‘natural’ logical arguments:

• we make (temporary) assumptions;

• we derive new formulas by applying rules;

• there is also a mechanism for “getting rid of” assump-

tions.

19

Natural Deduction (2)

Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

20

Natural Deduction (2)

Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

A proof is a derivation where we “got rid” of all assump-

tions.

20

3.3 Deductive System: Rules of Propositional Logic

We have rules for conjunction, implication, disjunction, fal-

sity and negation.

Rules of two kinds: introduce14 connectives
A B
A ∧B ∧-I

3.3 Deductive System: Rules of Propositional Logic

We have rules for conjunction, implication, disjunction, fal-

sity and negation.

Rules of two kinds: introduce14 and eliminate15 connectives
A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

14It is typical that the basic rules of a proof system can be

classified as introduction or elimination rules for a particular

connective.

This classification provides obvious names for the rules and

may guide the search for proofs.

The rules for conjunction are pronounced and-introduction,

and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are

also derived rules.
15It is typical that the basic rules of a proof system can be

classified as introduction or elimination rules for a particular

connective.

This classification provides obvious names for the rules and

may guide the search for proofs.

The rules for conjunction are pronounced and-introduction,

and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are

also derived rules.

21

Overview of Rules

A B
A ∧B ∧-I

A ∧B
A

∧-EL
A ∧B
B

∧-ER

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

[A]
....
B

A→ B
→-I

A→ B A
B

→-E
⊥
A
⊥-E

22

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

16

16All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

23

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

16

16All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

23

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

16

16All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

23

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

16

16All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

23

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

16

16All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

23

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

Can we prove anything with just these three rules?16

16All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

23

Examples with Conjunction and Implication

The simplest proof we can think of is the proof of P → P .

P

[]1

[]2
[]2

Examples with Conjunction and Implication

The simplest proof we can think of is the proof of P → P .

[P]1

P → P
→-I1

Do you find this strange?17

Examples with Conjunction and Implication

The simplest proof we can think of is the proof of P → P .

Do you find this strange?17

1. A→ B → A18

2. A ∧ (B ∧ C)→ A ∧ C19

17When we make the assumption P , we obtain a forest con-

sisting of one tree. In this tree, P is at the same time a leaf

and the root. Thus the tree P is a degenerate example of the

schema
[A]....
B

where both A and B are replaced with P .

Therefore we may apply rule→-I, similarly as in our abstract

example.

18

The rule(s):

[A]
....
B

A→ B
→-I

The proof:

A

B → A
→-I

A→ B → A
→-I1

19

The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

[A]
....
B

A→ B
→-I

The proof:

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

(A ∧ (B ∧ C))→ (A ∧ C)
→-I224

3. (A→ B → C)→ (A→ B)→ A→ C20

20

The rules:

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

The proof:

[]3 []5 []4 []5

3. (A→ B → C)→ (A→ B)→ A→ C20

20

The rules:

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

The proof:

3. (A→ B → C)→ (A→ B)→ A→ C20

20

The rules:

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

The proof:

(A→ B → C) A

B → C
→-E

(A→ B) A

B
→-E

C
→-E

A→ C
→-I5

(A→ B)→ A→ C
→-I4

(A→ B → C)→ (A→ B)→ A→ C
→-I3

25

Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid21? Provable22?

Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid21? Provable22?

21Yes, simply check the truth table:

A B ((A→ B)→ A)→ A

True True True

True False True

False True True

False False True

22In the proof system given so far, this is not provable. To

prove that it is not provable requires an analysis of so-called

normal forms of proofs. However, we do not do this here.

26

• It is provable in classical logic23, obtained by adding

A ∨ ¬A24 or

[¬A]
....
⊥
A
RAA25 or

[¬A]
....
A

A
classical26.

23The proof system we have given so far is a proof system for

intuitionistic logic. The main point about intuitionistic logic

is that one cannot claim that every statement is either true or

false, but rather, evidence must be given for every statement.

In classical reasoning, the law of the excluded middle holds.

One also says that proofs in intuitionistic logic are construc-

tive whereas proofs in classical logic are not necessarily con-

structive.

We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar

classical logic which allows an effective interpretation

and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has

been the topic of a fundamental discourse in the literature on

logic [PM68] [Tho91, chapter 3]. Often proofs contain case

distinctions, assuming that for any statement ψ, either ψ or

¬ψ holds. This reasoning is classical; it does not apply in

intuitionistic logic.

27

• Deep, “philosophical” issue in logic.

24A ∨ ¬A is called axiom of the excluded middle.
25The rule

[¬A]
....
⊥
A
RAA

is called reduction ad absurdum.
26The rule

[¬A]
....
A

A
classical

corresponds to the formulation is Isabelle.

28

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

29

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

It looks like this.

29

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S

¬S

R

We build a fragment of a derivation by writing the conclusion

R and the assumptions R ∨ S and ¬S.

29

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S

R ∨-E

Since we have assumption R ∨ S, using ∨-E seems a good

idea. So we should make assumptions R and S. First R. But

that is a derivation of R from R!

29

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

R ∨-E

So now S.

29

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R ∨-E

¬S and S allow us to apply →-E.

29

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R
⊥-E

R ∨-E

To apply ∨-E in the end, we need to derive R. But that’s

easy using ⊥-E!

29

3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S [R]1

¬S [S]1

⊥ →-E

R
⊥-E

R ∨-E
1

Finally, we can apply ∨-E. The derivation with open assump-

tions is a new rule that can be used like any other rule.

29

3.5 Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability

judgement27, i.e., reason about Γ ` A where Γ ≡ A1, . . . , An

instead of individual formulae.
27An object like A→ (B → C), A,B ` C is called a deriv-

ability judgement. We explained it earlier as simply asserting

the fact that there exists a derivation tree with C at its root

and open assumptions A→ (B → C), A,B.

However, it is also possible to make such judgements the

central objects of the deductive system, i.e., have rules in-

volving such objects.

The notation Γ ` A is called sequent notation. However,

this should not be confused with the sequent calculus (we

will consider it later). The sequent calculus is based on se-

quents, which are syntactic entities of the form A1, . . . , An `
B1, . . . , Bm, where the A1, . . . , An, B1, . . . , Bm are all for-

mulae. You see that this definition is more general than the

derivability judgements we consider here.

What we are about to present is a kind of hybrid between

natural deduction and the sequent calculus, which we might

call natural deduction using a sequent notation.

30

Sequent Rules (for → /∧ Fragment)

Rules for assumptions28 and weakening29:

Γ ` A30 (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

28The special rule for assumptions takes the role in this se-

quent style notation that the process of making and discharg-

ing assumptions had in natural deduction based on trees.

It is not so obvious that the two ways of writing proofs

are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
29The rule weaken is

Γ ` B
A,Γ ` B weaken

Intuitively, the soundness of rule weaken should be clear:

having an additional assumption in the context cannot hurt

since there is no proof rule that requires the absence of some

assumption.

We will see an application of that rule later.
30An axiom is a rule without premises. We call a rule with

premises proper.

31

Sequent Rules (for → /∧ Fragment)

Rules for assumptions28 and weakening29:

Γ ` A30 (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Rules for ∧ and →:
Γ ` A Γ ` B

Γ ` A ∧B ∧-I
Γ ` A ∧B

Γ ` A ∧-EL
Γ ` A ∧B

Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

28The special rule for assumptions takes the role in this se-

quent style notation that the process of making and discharg-

ing assumptions had in natural deduction based on trees.

It is not so obvious that the two ways of writing proofs

are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
29The rule weaken is

Γ ` B
A,Γ ` B weaken

Intuitively, the soundness of rule weaken should be clear:

having an additional assumption in the context cannot hurt

since there is no proof rule that requires the absence of some

assumption.

We will see an application of that rule later.
30An axiom is a rule without premises. We call a rule with

premises proper.

31

Proof in Sequent Notation with Metavariables

` A ∧ (B ∧ C)→ A ∧ C

We want to show that A∧ (B ∧C)→ A∧C is a tautology,

i.e., that it is derivable without any assumptions.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Proof in Sequent Notation with Metavariables

A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C →-I

The topmost connective of the formula is →, so the best

rule31 to choose is →-I.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Proof in Sequent Notation with Metavariables

A ∧ (B ∧ C) ` A A ∧ (B ∧ C) ` C
A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

The topmost connective of the formula is ∧, so the best rule

to choose is ∧-I.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Proof in Sequent Notation with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL
A ∧ (B ∧ C) ` C

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Things are becoming less obvious. To know that ∧-EL is the

best rule for the r.h.s., you need to inspect the assumption

A ∧ (B ∧ C).

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Proof in Sequent Notation with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL
A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Now it’s becoming even more difficult. To know that ∧-ER

is the best rule for the l.h.s., you need to look deep into the

assumption A ∧ (B ∧ C).

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Proof in Sequent Notation with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Again you need to look at both sides of the ` to decide what

to do.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Proof in Sequent Notation with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Proof in Sequent Notation with Metavariables

A ∧ (B ∧ C) ` A ∧ (B ∧ C)

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` A ∧ (B ∧ C)

A ∧ (B ∧ C) ` (B ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.

32

Comments on Sequent Notation

This crazy way of carrying out proofs is the (standard) Isabelle-

way!

• In constructing the proof we work from goals to axioms32

• metavariables used to delay commitments

32As you saw in our animation, we worked from the root of

the tree to the leaves.

33

4 First-Order Logic

4.1 First-Order Logic: Syntax

• Two syntactic categories: terms33 and formulae

• A first-order language34 is characterized by giving a finite

collection of function symbols F and predicate symbols

P as well as a set Var of variables.

4 First-Order Logic

4.1 First-Order Logic: Syntax

• Two syntactic categories: terms33 and formulae

• A first-order language34 is characterized by giving a finite

collection of function symbols F and predicate symbols

P as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function sym-

bol f (or predicate symbol p) has arity i ∈ N.

4 First-Order Logic

4.1 First-Order Logic: Syntax

• Two syntactic categories: terms33 and formulae

• A first-order language34 is characterized by giving a finite

collection of function symbols F and predicate symbols

P as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function sym-

bol f (or predicate symbol p) has arity i ∈ N.

• One often calls the pair 〈F ,P〉 a signature.

33We have already learned about the syntactic category of

formulae last lecture.

A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have

terms that stand for “things” and formulae that stand for

statements/propositions about those “things”.

But couldn’t a statement also be a “thing”? And couldn’t

a “thing” depend on a statement?

In first-order logic: no!
34There isn’t simply the language of first-order logic! Rather,

the definition of a first-order language is parametrised by giv-

ing a F and a P . Each symbol in F and P must have an

associated arity, i.e., the number of arguments the function

or predicate takes. This could be formalized by saying that

the elements of F are pairs of the form f/n, where f is the

symbol itself and n, and likewise for P . All that matters is

that it is specified in some unambiguous way what the arity

of each symbol is.

34

Terms and Formulae in First-Order Logic

Consider the following grammar (x ∈ Var , fn ∈ F , pn ∈ P):

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times35

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

The productions of T are called terms (set Term36).

The generic notation for function application is f (t1, . . . , tn),

but note special notations37: infix, prefix, etc.

The productions of F are called formulae (set Form).

One often calls the pair 〈F ,P〉 a signature. Generally, a sig-

nature specifies the “fixed symbols” (as opposed to variables)

of a particular logic language.

Strictly speaking, a first-order language is also parametrised

by giving a set of variables Var , but this is inessential. Var

is usually assumed to be a countably infinite set of symbols,

and the particular choice of names of these symbols is not

relevant.
36Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the

signature, but we always assume that the signature is clear

from the context.
37So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols like

35

Terms and Formulae in First-Order Logic

Consider the following grammar (x ∈ Var , fn ∈ F , pn ∈ P):

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times35

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

The productions of T are called terms (set Term36).

The generic notation for function application is f (t1, . . . , tn),

but note special notations37: infix, prefix, etc.

The productions of F are called formulae (set Form).

Formulae of the form pn(. . .) are called atoms.

One often calls the pair 〈F ,P〉 a signature. Generally, a sig-

nature specifies the “fixed symbols” (as opposed to variables)

of a particular logic language.

Strictly speaking, a first-order language is also parametrised

by giving a set of variables Var , but this is inessential. Var

is usually assumed to be a countably infinite set of symbols,

and the particular choice of names of these symbols is not

relevant.
36Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the

signature, but we always assume that the signature is clear

from the context.
37So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols like

35

4.2 First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic. All

the rules of propositional logic are “inherited”38.

But we must introduce rules for the quantifiers.

+ are denoted infix, so we write 0 + 0 instead of +(0, 0). An-

other common notation is prefix notation without brackets, as

in −2. There are also other notations.
38First-order logic inherits all the rules of propositional logic.

Note however that the metavariables in the rules now range

over first-order formulae.

36

Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable con-

dition) ∗ means: x must be arbitrary.

39Similarly as in the previous lecture, one should note that P

is not a predicate, but rather P (x) is a schematic expression:

P (x) stands for any formula, possibly containing occurrences

of x.

In the context of ∀-E, P (t) stands for the formula obtained

from P (x) by replacing all occurrences of x by t.

37

Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable con-

dition) ∗ means: x must be arbitrary.

Note that rules are schematic39: P (x) stands for any for-

mula, and P (t) stands for the formula obtained by substituting

t for x.
39Similarly as in the previous lecture, one should note that P

is not a predicate, but rather P (x) is a schematic expression:

P (x) stands for any formula, possibly containing occurrences

of x.

In the context of ∀-E, P (t) stands for the formula obtained

from P (x) by replacing all occurrences of x by t.

37

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

x = 0

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

x = 0

∀x. x = 0
∀-I

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl40

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl40

∀x. x = 0
→-E

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl40

∀x. x = 0
→-E

Formal meaning of side condition: x not free in any open

assumption on which P (x) depends. Violated!41

40When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
41The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

38

A Proof?

∀x.A(x) ∧B(x)

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

A Proof?

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

A Proof?

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

A Proof?

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

A Proof?

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

A Proof?

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

A Proof?

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

A Proof?

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

Yes (check side conditions42 of ∀-I).

42In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

39

Boys Don’t Cry

Let φ ≡ (∀x. b(x)→ m(x)) ∧ (∀x.m(x)→ ¬c(x)).

[φ]1

∀x.m(x)→ ¬c(x)
∧-ER

m(x)→ ¬c(x)
∀-E

[φ]1

∀x. b(x)→ m(x)
∧-EL

b(x)→ m(x)
∀-E

[b(x)]2

m(x)
→-E

¬c(x)
→-E

b(x)→ ¬c(x)
→-I2

∀x. b(x)→ ¬c(x)
∀-I

φ→ (∀x. b(x)→ ¬c(x))
→-I1

40

Existential Quantification (∃): Rules

P (t)

∃x. P (x)
∃-I

∃x. P (x)

[P (x)]
....
R

R
∃-E∗

• ∃-E has side condition similar to ∀43.

• We just give these rules here as part of the deduction

system.

• It would be possible to define44 ∃x.A as ¬∀x.¬A and

use the given rules for ∀ to derive ND proof rules for ∃.

43∃-E will inherit the side condition from ∀-I. Hence, the

side condition for ∃-E is:

x must not be free in R or in hypotheses of the subderiva-

tion of R other than P (x) (occurrences in (P (x) are allowed

because the assumption P (x) was discharged before the ap-

plication of ∀-I). Contrast this with ∀-I.

44By defining we mean, use ∃x.A as shorthand for ¬∀x.¬A,

in the same way as we regard negation as a shorthand.

However, we have already introduced ∃ as syntactic entity,

and also its semantics. If we now want to treat it as being

defined in terms of ∀, for the purposes of building a deductive

system, we must be sure that ∃x.A is semantically equivalent

to ¬∀x.¬A, i.e., that A(∃x.A) = A(¬∀x.¬A).

41

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

42

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

A(x)

B
→-E

42

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

42

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

[∃x. A(x)]2

[∀x.A(x)→ B]1

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

(∃x. A(x))→ B
→-I2

(∀x.A(x)→ B)→ ((∃x. A(x))→ B)
→-I1

42

4.3 Conclusion on FOL

• Propositional logic is good for modeling simple patterns

of reasoning like “if . . . then . . . else”.

4.3 Conclusion on FOL

• Propositional logic is good for modeling simple patterns

of reasoning like “if . . . then . . . else”.

• In first-order logic, one has “things” and relations on /

properties of “things”. Quantify over “things”. Powerful45!

45In first-order logic, one has “things” and relations/proper-

ties that may or may not hold for these “things”. Quantifiers

are used to speak about “all things” and “some things”.

For example, one can reason:

All men are mortal, Socrates is a man, therefore

Socrates is mortal.

The idea underlying first-order logic is so general, abstract,

and powerful that vast portions of human (mathematical) rea-

soning can be modeled with it.

In fact, first-order logic is the most prominent logic of all.

Many people know about it: not only mathematicians and

computer scientists, but also linguists, philosophers, psychol-

ogists, economists etc. are likely to learn about first-order logic

in their education.

While some applications in the fields mentioned above re-

quire other logics, e.g. modal logics46, those can often be

reduced to first-order logic, so that first-order logic remains

43

the point of reference.

On the other hand, logics that are strictly more expressive

than first-order logic are only known to and studied by few

specialists within mathematics and computer science.

This example about Socrates and men is a very well-known

one. You may wonder: what is the history of this example?

In English, the example is commonly given using the word

“man”, although one also finds “human”. Like many lan-

guages (e.g., French, Italian), English often uses “man” for

“human being”, although this use of language may be con-

sidered discriminating against women. E.g. [Tho95a]:

man [. . .] 1 an adult human male, esp. as distinct

from a woman or boy. 2 a human being; a person (no

man is perfect).

While the example does not, strictly speaking, imply that

“man” is used in the meaning of “human being”, this is

strongly suggested both by the content of the example (or

should women be immortal?) and the fact that languages

44

that do have a word for “human being” (e.g. “Mensch” in

German) usually give the example using this word. In fact,

the example is originally in Old Greek, and there the word

�njrwpoc (anthropos = human being), as opposed to �n r

(anér = human male), is used.

The example is a so-called syllogism of the first figure, which

the scholastics called Barbara. It was developed by Aristotle

[Ari] in an abstract form, i.e., without using the concrete name

“Socrates”. In his terminology, �njrwpoc is the middle term

that is used as subject in the first premise and as predicate in

the second premise (this is what is called first figure). Aristotle

formulated the syllogism as follows: If A of all B and B is said

of all C, then A must be said of all C.

And why “Socrates”? It is not exactly clear how it

came about that this particular syllogism is associated with

Socrates. In any case, as far it is known, Socrates did not in-

vestigate any questions of logic. However, Aristotle frequently

uses Socrates and Kallias as standard names for individuals

45

• Limitation: cannot quantify over predicates47.

[Ari]. Possibly there were statutes of Socrates and Kallias

standing in the hall where Aristotle gave his lectures, so it

was convenient for him to point to the statutes whenever he

was making a point involving two individuals.
47The idea underlying first-order logic seems so general that

it is not so apparent what its limitations could be. The limi-

tations will become clear as we study more expressive logics.

For the moment, note the following: in first-order logic, we

quantify over variables (hence, domain elements), not over

predicates. The number of predicates is fixed in a particular

first-order language. So for example, it is impossible to express

the following:

For all unary predicates p, if there exists an x such

that p(x) is true, then there exists a smallest x such

that p(x) is true,

since we would be quantifying over p.

46

5 First-Order Logic with Equality

47

FOL with Equality

If we introduce into FOL the predicate “=” with a special

meaning48, we get first-order logic with equality.

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Semantics: The semantics of the two sides must be identi-

cal.

48

In logic languages, it is common to distinguish between log-

ical and non-logical symbols. We explain this for first-order

logic.

Recall that there isn’t just the language of first-order logic,

but rather defining a particular signature gives us a first-order

language. The logical symbols are those that are part of any

first-order language and whose meaning is “hard-wired” into

the formalism of first-order logic, like ∧ or ∀. The non-logical

symbols are those given by a particular signature, and whose

meaning must be defined “by the user” by giving a structure.

Above we say “mathematical” instead of “non-logical” be-

cause we assume that mathematics is our domain of discourse,

so that the signature contains the symbols of “mathematics”.

Now what status should the equality symbol = have? We

will assume that = is a symbol whose meaning is hard-wired

into the formalism. One then speaks of first-order logic with

equality.

48

Rules49

• Equality is an equivalence relation50

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

Rules49

• Equality is an equivalence relation50

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

Alternatively, one could regard = as an ordinary (binary in-

fix) predicate. However, even if one does not give = a special

status, anyone reading = has a certain expectation. Thus it

would be very confusing to have a structure that defines = as

a, say, non-reflexive relation.
49Since = is a logical symbol in the formalism of first-order

logic with equality, there should be derivation rules for = to

derive which formulas a = b are true.
50In general mathematical terminology, a relation ≡ is an

equivalence relation if the following three properties hold:

Reflexivity: a ≡ a for all a;

Symmetry: a ≡ b implies b ≡ a;

Transitivity: a ≡ b and b ≡ c implies a ≡ c.

Example: being equal modulo 6.

“a is equal b modulo 6” is often written a ≡ b mod 6.

49

• Equality is also a congruence51 on terms and all relations52

r = s

T (r) = T (s)
cong1

r = s P (r)

P (s)
cong2

51In general mathematical terminology, a relation ∼= is a

congruence w.r.t. (or: on) f , where f has arity n, if

a1
∼= b1, . . . , an ∼= bn implies f (a1, . . . , an) ∼= f (b1, . . . , bn).

Example: being equal modulo 6 is congruent w.r.t. multipli-

cation.

14 ≡ 8 mod 6 and 15 ≡ 9 mod 6, hence 14 · 15 ≡ 8 ·
9 mod 6.

This can be defined in an analogous way for a property

(relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisibil-

ity by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible

by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not

divisible by 3.
52Why did we use letters T and P here?

Recall the rules for building terms and atoms.

Is T (r) a term, and P (r) an atom, obtained by one applica-

50

Isabelle Rule

The Isabelle FOL rule is simply53 (using a tree syntax)

r = s P (r)

P (s)
subst

or literally

Ja = b;P (a)K =⇒ P (b)

tion of such a rule, i.e.: is T a function symbol in F , applied

to s, and is P a predicate symbol in P , applied to s?

Isabelle Rule

The Isabelle FOL rule is simply53 (using a tree syntax)

r = s P (r)

P (s)
subst

or literally

Ja = b;P (a)K =⇒ P (b)

tion of such a rule, i.e.: is T a function symbol in F , applied

to s, and is P a predicate symbol in P , applied to s?

In general, no! The notations T (r) and P (r) are metanota-

tions. T (r) stands for any term in which r occurs, and P (r)

stands for any formula in which r occurs.

And in this context, the notation T (s) stands for the term

obtained from T (r) by replacing all occurrences of r with s.

In analogy the notation P (s) is defined.

Note that r and s arbitrary terms.

This description is not very formal, but this is not too prob-

lematic since we will be more formal once we have some useful

machinery for this at hand.
53The Isabelle FOL rule is:

r = s P (r)

P (s)
subst

In this rule, P is an Isabelle metavariable.

Why doesn’t the Isabelle rule contain a z to mark which

occurrences should be replaced?

51

Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

We cannot understand this yet, but think of P as a formula

where some positions are marked in such a way that once we

apply P to r (we write P (r)), r will be inserted into all those

positions. This is why P (r) is a formula and P (s) is a formula

obtained by replacing some occurrences of r with s.

52

Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

P (t)

∃x. P (x)
∃-I

, “P (x)” is metanotation. In the

example, P (x) = (t = x).

We cannot understand this yet, but think of P as a formula

where some positions are marked in such a way that once we

apply P to r (we write P (r)), r will be inserted into all those

positions. This is why P (r) is a formula and P (s) is a formula

obtained by replacing some occurrences of r with s.

52

Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

P (t)

∃x. P (x)
∃-I

, “P (x)” is metanotation. In the

example, P (x) = (t = x).

We cannot understand this yet, but think of P as a formula

where some positions are marked in such a way that once we

apply P to r (we write P (r)), r will be inserted into all those

positions. This is why P (r) is a formula and P (s) is a formula

obtained by replacing some occurrences of r with s.

52

6 The λ-Calculus

53

The λ-Calculus: Motivation

A way of writing functions. E.g., λx. x + 5 is the function

taking any number n to n + 5. Theory underlying functional

programming.

One of the most important formalisms of (theoretical) com-

puter science!

54

The λ-Calculus: Motivation

A way of writing functions. E.g., λx. x + 5 is the function

taking any number n to n + 5. Theory underlying functional

programming.

One of the most important formalisms of (theoretical) com-

puter science!

Why is it interesting for us? The λ-calculus is the syntactic

basis of higher-order logic.

54

Outline of this Lecture

• The untyped λ-calculus

• The simply typed λ-calculus (λ→)

• An extension of the typed λ-calculus

6.1 Untyped λ-Calculus

From functional programming, you may be familiar with

function definitions such as

f x = x + 5

The λ-calculus is a formalism for writing nameless functions.

The function λx. x + 5 corresponds to f .

Outline of this Lecture

• The untyped λ-calculus

• The simply typed λ-calculus (λ→)

• An extension of the typed λ-calculus

6.1 Untyped λ-Calculus

From functional programming, you may be familiar with

function definitions such as

f x = x + 5

The λ-calculus is a formalism for writing nameless functions.

The function λx. x + 5 corresponds to f .

55

The application to say, 3, is written (λx. x+5)(3). Its result

is computed by substituting 3 for x, yielding 3 + 5, which in

usual arithmetic evaluates to 854.

54As you might guess, the formalism of the λ-calculus is not

directly related to usual arithmetic and so it is not built into

this formalism that 3 + 5 should evaluate to 8. However, it

may be a reasonable choice, depending on the context, to

extend the λ-calculus in this way, but this is not our concern

at the moment.

56

Syntax

(x ∈ Var , c ∈ Const55)

e ::= x | c | (ee) | (λx. e)56

The objects generated by this grammar are called λ-terms

or simply terms.
55Similarly as for first-order logic, a language of the untyped

λ-calculus is characterized by giving a set of variables and a

set of constants.

One can think of Const as a signature.

Note that Const could be empty.

Note also that the word constant has a different meaning

in the λ-calculus from that of first-order logic. In both for-

malisms, constants are just symbols.

In first-order logic, a constant is a special case of a function

symbol, namely a function symbol of arity 0.

In the λ-calculus, one does not speak of function symbols.

In the untyped λ-calculus, any λ-term (including a constant)

can be applied to another term, and so any λ-term can be

called a “unary function”. A constant being applied to a

term is something which would contradict the intuition about

constants in first-order logic. So for the λ-calculus, think

of constant as opposed to a variable, an application, or an

abstraction.
56A λ-term can either be

57

Conventions: iterated λ & left-associated application57

(λx. (λy. (λz. ((xz)(yz))))) ≡ (λxyz. ((xz)(yz)))

≡ λxyz. xz(yz)

Is λx. x + 5 a λ-term?58

• a variable (case x), or

• a constant (case c), or

• an application of a λ-term to another λ-term (case (ee)),

or

• an abstraction over a variable x (case (λx. e)).

57We write λx1x2 . . . xn.e instead of λx1.(λx2.(. . . e) . . .).

e1 e2 . . . en is equivalent to (. . . (e1 e2) . . . en) . . ., not

(e1(e2 . . . en) . . .). Note that this is in contrast to the as-

sociativity of logical operators. There are some good reasons

for these conventions.
58Strictly speaking, λx. x+ 5 does not adhere to the defini-

tion of syntax of λ-terms, at least if we parse it in the usual

way: + is an infix constant applied to arguments x and 5.

If we parse x+5 as ((x+)5), i.e., x applied to (the constant)

+, and the resulting term applied to (the constant) 5, then

λx. x + 5 would indeed adhere to the definition of syntax of

58

Substitution

• Will see shortly that “computations” are based on sub-

stitutions, defined similarly as in FOL.

(g x 3)[x← 5]59 = g 5 3

• Must respect free and bound variables,

((x(λx. xy))[x← e] = e(λx. xy)

• Same problems as with quantifiers

∀x. (P (x) ∧ ∃x.Q(x, y))

P (e) ∧ ∃x.Q(x, y)
∀-E

∀x. (P (x) ∧ ∃y.Q(x, y))

P (y) ∧ ∃z.Q(y, z)
∀-E

λ-terms, but of course, this is pathological and not intended

here.

It is convenient to allow for extensions of the syntax of λ-

terms, allowing for:

• application to several arguments rather than just one;

• infix notation.

Such an extension is inessential for the expressive power of the

λ-calculus. Instead of having a binary infix constant + and

writing λx. x + 5, we could have a constant plus according

to the original syntax and write λx. ((plus x) 5) (i.e., write +

in a Curryed way).

59Here we use the notation e[x ← t] for the term obtained

from e by replacing x with t. There is also the notation

e[t/x], and confusingly, also e[x/t]. We will attempt to be

consistent within this course, but be aware that you may find

such different notations in the literature.

59

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) :=

60

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) :=

60

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) := ∅ = FV (c)

FV (MN) :=

60

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) := ∅ = FV (c)

FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)

FV (λx.M) :=

60

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) := ∅ = FV (c)

FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)

FV (λx.M) := FV (M) \ {x} = FV (∀x.M)

Example: FV (xy(λyz. xyz)) = {x, y}
A term with no free variable occurrences is called closed.

60

Definition of Substitution

M [x← N] means substitute N for x in M

1. x[x← N] =

2. a[x← N] =

3. (PQ)[x← N] =

4. (λx. P)[x← N] =

5. (λy. P)[x ← N] =

6. (λy. P)[x ← N] =

60Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-

eral concepts. So far, we have seen four binding operators: ∃,

∀ and λ, and set comprehensions. The λ operator is the most

generic of those operators, in that it does not have a fixed

meaning hard-wired into it in the way that the quantifiers do.

In fact, it is possible to have it as the only operator on the

level of the metalogic. We will see this later.

61

Definition of Substitution

M [x← N] means substitute N for x in M

1. x[x← N] = N

2. a[x← N] = a if a is a constant or variable other than x

3. (PQ)[x← N] = (P [x← N]Q[x← N])

4. (λx. P)[x← N] = λx. P

5. (λy. P)[x ← N] = λy. P [x ← N] if y 6= x and y /∈
FV (N)

6. (λy. P)[x ← N] = λz. P [y ← z][x ← N] if y 6= x and

y ∈ FV (N), and z is fresh: z /∈ FV (N) ∪ FV (P)

60Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-

eral concepts. So far, we have seen four binding operators: ∃,

∀ and λ, and set comprehensions. The λ operator is the most

generic of those operators, in that it does not have a fixed

meaning hard-wired into it in the way that the quantifiers do.

In fact, it is possible to have it as the only operator on the

level of the metalogic. We will see this later.

61

Definition of Substitution

M [x← N] means substitute N for x in M

1. x[x← N] = N

2. a[x← N] = a if a is a constant or variable other than x

3. (PQ)[x← N] = (P [x← N]Q[x← N])

4. (λx. P)[x← N] = λx. P

5. (λy. P)[x ← N] = λy. P [x ← N] if y 6= x and y /∈
FV (N)

6. (λy. P)[x ← N] = λz. P [y ← z][x ← N] if y 6= x and

y ∈ FV (N), and z is fresh: z /∈ FV (N) ∪ FV (P)

Cases similar to those for quantifiers: λ binding is ‘generic’60.

60Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-

eral concepts. So far, we have seen four binding operators: ∃,

∀ and λ, and set comprehensions. The λ operator is the most

generic of those operators, in that it does not have a fixed

meaning hard-wired into it in the way that the quantifiers do.

In fact, it is possible to have it as the only operator on the

level of the metalogic. We will see this later.

61

Substitution: Example

(x(λx. xy))[x← λz. z]

61If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

62

Substitution: Example

(x(λx. xy))[x← λz. z]
3
= x[x← λz. z](λx. xy)[x← λz. z]

1,4
= (λz. z)λx. xy

61If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

62

Substitution: Example

(x(λx. xy))[x← λz. z]
3
= x[x← λz. z](λx. xy)[x← λz. z]

1,4
= (λz. z)λx. xy

(λx. xy)[y ← x]

61If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

62

Substitution: Example

(x(λx. xy))[x← λz. z]
3
= x[x← λz. z](λx. xy)[x← λz. z]

1,4
= (λz. z)λx. xy

(λx. xy)[y ← x]
6
= λz. ((xy)[x← z][y ← x])

3,1,2
= λz. (zy[y ← x])

3,2,1
= λz. zx

In the last example, clause 6 avoids capture, i.e., λx. xx61.

61If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

62

Reduction: Intuition

Reduction is the notion of “computing”, or “evaluation”, in

the λ-calculus.
f x = x + 5 f = λx. x + 5

f 3 = 3 + 5 (λx. x + 5)(3)→β (x + 5)[x← 3] = 3 + 5

β-reduction replaces a parameter by an argument62.

This should propagate into contexts63, e.g.

λx.((λx. x + 5)(3))→β λx.(3 + 5).

62In the λ-term (λx.M)N , we say that N is an argument

(and the function λx.M is applied to this argument), and

every occurrence of x inM is a parameter (we say this because

x is bound by the λ).

This terminology may be familiar to you if you have experi-

ence in functional programming, but actually, it is also used

in the context of function and procedure declarations in im-

perative programming.
63In

λx.((λx. x + 5)(3)),

the underlined part is a subterm occurring in a context. β-

reduction should be applicable to this subterm.

63

Reduction: Definition

• Axiom for β-reduction: (λx.M)N →β M [x← N]64

• Rules for β-reduction of redices65 in contexts:

M →β M
′

NM →β NM
′

M →β M
′

MN →β M
′N

M →β M
′

λz.M →β λz.M
′ ∗66

• Reduction is reflexive-transitive closure
M →β N

M →∗β N M →∗β M
M →∗β N N →∗β P

M →∗β P

• A term without redices is in β-normal form.

64As you see, β-reduction is defined using rules (two of them

being axioms, the rest proper rules) in the same way that we

have defined proof systems for logic before. Note that we

wrote the first axiom defining β-reduction without a horizontal

bar.
65In a λ-term, a subterm of the form (λx.M)N is called a

redex (plural redices). It is a subterm to which β-reduction

can be applied.
66The rule for propagating →β to an abstraction, let us call

it λ-abstr,
M →β M

′

λz.M →β λz.M
′ λ-abstr

actually has a vacuous side condition:

z is not free in any open assumption on which M →β

M ′ depends.

The side condition is just like for ∀.

The side condition is vacuous because in the derivation sys-

tem for→β (or→∗β) we present here, there is no rule involving

64

Reduction: Examples

(λx. λy. g x y)a b→β

discharging open assumptions, and thus there is no point in

making assumptions. The root of a derivation tree for →β

is always an application of the axiom for β-reduction. When

we consider →∗β, we may in addition have applications of the

reflexivity axiom.

However, we will have exercises on →β using an Isabelle

theory called RED, and in this theory, the above rule is called

epsi and looks as follows:

"[|!!x. M(x) --> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x))"

Observe that there is a meta-level universal quantifier in this

rule. From the exercises, you know that the meta-level uni-

versal quantifier corresponds to a side condition in paper-and-

pencil proofs.

Moreover, when we later look at the meta-logic, there will

be a rule
a ≡ b

(λx.a) ≡ (λx.b)
≡-abstr∗

looking very similar to the λ-abstr rule and having a side

65

Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β

discharging open assumptions, and thus there is no point in

making assumptions. The root of a derivation tree for →β

is always an application of the axiom for β-reduction. When

we consider →∗β, we may in addition have applications of the

reflexivity axiom.

However, we will have exercises on →β using an Isabelle

theory called RED, and in this theory, the above rule is called

epsi and looks as follows:

"[|!!x. M(x) --> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x))"

Observe that there is a meta-level universal quantifier in this

rule. From the exercises, you know that the meta-level uni-

versal quantifier corresponds to a side condition in paper-and-

pencil proofs.

Moreover, when we later look at the meta-logic, there will

be a rule
a ≡ b

(λx.a) ≡ (λx.b)
≡-abstr∗

looking very similar to the λ-abstr rule and having a side

65

Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b

discharging open assumptions, and thus there is no point in

making assumptions. The root of a derivation tree for →β

is always an application of the axiom for β-reduction. When

we consider →∗β, we may in addition have applications of the

reflexivity axiom.

However, we will have exercises on →β using an Isabelle

theory called RED, and in this theory, the above rule is called

epsi and looks as follows:

"[|!!x. M(x) --> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x))"

Observe that there is a meta-level universal quantifier in this

rule. From the exercises, you know that the meta-level uni-

versal quantifier corresponds to a side condition in paper-and-

pencil proofs.

Moreover, when we later look at the meta-logic, there will

be a rule
a ≡ b

(λx.a) ≡ (λx.b)
≡-abstr∗

looking very similar to the λ-abstr rule and having a side

65

6.2 Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

6.2 Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

condition.

To illustrate why the side condition is needed in general,

consider a derivation system where in addition to the rules for

→β and →∗β, we also allow applications of the rule for rules

for → (implication) and ∀ of first-order logic.

For the example we give, suppose that we have an encoding

of the number 0 and the + function in the untyped λ-calculus,

and that these behave as expected (in fact we will have an

exercise showing this; in the following we use “0” and “+”

just for simplicity and clarity; + is written infix).

Under these assumptions, we will now derive λxy. y+x→β

λxy. y. Before looking at the derivation tree, think about

what this says intuitively: it says that + is a function that

takes two arguments, ignores the first argument and returns

the second argument. Clearly, this does not correspond to the

usual definition of +! The trick in the following derivation is

to smuggle in an instantiation of x, namely to force x to be

66

In untyped λ-calculus, we have syntactic objects67 called

terms.

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

In untyped λ-calculus, we have syntactic objects67 called

terms.

We now introduce syntactic objects called types68.

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

In untyped λ-calculus, we have syntactic objects67 called

terms.

We now introduce syntactic objects called types68.

We will say “a term has a type” or “a term is of a type”.

0. The derivation looks as follows:
[y + x→β y]1

λy. y + x→β λy. y
λ-abstr

λxy. y + x→β λxy. y
λ-abstr

(y + x→β y)→ λxy. y + x→β λxy. y
→-I1

∀x.(y + x→β y)→ λxy. y + x→β λxy. y
∀-I

(y + 0→β y)→ λxy. y + x→β λxy. y
∀-E

(routine)

y + 0→β y

λxy. y + x→β λxy. y
→-E

In the above derivation, the side condition for λ-abstr is vio-

lated.

In Isabelle, such a “smuggling in” of an instantiation can be

achieved using instantiate tac, see RED wrongepsi.thy

and wrongepsi.ML.
67We also say that we have defined a term language. A

particular language is given by a signature, although for the

untyped λ-calculus this is simply the set of constants Const .
68We can say that we define a type language, i.e., a language

67

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

Two Syntaxes

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Two Syntaxes

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N → 69N, (N → N) → N, N → N →
N70

Two Syntaxes

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N → 69N, (N → N) → N, N → N →
N70

consisting of types. A particular type language is characterized

by giving a set of base types B. One might also call B a type

signature.

A typical example of a set of base types would be {N, bool},
where N represents the natural numbers and bool the Boolean

values ⊥ and >.

All that matters is that B is some fixed set “defined by the

user”.
69The type N → N is the type of a function that takes a

natural number and returns a natural number.

The type (N → N) → N is the type of a function that

takes a function, which takes a natural number and returns a

natural number, and returns a natural number.
70To save parentheses, we use the following convention:

types associate to the right, so N → N → N stands for

N→ (N→ N).

Recall that application associates to the left. This may seem

confusing at first, but actually, it turns out that the two con-

68

• Syntax for (raw71) terms: λ-calculus augmented with

types72

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const73)

ventions concerning associativity fit together very neatly.
71In the context of typed versions of the λ-calculus, raw

terms are terms built ignoring any typing conditions. So raw

terms are simply terms as defined for the untyped λ-calculus,

possibly augmented with type superscripts.
72So far, this is just syntax!

The notation (λxτ . e) simply specifies that binding occur-

rences of variables in simple type theory are tagged with a

superscript, where the use of the letter τ makes it clear (in

this particular context) that the superscript must be some

type, defined by the grammar we just gave.
73Var and Const are the sets of variables and constants,

respectively, as for the untyped λ-calculus.

69

Signatures and Contexts

Generally (in various logic-related formalisms74) a signature

defines the “fixed” symbols of a language, and a context de-

fines the “variable” symbols of a language.

Signatures and Contexts

Generally (in various logic-related formalisms74) a signature

defines the “fixed” symbols of a language, and a context de-

fines the “variable” symbols of a language. In λ→,

74For propositional logic, we did not use the notion of sig-

nature, although we mentioned that strictly speaking, there

is not just the language of propositional logic, but rather a

language of propositional logic which depends on the choice

of the variables.

In first-order logic, a signature was a pair (F ,P) defining the

function and predicate symbols, although strictly speaking,

the signature should also specify the arities of the symbols

in some way. Recall that we did not bother to fix a precise

technical way of specifying those arities. We were content

with saying that they are specified in “some unambiguous

way”.

In sorted logic, the signature must also specify the sorts of

all symbols. But we did not study sorted logic in any detail.

In the untyped λ-calculus, the signature is simply the set of

constants.

Summarizing, we have not been very precise about the no-

70

• a signature Σ is a sequence (c ∈ Const)

Σ ::= 〈 〉 | Σ, c : τ 75

• a context Γ is a sequence (x ∈ Var)

Γ ::= 〈 〉 | Γ, x : τ

tion of a signature so far.

For λ→, the rules for “legal” terms become more tricky, and

it is important to be formal about signatures.

In λ→, a signature associates a type with each constant

symbol by writing c : τ .

Usually, we will assume that Const is clear from the context,

and that Σ contains an expression of the form c : τ for each

c ∈ Const , and in fact, that Σ is clear from the context as

well. Since Σ contains an expression of the form c : τ for

each c ∈ Const , it is redundant to give Const explicitly. It

is sufficient to give Σ.
75We call an expression of the form x : τ or c : τ a type

binding.

The use of the letter τ makes it clear (in this particular

context) that the superscript must be some type, defined by

the grammar we just gave.

71

Type Assignment Calculus

We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ

and a context Γ. For example

Γ `Σ c x : σ76

where Σ = c : τ → σ and Γ = x : τ .

76The expression

Γ `Σ c x : σ

is called a type judgement. It says that given the signature

Σ = c : τ → σ and the context Γ = x : τ , the term

c x has type σ or

c x is of type σ or

c x is assigned type σ.

Recall that you have seen other judgements before.

72

Type Assignment Calculus

We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ

and a context Γ. For example

Γ `Σ c x : σ76

where Σ = c : τ → σ and Γ = x : τ .

We usually leave Σ implicit and write ` instead of `Σ.

If Γ is empty it is omitted.
76The expression

Γ `Σ c x : σ

is called a type judgement. It says that given the signature

Σ = c : τ → σ and the context Γ = x : τ , the term

c x has type σ or

c x is of type σ or

c x is assigned type σ.

Recall that you have seen other judgements before.

72

Type Assignment Calculus: Rules77

c : τ ∈ 78Σ

Γ ` c : τ
assum Γ, x : τ,∆ ` x : τ hyp79

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ80 ` e : τ

Γ ` λxσ. e : σ → τ
abs

77Type assignment is defined as a system of rules for deriving

type judgements, in the same way that we have defined deriv-

ability judgements for logics, and β-reduction for the untyped

λ-calculus.
78Recall that Σ is a sequence. By abuse of notation, we

sometimes identify this sequence with a set and allow our-

selves to write c : τ ∈ Σ.

We may also write Σ ⊆ Σ′ meaning that c : τ ∈ Σ implies

c : τ ∈ Σ′.
79One could also formulate hyp as follows:

x : τ ∈ Γ

Γ ` x : τ
hyp

That would be in close analogy to LF, a system not treated

here.
80A sequence is a collection of objects which differs from sets

in that a sequence contains the objects in a certain order, and

there can be multiple occurrences of an object.

We write a sequence containing the objects o1, . . . , on as

73

β-Reduction in λ→

β-reduction defined as before, has subject reduction prop-

erty81 and is strongly normalizing82.

〈o1, . . . , on〉, or sometimes simply o1, . . . , on.

If Ω is the sequence o1, . . . , on, then we write Ω, o

for the sequence 〈o1, . . . , on, o〉 and o,Ω for the sequence

〈o, o1, . . . , on〉.
An empty sequence is denoted by 〈 〉.
81Subject reduction is the following property: reduction does

not change the type of a term, so if `Σ M : τ and M →β N ,

then `Σ N : τ .
82The simply-typed λ-calculus, unlike the untyped λ-

calculus, is normalizing, that is to say, every term has a normal

form. Even more, it is strongly normalizing, that is, this nor-

mal form is reached regardless of the reduction order.

74

Example 1

` λxσ. λyτ . x :

75

Example 1

` λxσ. λyτ . x : σ → (τ → σ)

75

Example 1

` λxσ. λyτ . x : σ → (τ → σ)
abs

75

Example 1

x : σ ` λyτ . x : τ → σ

` λxσ. λyτ . x : σ → (τ → σ)
abs

75

Example 1

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

75

Example 1

x : σ, y : τ ` x : σ

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

75

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

75

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

For simplicity, applications of hyp are usually not explicitly

marked in proof.

75

Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x :

76

Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ

76

Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f : σ → σ → τ Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

76

Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f x x : τ

83In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is

a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a

variable.

Looking at the different derivations of the type judgement

Γ ` f x x : τ in Examples 2 and 3, you may find that they are

very similar, and you may wonder: What is the point? Why

do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When

setting up a type theory or programming language, there are

choices to be made about whether there should be a distinc-

tion between variables and constants, and what it should look

like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make the

distinction. For example, if we want to introduce the natural

numbers in our λ→ language, then it is intuitive that there

should be constants 1, 2, . . . denoting the numbers. If 1, 2, . . .

77

http://en.wikiquote.org/wiki/Alan_Perlis

Example 3

Σ = f : σ → σ → τ

Γ = x : σ

f : σ → σ → τ ∈ Σ

Γ ` f : σ → σ → τ
assum

Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant83.

83In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is

a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a

variable.

Looking at the different derivations of the type judgement

Γ ` f x x : τ in Examples 2 and 3, you may find that they are

very similar, and you may wonder: What is the point? Why

do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When

setting up a type theory or programming language, there are

choices to be made about whether there should be a distinc-

tion between variables and constants, and what it should look

like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make the

distinction. For example, if we want to introduce the natural

numbers in our λ→ language, then it is intuitive that there

should be constants 1, 2, . . . denoting the numbers. If 1, 2, . . .

77

http://en.wikiquote.org/wiki/Alan_Perlis

Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f : σ → σ → τ Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant83.

We will often suppress applications of assum.
83In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is

a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a

variable.

Looking at the different derivations of the type judgement

Γ ` f x x : τ in Examples 2 and 3, you may find that they are

very similar, and you may wonder: What is the point? Why

do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When

setting up a type theory or programming language, there are

choices to be made about whether there should be a distinc-

tion between variables and constants, and what it should look

like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make the

distinction. For example, if we want to introduce the natural

numbers in our λ→ language, then it is intuitive that there

should be constants 1, 2, . . . denoting the numbers. If 1, 2, . . .

77

http://en.wikiquote.org/wiki/Alan_Perlis

6.3 Polymorphism

We will now look at the typed λ-calculus extended by poly-

morphism.

were variables, then we could write strange expressions like

λ2N→N. y, so we could use 2 as a variable of type N→ N.

78

Polymorphism: Intuition

In functional programming, the function append for con-

catenating two lists works the same way on integer lists and

on character lists: append is polymorphic84.

Type language must be generalized to include type variables

(denoted by α, β . . .) and type constructors.

Example: append has type α list → α list → α list , and

by type instantiation, it can also have type, say, int list →
int list → int list .

84In functional programming, you will come across functions

that operate uniformly on many different types. For example,

a function append for concatenating two lists works the same

way on integer lists and on character lists. Such functions are

called polymorphic.

More precisely, this kind of polymorphism, where a function

does exactly the same thing regardless of the type instance, is

called parametric polymorphism, as opposed to ad-hoc poly-

morphism.

In a type system with polymorphism, the notion of base type

(which is just a type constant, i.e., one symbol) is generalized

to a type constructor with an arity ≥ 0. A type constructor of

arity n applied to n types is then a type. For example, there

might be a type constructor list of arity 1, and int of arity 0.

Then, int list is a type.

Note that application of a type constructor to a type is

written in postfix notation, unlike any notation for function

application we have seen. However, other conventions exist,

79

Polymorphism: Two Syntaxes

• Syntax for polymorphic types (B a set of type construc-

tors85 including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

even within Isabelle.

A type constructor of arity > 0 is called type operator by

some authors [GM93, page 196], but we do not follow this

terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),

but again, we do not follow this terminology: for us a type

constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
85As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized

by giving a certain set of symbols B. But unlike before, B is

now a set of type constructors. Each type constructor has an

arity associated with it just like a function in first-order logic.

The intention is that a type constructor may be applied to

types.

Following the conventions of ML [Pau96], we write types in

postfix notation, something we have not seen before. I.e., the

80

Polymorphism: Two Syntaxes

• Syntax for polymorphic types (B a set of type construc-

tors85 including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

Examples: N, N→ N, α list , N list , (N, bool) pair .

even within Isabelle.

A type constructor of arity > 0 is called type operator by

some authors [GM93, page 196], but we do not follow this

terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),

but again, we do not follow this terminology: for us a type

constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
85As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized

by giving a certain set of symbols B. But unlike before, B is

now a set of type constructors. Each type constructor has an

arity associated with it just like a function in first-order logic.

The intention is that a type constructor may be applied to

types.

Following the conventions of ML [Pau96], we write types in

postfix notation, something we have not seen before. I.e., the

80

Polymorphism: Two Syntaxes

• Syntax for polymorphic types (B a set of type construc-

tors85 including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

Examples: N, N→ N, α list , N list , (N, bool) pair .

• Syntax for (raw) terms as before:

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const)

even within Isabelle.

A type constructor of arity > 0 is called type operator by

some authors [GM93, page 196], but we do not follow this

terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),

but again, we do not follow this terminology: for us a type

constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
85As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized

by giving a certain set of symbols B. But unlike before, B is

now a set of type constructors. Each type constructor has an

arity associated with it just like a function in first-order logic.

The intention is that a type constructor may be applied to

types.

Following the conventions of ML [Pau96], we write types in

postfix notation, something we have not seen before. I.e., the

80

Polymorphic Type Assignment Calculus

Type substitutions (denoted Θ) defined in analogy to substi-

tutions in FOL86. Apart from application of Θ in rule assum,

type assignment is as for λ→:
c : τ ∈ Σ

Γ ` c : τΘ
assum∗ Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

∗: Θ is any type substitution.

type constructor comes after the arguments it is applied to.

It makes perfect sense to view the function construction

arrow → as type constructor, however written infix rather

than postfix.

So the B is some fixed set “defined by the user”, but it

should definitely always include →.
86A type substitution replaces a type variable by a type, just

like in first-order logic, a substitution replaces a variable by a

term.

81

6.4 Summary on λ-Calculus

• λ-calculus is a formalism for writing functions.

• β-reduction is the notion of “computing” in λ-calculus.

• λ→ restricts syntax to “meaningful” λ-terms.

• Add-on feature: Polymorphism.

82

7 Resolution

83

Three Sections on Deduction Techniques

We look at a more practical issue: resolution. We want to

understand better how Isabelle works on an intuitive level.

There is another topic relevant in this context that Monica

Nesi strongly emphasises: term rewriting. I will leave this to

her!

84

Resolution

Resolution is the basic mechanism for transforming proof states

in Isabelle in order to construct a proof.

It involves unifying a certain part of the current goal (state)

with a certain part of a rule, and replacing that part of the

current goal.

We have already explained this in the labs and you have

been working with it all the time, but now we want to under-

stand it more thoroughly.

We look at several variants of resolution.

85

Resolution (rtac, as in Prolog87)

ψ

φ1
. . . φi . . . φn

φ1, . . . , φn are current sub-

goals and ψ is original goal.

Isabelle displays

Level . . . (n subgoals)

ψ

1. φ1
...

n. φn

87Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

86

Resolution (rtac, as in Prolog87)

ψ

φ1
. . . φi . . . φn

β

α1 . . .αm

φ1, . . . , φn are current sub-

goals and ψ is original goal.

Isabelle displays

Level . . . (n subgoals)

ψ

1. φ1
...

n. φn

Jα1; . . . ;αmK =⇒ β is rule.

87Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

86

Resolution (rtac, as in Prolog87)

ψ

φ1
. . . φi . . . φn

β

α1 . . .αm

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

�

1

........
........
...........
...............

..................
......................

.........................
............................

................................
...................................

.......................................
..

Simple scenario where φi has

no premises88. Now β must

be unifiable with selected sub-

goal φi.

87Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

86

Resolution (rtac, as in Prolog87)

ψ′

φ′1 . . . φ′i . . . φ′n

β′

α′1 . . .α
′
m

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

�

1

........
........
...........
...............

..................
......................

.........................
............................

................................
...................................

.......................................
..

Simple scenario where φi has

no premises88. Now β must

be unifiable with selected sub-

goal φi.

We apply the unifier (′89)

87Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

86

Resolution (rtac, as in Prolog87)

ψ′

φ′1 . . . α
′
1
. . .α′m. . . φ

′
n

Simple scenario where φi has

no premises88. Now β must

be unifiable with selected sub-

goal φi.

We apply the unifier (′89)

We replace φ′i by the premises

of the rule.

87Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

86

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

Now, suppose the i’th (selected) subgoal has assumptions

φi1, . . . , φiki
.

87

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

β

As before, we have a rule. Here, β is (hopefully) unifiable

with φi, but β is not90 unifiable with the entire i’th subgoal.

87

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
.

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

Rule must be lifted over assumptions91. No unification so far!

87

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
.

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

.

..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............
.
..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............

9
z

.
...

...........

Now, subgoal and rule conclusion (below the bar) are unifiable92.

87

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
.

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)
R

.
..

...

..
..

...
.......................................

.......

..............................
................

........................
.......................

.....................
.....................

......

Now, subgoal and rule conclusion (below the bar) are unifiable92.

Non-trivially93, β must be unifiable with φi.

87

Resolution (with Lifting over Assumptions)

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1. . .φ
′
iki

]

α′1 . . . α′m

...

[φ′i1 . . .φ
′
iki

]
.

[φ′i1 . . .φ
′
iki

]

β′
...

[φ′i1 . . .φ
′
iki

]
.
..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............

.

..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............
.
..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............

We apply the unifier.

87

Resolution (with Lifting over Assumptions)

ψ′

φ′1 . . .φ
′
i−1 α

′
1

. . . α′m φ
′
i+1
. . . φ′n

...

[φ′i1 . . .φ
′
iki

]
.

[φ′i1 . . .φ
′
iki

]

We replace the subgoal.

87

Elimination-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . .φiki
]

β

α1 . . .αm

Same scenario as before94

7.1 Summary on Resolution

• Build proof resembling sequent style notation;

94So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
95Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

88

Elimination-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . .φiki
]

β

α1 . . .αm

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
...

..
...

...
..

..
...

...

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
......................................

..
..

...
...

...
..

..
..

Same scenario as before94, but now β must be unifiable

with φi, and α1 must be unifiable with φil, for some l.

7.1 Summary on Resolution

• Build proof resembling sequent style notation;

94So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
95Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

88

Elimination-Resolution

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i,1 . . . φ
′
il
. . .φ′iki

]
β′

α′1 . . .α
′
m

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
...

..
...

...
..

..
...

...

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
......................................

..
..

...
...

...
..

..
..

Same scenario as before94, but now β must be unifiable

with φi, and α1 must be unifiable with φil, for some l.

Apply the unifier.

7.1 Summary on Resolution

• Build proof resembling sequent style notation;

94So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
95Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

88

Elimination-Resolution

ψ′

φ′1 . . . φ
′
i−1 α

′
2

. . . α′m φ
′
i+1

. . . φ′n

... ...

[φ′i1 . . . φ
′
i,l−1, φ

′
i,l+1

. . .φ′iki
] [φ′i1 . . . φ

′
i,l−1, φ

′
i,l+1

. . .φ′iki
]

Same scenario as before94, but now β must be unifiable

with φi, and α1 must be unifiable with φil, for some l.

Apply the unifier.

We replace φ′i by the premises of the rule except the first95.

α′2, . . . , α
′
m inherit the assumptions of φ′i, except φ′il.

7.1 Summary on Resolution

• Build proof resembling sequent style notation;

94So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
95Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

88

• technically: replace goals with rule premises, or goal premises

with rule conclusions;

• metavariables and unification to obtain appropriate in-

stance of rule, delay commitments.

then the result of elimination resolution is

[A;B]
....
B

A ∧B → B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any

information away”. Before we had the assumption A ∧ B.

This was replaced by the components A and B as separate

assumptions.

89

8 Automation by Proof Search

90

Outline of this Part

• Proof search and backtracking

• Classifying rules

• Proof procedures

8.1 Proof Search and Backtracking

Some aspects in proof construction are non-deterministic:

• unification: which unifier to choose?

• resolution: where96 to apply a rule (which ’subgoal’)?

• which rule to apply?

The question is: how to organize proof-search?
96We have seen in the exercises (and also in the lecture) that

one can choose the subgoal to which one wants to apply a

rule.

91

Organizing Proof Search Conceptually

Organize proof search as a tree97 of theorems98 (thm’s).

s1
��

���

HH
HHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

97We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
98Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

99For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
100Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

92

Organizing Proof Search Conceptually

Organize proof search as a tree97 of theorems98 (thm’s).

s1
��

���

HH
HHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
��

���
s2
�
�	
s4

?
s7
?

• Tactic applications move us along

leftmost path.

97We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
98Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

99For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
100Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

92

Organizing Proof Search Conceptually

Organize proof search as a tree97 of theorems98 (thm’s).

s1
��

���

HH
HHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
��

���
s2
�
�	
s4

• Tactic applications move us along

leftmost path.

• Using undo();99 moves us upwards

(previous proof state).

97We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
98Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

99For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
100Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

92

Organizing Proof Search Conceptually

Organize proof search as a tree97 of theorems98 (thm’s).

s1
��

���

HH
HHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
��

���
s2
@
@R
s5

• Tactic applications move us along

leftmost path.

• Using undo();99 moves us upwards

(previous proof state).

• Using back(); moves us (up and)

right (alternative successors100 due

to different unifiers).

97We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
98Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

99For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
100Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

92

Organizing Proof Search Conceptually

Organize proof search as a tree97 of theorems98 (thm’s).

s1
��

���

HH
HHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
��

���
s2
@
@R
s5

?
s8
?

��
��√

• Tactic applications move us along

leftmost path.

• Using undo();99 moves us upwards

(previous proof state).

• Using back(); moves us (up and)

right (alternative successors100 due

to different unifiers).

97We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
98Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

99For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
100Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

92

Organizing Proof Search Operationally

The search space of proof search can be thought of as such

a tree, but it cannot be implemented like this straightaway:

Organize proof search as a function on theorems101 (thm’s)

type tactic = thm→ thm seq

where seq102 is the type constructor for infinite lists.

This allows us to have tacticals103: THEN, ORELSE, REPEAT,

. . .
101This way of understanding and origanizing proof search is

not so abstract, but rather operational. Instead of saying that

φ and φ′ are in a relation, one says that φ′ is in the sequence

returned by the tactic applied to φ. There is an order among

the successors of a proof state.

One still does not represent a tree explicitly, although con-

ceptually, proof search is about exploring this tree.
102For any type τ , the type τ seq (recall the notation) is the

type of (possibly) infinite lists of elements of type τ . This is

of course an abstract datatype. There should be functions to

return the head and the tail of such an infinite list.

An abstract datatype is a type whose terms cannot be rep-

resented explicitly and accessed directly, but only via certain

functions for that type.
103

• THEN

• ORELSE

93

8.2 Classifying Rules

In your early Isabelle exercises, you only used backward

reasoning (rtac). You experienced that some rules can be

applied blindly most of the time, e.g. →-I or ∧-I. Others in-

volve “guessing”, e.g. ∧-EL or ∧-ER (you do not know which

to apply to deal with a ∧ in the premises).

8.2 Classifying Rules

In your early Isabelle exercises, you only used backward

reasoning (rtac). You experienced that some rules can be

applied blindly most of the time, e.g. →-I or ∧-I. Others in-

volve “guessing”, e.g. ∧-EL or ∧-ER (you do not know which

to apply to deal with a ∧ in the premises).

Later on you learned about etac combined with specially

tailored rules (they have an “E” in their name). That helps

reduce, but not completely eliminate the “guessing”.

• REPEAT

• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .

are called tacticals.

Tacticals are operations on tactics. They play an impor-

tant role in automating proofs in Isabelle. The most ba-

sic tacticals are THEN and ORELSE. Both of those tacti-

cals are of type tactic ∗ tactic → tactic and are writ-

ten infix: tac1 THEN tac2 applies tac1 and then tac2, while

tac1 ORELSE tac2 applies tac1 if possible and otherwise ap-

plies tac2 [Pau05, Ch. 4].

94

Safe and Unsafe Rules

Combined tactics rely on classification of rules, maintained in

Isabelle data structure claset104, and accessed by functions105

of type claset ∗ thm list→ claset.

Class: To add use function:

Safe introduction rules addSIs

Safe elimination rules addSEs

Unsafe introduction rules addIs

Unsafe elimination rules addEs

104claset is an abstract datatype. Overloading notation,

claset is also an ML unit function which will return a term of

that datatype when applied to (), namely, the current classifier

set.

A classifier set determines which rules are safe and unsafe

introduction, respectively elimination rules. The current clas-

sifier set is a classifier set used by default in certain tactics.

The current classifier set can be accessed via special func-

tions for that purpose.
105The functions addSIs, addSEs, addIs, addEs are all of

type claset ∗ thm list→ claset. They add rules to the

current classifier set. For example, addSIs adds a rule as safe

introduction rule.

95

8.3 Proof Procedures (Simplified)

Tactics in Isabelle are performed in order106:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules)

2. canonize: propagate “x = t” throughout subgoal

3. rtac unsafe I rules ORELSE etac unsafe E rules

4. atac

There are variants of this. We do not study them in detail,

we just use them . . .
106Tactics in Isabelle are performed in order:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules);

2. canonize: propagate “x = t” . . . throughout subgoal;

3. rtac unsafe I rules ORELSE etac unsafe E rules ;

4. atac.

One elementary proof step consists of trying a safe intro-

duction rule with rtac, or, if that is not possible, a safe

elimination rule with etac. This will be repeated as long as

possible.

Then in the current subgoal, any assumption of the form x =

t (where x is a metavariable) will be propagated throughout

the subgoal, i.e., all occurrences of x wil be replaced by t.

Then Isabelle will try one application of an unsafe intro-

duction rule with rtac, or, if that is not possible, an unsafe

elimination rule with etac.

96

Combined Proof Search Tactics

• step tac : claset→ int→ tactic

• fast tac : claset→ int→ tactic

• best tac : claset→ int→ tactic

• slow tac : claset→ int→ tactic

• blast tac : claset→ int→ tactic

Finally, she will use atac. Note that atac is unsafe. In

general, there are several premises in a subgoal and atac may

unify the conclusion of the subgoal with the wrong premise.

97

8.4 Summary on Automated Proof Search

• Proof search can be organized as a tree of theorems.

• Calculi can be set up to facilitate proof search (although

this must be done by specialists).

• Combined with search strategies, powerful automatic pro-

cedures arise.

98

9 Term Rewriting

9.1 Higher-Order Rewriting

Motivation: In your last years at school, you might have

done some equational proofs. They work by replacing equals

by equals.

9 Term Rewriting

9.1 Higher-Order Rewriting

Motivation: In your last years at school, you might have

done some equational proofs. They work by replacing equals

by equals.

It is practical to view deduction to some extent as equa-

tional proving and give it some attention algorithmically. This

will be even more true later. We speak of simplification or

(higher-order) rewriting.

99

9.2 Organizing Simplification Rules

• Standard (HO-pattern conditional ordered rewrite) rules;

• congruence rules;

• splitting rules.

Isabelle data structure: simpset107. Some operations108:

• addsimps : simpset ∗ thm list→ simpset

• delsimps : simpset ∗ thm list→ simpset

• addcongs : simpset ∗ thm list→ simpset

• addsplits : simpset ∗ thm list→ simpset

107The simpset is an abstract datatype and at the same time

an ML unit function for returning the current simplifier set.

This is in analogy to the classifier set.
108These function manipulate the simplifier set, in analogy to

the classifier set.

100

How to Apply the Simplifier?

Several versions of the simplifier:

• simp tac : simpset→ int→ tactic

• asm simp tac : simpset→ int→ tactic

(includes assumptions into simpset)

• asm full simp tac : simpset→ int→ tactic

(rewrites assumptions, and includes them into simpset)

Using global109 simplifier sets: Simp tac, Asm simp tac,

Asm full simp tac.

109Simp tac, Asm simp tac, Asm full simp tac work like

their lower-case counterparts but use the current (global) sim-

plifier set and hence do not take a simplifier set as first argu-

ment (e.g., Simp tac has type int→ tactic)

There are analogous capitalized versions for the tactics of

the classical reasoner.

101

10 HOL: Foundations

10.1 Overview

HOL is expressive foundation110 for

• Mathematics: analysis, algebra, . . .

• Computer science: program correctness, hardware verifi-

cation, . . .

http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/
http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/

10 HOL: Foundations

10.1 Overview

HOL is expressive foundation110 for

• Mathematics: analysis, algebra, . . .

• Computer science: program correctness, hardware verifi-

cation, . . .

HOL developed by [Chu40, Hen50] and rediscovered by

[And02, GM93].

• HOL is classical logic based on the (polymorphically) typed

λ-calculus.

• We will use Isabelle/HOL111. Several variations and alter-

natives would be possible.

110Theorem proving in higher-order logic is an active research

area with some impressive applications.
111We use Isabelle/HOL, and this means that HOL is an ob-

ject logic represented by the metalogic M.

102

http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/
http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/

Safety through Strength

Safety112 via conservative (definitional) extensions:

• Small kernel of constants and rules;

• extend theory with new constants and types defined using

existing ones;

• derive properties/theorems.

Contrast with:

• Weak logics (e.g., propositional logic): can’t define much;

• axiomatic extensions113: can lead to inconsistency.

Bertrand Russell once likened the advantages of postulation

over definition to the advantages of theft over honest toil!
112The principle is simple: the smaller a system is, the easier

it is to check that it is correct, and the more confident one

can be about it.

We have seen this before when we argued for the use of

metalogics. However, in that context, we still had to add

further axioms to M. Here this is not the case.

Safety through strength means: HOL is strong enough to

model interesting systems without having to add further ax-

ioms – that’s what makes it safe.
113What we attempt to do here has similarities to the pro-

cess of representing an object logic in a metalogic. But an

important difference must be noted.

We will see many extensions of the HOL kernel by con-

stants (and types). The definitions of those constants and

types involve axioms that must be added according to a strict

discipline. Other than that, we will not add any axioms!

103

What Does Higher-Order Mean?

“Type” order114 Logic order

Example

Just bool 0? A ∧B → B ∧ A
1 1 ∀x, y. R(x, y)→ R(y, x)

+ quantification 2 False ≡ ∀P. P
P ∧Q ≡ ∀R. (P → Q→ R)

2 3

+ quantification 4 ∀X. (X(R, S)↔ (∀x.R(x)→ S(x)))

→ X(R′, S ′) (≡ subrel(R′, S ′))
...

114Recall the definition of an order on types and assume here,

as we did in the lecture on representing syntax, that there is

a type i of individuals and a type o for truth values.

In the sequel, we follow [And02, §50], who uses a definition

of order slightly different from ours. I will phrase his definition

using the concept of predicate type:

• i is a type of order 0.

• every type of the form

i→ . . . i→︸ ︷︷ ︸
n times

o,

where n ≥ 0, is a predicate type of order 1.

• If τ1, . . . , τn are predicate types, then τ1 → . . .→ τn →
o is a predicate type whose order is 1+ the maximum of

the orders of τ1, . . . , τn.

Note that this means that there are no function symbols,

since we did not consider types of the form . . . → i. How-

104

ever it is better to say that we simply disregard them in the

subsequent explanations, for simplicity.

In the table, we classify logics by the order of the non-

logical symbols (e.g., for first-order logic: variables, predicate

symbols).

A hierarchy of logics is obtained by the following alternation:

• admit an additional order for the non-logical symbols in

the logic;

• admit quantification over symbols of that order.

We start this hierarchy with first-order logic.

It has symbols of first-order type (predicate symbols), but

quantification is allowed only over individuals, which are of

order 0.

Now, if one admits quantification over symbols of first-order

type, i.e., over symbols of type o or i → . . . → i → o, one

obtains second-order logic.

105

Now, if one admits symbols of second-order type (symbols

taking predicate symbols as arguments), one obtains third-

order logic.

Now, if one admits quantification over symbols of second-

order type, one obtains fourth-order logic.

Hence quantification over nth-order variables corresponds

to (2n)th-order logic.

In the end, one will never bother to discuss, say, 7th-order

logic, since higher-order logic is the union of all logics of finite

order, and this is what we will be working with.

Andrews has said that propositional logic might be regarded

as zeroth order logic, but unfortunately, propositional logic

cannot be found in this hierarchy in a straightforward way.

According to the hierarchy, below first-order logic there should

be a logic where the symbols are of order 0 and quantification

over such symbols is allowed. But in fact, in propositional

logic the symbols are of type o, which is of order 1 but is not

the only type of order 1, and no quantification is allowed at

106

Explanation for subrel(R′, S ′).115

all.

However, once you take higher-order logic as your point of

reference and not propositional or first-order logic, which can

just be viewed as special cases, you will probably not find this

bothering anymore.
115Consider the binary predicate subrel which takes two unary

relations as arguments. subrel(R, S) is defined as true when-

ever R is a subrelation of S, i.e. when ∀x.R(x)→ S(x).

Now instead of defining such a predicate and writing, say,

a formula subrel(R′, S ′), one could abstract from that name

and write

∀X. (X(R, S)↔ (∀x.R(x)→ S(x)))→ X(R′, S ′)

The subformula X(R, S) ↔ (∀x.R(x) → S(x)) is true if

and only if X is indeed the predicate subrel and so the entire

formula is true if R′ is indeed a subrelation of S ′.

107

HOL = Union of All Finite Orders

ω-order logic, also called finite-type theory or higher-order

logic (HOL), includes logics of all finite orders.

108

10.2 Syntax

Syntactically, HOL is based on the typed λ-calculus with

certain default types and constants.

Default constants can be called logical symbols.

109

Types (Review)

Given a set of type constructors, say B116 = {bool , →
, ind 117, × 118, list , set , . . .}, polymorphic types are

defined by τ ::= α | (τ, .., τ) T , where α is a type

variable.

bool and → are always present in HOL; ind will also play

a special role; other type constructors may be defined.
116As before, we use the letter B to denote a particular set

of type constructors.

Note that this set is not hard-wired into HOL, but can be

specified as part of a particular HOL language. One can there-

fore speak of B as a type signature.

B is some fixed set “defined by the user”. In Isabelle, there

is a syntax provided for this purpose.

However, some type constructors are always present.
117ind (“indefinite”) is a type constructor which stands for a

type with infinitely many members, a concept which is central

in HOL, as we will see later.
118For any two types τ and σ, we write τ × σ for the type of

pairs where the first component is of type τ and the second

component is of type σ.

The infix syntax is in analogy to →.

The pair type is not in the core of HOL, but it can be defined

in it.

110

Terms

Reminder: e ::= x | c | (ee) | (λxτ
119
. e)

Typing rules as in polymorphic λ-calculus, with Σ defining

and typing constants.

Terms of type bool are called

111

Terms

Reminder: e ::= x | c | (ee) | (λxτ
119
. e)

Typing rules as in polymorphic λ-calculus, with Σ defining

and typing constants.

Terms of type bool are called (well-formed) formulae.

In HOL, Σ always includes:

True,False120 : bool

= : α→ α→ bool

→ : bool → bool → bool

ε : (α→ bool)→ α (in Isabelle: Eps or SOME121)

111

10.3 Semantics

Intuitively: many-sorted semantics + functions

• When explaining semantics, one always has to rely on

intuition. This is even more true for this crash course

where we cannot present any details.

• What “are” semantic objects?

10.3 Semantics

Intuitively: many-sorted semantics + functions

• When explaining semantics, one always has to rely on

intuition. This is even more true for this crash course

where we cannot present any details.

• What “are” semantic objects? Numbers, lists, sets, all

kinds of functions . . .

• We have a semantic universe D indexed by (infinitely

many) types, i.e., one Dτ for each type τ .

112

Model Based on Universe of Sets U
U is a collection of (domains) with closure conditions:

Inhab: Each X ∈ U is a nonempty set

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U

Prod: If X, Y ∈ U then X × Y ∈ U .

Pow: If X ∈ U then ℘(X) = {Y | Y ⊆ X} ∈ U

Infty: U contains a distinguished infinite set122 I

Choice: There is a function ch that takes a set X ∈ U as

argument and returns a member of X .

122The infinity axiom

∃f (ind→ind).injective f ∧ ¬surjective f
infty

says that there is a function from I to I (the postulated

infinite set in U) which is injective (any two different elements

e, e′ of I have different images under f) but not surjective

(there exists an element of I which is not the image of any

element).

Such a function can only exist if I is infinite, and in fact

the axiom expresses the very essence of infinity, as we will see

later.

Think of the natural numbers and the successor function

as an example: for any two different natural numbers, the

successors are different, and the number 0 is not the successor

of any number.

113

Function Space in U
Define X → Y as the set of functions from X to Y .

• For nonempty X and Y 123, this set is nonempty and is a

subset of ℘(X × Y).

• From closure conditions: X, Y ∈ U then X → Y ∈ U .

123It is crucial in the semantics that any type is inhabited,

i.e., has an element. The reason for this is that otherwise,

there would be terms for which we cannot give a semantics:

Suppose ρ was an empty (non-inhabited) type. Then we

cannot give any semantics to the term xρ. Moreover, if the

signature includes a constant cρ, then we cannot give a se-

mantics to cρ. Even if we only consider closed terms (i.e.,

terms without free variables), and we explicitly forbid the ex-

istence of a constant cρ for an empty type ρ, there will be

terms for which we cannot give a semantics. The simplest

example is the term λxρ.x.

We know that λ-terms denote functions, as in λxρ.x, and

so it is natural to expect that all functions we can write in

the λ-calculus actually exist in the semantics. Generally, the

function space X → Y is empty if X or Y is empty. This

means that Dτ→σ would necessarily be empty if τ is empty.

One way of understanding why it would be bad if some λ-

terms denoting functions had no semantics is by looking at

114

Distinguished Sets

From

Infty: U contains a distinguished infinite set I

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U
it follows that the following sets exist in U :

β-reduction: for any types τ ,σ and a constant c of type σ,

we expect (λxτ .c)x = c. But this wouldn’t hold if we cannot

give a semantics to (λxτ .c) since Dτ→σ is empty.

Therefore: inhabitation.

One specific point where inhabitation is crucial is related to

the ε-operator, as we will see later.

In the book [GM93] that is one of the sources for this lecture,

inhabitation is mentioned, but it is not explained why it is

crucial.

Here we speak of semantic inhabitation, i.e., our semantic

universe must be big enough so that all terms (of type τ)

can be given a meaning (in Dτ). This is a different ques-

tion from whether there might be types that are not inhab-

ited (syntactically) in the first place, i.e., types for which

there exists no term of this type (compare this to the Curry-

Howard isomorphism). Thus we are concerned with making

sure that every term has a meaning, not that every meaning

has a term. However, it turns out that that in HOL, each

115

Unit: A distinguished 1-element124 set {1}

Bool: A distinguished 2-element set {T, F}.

type τ is also syntactically inhabited, namely e.g. by the term

ε(τ→bool)→τ (λx
τ .True).

124Of course, the conditions on U do not per se enforce the

existence of sets containing the elements 1 or T or F . Just

as well, one could say that they enforce the existence of sets

containing elements K or ® or o.

It is only because the name of a semantic element is ul-

timately irrelevant that we claim, without loss of generality,

that there is a 1-element set {1} and a 2-element set {T, F}.
We say that these sets are distinguished because they play a

special role in the setup of the semantics.

116

The Domain for each Type

We now have a universe of domains. Now we want to specify,

for each type, what the domain for this type should be. We

write Dτ . one for each type τ , where:

• Dbool = {T, F};

• Dτ→σ = Dτ → Dσ (simplification!);

• Dind = I .

117

Interpretations

We define the denotation function (≈ interpretation) J map-

ping each constant of type τ to an element of Dτ :

• J (True) = T and J (False) = F ;

• J (=τ→τ→bool)
125 is equality on Dτ ;

• J (→) is implication function over Dbool . For b, b′ ∈
{T, F},

J (→)(b, b′) =

{
F if b = T and b′ = F

T otherwise

125For = and ε, we give type subscripts in the presentation of

the semantics since we assume, conceptually, that there are

infinitely many copies of those constants, one for each type.

We do this to avoid explicit polymorphism in this presentation.

118

Interpretations (Cont.)

• J (ε(τ→bool)→τ) is defined by (for f ∈ (Dτ → Dbool)):

J (ε(τ→bool)→τ)(f)126 =

{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

126We have

J (ε(τ→bool)→τ)(f) =

{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

ch is a (semantic) function which takes a nonempty set and

returns an element from that set. f is a semantic function

from Dτ to Dbool . However, f can be interpreted as set. This

is done in all formality here: we write f−1({T}). One says

that f is the characteristic function of the set f−1({T}).

Now the type of ε is (τ → bool) → τ (for any τ), so ε

expects a function as argument, which can be interpreted as

a set as just stated. This set can be empty or nonempty. In

case it is nonempty, an element is picked from the set non-

deterministically. If the set is empty, an element from the type

τ (which must be nonempty since each type is interpreted as

nonempty set). Note the importance of inhabitation.

119

The Value of Terms

Given a denotation function J and a type-indexed collection

of assignments127 A = {Aτ}τ , define VJA such that VJA (tρ) ∈
Dρ for all t, as follows:

1. VJA (xτ) = A(xτ);

2. VJA (c) = J (c) for c a constant;

3. VJA (sτ→σ
128tτ) = (VJA (s))(VJA (t)), i.e., the value of the

function VJA (s) at the argument VJA (t);

4. VJA (λxτ . tσ) = the function from Dτ into Dσ whose value

for each e ∈ Dτ is VM
A[x←e]

129(t).

127An assignment (previously called valuation) maps variables

to elements of a domain.

A type-indexed collection of assignments is an assignment

that respects the types: a variable of type τ will be assigned to

a member of Dτ [GM93]. Note that a variable has a type by

virtue of a context Γ, which is suppressed in our presentation

of models.
128In the presentation of models, we give type subscripts for

the cases VM
A (sτ→σtτ) and VM

A (λxτ . tσ) to indicate the types

of s and t in those definitions. Note that a term has a type in

a certain context Γ, which is suppressed in our presentation of

models. The semantics is only defined for well-formed terms,

in particular, applications and abstractions having types of the

indicated forms.
129A[x ← e] denotes the assignment that is identical to A

except that A(x) = e.

120

Satisfiability and Validity

A formula (term of type bool) φ is satisfiable wrt. a denotation

function J if there exists an assignment A such that VJA (φ) =

T .

A formula φ is valid wrt. a denotation function J for all

assignments A, we have VJA (φ) = T .

A formula φ is valid if it is valid wrt. every denotation

function.

121

Existence of Values

Closure conditions guarantee every well-formed term has a

value under every assignment, and this means that certain

values must exist, e.g.,

• Closure under functions: since VJA (λxτ . x) is defined, the

identity function from Dτ to Dτ must always belong to

Dτ→τ .

• Closure under application: if DN is natural numbers, and

DN→N→N contains addition function p where p x y = x+

y, then DN→N must contain k where k x = 2x+ 5, since

k = VJA (λxN. f (f x x) y) where A(f) = p and A(y) =

5.

122

10.4 Basic Rules

We now give the core calculus of HOL. Its rules can be

stated using only the constants =,→, and ε. However, there

will be one rule, tof (“true or false”), which would be hard to

read if we did that.

So we allow ourselves to “cheat”130 and also use constants

True, False, ∨ to write rule tof.

Later we will define those constants, i.e., regard them as

syntactic sugar.
130Rule tof can be written as follows:

(λψ. (φ = (λx.x = λx.x)→ ψ)→
(φ = ((λη.η) = λx.(λx.x = λx.x))→ ψ)→ ψ) =

(λx.(λx.x = λx.x))

tof

Our notation for rule tof is thus based on the following def-

initions:
True = (λxbool .x = λx.x)

False = ∀φbool .φ

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

123

Basic Rules in Sequent Notation

Γ ` φ = φ
refl

Γ ` φ = η Γ ` P (φ)

Γ ` P (η)
subst

Γ ` φx = η x

Γ ` φ = η
ext∗131

Γ, φ ` η
Γ ` φ→ η

impI

Γ ` φ→ η Γ ` φ
Γ ` η

mp

Γ ` (φ→ η)→ (η → φ)→ (φ = η)
iff

φ = True ∨ φ = False
tof

Γ ` φx
Γ ` φ(εx.φx133)

selectI132

131The rule
Γ ` φx = η x

Γ ` φ = η
ext

has the side condition that x /∈ FV (Γ).

Phrased like
φx = η x

φ = η
ext

the rule has the side condition that x must not occur freely

in the derivation of φx = η x.
132You may wonder why there is no rule for eliminating ε.

We will later see a rule derivation where an ε is effectively

eliminated, and we will also see that this is done without

requiring a rule explicitly for this purpose.

Apart from that, the ε-operator is used in HOL as basis

for defining ∃ and the if-then-else constructs. Once we have

derived the appropriate rules for those, we will not explicitly

encounter ε anymore.
133For readability, we will frequently use a syntax that one is

124

Axiom of Infinity

One additional rule, the axiom of infinity, will be studied later.

Note “cheating” (use of ∃).

These eight (nine) rules are the entire basis!

more used to than higher-order abstract syntax:

εx.φx stands for ε(φ).

∀x.φ(x) stands for ∀(φ), and likewise for ∃.

We have done the same previously for M.

125

Soundness and Completeness

Soundness is straightforward [And02, p. 240].

Completeness does not hold in general, but only under cer-

tain conditions. Otherwise, there would be a contradition

to Gödel’s incompleteness theorem134 [Hen50, Mil92]: There

must be formulas that are valid in HOL that cannot be proven

within HOL.
134This is a standard trick when faced with the problem that a

deductive system is not complete. One can either enlarge the

set of axioms, or one can weaken the models by permitting

more models. If we allow more models, then fewer theorems

will be valid (i.e., hold in all models), and so fewer theorems

will have to be provable in the derivation system.

Here, completeness is based on general models, and not

standard models. This resolves the apparent contradiction

with Gödel’s incompleteness theorem: HOL with infinity con-

tains I , hence the natural numbers, hence arithmetic By

Gödel’s incompleteness theorem, there cannot be a consistent

derivation system that can prove all valid theorems in the

natural numbers.

A readable account on this problem can be found in [And02,

ch. 7].

126

10.5 Isabelle/HOL

We now extend the HOL language, introducing the standard

symbols ∧,∀, As said, we stick to the HOL theory of

Isabelle135.

We present language and rules136 using “mathematical”

syntax, but also comparing with Isabelle syntax.
135This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

There you will also find all the derivations of the rules pre-

sented in this lecture.

However, the presentation of this lecture is partly based on

HOL.thy of Isabelle 98, which in turn is based on a standard

book [GM93]. E.g., the definition of Ex def is now different

from the one presented here.

Note also that here in the slides, we use a style of displaying

Isabelle files which uses some symbols beyond the usual ASCII

set.
136We will mix natural deduction (with discharging assump-

tions), natural deduction written in sequent style, and Isabelle

syntax.

For a thorough account of this, consult [SH84].

127

http://isabelle.in.tum.de/library/
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0506/csmr/HOL.thy

(Central Parts of the) Language

Some general remarks about the correspondence: A rule
ψ

φ

in ND notation corresponds to an Isabelle rule ψ =⇒ φ.

A rule
[ρ]
....
ψ

φ

is written as
ρ,Γ ` ψ

Γ ` φ
in sequent style or

ρ =⇒ ψ

φ

using the Isabelle meta-implication =⇒.

128

A rule
ψ

φ(x)

with side condition that x must not occur free in any undis-

charged assumption on which ψ depends is written as
Γ ` ψ

Γ ` φ(x)

in sequent style, where the side condition reads: x must not

occur free in Γ. Using the Isabelle meta-universal quantifica-

tion, the rule is written ∧
x.ψ

φ(x)

We will switch between the various ways of writing the rules!

This means in particular that we will use =⇒ and
∧

from

Isabelle’s metalogic.

129

Σ0 =

{ True, False137 : bool ,

¬ 138 : bool → bool ,

∧ , ∨ , → : bool → bool → bool ,

∀ , ∃ : (α→ bool)→ bool ,

ε : (α→ bool)→ α,

if then else : bool → α→ α→ α,

= : α→ α→ bool}
137For convenience (and to save space, we write . . . a : τ, b :

τ . . . as . . . a, b : τ . . . in a signature. This is of course syn-

tactic sugar.
138We use a notation with to indicate the arity and fixity of

constants, as this has been done for type constructors before.

The whole matter of arity of fixity is one of notational con-

venience. For example, as the type of ∧ indicates, we should

write (∧φ)ψ (Curryed notation), but we write φ ∧ ψ since it

is more what we are used to.

130

Basic Rules in Isabelle Notation

refl: "t = t"

subst: "[| s = t; P(s) |] ==> P(t)"

ext: "(!!x. (f x) = g x) ==>

(%x. f x) = (%x. g x)"

impI: "(P ==> Q) ==> P-->Q"

mp: "[| P-->Q; P |] ==> Q"

iff: "(P-->Q) --> (Q-->P) --> (P=Q)"

True_or_False: "(P=True) | (P=False)"

selectI: "P (x) ==> P (@x. P x)"

See HOL.thy.

131

No more “Cheating”: The Definitions

132

True139 = 140 (λxbool .x = λx.x)

∀141 = λφα→bool .(φ = λx.True)

False142 = ∀φbool
143
.φ144

∨145 = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

∧146 = λφη.∀ψ.(φ→ η → ψ)→ ψ

¬147 = λφ.(φ→ False)

∃148 = (λφ.φ(εx.φx))

If 149 = λφboolxy.εz.(φ = True → z = x)∧
(φ = False → z = y)

139

True = (λxbool .x = λx.x)

The term λxbool .x = λx.x evaluates to T , and so it is a

suitable definition for the constant True.

Note that we give the type for x once. The right-hand side

λx.x will thereby also be forced to be of type bool → bool .

This is necessary for reasons that will become clear later.

Note that (λxbool .x = λx.x) is closed. Definitions must

always be closed.
140It is a design choice if we want to add these definitions at

the level of the object logic (HOL) or at the level of the M.

In the first case, we would use = and have axioms such as

True = (λxbool .x = λx.x)

In the second case, we would have meta-axioms

True ≡ (λxbool .x = λx.x)

This would mean that we would regard True merely as syn-

tactic sugar. The second way corresponds to what is done in

Isabelle, see HOL.thy. It is technically more convenient since

rewriting is based on meta-level equalities.

Logically, it is not a big difference which way one chooses.

We will have an exercise on this.
141

∀ = λφ.(φ = λx.True)

Note the use of HOAS here. ∀ should be a function that

expects an argument φ of type α → bool (generalizing the

technique we used for encoding first-order ∀). So φ is such

that when you pass it an argument x of type α, it will return

a proposition (something of type bool).

The expected semantics of ∀φ wrt. a model M and an as-

signment A is: VM
A (∀φ) = T iff VMA[x←e](φx) = T for any e

(from the domain of x’s type).

Now when does φx hold for all x? This is the case exactly

when φx evaluates to T for all x, which is the same (applying

some HOL rules) as saying that φ is the function λx.True.

Here α could be arbitrarily instantiated to some type.

142

False = ∀φ.φ

The essence of False is that anything can be derived from it.

But this is exactly what ∀φ.φ says.
143In HOL, the quantifiers, which one expects to be variable

binders, are realized using λ in the style of HOAS.

We have said binding occurrences of variables in a λ-term

should, strictly speaking, be annotated with a type, but that

this type can often be omitted.

Now whenever we use concrete quantifier syntax for conve-

nience, so we write ∀x.ψ instead of ∀(λx.ψ) (and likewise for

∃), we may annotate the variable in the obvious way: ∀xτ .ψ
is concrete syntax for ∀(λxτ .ψ).

Sometimes we will annotate variables for clarity, sometimes

we trust that the type is clear from the context.
144The HOL constant ∀ is defined first in the style of HOAS.

But we also use concrete syntax, so we write ∀x.ψ instead of

∀(λx.ψ). In the concrete syntax, one may also annotate the

variable with a type.
145

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

First, observe the similarity of this definition with the ∨-E rule

of propositional logic.

Secondly, just go through the cases:

• If φ is true, then:

– If ψ is false, then φ→ ψ is false and so (φ→ ψ)→
(η → ψ)→ ψ is true;

– If ψ is true, then (η → ψ) → ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ

is true.

• Otherwise, if η is true, then:

– If ψ is false, then η → ψ is false and so (η → ψ)→ ψ

is true and so (φ→ ψ)→ (η → ψ)→ ψ is true.

– If ψ is true, then (η → ψ) → ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ

is true.

• Otherwise (if both φ and η are false), then for all ψ, both

φ → ψ and η → ψ are true, and so there exists a ψ,

say ψ ≡ False, such that (φ→ ψ)→ (η → ψ)→ ψ is

false.

Thus it is not the case that for all ψ, (φ→ ψ)→ (η →
ψ)→ ψ is true.

So the definition of ∨ behaves exactly as it should.
146

∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ

Similarly as for ∨, we can go through the cases:

• If η is false, then there exists a ψ, namely ψ ≡ False,

such that η → ψ is true, hence φ → η → ψ is true,

hence (φ→ η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ

is true.

• Otherwise, if φ is false, then φ → η → ψ is true, and

there exists a ψ, namely ψ ≡ False, such that (φ →
η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ

is true.

• Otherwise (if φ and η are true), then:

– If ψ is false, then η → ψ is false, hence φ→ η → ψ

is false, hence (φ→ η → ψ)→ ψ is true.

– If ψ is true, then (φ→ η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ η → ψ)→ ψ is true.

So the definition of ∧ behaves exactly as it should.
147

¬ = λφ.(φ→ False)

We know that one already from propositional logic.
148

∃ = (λφ.φ(εx.φx))

Using the abstract syntax for ε, one could also write

∃ = (λφ.φ(εφ))

Recall first the definition of ∀ to understand the type of ∃.

The expected semantics of ∃φ wrt. a model M and an as-

signment A is: VM
A (∀φ) = T iff VMA[x←e](φx) = T for some e

(from the domain of x’s type).

The semantics of ε is such that φ(εφ) is true, if and only if

a term t exists for which φ(t) is true.

So this is exactly the expected semantics of ∃φ.

133

149

If = λφxy.εz.(φ = True → z = x)∧(φ = False → z = y)

The constant If stands for the if-then-else construct. Note

first that εz.(φ = True → z = x) ∧ (φ = False → z = y)

is η-equivalent to εz.(λz.(φ = True → z = x) ∧ (φ =

False → z = y)) z, which is written ε(λz.(φ = True → z =

x)∧ (φ = False → z = y)) in the “real” HOL syntax, which

uses the concept of HOAS.

The expression ε(λz.(φ = True → z = x)∧(φ = False →
z = y)) picks a term from the set of terms z such that

(φ = True → z = x) ∧ (φ = False → z = y) holds. But

this means that z = x if φ = True, or z = y if φ = False.

Since If should be a function which takes φ, x and y

as arguments, we must abstract over those variables, giving

λφxy.εz.(φ = True → z = x) ∧ (φ = False → z = y).

134

10.6 Conclusions on HOL

• HOL generalizes semantics of FOL:

– bool serves as type of propositions;

– Syntax/semantics allows for higher-order functions.

• Logic is rather minimal: 8 or 9 rules, based on 3 con-

stants, soundness straightforward.

• Logic is complete under certain restrictions.

• Next: how can all well-known inference rules be derived.

135

11 HOL: Deriving Rules

136

Derived Rules

The definitions can be understood either semantically (check-

ing if each definition captures the usual meaning of that con-

stant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for

them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving

a constant, then replace the constant with its definition (if

applicable), then show the derivation.

11.1 Equality

• Rule sym

s = t

t = s
sym

Derived Rules

The definitions can be understood either semantically (check-

ing if each definition captures the usual meaning of that con-

stant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for

them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving

a constant, then replace the constant with its definition (if

applicable), then show the derivation.

11.1 Equality

• Rule sym and ND derivation150

s = t s = s
refl

t = s
subst

150We present most of those proofs by giving a derivation tree

for it, but sometimes, we also give an Isabelle proof script.

Note also the mix of syntaxes.

137

• Isabelle rule s=t ==> t=s. Proof script:

Goal "s=t ==> t=s";

by (etac subst 1); (* P is %x.x=s *)

by (rtac refl 1); (* s=s *)

qed "sym";

138

Equality: Transitivity and Congruences

• Rule trans
r = s s = t

r = t
trans

139

Equality: Transitivity and Congruences

• Rule trans
r = s s = t

r = t
trans

• Congruences (only Isabelle forms):

(f::’a=>’b) = g ==> f(x)=g(x) (fun cong)

x=y ==> f(x)=f(y) (arg cong)

139

Equality of Booleans

Isabelle rule iffI: [| P ==> Q; Q ==> P |] ==> P=Q.

Isabelle rule iffD2: [| P=Q; Q |] ==> P.

140

11.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI

True
TrueI

11.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI

(λx.x) = (λx.x)
TrueI

11.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl

11.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl

• Isabelle rule eqTrueE: P=True ==> P.

• Rule eqTrueI: P ==> P=True.

141

11.3 Universal Quantification

The type of ∀ (and ∃) was declared as (α → bool) → bool .

Why?

Intuitively, a quantified formula ∀x.ψ should be of type

11.3 Universal Quantification

The type of ∀ (and ∃) was declared as (α → bool) → bool .

Why?

Intuitively, a quantified formula ∀x.ψ should be of type

bool , and it depends on x (a variable of type

11.3 Universal Quantification

The type of ∀ (and ∃) was declared as (α → bool) → bool .

Why?

Intuitively, a quantified formula ∀x.ψ should be of type

bool , and it depends on x (a variable of type α) and ψ (which

is of type

11.3 Universal Quantification

The type of ∀ (and ∃) was declared as (α → bool) → bool .

Why?

Intuitively, a quantified formula ∀x.ψ should be of type

bool , and it depends on x (a variable of type α) and ψ (which

is of type bool). This suggests type ”α restricted to variables”→
bool → bool .

However, ”α restricted to variables” does not exist and there

would be various problems with this. Instead, writing λx.ψ

to encode x and ψ does the job. This is called higher-order

abstract syntax.

142

∀: Definition and Introduction Rule

∀P = (P = (λx.True))

• Rule allI

P (x)

∀P allI

143

∀: Definition and Introduction Rule

∀P = (P = (λx.True))

• Rule allI

P (x)

P = λx.True
allI

143

∀: Definition and Introduction Rule

∀P = (P = (λx.True))

• Rule allI and ND derivation

P (x)

P (x) = True
eqTrueI

P = λx.True
ext

Inherits the side condition of ext: x must not occur freely

in the derivation of P (x).

Isabelle rule (!!x. P(x)) ==> ALL x. P(x).

143

Universal Quantification (Cont.)

• Rule spec (recall ∀P means ∀x.Px)

∀P
P (t)

spec

Isabelle rule ALL x::’a. P(x) ==> P(x).

144

Universal Quantification (Cont.)

• Rule spec (recall ∀P means ∀x.Px)

∀P
P (t)

spec

Isabelle rule ALL x::’a. P(x) ==> P(x).

Note: Need universal quantification to reason about False

(since False = (∀P.P)).

144

11.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI:

11.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI: No rule!

• Rule FalseE

False
P

FalseE

11.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI: No rule!

• Rule FalseE

∀P. P
P

FalseE

11.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI: No rule!

• Rule FalseE and ND derivation

∀P. P
P

spec

Isabelle rule False ==> P.

145

False (Cont.)

False = True
P

False neq True

True = False
P

True neq False

146

11.5 Negation

¬P = P → False

• Rule notI
[P]

....
False

¬P notI

• Rule notE
¬P P
R

notE

147

11.6 Existential Quantification

∃P = P (εx.P (x))

• Rule existsI
P (x)

∃P existsI

Isabelle rule P(x) ==> EX x::’a.P(x).

• Rule existsE

∃P

[P (x)]1
....
Q

Q
existsE

Inherits side condition from allI (just like in FOL).

148

11.7 Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI

P

Q

P ∧Q
conjI

11.7 Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI

P

Q

∀R.(P → Q→ R)→ R
conjI

11.7 Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI and ND derivation

[P → Q→ R]1 P

Q→ R
mp

Q

R
mp

(P → Q→ R)→ R
impI1

∀R.(P → Q→ R)→ R
allI

Isabelle rule [| P; Q |] ==> P & Q.

149

Conjunction (Cont.)

• P ∧Q =⇒ P (conjEL)

• P ∧Q =⇒ Q (conjER)

150

11.8 Disjunction

• P =⇒ P ∨Q (disjIL)

• Q =⇒ P ∨Q (disjIR)

• JP ∨Q;P =⇒ R;Q =⇒ RK =⇒ R (disjE)

• P ∨ ¬P (excl midd).

151

11.9 More Definitions

See HOL.thy!

152

11.10 Summary on Deriving Rules

HOL is very powerful in terms of what we can represen-

t/derive:

• All well-known inference rules can be derived.

• Other “logical” syntax (e.g. if-then-else) can be defined.

153

11.11 Outlook

We will see how Isabelle/HOL can be used as foundation for

mathematics and computer science (programming languages).

Outline:

• The central method for making HOL scale up: conserva-

tive extensions

• How the different parts of mathematics are encoded in

the Isabelle/HOL library

• How software systems are embedded in Isabelle/HOL

154

12 Conservative Theory Extensions

12.1 Conservative Theory Extensions: Basics

Some definitions [GM93, Hué]

Definition (theory): A (syntactic) theory T is a triple

(B,Σ, A), where B is a type signature, Σ a signature and A

a set of axioms151.

Definition (theory extension): A theory T ′ = (B′,Σ′, A′)
is an extension of a theory T = (B,Σ, A) iff B ⊆ B′ and

Σ ⊆ Σ′ and A ⊆ A′.
151The definition of theory extension requires that A consists

of axioms, not proper rules. However, we have seen that any

rule one might wish to postulate can also be phrased as an

axiom (using → rather than ⇒).

155

Definitions (Cont.)

Definition (conservative extension): A theory extension

T ′ = (B′,Σ′, A′) of a theory T = (B,Σ, A) is conservative iff

for the set of derivable formulas152 Th we have

Th(T) = Th(T ′) |Σ,

where |Σ filters away all formulas not belonging to Σ.

152The derivable formulas are terms of type bool derivable

using the inference rules of HOL. We write Th(T) for the

derivable formulas of a theory T .

156

Consistency Preserved

Corollary (consistency):
If T ′ is a conservative extension of T , then

False /∈ Th(T)⇒ False /∈ Th(T ′).

157

Syntactic Schemata for Conservative Extensions

• Constant definition

• Type definition

158

12.2 Constant Definition

Definition (constant definition): A theory extension T ′ =

(B′,Σ′, A′) of a theory T = (B,Σ, A) is a constant definition,

iff

• B′ = B and Σ′ = Σ ∪ {c : τ};

• A′ = A ∪ {c = E};

• E does not contain153 c and is closed154;

• . . .

153If E did contain c then we would speak of a recursive

definition, but at this stage, recursion is forbidden.
154A term is closed or ground if it does not contain any free

variables.

159

Constant Definitions Are Conservative

Lemma (constant definitions):
Constant definitions are conservative [GM93, page 223].

160

Constant Definition: Examples

Definitions of True, False, ∧, ∨, ∀ . . .

Function application (Let), if-then-else, unique existence155:

consts

If :: [bool, ’a, ’a] => ’a

defs

if_def "If P x y == @z::’a.(P=True-->z=x) &

(P=False-->z=y)"

Ex1_def "Ex1(P) == ?x. P(x) & (!y. P(y) --> y=x)"

155We have never used unique existential quantification

(∃!) before. ∃!x1, . . . , xn.φ(x1, . . . , xn) is defined as

∃x1, . . . , xn.φ(x1, . . . , xn) ∧ (∀y1, . . . , yn.φ(y1, . . . , yn) →
x1 = y1 ∧ . . . ∧ xn = yn).

Note that in general ∃!x.(∃!y.φ) is not the same as ∃!xy.φ).

161

12.3 Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

156Although a set is formally a different object than a predi-

cate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true.

162

12.3 Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

• a predicate S : ρ→ bool , defining a non-empty “subset”156

of ρ;

156Although a set is formally a different object than a predi-

cate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true.

162

12.3 Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

• a predicate S : ρ→ bool , defining a non-empty “subset”156

of ρ;

• axioms stating an isomorphism between S and the new

type τ .

156Although a set is formally a different object than a predi-

cate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true.

162

...
.............
.

............
...

...........
....

...........
.....

...........
.....

..........

.....

..........

.....

..........

.....

...........
.....

...........
.....

............
....

............
...

.............
..

..............
.

...............
................
...............
...............
..............
...............

...............

................

................

................

...............

...............

................

................

...............

...............
...............

..............
...............

................
................................ρ

...
.............
.

............
...

...........
....

...........
.....

...........
.....

..........

.....

..........

.....

..........

.....

...........
.....

...........
.....

............
....

............
...

.............
..

..............
.

...............
................
...............
...............
..............
...............

...............

................

................

................

...............

...............

................

................

...............

...............
...............

..............
...............

................
................................ρ

...
............
...........
.
...........
.
..........
.
..........
..
...........
.
............

...........
...........
............
............
............
............
............
............
............

...........
............

........................S

...
.............
.

............
...

...........
....

...........
.....

...........
.....

..........

.....

..........

.....

..........

.....

...........
.....

...........
.....

............
....

............
...

.............
..

..............
.

...............
................
...............
...............
..............
...............

...............

................

................

................

...............

...............

................

................

...............

...............
...............

..............
...............

................
................................ρ

...
............
...........
.
...........
.
..........
.
..........
..
...........
.
............

...........
...........
............
............
............
............
............
............
............

...........
............

........................S ..
............
...........
.
...........
.
..........
..
..........
..
...........
.
............

...........
...........
............
............
............
............
............
............
............

...........
............

........................τ.
..

...

..

...
..

...
.....................................

......

.............................
...............

.........................
....................

.....................
.....................

....
s

Absτ : ρ→ τ

.
.....................

.....................
....

.........................
....................

.............................
...............

.....................................
......

..
..

...

..

...

..k

Repτ : τ → ρ

Type Definition: Definition

Definition (type definition): Assume a theory T =

(B,Σ, A) and a type ρ and a term S157 such that Σ ` S :

ρ→ bool .

A theory extension T ′ = (B′,Σ′, A′) of T is a type definition

for type τ 158 (where τ fresh159), iff
157Here, S is any “predicate”, i.e., term of type ρ → bool ,

not necessarily a constant.
158A type definition is supposed to define a type constructor

(where the arity and fixity are indicated in some way). We

abuse notation here: we use τ to denote a type constructor,

but also the type obtained by applying the type constructor

to a vector of different type variables (as many as the type

constructor requires).

So think of τ as either being a type constructor or a

“generic” type (just a type constructor being applied to type

variables).

We do the same in examples.
159The type constructor τ must not occur in B.

163

B′ = B]160 {τ},
Σ′ = Σ ∪ {Absτ 161 : ρ→ τ, Repτ : τ → ρ}
A′ = A ∪ {∀x.Absτ (Repτ x) = x162,

∀x.S x→ Repτ (Absτ x) = x}
160The symbol] denotes disjoint union, so the expression

A] B is well-formed only when A and B have no elements

in common. One thus uses this notation to indicate this fact.
161Of course we are giving a schematic definition here, so any

letters we use are metanotation.

Notice that Absτ and Repτ stand for new constants. For

any new type τ to be defined, two such constants must be

added to the signature to provide a generic way of obtaining

terms of the new type. Since the new type is isomorphic to

the “subset” S, whose members are of type ρ, one can say

that Absτ and Repτ provide a type conversion between (the

subset S of) ρ and τ .

So we have a new type τ , and we can obtain members of

the new type by applying Absτ to a term t of type ρ for which

S t holds.
162The formulas

∀x.Absτ (Repτ x) = x

∀x.S x→ Repτ (Absτ x) = x

164

Type Definitions Are Conservative

Lemma (type definitions):
Type definitions are conservative.

Proof see [GM93, pp.230].

state that the “set” S and the new type τ are isomorphic.

Note that Absτ should not be applied to a term not in “set”

S. Therefore we have the premise S x in the above equation.

Note also that S could be the “trivial filter” λx.True. In

this case, Absτ and Repτ would provide an isomorphism be-

tween the entire type ρ and the new type τ .

165

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale applications?

166

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale applications?

But in fact, due to ind and→, the types in HOL are already

very rich.

166

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale applications?

But in fact, due to ind and→, the types in HOL are already

very rich.

We now give two examples to convince you.

166

Example: Typed Sets

General scheme,

B′ = B] {τ },
Σ′ = Σ ∪ {Abs

τ
: ρ → τ ,

Rep
τ

: τ → ρ }
A′ = A ∪ {∀x.Abs

τ
(Rep

τ
x) = x,

∀x.S x → Rep
τ

(Abs
τ
x) = x}

167

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable),

B′ = B] {τ },
Σ′ = Σ ∪ {Abs

τ
: (α→ bool)→ τ ,

Rep
τ

: τ → (α→ bool)}
A′ = A ∪ {∀x.Abs

τ
(Rep

τ
x) = x,

∀x.S x → Rep
τ

(Abs
τ
x) = x}

167

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable), τ ≡ α set (or set),

B′ = B] {set},
Σ′ = Σ ∪ {Abs

set
: (α→ bool)→ α set ,

Rep
set

: α set → (α→ bool)}
A′ = A ∪ {∀x.Abs

set
(Rep

set
x) = x,

∀x.S x → Rep
set

(Abs
set
x) = x}

167

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable), τ ≡ α set (or set), S ≡ λxα→bool .True

B′ = B] {set},
Σ′ = Σ ∪ {Abs

set
: (α→ bool)→ α set ,

Rep
set

: α set → (α→ bool)}
A′ = A ∪ {∀x.Abs

set
(Rep

set
x) = x,

∀x.True → Rep
set

(Abs
set
x) = x}

167

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable), τ ≡ α set (or set), S ≡ λxα→bool .True

B′ = B] {set},
Σ′ = Σ ∪ {Abs

set
: (α→ bool)→ α set ,

Rep
set

: α set → (α→ bool)}
A′ = A ∪ {∀x.Abs

set
(Rep

set
x) = x,

∀x. Rep
set

(Abs
set
x) = x}

Simplification since S ≡ λx.True.

167

Sets: Remarks

Any function r : α→ bool can be interpreted as a set of α; r

is called characteristic function. That’s what Absset r does;

Absset is a wrapper saying “interpret r as set”.

163We said that in the general formalism for defining a new

type, there is a term S of type ρ → bool that defines a

“subset” of a type ρ. In other words, it filters some terms

from type ρ. Thus the idea that a predicate can be interpreted

as a set is present in the general formalism for defining a new

type.

Now we are talking about a particular example, the type

α set. Having the idea “predicates are sets” in mind, one is

tempted to think that in the particular example, S will take

the role of defining particular sets, i.e., terms of type α set.

This is not the case!

Rather, S is λx.True and hence trivial in this example.

Moreover, in the example, ρ is α→ bool , and any term r of

type ρ defines a set whose elements are of type α; Absset r

is that set.

168

Sets: Remarks

Any function r : α→ bool can be interpreted as a set of α; r

is called characteristic function. That’s what Absset r does;

Absset is a wrapper saying “interpret r as set”.

S ≡ λx.True and so S is trivial163 in this case.
163We said that in the general formalism for defining a new

type, there is a term S of type ρ → bool that defines a

“subset” of a type ρ. In other words, it filters some terms

from type ρ. Thus the idea that a predicate can be interpreted

as a set is present in the general formalism for defining a new

type.

Now we are talking about a particular example, the type

α set. Having the idea “predicates are sets” in mind, one is

tempted to think that in the particular example, S will take

the role of defining particular sets, i.e., terms of type α set.

This is not the case!

Rather, S is λx.True and hence trivial in this example.

Moreover, in the example, ρ is α→ bool , and any term r of

type ρ defines a set whose elements are of type α; Absset r

is that set.

168

More Constants for Sets

For convenient use of sets, we define more constants:

169

{x | f x} = Collect164 f = Absset f

x ∈ A = (Repset A)165 x

A ∪B = {x | x ∈ A ∨ x ∈ B}
...

Consistent set theory166 adequate for most of mathematics
164We have seen Collect before in the theory file NSet.thy

(näıve set theory).

Collect f is the set whose characteristic function is f .

There is also a concrete (i.e., according to mathematical prac-

tice) syntax {x | f x}. It is called set comprehension. The

correspondence between the HOAS Collect f and the con-

crete syntax {x | f x} also makes it clear that set compre-

hension is a binding operator, as we learned some time ago.

Note also that Collect is the same as Absset here.

The file Set.thy should be contained in your Isabelle dis-

tribution. Or, if you only have an Isabelle executable, you can

find the sources here:

http://isabelle.in.tum.de/library/

165We define

x ∈ A = (Repset A) x

Since Repset has type α set→ (α→ bool), this means that

170

http://isabelle.in.tum.de/library/

and computer science.

In Isabelle/HOL however, sets are a special case.

Here, sets are just an example to demonstrate type defini-

tions. Later we study them for their own sake.

x is of type α and A is of type (α → bool). Therefore ∈ is

of type α→ (α set)→ bool (but written infix).

In the Isabelle theory file Set.thy, you will indeed find that

the constant : (Isabelle syntax for ∈) has type α→ (α set)→
bool .

However, you will not find anything directly corresponding

to Repset.
166Typed set theory is a conservative extension of HOL and

hence consistent.

Recall the problems with untyped set theory.

171

Example: Pairs

Consider type α → β → bool . We can regard a term f :

α → β → bool as a representation of the pair (a, b), where

a : α and b : β, iff f x y is true exactly for x = a and y = b.

Observe:

• For given a and b, there is exactly one167 such f (namely,

λxαyβ. x = a ∧ y = b).

• Some functions of type α → β → bool represent pairs

and others don’t (e.g., the function λxy.True does not

represent a pair). The ones that do are exactly the ones

that have the form λxαyβ. x = a ∧ y = b, for some a

and b.

167When we say that there is “exactly one” f , this is meant

modulo equality in HOL. This means that e.g. λxαyβ.y =

b∧ x = a is also such a term since (λxαyβ.x = a∧ y = b) =

(λxαyβ.y = b ∧ x = a) is derivable in HOL.

172

Type Definition for Pairs

This gives rise to a type definition where S is non-trivial:

ρ ≡ α→ β → bool

S ≡ λfα→β→bool .∃ab.f = λxαyβ.x = a ∧ y = b

τ ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be

confused with Rep×
168) as λaαbβ.λxαyβ. x = a ∧ y = b169.

Then Pair Rep a b = λxαyβ. x = a ∧ y = b.
168Rep× would be the generic name for one of the two

isomorphism-defining functions.

Since Rep× looks funny, the definition scheme for type defi-

nitions in Isabelle is such that it provides two names for a type,

one if the type is used as such, and one for the purpose of

generating the names of the isomorphism-defining functions.
169We write λaαbβ.λxαyβ.x = a ∧ y = b rather than

λaαbβxαyβ.x = a ∧ y = b to emphasize the idea that one

first applies Pair Rep to a and b, and the result is a function

representing a pair, wich can then be applied to x and y.

173

Now in Isabelle

Isabelle has a special set-based170 syntax for type definitions:

typedef (T)

〈typevars〉 ”T ′” 〈fixity〉
= ”{x.φ}”

170The syntax ”{x.φ}” does not just look like a set compre-

hension, it is one!

So, since the typedef syntax is based on sets, sets them-

selves could not have been defined using that syntax. This is

the reason why in Isabelle/HOL, sets are a special case of a

type definition.

See Typedef.thy, which should be contained in your Is-

abelle distribution. Or, if you only have an Isabelle executable,

you can find the sources here:

http://isabelle.in.tum.de/library/

174

http://isabelle.in.tum.de/library/

Now in Isabelle

Isabelle has a special set-based170 syntax for type definitions:

typedef (T)

〈typevars〉 ”T ′” 〈fixity〉
= ”{x.φ}”

How is this linked to our scheme:

• the new type is called T ′;

• ρ is the type of x (inferred);

• S is λx.φ;

• constants Abs T and Rep T are automatically generated.

170The syntax ”{x.φ}” does not just look like a set compre-

hension, it is one!

So, since the typedef syntax is based on sets, sets them-

selves could not have been defined using that syntax. This is

the reason why in Isabelle/HOL, sets are a special case of a

type definition.

See Typedef.thy, which should be contained in your Is-

abelle distribution. Or, if you only have an Isabelle executable,

you can find the sources here:

http://isabelle.in.tum.de/library/

174

http://isabelle.in.tum.de/library/

Isabelle Syntax for Pair Example

constdefs

Pair_Rep :: [’a, ’b] => [’a, ’b] => bool

"Pair_Rep == (%a b. %x y. x=a & y=b)"

171In Isabelle theory files, consts is the keyword preceding a

sequence of constant declarations (i.e., this is where the Σ is

defined), and defs is the keyword preceding the axioms that

define these constants (i.e., this is where the A is defined).

constdefs combines the two, i.e. it allows for a sequence

of both constant declarations and definitions. When the

constdefs syntax is used to define a constant c, then the

identifier c def is generated automatically. E.g.

constdefs

id :: "’a => ’a"

"id == %x. x"

will bind id def to id ≡ λx.x.
172This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

175

http://isabelle.in.tum.de/library/

Isabelle Syntax for Pair Example

constdefs

Pair_Rep :: [’a, ’b] => [’a, ’b] => bool

"Pair_Rep == (%a b. %x y. x=a & y=b)"

typedef (Prod)

(’a, ’b) "*" (infixr 20) =

"{f.?a b. f=Pair_Rep(a::’a)(b::’b)}"

The keyword constdefs171 introduces a constant defini-

tion. The definition and use of Pair Rep is for convenience.

There are “two names” ∗ and Prod.

See Product Type.thy172.
171In Isabelle theory files, consts is the keyword preceding a

sequence of constant declarations (i.e., this is where the Σ is

defined), and defs is the keyword preceding the axioms that

define these constants (i.e., this is where the A is defined).

constdefs combines the two, i.e. it allows for a sequence

of both constant declarations and definitions. When the

constdefs syntax is used to define a constant c, then the

identifier c def is generated automatically. E.g.

constdefs

id :: "’a => ’a"

"id == %x. x"

will bind id def to id ≡ λx.x.
172This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

175

http://isabelle.in.tum.de/library/

12.4 Summary on Conservative Extensions

We have seen two schemata:

• Constant definition: new constant must be defined using

old constants. No recursion!

• Type definition: new type must be isomorphic to a “sub-

set” S of an existing type ρ. Not possible to define any

type that is “structurally” richer than the types one al-

ready has. But HOL is rich enough.

176

13 Sets

177

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Sets

• Functions

• Induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

178

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Sets

• Functions

• Induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

178

Set.thy

theory Set = HOL:

typedecl ’a set

instance set :: (type) ord ..

consts

"{}" :: ’a set ("{}")

UNIV :: ’a set

insert :: [’a, ’a set] => ’a set

Collect :: (’a => bool) => ’a set

"op :" :: "’a => ’a set => bool"

Note that Collect and “:” correspond to Absset and Repset.

179

Sets Are a Special Case

Recall that the typedef syntax is based on set comprehen-

sion. Therefore, sets are a special case of type definitions.

In deviation from our conservative approach, sets are ax-

iomatized as follows:

axioms

mem Collect eq [iff]173: "(a : {x. P(x)}) = P(a)"

Collect mem eq [simp]: "{x. x:A} = A"

180

Set.thy: More Constant Declarations

Un, Int :: [’a set, ’a set] => ’a set

Ball, Bex :: [’a set, ’a => bool] => bool

UNION, INTER:: [’a set, ’a => ’b set] => ’b set

Union, Inter:: ((’a set) set) => ’a set

Pow :: ’a set => ’a set set

"image" :: [’a => ’b, ’a set] => (’b set)

In what follows, recall that

{x | f x} = Collect f = Absset f

181

Set.thy: Constant Definitions

empty_def: "{} == {x. False}"

UNIV_def: "UNIV == {x. True}"

Un_def: "A Un B == {x. x:A | x:B}"

Int_def: "A Int B == {x. x:A & x:B}"

insert_def: "insert a B == {x. x=a} Un B"

Ball_def: "Ball A P == ALL x. x:A --> P(x)"

Bex_def: "Bex A P == EX x. x:A & P(x)"

Nice syntax:
{x, y, z} for insert x (insert y (insert z {}))
ALL x : A. Sx for Ball A S

EX x : A. Sx for Bex A S

182

Set.thy: Constant Definitions (2)

subset_def: "A <= B == ALL x:A. x:B"

Compl_def: "- A == {x. ~x:A}"

set_diff_def: "A - B == {x. x:A & ~x:B}"

UNION_def: "UNION A B == {y. EX x:A. y: B(x)}"

INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}"

Note use of <=174 instead of ⊆!

Nice syntax:
UN x : A. S x or

⋃
x∈A . S x for UNION A S

INT x : A. S x or
⋂
x∈A . S x for INTER A S

174Sets are an instance of the type class ord, where the

generic constant <= is the subset relation in this particular

case.

In fact, the subset relation is reflexive, transitive and anti-

symmetric, and so sets are an instance of the axiomatic class

order. This is non-obvious and must be proven, which is

done not in Set.thy itself but in Fun.thy, later. This is a

technicality of Isabelle.

183

Set.thy: Constant Definitions (3)

Union_def: "Union S == (UN x:S. x)"

Inter_def: "Inter S == (INT x:S. x)"

Pow_def: "Pow A == {B. B <= A}"

image_def: "f‘A == {y. EX x:A. y = f(x)}"

Nice syntax:⋃
S for Union S⋂
S for Inter S

184

Some Theorems in Set.thy

CollectI P a =⇒ a ∈ {x.P x}
CollectD a ∈ {x.P x} =⇒ P a

set ext (
∧
x.(x ∈ A) = (x ∈ B)) =⇒ A = B

subsetI (
∧
x.x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

eqset imp iff A = B =⇒ (x ∈ A) = (x ∈ B)
Set theory is well-supported in Isabelle and provides a good

basis for mathematics.

185

14 Functions

186

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Sets

• Functions

• Induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

187

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Sets

• Functions

• Induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

187

Fun.thy

The theory Fun.thy175 defines some important notions on

functions, such as concatenation, the identity function, the

image of a function, etc.

We look at it briefly.

175This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

Fun.thy builds on Set.thy, and it is here that it is proven

and used that sets are an instance of the type class order.

188

http://isabelle.in.tum.de/library/

Two Extracts from Fun.thy

Composition and the identity function:

constdefs

id :: "’a => ’a"

"id == %x. x"

comp :: "[’b => ’c, ’a => ’b, ’a] => ’c"

"f o g == %x. f(g(x))"

Recall constdefs syntax.

14.1 Conclusion of Sets, Functions

• Theory says: conservative extensions can be used to build

consistent libraries.

189

• Sets as one important package of Isabelle/HOL library:

Set theory is typed, but very rich and powerfully sup-

ported.

190

15 Background: Recursion and Induction

191

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• Induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

192

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• Induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

192

Recursion and General Fixpoints

Fixpoints are important for induction and recursion. Näıve

approach: One could have axiom

Y = λF.F (Y F)
fix

This axiom is not a constant definition176. Then derive

∀F α→α.Y F = F (Y F)177.

176The axiom

Y = λF.F (Y F)

is not a constant definition, since Y occurs again on the right-

hand side.
177In words, this says that Y F is a fixpoint of F .

193

Recursion and General Fixpoints

Fixpoints are important for induction and recursion. Näıve

approach: One could have axiom

Y = λF.F (Y F)
fix

This axiom is not a constant definition176. Then derive

∀F α→α.Y F = F (Y F)177.

• Why are we interested in Y ?

• What is the problem with such a definition?

176The axiom

Y = λF.F (Y F)

is not a constant definition, since Y occurs again on the right-

hand side.
177In words, this says that Y F is a fixpoint of F .

193

Why Are We Interested in Y ?

First, why are we interested in recursion (solutions to recursive

equations178)?

Why Are We Interested in Y ?

First, why are we interested in recursion (solutions to recursive

equations178)?

• Recursively defined functions are solutions of such equa-

tions (example: fac179).

• Inductively defined sets are solutions of such equations

178By a recursive equation, we mean an equation of the form

f = e

where f occurs in e. A fortiori, such an equation does not

qualify as constant definition.
179In the following explanations, any constants like 1 or + or

if-then-else are intended to have their usual meaning.

A fixpoint combinator is a function Y that returns a fix-

point of a function F , i.e., Y must fulfill the equation

Y F = F (Y F). Doing λ-abstraction over F on both sides

and η-conversion (backwards) on the left-hand side, we have

Y = λF.F (Y F)

This is a recursive equation. We will now demonstrate how a

definition of a function fac (factorial) using a recursive equa-

tion can be transformed to a definition that uses Y instead of

using recursion directly.

194

In a functional programming language we might define

fac n = (if n = 0 then 1 else n ∗ fac (n− 1)).

We now massage this equation a bit. Doing λ-abstraction on

both sides we get

λn. fac n = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which is the η-conversion of

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which in turn is a β-reduction of

fac = ((λf. λn. if n = 0 then 1 else n ∗ f (n− 1)) fac)

(1)

We are looking for a solution to (5). We abbreviate the un-

derlined expression by Fac. We claim fac = Y Fac, i.e., it is

a solution to (5). Simply replacing fac with Y Fac in (5) we

get

Y Fac = Fac (Y Fac)

195

(example: Fin A180, all finite subsets of A).

(example: Fin A180, all finite subsets of A).

We are interested in Y because it is the mother of all re-
which holds by the definition of Y .

Thus we see that a recursive definition of a function can be

transformed so that the function is the fixpoint of an appro-

priate functional (a function taking a function as argument).
180We want to define a function Fin such that Fin A is the

set of all finite subsets of A.

How do you construct the set of all finite subsets of A? The

following pseudo-code suggests what you have to do:

S := {{}};
forever do

foreach a ∈ A do

foreach B ∈ S do

add ({a} ∪B) to S

od od od

This means that you have to add new sets forever (however,

when you actually do this construction for a finite set A, it

will indeed reach a fixpoint, i.e., adding new sets won’t change

anything).

196

Generally (even if A is infinite), Fin A is a set such

that adding new sets as suggested by the pseudo-code won’t

change anything. Written as recursive equation:

Fin A = {{}} ∪
⋃

x ∈ A.((insertx) ‘ (Fin A))

Recall that ‘ is nice syntax for image, defined in Set.thy.

The above is a β-reduction of

Fin A = (λX. {{}} ∪
⋃

x ∈ A.((insertx) ‘X)) (Fin A)

(2)

We are looking for a solution to (6). We abbreviate the un-

derlined expression by FA. We claim

Fin A = Y FA,

i.e., it is a solution to (6). Simply replacing Fin A with Y FA

in (6) we get

Y FA = FA(Y FA),

which holds by the definition of Y .

197

cursions. With Y , recursive axioms can be converted181 into

constant definitions.

You should compare this to what we said about fac. Note

that in this example, there is no such thing as a recursive call

to a “smaller” argument as in fac example.

181Any recursive function can be defined by an expression

(functional) which is not itself recursive, but instead relies on

the recursive equation defining Y .

Consider fac or Fin A as an example.

198

What’s the Problem with such an Axiom?

Such a definition would lead to inconsistency.

This is not surprising because not all functions have a fix-

point.

Therefore we only consider special forms of fixpoint com-

binators.

We consider two approaches: Least fixpoints (Tarski) and

well-founded orderings.

199

16 Least Fixpoints

200

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

201

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

201

16.1 First Approach: Least Fixpoints (Tarski)

• Recall: We would like to define Y = λF.F (Y F), where

F is of arbitrary type α→ α, but we must not.

16.1 First Approach: Least Fixpoints (Tarski)

• Recall: We would like to define Y = λF.F (Y F), where

F is of arbitrary type α→ α, but we must not.

• Restriction: F is of set type (α set → α set).

• Instead of Y define lfp by an equation which is not re-

cursive.

• lfp is fixpoint combinator, but only under additional con-

dition that F is monotone182, and: this is not obvious

(requires non-trivial proof)!

This leads us towards recursion and induction.
182A function f is monotone w.r.t. a partial order ≤ if the

following holds: A ≤ B implies f (A) ≤ f (B).

In particular, we consider the order given by the subset re-

lation.

202

We define (in Isabelle: Lfp.thy183)

lfp(f) :=
⋂
{u|f (u) ⊆ u}

Definition of lfp is conservative. That’s fine. But is it a

fixpoint combinator?

183These files should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

203

http://isabelle.in.tum.de/library/

We define (in Isabelle: Lfp.thy183)

lfp(f) :=
⋂
{u|f (u) ⊆ u}

Definition of lfp is conservative. That’s fine. But is it a

fixpoint combinator?

Theorem (Tarski):
If f is monotone, then lfp f = f (lfp f).

lfp unfold. Non-obvious!

183These files should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

203

http://isabelle.in.tum.de/library/

16.2 Induction Based on Lfp.thy

Theorem (lfp induction):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x},
then lfp f ⊆ {x | P x}.

16.2 Induction Based on Lfp.thy

Theorem (lfp induction):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x},
then lfp f ⊆ {x | P x}.

In Isabelle184, it is called lfp induct:

Ja ∈ lfp f ;mono f ;
∧
x.x ∈ f (lfp f ∩ {x.P x}) =⇒ P xK

=⇒ P a

184The theorem is phrased a bit differently in the “mathe-

matical” version we give here and in the Isabelle version (see

Lfp.ML). This is convenient for the graphical illustration of

the proof.

The “mathematical phrasing” corresponding closely to the

Isabelle version would be the following:

Theorem (Induct (alternative)):
If

• a ∈ lfp f , and

• f is monotone, and

• for all x, x ∈ f (lfp f ∩ {x | P x}) implies P x

then P a holds.

Other phrasings, which may help to get some intuition about

the theorem:

Theorem (Induct (alternative)):
If

204

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S?

• a ∈ lfp f , and

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}
then P a holds.

Theorem (Induct (alternative)):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}
then for all x in lfp f , we have P x.

205

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S?

It has the form: S is the smallest set such that:

• ∅ ⊆ S (just mentioned for emphasis);

• if S ′ ⊆ S then F (S ′) ⊆ S (for some appropriate F).

• a ∈ lfp f , and

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}
then P a holds.

Theorem (Induct (alternative)):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}
then for all x in lfp f , we have P x.

205

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S?

It has the form: S is the smallest set such that:

• ∅ ⊆ S (just mentioned for emphasis);

• if S ′ ⊆ S then F (S ′) ⊆ S (for some appropriate F).

At the same time, S is the smallest solution of the recursive

equation S = F (S).

Induction and recursion are two faces of the same coin.
• a ∈ lfp f , and

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}
then P a holds.

Theorem (Induct (alternative)):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}
then for all x in lfp f , we have P x.

205

Lfp.thy for Inductive Definitions

Least fixpoints are for building inductive definitions of sets in

a definitional way185: S := lfp F .

This is obviously well-defined, so why this fuss about mono-

tonicity and Tarski?

185Recall why we were interested in fixpoints.

The problem with Y is that it leads to inconsistency (and

of course, the definition of Y is not a constant defini-

tion/conservative extension.).

The definition of lfp is conservative.

And in appropriate situations, it can be used to define re-

cursive functions.

Compared to Y , the type of lfp is restricted.

This restriction means that there is no obvious way to use

lfp for defining recursive numeric functions such as fac.

206

Lfp.thy for Inductive Definitions

Least fixpoints are for building inductive definitions of sets in

a definitional way185: S := lfp F .

This is obviously well-defined, so why this fuss about mono-

tonicity and Tarski?

Tarski allows us to exploit the equation lfp f = f (lfp f)

in proofs about S! That’s what lfp is all about.
185Recall why we were interested in fixpoints.

The problem with Y is that it leads to inconsistency (and

of course, the definition of Y is not a constant defini-

tion/conservative extension.).

The definition of lfp is conservative.

And in appropriate situations, it can be used to define re-

cursive functions.

Compared to Y , the type of lfp is restricted.

This restriction means that there is no obvious way to use

lfp for defining recursive numeric functions such as fac.

206

Example (from Motivation)

The set of all finite subsets of a set A:

Fin A = lfp F

where F = λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X).

207

Example (from Motivation)

The set of all finite subsets of a set A:

Fin A = lfp F

where F = λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X).

Thus we can do using lfp what we would have wanted to

do using Y .

207

16.3 The Package for Inductive Sets

Since monotonicity proofs can be automated, Isabelle has spe-

cial proof support for inductive definitions. Example:

consts Fin :: ’a set => ’a set set

inductive "Fin(A)"

intrs

emptyI "{} : Fin(A)"

insertI "[| a: A; b: Fin(A) |] ==>

insert a b : Fin(A)"

Translated into expression using lfp.

208

16.4 Summary on Least Fixpoints

We are interested in recursion because inductively defined sets

and recursively defined functions are solutions to recursive

equations.

We cannot have general fixpoint operator Y , but we have,

by conservative extension, least fixpoints for defining sets.

There is an induction scheme (lfp induction) for proving

theorems about an inductively defined set.

Restriction of F to set type (α set → α set) means that

least fixpoints are not generally suitable for defining functions

. . .

209

17 Well-Founded Recursion

210

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

211

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

211

Well-Founded Recursion

After least fixpoints, well-founded recursion is our second con-

cept of recursion (and fixpoint combinator).

Idea: Modeling “terminating” recursive functions, i.e. re-

cursive definitions that use “smaller” arguments for the recur-

sive call.

17.1 Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive

equation f = e, e.g.

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Define F = λf.e, e.g.

Fac = (λfac. λn. if n = 0 then 1 else n ∗ fac(n− 1))

Well-Founded Recursion

After least fixpoints, well-founded recursion is our second con-

cept of recursion (and fixpoint combinator).

Idea: Modeling “terminating” recursive functions, i.e. re-

cursive definitions that use “smaller” arguments for the recur-

sive call.

17.1 Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive

equation f = e, e.g.

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Define F = λf.e, e.g. (α-conversion of what you have seen)

Fac = (λf . λn. if n = 0 then 1 else n ∗ f (n− 1))

212

We say: F is the functional defining f .

Recall that Y F would solve f = e, but we don’t have Y ,

so what can we do?

213

wfrec

wfrec RF ≡ . . .

If R is well-founded and F is coherent, then wfrecRF is

the recursive function defined by functional F .

214

The “Fixpoint” Theorem

There is a theorem that has a complicated general form, but

if r is well-founded and H is coherent, then

wfrec r H = H(wfrec r H)

Theorem states that wfrec is like a fixpoint combinator (dis-

regarding the additional argument r).

Thus we can do using wfrec what we would have liked to

do using Y .

215

17.2 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for defin-

ing recursive functions. We illustrate this using nat, the type

of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional

to define a function.

17.2 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for defin-

ing recursive functions. We illustrate this using nat, the type

of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional

to define a function.

First, define predecessor relation:

constdefs

pred_nat :: "(nat * nat) set"

pred_nat_def "pred_nat == {(m,n). n = Suc m}"

216

Defining Addition and Subtraction

add :: [nat, nat] => nat (infixl 70)

"m add n == wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Recursive in first argument186.
186

add :: [nat, nat] => nat (infixl 70)

"m add n == wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Here we suppose that we have a predecessor function pred.

The implementation in Isabelle is different, but conceptually,

the above is a definition of the add function.

Note that add is a function of type nat → nat → nat

(written infix), but it is only recursive in one argument, namely

the first one.

You may be confused about this and wonder: how do I know

that it is the first? Is this some Isabelle mechanism saying that

it is always the first? The answer is: no. You must look at

the two sides in isolation. On the right-hand side, we have

wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j)))

By the definitions (of wfrec most importantly), this expression

is a function of type nat → nat , namely the function that

217

17.3 Conclusion on Well-founded Recursion

Well-founded recursion allows us to define recursive functions

in HOL and thus reason about computations.

We can derive recursive theorems that can be used for

rewriting just like in a functional programming language.

adds n (which is not known looking at this expression alone;

it occurs on the left-hand side) to its argument. The function

is recursive in its argument (and hence not in n). Now, this

function is applied to m. Therefore we say that the final

function add is recursive in m but not in n.

Now look at subtraction:
subtract :: [nat, nat] => nat (infixl 70)

"m subtract n == wfrec (pred nat^+)

(%f j. if j=0 then m else pred (f (pred j))) n"

Note that subtract is recursive in its second argument, sim-

ply because the right-hand side of the defining equation was

constructed in a different way than for add.

Similar considerations apply for other binary functions de-

fined by recursion in one argument.

218

Isabelle Package for Primitive Recursion

For primitive recursion187, finding a well-founded ordering is

simple enough for automation188!

187A function is primitive recursive if the recursion is based on

the immediate predecessor w.r.t. the well-founded order used

(e.g., the predecessor on the natural numbers, as opposed to

any arbitrary smaller numbers).

This is not the same concept as used in the context of com-

putation theory, where primitive recursive is in contrast to

µ-recursive [LP81].
188The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for

functions on the natural numbers, it will use the usual <

ordering.

219

Isabelle Package for Primitive Recursion

For primitive recursion187, finding a well-founded ordering is

simple enough for automation188!

Example (use nat and case-syntax):

primrec

add_0: "0 + n = n"

add_Suc: "Suc m + n = Suc (m + n)"

187A function is primitive recursive if the recursion is based on

the immediate predecessor w.r.t. the well-founded order used

(e.g., the predecessor on the natural numbers, as opposed to

any arbitrary smaller numbers).

This is not the same concept as used in the context of com-

putation theory, where primitive recursive is in contrast to

µ-recursive [LP81].
188The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for

functions on the natural numbers, it will use the usual <

ordering.

219

17.4 Conclusion on Recursion and Induction

We are interested in recursion because inductively defined sets

and recursively defined functions are solutions to recursive

equations.

We cannot have general fixpoint operator Y , but we have,

by conservative extension:

• Least fixpoints for defining sets;

• well-founded orders for defining functions.

Both concepts come with induction schemes (lfp induction

and definition of well-foundedness) for proving properties of

the defined objects. Good Isabelle support.

220

18 Arithmetic

221

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

222

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

222

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms.

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open,

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward189,

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward189, the new guest walks towards
189This means, there must be a successor function on rooms.

To each room, it assigns the “next” room.

223

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward189, the new guest walks towards
189This means, there must be a successor function on rooms.

To each room, it assigns the “next” room.

223

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward189, the new guest walks towards
189This means, there must be a successor function on rooms.

To each room, it assigns the “next” room.

223

The Approach

Minimally axiomatic: We construct an infinite set, and define

numbers etc. as inductive subset.

We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward189, the new guest walks towards
189This means, there must be a successor function on rooms.

To each room, it assigns the “next” room.

223

the first room,

the first room, they turn around,

the first room, they turn around, enter their new rooms.

the first room, they turn around, enter their new rooms. The

doors close, all guests are accomodated.

224

Axiom of Infinity

The axiomatic core190 of datatypes (and hence, numbers191):

∃f :: (ind→ ind). injective f ∧ ¬surjective f
infty

where

injective192 f = ∀xy. f x = f y → x = y

surjective f = ∀y.∃x. y = f x

Forces ind to be “infinite type” (called “I” in [Chu40]).
190Note that theoretically, it is not needed to add the infinity

axiom (or some equivalent formulation) to HOL. Instead one

could add the infinity axiom as premise to each arithmetic

theorem that one wants to prove.

However this would not be a viable approach since the re-

sulting formulas would be very, very complicated.
191The natural numbers can be built as an algebraic datatype

by having a constant 0 and a term constructor Suc (for suc-

cessor).
192These constants (actually called inj and sur) are defined

in Fun.thy.

225

18.2 Natural Numbers: Nat.thy

consts

Zero_Rep :: ind

Suc_Rep :: "ind => ind"

axioms

inj_Suc_Rep: "inj Suc_Rep"

Suc_Rep_not_Zero_Rep: "Suc_Rep x ~= Zero_Rep"

So the axiom of infinity is formulated by defining a constant

Suc Rep having the two required properties.

Think of Zero Rep, Suc Rep as provisional 0, successor.

Based on this, one can define the type nat .

226

Constants in nat

Moreover, define193:

consts

Suc :: "nat => nat"

pred_nat :: "(nat * nat) set"

Defined intuitively.

193Based on the generic constants Abs Nat and Rep Nat,

we define all the constants that we need to work conveniently

with nat, most importantly, 0 and Suc.

227

Some Theorems in Nat.thy194

nat induct JP 0;
∧
n.P n =⇒ P (Suc n)K =⇒ P n

We can now exploit that nat is defined based on a set de-

fined using least fixpoints. In particular, nat induct follows

(but not “automatically”!) from the induct theorem of Lfp.

194This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

228

http://isabelle.in.tum.de/library/

Nat and Well-Founded Orders

Examples of theorems involving well-founded orders:

wf pred nat wf pred nat

less linear m < n ∨m = n ∨ n < m

Suc less SucD Suc m < Suc n =⇒ m < n

229

Using Primitive Recursion

Nat.thy defines rich theory on nat . Uses primrec syntax
for defining recursive functions, and case195 construct.

primrec

add_0 "0 + n = n"

add_Suc "Suc m + n = Suc(m + n)"

primrec

mult_0 "0 * n = 0"

mult_Suc "Suc m * n = n + (m * n)"

195The case statement for nat is a function of type nat ⇒
(nat ⇒ nat) ⇒ nat ⇒ nat . case z f n is defined as

follows (using a common mathematical notation):

case z f n =

{
z if n = 0

f k if n = Suc k

The syntax

diff Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"

used on the slide is a paraphrasing (“concrete syntax”) of the

original (“abstract”) syntax. In the original syntax it would

read case 0 (λx.x) (n−m).

230

Some Theorems in Nat

add 0 right m + 0 = m

add ac m + n + k = m + (n + k)

m + n = n + m

x + (y + z) = y + (x + z)

231

18.3 Further Number Theories

• Integers

• Rational Numbers (Real/PRat.thy196)

• Reals197 (Real/PReal.thy198)

• Machine numbers (floats); see work for Intel’s PentiumIV;

built in HOL-light [Har98, Har00]

196This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

197The reals have been axiomatized by Dedekind by stating

that a set R is partitioned into two sets A and B such that

R = A∪B and for all a ∈ A and b ∈ B, we have a < b. Now

there is a number s such that a ≤ s ≤ b for all a ∈ A and b ∈
B. The irrational numbers are characterised by the fact that

there exists exactly one such s. This axiomatization has been

used as a basis for formalizing real numbers in Isabelle/HOL.
198This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

232

http://www.intel.com/
http://isabelle.in.tum.de/library/
http://isabelle.in.tum.de/library/

18.4 Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

• the naturals (as type definition based on ind), and

• higher number theories (via equivalence construction).

18.4 Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

• the naturals (as type definition based on ind), and

• higher number theories (via equivalence construction).

Potential for

• analysis of processor arithmetic units, and

• function analysis in HOL (combination with computer al-

gebra systems such as Mathematica).

The methodological overhead can be tackled by powerful

mechanical support, since many proof-tasks are routine.

233

19 Datatypes

234

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

235

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

235

What Are Datatypes?

We have seen types, but what are data199types?

What Are Datatypes?

We have seen types, but what are data199types?

• Order 0 (no → in type).

• Terms defined by finite set of term constructors.

• Typically inductive definition.

• Term constructed by syntactic rule is unique.
199We have seen types, but what are datatypes?

First of all, a datatype must be of order 0, so it must be

a non-functional type. Note that if we do not have polymor-

phism, this means that a datatype must be a in B. But if we

have polymorphism, it just means that the type must not con-

tain→. E.g., α list could be a datatype. However, when one

describes a datatype, one would usually speak about generic

instances such as α list , and not about, say, nat list .

Secondly, the terms that inhabit a datatype τ must be de-

fined using a finite set of term constructors that have τ as

result type. At least one term constructor should just have

type τ . E.g., Nil : α list and Cons : α→ (α list)→ α list

are the term constructors that define the list datatype. One

also finds a syntax where Nil is written [] and Cons is writ-

ten ::. Intuitively, we could say: the terms of a datatype

are exactly the terms that can be constructed by some finite

syntactic construction rule.

Whenever we have a term constructor that has τ as argu-

236

Counterexample200: α set .

ment as well as result, the construction rule is inductive. E.g.,

we have

• Nil is a list;

• if t is a list h is of type α, then Cons(h, t) is a list.

This is an inductive construction of lists. Usually, when one

speaks about datatypes, one has inductively defined ones in

mind. Examples are lists, natural numbers, trees. One could

say that e.g. bool is also a datatype defined by the constants

True and False, but it is not particularly interesting in this

context.

At the same time, each term constructed by such a syntactic

rule is unique. So if we say: lists are defined by the above

inductive construction, then we imply that Cons(1,Nil) must

not be equal to Cons(1,Cons(1,Nil)).
200To understand better the distinction of a datatype from

another type, consider the following counterexample: α set .

Sets are not a datatype:

237

Isabelle’s Datatype Package

Similar to the typedef syntax, Isabelle provides the datatype

syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.

1. While the type α set does not contain an →, it is iso-

morphic to α→ bool which does contain an →.

2. The most basic way of defining “what a set is” is: if f is of

type τ → bool , then Absset f (alternatively: Collect f)

is a set. This is not an inductive syntactic construction

rule.

3. One could define sets similarly to lists by an inductive rule

saying: {} is a set; if S is a set and h is some term of

type α, then Insert(h, S) is a set. But then Insert(1, {})
would be different from Insert(1, Insert(1, {})), which is

not what we want! Moreover, we could not define infinite

sets this way.

4. In point 2 we say: the definition of the terms called “sets”

is not an inductive definition. This is not in contradic-

tion to the inductive definition of particular sets. These

inductive definitions have the form: If foo is in the set

then bar is in the set, e.g., if n is in the set then Suc n

238

Isabelle’s Datatype Package

Similar to the typedef syntax, Isabelle provides the datatype

syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.

1. While the type α set does not contain an →, it is iso-

morphic to α→ bool which does contain an →.

2. The most basic way of defining “what a set is” is: if f is of

type τ → bool , then Absset f (alternatively: Collect f)

is a set. This is not an inductive syntactic construction

rule.

3. One could define sets similarly to lists by an inductive rule

saying: {} is a set; if S is a set and h is some term of

type α, then Insert(h, S) is a set. But then Insert(1, {})
would be different from Insert(1, Insert(1, {})), which is

not what we want! Moreover, we could not define infinite

sets this way.

4. In point 2 we say: the definition of the terms called “sets”

is not an inductive definition. This is not in contradic-

tion to the inductive definition of particular sets. These

inductive definitions have the form: If foo is in the set

then bar is in the set, e.g., if n is in the set then Suc n

238

20 Summary of HOL Library / Outlook on
Modeled Systems

is in the set. This is in contrast to what is suggested in

point 3, where we say: If foo is a set then bar is a set.

239

Summary

We looked at how the different parts of mathematics are en-

coded in the Isabelle/HOL library:

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

240

Summary (Cont.)

We conclude: HOL is a logical framework for theoretical com-

puter science. Its features are:

• a clean methodology, which can be supported automati-

cally to a surprising extent;

• a powerful set theory and proof support;

• adequate theories for arithmetics;

• a package for induction;

• a package for recursion;

• a package for datatypes.

241

The End

This is the end of the slides of Pearls of Computer-Supported

Modeling and Reasoning held at l’Aquila in March 2010. In

the sequel, you find the material for the full course Computer-

Supported Modeling and Reasoning.

242

21 General Introduction

243

What this Course is about

Making logic come to life by making it run on a computer,

using the tool Isabelle. Applications in

• Mathematics201 (Hilbert’s program)

201In the 1920’s, David Hilbert attempted a single rigorous

formalization of all of mathematics, named Hilbert’s program.

He was concerned with the following three questions:

1. Is mathematics complete in the sense that every statement

can be proved or disproved?

2. Is mathematics consistent in the sense that no statement

can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a

definite method to determine the truth or falsity of any

mathematical statement?

Hilbert believed that the answer to all three questions was

’yes’.

Thanks to the the incompleteness theorem of Gödel (1931)

and the undecidability of first-order logic shown by Church

and Turing (1936–37) we know now that his dream will never

be realized completely. This makes it a never-ending task to

find partial answers to Hilbert’s questions.

244

http://isabelle.in.tum.de/

• program and hardware verification202

(For the impacient: some Isabelle/HOL applications)

high level

requirem
ents

(sem
i) form

al

m
odels

code
code

code

For more details:

– Panel talk by Moshe Vardi

– Lecture by Michael J. O’Donnell

– Article by Stephen G. Simpson

– Original works Über das Unendliche and Die Grundlagen

der Mathematik [vH67]

– Some quotations shedding light on Gödel’s incompleteness

theorem

– Eric Weisstein’s world of mathematics explaining Gödel’s

incompleteness theorem

202Verification is the process of formally proving that a pro-

gram has the desired properties. To this end, it is necessary

to define a specification language in which the desired prop-

erties can be formulated, i.e. specified. One must define a

semantics for this language as well as for the program. These

semantics must be linked in such a way that it is meaningful

245

http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

What this Course is Useful for

After attending this course, you might . . .

• pursue an academic career focused on the topic of this

course or some other topic in formal methods;

• apply formal methods in a company203 like Intel or Gem-

plus;

• work in a different area in academia or industry; even

then, understanding mathematical and logical reasoning

improves understanding of how to build correct systems

and do more rigorous proofs.

to say: “Program X makes formula Φ true”.
203The last 20 years have seen spectacular hardware and soft-

ware failures (e.g. the Pentium bug) and the birth of a new

discipline: the verification engineer.

246

http://www.intel.com/
http://www.gemplus.com/
http://www.gemplus.com/

Overview: Four Parts

1. Logics204 (propositional, first-order, higher-order): appr. 6

units

204The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
205A metalogic is a logic that allows us to express properties

of another logic.
206Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.

247

Overview: Four Parts

1. Logics204 (propositional, first-order, higher-order): appr. 6

units

2. Metalogics205 (Isabelle): appr. 2 units

204The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
205A metalogic is a logic that allows us to express properties

of another logic.
206Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.

247

Overview: Four Parts

1. Logics204 (propositional, first-order, higher-order): appr. 6

units

2. Metalogics205 (Isabelle): appr. 2 units

3. Modeling mathematics and computer science (program-

ming languages) in higher-order logic: appr. 6 units

204The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
205A metalogic is a logic that allows us to express properties

of another logic.
206Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.

247

Overview: Four Parts

1. Logics204 (propositional, first-order, higher-order): appr. 6

units

2. Metalogics205 (Isabelle): appr. 2 units

3. Modeling mathematics and computer science (program-

ming languages) in higher-order logic: appr. 6 units

4. Two case studies in formalizing a theory206 (functional

and imperative programming): appr. 2 units

Presentation roughly follows this structure.
204The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,

it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-

guage allowing to write down statements, together with a

predefined meaning for some of the syntactic entities of this

language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
205A metalogic is a logic that allows us to express properties

of another logic.
206Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the

“world”, the portion that your problem lives in. For example,

rational numbers may or may not exist in this portion. A

theory is such a formalization of a tiny portion of the “world”.

A theory extends a logic by axioms that describe that portion

of the “world”.

Theories will be considered in more detail later.

247

Relationship to other Courses

Logic: deduction, foundations, and applications

Software engineering: specification, refinement, verification

Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reasoning,

deduction

248

Requirements

• Some knowledge of logic207 is useful for this course, but

we will try to accommodate different backgrounds, e.g.

with pointers to additional material. Your feedback is

essential!

• You must be willing to participate in the labs and get your

hands dirty! Also, you must follow the course each week,

or you will quickly get lost. It is hard in the beginning

but the rewards are large.

• Being familiar with the editor emacs and basic Linux com-

mands is very helpful.

207We will introduce different logics and formal systems (so-

called calculi) used to deduce formulas in a logic. We will

neglect other aspects that are usually treated in classes or

textbooks on logic, e.g.:

– semantics (interpretations) of logics; and

– correctness and completeness of calculi.

As an introduction we recommend [vD80].

249

22 Propositional Logic

22.1 Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions” us-

ing not, if...then..., and, or, etc.

• Validity208 means: no counterexample. Validity indepen-

dent of content. Depends on form of the expressions ⇒
can make patterns explicit by replacing words by symbols

From if A then B and A it follows that B.

22 Propositional Logic

22.1 Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions” us-

ing not, if...then..., and, or, etc.

• Validity208 means: no counterexample. Validity indepen-

dent of content. Depends on form of the expressions ⇒
can make patterns explicit by replacing words by symbols
A→ B A

B

22 Propositional Logic

22.1 Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions” us-

ing not, if...then..., and, or, etc.

• Validity208 means: no counterexample. Validity indepen-

dent of content. Depends on form of the expressions ⇒
can make patterns explicit by replacing words by symbols
A→ B A

B

208A and B are symbols whose meaning is not “hard-wired”

into propositional logic.

From if A then B and A it follows that B

is valid because it is true regardless of what A and B “mean”,

and in particular, regardless of whether A and B stand for true

or false propositions.

250

• What about209

From if A then B and B it follows that A?

209

From if A then B and B it follows that A

is invalid because there is a counterexample:

Let A be “Kim is a man” and B be “Kim is a person”.

251

More Examples

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work.

2. It will rain or snow.

It will not snow.

Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

210

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work. VALID

2. It will rain or snow.

It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

NOT VALID

252

More Examples (Which are Valid?)210

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work.

2. It will rain or snow.

It will not snow.

Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

210

1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work. VALID

2. It will rain or snow.

It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

NOT VALID

252

History

• Propositional logic was developed to make this all precise.

• Laws for valid reasoning were known to the Stoic philoso-

phers (about 300 BC).

• The formal system is often attributed to George Boole

(1815-1864).

Further reading: [vD80], [Tho91, chapter 1].

253

More Formal Examples

Formalization allows us to “turn the crank”211.

211By formalizing patterns of reasoning, we make it possible

for such reasoning to be checked or even carried out by a

computer.

From known patterns of reasoning new patterns of reasoning

can be constructed.
212At this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right

of”. In other words, our formalization consists of geometrical

objects like trees.

We study formalization in more detail later.
213A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules

are grafted together to trees in natural deduction. We will see

this shortly, but note that natural deduction is just one style

of proof systems.

We call the rules in that particular set basic rules. Later we

will see one can also derive rules.

254

More Formal Examples

Formalization allows us to “turn the crank”211.

Phrases like “from . . . it follows” or “therefore” are formalized212

as derivation rules, e.g.
A→ B A

B
→-E

211By formalizing patterns of reasoning, we make it possible

for such reasoning to be checked or even carried out by a

computer.

From known patterns of reasoning new patterns of reasoning

can be constructed.
212At this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right

of”. In other words, our formalization consists of geometrical

objects like trees.

We study formalization in more detail later.
213A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules

are grafted together to trees in natural deduction. We will see

this shortly, but note that natural deduction is just one style

of proof systems.

We call the rules in that particular set basic rules. Later we

will see one can also derive rules.

254

More Formal Examples

Formalization allows us to “turn the crank”211.

Phrases like “from . . . it follows” or “therefore” are formalized212

as derivation rules, e.g.
A→ B A

B
→-E

Rules are grafted together to build trees called derivations.

This defines a proof system213 in the style of natural de-

duction.

211By formalizing patterns of reasoning, we make it possible

for such reasoning to be checked or even carried out by a

computer.

From known patterns of reasoning new patterns of reasoning

can be constructed.
212At this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right

of”. In other words, our formalization consists of geometrical

objects like trees.

We study formalization in more detail later.
213A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules

are grafted together to trees in natural deduction. We will see

this shortly, but note that natural deduction is just one style

of proof systems.

We call the rules in that particular set basic rules. Later we

will see one can also derive rules.

254

22.2 Formalizing Propositional Logic

• We must formalize

1. Language214 and semantics

2. Deductive system

22.2 Formalizing Propositional Logic

• We must formalize

1. Language214 and semantics

2. Deductive system

• Here we will focus on formalizing the deductive machin-

ery and say little about metatheorems215 (soundness and

completeness216).

22.2 Formalizing Propositional Logic

• We must formalize

1. Language214 and semantics

2. Deductive system

• Here we will focus on formalizing the deductive machin-

ery and say little about metatheorems215 (soundness and

completeness216).

• For labs we will carry out proofs using the Isabelle System.

214By language we mean the language of formulae. We can

also say that we define the (object) logic. Here “logic” is used

in the narrower sense.
215A metatheorem is a theorem about a proof system, as

opposed to a theorem derived within the proof system. The

statement “proof system XYZ is sound” is a metatheorem.
216A proof system is sound if only valid propositions can be

derived in it.

A proof system is complete if all valid propositions can be

derived in it.

255

22.3 Propositional Logic: Language

Let a set V of (propositional) variables217 be given. LP , the218

language of propositional logic, is defined by the following
217In mathematics, logic and computer science, there are var-

ious notions of variable. In propositional logic, a variable is a

propositional variable, i.e., it stands for a proposition; it can

be interpreted as True or False.

This will be different in logics that we will learn about later.
218Strictly speaking, the definition of LP depends on V . A

different choice of variables leads to a different language of

propositional logic, and so we should not speak of the lan-

guage of propositional logic, but rather of a language of propo-

sitional logic. However, for propositional logic, one usually

does not care much about the names of the variables, or about

the fact that their number could be insufficient to write down

a certain formula of interest. We usually assume that there

are countably infinitely many variables.

Later, we will be more fussy about this point.

256

grammar219 (X ∈ V):

P ::= X | ⊥ 220 | (P∧221P) | (P∨P) | (P → P) | ((¬P)222)
219A notation like
P ::= X | ⊥ | (P ∧ P) | (P ∨ P) | (P → P) | (¬P))

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

e ::= x | c | (ee) | (λx. e)

τ ::= T | τ → τ

e ::= x | c | (ee) | (λxτ . e)

P ::= x | ¬P | P ∧ P | P → P . . .

for specifying syntax is called Backus-Naur form (BNF) for ex-

pressing grammars. For example, the first BNF-clause reads:

a propositional formula can be

a variable, or

⊥, or

P1 ∧ P2, where P1 and P2 are propositional formulae, or

P1 ∨ P2, where P1 and P2 are propositional formulae, or

P1 → P2, where P1 and P2 are propositional formulae, or

257

¬P1, where P1 is a propositional formula.

The symbol P is called a non-terminal, and when we apply

the rules starting from P until we reach an expression without

non-terminal we say that this expression is a production of P

or it is in the language generated by P .

The BNF is a very common formalism for specifying syntax,

e.g., of programming languages. See here or here.
220

The symbol ⊥ stands for “false”.
221The connectives are called conjunction (∧), disjunction

(∨), implication (→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two

formulas, the connective ¬ is unary (most of the time, one

only uses the word connective for binary connective).
222“Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or

syntactic sugar223, for reasons of convenience. In paper-and-

pencil proofs, we are allowed to erase any occurrence of ¬P

258

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

The elements of LP are called (propositional) formulas224.

We omit unnecessary brackets225.

and replace it with P → ⊥, or vice versa, at any time. How-

ever, we shall see that when proofs are automated, this process

must be made explicit.
224In logic, the word “formula” has a specific meaning. For-

mulae are a syntactic category, namely the expressions that

stand for a statement. So formulas are syntactic expressions

that are interpreted (on the semantic level) as True or False.

We will later learn about another syntactic category, that of

terms.

I propositional logic, a formula may also be called a propo-

sition.
225To save brackets, we use standard associativity and prece-

dences. All binary connectives are right-associative:

A ◦B ◦ C ≡ A ◦ (B ◦ C)

The precedences are ¬ before ∧ before ∨ before→. So for

example

A→ B ∧ ¬C ∨D ≡ A→ ((B ∧ (¬C)) ∨D)

259

Propositional Logic: Semantics

An assignment is a function A : V → {0, 1}. We say that

A assigns a truth value to each propositional variable. We

identify 1 with True and 0 with False.

A is lifted (=extended) to formulas in LP as follows . . .

260

Propositional Logic: Semantics (2)

A(⊥) = 0

A(¬φ) =

{
1 if A(φ) = 0

0 otherwise

A(φ ∧ ψ) =

{
1 if A(φ) = 1 and A(ψ) = 1

0 otherwise

A(φ ∨ ψ) =

{
1 if A(φ) = 1 or A(ψ) = 1

0 otherwise

A(φ→ ψ) =

{
1 if A(φ) = 0 or226 A(ψ) = 1

0 otherwise

261

Propositional Logic: Semantics (3)

If A(φ) = 1, we write A |= φ.

Two formulae are equivalent if they yield the same truth

value for any assignment of the propositional variables.

The semantics will be generalised later.

262

22.4 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].

Designed to support ‘natural’ logical arguments:

• we make (temporary) assumptions;

• we derive new formulas by applying rules;

• there is also a mechanism for “getting rid of” assump-

tions.

263

Natural Deduction (2)

Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

227For the moment, the way to understand it is as follows:

by writing A → (B → C), A,B ` C, we assert that C

can be derived in this proof system under the assumptions

A→ (B → C), A,B.

We will say more about the ` notation later.

264

Natural Deduction (2)

Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

We write A1, ..., An ` A if there exists a derivation of A

with assumptions A1, ..., An, e.g. A → (B → C), A,B `
C227.

227For the moment, the way to understand it is as follows:

by writing A → (B → C), A,B ` C, we assert that C

can be derived in this proof system under the assumptions

A→ (B → C), A,B.

We will say more about the ` notation later.

264

Natural Deduction (2)

Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

We write A1, ..., An ` A if there exists a derivation of A

with assumptions A1, ..., An, e.g. A → (B → C), A,B `
C227.

A proof is a derivation where we “got rid” of all assump-

tions.
227For the moment, the way to understand it is as follows:

by writing A → (B → C), A,B ` C, we assert that C

can be derived in this proof system under the assumptions

A→ (B → C), A,B.

We will say more about the ` notation later.

264

Natural Deduction: an Abstract Example228

• Language L = {ª,¨,«,©}.

228Natural deduction is not just about propositional logic! We

explain here the general principles of natural deduction, not

just the application to propositional logic.

In order to emphasize that applying natural deduction is a

completely mechanical process, we give an example that is

void of any intuition.

It is important that you understand this process. Apply-

ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
229The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ©, then you are allowed

to draw a line underneath that © and write ¨ underneath that

line.

The third rule reads: if the forest you have constructed so

far contains two neighboring trees, where the left tree has root

¨ and the right tree has root «, then you are allowed to draw

a line underneath those two roots and write ª underneath

that line.
230The last rule reads: if at some root of a tree in the forest

265

Natural Deduction: an Abstract Example228

• Language L = {ª,¨,«,©}.

• Deductive system given by rules of proof:

©

¨
α

©

«
β

¨ «

ª
γ

How do you read these rules?229

228Natural deduction is not just about propositional logic! We

explain here the general principles of natural deduction, not

just the application to propositional logic.

In order to emphasize that applying natural deduction is a

completely mechanical process, we give an example that is

void of any intuition.

It is important that you understand this process. Apply-

ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
229The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ©, then you are allowed

to draw a line underneath that © and write ¨ underneath that

line.

The third rule reads: if the forest you have constructed so

far contains two neighboring trees, where the left tree has root

¨ and the right tree has root «, then you are allowed to draw

a line underneath those two roots and write ª underneath

that line.
230The last rule reads: if at some root of a tree in the forest

265

Natural Deduction: an Abstract Example228

• Language L = {ª,¨,«,©}.

• Deductive system given by rules of proof:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

How about this one?230

228Natural deduction is not just about propositional logic! We

explain here the general principles of natural deduction, not

just the application to propositional logic.

In order to emphasize that applying natural deduction is a

completely mechanical process, we give an example that is

void of any intuition.

It is important that you understand this process. Apply-

ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
229The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ©, then you are allowed

to draw a line underneath that © and write ¨ underneath that

line.

The third rule reads: if the forest you have constructed so

far contains two neighboring trees, where the left tree has root

¨ and the right tree has root «, then you are allowed to draw

a line underneath those two roots and write ª underneath

that line.
230The last rule reads: if at some root of a tree in the forest

265

Natural Deduction: an Abstract Example228

• Language L = {ª,¨,«,©}.

• Deductive system given by rules of proof:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

How about this one?230

α, β, γ, δ are just names for the rules.

228Natural deduction is not just about propositional logic! We

explain here the general principles of natural deduction, not

just the application to propositional logic.

In order to emphasize that applying natural deduction is a

completely mechanical process, we give an example that is

void of any intuition.

It is important that you understand this process. Apply-

ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
229The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ©, then you are allowed

to draw a line underneath that © and write ¨ underneath that

line.

The third rule reads: if the forest you have constructed so

far contains two neighboring trees, where the left tree has root

¨ and the right tree has root «, then you are allowed to draw

a line underneath those two roots and write ª underneath

that line.
230The last rule reads: if at some root of a tree in the forest

265

Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.

266

Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

We make231 an assumption. The assumption is now open232.

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.

266

Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

¨
α

We apply α.

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.

266

Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

¨
α

©

«
β

Similarly with β.

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.

266

Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

¨
α

©

«
β

ª
γ

We apply γ.

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.

266

Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

[©]1

¨
α

[©]1

«
β

ª
γ

ª
δ1

We apply δ, discharging two occurrences of ©. We mark the

brackets and the rule with a label so that it is clear which

assumption is discharged in which step. The derivation is

now a proof: it has no open assumptions (all discharged).

you have constructed so far, there is a ª, then you are allowed

to draw a line underneath that ª and write © underneath that

line. Moreover you are allowed to discharge (eliminate, close)

0 or more occurrences of © at the leaves of the tree.

Discharging is marked by writing [] around the discharged

formula.

Note that generally, the tree may contain assumptions other

than © at the leaves. However, these must not be discharged

in this rule application. They will remain open until they might

be discharged by some other rule application later.

266

22.5 Deductive System: Rules of Propositional
Logic

We have rules for conjunction, implication, disjunction, fal-

sity and negation.

Some rules introduce233, others eliminate connectives.

233It is typical that the basic rules of a proof system can be

classified as introduction or elimination rules for a particular

connective.

This classification provides obvious names for the rules and

may guide the search for proofs.

The rules for conjunction are pronounced and-introduction,

and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are

also derived rules.

267

Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce connectives
A B
A ∧B ∧-I

234The letters A and B in the rules are not propositional

variables. Instead, they can stand for arbitrary propositional

formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to object

variables, i.e., variables of the language that we reason about

(here: propositional logic).

When a rule is applied, the metavariables of it must be

replaced with actual formulae. We say that a rule is being

instantiated.

We will see more about the use of metavariables later.
235A rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as

well.

This is consistent with the earlier intuitive explanation of

validity of a formula. Details can be found in any textbook

on logic [vD80].

Note that while the notation A |= . . . will be used again

later, there A will not stand for an assignment, but rather for

268

Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce and eliminate connectives
A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

234The letters A and B in the rules are not propositional

variables. Instead, they can stand for arbitrary propositional

formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to object

variables, i.e., variables of the language that we reason about

(here: propositional logic).

When a rule is applied, the metavariables of it must be

replaced with actual formulae. We say that a rule is being

instantiated.

We will see more about the use of metavariables later.
235A rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as

well.

This is consistent with the earlier intuitive explanation of

validity of a formula. Details can be found in any textbook

on logic [vD80].

Note that while the notation A |= . . . will be used again

later, there A will not stand for an assignment, but rather for

268

Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce and eliminate connectives
A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

• Rules are schematic234.

• Why valid235? If all assumptions are true, then so is con-

clusion

A |= A ∧B iff A |= A and A |= B

234The letters A and B in the rules are not propositional

variables. Instead, they can stand for arbitrary propositional

formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to object

variables, i.e., variables of the language that we reason about

(here: propositional logic).

When a rule is applied, the metavariables of it must be

replaced with actual formulae. We say that a rule is being

instantiated.

We will see more about the use of metavariables later.
235A rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as

well.

This is consistent with the earlier intuitive explanation of

validity of a formula. Details can be found in any textbook

on logic [vD80].

Note that while the notation A |= . . . will be used again

later, there A will not stand for an assignment, but rather for

268

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

236

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
236All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

269

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

236

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
236All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

269

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

236

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
236All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

269

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

236

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
236All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

269

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

236

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
236All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

269

Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)

A
∧-EL

A ∧ (B ∧ C)

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

Can we prove anything with just these three rules?236

a construct having an assignment as one constituent. This

is because we will generalize, and in the new setting we need

something more complex than just an assignment. But in

spirit A |= . . . will still mean the same thing.
236All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make

some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no

open assumptions.

Consequently, the answer is no. We cannot prove anything

with just these three rules.

269

Rules of Propositional Logic: Implication

• Rules
[A]

....
B

A→ B
→-I

A→ B A
B

→-E

270

Rules of Propositional Logic: Implication

• Rules
[A]

....
B

A→ B
→-I

A→ B A
B

→-E

• →-E is also called modus ponens.

270

Rules of Propositional Logic: Implication

• Rules
[A]

....
B

A→ B
→-I

A→ B A
B

→-E

• →-E is also called modus ponens.

• →-I formalizes strategy:

To derive A→ B, derive B under the additional assump-

tion A.

270

A very Simple Proof

The simplest proof we can think of is the proof of P → P .

P

237When we make the assumption P , we obtain a forest con-

sisting of one tree. In this tree, P is at the same time a leaf

and the root. Thus the tree P is a degenerate example of the

schema
[A]....
B

where both A and B are replaced with P .

Therefore we may apply rule→-I, similarly as in our abstract

example.

271

A very Simple Proof

The simplest proof we can think of is the proof of P → P .

[P]1

P → P
→-I1

Do you find this strange?237

237When we make the assumption P , we obtain a forest con-

sisting of one tree. In this tree, P is at the same time a leaf

and the root. Thus the tree P is a degenerate example of the

schema
[A]....
B

where both A and B are replaced with P .

Therefore we may apply rule→-I, similarly as in our abstract

example.

271

Examples with Conjunction and Implication

1. A→ B → A238

2. A ∧ (B ∧ C)→ A ∧ C239

238

The rule(s):

[A]
....
B

A→ B
→-I

The proof:

[A]1

B → A
→-I

A→ B → A
→-I1

239

The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B

∧-ER

[A]
....
B

A→ B
→-I

The proof:

[A ∧ (B ∧ C)]2

A
∧-EL

[A ∧ (B ∧ C)]2

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

(A ∧ (B ∧ C))→ (A ∧ C)
→-I2

272

3. (A→ B → C)→ (A→ B)→ A→ C240

Are these object or metavariables here?241

240

The rules:

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

The proof:

[(A→ B → C)]3 [A]5

B → C
→-E

[(A→ B)]4 [A]5

B
→-E

C
→-E

A→ C
→-I5

(A→ B)→ A→ C
→-I4

(A→ B → C)→ (A→ B)→ A→ C
→-I3

241In these examples, you may regardA,B,C as propositional

variables. On the other hand, the proofs are schematic, i.e.,

they go through for any formula replacing A,B, and C.

273

Disjunction

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

274

Disjunction

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Formalizes case-split strategy for using A ∨B.

274

Disjunction: Example

• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Example: formalize and prove

When it rains then I wear my jacket.

When it snows then I wear my jacket.

It is raining or snowing.

Therefore I wear my jacket.

275

Falsity and Negation

• Falsity

⊥
A
⊥-E

No introduction rule!242

Falsity and Negation

• Falsity

⊥
A
⊥-E

No introduction rule!242

• Negation: define ¬A as A→⊥. Rules for ¬ just special

cases243 of rules for →. Convenient to have
242The symbol ⊥ stands for “false”.

It should be intuitively clear that since the purpose of a proof

system is to derive true formulae, there is no introduction rule

for falsity. One may wonder: what is the role of ⊥ then? We

will see this soon. The main role is linked to negation. We

quote from [And02, p. 152]:

⊥ plays the role of a contradiction in indirect proofs.

243The rule
¬A A
⊥

is simply an instance of →-E (since ¬A is shorthand for

A→⊥).

Likewise, the rule
[A]

....
⊥
¬A

276

¬A A
B

¬-E244

derived by

¬A A
⊥ →-E

B
⊥-E

is simply an instance of→-I. Therefore, we will not introduce

these as special rules. But there is a special rule ¬-E.
244For negation, it is common to have a rule

¬A A
B

¬-E

We have seen how this rule can be derived. The concept of

deriving rules will be explained more systematically later.

This rule is also called ex falso quod libet (from the false

whatever you like).

277

Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid245? Provable246?

Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid245? Provable246?

245Yes, simply check the truth table:

A B ((A→ B)→ A)→ A

True True True

True False True

False True True

False False True

246In the proof system given so far, this is not provable. To

prove that it is not provable requires an analysis of so-called

normal forms of proofs. However, we do not do this here.

278

• It is provable in classical logic247, obtained by adding

A ∨ ¬A248 or

[¬A]
....
⊥
A
RAA249 or

[¬A]
....
A

A
classical250.

247The proof system we have given so far is a proof system for

intuitionistic logic. The main point about intuitionistic logic

is that one cannot claim that every statement is either true or

false, but rather, evidence must be given for every statement.

In classical reasoning, the law of the excluded middle holds.

One also says that proofs in intuitionistic logic are construc-

tive whereas proofs in classical logic are not necessarily con-

structive.

We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar

classical logic which allows an effective interpretation

and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has

been the topic of a fundamental discourse in the literature on

logic [PM68] [Tho91, chapter 3]. Often proofs contain case

distinctions, assuming that for any statement ψ, either ψ or

¬ψ holds. This reasoning is classical; it does not apply in

intuitionistic logic.

279

248A ∨ ¬A is called axiom of the excluded middle.
249The rule

[¬A]
....
⊥
A
RAA

is called reduction ad absurdum.
250The rule

[¬A]
....
A

A
classical

corresponds to the formulation is Isabelle.

280

Example of Classical Reasoning

Recall the story of Oedipus from greek mythology:

• Iokaste is the mother of Oedipus.

• Iokaste and Oedipus are the parents of Polyneikes.

• Polyneikes is the father of Thersandros.

• Oedipus is a patricide.

• Thersandros is not a patricide.

281

Example of Classical Reasoning (cont.)

Iokaste
XXXXXXz

HH
HHH

HHHj

Oedipus (patr.)
?

Polyneikes
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

251There exist irrational numbers a and b such that ab is

rational.

Example of Classical Reasoning (cont.)

Iokaste
XXXXXXz

HH
HHH

HHHj

Oedipus (patr.)
?

Polyneikes (patr.)
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

Case 1: If Polyneikes is a patricide, then Iokaste has

a child (Polyneikes) that is a patricide and that itself has a

child (Thersandros) that is not a patricide.

251There exist irrational numbers a and b such that ab is

rational.

Proof: Let b be
√

2 and consider whether or not bb is

rational.

Case 1: If rational, let a = b =
√

2

Case 2: If irrational, let a =
√

2
√

2
, and then

ab =
√

2

√
2

√
2

=
√

2
(
√

2∗
√

2)
=
√

2
2

= 2

Example of Classical Reasoning (cont.)

Iokaste
XXXXXXz

HH
HHH

HHHj

Oedipus (patr.)
?

Polyneikes (¬ patr.)
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

Case 2: If Polyneikes is not a patricide, then Iokaste has

a child (Oedipus) that is a patricide and that itself has a

child (Polyneikes) that is not a patricide.

Here251 is another example.

251There exist irrational numbers a and b such that ab is

rational.

Proof: Let b be
√

2 and consider whether or not bb is

rational.

Case 1: If rational, let a = b =
√

2

Case 2: If irrational, let a =
√

2
√

2
, and then

ab =
√

2

√
2

√
2

=
√

2
(
√

2∗
√

2)
=
√

2
2

= 2

We still don’t know how to choose a and b so that ab is

rational. Hence the proof if non-constructive.

282

Overview of Rules

A B
A ∧B ∧-I

A ∧B
A

∧-EL
A ∧B
B

∧-ER

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

[A]
....
B

A→ B
→-I

A→ B A
B

→-E
⊥
A
⊥-E

283

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

284

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

It looks like this.

284

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S

¬S

R

We build a fragment of a derivation by writing the conclusion

R and the assumptions R ∨ S and ¬S.

284

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S

R ∨-E

Since we have assumption R ∨ S, using ∨-E seems a good

idea. So we should make assumptions R and S. First R. But

that is a derivation of R from R!

284

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

R ∨-E

So now S.

284

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R ∨-E

¬S and S allow us to apply →-E.

284

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R
⊥-E

R ∨-E

To apply ∨-E in the end, we need to derive R. But that’s

easy using ⊥-E!

284

22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S [R]1

¬S [S]1

⊥ →-E

R
⊥-E

R ∨-E
1

Finally, we can apply ∨-E. The derivation with open assump-

tions is a new rule that can be used like any other rule.

284

A Variation of Natural Deduction: Boxes

We have seen just one deductive system.

One variation of natural deduction is the following: A deriva-

tion is not a tree, but a sequence of numbered lines. Instead of

subtrees relying on open assumptions, a subderivation relying

on an assumption is enclosed in a box.

You find this explained in [HR04].

285

22.7 Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability

judgement252, i.e., reason about Γ ` A where Γ ≡ A1, . . . , An

instead of individual formulae.
252An object like A→ (B → C), A,B ` C is called a deriv-

ability judgement. We explained it earlier as simply asserting

the fact that there exists a derivation tree with C at its root

and open assumptions A→ (B → C), A,B.

However, it is also possible to make such judgements the

central objects of the deductive system, i.e., have rules in-

volving such objects.

The notation Γ ` A is called sequent notation. However,

this should not be confused with the sequent calculus (we

will consider it later). The sequent calculus is based on se-

quents, which are syntactic entities of the form A1, . . . , An `
B1, . . . , Bm, where the A1, . . . , An, B1, . . . , Bm are all for-

mulae. You see that this definition is more general than the

derivability judgements we consider here.

What we are about to present is a kind of hybrid between

natural deduction and the sequent calculus, which we might

call natural deduction using a sequent notation.

286

Sequent Rules (for → /∧ Fragment)

Rules for assumptions253 and weakening254:

Γ ` A255 (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Sequent Rules (for → /∧ Fragment)

Rules for assumptions253 and weakening254:

Γ ` A255 (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Rules for ∧ and →:
Γ ` A Γ ` B

Γ ` A ∧B ∧-I
Γ ` A ∧B

Γ ` A ∧-EL
Γ ` A ∧B

Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

253The special rule for assumptions takes the role in this se-

quent style notation that the process of making and discharg-

ing assumptions had in natural deduction based on trees.

It is not so obvious that the two ways of writing proofs

are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
254The rule weaken is

Γ ` B
A,Γ ` B weaken

Intuitively, the soundness of rule weaken should be clear:

having an additional assumption in the context cannot hurt

since there is no proof rule that requires the absence of some

assumption.

We will see an application of that rule later.
255An axiom is a rule without premises. We call a rule with

premises proper.

287

More rules can be derived256.
One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic

contain no axioms. In the sequent style formalization, having

the assumption rule (axiom) is essential for being able to prove

anything, but in the natural deduction style we learned first,

we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just

an axiom at the level of Isabelle’s meta-logic. This will be

explained later.
256 As an example, consider

A,B,Γ ` C Γ ` A ∧B
Γ ` C ∧-E

288

Example: Refinement Style with Metavariables

` A ∧ (B ∧ C)→ A ∧ C

We want to show that A∧ (B ∧C)→ A∧C is a tautology,

i.e., that it is derivable without any assumptions.

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C →-I

The topmost connective of the formula is →, so the best

rule257 to choose is →-I.

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A A ∧ (B ∧ C) ` C
A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

The topmost connective of the formula is ∧, so the best rule

to choose is ∧-I.

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL
A ∧ (B ∧ C) ` C

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Things are becoming less obvious. To know that ∧-EL is the

best rule for the r.h.s., you need to inspect the assumption

A ∧ (B ∧ C).

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL
A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Now it’s becoming even more difficult. To know that ∧-ER

is the best rule for the l.h.s., you need to look deep into the

assumption A ∧ (B ∧ C).

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Again you need to look at both sides of the ` to decide what

to do.

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ (B ∧ C)

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` A ∧ (B ∧ C)

A ∧ (B ∧ C) ` (B ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C →-I

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

This rule can be derived as follows:
A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

289

Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-

way!

• Refinement style means we work from goals to axioms258

• metavariables used to delay commitments

Isabelle allows other refinements259/alternatives too (see

labs).
258As you saw in our animation, we worked from the root of

the tree to the leaves.
259One aspect you might have noted in the proof is that the

steps at the top, where ∧-EL and ∧-ER were used, required

non-obvious choices, and those choices were based on the

assumptions in the current derivability judgement.

In Isabelle, we will apply other rules and proof techniques

that allow us to manipulate assumptions explicitly. These

techniques make the process of finding a proof more deter-

ministic.

But that is just one aspect. We will give a more theoretic

account of the way Isabelle constructs proofs later.

290

23 Natural Deduction: Review

291

Overview

• Short review: ND Systems and proofs

• First-Order Logic

– Overview

– Syntax

– Semantics

– Deduction, some derived rules, and examples

292

How Are ND Proofs Built?

ND proofs260 build derivations under (possibly temporary) as-

sumptions.

260ND stands for Natural Deduction. It was explained in the

previous lecture.

293

ND: Example for → /∧ Fragment

Rules:

A B
A ∧B ∧-I

A ∧B
A

∧-EL

A ∧B
B

∧-ER

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

Proof:

[A ∧B]1

B
∧-ER

[A ∧B]1

A
∧-EL

B ∧ A ∧-I

A ∧B → B ∧ A→-I1

294

Alternative Formalization Using Sequents261

Rules (for → /∧ fragment). Here, Γ is a set of formulae.

Γ ` A (where A ∈ Γ)

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

Two representations equivalent. Sequent notation seems

simpler in practice262.
261The judgement (Γ ` φ) means that we can derive φ from

the assumptions in Γ using certain rules. As explained in the

previous lecture, one can make such judgements the central

objects of the deductive system.
262In particular, the sequent style notation is more amenable

to automation, and thus it is closer to what happens in Is-

abelle.

295

Example: Refinement Style with Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C
A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).

We went through this example in detail last lecture.

296

Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-

way!

• Refinement style means we work from goals to axioms

• Metavariables used to delay commitments

Isabelle allows other refinements/alternatives too (see labs).

297

24 First-Order Logic

24.1 First-Order Logic: Overview

In propositional logic, formulae are Boolean263 combina-

tions of propositions. This will remain important for modeling

simple patterns of reasoning.

An atomic proposition is just a letter (variable). All one can

say about it is that it is true or false. E.g. it is meaningless to

say “A and B state something similar”. Also, infinity plays

no role.
263The set (or “type”) bool contains the two truth values

True,False. A propositional formula containing n variables

can be viewed as a function booln → bool . For each com-

bination of values True,False for the variables, the whole

formula assumes the value True or False.

298

First-Order Logic: the Essence

In first-order logic, an atom(ic proposition) says that “things”

have certain “properties”264. Infinitely many “things” can be

denoted, hence infinitely many atoms generated and distin-

guished. Comparisons of atoms become meaningful: “Tim is

a boy” and “Carl is a boy” state something similar.

Example reasoning: “Tim is a boy”; “boys don’t cry”;

hence “Tim doesn’t cry”.

Further reading: [vD80], [Tho91, chapter 1].
264In propositional logic, there is no notation for writing

“thing x has property p” or “things x and y are related as

follows” or for denoting the “thing obtained from thing x by

applying some operation”.

In particular, no statement about all elements of a possibly

infinite domain can be expressed in propositional logic, since

each formula involves only finitely many different variables,

and up to equivalence and for a set containing n variables,

there are only finitely many (to be precise 2(2n)) different

propositional formulae.

299

Variables: Intuition

In first-order logic, we talk about “things” that have certain

“properties”.

A variable in first-order logic stands for a “thing”.

300

Variables: Intuition

In first-order logic, we talk about “things” that have certain

“properties”.

A variable in first-order logic stands for a “thing”.

This is in contrast to propositional logic where variables

stand for propositions.

It is common to use letters x, y, z for variables.

300

Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

301

Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

301

Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

301

Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

• x is a man and y is a woman and x loves y but not vice

versa

301

Predicates: Intuition

A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

• x is a man and y is a woman and x loves y but not vice

versa

m(x) ∧ w(y) ∧ l(x, y) ∧ ¬l(y, x)

301

Predicates: Intuition (2)

We can represent only “abstractions” of these in propositional

logic, e.g., p ∧ (d1 ∨ d2) could be an abstraction of p(x) ∧
(d(y, x) ∨ d(z, x)).

Here p stands for “x is a prime” and d1 stands for “y is

divisible by x”.

But the sense in which p(x), d(y, x), d(z, x) state some-

thing similar is lost. What it means to be divisible or to be a

prime cannot be expressed.

302

Functions: Intuition

• A constant stands for a “fixed thing”265 in a domain266.

265As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.
266For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
267N denotes the natural numbers.
268So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols like

+ are denoted infix, so we write 0 + 0 instead of +(0, 0). An-

other common notation is prefix notation without brackets, as

in −2. There are also other notations.

303

Functions: Intuition

• A constant stands for a “fixed thing”265 in a domain266.

• More generally, a function of arity n expresses an n-ary

operation over some domain, e.g.

Function arity expresses . . .

0

s

+

265As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.
266For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
267N denotes the natural numbers.
268So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols like

+ are denoted infix, so we write 0 + 0 instead of +(0, 0). An-

other common notation is prefix notation without brackets, as

in −2. There are also other notations.

303

Functions: Intuition

• A constant stands for a “fixed thing”265 in a domain266.

• More generally, a function of arity n expresses an n-ary

operation over some domain, e.g.

Function arity expresses . . .

0 nullary

s unary

+ binary

265As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.
266For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
267N denotes the natural numbers.
268So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols like

+ are denoted infix, so we write 0 + 0 instead of +(0, 0). An-

other common notation is prefix notation without brackets, as

in −2. There are also other notations.

303

Functions: Intuition

• A constant stands for a “fixed thing”265 in a domain266.

• More generally, a function of arity n expresses an n-ary

operation over some domain, e.g.

Function arity expresses . . .

0 nullary number “0”

s unary successor in N267

+ binary function plus in N
The generic notation for function application is f (t1, . . . , tn),

but note special notations268: infix, prefix, etc.

265As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.
266For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
267N denotes the natural numbers.
268So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f (t1, . . . , tn) is a “thing”

that depends on “things” t1, . . . , tn.

The generic notation for function application is like this:

f (t1, . . . , tn), but the brackets are omitted for nullary func-

tions (= constants), and many common function symbols like

+ are denoted infix, so we write 0 + 0 instead of +(0, 0). An-

other common notation is prefix notation without brackets, as

in −2. There are also other notations.

303

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x true for rationals

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0 true for domains with

more than one element

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0 true for domains with

more than one element

(∀x. p(x, x))→ p(a, a)

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

Quantifiers: Intuition

• A variable stands for “some269 thing” in a domain of dis-

course. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?270

∀x. ∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0 true for domains with

more than one element

(∀x. p(x, x))→ p(a, a) valid

269Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a

variable is that one can quantify over a variable, so one can

make statements such as “for all x . . . ” or “there exists x

such that . . . ”.
270Intuitively, satisfiable means “can be made true” and valid

means “always true”.

More formally, this will be defined later.

304

24.2 First-Order Logic: Syntax

• Two syntactic categories: terms271 and formulae

• A first-order language272 is characterized by giving a finite

collection of function symbols F and predicate symbols

P as well as a set Var of variables.

24.2 First-Order Logic: Syntax

• Two syntactic categories: terms271 and formulae

• A first-order language272 is characterized by giving a finite

collection of function symbols F and predicate symbols

P as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function sym-

bol f (or predicate symbol p) has arity i ∈ N.

24.2 First-Order Logic: Syntax

• Two syntactic categories: terms271 and formulae

• A first-order language272 is characterized by giving a finite

collection of function symbols F and predicate symbols

P as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function sym-

bol f (or predicate symbol p) has arity i ∈ N.

• One often calls the pair 〈F ,P〉 a signature.

271We have already learned about the syntactic category of

formulae last lecture.

A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have

terms that stand for “things” and formulae that stand for

statements/propositions about those “things”.

But couldn’t a statement also be a “thing”? And couldn’t

a “thing” depend on a statement?

In first-order logic: no!
272There isn’t simply the language of first-order logic! Rather,

the definition of a first-order language is parametrised by giv-

ing a F and a P . Each symbol in F and P must have an

associated arity, i.e., the number of arguments the function

or predicate takes. This could be formalized by saying that

the elements of F are pairs of the form f/n, where f is the

symbol itself and n, and likewise for P . All that matters is

that it is specified in some unambiguous way what the arity

of each symbol is.

305

Terms and Formulae in First-Order Logic

Consider the following grammar (x ∈ Var , fn ∈ F , pn ∈ P):

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times273

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

The productions of T are called terms (set Term274).

The productions of F are called formulae (set Form).

One often calls the pair 〈F ,P〉 a signature. Generally, a sig-

nature specifies the “fixed symbols” (as opposed to variables)

of a particular logic language.

Strictly speaking, a first-order language is also parametrised

by giving a set of variables Var , but this is inessential. Var

is usually assumed to be a countably infinite set of symbols,

and the particular choice of names of these symbols is not

relevant.
274Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the

signature, but we always assume that the signature is clear

from the context.
275We adopt the convention that the scope of a quantifier

extends as much as possible to the right, e.g.

∀x.p(x) ∨ q(x)

is

∀x.(p(x) ∨ q(x))

306

Terms and Formulae in First-Order Logic

Consider the following grammar (x ∈ Var , fn ∈ F , pn ∈ P):

T ::= x | fn(T, . . . , T︸ ︷︷ ︸
n times273

)

F ::= . . . | pn(T, . . . , T︸ ︷︷ ︸
n times

) | ∀x. F | ∃x. F

The productions of T are called terms (set Term274).

The productions of F are called formulae (set Form).

Formulae of the form pn(. . .) are called atoms.

Note quantifier scoping275.

One often calls the pair 〈F ,P〉 a signature. Generally, a sig-

nature specifies the “fixed symbols” (as opposed to variables)

of a particular logic language.

Strictly speaking, a first-order language is also parametrised

by giving a set of variables Var , but this is inessential. Var

is usually assumed to be a countably infinite set of symbols,

and the particular choice of names of these symbols is not

relevant.
274Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the

signature, but we always assume that the signature is clear

from the context.
275We adopt the convention that the scope of a quantifier

extends as much as possible to the right, e.g.

∀x.p(x) ∨ q(x)

is

∀x.(p(x) ∨ q(x))

306

Variable Occurrences

• All occurrences of a variable in a formula276 are bound or

free or binding.

• Example:

(q(x) ∨ ∃x.∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))

Which are bound?

and not

(∀x.p(x)) ∨ q(x)

This is a matter of dispute and other conventions are around,

but the one we adopt here corresponds to Isabelle.

Compare this to the precedences and associativity in propo-

sitional logic.
276All occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on

the structure of terms/formulae. This is why the following

definition is along the lines of our definition of terms and

formulae.

1. The (only) occurrence of x in the term x is a free occur-

rence of x in x;

2. the free occurrences of x in f (t1, . . . , tn) are the free oc-

currences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free oc-

307

Variable Occurrences

• All occurrences of a variable in a formula276 are bound or

free or binding.

• Example:

(q(x) ∨ ∃x.∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))

Which are bound? Which are free?

and not

(∀x.p(x)) ∨ q(x)

This is a matter of dispute and other conventions are around,

but the one we adopt here corresponds to Isabelle.

Compare this to the precedences and associativity in propo-

sitional logic.
276All occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on

the structure of terms/formulae. This is why the following

definition is along the lines of our definition of terms and

formulae.

1. The (only) occurrence of x in the term x is a free occur-

rence of x in x;

2. the free occurrences of x in f (t1, . . . , tn) are the free oc-

currences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free oc-

307

Variable Occurrences

• All occurrences of a variable in a formula276 are bound or

free or binding.

• Example:

(q(x) ∨ ∃x.∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))

Which are bound? Which are free? Which are binding?

and not

(∀x.p(x)) ∨ q(x)

This is a matter of dispute and other conventions are around,

but the one we adopt here corresponds to Isabelle.

Compare this to the precedences and associativity in propo-

sitional logic.
276All occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on

the structure of terms/formulae. This is why the following

definition is along the lines of our definition of terms and

formulae.

1. The (only) occurrence of x in the term x is a free occur-

rence of x in x;

2. the free occurrences of x in f (t1, . . . , tn) are the free oc-

currences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free oc-

307

Variable Occurrences

• All occurrences of a variable in a formula276 are bound or

free or binding.

• Example:

(q(x) ∨ ∃x.∀y. p(f (x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))

Which are bound? Which are free? Which are binding?

• A formula with no free variable occurrences is called closed.

• There will be an exercise.

and not

(∀x.p(x)) ∨ q(x)

This is a matter of dispute and other conventions are around,

but the one we adopt here corresponds to Isabelle.

Compare this to the precedences and associativity in propo-

sitional logic.
276All occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on

the structure of terms/formulae. This is why the following

definition is along the lines of our definition of terms and

formulae.

1. The (only) occurrence of x in the term x is a free occur-

rence of x in x;

2. the free occurrences of x in f (t1, . . . , tn) are the free oc-

currences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free oc-

307

24.3 First-Order Logic: Semantics

currences of x in t1, . . . , tn;

5. the free occurrences of x in ¬φ are the free occurrences

of x in φ;

6. the free occurrences of x in ψ ◦φ are the free occurrences

of x in ψ and the free occurrences of x in φ (◦ ∈ {∧,∨,→
});

7. the free occurrences of x in ∀y. ψ, where y 6= x, are the

free occurrences of x in ψ; likewise for ∃;

8. x has no free occurrences in ∀x. ψ; in ∀x. ψ, the (outer-

most) ∀ binds all free occurrences of x in ψ; the occur-

rence of x next to ∀ is a binding occurrence of x; likewise

for ∃.

A variable occurrence is bound if it is not free and not bind-

ing.

We also define

FV (φ) := {x | x has a free occurrence in φ}

308

A structure277 is a pair A = 〈UA, IA〉 where UA is an

nonempty set, the universe, and IA is a mapping where

1. IA(fn) is an n-ary (total) function on UA, for fn ∈ F ,

2. IA(pn) is an n-ary relation on UA, for pn ∈ P , and

3. IA(x) is an element of UA, for each x ∈ Var .
277As usual, there isn’t just one way of formalizing things,

and so we now explain some other notions that you may have

heard in the context of semantics for first-order logic.

A universe is sometimes also called domain.

As you saw, a structure gives a meaning to functions, pred-

icates, and variables.

An alternative formalization is to have three different map-

pings for this purpose:

1. an algebra gives a meaning to the function symbols (more

precisely, an algebra is a pair consisting of a domain and

a mapping giving a meaning to the function symbols);

2. in addition, an interpretation gives a meaning also to the

predicate symbols;

3. a variable assignment, also called valuation, gives a mean-

ing to the variables.

As before, we assume that the signature is clear from the

context. Strictly speaking, we should say “structure for a

309

As shorthand, write pA278 for IA(pn), etc.

particular signature”.

Details can be found in any textbook on logic [vD80].
278In the notation pA, the superscript has nothing to do with

the superscript we sometimes use to indicate the arity.

310

The Value of Terms

Let A be a structure. We define the value of a term t under

A, written A(t), as

1. A(x) = xA, for x ∈ Var , and

2. A(f (t1, . . . , tn)) = fA(A(t1), . . . ,A(tn)).

311

The Value of Formulae

We define the (truth-)value of the formula φ under A, written

A(φ), as

A(p(t1, . . . , tn)) =

{
1 if (A(t1), . . . ,A(tn)) ∈ pA
0 otherwise

A(∀x. φ) =

{
1 if for all u ∈ UA,A[x/u]

279(φ) = 1

0 otherwise

A(∃x. φ) =

{
1 if for some u ∈ UA,A[x/u](φ) = 1

0 otherwise

Rest as for propositional logic.

279

A[x/u] is the structure A′ identical to A, except that xA
′
=

u.

312

Models

• If A(φ) = 1, we write A |= φ and say φ is true in A or

A is a model of φ.

280A structure is suitable for φ if it defines meanings for the

signature of φ, i.e., for the symbols that occur in φ. Of

course, these meanings must also respect the arities, so an

n-ary function symbols must be interpreted as an n-ary func-

tion. Without explicitly mentioning it, we always assume that

structures are suitable.
281If you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember

a different definition from your previous studies of logic, then

these comments may help.

As explained before, it is common to distinguish an interpre-

tation, which gives a meaning to the symbols in the signature,

from an assignment, which gives a meaning to the variables.

Let us use I to denote an interpretation and A to denote an

assignment.

Recall that we wrote A(.) for the meaning of a term or

formula. In the alternative terminology, we write I(A)(.) in-

stead. This makes sense since in the alternative terminology,

313

Models

• If A(φ) = 1, we write A |= φ and say φ is true in A or

A is a model of φ.

• If every suitable structure280 is a model, we write |= φ

and say φ is valid or φ is a tautology.

280A structure is suitable for φ if it defines meanings for the

signature of φ, i.e., for the symbols that occur in φ. Of

course, these meanings must also respect the arities, so an

n-ary function symbols must be interpreted as an n-ary func-

tion. Without explicitly mentioning it, we always assume that

structures are suitable.
281If you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember

a different definition from your previous studies of logic, then

these comments may help.

As explained before, it is common to distinguish an interpre-

tation, which gives a meaning to the symbols in the signature,

from an assignment, which gives a meaning to the variables.

Let us use I to denote an interpretation and A to denote an

assignment.

Recall that we wrote A(.) for the meaning of a term or

formula. In the alternative terminology, we write I(A)(.) in-

stead. This makes sense since in the alternative terminology,

313

Models

• If A(φ) = 1, we write A |= φ and say φ is true in A or

A is a model of φ.

• If every suitable structure280 is a model, we write |= φ

and say φ is valid or φ is a tautology.

• If there is at least one model for φ, then φ is satisfiable.

280A structure is suitable for φ if it defines meanings for the

signature of φ, i.e., for the symbols that occur in φ. Of

course, these meanings must also respect the arities, so an

n-ary function symbols must be interpreted as an n-ary func-

tion. Without explicitly mentioning it, we always assume that

structures are suitable.
281If you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember

a different definition from your previous studies of logic, then

these comments may help.

As explained before, it is common to distinguish an interpre-

tation, which gives a meaning to the symbols in the signature,

from an assignment, which gives a meaning to the variables.

Let us use I to denote an interpretation and A to denote an

assignment.

Recall that we wrote A(.) for the meaning of a term or

formula. In the alternative terminology, we write I(A)(.) in-

stead. This makes sense since in the alternative terminology,

313

Models

• If A(φ) = 1, we write A |= φ and say φ is true in A or

A is a model of φ.

• If every suitable structure280 is a model, we write |= φ

and say φ is valid or φ is a tautology.

• If there is at least one model for φ, then φ is satisfiable.

• If there is no model for φ, then φ is contradictory.

280A structure is suitable for φ if it defines meanings for the

signature of φ, i.e., for the symbols that occur in φ. Of

course, these meanings must also respect the arities, so an

n-ary function symbols must be interpreted as an n-ary func-

tion. Without explicitly mentioning it, we always assume that

structures are suitable.
281If you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember

a different definition from your previous studies of logic, then

these comments may help.

As explained before, it is common to distinguish an interpre-

tation, which gives a meaning to the symbols in the signature,

from an assignment, which gives a meaning to the variables.

Let us use I to denote an interpretation and A to denote an

assignment.

Recall that we wrote A(.) for the meaning of a term or

formula. In the alternative terminology, we write I(A)(.) in-

stead. This makes sense since in the alternative terminology,

313

Models

• If A(φ) = 1, we write A |= φ and say φ is true in A or

A is a model of φ.

• If every suitable structure280 is a model, we write |= φ

and say φ is valid or φ is a tautology.

• If there is at least one model for φ, then φ is satisfiable.

• If there is no model for φ, then φ is contradictory.

There is also more differentiated terminology.281

280A structure is suitable for φ if it defines meanings for the

signature of φ, i.e., for the symbols that occur in φ. Of

course, these meanings must also respect the arities, so an

n-ary function symbols must be interpreted as an n-ary func-

tion. Without explicitly mentioning it, we always assume that

structures are suitable.
281If you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember

a different definition from your previous studies of logic, then

these comments may help.

As explained before, it is common to distinguish an interpre-

tation, which gives a meaning to the symbols in the signature,

from an assignment, which gives a meaning to the variables.

Let us use I to denote an interpretation and A to denote an

assignment.

Recall that we wrote A(.) for the meaning of a term or

formula. In the alternative terminology, we write I(A)(.) in-

stead. This makes sense since in the alternative terminology,

313

An Example

∀x. p(x, s(x))

An Example

∀x. p(x, s(x))

We now show a model and a non-model . . .
I and A together contain the same information as A in the

original terminology. We define:

• For a given I, we say that φ is satisfiable in I if there

exists an A so that I(A)(φ) = 1;

• for a given I, we write I |= φ and say φ is true in I or

I is a model of φ, if for all A, we have I(A)(φ) = 1;

• we say φ is satisfiable if there exists an I so that φ is

satisfiable in I;

• we write |= φ and say φ is valid if for every (suitable) I,

we have I |= φ.

Note that satisfiable (without “for . . . ”) and valid mean the

same thing in both terminologies, whereas true in . . . means

slightly different things, since a structure is not the same thing

as an interpretation.

314

A model282:

UA = N
pA = {(m,n) | m < 283n}

sA(x) = x + 1

282It is true that for all numbers n, n is less than n + 1.
283In logic, we insist on the distinction between syntax and

semantics. In particular, we set up the formalism so that the

syntax is fixed first and then the semantics, and so there could

be different semantics for the same syntax.

But the dilemma is that once we want to give a particu-

lar semantics, we can only do so using again some kind of

language, hence syntax. This is usually natural language in-

terspersed with usual mathematical notation such as <, +

etc.

Some people try to mark the distinction between syntax and

semantics somehow, e.g., by saying 0 is a constant that could

mean anything, whereas 0 is the number zero as it exists in

the mathematical world.

When we give semantics, the symbols <, +, and 1 have

their usual mathematical meanings. The function that maps

x to x + 1 is also called successor function. Of course, when

we write m < n, we assume that m,n ∈ N, in this context.
284The identity function maps every object to itself.

315

A model282:

UA = N
pA = {(m,n) | m < 283n}

sA(x) = x + 1

Not a model284:

UA = {a, b, c}
pA = {(a, b), (a, c)}
sA = “the identity function”

282It is true that for all numbers n, n is less than n + 1.
283In logic, we insist on the distinction between syntax and

semantics. In particular, we set up the formalism so that the

syntax is fixed first and then the semantics, and so there could

be different semantics for the same syntax.

But the dilemma is that once we want to give a particu-

lar semantics, we can only do so using again some kind of

language, hence syntax. This is usually natural language in-

terspersed with usual mathematical notation such as <, +

etc.

Some people try to mark the distinction between syntax and

semantics somehow, e.g., by saying 0 is a constant that could

mean anything, whereas 0 is the number zero as it exists in

the mathematical world.

When we give semantics, the symbols <, +, and 1 have

their usual mathematical meanings. The function that maps

x to x + 1 is also called successor function. Of course, when

we write m < n, we assume that m,n ∈ N, in this context.
284The identity function maps every object to itself.

315

24.4 Towards a Deductive System

In natural language, quantifiers are often implicit285:

males don’t cry.

24.4 Towards a Deductive System

In natural language, quantifiers are often implicit285: all

males don’t cry.

24.4 Towards a Deductive System

In natural language, quantifiers are often implicit285: all

males don’t cry.

Some phrases in natural language proofs have the flavor of

introduction rules.

Take “boys are males” and “males don’t cry” implies “boys

don’t cry”: assume an arbitrary boy x; then x is a male; hence

x doesn’t cry; hence “x is a boy” implies “x doesn’t cry”

; since x was arbitrary, we can say this for all x.

24.4 Towards a Deductive System

In natural language, quantifiers are often implicit285: all

males don’t cry.

Some phrases in natural language proofs have the flavor of

introduction rules.

Take “boys are males” and “males don’t cry” implies “boys

don’t cry”: assume an arbitrary boy x; then x is a male; hence

x doesn’t cry; hence “x is a boy” implies “x doesn’t cry”

(→-I); since x was arbitrary, we can say this for all x. (∀-I).

See later.

24.4 Towards a Deductive System

In natural language, quantifiers are often implicit285: all

males don’t cry.

Some phrases in natural language proofs have the flavor of

introduction rules.

Take “boys are males” and “males don’t cry” implies “boys

don’t cry”: assume an arbitrary boy x; then x is a male; hence

x doesn’t cry; hence “x is a boy” implies “x doesn’t cry”

(→-I); since x was arbitrary, we can say this for all x. (∀-I).

See later.

Existential statements are proven by giving a witness.

It is not true that for every character α ∈ {a, b, c}, (α, α) ∈
{(a, b), (a, c)}. E.g., (a, a) /∈ {(a, b), (a, c)}.

285In the statement

if x > 2 then x2 > 4

the ∀-quantifier is implicit. It should be

for all x, if x > 2 then x2 > 4.

316

24.5 First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic.

All the rules of propositional logic are “inherited”286.

But we must introduce rules for the quantifiers.

286First-order logic inherits all the rules of propositional logic.

Note however that the metavariables in the rules now range

over first-order formulae.

317

Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable

condition) ∗ means: x must be arbitrary.

287Similarly as in the previous lecture, one should note that P

is not a predicate, but rather P (x) is a schematic expression:

P (x) stands for any formula, possibly containing occurrences

of x.

In the context of ∀-E, P (t) stands for the formula obtained

from P (x) by replacing all occurrences of x by t.

318

Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable

condition) ∗ means: x must be arbitrary.

Note that rules are schematic287: P (x) stands for any for-

mula, and P (t) stands for the formula obtained by substituting

t for x.
287Similarly as in the previous lecture, one should note that P

is not a predicate, but rather P (x) is a schematic expression:

P (x) stands for any formula, possibly containing occurrences

of x.

In the context of ∀-E, P (t) stands for the formula obtained

from P (x) by replacing all occurrences of x by t.

318

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

x = 0

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

x = 0

∀x. x = 0
∀-I

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl288

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl288

∀x. x = 0
→-E

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl288

∀x. x = 0
→-E

Formal meaning of side condition: x not free in any open

assumption on which P (x) depends. Violated!289

288When one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
289The side condition is violated in the proof since in the first

∀-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption

on which P (x) depends” means in particular that P (x) itself

must not be an assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root

of a derivation tree constructed so far, and this tree cannot

be the trivial tree just consisting of the assumption P (x).

319

Another Proof? (1)

Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

320

Another Proof? (1)

Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Conclusion is not valid.

The formula is false when UA has at least 2 elements.290

320

Another Proof? (1)

Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Proof is incorrect.

Reason: Substitution291 must avoid capturing292 variables.

Replacing x with y in ∀-E is illegal because y is bound in

¬∀y. y = y. This detail concerns substitution (and renaming

of bound variables), not ∀-E. Exercise

320

Another Proof? (2)

∀x.A(x) ∧B(x)

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

Yes (check side conditions293 of ∀-I).

293In both cases, x does not occur free in ∀x.A(x) ∧ B(x),

which is the open assumption on which A(x), respectively

B(x), depends.

321

Boys Don’t Cry

Let φ ≡ (∀x. b(x)→ m(x)) ∧ (∀x.m(x)→ ¬c(x)).

[φ]1

∀x.m(x)→ ¬c(x)
∧-ER

m(x)→ ¬c(x)
∀-E

[φ]1

∀x. b(x)→ m(x)
∧-EL

b(x)→ m(x)
∀-E

[b(x)]2

m(x)
→-E

¬c(x)
→-E

b(x)→ ¬c(x)
→-I2

∀x. b(x)→ ¬c(x)
∀-I

φ→ (∀x. b(x)→ ¬c(x))
→-I1

322

Aside: A↔ B

Define294 A↔ B as A→ B ∧B → A.

The following rule can be derived (in propositional logic,

actually):

[A]
....
B

[B]
....
A

A↔ B
↔-I

You could do this as an exercise!

294By defining we mean, use A ↔ B as shorthand for A →
B ∧ B → A, in the same way as we regard negation as a

shorthand.

323

Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

324

Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

Yes, but only if x not free in A.

324

Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

Yes, but only if x not free in A.

Similar requirement arises in proving (∀x.A → B(x)) ↔
(A→ ∀x.B(x)).

324

Side Conditions and Proof Boxes

We mentioned previously a style of writing derivations where

subderivations based on temporary assumptions are enclosed

in boxes.

These boxes are also handy for doing derivations in first-

order logic, since one can use the very clear formulation: a

variable occurs inside or outside of a box. See [HR04].

325

Existential Quantification

• We could define295 ∃x.A as ¬∀x.¬A.

• Equivalence follows from our definition of semantics.

A(¬A) =

{
1 if A(A) = 0

0 otherwise

A(∀x.A) =

{
1 if for all u ∈ UA,A[x/u](A) = 1

0 otherwise

A(∃x.A) =

{
1 if for some u ∈ UA,A[x/u](A) = 1

0 otherwise

Conclude: A(∃x.A) = A(¬∀x.¬A)

295By defining we mean, use ∃x.A as shorthand for ¬∀x.¬A,

in the same way as we regard negation as a shorthand.

However, we have already introduced ∃ as syntactic entity,

and also its semantics. If we now want to treat it as being

defined in terms of ∀, for the purposes of building a deductive

system, we must be sure that ∃x.A is semantically equivalent

to ¬∀x.¬A, i.e., that A(∃x.A) = A(¬∀x.¬A).

326

Where do the Rules for ∃ Come from?

• We can296 use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

296

– We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

In this case, the soundness of the derived rules is guaran-

teed since

∗ the rules for ∀ are sound;

∗ we have proven the equivalence of ∃x.A and ¬∀x.¬A
semantically.

– Alternative: give rules as part of the deduction system and

prove the equivalence as a lemma, instead of by definition.

In this case, the soundness must be proven by hand (how-

ever, proving rules sound is an aspect we neglect in this

course). But once this is done, the equivalence of ∃x.A
and ¬∀x.¬A can be proven within the deductive system,

rather than by hand, provided that the deductive system

is complete.

327

Where do the Rules for ∃ Come from?

• We can296 use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

• Alternatively, we can give rules as part of the deduction

system and prove equivalence as a lemma, instead of by

definition.

We will do the first here. The Isabelle formalization fol-

lows the second approach.

296

– We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

In this case, the soundness of the derived rules is guaran-

teed since

∗ the rules for ∀ are sound;

∗ we have proven the equivalence of ∃x.A and ¬∀x.¬A
semantically.

– Alternative: give rules as part of the deduction system and

prove the equivalence as a lemma, instead of by definition.

In this case, the soundness must be proven by hand (how-

ever, proving rules sound is an aspect we neglect in this

course). But once this is done, the equivalence of ∃x.A
and ¬∀x.¬A can be proven within the deductive system,

rather than by hand, provided that the deductive system

is complete.

327

∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∃x. P (x)

We want to have ∃x. P (x) as conclusion.

328

∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

¬∀x.¬P (x)

But by definition that’s ¬∀x.¬P (x).

328

∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

⊥
¬∀x.¬P (x)

We aim for applying→-I in the last step (recall ¬-definition).

328

∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

¬P (t)
∀-E

⊥
¬∀x.¬P (x)

We apply ∀-E.

328

∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

¬P (t)
∀-E

P (t)

⊥
→-E

¬∀x.¬P (x)
Making assumption P (t) allows us to use →-E (recall ¬-

definition).

328

∃-I as a Derived Rule

The rule:

P (t)

∃x. P (x)
∃-I

[∀x.¬P (x)]1

¬P (t)
∀-E

P (t)

⊥
→-E

¬∀x.¬P (x)
→-I1

Finally we can apply →-I. Note that the assumption P (t) is

still open.

328

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

∃x. P (x)

We will use ∃x. P (x) as one assumption.

329

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

But by definition that’s ¬∀x.¬P (x).

329

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

P (x)
....
R

We assume a hypothetical derivation297.

329

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

P (x)
....
R

⊥ →-E

We make an additional assumption and apply→-E (recall ¬-definition)

329

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

Now we can discharge the assumption P (x) made in the hypothetical
derivation.

329

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

∀x.¬P (x)
∀-I

At this step, the side condition from ∀-I applies. ∃-E will inherit it!298

329

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

∀x.¬P (x)
∀-I

⊥ →-E

We apply →-E.

329

∃-E as a Derived Rule

The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

[¬R]1

[P (x)]2
....
R

⊥ →-E

¬P (x)
→-I2

∀x.¬P (x)
∀-I

⊥ →-E

R
RAA1

We are done. Note that this proof uses classical299 reasoning.

329

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

330

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

A(x)

B
→-E

330

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

330

Example Derivation Using ∃-E

We want to prove (∀x.A(x) → B) → ((∃x. A(x)) → B),

where x does not occur free in B.

[∃x. A(x)]2

[∀x.A(x)→ B]1

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

(∃x. A(x))→ B
→-I2

(∀x.A(x)→ B)→ ((∃x. A(x))→ B)
→-I1

330

24.6 Conclusion on FOL

• Propositional logic is good for modeling simple patterns

of reasoning like “if . . . then . . . else”.

24.6 Conclusion on FOL

• Propositional logic is good for modeling simple patterns

of reasoning like “if . . . then . . . else”.

• In first-order logic, one has “things” and relations on /

properties of “things”. Quantify over “things”. Powerful300!

300In first-order logic, one has “things” and relations/proper-

ties that may or may not hold for these “things”. Quantifiers

are used to speak about “all things” and “some things”.

For example, one can reason:

All men are mortal, Socrates is a man, therefore

Socrates is mortal.

The idea underlying first-order logic is so general, abstract,

and powerful that vast portions of human (mathematical) rea-

soning can be modeled with it.

In fact, first-order logic is the most prominent logic of all.

Many people know about it: not only mathematicians and

computer scientists, but also linguists, philosophers, psychol-

ogists, economists etc. are likely to learn about first-order logic

in their education.

While some applications in the fields mentioned above re-

quire other logics, e.g. modal logics301, those can often be

reduced to first-order logic, so that first-order logic remains

331

the point of reference.

On the other hand, logics that are strictly more expressive

than first-order logic are only known to and studied by few

specialists within mathematics and computer science.

This example about Socrates and men is a very well-known

one. You may wonder: what is the history of this example?

In English, the example is commonly given using the word

“man”, although one also finds “human”. Like many lan-

guages (e.g., French, Italian), English often uses “man” for

“human being”, although this use of language may be con-

sidered discriminating against women. E.g. [Tho95a]:

man [. . .] 1 an adult human male, esp. as distinct

from a woman or boy. 2 a human being; a person (no

man is perfect).

While the example does not, strictly speaking, imply that

“man” is used in the meaning of “human being”, this is

strongly suggested both by the content of the example (or

should women be immortal?) and the fact that languages

332

that do have a word for “human being” (e.g. “Mensch” in

German) usually give the example using this word. In fact,

the example is originally in Old Greek, and there the word

�njrwpoc (anthropos = human being), as opposed to �n r

(anér = human male), is used.

The example is a so-called syllogism of the first figure, which

the scholastics called Barbara. It was developed by Aristotle

[Ari] in an abstract form, i.e., without using the concrete name

“Socrates”. In his terminology, �njrwpoc is the middle term

that is used as subject in the first premise and as predicate in

the second premise (this is what is called first figure). Aristotle

formulated the syllogism as follows: If A of all B and B is said

of all C, then A must be said of all C.

And why “Socrates”? It is not exactly clear how it

came about that this particular syllogism is associated with

Socrates. In any case, as far it is known, Socrates did not in-

vestigate any questions of logic. However, Aristotle frequently

uses Socrates and Kallias as standard names for individuals

333

• Limitation: cannot quantify over predicates302.

• “A” world or “the” world is modeled in first-order logic

using so-called first-order theories. This will be studied

next lecture.

[Ari]. Possibly there were statutes of Socrates and Kallias

standing in the hall where Aristotle gave his lectures, so it

was convenient for him to point to the statutes whenever he

was making a point involving two individuals.
302The idea underlying first-order logic seems so general that

it is not so apparent what its limitations could be. The limi-

tations will become clear as we study more expressive logics.

For the moment, note the following: in first-order logic, we

quantify over variables (hence, domain elements), not over

predicates. The number of predicates is fixed in a particular

first-order language. So for example, it is impossible to express

the following:

For all unary predicates p, if there exists an x such

that p(x) is true, then there exists a smallest x such

that p(x) is true,

since we would be quantifying over p.

334

25 First-Order Logic with Equality

335

Overview

Last lecture: first-order logic.

This lecture:

• first-order logic with equality and first-order theories;

• set-theoretic reasoning.

We extend language and deductive system to formalize and

reason about the (mathematical) world.

336

FOL with Equality

Equality is a logical symbol rather than a mathematical one303.

Speak of first-order logic with equality rather than adding

equality as “just another predicate”.
303

In logic languages, it is common to distinguish between log-

ical and non-logical symbols. We explain this for first-order

logic.

Recall that there isn’t just the language of first-order logic,

but rather defining a particular signature gives us a first-order

language. The logical symbols are those that are part of any

first-order language and whose meaning is “hard-wired” into

the formalism of first-order logic, like ∧ or ∀. The non-logical

symbols are those given by a particular signature, and whose

meaning must be defined “by the user” by giving a structure.

Above we say “mathematical” instead of “non-logical” be-

cause we assume that mathematics is our domain of discourse,

so that the signature contains the symbols of “mathematics”.

Now what status should the equality symbol = have? We

will assume that = is a symbol whose meaning is hard-wired

into the formalism. One then speaks of first-order logic with

equality.

337

Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Alternatively, one could regard = as an ordinary (binary in-

fix) predicate. However, even if one does not give = a special

status, anyone reading = has a certain expectation. Thus it

would be very confusing to have a structure that defines = as

a, say, non-reflexive relation.
304

IA(s=t) =

{
1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.

Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Semantics: recall a structure is a pair A = 〈UA, IA〉 and

IA(t) is the interpretation of t.

IA(s = t) =

{
1 if IA(s) = IA(t)

0 otherwise

Note the three completely different uses of “=”304 here!

Alternatively, one could regard = as an ordinary (binary in-

fix) predicate. However, even if one does not give = a special

status, anyone reading = has a certain expectation. Thus it

would be very confusing to have a structure that defines = as

a, say, non-reflexive relation.
304

IA(s=t) ==

{
1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression

on the left-hand side is defined to be equal to the value of the

right-hand side.

Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Semantics: recall a structure is a pair A = 〈UA, IA〉 and

IA(t) is the interpretation of t.

IA(s = t) =

{
1 if IA(s) = IA(t)

0 otherwise

Note the three completely different uses of “=”304 here!

Alternatively, one could regard = as an ordinary (binary in-

fix) predicate. However, even if one does not give = a special

status, anyone reading = has a certain expectation. Thus it

would be very confusing to have a structure that defines = as

a, say, non-reflexive relation.
304

IA(s=t) =

{
1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression

on the left-hand side is defined to be equal to the value of the

right-hand side.

The third = is semantic equality, i.e., the identity relation

on the domain.

338

Rules305

• Equality is an equivalence relation306

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

Rules305

• Equality is an equivalence relation306

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

• Equality is also a congruence307 on terms and all rela-

305Since = is a logical symbol in the formalism of first-order

logic with equality, there should be derivation rules for = to

derive which formulas a = b are true.
306In general mathematical terminology, a relation ≡ is an

equivalence relation if the following three properties hold:

Reflexivity: a ≡ a for all a;

Symmetry: a ≡ b implies b ≡ a;

Transitivity: a ≡ b and b ≡ c implies a ≡ c.

Example: being equal modulo 6.

“a is equal b modulo 6” is often written a ≡ b mod 6.
307In general mathematical terminology, a relation ∼= is a

congruence w.r.t. (or: on) f , where f has arity n, if

a1
∼= b1, . . . , an ∼= bn implies f (a1, . . . , an) ∼= f (b1, . . . , bn).

Example: being equal modulo 6 is congruent w.r.t. multipli-

cation.

14 ≡ 8 mod 6 and 15 ≡ 9 mod 6, hence 14 · 15 ≡ 8 ·
9 mod 6.

339

tions308
r = s

T (r) = T (s)
cong1

r = s P (r)

P (s)
cong2

This can be defined in an analogous way for a property

(relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisibil-

ity by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible

by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not

divisible by 3.
308Why did we use letters T and P here?

Recall the rules for building terms and atoms.

Is T (r) a term, and P (r) an atom, obtained by one applica-

tion of such a rule, i.e.: is T a function symbol in F , applied

to s, and is P a predicate symbol in P , applied to s?

tions308
r = s

T (r) = T (s)
cong1

r = s P (r)

P (s)
cong2

This can be defined in an analogous way for a property

(relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisibil-

ity by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible

by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not

divisible by 3.
308Why did we use letters T and P here?

Recall the rules for building terms and atoms.

Is T (r) a term, and P (r) an atom, obtained by one applica-

tion of such a rule, i.e.: is T a function symbol in F , applied

to s, and is P a predicate symbol in P , applied to s?

In general, no! The notations T (r) and P (r) are metanota-

tions. T (r) stands for any term in which r occurs, and P (r)

stands for any formula in which r occurs.

And in this context, the notation T (s) stands for the term

obtained from T (r) by replacing all occurrences of r with s.

340

Soundness of Rules

For any UA, equality in UA is an equivalence relation309 and

functions/predicates/logical-operators are “truth-functional”310.

In analogy the notation P (s) is defined.

Note that r and s arbitrary terms.

This description is not very formal, but this is not too prob-

lematic since we will be more formal once we have some useful

machinery for this at hand.
309On the semantic level, two things are equal if they are

identical. Semantic equality is an equivalence relation. This

semantic fact is so fundamental that we cannot explain it any

further.

So one can prove that IA(s = s) = 1 for all all terms s, be-

cause IA(s) = IA(s) for all terms, and likewise for symmetry

and transitivity.
310If T (x) is a term containing x and T (y) is the term ob-

tained from T (x) by replacing all occurrences of x with y, and

moreover IA(x = y) = 1, then IA(x) = IA(y). One can show

by induction on the structure of t that IA(T (x)) = IA(T (y)).

So by “truth-functional” we mean that the value IA(T (x))

depends on IA(x), not on x itself.

341

Congruence: Alternative Formulation

One can specialize congruence rules to replace only some term

occurrences.
r = s

T [z ← r] = T [z ← s]
cong1

r = s P [z ← s]

P [z ← r]
cong2

One time z is replaced with r and one time with s.311

This can be generalized to n variables as in the rule.

An analogous proof can be done for rule cong2.
311The notation T [z ← r] stands for the term obtained from

T by replacing z with r. [z ← r] is called a substitution.

To have an unambiguous notation for “replacing some oc-

currences of r”, we start from a term T containing occur-

rences of a variable z. On the LHS, z is replaced with r,

on the RHS z is replaced with s. So on the RHS we have a

term obtained from the term on the LHS by replacing some

occurrences of r with s.

One can say that z is introduced to mark the occurrences

of r that should be replaced by s.

Note that r and s can be arbitrary terms, whereas z is a

variable (substitutions replace variables, not arbitrary terms).

342

Congruence: Example

How many ways are there to choose some occurrences of x in

x2 + w2 > 12 · x?

312The atom x2 + y2 > 12 · x contains two occurrences of

x. There are four ways to choose some occurrences of x in

x2 + y2 > 12 · x.

Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with

z. That is, there are four different A’s such that A[x/z] =

x2+y2 > 12·x. Now the atom above the line in the examples

is obtained by substituting x for z, and the atom below the

line is obtained by substituting y for z.

343

Congruence: Example

How many ways are there to choose some occurrences of x in

x2 + w2 > 12 · x? 4, namely:

A = x2 + w2 > 12 · x, A = z2 + w2 > 12 · x,

A = x2 + w2 > 12 · z, A = z2 + w2 > 12 · z.

312The atom x2 + y2 > 12 · x contains two occurrences of

x. There are four ways to choose some occurrences of x in

x2 + y2 > 12 · x.

Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with

z. That is, there are four different A’s such that A[x/z] =

x2+y2 > 12·x. Now the atom above the line in the examples

is obtained by substituting x for z, and the atom below the

line is obtained by substituting y for z.

343

Congruence: Example

How many ways are there to choose some occurrences of x in

x2 + w2 > 12 · x? 4, namely:

A = x2 + w2 > 12 · x, A = z2 + w2 > 12 · x,

A = x2 + w2 > 12 · z, A = z2 + w2 > 12 · z.
312

We show two ways:

x = 3 x2 + w2 > 12 · x
32 + w2 > 12 · x

with A = z2 + y2 > 12 · x

x = 3 x2 + w2 > 12 · x
x2 + w2 > 12 · 3

with A = x2 + w2 > 12 · z

312The atom x2 + y2 > 12 · x contains two occurrences of

x. There are four ways to choose some occurrences of x in

x2 + y2 > 12 · x.

Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with

z. That is, there are four different A’s such that A[x/z] =

x2+y2 > 12·x. Now the atom above the line in the examples

is obtained by substituting x for z, and the atom below the

line is obtained by substituting y for z.

343

Generalized Congruence

The congruence rules can be generalized to n equalities in-

stead of just 1 equality. The generalized rules are derivable

from the simple ones by n-fold application.

r1 = s1 · · · rn = sn

T [z1 ← r1, . . . , zn ← rn] = T [z1 ← s1, . . . , zn ← sn]
cong1

r1 = s1 · · · rn = sn P [z1 ← r1, . . . , zn ← rn]

P [z1 ← s1, . . . , zn ← sn]
cong2

344

Isabelle Rule

The Isabelle FOL rule is simply313 (using a tree syntax)

r = s P (r)

P (s)
subst

or literally

Ja = b;P (a)K =⇒ P (b)

313The Isabelle FOL rule is:
r = s P (r)

P (s)
subst

In this rule, P is an Isabelle metavariable.

Why doesn’t the Isabelle rule contain a z to mark which

occurrences should be replaced?

We cannot understand this yet, but think of P as a formula

where some positions are marked in such a way that once we

apply P to r (we write P (r)), r will be inserted into all those

positions. This is why P (r) is a formula and P (s) is a formula

obtained by replacing some occurrences of r with s.

345

Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

346

Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

P (t)

∃x. P (x)
∃-I

, “P (x)” is metanotation. In the

example, P (x) = (t = x).

346

Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

P (t)

∃x. P (x)
∃-I

, “P (x)” is metanotation. In the

example, P (x) = (t = x).

Notational confusion avoided by a precise metalanguage.

346

26 First-Order Theories

347

What Is a Theory?

Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols

for which certain “laws” hold.

Depending on the context, these symbols may co-exist with

other symbols.

Technically, the laws are added as rules (in particular, ax-

ioms) to the proof system.

A structure in which these rules are true is then called a

model of the theory.

26.1 Example 1: Partial Orders

• The language of the theory of partial orders314: ≤315

What Is a Theory?

Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols

for which certain “laws” hold.

Depending on the context, these symbols may co-exist with

other symbols.

Technically, the laws are added as rules (in particular, ax-

ioms) to the proof system.

A structure in which these rules are true is then called a

model of the theory.

26.1 Example 1: Partial Orders

• The language of the theory of partial orders314: ≤315

314A partial order is a binary relation that is reflexive, transi-

tive, and anti-symmetric: a ≤ b and b ≤ a implies a = b.
315≤ is (by convention) a binary infix predicate symbol.

The theory of partial orders involves only this symbol, but

that does not mean that there could not be any other symbols

in the context.

348

• Axioms

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z316

∀x, y. x ≤ y ∧ y ≤ x↔ x = y317

• Axioms

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z316

∀x, y. x ≤ y ∧ y ≤ x↔ x = y317

• Alternative to axioms is to use rules
x ≤ y y ≤ z

x ≤ z
trans

x ≤ y y ≤ x

x = y
antisym

x = y

x ≤ y
≤-refl

Such a conversion is possible since implication is the main

connective.318

316The axiom ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z encodes

transitivity.
317Note that ∀x, y. x ≤ y ∧ y ≤ x ↔ x = y encodes both

antisymmetry (→) and reflexivity (←). Recall that A ↔ B

as shorthand for A→ B ∧B → A.
318One can see that using →-I and →-E, one can always

convert a proof using the axioms to one using the proper

rules.

More generally, an axiom of the form ∀x1, . . . , xn. A1 ∧
. . . ∧ An → B can be converted to a rule

A1 . . . An

B .

Do it in Isabelle!

349

More on Orders

• A partial order ≤ is a linear or total order319 when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation320 of this disjunction.

319We define these notions according to usual mathematical

terminology.

A partial order ≤ is a linear or total order if for all a, b,

either a ≤ b or b ≤ a.

A partial order ≤ is dense if for all a, b where a < b, there

exists a c such that a < c and c < b.
320The axiom ∀x, y. x ≤ y ∨ y ≤ x cannot be phrased as a

proper rule in the style of, for example, the transitivity axiom.
321We use s < t as shorthand for s ≤ t ∧ ¬s = t.

We say that < is the strict part of the partial order ≤.

350

More on Orders

• A partial order ≤ is a linear or total order319 when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation320 of this disjunction.

• A total order ≤ is dense when, in addition

∀x, y. x < 321y → ∃z.(x < z ∧ z < y)

What does < mean?

319We define these notions according to usual mathematical

terminology.

A partial order ≤ is a linear or total order if for all a, b,

either a ≤ b or b ≤ a.

A partial order ≤ is dense if for all a, b where a < b, there

exists a c such that a < c and c < b.
320The axiom ∀x, y. x ≤ y ∨ y ≤ x cannot be phrased as a

proper rule in the style of, for example, the transitivity axiom.
321We use s < t as shorthand for s ≤ t ∧ ¬s = t.

We say that < is the strict part of the partial order ≤.

350

Structures for Orders . . .

Give structures for orders that are . . .

1. not total:

322The ⊆-relation is partial but not total. As an example,

consider the ⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J
J
J
JJ

J
J
J
J
JJ

Depicting partial orders by a such a graph is quite common.

Here, node a is below node b and connected by an arc if and

only if a < b and there exists no c with a < c < b.

In this example, we have the partial order

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.

351

Structures for Orders . . .

Give structures for orders that are . . .

1. not total: ⊆-relation322;

2. total but not dense:

322The ⊆-relation is partial but not total. As an example,

consider the ⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J
J
J
JJ

J
J
J
J
JJ

Depicting partial orders by a such a graph is quite common.

Here, node a is below node b and connected by an arc if and

only if a < b and there exists no c with a < c < b.

In this example, we have the partial order

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.

351

Structures for Orders . . .

Give structures for orders that are . . .

1. not total: ⊆-relation322;

2. total but not dense: integers with ≤;

3. dense:

322The ⊆-relation is partial but not total. As an example,

consider the ⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J
J
J
JJ

J
J
J
J
JJ

Depicting partial orders by a such a graph is quite common.

Here, node a is below node b and connected by an arc if and

only if a < b and there exists no c with a < c < b.

In this example, we have the partial order

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.

351

Structures for Orders . . .

Give structures for orders that are . . .

1. not total: ⊆-relation322;

2. total but not dense: integers with ≤;

3. dense: reals with ≤.

322The ⊆-relation is partial but not total. As an example,

consider the ⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J
J
J
JJ

J
J
J
J
JJ

Depicting partial orders by a such a graph is quite common.

Here, node a is below node b and connected by an arc if and

only if a < b and there exists no c with a < c < b.

In this example, we have the partial order

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.

351

26.2 Example 2: Groups

• Language: Function symbols · , −1, e323

26.2 Example 2: Groups

• Language: Function symbols · , −1, e323

• A group is324 a model325 of

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

323 · is a binary infix function symbol (in fact, only · is the

symbol, but the notation · is used to indicate the fact that

the symbol stands between its arguments).
−1 is a unary function symbol written as superscript. Again,

the is used to indicate where the argument goes.

e is a nullary function symbol (= constant).

Note that groups are very common in mathematics, and

many different notations, i.e., function names and fixity (infix,

prefix. . .) are used for them.
324In general mathematical terminology, a group consists of

three function symbols · , −1, e, obeying the following laws:

Associativity (a · b) · c = a · (b · c) for all a, b, c,

Right neutral a · e = a for all a,

Right inverse a · a−1 = e for all a.

325A model of the group axioms is a structure in which the

group axioms are true.

352

It is an example of an equational theory326.

It is an example of an equational theory326.

Two theorems: (3) x−1 · x = e and (4) e · x = x

We will now prove them.

However, when we say something like, “this model is a

group”, then this is a slight abuse of terminology, since there

may be other function symbols around that are also inter-

preted by the structure.

So when we say “this model is a group”, we mean, “this

model is a model of the group axioms for function symbols

· , −1,and e clear from the context”.
326An equational theory is a set of equations. Each equation

is an axiom.

Sometimes, each equation is surrounded by several ∀-

quantifiers binding all the free variables in the equation, but

often the equation is regarded as implicitly universally quan-

tified.

More generally, a conditional equational theory consists of

proper rules where the premises are called conditions [Höl90].

Note also that sometimes, one also considers the basic rules

of equality as being part of every equational theory. Whenever

one has an equational theory, one implies that the basic rules

353

Equational Proofs

A typical proof in an equational theory looks very different

from the natural deduction style, but it looks very much like

the proofs you know from school mathematics.

An equational proof consists simply of a sequence of equa-

tions, written as t1 = t2 = . . . = tn, where each ti+1 is

obtained from ti by replacing some subterm s with a term s′,

provided the equality s = s′ holds.

More on the justification later.

are present; whether or not one assumes that they are formally

elements of the equational theory is just a technical detail.

354

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x =

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e)

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e)

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
))

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
))

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
)

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
)

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

)

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

)

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

) =

(x−1 · e) · x−1−1

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

) =

(x−1 · e) · x−1−1

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

) =

(x−1 · e) · x−1−1
= x−1 · x−1−1

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

) =

(x−1 · e) · x−1−1
= x−1 · x−1−1

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

) =

(x−1 · e) · x−1−1
= x−1 · x−1−1

= e

355

Theorem 3

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (3)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1
)) =

x−1 · ((x · x−1) · x−1−1
) = x−1 · (e · x−1−1

) =

(x−1 · e) · x−1−1
= x−1 · x−1−1

= e.

355

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x = x · (x−1 · x)

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x = x · (x−1 · x) (Theorem 3)

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e = x

356

Theorem 4

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (4)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e = x.

356

Equational Proofs Justified

Translated to natural deduction style, an equational proof

looks like this:

Axn−1

. . .
∀-E

sn−1 = s′n−1
(sym)

Ax2

. . .
∀-E

s2 = s′2
(sym)

Ax1

. . .
∀-E

s1 = s′1
(sym)

t1 = t1
refl

t1 = t2
cong2

cong2

....
t1 = tn−1

t1 = tn
cong2

where each Axi is an axiom of the equational theory327.
327The double line marked with ∀-E stands for 0 or more

applications of the ∀-E rule. Moreover, there might be an

application of sym.

357

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

x · e = x e · x = x · e
e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x e · x = x · e
e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

x−1 · x = e e · x = x · (x−1 · x)
e · x = x · e

e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e e · x = x · (x−1 · x)
e · x = x · e

e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e

(x · x−1) · x = x · (x−1 · x) e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x) e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

e = x · x−1 e · x = e · x
e · x = (x · x−1) · x

e · x = x · (x−1 · x)
e · x = x · e

e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

e = x · x−1

sym

e · x = e · x
e · x = (x · x−1) · x

e · x = x · (x−1 · x)
e · x = x · e

e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

x · x−1 = e

e = x · x−1

sym

e · x = e · x
e · x = (x · x−1) · x

e · x = x · (x−1 · x)
e · x = x · e

e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

r-inv

x · x−1 = e

e = x · x−1

sym

e · x = e · x
e · x = (x · x−1) · x

e · x = x · (x−1 · x)
e · x = x · e

e · x = x

358

Lessons Learned from this Example

• Equational proofs are often tricky! Equalities are used in

different directions, “eureka”328 terms are needed, etc.

• In some cases (the word problem329 is) decidable.

• In Isabelle, equational proofs are accomplished by term

rewriting.

• Explicit natural deduction proofs are tedious in practice.

Try it on above examples!330

328By “eureka” terms we mean terms that have to be guessed

in order to find a proof. At least at first sight, it seems like

these terms simply fall from the sky.

The Greek eureka (heureka) is 1st person singular perfect

of euriskein (heuriskein), “to find”. It was exclaimed by

Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
329The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms

s and t are equal in the theory, that is to say, whether the

formula s = t is true in any model of the theory.
330

r-neutr

x · e = x

Theorem 3

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

r-inv

x · x−1 = e

e = x · x−1

sym

e · x = e · x refl

e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

358

27 Näıve Set Theory

27.1 Näıve Set Theory: Basics

• A set is a collection of objects where order and repetition

are unimportant.

Sets are central in mathematical reasoning [Vel94].

• In what follows we consider a simple, intuitive formaliza-

tion: näıve set theory.

We will be somewhat less formal than usual. Our goal is

to understand standard mathematical practice.

Later, in HOL, we will be completely formal.

This is an example of the general scheme.

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree

consisting of a group axiom and possibly several applications

of ∀-E.

359

Sets: Language

Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)}331 and a binary membership

predicate ∈.

331Set comprehension is a way of defining sets. {x|P (x)}
stands for the set of elements of the universe for which P (x)

(some formula usually containing x) holds.
332It is more adequate to regard a set as a term than as a

formula. A set is a “thing”, not a statement about “things”.

After all, we have the predicate ∈ expecting a set on the

RHS (and even the LHS may be a set!), and predicates take

terms as arguments.

However, the syntax used in set comprehensions is not legal

syntax for terms, since P (x) is a formula.

This is why we introduce a special syntactic category for

sets.

360

Sets: Language

Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)}331 and a binary membership

predicate ∈.

• Term/formula distinction inadequate332: need a syntactic

category for sets.

331Set comprehension is a way of defining sets. {x|P (x)}
stands for the set of elements of the universe for which P (x)

(some formula usually containing x) holds.
332It is more adequate to regard a set as a term than as a

formula. A set is a “thing”, not a statement about “things”.

After all, we have the predicate ∈ expecting a set on the

RHS (and even the LHS may be a set!), and predicates take

terms as arguments.

However, the syntax used in set comprehensions is not legal

syntax for terms, since P (x) is a formula.

This is why we introduce a special syntactic category for

sets.

360

Sets: Language

Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)}331 and a binary membership

predicate ∈.

• Term/formula distinction inadequate332: need a syntactic

category for sets.

• Comprehension is a binding operator: x bound in {x|P (x)}.

331Set comprehension is a way of defining sets. {x|P (x)}
stands for the set of elements of the universe for which P (x)

(some formula usually containing x) holds.
332It is more adequate to regard a set as a term than as a

formula. A set is a “thing”, not a statement about “things”.

After all, we have the predicate ∈ expecting a set on the

RHS (and even the LHS may be a set!), and predicates take

terms as arguments.

However, the syntax used in set comprehensions is not legal

syntax for terms, since P (x) is a formula.

This is why we introduce a special syntactic category for

sets.

360

Examples

• What does the following say?

x ∈ {y|y mod 6 = 0}

361

Examples

• What does the following say?

x ∈ {y|y mod 6 = 0}

Answer: x mod 6 = 0.

361

Examples

• What does the following say?

x ∈ {y|y mod 6 = 0}

Answer: x mod 6 = 0.

• What about this?

2 ∈ {w|6 /∈ {x|x is divisible by w}}

361

Examples

• What does the following say?

x ∈ {y|y mod 6 = 0}

Answer: x mod 6 = 0.

• What about this?

2 ∈ {w|6 /∈ {x|x is divisible by w}}

Answer: 6 /∈ {x|x divisible by 2} i.e., 6 not divisible by

2.

361

Proof Rules for Sets

Introduction, elimination, extensional equality333

P (t)

t ∈ {x|P (x)}
compr-I

t ∈ {x|P (x)}
P (t)

compr-E

∀x. x ∈ A↔ x ∈ B
A = B

=-I
A = B

∀x. x ∈ A↔ x ∈ B =-E

The following equivalence is derivable334:

∀x. P (x)↔ x ∈ {y|P (y)}

333Two things are extensionally equal if they are “equal in

their effects”. Thus two sets are equal if they have the same

members, regardless of what syntactic expressions are used to

define those sets.

Note that extensional equality may be undecidable.
334

[P (x)]1

x ∈ {y|P (y)}
compr-I

[x ∈ {y|P (y)}]1

P (x)
compr-E

P (x)↔ x ∈ {y|P (y)} ↔-I1

∀x. P (x)↔ x ∈ {y|P (y)} ∀-I

Rule ∀-I was defined in a previous lecture.

362

Digression: Sorts

• The following notations are common in mathematics and

logic:

{x∈ U |P (x)}
∀x∈ U. P (x)

∃x∈ U. P (x)

335We already know what a universe or domain is. To inter-

pret a particular language, we have a structure interpreting all

function symbols as functions on the universe.

However, it is often adequate to subdivide the universe into

several “sub-universes”. Those are called sorts. Note that a

sort is a set.

For example, in a usual mathematical context, one may dis-

tinguish R (the real numbers) and N (the natural numbers)

to say that
√
x requires x to be of sort R and x! requires x

to be of sort N.
336In sorted logic, sorts are part of the syntax. So the sig-

nature contains a fixed set of sorts. For each constant, it is

specified what its sort is. For each function symbol, it is spec-

ified what the sort of each argument is, and what the sort of

the result is. For each predicate symbol, it is specified what

the sort of each argument is.

Terms and formulas that do not respect the sorts are not

well-formed, and so they are not assigned a meaning.

363

Digression: Sorts

• The following notations are common in mathematics and

logic:

{x∈ U |P (x)} ≡ {x | x ∈ U ∧ P (x)}
∀x∈ U. P (x) ≡ ∀x. x ∈ U → P (x)

∃x∈ U. P (x) ≡ ∃x. x ∈ U ∧ P (x)

These are syntactic sugar. One uses them when U de-

notes an “important” sub-universe335 such as R or N.

Such a U is sometimes called sort.

• There is also sorted first-order logic336.

335We already know what a universe or domain is. To inter-

pret a particular language, we have a structure interpreting all

function symbols as functions on the universe.

However, it is often adequate to subdivide the universe into

several “sub-universes”. Those are called sorts. Note that a

sort is a set.

For example, in a usual mathematical context, one may dis-

tinguish R (the real numbers) and N (the natural numbers)

to say that
√
x requires x to be of sort R and x! requires x

to be of sort N.
336In sorted logic, sorts are part of the syntax. So the sig-

nature contains a fixed set of sorts. For each constant, it is

specified what its sort is. For each function symbol, it is spec-

ified what the sort of each argument is, and what the sort of

the result is. For each predicate symbol, it is specified what

the sort of each argument is.

Terms and formulas that do not respect the sorts are not

well-formed, and so they are not assigned a meaning.

363

27.2 Operations on Sets

• Functions on sets

A ∩ 337B ≡ {x|x ∈ A ∧ x ∈ B}
A ∪B ≡ {x|x ∈ A ∨ x ∈ B}
A \B ≡ {x|x ∈ A ∧ x 6∈ B}

• Predicates on sets

A ⊆ B ≡ ∀x. x ∈ A→ x ∈ B

In contrast, our logic is unsorted. The special syntax we

provide for sorted reasoning is just syntactic sugar, i.e., we

use it as shorthand and since it has an intuitive reasoning,

but it has no impact on how expressive our logic is.
337

∩ is called intersection.

∪ is called union.

\ is called set difference.

⊆ is called inclusion.

364

Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B

365

Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B

.
...........................

...........................
..

.......................
....

..................
.........

...............
...........

.............
............

............
............
..

...........
...........
.....

...........
...........
.....

..........
..........
.......

..........

..........

.......

..........

..........

......

..........

..........

.......

..........
..........
.......

...........
...........
.....

...........
...........
.....

............
............

..

.............
............

...............
...........

..................
.........

.......................
....

...........................
...........................

...........................

.
......................

.....
...........................

...........................
...........................

...........................

..........................

.........................

..........................

...........................

...........................

...........................

...........................

..........................

...........................

...........................

...........................

...........................

..........................

.........................

..........................

...........................

...........................
...........................

..
......................

.....
.

.................
.......

..............
.........

.............
..........

............
............

............
............
.

...........
...........
...

..........
..........
.....

..........
..........
.....

..........

..........

....

..........

..........

....

..........
..........
.....

..........
..........
.....

...........
...........
...

............
............
.

............
............

.............
..........

..............
.........

.................
.......

.
........................

.......................

.......................

........................

.........................

.........................

.........................

.........................

........................

........................

.........................

.........................

.........................

.........................

........................

.......................

.......................

........................

365

Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B

.
...........................

...........................
..

.......................
....

..................
.........

...............
...........

.............
............

............
............
..

...........
...........
.....

...........
...........
.....

..........
..........
.......

..........

..........

.......

..........

..........

......

..........

..........

.......

..........
..........
.......

...........
...........
.....

...........
...........
.....

............
............

..

.............
............

...............
...........

..................
.........

.......................
....

...........................
...........................

...........................

.
......................

.....
...........................

...........................
...........................

...........................

..........................

.........................

..........................

...........................

...........................

...........................

...........................

..........................

...........................

...........................

...........................

...........................

..........................

.........................

..........................

...........................

...........................
...........................

..
......................

.....

.
........................

.......................

.......................

........................

.........................

.........................

.........................

.........................

........................

........................

.........................

.........................

.........................

.........................

........................

.......................

.......................

........................

.
.................
.......

..............
.........

.............
..........

............
............

............
............
.

...........
...........
...

..........
..........
.....

..........
..........
.....

..........

..........

....

..........

..........

....

..........
..........
.....

..........
..........
.....

...........
...........
...

............
............
.

............
............

.............
..........

..............
.........

.................
.......

A ∩B

365

Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B

.
...........................

...........................
..

.......................
....

..................
.........

...............
...........

.............
............

............
............
..

...........
...........
.....

...........
...........
.....

..........
..........
.......

..........

..........

.......

..........

..........

......

..........

..........

.......

..........
..........
.......

...........
...........
.....

...........
...........
.....

............
............

..

.............
............

...............
...........

..................
.........

.......................
....

...........................
...........................

...........................

.
......................

.....
...........................

...........................
...........................

...........................

..........................

.........................

..........................

...........................

...........................

...........................

...........................

..........................

...........................

...........................

...........................

...........................

..........................

.........................

..........................

...........................

...........................
...........................

..
......................

.....
.

.................
.......

..............
.........

.............
..........

............
............

............
............
.

...........
...........
...

..........
..........
.....

..........
..........
.....

..........

..........

....

..........

..........

....

..........
..........
.....

..........
..........
.....

...........
...........
...

............
............
.

............
............

.............
..........

..............
.........

.................
.......

.
........................

.......................

.......................

........................

.........................

.........................

.........................

.........................

........................

........................

.........................

.........................

.........................

.........................

........................

.......................

.......................

........................

A ∪B

365

Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B

.
...........................

...........................
..

.......................
....

..................
.........

...............
...........

.............
............

............
............
..

...........
...........
.....

...........
...........
.....

..........
..........
.......

..........

..........

.......

..........

..........

......

..........

..........

.......

..........
..........
.......

...........
...........
.....

...........
...........
.....

............
............

..

.............
............

...............
...........

..................
.........

.......................
....

...........................
...........................

...........................

.
......................

.....
...........................

...........................
...........................

...........................

..........................

.........................

..........................

...........................

...........................

...........................

...........................

..........................

...........................

...........................

...........................

...........................

..........................

.........................

..........................

...........................

...........................
...........................

..
......................

.....
.

.................
.......

..............
.........

.............
..........

............
............

............
............
.

...........
...........
...

..........
..........
.....

..........
..........
.....

..........

..........

....

..........

..........

....

..........
..........
.....

..........
..........
.....

...........
...........
...

............
............
.

............
............

.............
..........

..............
.........

.................
.......

.
........................

.......................

.......................

........................

.........................

.........................

.........................

.........................

........................

........................

.........................

.........................

.........................

.........................

........................

.......................

.......................

........................

A \B

365

Correspondence between Set-Theoretic and Logical
Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the set-

theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.

338When we transform an expression containing set operators

∩,∪, \,⊆ into an expression using ∧,∨,¬,→, we call the

latter the logical form of the expression.

366

Correspondence between Set-Theoretic and Logical
Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the set-

theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.
Example: what is the logical form338 of x ∈ ((A ∩ B) ∪

(A ∩ C))?

338When we transform an expression containing set operators

∩,∪, \,⊆ into an expression using ∧,∨,¬,→, we call the

latter the logical form of the expression.

366

Correspondence between Set-Theoretic and Logical
Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the set-

theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.
Example: what is the logical form338 of x ∈ ((A ∩ B) ∪

(A ∩ C))? (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

338When we transform an expression containing set operators

∩,∪, \,⊆ into an expression using ∧,∨,¬,→, we call the

latter the logical form of the expression.

366

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

339A Venn diagram draws sets as bubbles. Intersecting sets

are drawn as overlapping bubbles, and the overlapping area is

meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof accord-

ing to usual mathematical practice. If it is unknown whether

two sets have a non-empty intersection, how are we supposed

to draw them? Trying to make a case distinctions (drawing

several diagrams depending on the cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they

are not proofs.

367

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (1)

Venn diagram (Is this a proof?)339

339A Venn diagram draws sets as bubbles. Intersecting sets

are drawn as overlapping bubbles, and the overlapping area is

meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof accord-

ing to usual mathematical practice. If it is unknown whether

two sets have a non-empty intersection, how are we supposed

to draw them? Trying to make a case distinctions (drawing

several diagrams depending on the cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they

are not proofs.

367

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)

Natural deduction (natural language340)

340We intersperse formal notation with natural language here

in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.

368

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)

Natural deduction (natural language340)

By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

340We intersperse formal notation with natural language here

in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.

368

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)

Natural deduction (natural language340)

By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

For an arbitrary x, this is equivalent to establishing

(x ∈ A ∧ (x ∈ B ∨ x ∈ C))↔
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

340We intersperse formal notation with natural language here

in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.

368

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)

Natural deduction (natural language340)

By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

For an arbitrary x, this is equivalent to establishing

(x ∈ A ∧ (x ∈ B ∨ x ∈ C))↔
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

But that is a propositional tautology.

Do it in Isabelle!

340We intersperse formal notation with natural language here

in order to give an intuitive and short proof.

We can also do this more formally in Isabelle.

368

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

341

Let A and B be arbitrary sets. (∀-I)

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

341

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

341

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

341

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

341

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

341

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)

Therefore ((A ∪B) \B) ⊆ A (def of ⊆)

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

Therefore ((A ∪B) \B) ⊆ A.

341

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)

Therefore ((A ∪B) \B) ⊆ A (def of ⊆)

Concerning forward and backwards reasoning, one may look

at it as follows: we first construct the derivation step at the

root of the proof tree (∀-I), and then we jump to a leaf (by

making the temporary assumption) and work downwards from

there.

369

Prove: for all Sets A and B, ((A ∪B) \B) ⊆ A

Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

Therefore ((A ∪B) \B) ⊆ A.

Combination341 of forward reasoning with backward rea-

soning. This is common in practice and usually easy to un-

scramble.
341

Let A and B be arbitrary sets. (∀-I)

Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)

Therefore ((A ∪B) \B) ⊆ A (def of ⊆)

Concerning forward and backwards reasoning, one may look

at it as follows: we first construct the derivation step at the

root of the proof tree (∀-I), and then we jump to a leaf (by

making the temporary assumption) and work downwards from

there.

369

27.3 Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.

27.3 Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f (x)|P (x)}

27.3 Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f (x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f (x)}

27.3 Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f (x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f (x)}

Example: t ∈ {x2|x > 5} equivalent to

27.3 Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f (x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f (x)}

Example: t ∈ {x2|x > 5} equivalent to ∃x. x > 5∧t = x2.

True for t ∈ {36, 49, . . .}

370

Indexing

Sometimes, it is natural to denote a function f applied to an

argument x as “f indexed by x”, so fx, rather than f (x).

371

Indexing

Sometimes, it is natural to denote a function f applied to an

argument x as “f indexed by x”, so fx, rather than f (x).

Example: let S = set of students and let ms stand for “the

mother of s”, for s a student. Call S an index set.

x ∈ {ms|s ∈ S} ↔ x ∈ {y|∃s. s ∈ S ∧ y = ms}
↔ ∃s. s ∈ S ∧ x = ms

↔ ∃s ∈ S. x = ms

Uses extended comprehensions, indexing syntax, and sorted

quantification.

371

Logical Forms of the New Notation

What is the logical form of {xi|i ∈ I} ⊆ A ?

342

{xi|i ∈ I} ⊆ A ≡ ∀x. x ∈ {xi|i ∈ I} → x ∈ A

follows from the definition of ⊆.
343

We want to show

∀x. x ∈ {xi|i ∈ I} → x ∈ A ≡ ∀x. (∃i ∈ I. x = xi)→ x ∈ A

x ∈ {xi|i ∈ I} ≡ (def. of notation)

x ∈ {y|∃i. i ∈ I ∧ y = xi} ≡ compr-I

∃i. i ∈ I ∧ x = xi ≡ (Sorted quantification)

∃i ∈ I. x = xi

344It may be helpful to pronounce both forms out loud in nat-

ural language to get an intuitive feeling that they are equiva-

lent.
345Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

Logical Forms of the New Notation

What is the logical form of {xi|i ∈ I} ⊆ A ?

∀x. x ∈ {xi|i ∈ I} → x ∈ A342, i.e.,

∀x. (∃i ∈ I. x = xi)→ x ∈ A343.

342

{xi|i ∈ I} ⊆ A ≡ ∀x. x ∈ {xi|i ∈ I} → x ∈ A

follows from the definition of ⊆.
343

We want to show

∀x. x ∈ {xi|i ∈ I} → x ∈ A ≡ ∀x. (∃i ∈ I. x = xi)→ x ∈ A

x ∈ {xi|i ∈ I} ≡ (def. of notation)

x ∈ {y|∃i. i ∈ I ∧ y = xi} ≡ compr-I

∃i. i ∈ I ∧ x = xi ≡ (Sorted quantification)

∃i ∈ I. x = xi

344It may be helpful to pronounce both forms out loud in nat-

ural language to get an intuitive feeling that they are equiva-

lent.
345Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

372

Logical Forms of the New Notation

What is the logical form of {xi|i ∈ I} ⊆ A ?

∀x. x ∈ {xi|i ∈ I} → x ∈ A342, i.e.,

∀x. (∃i ∈ I. x = xi)→ x ∈ A343.

Intuition344 suggests that ∀i ∈ I. xi ∈ A is also correct,

i.e.,

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A).

Proving this would be another exercise345 on using extended

comprehensions, indexing syntax, and sorted quantification.
342

{xi|i ∈ I} ⊆ A ≡ ∀x. x ∈ {xi|i ∈ I} → x ∈ A

follows from the definition of ⊆.
343

We want to show

∀x. x ∈ {xi|i ∈ I} → x ∈ A ≡ ∀x. (∃i ∈ I. x = xi)→ x ∈ A

x ∈ {xi|i ∈ I} ≡ (def. of notation)

x ∈ {y|∃i. i ∈ I ∧ y = xi} ≡ compr-I

∃i. i ∈ I ∧ x = xi ≡ (Sorted quantification)

∃i ∈ I. x = xi

344It may be helpful to pronounce both forms out loud in nat-

ural language to get an intuitive feeling that they are equiva-

lent.
345Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

372

Powersets

℘(A) = {x|x ⊆ A}.
What is the logical form of:

1. x ∈ ℘(A)?

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the

instance xi) we have (∃j ∈ I. xi = xj) → xi ∈ A. But

premise is true for i = j, so xi ∈ A.

Powersets

℘(A) = {x|x ⊆ A}.
What is the logical form of:

1. x ∈ ℘(A)?

x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the

instance xi) we have (∃j ∈ I. xi = xj) → xi ∈ A. But

premise is true for i = j, so xi ∈ A.

• “←”

Let x be arbitrary and assume ∃i ∈ I. x = xi. So for

some i ∈ I , we have x = xi. Now ∀i ∈ I. xi ∈ A.

Hence x ∈ A.

“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

Powersets

℘(A) = {x|x ⊆ A}.
What is the logical form of:

1. x ∈ ℘(A)?

x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?

∀x. x ∈ ℘(A)→ x ∈ ℘(B), i.e.,

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the

instance xi) we have (∃j ∈ I. xi = xj) → xi ∈ A. But

premise is true for i = j, so xi ∈ A.

• “←”

Let x be arbitrary and assume ∃i ∈ I. x = xi. So for

some i ∈ I , we have x = xi. Now ∀i ∈ I. xi ∈ A.

Hence x ∈ A.

“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀i ∈ I. xi ∈ A assuming ∀x.(∃i ∈ I. x = xi)→
x ∈ A.

So we show that for arbitrary i ∈ I , assuming ∀x.(∃i ∈
I. x = xi) → x ∈ A, we have xi ∈ A. So let i ∈ I be

arbitrary.

373

Powersets

℘(A) = {x|x ⊆ A}.
What is the logical form of:

1. x ∈ ℘(A)?

x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?

∀x. x ∈ ℘(A)→ x ∈ ℘(B), i.e.,

∀x. x ⊆ A→ x ⊆ B, i.e.,

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the

instance xi) we have (∃j ∈ I. xi = xj) → xi ∈ A. But

premise is true for i = j, so xi ∈ A.

• “←”

Let x be arbitrary and assume ∃i ∈ I. x = xi. So for

some i ∈ I , we have x = xi. Now ∀i ∈ I. xi ∈ A.

Hence x ∈ A.

“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀i ∈ I. xi ∈ A assuming ∀x.(∃i ∈ I. x = xi)→
x ∈ A.

So we show that for arbitrary i ∈ I , assuming ∀x.(∃i ∈
I. x = xi) → x ∈ A, we have xi ∈ A. So let i ∈ I be

arbitrary.

373

Powersets

℘(A) = {x|x ⊆ A}.
What is the logical form of:

1. x ∈ ℘(A)?

x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?

∀x. x ∈ ℘(A)→ x ∈ ℘(B), i.e.,

∀x. x ⊆ A→ x ⊆ B, i.e.,

∀x. (∀y. y ∈ x→ y ∈ A)→ (∀y. y ∈ x→ y ∈ B)

Exercise: prove that the last answer is equivalent to A ⊆
B, i.e., ∀x. x ∈ A→ x ∈ B.

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the

instance xi) we have (∃j ∈ I. xi = xj) → xi ∈ A. But

premise is true for i = j, so xi ∈ A.

• “←”

Let x be arbitrary and assume ∃i ∈ I. x = xi. So for

some i ∈ I , we have x = xi. Now ∀i ∈ I. xi ∈ A.

Hence x ∈ A.

“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀i ∈ I. xi ∈ A assuming ∀x.(∃i ∈ I. x = xi)→
x ∈ A.

So we show that for arbitrary i ∈ I , assuming ∀x.(∃i ∈
I. x = xi) → x ∈ A, we have xi ∈ A. So let i ∈ I be

arbitrary.

373

27.4 Outlook

Sets can have other sets as elements.
Since we have ∀x.(∃i ∈ I. x = xi) → x ∈ A, by rule ∀-E

we can specialize to (∃j ∈ I. xi = xj) → xi ∈ A. But

premise (∃j ∈ I. xi = xj) is true for i = j, and so xi ∈ A,

which is what was to be proven.

This proof could be made more formal by drawing a proof

tree or using Isabelle.

“←” in more Detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

27.4 Outlook

Sets can have other sets as elements.
Since we have ∀x.(∃i ∈ I. x = xi) → x ∈ A, by rule ∀-E

we can specialize to (∃j ∈ I. xi = xj) → xi ∈ A. But

premise (∃j ∈ I. xi = xj) is true for i = j, and so xi ∈ A,

which is what was to be proven.

This proof could be made more formal by drawing a proof

tree or using Isabelle.

“←” in more Detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀x.(∃i ∈ I. x = xi) → x ∈ A, assuming ∀i ∈
I. xi ∈ A.

So we show that for arbitrary x, assuming ∀i ∈ I. xi ∈ A,

we have (∃i ∈ I. x = xi)→ x ∈ A. So let x be arbitrary.

To show (∃i ∈ I. x = xi) → x ∈ A, assume ∃i ∈ I. x =

xi. So for some i ∈ I , we have x = xi. Now by our earlier

assumption ∀i ∈ I. xi ∈ A, and so it follows that x ∈ A.

thus we have shown x ∈ A under the assumption (∃i ∈
I. x = xi), thus we have shown (∃i ∈ I. x = xi) → x ∈ A,

374

Implicitly assume that universe of discourse is collection346

of all sets.
which is what was to be proven.

This proof could be made more formal by drawing a proof

tree or using Isabelle.
346We speak of collection of all sets rather than set of all sets

in order to pretend that we are being careful since we are not

sure if there is such a thing as a set of all sets. Therefore we

use the “neutral” word collection whose meaning is obvious. . .

Implicitly assume that universe of discourse is collection346

of all sets.
which is what was to be proven.

This proof could be made more formal by drawing a proof

tree or using Isabelle.
346We speak of collection of all sets rather than set of all sets

in order to pretend that we are being careful since we are not

sure if there is such a thing as a set of all sets. Therefore we

use the “neutral” word collection whose meaning is obvious. . .

Is it?

Implicitly assume that universe of discourse is collection346

of all sets.
which is what was to be proven.

This proof could be made more formal by drawing a proof

tree or using Isabelle.
346We speak of collection of all sets rather than set of all sets

in order to pretend that we are being careful since we are not

sure if there is such a thing as a set of all sets. Therefore we

use the “neutral” word collection whose meaning is obvious. . .

Is it?

Recall that we have defined set as collection of objects in

the first place. So it is rather futile to suggest now that there

should be some difference between collections and sets.

The fact of the matter is: the approach of allowing arbi-

trary collections of “objects” and regarding such collections

as “objects” themselves is näıve. We will see this shortly.

375

Russell’s Paradox

Suppose U := {x | >347}. Then348 U ∈ U .

Quite strange but no contradiction yet.

347Assume that > is syntactic sugar for a proposition that is

always true, say > ≡ ⊥ → ⊥. We have not introduced this,

but it is convenient.

So semantically, we have IA(>) = 1 for all IA.
348Recall that a set comprehension has the form {x|P (x)},

where P (x) is a formula usually containing x.

The set comprehension U := {x | >} is strange since >
does not contain x.

But by the introduction rule for set comprehensions, this

means that x ∈ U for any x. Thus in particular, U ∈ U .
349It tells us that there can be no such thing as the set of all

sets.

The fundamental flaw of näıve set theory is in saying that

a set is a collection of “objects” without worrying what an

object is. If we make no restriction as to what an object is,

then a set is obviously also an object. But then we effectively

base the definition of the new concept set on the existence of

sets, so the definition is circular.

376

Russell’s Paradox

Suppose U := {x | >347}. Then348 U ∈ U .

Quite strange but no contradiction yet.

Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R := {A|A 6∈ A}.

347Assume that > is syntactic sugar for a proposition that is

always true, say > ≡ ⊥ → ⊥. We have not introduced this,

but it is convenient.

So semantically, we have IA(>) = 1 for all IA.
348Recall that a set comprehension has the form {x|P (x)},

where P (x) is a formula usually containing x.

The set comprehension U := {x | >} is strange since >
does not contain x.

But by the introduction rule for set comprehensions, this

means that x ∈ U for any x. Thus in particular, U ∈ U .
349It tells us that there can be no such thing as the set of all

sets.

The fundamental flaw of näıve set theory is in saying that

a set is a collection of “objects” without worrying what an

object is. If we make no restriction as to what an object is,

then a set is obviously also an object. But then we effectively

base the definition of the new concept set on the existence of

sets, so the definition is circular.

376

Russell’s Paradox

Suppose U := {x | >347}. Then348 U ∈ U .

Quite strange but no contradiction yet.

Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R := {A|A 6∈ A}.
Assume R ∈ R. By the definition of R, this means R ∈

{A|A 6∈ A}. Using compr-E, this implies R /∈ R.

Now assume R /∈ R. Using compr-I, this implies R ∈
{A|A 6∈ A}. By the definition of R, this means R ∈ R.

What does this tell us about sets?349

347Assume that > is syntactic sugar for a proposition that is

always true, say > ≡ ⊥ → ⊥. We have not introduced this,

but it is convenient.

So semantically, we have IA(>) = 1 for all IA.
348Recall that a set comprehension has the form {x|P (x)},

where P (x) is a formula usually containing x.

The set comprehension U := {x | >} is strange since >
does not contain x.

But by the introduction rule for set comprehensions, this

means that x ∈ U for any x. Thus in particular, U ∈ U .
349It tells us that there can be no such thing as the set of all

sets.

The fundamental flaw of näıve set theory is in saying that

a set is a collection of “objects” without worrying what an

object is. If we make no restriction as to what an object is,

then a set is obviously also an object. But then we effectively

base the definition of the new concept set on the existence of

sets, so the definition is circular.

376

Where Do We Go from here?

• The λ-calculus as basis for a metalanguage to avoid no-

tational confusion

Note that while the proof of the contradiction looks classical

(it seems that we make the assumption R ∈ R ∨ R /∈ R, it

is in fact not classical. There will be an exercise on this.

The intuition for the solution to this dilemma is not difficult:

A set is a collection of objects of which we are already sure

that they exist. In particular, since we are only just about to

define sets, these objects may not themselves be sets.

Once we have such sets, we can introduce “sets of second

order”, that is, sets that contain sets of the first kind. This

process can be continued ad infinitum.

The formal details will come later.
350Higher-order logic is a solution to the dilemma posed by

Russell’s paradox.

It is a surprisingly simple formalism which can be extended

conservatively: this means that it can be ensured that the ex-

tensions cannot compromise the truth or falsity of statements

that were already expressible before the extension.

377

Where Do We Go from here?

• The λ-calculus as basis for a metalanguage to avoid no-

tational confusion

• Resolution and other deduction techniques: understand-

ing Isabelle better and achieving a higher level of automation

Note that while the proof of the contradiction looks classical

(it seems that we make the assumption R ∈ R ∨ R /∈ R, it

is in fact not classical. There will be an exercise on this.

The intuition for the solution to this dilemma is not difficult:

A set is a collection of objects of which we are already sure

that they exist. In particular, since we are only just about to

define sets, these objects may not themselves be sets.

Once we have such sets, we can introduce “sets of second

order”, that is, sets that contain sets of the first kind. This

process can be continued ad infinitum.

The formal details will come later.
350Higher-order logic is a solution to the dilemma posed by

Russell’s paradox.

It is a surprisingly simple formalism which can be extended

conservatively: this means that it can be ensured that the ex-

tensions cannot compromise the truth or falsity of statements

that were already expressible before the extension.

377

Where Do We Go from here?

• The λ-calculus as basis for a metalanguage to avoid no-

tational confusion

• Resolution and other deduction techniques: understand-

ing Isabelle better and achieving a higher level of automation

• Higher-order logic: a formalism for (among other things)

non-näıve set theory350

Note that while the proof of the contradiction looks classical

(it seems that we make the assumption R ∈ R ∨ R /∈ R, it

is in fact not classical. There will be an exercise on this.

The intuition for the solution to this dilemma is not difficult:

A set is a collection of objects of which we are already sure

that they exist. In particular, since we are only just about to

define sets, these objects may not themselves be sets.

Once we have such sets, we can introduce “sets of second

order”, that is, sets that contain sets of the first kind. This

process can be continued ad infinitum.

The formal details will come later.
350Higher-order logic is a solution to the dilemma posed by

Russell’s paradox.

It is a surprisingly simple formalism which can be extended

conservatively: this means that it can be ensured that the ex-

tensions cannot compromise the truth or falsity of statements

that were already expressible before the extension.

377

28 The λ-Calculus

378

The λ-Calculus: Motivation

A way of writing functions. E.g., λx. x + 5 is the function

taking any number n to n + 5. Theory underlying functional

programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical) com-

puter science!

379

The λ-Calculus: Motivation

A way of writing functions. E.g., λx. x + 5 is the function

taking any number n to n + 5. Theory underlying functional

programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical) com-

puter science!

Why is it interesting for us? The λ-calculus is used for

representing object logics in Isabelle. It is the core of Isabelle’s

metalogic!

Further reading: [Tho91, chapter 2], [HS90, chapter 1].

379

Outline of this Lecture

• The untyped λ-calculus

• The simply typed λ-calculus (λ→)

• An extension of the typed λ-calculus

• Higher-order unification

28.1 Untyped λ-Calculus

From functional programming, you may be familiar with

function definitions such as

f x = x + 5

380

The λ-calculus is a formalism for writing nameless functions.

The function λx. x + 5 corresponds to f .

The λ-calculus is a formalism for writing nameless functions.

The function λx. x + 5 corresponds to f .

The application to say, 3, is written (λx. x+5)(3). Its result

is computed by substituting 3 for x, yielding 3 + 5, which in

usual arithmetic evaluates to 8351.

351As you might guess, the formalism of the λ-calculus is not

directly related to usual arithmetic and so it is not built into

this formalism that 3 + 5 should evaluate to 8. However, it

may be a reasonable choice, depending on the context, to

extend the λ-calculus in this way, but this is not our concern

at the moment.

381

Syntax

(x ∈ Var , c ∈ Const352)

e ::= x | c | (ee) | (λx. e)353

The objects generated by this grammar are called λ-terms

or simply terms.
352Similarly as for first-order logic, a language of the untyped

λ-calculus is characterized by giving a set of variables and a

set of constants.

One can think of Const as a signature.

Note that Const could be empty.

Note also that the word constant has a different meaning

in the λ-calculus from that of first-order logic. In both for-

malisms, constants are just symbols.

In first-order logic, a constant is a special case of a function

symbol, namely a function symbol of arity 0.

In the λ-calculus, one does not speak of function symbols.

In the untyped λ-calculus, any λ-term (including a constant)

can be applied to another term, and so any λ-term can be

called a “unary function”. A constant being applied to a

term is something which would contradict the intuition about

constants in first-order logic. So for the λ-calculus, think

of constant as opposed to a variable, an application, or an

abstraction.
353A λ-term can either be

382

Conventions: iterated λ & left-associated application354

(λx. (λy. (λz. ((xz)(yz))))) ≡ (λxyz. ((xz)(yz)))

≡ λxyz. xz(yz)

Is λx. x + 5 a λ-term?355

• a variable (case x), or

• a constant (case c), or

• an application of a λ-term to another λ-term (case (ee)),

or

• an abstraction over a variable x (case (λx. e)).

354We write λx1x2 . . . xn.e instead of λx1.(λx2.(. . . e) . . .).

e1 e2 . . . en is equivalent to (. . . (e1 e2) . . . en) . . ., not

(e1(e2 . . . en) . . .). Note that this is in contrast to the as-

sociativity of logical operators. There are some good reasons

for these conventions.
355Strictly speaking, λx. x+ 5 does not adhere to the defini-

tion of syntax of λ-terms, at least if we parse it in the usual

way: + is an infix constant applied to arguments x and 5.

If we parse x+5 as ((x+)5), i.e., x applied to (the constant)

+, and the resulting term applied to (the constant) 5, then

λx. x + 5 would indeed adhere to the definition of syntax of

383

Substitution

• Will see shortly that “computations” are based on sub-

stitutions, defined similarly as in FOL.

(g x 3)[x← 5]356 = g 5 3

• Must respect free and bound variables,

((x(λx. xy))[x← e] = e(λx. xy)

• Same problems as with quantifiers

∀x. (P (x) ∧ ∃x.Q(x, y))

P (e) ∧ ∃x.Q(x, y)
∀-E

∀x. (P (x) ∧ ∃y.Q(x, y))

P (y) ∧ ∃z.Q(y, z)
∀-E

λ-terms, but of course, this is pathological and not intended

here.

It is convenient to allow for extensions of the syntax of λ-

terms, allowing for:

• application to several arguments rather than just one;

• infix notation.

Such an extension is inessential for the expressive power of the

λ-calculus. Instead of having a binary infix constant + and

writing λx. x + 5, we could have a constant plus according

to the original syntax and write λx. ((plus x) 5) (i.e., write +

in a Curryed way).

356Here we use the notation e[x ← t] for the term obtained

from e by replacing x with t. There is also the notation

e[t/x], and confusingly, also e[x/t]. We will attempt to be

consistent within this course, but be aware that you may find

such different notations in the literature.

384

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) :=

385

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) :=

385

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) := ∅ = FV (c)

FV (MN) :=

385

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) := ∅ = FV (c)

FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)

FV (λx.M) :=

385

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of

variables in a term. Same here:

λ-calculus FOL

FV (x) := {x} = FV (x)

FV (c) := ∅ = FV (c)

FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)

FV (λx.M) := FV (M) \ {x} = FV (∀x.M)

Example: FV (xy(λyz. xyz)) = {x, y}
A term with no free variable occurrences is called closed.

385

Definition of Substitution

M [x← N] means substitute N for x in M

1. x[x← N] =

2. a[x← N] =

3. (PQ)[x← N] =

4. (λx. P)[x← N] =

5. (λy. P)[x ← N] =

6. (λy. P)[x ← N] =

357Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-

eral concepts. So far, we have seen four binding operators: ∃,

∀ and λ, and set comprehensions. The λ operator is the most

generic of those operators, in that it does not have a fixed

meaning hard-wired into it in the way that the quantifiers do.

In fact, it is possible to have it as the only operator on the

level of the metalogic. We will see this later.

386

Definition of Substitution

M [x← N] means substitute N for x in M

1. x[x← N] = N

2. a[x← N] = a if a is a constant or variable other than x

3. (PQ)[x← N] = (P [x← N]Q[x← N])

4. (λx. P)[x← N] = λx. P

5. (λy. P)[x ← N] = λy. P [x ← N] if y 6= x and y /∈
FV (N)

6. (λy. P)[x ← N] = λz. P [y ← z][x ← N] if y 6= x and

y ∈ FV (N), and z is fresh: z /∈ FV (N) ∪ FV (P)

357Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-

eral concepts. So far, we have seen four binding operators: ∃,

∀ and λ, and set comprehensions. The λ operator is the most

generic of those operators, in that it does not have a fixed

meaning hard-wired into it in the way that the quantifiers do.

In fact, it is possible to have it as the only operator on the

level of the metalogic. We will see this later.

386

Definition of Substitution

M [x← N] means substitute N for x in M

1. x[x← N] = N

2. a[x← N] = a if a is a constant or variable other than x

3. (PQ)[x← N] = (P [x← N]Q[x← N])

4. (λx. P)[x← N] = λx. P

5. (λy. P)[x ← N] = λy. P [x ← N] if y 6= x and y /∈
FV (N)

6. (λy. P)[x ← N] = λz. P [y ← z][x ← N] if y 6= x and

y ∈ FV (N), and z is fresh: z /∈ FV (N) ∪ FV (P)

Cases similar to those for quantifiers: λ binding is ‘generic’357.

357Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-

eral concepts. So far, we have seen four binding operators: ∃,

∀ and λ, and set comprehensions. The λ operator is the most

generic of those operators, in that it does not have a fixed

meaning hard-wired into it in the way that the quantifiers do.

In fact, it is possible to have it as the only operator on the

level of the metalogic. We will see this later.

386

Substitution: Example

(x(λx. xy))[x← λz. z]

358If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

387

Substitution: Example

(x(λx. xy))[x← λz. z]
3
= x[x← λz. z](λx. xy)[x← λz. z]

1,4
= (λz. z)λx. xy

358If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

387

Substitution: Example

(x(λx. xy))[x← λz. z]
3
= x[x← λz. z](λx. xy)[x← λz. z]

1,4
= (λz. z)λx. xy

(λx. xy)[y ← x]

358If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

387

Substitution: Example

(x(λx. xy))[x← λz. z]
3
= x[x← λz. z](λx. xy)[x← λz. z]

1,4
= (λz. z)λx. xy

(λx. xy)[y ← x]
6
= λz. ((xy)[x← z][y ← x])

3,1,2
= λz. (zy[y ← x])

3,2,1
= λz. zx

In the last example, clause 6 avoids capture, i.e., λx. xx358.

358If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring

the requirement on freeness, then (λx. xy)[y ← x] would be

λx. xx.

387

Reduction: Intuition

Reduction is the notion of “computing”, or “evaluation”, in

the λ-calculus.
f x = x + 5 f = λx. x + 5

f 3 = 3 + 5 (λx. x + 5)(3)→β (x + 5)[x← 3] = 3 + 5

β-reduction replaces a parameter by an argument359.

This should propagate into contexts360, e.g.

λx.((λx. x + 5)(3))→β λx.(3 + 5).

359In the λ-term (λx.M)N , we say that N is an argument

(and the function λx.M is applied to this argument), and

every occurrence of x inM is a parameter (we say this because

x is bound by the λ).

This terminology may be familiar to you if you have experi-

ence in functional programming, but actually, it is also used

in the context of function and procedure declarations in im-

perative programming.
360In

λx.((λx. x + 5)(3)),

the underlined part is a subterm occurring in a context. β-

reduction should be applicable to this subterm.

388

Reduction: Definition

• Axiom for β-reduction: (λx.M)N →β M [x← N]361

• Rules for β-reduction of redices362 in contexts:

M →β M
′

NM →β NM
′

M →β M
′

MN →β M
′N

M →β M
′

λz.M →β λz.M
′ ∗363

• Reduction is reflexive-transitive closure
M →β N

M →∗β N M →∗β M
M →∗β N N →∗β P

M →∗β P

• A term without redices is in β-normal form.

361As you see, β-reduction is defined using rules (two of them

being axioms, the rest proper rules) in the same way that we

have defined proof systems for logic before. Note that we

wrote the first axiom defining β-reduction without a horizontal

bar.
362In a λ-term, a subterm of the form (λx.M)N is called a

redex (plural redices). It is a subterm to which β-reduction

can be applied.
363The rule for propagating →β to an abstraction, let us call

it λ-abstr,
M →β M

′

λz.M →β λz.M
′ λ-abstr

actually has a vacuous side condition:

z is not free in any open assumption on which M →β

M ′ depends.

The side condition is just like for ∀.

The side condition is vacuous because in the derivation sys-

tem for→β (or→∗β) we present here, there is no rule involving

389

Reduction: Examples

(λx. λy. g x y)a b→β

Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β

Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b
discharging open assumptions, and thus there is no point in

making assumptions. The root of a derivation tree for →β

is always an application of the axiom for β-reduction. When

we consider →∗β, we may in addition have applications of the

reflexivity axiom.

However, we will have exercises on →β using an Isabelle

theory called RED, and in this theory, the above rule is called

epsi and looks as follows:

"[|!!x. M(x) --> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x))"

Observe that there is a meta-level universal quantifier in this

rule. From the exercises, you know that the meta-level uni-

versal quantifier corresponds to a side condition in paper-and-

pencil proofs.

Moreover, when we later look at the meta-logic, there will

be a rule
a ≡ b

(λx.a) ≡ (λx.b)
≡-abstr∗

looking very similar to the λ-abstr rule and having a side

390

condition.

To illustrate why the side condition is needed in general,

consider a derivation system where in addition to the rules for

→β and →∗β, we also allow applications of the rule for rules

for → (implication) and ∀ of first-order logic.

For the example we give, suppose that we have an encoding

of the number 0 and the + function in the untyped λ-calculus,

and that these behave as expected (in fact we will have an

exercise showing this; in the following we use “0” and “+”

just for simplicity and clarity; + is written infix).

Under these assumptions, we will now derive λxy. y+x→β

λxy. y. Before looking at the derivation tree, think about

what this says intuitively: it says that + is a function that

takes two arguments, ignores the first argument and returns

the second argument. Clearly, this does not correspond to the

usual definition of +! The trick in the following derivation is

to smuggle in an instantiation of x, namely to force x to be

391

Shows Currying364

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

Shows Currying364

(λx. xx)(λx. xx)→β

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

Shows Currying364

(λx. xx)(λx. xx)→β (λx. xx)(λx. xx)→β . . .

0. The derivation looks as follows:
[y + x→β y]1

λy. y + x→β λy. y
λ-abstr

λxy. y + x→β λxy. y
λ-abstr

(y + x→β y)→ λxy. y + x→β λxy. y
→-I1

∀x.(y + x→β y)→ λxy. y + x→β λxy. y
∀-I

(y + 0→β y)→ λxy. y + x→β λxy. y
∀-E

(routine)

y + 0→β y

λxy. y + x→β λxy. y
→-E

In the above derivation, the side condition for λ-abstr is vio-

lated.

In Isabelle, such a “smuggling in” of an instantiation can be

achieved using instantiate tac, see RED wrongepsi.thy

and wrongepsi.ML.
364You may be familiar with functions taking several argu-

ments, or equivalently, a tuple of arguments, rather than just

one argument.

392

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

Shows divergence365

In the λ-calculus, but also in functional programming, it is

common not to have tuples and instead use a technique called

Currying (Schönfinkeln in German). So instead of writing

g(a, b), we write g a b, which is read as follows: g is a function

which takes an argument a and returns a function which then

takes an argument b.

Recall that application associates to the left, so g a b is read

(g a) b.

Currying will become even clearer once we introduce the

typed λ-calculus.
365We say that a β-reduction sequence diverges if it is infinite.

Note that for (λxy. y)((λx. xx)(λx. xx)), there is a finite

β-reduction sequence

(λxy. y)((λx. xx)(λx. xx))→β λy. y

but there is also a diverging sequence

(λxy. y)((λx. xx)(λx. xx))→β (λxy. y)((λx. xx)(λx. xx))→β . . .

393

Shows divergence365

But (λx. λy. y)((λx. xx)(λx. xx))→β λy. y

In the λ-calculus, but also in functional programming, it is

common not to have tuples and instead use a technique called

Currying (Schönfinkeln in German). So instead of writing

g(a, b), we write g a b, which is read as follows: g is a function

which takes an argument a and returns a function which then

takes an argument b.

Recall that application associates to the left, so g a b is read

(g a) b.

Currying will become even clearer once we introduce the

typed λ-calculus.
365We say that a β-reduction sequence diverges if it is infinite.

Note that for (λxy. y)((λx. xx)(λx. xx)), there is a finite

β-reduction sequence

(λxy. y)((λx. xx)(λx. xx))→β λy. y

but there is also a diverging sequence

(λxy. y)((λx. xx)(λx. xx))→β (λxy. y)((λx. xx)(λx. xx))→β . . .

393

Conversion

• β-conversion: “symmetric closure” of β-reduction
M →∗β N
M =β N

M =β N

N =β M

366α-conversion is usually applied implicitly, i.e., without mak-

ing it an explicit step. So for example, one would simply write:

λz. z =β λx. x

367η-conversion is defined as

M =η λx. (Mx) if x 6∈ FV (M)

It is needed for reasoning about normal forms.

g x =η λy. g x y reflects g x b =β (λy. g x y)b

More specifically: if we did not have the η-conversion rule,

then g x and λy. g x y would not be “equivalent” up to con-

version. But that seems unreasonable, because they behave

the same way when applied to b. Applied to b, both terms

can be converted to g x b. This is why it is reasonable to

introduce a rule such that g x and λy. g x y are “equivalent”

up to conversion.

394

Conversion

• β-conversion: “symmetric closure” of β-reduction
M →∗β N
M =β N

M =β N

N =β M

• α-conversion: bound variable renaming (usually implicit366)

λx.M =α λz.M [x← z] where z 6∈ FV (M)

366α-conversion is usually applied implicitly, i.e., without mak-

ing it an explicit step. So for example, one would simply write:

λz. z =β λx. x

367η-conversion is defined as

M =η λx. (Mx) if x 6∈ FV (M)

It is needed for reasoning about normal forms.

g x =η λy. g x y reflects g x b =β (λy. g x y)b

More specifically: if we did not have the η-conversion rule,

then g x and λy. g x y would not be “equivalent” up to con-

version. But that seems unreasonable, because they behave

the same way when applied to b. Applied to b, both terms

can be converted to g x b. This is why it is reasonable to

introduce a rule such that g x and λy. g x y are “equivalent”

up to conversion.

394

Conversion

• β-conversion: “symmetric closure” of β-reduction
M →∗β N
M =β N

M =β N

N =β M

• α-conversion: bound variable renaming (usually implicit366)

λx.M =α λz.M [x← z] where z 6∈ FV (M)

• η-conversion: for normal-form analysis367

M =η λx. (Mx) if x 6∈ FV (M)

366α-conversion is usually applied implicitly, i.e., without mak-

ing it an explicit step. So for example, one would simply write:

λz. z =β λx. x

367η-conversion is defined as

M =η λx. (Mx) if x 6∈ FV (M)

It is needed for reasoning about normal forms.

g x =η λy. g x y reflects g x b =β (λy. g x y)b

More specifically: if we did not have the η-conversion rule,

then g x and λy. g x y would not be “equivalent” up to con-

version. But that seems unreasonable, because they behave

the same way when applied to b. Applied to b, both terms

can be converted to g x b. This is why it is reasonable to

introduce a rule such that g x and λy. g x y are “equivalent”

up to conversion.

394

λ-Calculus Meta-Properties368

Confluence (equivalently369, Church-Rosser): reduction is order-

independent.

For all M,N1, N2, if M →∗β N1 and M →∗β N2, then there

exists a P where N1 →∗β P and N2 →∗β P .

there exists a P where N1 →∗ P and N2 →∗ P .

A reduction is called Church-Rosser if

for all N1, N2, if N1
∗↔ N2, then there exists a P

where N1 →∗ P and N2 →∗ P .

Here,←:= (→)−1 is the inverse of→, and↔:=← ∪ → is

the symmetric closure of →, and
∗↔:= (↔)∗ is the reflexive

transitive symmetric closure of →.

So for example, if we have

M1 →M2 →M3 →M4 ←M5 ←M6 →M7 ←M8 ←M9

then we would write M1
∗↔M9.

Confluence is equivalent to the Church-Rosser property

[BN98, page 10].
One also says that the η-conversion expresses the idea of

extensionality [HS90, chapter 7].

Note that with the help of β-reduction and transitivity,

395

P

N1 N2

M

J
J
J
Ĵ

�

�

J
J
J
Ĵ

∗ ∗

∗ ∗

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then

P

N1 N2

M

J
J
J
Ĵ

�

�

J
J
J
Ĵ

∗ ∗

∗ ∗

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then N1 =α N2.

P

N1 N2

M

J
J
J
Ĵ

�

�

J
J
J
Ĵ

∗ ∗

∗ ∗

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then N1 =α N2.

Example:

(λxy. y)((λx. xx)a)→β (λxy. y)(aa)→β λy. y

(λxy. y)((λx. xx)a)→β λy. y

η-conversion can be generalized to more than one variable,

i.e. M =βη λx1 . . . xn.M x1 . . . xn. E.g. we can derive

λxyz.M x y z =βη M :

λz.M x y z =η M xy

λyz.M x y z =βη λy.M x y λy.M x y =η M x

λyz.M x y z =βη M x

λxyz.M x y z =βη λx.M x λx.M x =η M

λxyz.M x y z =βη M

For any n, we call λx1 . . . xn.M x1 . . . xn an η-expansion of

M .
368

By metaproperties, we mean properties about reduction and

conversion sequences in general.
369A reduction → is called confluent if

for all M,N1, N2, if M →∗ N1 and M →∗ N2, then

396

397

Turing Completeness

The λ-calculus can represent all computable functions.370

370The untyped λ-calculus is Turing complete. This is usu-

ally shown not by mimicking a Turing machine in the λ-

calculus, but rather by exploiting the fact that the Turing

computable functions are the same class as the µ-recursive

functions [HS90, chapter 4]. In a lecture on theory of compu-

tation, you have probably learned that the µ-recursive func-

tions are obtained from the primitive recursive functions by so-

called unbounded minimalization, while the primitive recursive

functions are built from the 0-place zero function, projection

functions and the successor function using composition and

primitive recursion [LP81].

The proof that the untyped λ-calculus can compute all µ-

recursive functions is thus based on showing that each of

the mentioned ingredients can be encoded in the untyped λ-

calculus. While we are not going to study this, one crucial

point is that it should be possible to encode the natural num-

bers and the arithmetic operations in the untyped λ-calculus.

398

28.2 Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

28.2 Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped λ-calculus, we have syntactic objects371 called

terms.

28.2 Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped λ-calculus, we have syntactic objects371 called

terms.

We now introduce syntactic objects called types372.

28.2 Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped λ-calculus, we have syntactic objects371 called

terms.

We now introduce syntactic objects called types372.

We will say “a term has a type” or “a term is of a type”.
371We also say that we have defined a term language. A

particular language is given by a signature, although for the

untyped λ-calculus this is simply the set of constants Const .
372We can say that we define a type language, i.e., a language

consisting of types. A particular type language is characterized

by giving a set of base types B. One might also call B a type

signature.

A typical example of a set of base types would be {N, bool},
where N represents the natural numbers and bool the Boolean

values ⊥ and >.

All that matters is that B is some fixed set “defined by the

user”.

399

Two Syntaxes

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Two Syntaxes

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N → 373N, (N → N) → N, N → N →
N374

Two Syntaxes

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N → 373N, (N → N) → N, N → N →
N374

• Syntax for (raw375) terms: λ-calculus augmented with

types376

e ::= x | c | (ee) | (λxτ . e)

373The type N → N is the type of a function that takes a

natural number and returns a natural number.

The type (N → N) → N is the type of a function that

takes a function, which takes a natural number and returns a

natural number, and returns a natural number.
374To save parentheses, we use the following convention:

types associate to the right, so N → N → N stands for

N→ (N→ N).

Recall that application associates to the left. This may seem

confusing at first, but actually, it turns out that the two con-

ventions concerning associativity fit together very neatly.
375In the context of typed versions of the λ-calculus, raw

terms are terms built ignoring any typing conditions. So raw

terms are simply terms as defined for the untyped λ-calculus,

possibly augmented with type superscripts.
376So far, this is just syntax!

The notation (λxτ . e) simply specifies that binding occur-

rences of variables in simple type theory are tagged with a

400

(x ∈ Var , c ∈ Const377)

superscript, where the use of the letter τ makes it clear (in

this particular context) that the superscript must be some

type, defined by the grammar we just gave.
377Var and Const are the sets of variables and constants,

respectively, as for the untyped λ-calculus.

401

Signatures and Contexts

Generally (in various logic-related formalisms378) a signature

defines the “fixed” symbols of a language, and a context de-

fines the “variable” symbols of a language.

Signatures and Contexts

Generally (in various logic-related formalisms378) a signature

defines the “fixed” symbols of a language, and a context de-

fines the “variable” symbols of a language. In λ→,

378For propositional logic, we did not use the notion of sig-

nature, although we mentioned that strictly speaking, there

is not just the language of propositional logic, but rather a

language of propositional logic which depends on the choice

of the variables.

In first-order logic, a signature was a pair (F ,P) defining the

function and predicate symbols, although strictly speaking,

the signature should also specify the arities of the symbols

in some way. Recall that we did not bother to fix a precise

technical way of specifying those arities. We were content

with saying that they are specified in “some unambiguous

way”.

In sorted logic, the signature must also specify the sorts of

all symbols. But we did not study sorted logic in any detail.

In the untyped λ-calculus, the signature is simply the set of

constants.

Summarizing, we have not been very precise about the no-

402

• a signature Σ is a sequence (c ∈ Const)

Σ ::= 〈 〉 | Σ, c : τ 379

• a context Γ is a sequence (x ∈ Var)

Γ ::= 〈 〉 | Γ, x : τ

tion of a signature so far.

For λ→, the rules for “legal” terms become more tricky, and

it is important to be formal about signatures.

In λ→, a signature associates a type with each constant

symbol by writing c : τ .

Usually, we will assume that Const is clear from the context,

and that Σ contains an expression of the form c : τ for each

c ∈ Const , and in fact, that Σ is clear from the context as

well. Since Σ contains an expression of the form c : τ for

each c ∈ Const , it is redundant to give Const explicitly. It

is sufficient to give Σ.
379We call an expression of the form x : τ or c : τ a type

binding.

The use of the letter τ makes it clear (in this particular

context) that the superscript must be some type, defined by

the grammar we just gave.

403

Type Assignment Calculus

We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ

and a context Γ. For example

Γ `Σ c x : σ380

where Σ = c : τ → σ and Γ = x : τ .

380The expression

Γ `Σ c x : σ

is called a type judgement. It says that given the signature

Σ = c : τ → σ and the context Γ = x : τ , the term

c x has type σ or

c x is of type σ or

c x is assigned type σ.

Recall that you have seen other judgements before.

404

Type Assignment Calculus

We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ

and a context Γ. For example

Γ `Σ c x : σ380

where Σ = c : τ → σ and Γ = x : τ .

We usually leave Σ implicit and write ` instead of `Σ.

If Γ is empty it is omitted.
380The expression

Γ `Σ c x : σ

is called a type judgement. It says that given the signature

Σ = c : τ → σ and the context Γ = x : τ , the term

c x has type σ or

c x is of type σ or

c x is assigned type σ.

Recall that you have seen other judgements before.

404

Type Assignment Calculus: Rules381

c : τ ∈ 382Σ

Γ ` c : τ
assum Γ, x : τ,∆ ` x : τ hyp383

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ384 ` e : τ

Γ ` λxσ. e : σ → τ
abs

Type Assignment Calculus: Rules381

c : τ ∈ 382Σ

Γ ` c : τ
assum Γ, x : τ,∆ ` x : τ hyp383

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ384 ` e : τ

Γ ` λxσ. e : σ → τ
abs

Note that due to requiring x : σ to occur at the end, rule
381Type assignment is defined as a system of rules for deriving

type judgements, in the same way that we have defined deriv-

ability judgements for logics, and β-reduction for the untyped

λ-calculus.
382Recall that Σ is a sequence. By abuse of notation, we

sometimes identify this sequence with a set and allow our-

selves to write c : τ ∈ Σ.

We may also write Σ ⊆ Σ′ meaning that c : τ ∈ Σ implies

c : τ ∈ Σ′.
383One could also formulate hyp as follows:

x : τ ∈ Γ

Γ ` x : τ
hyp

That would be in close analogy to LF, a system not treated

here.
384A sequence is a collection of objects which differs from sets

in that a sequence contains the objects in a certain order, and

there can be multiple occurrences of an object.

We write a sequence containing the objects o1, . . . , on as

405

abs is deterministic385 when applied bottom-up.

〈o1, . . . , on〉, or sometimes simply o1, . . . , on.

If Ω is the sequence o1, . . . , on, then we write Ω, o

for the sequence 〈o1, . . . , on, o〉 and o,Ω for the sequence

〈o, o1, . . . , on〉.
An empty sequence is denoted by 〈 〉.

385Signatures and contexts are sequences, and intuitively, the

order in which the type bindings occur in these sequences does

not matter.

Now, the way we have set up the type assignment calculus,

it would seem that the order does matter, namely since in rule

abs, the binding x : σ above the horizontal line must be the

last binding in the context. An alternative formulation would

be
Γ, x : σ,∆ ` e : τ

Γ,∆ ` λxσ. e : σ → τ
abs

However, the original formulation is more straightforward in

light of the fact that type derivations are usually constructed

bottom-up. The bottom-up application of the original abs

406

Also note the analogy to minimal logic over →386.

is deterministic, whereas the alternative formulation would

confront us with the choice of how to split up the context.

For example, we could start a derivation of y : ρ, z : ω `
λxσ. c : σ → τ in three ways:

x : σ, y : ρ, z : ω ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

or
y : ρ, x : σ, z : ω ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

or
y : ρ, z : ω, x : σ ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

386Recall the sequent rules of the “→ /∧” fragment of propo-

sitional logic. Consider now only the “→” fragment. We call

this fragment minimal logic over →.

407

β-Reduction in λ→

β-reduction defined as before, has subject reduction prop-

If you take the rule

Γ, x : τ,∆ ` x : τ hyp

of λ→ and throw away the terms (so you keep only the types),

you obtain essentially the rule for assumptions

Γ ` A (where A ∈ Γ)

of propositional logic.

Likewise, if you do the same with the rule

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

of λ→, you obtain essentially the rule
Γ ` A→ B Γ ` A

Γ ` B →-E

of propositional logic.

Finally, if you do the same with the rule
Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

408

of λ→, you obtain essentially the rule
A,Γ ` B

Γ ` A→ B
→-I

of propositional logic.

Note that in this setting, there is no analogous propositional

logic rule for
c : τ ∈ Σ

Γ ` c : τ
assum

So for the moment, we can observe a close analogy between

λ→, for Σ being empty, and the→ fragment of propositional

logic, which is also called minimal logic over →.

Such an analogy between a type theory (of which λ→ is an

example) and a logic is referred to in the literature as Curry-

Howard isomorphism [Tho91]. One also speaks of proposi-

tions as types [GLT89]. The isomorphism is so fundamental

that it is common to characterize type theories by the logic

they represent, so for example, one might say:

409

erty387 and is strongly normalizing388.

λ→ is the type theory of minimal logic over →.

Note that for this analogy, it is quite crucial that we have

no constants (Σ is empty). Namely, this condition implies

that for some types, we cannot give a closed term that has

this type. For example, we can give a closed term of type

τ → σ → τ , namely λxy. x, while we cannot give a closed

term of type (τ → τ) → τ . We say that τ → σ → τ is

inhabited while (τ → τ)→ τ is not inhabited.

The inhabited types correspond exactly to the formulas that

are derivable in minimal logic over→, and the inhabiting term

is regarded as a proof.
387Subject reduction is the following property: reduction does

not change the type of a term, so if `Σ M : τ and M →β N ,

then `Σ N : τ .
388The simply-typed λ-calculus, unlike the untyped λ-

calculus, is normalizing, that is to say, every term has a normal

form. Even more, it is strongly normalizing, that is, this nor-

mal form is reached regardless of the reduction order.

410

Example 1

` λxσ. λyτ . x :

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

` λxσ. λyτ . x : σ → (τ → σ)

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

` λxσ. λyτ . x : σ → (τ → σ)
abs

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

x : σ ` λyτ . x : τ → σ

` λxσ. λyτ . x : σ → (τ → σ)
abs

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

x : σ, y : τ ` x : σ

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Note the use of schematic types389!

389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 1

x : σ, y : τ ` x : σ

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Note the use of schematic types389!

For simplicity, applications of hyp are usually not explicitly

marked in proof.
389In this example, you may regard σ and τ as base types

(this would require that σ, τ ∈ B), but in fact, it is more

natural to regard them as metavariables standing for arbitrary

types. Whatever types you substitute for σ and τ , you obtain

a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence

arbitrary.

411

Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x :

412

Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ

412

Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f : σ → σ → τ Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs

412

Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f x x : τ

390In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is

a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a

variable.

Looking at the different derivations of the type judgement

Γ ` f x x : τ in Examples 2 and 3, you may find that they are

very similar, and you may wonder: What is the point? Why

do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When

setting up a type theory or programming language, there are

choices to be made about whether there should be a distinc-

tion between variables and constants, and what it should look

like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make the

distinction. For example, if we want to introduce the natural

numbers in our λ→ language, then it is intuitive that there

should be constants 1, 2, . . . denoting the numbers. If 1, 2, . . .

413

http://en.wikiquote.org/wiki/Alan_Perlis

Example 3

Σ = f : σ → σ → τ

Γ = x : σ

f : σ → σ → τ ∈ Σ

Γ ` f : σ → σ → τ
assum

Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant390.

390In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is

a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a

variable.

Looking at the different derivations of the type judgement

Γ ` f x x : τ in Examples 2 and 3, you may find that they are

very similar, and you may wonder: What is the point? Why

do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When

setting up a type theory or programming language, there are

choices to be made about whether there should be a distinc-

tion between variables and constants, and what it should look

like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make the

distinction. For example, if we want to introduce the natural

numbers in our λ→ language, then it is intuitive that there

should be constants 1, 2, . . . denoting the numbers. If 1, 2, . . .

413

http://en.wikiquote.org/wiki/Alan_Perlis

Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f : σ → σ → τ Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant390.

We will often suppress applications of assum.
390In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is

a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a

variable.

Looking at the different derivations of the type judgement

Γ ` f x x : τ in Examples 2 and 3, you may find that they are

very similar, and you may wonder: What is the point? Why

do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When

setting up a type theory or programming language, there are

choices to be made about whether there should be a distinc-

tion between variables and constants, and what it should look

like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make the

distinction. For example, if we want to introduce the natural

numbers in our λ→ language, then it is intuitive that there

should be constants 1, 2, . . . denoting the numbers. If 1, 2, . . .

413

http://en.wikiquote.org/wiki/Alan_Perlis

Type Assignment and αβη-Conversion

Type construction:

• Type construction391 is decidable.

were variables, then we could write strange expressions like

λ2N→N. y, so we could use 2 as a variable of type N→ N.
391Type construction is the problem of given a Σ, Γ and e,

finding a τ such that Γ `Σ e : τ .

Sometimes one also considers the problem where Γ is un-

known and must also be constructed.
392αβη-conversion is defined as for λ→. Given two (extended)

λ-terms e and e′, it is decidable whether e =αβη e
′.

414

Type Assignment and αβη-Conversion

Type construction:

• Type construction391 is decidable.

• There is a practically useful implementation for type-

construction (Hindley-Milner algorithmW [Mil78, NN99]).

Term congruence392 (e =αβη e
′?) is decidable.

were variables, then we could write strange expressions like

λ2N→N. y, so we could use 2 as a variable of type N→ N.
391Type construction is the problem of given a Σ, Γ and e,

finding a τ such that Γ `Σ e : τ .

Sometimes one also considers the problem where Γ is un-

known and must also be constructed.
392αβη-conversion is defined as for λ→. Given two (extended)

λ-terms e and e′, it is decidable whether e =αβη e
′.

414

28.3 Polymorphism and Type Classes

We will now look at the typed λ-calculus extended by poly-

morphism and type classes.

As we will see later, this is the universal representation for

object logics in Isabelle.

415

Polymorphism: Intuition

In functional programming, the function append for con-

catenating two lists works the same way on integer lists and

on character lists: append is polymorphic393.

Type language must be generalized to include type variables

(denoted by α, β . . .) and type constructors.

Example: append has type α list → α list → α list , and

by type instantiation, it can also have type, say, int list →
int list → int list .

393In functional programming, you will come across functions

that operate uniformly on many different types. For example,

a function append for concatenating two lists works the same

way on integer lists and on character lists. Such functions are

called polymorphic.

More precisely, this kind of polymorphism, where a function

does exactly the same thing regardless of the type instance, is

called parametric polymorphism, as opposed to ad-hoc poly-

morphism.

In a type system with polymorphism, the notion of base type

(which is just a type constant, i.e., one symbol) is generalized

to a type constructor with an arity ≥ 0. A type constructor of

arity n applied to n types is then a type. For example, there

might be a type constructor list of arity 1, and int of arity 0.

Then, int list is a type.

Note that application of a type constructor to a type is

written in postfix notation, unlike any notation for function

application we have seen. However, other conventions exist,

416

Polymorphism: Two Syntaxes

• Syntax for polymorphic types (B a set of type construc-

tors394 including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

even within Isabelle.

A type constructor of arity > 0 is called type operator by

some authors [GM93, page 196], but we do not follow this

terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),

but again, we do not follow this terminology: for us a type

constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
394As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized

by giving a certain set of symbols B. But unlike before, B is

now a set of type constructors. Each type constructor has an

arity associated with it just like a function in first-order logic.

The intention is that a type constructor may be applied to

types.

Following the conventions of ML [Pau96], we write types in

postfix notation, something we have not seen before. I.e., the

417

Polymorphism: Two Syntaxes

• Syntax for polymorphic types (B a set of type construc-

tors394 including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

Examples: N, N→ N, α list , N list , (N, bool) pair .

even within Isabelle.

A type constructor of arity > 0 is called type operator by

some authors [GM93, page 196], but we do not follow this

terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),

but again, we do not follow this terminology: for us a type

constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
394As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized

by giving a certain set of symbols B. But unlike before, B is

now a set of type constructors. Each type constructor has an

arity associated with it just like a function in first-order logic.

The intention is that a type constructor may be applied to

types.

Following the conventions of ML [Pau96], we write types in

postfix notation, something we have not seen before. I.e., the

417

Polymorphism: Two Syntaxes

• Syntax for polymorphic types (B a set of type construc-

tors394 including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

Examples: N, N→ N, α list , N list , (N, bool) pair .

• Syntax for (raw) terms as before:

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const)

even within Isabelle.

A type constructor of arity > 0 is called type operator by

some authors [GM93, page 196], but we do not follow this

terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),

but again, we do not follow this terminology: for us a type

constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
394As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized

by giving a certain set of symbols B. But unlike before, B is

now a set of type constructors. Each type constructor has an

arity associated with it just like a function in first-order logic.

The intention is that a type constructor may be applied to

types.

Following the conventions of ML [Pau96], we write types in

postfix notation, something we have not seen before. I.e., the

417

Polymorphic Type Assignment Calculus

Type substitutions (denoted Θ) defined in analogy to substi-

tutions in FOL395. Apart from application of Θ in rule assum,

type assignment is as for λ→:
c : τ ∈ Σ

Γ ` c : τΘ
assum∗ Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

∗: Θ is any type substitution.

type constructor comes after the arguments it is applied to.

It makes perfect sense to view the function construction

arrow → as type constructor, however written infix rather

than postfix.

So the B is some fixed set “defined by the user”, but it

should definitely always include →.
395A type substitution replaces a type variable by a type, just

like in first-order logic, a substitution replaces a variable by a

term.

418

Type Classes: Intuition

Type classes396 are a way of . . .
396Type classes are a way of “making ad-hoc polymorphism

less ad-hoc”[HHPW96, WB89].

Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are

defined.

For example, for some types, a symbol ≤ (which is a binary

infix predicate) may exist and for some it may not, and we

could have a type class ord containing all types for which it

exists.

Suppose you want to sort a list of elements (smaller elements

should come before bigger elements). This is only defined for

elements of a type for which the symbol ≤ exists.

Note that while a symbol such as ≤ may have a similar

meaning for different types (for example, integers and reals),

one cannot say that it means exactly the same thing regardless

of the type of the argument to which it is applied. In fact, ≤
has to be defined separately for each type in ord .

This is in contrast to parametric poymorphism, but also

419

“making ad-hoc polymorphism397 less ad-hoc”[HHPW96, WB89].

Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are

defined.

We only sketch the formalization here, and refer to [HHPW96,

Nip93, NP93] for details.

somewhat different from ad-hoc polymorphism: The types of

the symbols must not be declared separately. E.g., one has to

declare only once that ≤ is of type (a :: ord , α).
397Ad-hoc polymorphism, also called overloading, refers to

functions that do different (although usually similar) things

on different types. For example, a function ≤ may be defined

as ’a’ ≤ ’b’ . . . on characters and 1 ≤ 2 . . . on integers. In this

case, the symbol ≤ must be declared and defined separately

for each type.

This is in contrast to parametric pomorphism, but also

somewhat different from type classes.

Type classes are a way of “making ad-hoc polymorphism

less ad-hoc”[HHPW96, WB89].

420

Type Classes in Isabelle

• Syntactic classes398 (similarly as in Haskell): E.g., declare

that there exists a class ord which is a subclass of class

term, and that for any τ :: ord , the constant≤ is defined

and has type τ → τ → bool . Isabelle has syntax for this.

Type Classes in Isabelle

• Syntactic classes398 (similarly as in Haskell): E.g., declare

that there exists a class ord which is a subclass of class

term, and that for any τ :: ord , the constant≤ is defined

and has type τ → τ → bool . Isabelle has syntax for this.

398A syntactic class is a class of types for which certain sym-

bols are declared to exist. Isabelle has a syntax for such dec-

larations. E.g., the declaration

sort ord < term

const <= : [’a::ord, ’a] => bool

may form part of an Isabelle theory file. It declares a type

class ord which is a subclass (that’s what the < means; in

mathematical notation it will be written ≺) of a class term,

meaning that any type in ord is also in term. We will write

the “class judgement” ord ≺ term. The class term must be

defined elsewhere.

The second line declares a symbol <=. Such a declaration is

preceded by the keyword const. The notation α :: ord stands

for a type variable constrained to be in class ord . So <= is

declared to be of type [α :: ord , α] ⇒ bool , meaning that it

takes two arguments of a type in the class ord and returns a

term of type bool . The symbol ⇒(=>) is the function type

arrow in Isabelle. Note that the second occurrence of α is

421

• Axiomatic classes399: Declare (axiomatize) that certain

theorems should hold for a τ :: κ where κ is a type class.

E.g., axiomatize that ≤ is reflexive by an (Isabelle) theo-

rem ”x ≤ x”. Isabelle has syntax for this.

written without :: ord . This is because it is enough to state

the class constraint once.

Note also that [α :: ord , α] => bool is in fact just another

way of writing α :: ord => α => bool , similarly as for goals.

Haskell [HHPW96] has type classes but ML [Pau96] hasn’t.
399In addition to declaring the syntax of a type class, one can

axiomatize the semantics of the symbols. Again, Isabelle has

a syntax for such declarations. E.g., the declaration

axclass order < ord

order refl: ’’x <= x ’’

order trans: ’’[| x <= y; y <= z |] ==> x <= z’’

...

may form part of an Isabelle theory file. It declares an ax-

iomatic type class order which is a subclass of ord defined

above.

The next two lines are the axioms. Here, order refl and

order trans are the names of the axioms. Recall that =⇒ is

the implication symbol in Isabelle (that is to say, the metalevel

422

To use a class, we can declare members400 of it, e.g., N is

a member of ord.
implication).

Whenever an Isabelle theory declares that a type is a member

of such a class, it must prove those axioms.

The rationale of having axiomatic classes is that it allows for

proofs that hold in different but similar mathematical struc-

tures to be done only once. So for example, all theorems that

hold for dense orders can be proven for all dense orders with

one single proof.
400One also speaks of a type being an instance of a type class,

but this is slightly confusing, since we also say that a type can

be an instance of another type, e.g., N → N is an instance

of α, since α[α ← (N → N)] = N → N. So it is better to

speak of a member of a type class.

Isabelle provides a syntax for declaring that a type is a mem-

ber of a type class, e.g.

instance nat :: ord

declares that type nat is a member of class ord.

If the class κ is a syntactic class, such a declaration must

423

Syntax: Classes, Types, and Terms

Based on

• a set of type classes401, sayK = {ord , order , lattice, . . .},

• a set of type constructors402, say

come with a definition of the symbols that are declared to

exist for κ.

In addition, if κ is an axiomatic class, such a declaration

must come with a proof of the axioms.

If a type τ is (by declaration) a member of class κ, we write

the “class judgement” τ :: κ.
401The set K we gave is incomplete and just exemplary.

So the set of type classes involved in an Isabelle theory is

a finite set of names (written lower-case), typically including

ord , order , and lattice.

We have seen some Isabelle syntax for declaring the type

classes previously.

In grammars and elsewhere, κ is the letter we use for “type

class”.
402As before, the set B we gave is is incomplete (there are

“. . .”) and just exemplary. We might call B a type signature.

Note also that an is used to denote the arity of a type

constructor.

424

B = {bool , → 403, ind , list , set . . .},

• a set of constants Const and a set of

variables Var ,

we define

– list means that list is unary type constructor;

– → means that → is a binary infix type constructor.

The notation using is slightly abusive since the is not

actually part of the type constructor. list is not a type

constructor; list is a type constructor.

So the set of type constructors involved in an Isabelle the-

ory is a finite set of names (written lower-case) with each

having an arity associated, typically including bool , →, and

list . Note however that bool is fundamental (since object

level predicates are modeled as functions taking terms to a

Boolean), and so is →, the constructor of the function space

between two types.

In grammars and elsewhere, T is the letter we use for “type

constructor”.
403In λ→, types were built from base types using a “special

symbol” →.

When we generalize λ→ to a λ-calculus with polymorphism,

this “special symbol” becomes a type constructor. However,

425

• Polymorphic types404:

τ ::= α | α:: κ | (τ, . . . , τ) T

• Raw terms (as before):

e ::= x | c | (ee) | (λxτ . e)

(α is type variable, T ∈ B, κ ∈ K, x ∈ Var , c ∈ Const)

the syntax is still special, and it is interpreted in a particular

way.
404τ ::= α | α:: κ | (τ, . . . , τ) T

(α is type variable)

is a grammar defining what polymorphic types are (syntac-

tically). As before, τ is the non-terminal we use for (now:

polymorphic) types.

This grammar is not exemplary but generic, and it deserves

a closer look.

A type variable is a variable that stands for a type, as op-

posed to a term. We have not given a grammar for type

variables, but assume that there is a countable set of type

variables disjoint from the set of term variables. We use α

as the non-terminal for a type variable (abusing notation, we

often also use α to denote an actual type variable).

First, note that a type variable may be followed by a class

constraint :: κ (recall that κ is the non-terminal for type

426

Type Assignment Calculus with Type Classes

Assume some syntax for declaring τ :: κ and κ ≺ κ′. In

addition introduce the rule
τ :: κ κ ≺ κ′

τ :: κ′
subclass

Type assignment rules as before, but type substitution Θ in
c : τ ∈ Σ

Γ ` c : τΘ
assum

must respect class constraints: for each α :: κ occurring in τ

where αΘ = σ, judgement σ :: κ must hold.

classes). However, a type variable is not necessarily followed

by such a constraint, for example if the type variable already

occurs elsewhere and is constrained in that place. We have

already seen this.

Moreover, a polymorphic type is obtained by preceding a

type constructor with a tuple of types. The arity of the tuple

must be equal to the declared arity of the type constructor.

It is not shown here that for some special type constructors,

such as →, the argument may also be written infix.

427

Example

Suppose that by virtue of declarations, we have N :: order,

order ≺ ord, and ≤: α :: ord→ α→ bool ∈ Σ. Derive

N :: order order ≺ ord

N :: ord
subclass

and then (Θ = [α← N])

(≤: (α :: ord)→ α→ bool) ∈ Σ

` ≤: N→ N→ bool
assum

which respects the class constraint since the judgement N ::

ord was derived above.

428

28.4 Higher-Order Unification

The λ-calculus is “the” metalogic. Hence we now (some-

times) call its variables “metavariables” for emphasis and we

precede them with “?”. E.g. they can stand for object-level

formulae. More details later.

28.4 Higher-Order Unification

The λ-calculus is “the” metalogic. Hence we now (some-

times) call its variables “metavariables” for emphasis and we

precede them with “?”. E.g. they can stand for object-level

formulae. More details later.

Two issues concerning metavariables are:

• suitable renamings405 of metavariables;

• unification406 before rule application.

405Whenever a rule is applied, the metavariables occurring

in it must be renamed to fresh variables to ensure that no

metavariable in the rule has been used in the proof before.

The notion fresh is often casually used in logic, and it means:

this variable has never been used before. To be more precise,

one should say: never been used before in the relevant context.
406The mechanism to instantiate metavariables as needed is

called (higher-order) unification. Unification is the process of

finding a substitution that makes two terms equal.

We will now see more formally what it is and later also where

it is used.

429

What Is Higher-Order Unification?

Unification of terms e, e′: find substitution θ for metavariables

such that eθ =αβη e
′θ.

Examples407:

?X + ?Y =αβη x + x

?P (x) =αβη x + x

f (?X x) =αβη ?Y x

?F (?Gx) =αβη f (g(x))

407

A solution for ?X + ?Y =αβη x + x is [?X ← x, ?Y ← x].

A solution for ?P (x) =αβη x + x is [?P ← (λy.y + y)].

A solution for f (?Xx) =αβη?Y x is [?X ← (λz.z), ?Y ←
f].

Three solutions for ?F (?Gx) =αβη f (g(x)) are

[?F ← f, ?G← g],

[?F ← (λx.f (g x)), ?G← (λx.x)],

[?F ← (λx.x), ?G← (λx.f (g x))],

430

What Is Higher-Order Unification?

Unification of terms e, e′: find substitution θ for metavariables

such that eθ =αβη e
′θ.

Examples407:

?X + ?Y =αβη x + x

?P (x) =αβη x + x

f (?X x) =αβη ?Y x

?F (?Gx) =αβη f (g(x))

Why higher-order? Metavariables may be instantiated to

functions, e.g. [?P ← λy.y + y].
407

A solution for ?X + ?Y =αβη x + x is [?X ← x, ?Y ← x].

A solution for ?P (x) =αβη x + x is [?P ← (λy.y + y)].

A solution for f (?Xx) =αβη?Y x is [?X ← (λz.z), ?Y ←
f].

Three solutions for ?F (?Gx) =αβη f (g(x)) are

[?F ← f, ?G← g],

[?F ← (λx.f (g x)), ?G← (λx.x)],

[?F ← (λx.x), ?G← (λx.f (g x))],

430

Higher-Order Unification: Facts

• Unification modulo408 αβ (HO-unification) is semi-decidable

(in Isabelle: incomplete).

• Unification modulo αβη is undecidable (in Isabelle: in-

complete).

408Unification of terms e, e′ modulo αβ means finding a sub-

stitution θ for metavariables such that θ(e) =αβ θ(e′).

Likewise, unification of terms e, e′ modulo αβη means find-

ing a substitution σ for metavariables such that σ(e) =αβη

σ(e′).

431

Higher-Order Unification: Facts

• Unification modulo408 αβ (HO-unification) is semi-decidable

(in Isabelle: incomplete).

• Unification modulo αβη is undecidable (in Isabelle: in-

complete).

• HO-unification is well-behaved for most practical cases.

• Important fragments (like HO-patterns) are decidable.

• HO-unification has possibly infinitely many solutions.

We will look at some of these issues again later.

408Unification of terms e, e′ modulo αβ means finding a sub-

stitution θ for metavariables such that θ(e) =αβ θ(e′).

Likewise, unification of terms e, e′ modulo αβη means find-

ing a substitution σ for metavariables such that σ(e) =αβη

σ(e′).

431

28.5 Summary on λ-Calculus

• λ-calculus is a formalism for writing functions.

• β-reduction is the notion of “computing” in λ-calculus.

• λ-calculus is Turing-complete.

• λ→ restricts syntax to “meaningful” λ-terms.

• Add-on features: Polymorphism and type classes.

• The λ-calculus will be used to represent syntax of object

logics. λ-terms409 stand for object terms/formulae. This

will be explained next lecture.

• HO-unification is important in applying proof rules.

409So just like first-order logic, the λ-calculus has a syntactic

category called terms. Bit the word “term” has a different

meaning for the λ-calculus than for first-order logic, and so

one can say λ-term for emphasis.

Note that at this stage, we have no syntactic category called

“formula” for the λ-calculus.

432

29 Encoding Syntax

433

Metatheory: Motivation

Previously, we have seen the (polymorphically) typed λ-calculus

(with type classes).

Now, we will see how the typed λ-calculus can be used as

a metalanguage (“metalogic”) for representing410 the syntax

of an object logic, e.g. first-order logic.

410In the following, we will distinguish between the object

logic and the metalogic. We have already seen this kind of

distinction before.

The object logic, or user-defined theory if you like, has a

syntax and has a notion of proof. Both must be represented

in the metalogic. This is what this lecture and a later lecture

are about.
411

φ ∈ Prop iff pφq ∈ o means: The object level formula φ

is a well-formed (according to the syntactic rules of the object

logic) proposition if and only if its encoding in the metalogic,

written pφq, has type o.

434

Metatheory: Motivation

Previously, we have seen the (polymorphically) typed λ-calculus

(with type classes).

Now, we will see how the typed λ-calculus can be used as

a metalanguage (“metalogic”) for representing410 the syntax

of an object logic, e.g. first-order logic.

Idea: An object-level proposition is a meta-level term. Met-

alogic type o for propositions.

The terms of type o encode object level propositions: φ ∈
Prop iff pφq : o411.

410In the following, we will distinguish between the object

logic and the metalogic. We have already seen this kind of

distinction before.

The object logic, or user-defined theory if you like, has a

syntax and has a notion of proof. Both must be represented

in the metalogic. This is what this lecture and a later lecture

are about.
411

φ ∈ Prop iff pφq ∈ o means: The object level formula φ

is a well-formed (according to the syntactic rules of the object

logic) proposition if and only if its encoding in the metalogic,

written pφq, has type o.

434

Metatheory: Motivation

Previously, we have seen the (polymorphically) typed λ-calculus

(with type classes).

Now, we will see how the typed λ-calculus can be used as

a metalanguage (“metalogic”) for representing410 the syntax

of an object logic, e.g. first-order logic.

Idea: An object-level proposition is a meta-level term. Met-

alogic type o for propositions.

The terms of type o encode object level propositions: φ ∈
Prop iff pφq : o411.

Later: representing proofs/provability. Then we will really

have a metalogic, not just metalanguage.
410In the following, we will distinguish between the object

logic and the metalogic. We have already seen this kind of

distinction before.

The object logic, or user-defined theory if you like, has a

syntax and has a notion of proof. Both must be represented

in the metalogic. This is what this lecture and a later lecture

are about.
411

φ ∈ Prop iff pφq ∈ o means: The object level formula φ

is a well-formed (according to the syntactic rules of the object

logic) proposition if and only if its encoding in the metalogic,

written pφq, has type o.

434

Why Have a Metalogic?

Why should we have a meta- or framework logic rather than

implementing provers for each object logic individually?

+ Implement ‘core’412 only once

+ Shared support for automation413

+ Conceptual framework414 for exploring what a logic is

But

+/− Metalayer415 between user and logic

− Makes assumptions416 about structure of logic

29.1 λ→: Review
412By the core we mean the syntax and proof rules of the met-

alogic. These should be simple, so that one can be reasonably

confident that the implementation is correct.
413There are some general techniques involved in automating

the search for a proof that work for various object logics. It

is therefore useful to implement these techniques on a higher

level, rather than considering each object logic individually.
414By implementing various object logics within the same

metalogic, we can compare the object logics in a more for-

mal way.
415Having a logic and a metalogic can be very mind-boggling.

We already experienced that when working with Isabelle, it is

sometimes confusing to know whether we are at the level of a

particular theory, or at the level of general Isabelle syntax, or

at the level of ML, the programming language that Isabelle is

implemented in.
416Designing a metalogic is a bold endeavor.

How are we supposed to know that the metalogic is ex-

pressive enough to encode any object logic someone might

435

λ→ is sufficient for presentation here (no polymorphism, type

classes).

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N→ N, (N→ N)→ N, N→ N→ N

• Syntax for terms: λ-calculus augmented with types

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const)

invent?

There is probably no general satisfactory answer to this ques-

tion.

In fact, we make assumptions that object logics are of a

certain kind.

This is related to the nature of implication. Roughly speak-

ing, we assume logics and proof systems for which the de-

duction theorem holds, i.e., for which A ` B (B is derivable

under assumption A) holds if and only if ` A→ B (A→ B

is derivable without any assumption).

There are logics (modal, relevance logics) for which the the-

orem does not hold [BM00].

436

Type Assignment

• Signature Σ ::= 〈 〉 | Σ, c : τ .

• Context Γ ::= 〈 〉 | Γ, x : τ .

• Type assignment rules

c : τ ∈ Σ

Γ ` c : τ
assum Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

437

29.2 Representing Syntax of Propositional Logic

Let Prop417 be our object logic:

P ::= x | ¬P | P ∧ P | P → P

29.2 Representing Syntax of Propositional Logic

Let Prop417 be our object logic:

P ::= x | ¬P | P ∧ P | P → P

Let λ→ be our metalogic. Declare

• B = {o}.

• Signature assigns types to constants418:

Σ = 〈not : , and : , imp : 〉

29.2 Representing Syntax of Propositional Logic

Let Prop417 be our object logic:

P ::= x | ¬P | P ∧ P | P → P

Let λ→ be our metalogic. Declare

• B = {o}.

• Signature assigns types to constants418:

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉
417We consider here the fragment of propositional logic con-

taining the logical symbols ¬,∧,→, and we call it Prop. We

chose this small fragment because it is sufficient for our pur-

poses, namely to demonstrate how encoding syntax in λ→

works. It would be trivial to adapt everything in the sequel to

include ∨ or ⊥.
418Now the object/meta distinction starts becoming mind-

boggling!

We declare

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉,
and so on the level of our metalogic λ→, not, and, and imp

are constants. However, these constants represent the logical

symbols of the object logic.

Note the types of the constants:

not has type o → o, so it takes a proposition and returns a

proposition.

and and imp have type o → o → o, so each takes two

propositions and returns a proposition.

438

• Context assigns types to variables419.

This approach is called first-order syntax (see later).

419We identify metalevel variables and object level proposi-

tional variables. Hence Γ should contain expressions of the

form a : o, where a is a λ→ variable, representing a proposi-

tional variable. Note that under this agreement, Γ should not

contain expressions like, e.g., a : o→ o.

439

Digression: Programming Languages

λ→ is the theory underlying typed functional programming.

Our declaration of B and Σ on the previous slide corresponds

to the declaration of an algebraic datatype in a functional

programming language [Pau96]:

datatype Prop =

VarInject of Variable | not of Prop

| and of Prop ∗ Prop | imp of Prop ∗ Prop

440

Example of First-Order Syntax

a : o ` imp (not a) a : o420

420a : o ` imp (not a) a : o is a judgement in λ→, which

may or may not be provable.

If we set up everything correctly and if a : o `
imp (not a) a : o is provable, then the judgement repre-

sents the fact ¬a→ a is a proposition.

In this sense, we could then say that derivability in λ→ cap-

tures the syntax of Prop, i.e., it can distinguish a legal propo-

sition from a “non-proposition”.

Note that this has nothing to do with the question of

whether it is a true proposition! So far, we are only talking

about the representation of syntax.

441

Example of First-Order Syntax

a : o ` imp (not a) a : o420

a : o ` imp : o→ o→ o

a : o ` not : o→ o a : o ` a : o

a : o ` not a : o

a : o ` imp (not a) : o→ o a : o ` a : o

a : o ` imp (not a) a : o

Applications of hyp and assum suppressed. Otherwise al-

ways rule app.
420a : o ` imp (not a) a : o is a judgement in λ→, which

may or may not be provable.

If we set up everything correctly and if a : o `
imp (not a) a : o is provable, then the judgement repre-

sents the fact ¬a→ a is a proposition.

In this sense, we could then say that derivability in λ→ cap-

tures the syntax of Prop, i.e., it can distinguish a legal propo-

sition from a “non-proposition”.

Note that this has nothing to do with the question of

whether it is a true proposition! So far, we are only talking

about the representation of syntax.

441

Non-example of First-Order Syntax

a : o ` not (imp a) a : o421

421a : o ` not (imp a) a : o is a judgement in λ→ which

may or may not be provable.

If we set up everything correctly and if a : o `
not (imp a) a : o is provable, then the judgement repre-

sents the fact that (→ a)¬a is a proposition.

However, you may observe that (→ a)¬a is gibberish.

In fact, there is no formal sense whatsoever in saying that

not (imp a) a corresponds to (→ a)¬a.

We will see that a : o ` not (imp a) a : o isn’t prov-

able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
422Generally, it is difficult to prove that a proof of a given

judgement within a given proof system does not exist, since

there are infinitely many possible proofs and it is not obvious

to predict how big an existing proof might be.

However, under certain conditions, there are techniques for

simplifying proofs. In fact, there may be normal form proofs,

i.e., proofs simplified as much as possible. One can then

442

Non-example of First-Order Syntax

a : o ` not (imp a) a : o421

a : o ` not : o→ o

a : o ` imp : o→ o→ o a : o ` a : o

a : o ` imp a : o→ o

???

421a : o ` not (imp a) a : o is a judgement in λ→ which

may or may not be provable.

If we set up everything correctly and if a : o `
not (imp a) a : o is provable, then the judgement repre-

sents the fact that (→ a)¬a is a proposition.

However, you may observe that (→ a)¬a is gibberish.

In fact, there is no formal sense whatsoever in saying that

not (imp a) a corresponds to (→ a)¬a.

We will see that a : o ` not (imp a) a : o isn’t prov-

able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
422Generally, it is difficult to prove that a proof of a given

judgement within a given proof system does not exist, since

there are infinitely many possible proofs and it is not obvious

to predict how big an existing proof might be.

However, under certain conditions, there are techniques for

simplifying proofs. In fact, there may be normal form proofs,

i.e., proofs simplified as much as possible. One can then

442

Non-example of First-Order Syntax

a : o ` not (imp a) a : o421

a : o ` not : o→ o

a : o ` imp : o→ o→ o a : o ` a : o

a : o ` imp a : o→ o

???

No proof possible! (Requires analysis of normal forms422.)
421a : o ` not (imp a) a : o is a judgement in λ→ which

may or may not be provable.

If we set up everything correctly and if a : o `
not (imp a) a : o is provable, then the judgement repre-

sents the fact that (→ a)¬a is a proposition.

However, you may observe that (→ a)¬a is gibberish.

In fact, there is no formal sense whatsoever in saying that

not (imp a) a corresponds to (→ a)¬a.

We will see that a : o ` not (imp a) a : o isn’t prov-

able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
422Generally, it is difficult to prove that a proof of a given

judgement within a given proof system does not exist, since

there are infinitely many possible proofs and it is not obvious

to predict how big an existing proof might be.

However, under certain conditions, there are techniques for

simplifying proofs. In fact, there may be normal form proofs,

i.e., proofs simplified as much as possible. One can then

442

Bijection between Prop and o

We desire bijection423 p·q : Prop → o that is

• adequate: each proposition in Prop can be represented

by a λ→-term of type o:

If P ∈ Prop then Γ ` pPq : o

argue: if a proof of a certain judgement exists, it must be no

bigger than a certain size. By searching through all proofs

smaller than this size, one can prove that no proof exists.

In this lecture, we do not go into the details of this topic

[GLT89, Pra65].
423In general mathematical terminology, a bijection between

A and B is a mapping f : A→ B such that for all a, a′ ∈ A,

where a 6= a′, we have f (a) 6= f (a′), and for each b ∈ B,

there exists an a ∈ A such that f (a) = b.

For a bijection f , the inverse f−1 is always defined, and we

have f (f−1(b)) = b for all b ∈ B and f−1(f (a)) = a for all

a ∈ A.

443

Bijection between Prop and o

We desire bijection423 p·q : Prop → o that is

• adequate: each proposition in Prop can be represented

by a λ→-term of type o:

If P ∈ Prop then Γ ` pPq : o

• faithful: each λ→ term of type o represents a proposition

in Prop:

If Γ ` t : o then ptq−1 ∈ Prop

argue: if a proof of a certain judgement exists, it must be no

bigger than a certain size. By searching through all proofs

smaller than this size, one can prove that no proof exists.

In this lecture, we do not go into the details of this topic

[GLT89, Pra65].
423In general mathematical terminology, a bijection between

A and B is a mapping f : A→ B such that for all a, a′ ∈ A,

where a 6= a′, we have f (a) 6= f (a′), and for each b ∈ B,

there exists an a ∈ A such that f (a) = b.

For a bijection f , the inverse f−1 is always defined, and we

have f (f−1(b)) = b for all b ∈ B and f−1(f (a)) = a for all

a ∈ A.

443

Adequacy of Bijection

Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o

424If P ∈ Prop, and if for each propositional variable x in P ,

we have x : o ∈ Γ, then Γ ` pPq : o.

Proof: By structural induction on Prop.

Base case: P is a propositional variable.

Then pPq = P , and so if P : o ∈ Γ, then we have Γ ` pPq :

o by rule hyp.

Induction step: Suppose the claim holds for P ∈ Prop and

Q ∈ Prop.

Consider the propositional formula ¬P . We have p¬Pq =

not pPq. Assume that for each propositional variable x in

P , we have x : o ∈ Γ. By the induction hypothesis, Γ `
pPq : o. Moreover Γ ` not : o → o by rule assum, and so

Γ ` not pPq : o by rule app.

Now consider the propositional formula P ∧ Q. We have

pP ∧ Qq = and pPq pQq. Assume that for each propo-

sitional variable x in P or Q, we have x : o ∈ Γ. By

the induction hypothesis, Γ ` pPq : o and Γ ` pQq : o.

Moreover Γ ` and : o → o → o by rule assum, and so

444

Adequacy of Bijection

Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o

Formalize mapping p·q:
pxq = x for x a variable

p¬Pq = not pPq
pP ∧Qq = and pPq pQq
pP → Qq = imp pPq pQq

424If P ∈ Prop, and if for each propositional variable x in P ,

we have x : o ∈ Γ, then Γ ` pPq : o.

Proof: By structural induction on Prop.

Base case: P is a propositional variable.

Then pPq = P , and so if P : o ∈ Γ, then we have Γ ` pPq :

o by rule hyp.

Induction step: Suppose the claim holds for P ∈ Prop and

Q ∈ Prop.

Consider the propositional formula ¬P . We have p¬Pq =

not pPq. Assume that for each propositional variable x in

P , we have x : o ∈ Γ. By the induction hypothesis, Γ `
pPq : o. Moreover Γ ` not : o → o by rule assum, and so

Γ ` not pPq : o by rule app.

Now consider the propositional formula P ∧ Q. We have

pP ∧ Qq = and pPq pQq. Assume that for each propo-

sitional variable x in P or Q, we have x : o ∈ Γ. By

the induction hypothesis, Γ ` pPq : o and Γ ` pQq : o.

Moreover Γ ` and : o → o → o by rule assum, and so

444

Adequacy of Bijection

Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o

Formalize mapping p·q:
pxq = x for x a variable

p¬Pq = not pPq
pP ∧Qq = and pPq pQq
pP → Qq = imp pPq pQq

Formal statement accounts for variables:

If P ∈ Prop, and if for each propositional variable x in P ,

we have x : o ∈ Γ, then Γ ` pPq : o. Proof by induction424.

424If P ∈ Prop, and if for each propositional variable x in P ,

we have x : o ∈ Γ, then Γ ` pPq : o.

Proof: By structural induction on Prop.

Base case: P is a propositional variable.

Then pPq = P , and so if P : o ∈ Γ, then we have Γ ` pPq :

o by rule hyp.

Induction step: Suppose the claim holds for P ∈ Prop and

Q ∈ Prop.

Consider the propositional formula ¬P . We have p¬Pq =

not pPq. Assume that for each propositional variable x in

P , we have x : o ∈ Γ. By the induction hypothesis, Γ `
pPq : o. Moreover Γ ` not : o → o by rule assum, and so

Γ ` not pPq : o by rule app.

Now consider the propositional formula P ∧ Q. We have

pP ∧ Qq = and pPq pQq. Assume that for each propo-

sitional variable x in P or Q, we have x : o ∈ Γ. By

the induction hypothesis, Γ ` pPq : o and Γ ` pQq : o.

Moreover Γ ` and : o → o → o by rule assum, and so

444

Faithfulness of Bijection

Define p·q−1

pxq−1 = x for x a variable

pnot Pq−1 = ¬pPq−1

pand P Qq−1 = pPq−1 ∧ pQq−1

pimp P Qq−1 = pPq−1 → pQq−1

Γ ` and pPq pQq : o by two applications of rule app.

The case P → Q is completely analogous.

425By the definition of Prop and the definition of p·q, it is

clear that pPq is defined for all P ∈ Prop. It is very easy to

show by induction on Prop that ppPqq−1 = P .

Here is an example of a proof by induction on Prop.

Obviously, everything we say here depends on the particular

fragment of propositional logic, but in an inessential way. It

would be trivial to adapt to other fragments.

445

Faithfulness of Bijection

Define p·q−1

pxq−1 = x for x a variable

pnot Pq−1 = ¬pPq−1

pand P Qq−1 = pPq−1 ∧ pQq−1

pimp P Qq−1 = pPq−1 → pQq−1

For bijection, should have ppPqq−1 = P and pptq−1q = t.

Former is trivial425, but what about latter?

Γ ` and pPq pQq : o by two applications of rule app.

The case P → Q is completely analogous.

425By the definition of Prop and the definition of p·q, it is

clear that pPq is defined for all P ∈ Prop. It is very easy to

show by induction on Prop that ppPqq−1 = P .

Here is an example of a proof by induction on Prop.

Obviously, everything we say here depends on the particular

fragment of propositional logic, but in an inessential way. It

would be trivial to adapt to other fragments.

445

ptq−1 Is not Total

Example: For t = not ((λxo. x)a), we have a : o ` t : o

a : o ` not : o→ o

a : o, x : o ` x : o

a : o ` λxo. x : o→ o
abs

a : o ` a : o

a : o ` (λxo. x) a : o
app

a : o ` not ((λxo. x) a) : o
app

But ptq−1 is undefined!

446

Normal Forms

If t : o, then there exists a t′ such that t =βη t
′, where t′ : o

and t′ is in canonical (βη-long) normal426 form, e.g.

not ((λxo. x) a) =βη not a

not =βη λxo. not x

imp (not ((λxo. x) a)) =βη λxo. imp (not a)x

426

A canonical βη-long normal form of a λ-term is obtained

by applying first β-reduction as long as possible, and then

computing the maximal η-expansion.

You may wonder: Why is there such a thing as a

maximal η-expansion? Can’t I expand a λ-term to

λx1 . . . xn.M x1 . . . xn for arbitrary n? In the untyped λ-

calculus, this is indeed the case. But in the typed λ-calculus,

the answer is no! Consider this example:

not can be expanded to λx. not x since not is of function

type: it has type o→ o. Therefore, not x can be assigned a

type, which is an intermediate step in typing λx. not x:
Γ, x : o ` not : o→ o Γ, x : o ` x : o

Γ, x : o ` not x : o
app

Γ ` λx. not x : o→ o
abs

But we cannot, say, expand not to λxy. not x y since it is

impossible to assign a type to not x y.

447

Bijection Theorem

The encoding p·q is a bijection between propositional formulae

with variables in Γ427 and canonical terms t′, where Γ ` t′ : o.

Effectively, when a term of type τ1 → τn → τ is η-

expanded, it will have the form λx1x2 . . . xn.e.

Normal forms are unique.
427Saying that a propositional formula has variables in Γ is

an abuse of terminology, i.e., it isn’t exactly true, but it is

trusted that the reader can guess the exact formulation.

What we mean is: a propositional formula such that for

each propositional variable x occurring in the formula, we

have x : o ∈ Γ.
428What this picture says is that if the left hand side is a frag-

ment from a proof tree, deriving the judgement ` (λxσ. e)e′ :

τ , then there exists a proof of the judgement ` e[x← e′] : τ .

Be aware however that our argument here is very sketchy.

We do not go into the details in this course.
429Simply writing t : o is again a bit sloppy. We should write:

Γ ` t : o for some Γ containing only expressions of the form

x : o, where x is a propositional variable in Prop.

448

Bijection Theorem

The encoding p·q is a bijection between propositional formulae

with variables in Γ427 and canonical terms t′, where Γ ` t′ : o.

Proof: Based on normalization
x : σ ` e : τ
` λxσ. e : σ → τ

abs ` e′ : σ

` (λxσ. e)e′ : τ
app

⇒ 428 ` e[x← e′] : τ

Effectively, when a term of type τ1 → τn → τ is η-

expanded, it will have the form λx1x2 . . . xn.e.

Normal forms are unique.
427Saying that a propositional formula has variables in Γ is

an abuse of terminology, i.e., it isn’t exactly true, but it is

trusted that the reader can guess the exact formulation.

What we mean is: a propositional formula such that for

each propositional variable x occurring in the formula, we

have x : o ∈ Γ.
428What this picture says is that if the left hand side is a frag-

ment from a proof tree, deriving the judgement ` (λxσ. e)e′ :

τ , then there exists a proof of the judgement ` e[x← e′] : τ .

Be aware however that our argument here is very sketchy.

We do not go into the details in this course.
429Simply writing t : o is again a bit sloppy. We should write:

Γ ` t : o for some Γ containing only expressions of the form

x : o, where x is a propositional variable in Prop.

448

Bijection Theorem

The encoding p·q is a bijection between propositional formulae

with variables in Γ427 and canonical terms t′, where Γ ` t′ : o.

Proof: Based on normalization
x : σ ` e : τ
` λxσ. e : σ → τ

abs ` e′ : σ

` (λxσ. e)e′ : τ
app

⇒ 428 ` e[x← e′] : τ

Corollary: If t : o429 then t =βη t
′ and pt′q−1 ∈ Prop for

some canonical t′.
Effectively, when a term of type τ1 → τn → τ is η-

expanded, it will have the form λx1x2 . . . xn.e.

Normal forms are unique.
427Saying that a propositional formula has variables in Γ is

an abuse of terminology, i.e., it isn’t exactly true, but it is

trusted that the reader can guess the exact formulation.

What we mean is: a propositional formula such that for

each propositional variable x occurring in the formula, we

have x : o ∈ Γ.
428What this picture says is that if the left hand side is a frag-

ment from a proof tree, deriving the judgement ` (λxσ. e)e′ :

τ , then there exists a proof of the judgement ` e[x← e′] : τ .

Be aware however that our argument here is very sketchy.

We do not go into the details in this course.
429Simply writing t : o is again a bit sloppy. We should write:

Γ ` t : o for some Γ containing only expressions of the form

x : o, where x is a propositional variable in Prop.

448

29.3 Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae

(propositions), represented in λ→ by the type o.

29.3 Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae

(propositions), represented in λ→ by the type o.

In first-order430 logic, we also have the syntactic category

of terms. For representation in λ→, we now introduce type i,

so B = {i, o}.

29.3 Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae

(propositions), represented in λ→ by the type o.

In first-order430 logic, we also have the syntactic category

of terms. For representation in λ→, we now introduce type i,

so B = {i, o}.
Just like Γ ` a : o means that a represents a proposition,

Γ ` t : i means that t represents a term.
430In the previous section, we have seen how we can use first-

order syntax (of λ→) to represent the syntax of an object logic,

then Prop. We haven’t really understood yet why we speak

of first-order syntax, but note that the notion “first-order”

refers to λ→, i.e., the metalevel.

We will now consider first-order logic as object language.

So we will now attempt to represent the syntax of first-order

logic (the object language) using first-order λ→ syntax (the

metalanguage). To avoid confusion, it is best to imagine

that it is a mere coincidence that both the object and the

metalanguage are described as “first-order”. Of course there

are reasons why both languages are called like that, but it is

best to understand this separately for both levels. We will

come back to this.

449

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language431:

Terms T ::= x | 0 | s432 T | T + T | T × T
Formulae F ::= T = T | ¬F | F ∧ F | F → F

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language431:

Terms T ::= x | 0 | s432 T | T + T | T × T
Formulae F ::= T = T | ¬F | F ∧ F | F → F

In λ→ (on metalevel), define signature Σ = ΣF
433 ∪ ΣP ∪

ΣC:

ΣF = 〈zero : , succ : , plus : ,

times : 〉
ΣP = 〈eq : 〉
ΣC = 〈not : , and : , imp : 〉
431With this grammar, we specify a certain language of a

fragment (since quantifiers, ∨, and ⊥ are missing) of first-

order logic.

Alternatively, we could say that F = {0, s,+,×} and

P = {=}. However, the way we defined first-order logic,

the language thus obtained would also include quantifiers, ∨,

and ⊥. For the moment we want to restrict ourselves to the

fragment given by the grammar for FOA.
432s is a unary prefix function, so s applied to T is written

s T .
433We have defined
ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i, times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language431:

Terms T ::= x | 0 | s432 T | T + T | T × T
Formulae F ::= T = T | ¬F | F ∧ F | F → F

In λ→ (on metalevel), define signature Σ = ΣF
433 ∪ ΣP ∪

ΣC:

ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i,

times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉
ΣC = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉
431With this grammar, we specify a certain language of a

fragment (since quantifiers, ∨, and ⊥ are missing) of first-

order logic.

Alternatively, we could say that F = {0, s,+,×} and

P = {=}. However, the way we defined first-order logic,

the language thus obtained would also include quantifiers, ∨,

and ⊥. For the moment we want to restrict ourselves to the

fragment given by the grammar for FOA.
432s is a unary prefix function, so s applied to T is written

s T .
433We have defined
ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i, times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉
zero : i means: viewed on the object level, 0 is a term.

plus : i → i → i means: viewed on the object level, plus is

a function that takes two terms and returns a term. eq : i→
i → o means: viewed on the object level, = is a predicate

that takes two terms and returns a proposition.

450

Example: px + s 0q434 =

On the metalevel (level of λ→), zero, plus and eq are con-

stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical symbols of an object

logic as constants. It would however be possible to set up

the encoding in such a way that the non-logical symbols are

encoded as variables, so we would have a context ΓF∪ΓP and

instead of our ΣF ∪ ΣP . This is in line with Perlis’ epigram.

We will sometimes take this approach in the exercises as the

encoding of λ→ in Isabelle makes it more straightforward to

play around with different Γ’s than with different Σ’s.
434We extend the definition of p·q as follows:

pxq = x

p0q = zero

ps tq = succ ptq

pr + tq = plus prq ptq

pr × tq = times prq ptq

451

Example: px + s 0q434 = .

On the metalevel (level of λ→), zero, plus and eq are con-

stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical symbols of an object

logic as constants. It would however be possible to set up

the encoding in such a way that the non-logical symbols are

encoded as variables, so we would have a context ΓF∪ΓP and

instead of our ΣF ∪ ΣP . This is in line with Perlis’ epigram.

We will sometimes take this approach in the exercises as the

encoding of λ→ in Isabelle makes it more straightforward to

play around with different Γ’s than with different Σ’s.
434We extend the definition of p·q as follows:

pxq = x

p0q = zero

ps tq = succ ptq

pr + tq = plus prq ptq

pr × tq = times prq ptq

451

Example: px + s 0q434 = plus x (succ zero).

On the metalevel (level of λ→), zero, plus and eq are con-

stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical symbols of an object

logic as constants. It would however be possible to set up

the encoding in such a way that the non-logical symbols are

encoded as variables, so we would have a context ΓF∪ΓP and

instead of our ΣF ∪ ΣP . This is in line with Perlis’ epigram.

We will sometimes take this approach in the exercises as the

encoding of λ→ in Isabelle makes it more straightforward to

play around with different Γ’s than with different Σ’s.
434We extend the definition of p·q as follows:

pxq = x

p0q = zero

ps tq = succ ptq

pr + tq = plus prq ptq

pr × tq = times prq ptq

451

Encoding FOL in General

In general, to encode some first-order language, we must de-

fine ΣF and ΣP so that for each n-ary f ∈ F , p ∈ P

fenc : i→ . . .→ i︸ ︷︷ ︸
n times

→ i ∈ ΣF ,

penc : i→ . . .→ i︸ ︷︷ ︸
n times

→ o ∈ ΣP ,

and then pf (t1, . . . , tn)q = fenc pt1q . . . ptnq and pp(t1, . . . , tn)q =

penc pt1q . . . ptnq.
Abusing notation, we might skip the subscript enc.

Note that here, on the object level, x is a first-order variable

(a variable is a term), and hence on the metalevel, it has type

i.

452

Quantifiers in First-Order Syntax

Along the same lines, one might suggest

all : var → o→ o, so p∀x. Pq = all x pPq

But this approach has some problems:

435In first-order logic, variables are not a syntactic category

of their own, but rather they are a “sub-category” of terms.

Therefore one should expect that var should be a “subtype”

of i, that is to say, every term of type var is automatically

also of type i. However, there is no such notion in λ→.

436There is a notion of substitution in λ→, hence on the

metalevel. But all is just a constant like any other on the

level of λ→, and hence (and (p x)(all x (q x)))[x ← a] =

(and (p a)(all a (q a))), and not (and (p a)(all x (q x)))

as one should expect.

That is to say, the standard operation of substitution, which

exists on the metalevel, is of no use for implementing substi-

tution on the object level. Instead, substitution on the object

level must be “programmed explicitly”.

Note that the following question arises: on the λ→ level,

should the terms of type var be variables or constants?

One could imagine that they are variables. This means that

453

Quantifiers in First-Order Syntax

Along the same lines, one might suggest

all : var → o→ o, so p∀x. Pq = all x pPq

But this approach has some problems:

• Variables are also terms, so “var ⊆ i”435? No subtyping!

435In first-order logic, variables are not a syntactic category

of their own, but rather they are a “sub-category” of terms.

Therefore one should expect that var should be a “subtype”

of i, that is to say, every term of type var is automatically

also of type i. However, there is no such notion in λ→.

436There is a notion of substitution in λ→, hence on the

metalevel. But all is just a constant like any other on the

level of λ→, and hence (and (p x)(all x (q x)))[x ← a] =

(and (p a)(all a (q a))), and not (and (p a)(all x (q x)))

as one should expect.

That is to say, the standard operation of substitution, which

exists on the metalevel, is of no use for implementing substi-

tution on the object level. Instead, substitution on the object

level must be “programmed explicitly”.

Note that the following question arises: on the λ→ level,

should the terms of type var be variables or constants?

One could imagine that they are variables. This means that

453

Quantifiers in First-Order Syntax

Along the same lines, one might suggest

all : var → o→ o, so p∀x. Pq = all x pPq

But this approach has some problems:

• Variables are also terms, so “var ⊆ i”435? No subtyping!

• all is not a binding operator in λ→. E.g., (p(x)∧∀x. q(x))[x←
a] cannot be modeled436 as (and (p x)(all x (q x)))[x←
a].

435In first-order logic, variables are not a syntactic category

of their own, but rather they are a “sub-category” of terms.

Therefore one should expect that var should be a “subtype”

of i, that is to say, every term of type var is automatically

also of type i. However, there is no such notion in λ→.

436There is a notion of substitution in λ→, hence on the

metalevel. But all is just a constant like any other on the

level of λ→, and hence (and (p x)(all x (q x)))[x ← a] =

(and (p a)(all a (q a))), and not (and (p a)(all x (q x)))

as one should expect.

That is to say, the standard operation of substitution, which

exists on the metalevel, is of no use for implementing substi-

tution on the object level. Instead, substitution on the object

level must be “programmed explicitly”.

Note that the following question arises: on the λ→ level,

should the terms of type var be variables or constants?

One could imagine that they are variables. This means that

453

29.4 Higher-Order Abstract Syntax (HOAS)

Example, full FOA: F ::= . . . ∀x.A | ∃x.A Σ = ΣF ∪ΣP ∪
ΣC ∪ ΣQ:

ΣQ = 〈all : (i→ o437)→ o, exists : (i→ o)→ o〉

29.4 Higher-Order Abstract Syntax (HOAS)

Example, full FOA: F ::= . . . ∀x.A | ∃x.A Σ = ΣF ∪ΣP ∪
ΣC ∪ ΣQ:

ΣQ = 〈all : (i→ o437)→ o, exists : (i→ o)→ o〉
Extend the definition of p.q:

p∀x. Pq = all (λxi. pPq)
p∃x. Pq = exists (λxi. pPq)

the signature Σ would not contain any constants of type var

or . . .→ var. The only terms of type var would be variables.

In this case, a λ→ term like (and (p x)(all x (q x))) could

only be typed in a context Γ containing x : var.

Alternatively, one could imagine that they are constants.

The signature signature Σ would contain expressions of the

form x : var, where x would be a λ→ constant. One thing

that isn’t nice about this approach is that Σ cannot be an

infinite sequence, and so we would have to fix a finite set of

variables that can be represented in λ→.

In either case, the operation of substitution on the metalevel

is of no use for implementing substitution on the object level.
437Some intuition: a proposition is represented by a term of

type o. Now a term of type i → o represents a proposition

where some positions are marked in a special way. For exam-

ple, in λxi. eq x x, the positions where x occurs are marked in

a special way, by virtue of the fact that the λ in front of the

expression binds the x. This “marking” allows us to “insert”

454

Adequacy and faithfulness as before438.

other terms in place of x. We will see this soon.

all is a constant which can be applied to a term of type

i→ o.
438Terms and formulae are represented by (canonical) mem-

bers of i and o. The principle is similar as for Prop.

455

Examples

p∀x. x = xq = all(λxi. eq x x)

p∀x.∃y.¬(x + x = y)q =

all(λxi. exists(λyi. not (eq (plus x x) y)))

456

Examples

p∀x. x = xq = all(λxi. eq x x)

p∀x.∃y.¬(x + x = y)q =

all(λxi. exists(λyi. not (eq (plus x x) y)))

Example derivation (all but one steps use rule app):

` all : (i→ o)→ o

x : i ` eq : i→ i→ o x : i ` x : i

x : i ` eq x : i→ o x : i ` x : i

x : i ` eq x x : o

` λxi. eq x x : i→ o
abs

` all(λxi. eq x x) : o

456

Order

Order of a type: For type τ written τ1 → . . . → τn, right

associated, τn ∈ B:

• Ord(τ) = 0 if τ ∈ B, i.e., if n = 1;

• Ord(τ) = 1 + max(Ord(τi)),

439A term of first-order type is a function taking (an arbitrary

number of) arguments all of which must be of base type.

A term of second-order type is a function taking (an arbitrary

number of) arguments some of which may be functions (of

first order type).

A term of third-order type is a function taking (an arbitrary

number of) arguments some of which may be functions, which

again take functions (of first order type) as arguments.

. . .

Obviously, it would be wrong to think of the order as “num-

ber of arrows in a type”. Instead, one can think of order as

the “nesting depth of arrows in a type”.

Sometimes, the notion “second-order” is used in the context

of type theories for quite a different concept, but we will avoid

that other use here.

457

Order

Order of a type: For type τ written τ1 → . . . → τn, right

associated, τn ∈ B:

• Ord(τ) = 0 if τ ∈ B, i.e., if n = 1;

• Ord(τ) = 1 + max(Ord(τi)),

Intuition: “functions as arguments”439.

A type of order 1 is first-order, of order 2 second-order etc.

A type of order > 1 is called higher order (although in

higher-order unification or higher-order rewriting, even order

1 is considered higher-order).
439A term of first-order type is a function taking (an arbitrary

number of) arguments all of which must be of base type.

A term of second-order type is a function taking (an arbitrary

number of) arguments some of which may be functions (of

first order type).

A term of third-order type is a function taking (an arbitrary

number of) arguments some of which may be functions, which

again take functions (of first order type) as arguments.

. . .

Obviously, it would be wrong to think of the order as “num-

ber of arrows in a type”. Instead, one can think of order as

the “nesting depth of arrows in a type”.

Sometimes, the notion “second-order” is used in the context

of type theories for quite a different concept, but we will avoid

that other use here.

457

Why “Higher Order”?

Constants representing propositional operators (logical sym-

bols) or non-logical symbols are first-order (hence first-order

syntax):

and : o→ o→ o

458

Why “Higher Order”?

Constants representing propositional operators (logical sym-

bols) or non-logical symbols are first-order (hence first-order

syntax):

and : o→ o→ o

Variable binding operators are higher-order (hence higher-order

syntax):

all : (i→ o)→ o

458

Exercise: Summation Operator

What is the order of the summation operator
∑

?

459

Exercise: Summation Operator

What is the order of the summation operator
∑

?

sum : i→ i→ (i→ i)→ i

p
n∑
x=0

(x + 2)q =

459

Exercise: Summation Operator

What is the order of the summation operator
∑

?

sum : i→ i→ (i→ i)→ i

p
n∑
x=0

(x + 2)q = sum zero n (λxi. plus x (succ succ zero))

So the order is 2.

459

Why “Abstract”?

HOAS looks quite different from the concrete object level syn-

tax and hence “abstracts” from this object level syntax.

More specifically, different object level binding operators

are represented by a combination of a constant (all, exists)

and the generic λ-operator.

Thanks to this technique, standard operations on syntax

need no special encoding, but are supported implicitly by λ→.

We will now see this.

460

Binding

Binding on the object level and metalevel coincide.

So in ∀x. P , all occurrences of x in P are bound, and

likewise, in all(λxi. pPq), all occurrences of x in pPq are

bound.

This provides support for substitution.

461

Substitution

Recall rules for ∀:

∀x. P (x)

P (t)
∀-E

462

Substitution

Recall rules for ∀:

∀x. P (x)

P (t)
∀-E

all P

P (t)
∀-E

462

Substitution

Recall rules for ∀:

∀x. P (x)

P (t)
∀-E

all P

P (t)
∀-E

∀x. x = x

x = x[x← 0]
∀-E

Now apply substitution. . .

462

Substitution

Recall rules for ∀:

∀x. P (x)

P (t)
∀-E

all P

P (t)
∀-E

∀x. x = x

0 = 0
∀-E

Now apply substitution. . .

462

Substitution

Recall rules for ∀:

∀x. P (x)

P (t)
∀-E

all P

P (t)
∀-E

∀x. x = x

0 = 0
∀-E

all (λxi. eq x x)

(λxi. eq x x) zero
∀-E

Now apply substitution. . .

Now apply β-reduction. . .

462

Substitution

Recall rules for ∀:

∀x. P (x)

P (t)
∀-E

all P

P (t)
∀-E

∀x. x = x

0 = 0
∀-E

all (λxi. eq x x)

eq zero zero
∀-E

Now apply substitution. . .

Now apply β-reduction. . .

We now understand “marked positions in a formula”.

462

Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming

of bound variables:

(∀x. P ↔ ∀y. P [x← y])

463

Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming

of bound variables:

(∀x. P ↔ ∀y. P [x← y])

Likewise, on the metalevel, formulae obtained by bound

variable renaming are α-equivalent:

all(λxi. P) =α all(λy
i. P [x← y])

463

29.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop

29.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop

Type declaration B = {i, o}

Variable x

29.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop

Type declaration B = {i, o}

Variable x Variable440 x

Non-logical symb. +

29.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop

Type declaration B = {i, o}

Variable x Variable440 x

Non-logical symb. + 1st-order constant plus : i→ i→ i

Logical symbol ∧

29.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop

Type declaration B = {i, o}

Variable x Variable440 x

Non-logical symb. + 1st-order constant plus : i→ i→ i

Logical symbol ∧ 1st-order constant

and : o→ o→ o

Binding operator ∀

29.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop

Type declaration B = {i, o}

Variable x Variable440 x

Non-logical symb. + 1st-order constant plus : i→ i→ i

Logical symbol ∧ 1st-order constant

and : o→ o→ o

Binding operator ∀ 2nd-order const. all : (i→ o)→ o

Meaningful expr.

a ∧ b ∈ Prop

29.5 Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop

Type declaration B = {i, o}

Variable x Variable440 x

Non-logical symb. + 1st-order constant plus : i→ i→ i

Logical symbol ∧ 1st-order constant

and : o→ o→ o

Binding operator ∀ 2nd-order const. all : (i→ o)→ o

Meaningful expr.

a ∧ b ∈ Prop

Member of type (and a b) : o

440Although propositional variables and first-order variables

are quite different concepts, the representation in λ→ uses

λ→-variables for both. Technically however, there is a dif-

ference between the representations of propositional variables

and first-order variables. In particular, propositional variables

are represented as λ→-variables of type o, and first-order vari-

ables are represented as λ→-variables of type i.

464

30 Resolution

465

Three Sections on Deduction Techniques

After encoding syntax, the next topic in the theory is encoding

proofs.

But before, we look at some more practical issues:

• Resolution

• Proof search

• Term rewriting

We will explain many techniques relevant for Isabelle, but

not in extreme detail and rigor. We want to understand better

how Isabelle works, but not provide a formal proof that she

works correctly, or be able to rebuild her.

466

Resolution

Resolution is the basic mechanism for transforming proof states

in Isabelle in order to construct a proof.

It involves unifying a certain part of the current goal (state)

with a certain part of a rule, and replacing that part of the

current goal.

We have already explained this in the labs and you have

been working with it all the time, but now we want to under-

stand it more thoroughly (in the next lecture, we will look at

it more abstractly).

We look at several variants of resolution.

467

Resolution (rtac, as in Prolog441)

ψ

φ1
. . . φi . . . φn

φ1, . . . , φn are current sub-

goals and ψ is original goal.

Isabelle displays

Level . . . (n subgoals)

ψ

1. φ1
...

n. φn

441Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

468

Resolution (rtac, as in Prolog441)

ψ

φ1
. . . φi . . . φn

β

α1 . . .αm

φ1, . . . , φn are current sub-

goals and ψ is original goal.

Isabelle displays

Level . . . (n subgoals)

ψ

1. φ1
...

n. φn

Jα1; . . . ;αmK =⇒ β is rule.

441Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

468

Resolution (rtac, as in Prolog441)

ψ

φ1
. . . φi . . . φn

β

α1 . . .αm

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

�

1

........
........
...........
...............

..................
......................

.........................
............................

................................
...................................

.......................................
..

Simple scenario where φi has

no premises442. Now β must

be unifiable with selected sub-

goal φi.

441Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

468

Resolution (rtac, as in Prolog441)

ψ′

φ′1 . . . φ′i . . . φ′n

β′

α′1 . . .α
′
m

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

�

1

........
........
...........
...............

..................
......................

.........................
............................

................................
...................................

.......................................
..

Simple scenario where φi has

no premises442. Now β must

be unifiable with selected sub-

goal φi.

We apply the unifier (′443)

441Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

468

Resolution (rtac, as in Prolog441)

ψ′

φ′1 . . . α
′
1
. . .α′m. . . φ

′
n

Simple scenario where φi has

no premises442. Now β must

be unifiable with selected sub-

goal φi.

We apply the unifier (′443)

We replace φ′i by the premises

of the rule.

441Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our φ1, . . . , φn) with a Horn

clause (corresponding to our Jα1; . . . ;αmK =⇒ β).

468

Resolution (with Lifting over Parameters)

ψ

φ1
. . .

∧
x.φi . . . φn

Now suppose the i’th (selected) subgoal is preceded by
∧

(metalevel universal quantifier444).

469

Resolution (with Lifting over Parameters)

ψ

φ1
. . .

∧
x.φi . . . φn

β

α1
. . . αm

Rule

469

Resolution (with Lifting over Parameters)

ψ

φ1
. . .

∧
x.φi . . . φn

∧
x.β[x]

∧
x.α1[x] . . .

∧
x.αm[x]

Rule is lifted445 over x: Apply [?X ←?X(x)].

469

Resolution (with Lifting over Parameters)

ψ

φ1
. . .

∧
x.φi . . . φn

∧
x.β[x]

∧
x.α1[x] . . .

∧
x.αm[x]

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

9

*

. ...
...

..
..

...
..

....................................
.................................

.............................
..........................

......................
...................

Rule is lifted445 over x: Apply [?X ←?X(x)].

As before, β must be unifiable with φi;

469

Resolution (with Lifting over Parameters)

ψ′

φ′1 . . .
∧
x.φ′i . . . φ′n

∧
x.β′[x]

∧
x.α′1[x] . . .

∧
x.α′m[x]

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

9

*

. ...
...

..
..

...
..

....................................
.................................

.............................
..........................

......................
...................

Rule is lifted445 over x: Apply [?X ←?X(x)].

As before, β must be unifiable with φi; apply the unifier.

469

Resolution (with Lifting over Parameters)

ψ′

φ′1 . . .
∧
x.α′1[x]. . .

∧
x.α′m[x]. . . φ′n

Rule is lifted445 over x: Apply [?X ←?X(x)].

As before, β must be unifiable with φi; apply the unifier.

We replace φ′i by the premises of the rule. α′1, . . . , α
′
m are

preceded by
∧
x.

469

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

Now, suppose the i’th (selected) subgoal has assumptions

φi1, . . . , φiki
.

470

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

β

As before, we have a rule. Here, β is (hopefully) unifiable

with φi, but β is not446 unifiable with the entire i’th subgoal.

470

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
.

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

Rule must be lifted over assumptions447. No unification so

far!

470

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
.

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

.

..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............
.
..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............

9
z

.
...

...........

Now, subgoal and rule conclusion (below the bar) are unifiable448.

470

Resolution (with Lifting over Assumptions)

ψ

φ1
. . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
.

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)
R

.
..

...

..
..

...
.......................................

.......

..............................
................

........................
.......................

.....................
.....................

......

Now, subgoal and rule conclusion (below the bar) are unifiable448.

Non-trivially449, β must be unifiable with φi.

470

Resolution (with Lifting over Assumptions)

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1. . .φ
′
iki

]

α′1 . . . α′m

...

[φ′i1 . . .φ
′
iki

]
.

[φ′i1 . . .φ
′
iki

]

β′
...

[φ′i1 . . .φ
′
iki

]
.
..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............

.

..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............
.
..............

..............

..............

..............
..............

.............
.............

..............
..............

...
............
.

............
..

...........
...

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...

...........
...
............
..

............
.

.............
..............
..............
.............
.............
..............
..............

..............

..............

..............

We apply the unifier.

470

Resolution (with Lifting over Assumptions)

ψ′

φ′1 . . .φ
′
i−1 α

′
1

. . . α′m φ
′
i+1
. . . φ′n

...

[φ′i1 . . .φ
′
iki

]
.

[φ′i1 . . .φ
′
iki

]

We replace the subgoal.

470

Rule Premises Containing =⇒

ψ′

φ′1 . . . α′j . . . φ′n

...

[φ′i1 . . . φ
′
iki

]

What if some α′j has the form Jγ1; . . . ; γlK =⇒ δ?

450Generally, Isabelle makes no distinction between

Jψ1; . . . ;ψnK =⇒ Jµ1; . . . ;µkK =⇒ φ

and

Jψ1; . . . ;ψn;µ1; . . . ;µkK =⇒ φ

and displays the second form. Semantically, this corresponds

to the equivalence of A1 ∧ . . . ∧ An → B and A1 → . . . →
An → B.

We have seen this in the exercises.

471

Rule Premises Containing =⇒

ψ′

φ′1 . . . Jγ1; . . . ; γlK =⇒ δ . . . φ′n

...

[φ′i1 . . . φ
′
iki

]

What if some α′j has the form Jγ1; . . . ; γlK =⇒ δ?

Is this what we get?

450Generally, Isabelle makes no distinction between

Jψ1; . . . ;ψnK =⇒ Jµ1; . . . ;µkK =⇒ φ

and

Jψ1; . . . ;ψn;µ1; . . . ;µkK =⇒ φ

and displays the second form. Semantically, this corresponds

to the equivalence of A1 ∧ . . . ∧ An → B and A1 → . . . →
An → B.

We have seen this in the exercises.

471

Rule Premises Containing =⇒

ψ′

φ′1 . . . δ′ . . . φ′n

...

[φ′i1 . . . φ
′
iki

; γ′1 . . . γ
′
l]

What if some α′j has the form Jγ1; . . . ; γlK =⇒ δ?

Is this what we get?

Well, we write ... for =⇒, and use A =⇒ B =⇒ C ≡
JA;BK =⇒ C450.

450Generally, Isabelle makes no distinction between

Jψ1; . . . ;ψnK =⇒ Jµ1; . . . ;µkK =⇒ φ

and

Jψ1; . . . ;ψn;µ1; . . . ;µkK =⇒ φ

and displays the second form. Semantically, this corresponds

to the equivalence of A1 ∧ . . . ∧ An → B and A1 → . . . →
An → B.

We have seen this in the exercises.

471

Elimination-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . .φiki
]

β

α1 . . .αm

Same scenario as before451

451So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
452Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

472

Elimination-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . .φiki
]

β

α1 . . .αm

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
...

..
...

...
..

..
...

...

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
......................................

..
..

...
...

...
..

..
..

Same scenario as before451, but now β must be unifiable

with φi, and α1 must be unifiable with φil, for some l.

451So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
452Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

472

Elimination-Resolution

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i,1 . . . φ
′
il
. . .φ′iki

]
β′

α′1 . . .α
′
m

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
...

..
...

...
..

..
...

...

........
.......
.......
..............

...
.......
.......
.......
.......

........
.......
.......
..............

...
.......
.......
.......
.......

)

:

.
......................................

..
..

...
...

...
..

..
..

Same scenario as before451, but now β must be unifiable

with φi, and α1 must be unifiable with φil, for some l.

Apply the unifier.

451So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
452Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

472

Elimination-Resolution

ψ′

φ′1 . . . φ
′
i−1 α

′
2

. . . α′m φ
′
i+1

. . . φ′n

... ...

[φ′i1 . . . φ
′
i,l−1, φ

′
i,l+1

. . .φ′iki
] [φ′i1 . . . φ

′
i,l−1, φ

′
i,l+1

. . .φ′iki
]

Same scenario as before451, but now β must be unifiable

with φi, and α1 must be unifiable with φil, for some l.

Apply the unifier.

We replace φ′i by the premises of the rule except the first452.

α′2, . . . , α
′
m inherit the assumptions of φ′i, except φ′il.

451So the scenario looks as for resolution with lifting over

assumptions. However, this time we do not show the lifting

over assumptions in our animation.
452Elimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E

472

Destruct-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . . φiki
]

β

α

Simple rule

30.1 Summary on Resolution

• Build proof resembling sequent style notation;

• technically: replace goals with rule premises, or goal premises

with rule conclusions;

then the result of elimination resolution is
[A;B]

....
B

A ∧B → B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any

information away”. Before we had the assumption A ∧ B.

This was replaced by the components A and B as separate

assumptions.
453Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution

can be seen in the following example. Unlike elimination-

resolution, destruct-resolution “throws information away”.

473

Destruct-Resolution

ψ

φ1
. . . φi . . . φn

...

[φi1 . . . φil . . . φiki
]

β

α

........
........
.......
..............

...
.......
.......
........
.......

........
........
.......
..............

...
.......
.......
........
.......

+

:

.
........................

...........................
.............................

................................
..................................

.....................................
.......................................

Simple rule, and α must be unifiable with φil, for some l.

30.1 Summary on Resolution

• Build proof resembling sequent style notation;

• technically: replace goals with rule premises, or goal premises

with rule conclusions;

then the result of elimination resolution is
[A;B]

....
B

A ∧B → B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any

information away”. Before we had the assumption A ∧ B.

This was replaced by the components A and B as separate

assumptions.
453Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution

can be seen in the following example. Unlike elimination-

resolution, destruct-resolution “throws information away”.

473

Destruct-Resolution

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1 . . . φ
′
il
. . . φ′iki

]
β′

α′

........
........
.......
..............

...
.......
.......
........
.......

........
........
.......
..............

...
.......
.......
........
.......

+

:

.
........................

...........................
.............................

................................
..................................

.....................................
.......................................

Simple rule, and α must be unifiable with φil, for some l.

We apply the unifier.

30.1 Summary on Resolution

• Build proof resembling sequent style notation;

• technically: replace goals with rule premises, or goal premises

with rule conclusions;

then the result of elimination resolution is
[A;B]

....
B

A ∧B → B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any

information away”. Before we had the assumption A ∧ B.

This was replaced by the components A and B as separate

assumptions.
453Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution

can be seen in the following example. Unlike elimination-

resolution, destruct-resolution “throws information away”.

473

Destruct-Resolution

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1 . . . β
′ . . . φ′iki

]

Simple rule, and α must be unifiable with φil, for some l.

We apply the unifier.

We replace premise453 φ′il with the conclusion of the rule.

30.1 Summary on Resolution

• Build proof resembling sequent style notation;

• technically: replace goals with rule premises, or goal premises

with rule conclusions;

then the result of elimination resolution is
[A;B]

....
B

A ∧B → B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any

information away”. Before we had the assumption A ∧ B.

This was replaced by the components A and B as separate

assumptions.
453Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution

can be seen in the following example. Unlike elimination-

resolution, destruct-resolution “throws information away”.

473

• metavariables and unification to obtain appropriate in-

stance of rule, delay commitments;

• lifting over parameters and assumptions;

• various techniques to manipulate premises or conclusions,

as convenient: rtac, etac, dtac.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is
P ∧Q
Q

conjunct2

then the result of destruct-resolution is
[B]

....
B

A ∧B → B

If we had instead used rule
P ∧Q
P

conjunct2

474

31 Automation by Proof Search

the result would have been

[A]
....
B

A ∧B → B

and we would be stuck. We accidentally “threw away” the

assumption B.

475

Outline of this Part

• Proof search and backtracking

• Classifying rules

• Proof procedures

31.1 Proof Search and Backtracking

• Need for more automation454

• Some aspects in proof construction are highly non-deterministic:

– unification: which unifier to choose?
454We have seen in the exercises that doing a proof step by

step is very tedious and often involves difficult guessing or

alternatively, backtracking. We cannot hope to prove any-

thing about realistic systems if proving simple theorems is so

tedious.

Efficiency considerations are important for automation. The

non-determinacy in proof search obviously leads to inefficien-

cies as many possibilities have to be explored.

476

– resolution: where455 to apply a rule (which ’subgoal’)?

– which rule to apply?

• How to organize proof-search technically456?

455We have seen in the exercises (and also in the lecture) that

one can choose the subgoal to which one wants to apply a

rule.
456We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. But how does

one organize all those potential proof states in order to find

proofs?

477

Organizing Proof Search Conceptually

Organize proof search as a tree457 of theorems458 (thm’s).

s1
�
����

H
HHHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

457We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
458Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

459For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
460Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

478

Organizing Proof Search Conceptually

Organize proof search as a tree457 of theorems458 (thm’s).

s1
�
����

H
HHHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
�
����

s2
�
�	
s4

?
s7
?

• Tactic applications move us along

leftmost path.

457We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
458Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

459For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
460Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

478

Organizing Proof Search Conceptually

Organize proof search as a tree457 of theorems458 (thm’s).

s1
�
����

H
HHHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
�
����

s2
�
�	
s4

• Tactic applications move us along

leftmost path.

• Using undo();459 moves us up-

wards (previous proof state).

457We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
458Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

459For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
460Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

478

Organizing Proof Search Conceptually

Organize proof search as a tree457 of theorems458 (thm’s).

s1
�
����

H
HHHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
�
����

s2
@
@R
s5

• Tactic applications move us along

leftmost path.

• Using undo();459 moves us up-

wards (previous proof state).

• Using back(); moves us (up and)

right (alternative successors460 due

to different unifiers).

457We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
458Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

459For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
460Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

478

Organizing Proof Search Conceptually

Organize proof search as a tree457 of theorems458 (thm’s).

s1
�
����

H
HHHj

s2 s3 . . .
�
�	
@
@R ?

s4 s5 s6

? ?
s7 s8

...
? ?

��
��√

s1
�
����

s2
@
@R
s5

?
s8
?

��
��√

• Tactic applications move us along

leftmost path.

• Using undo();459 moves us up-

wards (previous proof state).

• Using back(); moves us (up and)

right (alternative successors460 due

to different unifiers).

• This can be understood as tableau

proving [Pau97a].

457We have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. Since in general,

a proof state has several successor states (states that can be

obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
458Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle regards as true.

459For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
460Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,

i.e., go up one level (just like undo();), and then try alternative

successors.

478

Problems

The search space of proof search can be thought of as such a

tree, but it cannot be implemented like this straightaway:

• Branching of the tree infinite in general (HO-unification).

• Explicit tree representation461 expensive in time and space.

As an aside462, it is also possible to understand proof search

more abstractly. But we are interested in the operational as-

pects.
461Obviously, an infinite tree cannot be represented explicitly.

But even if the tree is finite, it is generally expensive to rep-

resent it explicitly. In particular, the tree may contain many

failing branches and only few successful ones, which begs the

question if representing the unsuccessful branches cannot be

avoided somehow.
462The explicit tree representation is not very abstract in that

each node has a defined order of the children (first successor,

second successor, . . .). This order is an artefact of the order

in which unifiers are enumerated by the unification algorithm

used. It is inessential for the proofs that are contained in the

tree.

As a more abstract understanding of proof search, one can

organize proof search as a relation on theorems (thm’s)

prooftrees = P(thm× thm)

More precisely, one can look at a fragment of a tree of theo-

rems as before.

One could say that each tactic application (with a particular

479

Organizing Proof Search Operationally

rule) gives rise to a relations on theorems. That is to say, s

and s′ are in the relation if s′ is a successor proof state of s.

This is abstract in that there is no order among the succes-

sors of a proof state.

Also, one does not represent a tree explicitly.

Advantage: we have an abstract algebra.

• PT1 ◦ PT2: sequential composition (“then”).

Given two relations between thm’s, PT1 and PT2, we

define composition PT1 ◦ PT2 as the relation

{(s, s′) | there is s′′ such that (s, s′′) ∈ PT1 and (s′′, s′) ∈ PT2}

• PT1 ∪ PT2: alternative of proof attempts (“or”)

The union of two relations is defined as usual for sets. If

PT1 and PT2 each model the application of a particular

tactic, then PT1 ∪ PT2 models the application of “first

tactic or second tactic”.

• PT ∗ : reflexive transitive closure (“repeat ”)

480

PT ∗ is inductively defined as the smallest set where

– (s, s) ∈ PT ∗ for all s;

– if (s, s′) ∈ PT and (s, s′′) ∈ PT ∗ then (s′′, s′) ∈
PT ∗.

So if PT models the application of a particular tactic,

then PT ∗ models the application of that tactic arbitrarily

many times.

• (φ⇒ φ, φ) ∈ PT ∗ ≡ “there is a proof for φ”

Note that the initial proof state is φ =⇒ φ.

Isabelle will display this as

Level 1 : (1 subgoal)

φ

1. φ

It might contradict your intuition and experience with Is-

abelle to think that the initial proof state is φ =⇒ φ.

481

Shouldn’t it be just φ? However, this seeming contradic-

tion can be resolved.

The way Isabelle displays the proof state focuses on what

has to be proven, the subgoals. The proof state should

be read as: if I have proven φ (the φ occurring after the

1.), I am done.

Technically, the proof state is an Isabelle theorem (thm),

i.e. something which Isabelle regards as true. Now of

course, she cannot initially regard φ as true, as φ is what

is to be proven. But she can regard φ =⇒ φ as true. The

aim of a proof search is to transform φ =⇒ φ (φ can be

shown if I assume φ) into φ (φ can be shown if I assume

nothing).

However, this also has some disadvantages:

• Union ∪ is difficult to implement (needs comparison with

all previous results since one wants to avoid duplicates).

• More operational, strategic interpretations of union ∪ are

482

Organize proof search as a function on theorems463 (thm’s)

type tactic = thm→ thm seq

where seq464 is the type constructor for infinite lists.

This allows us to have tacticals465:

• THEN

• ORELSE

• REPEAT

• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .

desirable (try this — then that, interleave attempts in

PT1 with attempts in PT2, and so forth).

463This way of understanding and origanizing proof search is

not so abstract, but rather operational. Instead of saying that

φ and φ′ are in a relation, one says that φ′ is in the sequence

returned by the tactic applied to φ. There is an order among

the successors of a proof state.

One still does not represent a tree explicitly, although con-

ceptually, proof search is about exploring this tree.
464For any type τ , the type τ seq (recall the notation) is the

type of (possibly) infinite lists of elements of type τ . This is

of course an abstract datatype. There should be functions to

return the head and the tail of such an infinite list.

An abstract datatype is a type whose terms cannot be rep-

resented explicitly and accessed directly, but only via certain

functions for that type.
465

483

31.2 Classifying Rules

In your early Isabelle exercises, you only used backward

reasoning (rtac). You experienced that some rules can be

applied blindly most of the time, e.g. →-I or ∧-I. Others in-

volve “guessing”, e.g. ∧-EL or ∧-ER (you do not know which

to apply to deal with a ∧ in the premises).

31.2 Classifying Rules

In your early Isabelle exercises, you only used backward

reasoning (rtac). You experienced that some rules can be

applied blindly most of the time, e.g. →-I or ∧-I. Others in-

volve “guessing”, e.g. ∧-EL or ∧-ER (you do not know which

to apply to deal with a ∧ in the premises).

Later on you learned about etac combined with specially

tailored rules (they have an “E” in their name). That helps

reduce the “guessing”.

31.2 Classifying Rules

In your early Isabelle exercises, you only used backward

reasoning (rtac). You experienced that some rules can be

applied blindly most of the time, e.g. →-I or ∧-I. Others in-

volve “guessing”, e.g. ∧-EL or ∧-ER (you do not know which

to apply to deal with a ∧ in the premises).

Later on you learned about etac combined with specially

tailored rules (they have an “E” in their name). That helps

reduce the “guessing”.

In the following we will explain some underlying principles

of this using sequent style notation.

• THEN

• ORELSE

• REPEAT

• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .

are called tacticals.

Tacticals are operations on tactics. They play an impor-

tant role in automating proofs in Isabelle. The most ba-

sic tacticals are THEN and ORELSE. Both of those tacti-

cals are of type tactic ∗ tactic → tactic and are writ-

ten infix: tac1 THEN tac2 applies tac1 and then tac2, while

tac1 ORELSE tac2 applies tac1 if possible and otherwise ap-

plies tac2 [Pau05, Ch. 4].

484

Review: Sequent Notation

Γ ` A (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

Γ ` A
Γ ` A ∨B ∨-IL

Γ ` B
Γ ` A ∨B ∨-IR

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C ∨-E

485

Example: ∧-E′

In the sequent calculus466, one writes ∧-E467 as:
A,B,Γ ` C
A ∧B,Γ ` C ∧-E′

This mimics468 the effect of using ∧-E (conjE of Isabelle)

in combination with etac. The rule ∧-E′ can be formally

derived469.
466Tableau proving is a derivation system [Fit96].

It turns out that the language of tableaux is equivalent to

the sequent calculus (recall our use of sequent style notation)

[Pau97a]. The techniques Isabelle uses for automating proofs

can thereby be understood as tableau proving [Pau97a].
467In Isabelle notation, it looks as follows:

JP&Q; JP ; QK =⇒ RK =⇒ R

(see IFOL lemmas.ML).
468That is to say, ∧-E′ behaves for the sequent notation as

conjE+etac behaves for Isabelle.
469Let us first derive the rule ∧-E (conjE of Isabelle), here

written in sequent style notation:
Γ ` A ∧B A,B,Γ ` C

Γ ` C ∧-E

486

A Proof by Blind Rule Application

` (ρ ∧ φ)→ ψ → φ

The topmost connective is →, which asks for →-I.

Γ ` A ∧B A,B, Γ ` C
Γ ` C ∧-E

A Proof by Blind Rule Application

ρ ∧ φ ` ψ → φ

` (ρ ∧ φ)→ ψ → φ
→-I

The topmost connective is →, which asks for →-I.

Again →-I.

A ∧B,Γ ` A ∧B A,B,A ∧B,Γ ` C
A ∧B,Γ ` C ∧-E

If we replace Γ withA∧B,Γ (just instantiation),

A Proof by Blind Rule Application

ρ ∧ φ, ψ ` φ
ρ ∧ φ ` ψ → φ

→-I

` (ρ ∧ φ)→ ψ → φ
→-I

The topmost connective is →, which asks for →-I.

Again →-I.

The derivation looks as follows:
A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` A→ C
→-E

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` C →-E

Now based on ∧-E, the derivation of ∧-E′ is:

A,B,A ∧B,Γ ` C
A ∧B,Γ ` C ∧-E

If we replace Γ withA∧B,Γ (just instantiation), then one part

holds by the assumption rule,

A Proof by Blind Rule Application

ρ, φ, ψ ` φ
ρ ∧ φ, ψ ` φ ∧-E′

ρ ∧ φ ` ψ → φ
→-I

` (ρ ∧ φ)→ ψ → φ
→-I

The topmost connective is →, which asks for →-I.

Again →-I.

The derivation looks as follows:
A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` A→ C
→-E

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` C →-E

Now based on ∧-E, the derivation of ∧-E′ is:

A,B,Γ ` C
A,B,A ∧B,Γ ` C

weaken

A ∧B,Γ ` C ∧-E

If we replace Γ withA∧B,Γ (just instantiation), then one part

holds by the assumption rule, and we can apply weakening.

A Proof by Blind Rule Application

The topmost connective is →, which asks for →-I.

Again →-I.

The derivation looks as follows:
A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` A→ C
→-E

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` C →-E

Now based on ∧-E, the derivation of ∧-E′ is:

A,B,Γ ` C

A ∧B,Γ ` C ∧-E′

A Proof by Blind Rule Application

The topmost connective is →, which asks for →-I.

Again →-I.

The derivation looks as follows:
A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` A→ C
→-E

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` C →-E

Now based on ∧-E, the derivation of ∧-E′ is:

Alternatively, we can derive ∧-E′ directly:

487

To decompose470 the assumption ρ ∧ φ, use ∧-E′.

A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

A ∧B,Γ ` B → A→ C
weaken

A ∧B,Γ ` A ∧B
A ∧B,Γ ` B ∧-ER

A ∧B,Γ ` A→ C
→-E

A ∧B,Γ ` A ∧B
A ∧B,Γ ` A ∧-EL

A ∧B,Γ ` C →-E

470See now that we first derived the rule ∧-E′, which is a rule

that can be used blindly to decompose a conjunction in the

assumptions. This was not something ad-hoc to prove this

particular formula. The rule ∧-E′ should be used generally

instead of ∧-EL or ∧-EL, because it has the advantage that

it can be applied blindly.

The essential point about being able to apply a rule blindly

is that the application does not throw any information away.

This is indeed the case for ∧-E′. We remove the assumption

φ∧ψ, but we get the two conjuncts φ and ψ as assumptions

instead.

488

To decompose470 the assumption ρ ∧ φ, use ∧-E′.

The proof can now be completed by the assumption rule.

A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

A ∧B,Γ ` B → A→ C
weaken

A ∧B,Γ ` A ∧B
A ∧B,Γ ` B ∧-ER

A ∧B,Γ ` A→ C
→-E

A ∧B,Γ ` A ∧B
A ∧B,Γ ` A ∧-EL

A ∧B,Γ ` C →-E

470See now that we first derived the rule ∧-E′, which is a rule

that can be used blindly to decompose a conjunction in the

assumptions. This was not something ad-hoc to prove this

particular formula. The rule ∧-E′ should be used generally

instead of ∧-EL or ∧-EL, because it has the advantage that

it can be applied blindly.

The essential point about being able to apply a rule blindly

is that the application does not throw any information away.

This is indeed the case for ∧-E′. We remove the assumption

φ∧ψ, but we get the two conjuncts φ and ψ as assumptions

instead.

488

Safe and Unsafe Rules

Combined tactics rely on classification of rules, maintained in

Isabelle data structure claset471, and accessed by functions472

of type claset ∗ thm list→ claset.

Class: To add use function:

Safe introduction rules addSIs

Safe elimination rules addSEs

Unsafe introduction rules addIs

Unsafe elimination rules addEs

The rule ∧-E′ mimics the effect of using ∧-E in combination

with etac, which you can see by looking again at the exercises

on etac.
471claset is an abstract datatype. Overloading notation,

claset is also an ML unit function which will return a term of

that datatype when applied to (), namely, the current classifier

set.

A classifier set determines which rules are safe and unsafe

introduction, respectively elimination rules. The current clas-

sifier set is a classifier set used by default in certain tactics.

The current classifier set can be accessed via special func-

tions for that purpose.
472The functions addSIs, addSEs, addIs, addEs are all of

type claset ∗ thm list→ claset. They add rules to the

current classifier set. For example, addSIs adds a rule as safe

introduction rule.

489

Adapting Rules for Automated Proof Search

As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

` (α→ β) ∨ (β → α)
∨-swap473

Neither ∨-IL nor ∨-IR would work here. Uses classical logic.

Adapting Rules for Automated Proof Search

As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
∨-swap473

Adapting Rules for Automated Proof Search

As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

¬(α→ β), β ` α
→-swapE474

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
∨-swap473

Adapting Rules for Automated Proof Search

As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

¬α, α, β ` β
¬(α→ β), β ` α

→-swapE474

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
∨-swap473

473The rule ∨-swap is

¬A,Γ ` B
Γ ` A ∨B

∨-swap

To derive it you need classical reasoning, as the rule exploits

the equivalence of A→ B and ¬A ∨B.

This is a derived rule which is explicitly contained in the

Isabelle classifier set as the clasical introduction rule for ∨. It

is called disjCI (check out FOL lemmas1.ML)!
474The rule →-swapE is

A,¬C,Γ ` B
¬(A→ B),Γ ` C

→-swapE

To derive it you need classical reasoning, as the rule exploits

the equivalence of ¬(A→ B) and A ∧ ¬B.

This is a standard technique in Isabelle, based on swapping.

For dealing with negated formulas in the premises of the cur-

rent subgoal, introduction rules are combined with swap using

etac.

490

Principle: Emulate sequent calculus475 with derived rules.

Generally, we have a formula ¬(A◦B) in the premises, where

◦ is some binary connective. Swapping will put (A ◦ B) in

the conclusion and put the old conclusion into the premises

after negating it. Afterwards, an introduction rule for ◦ will

be used [Pau05, Section 11.2].
475The sequent calculus works with expressions of the form

A1, . . . , An ` B1, . . . , Bm which should be interpreted

as: under the assumptions A1, . . . , An, at least one of

B1, . . . , Bm can be proven. So as a formula, this would be

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨Bm.

In Isabelle (and the proof trees we have seen, e.g,. in this

lecture), we only have sequents with one formula to the right

of the `. We have said that we use sequent notation.

The important point to note here is that in the sequent

calculus, one can shift a formula from left to right or vice

versa, but one has to negate it, or more precisely, turn A

into ¬A and ¬A into A. This is called swapping and is an

important technique for combined tactics.

491

Handling Quantifiers

Can derive476 ∀-E′ (≡ allE477) using ∀-E (≡ spec):

∀x.A(x)

[A(x)]
....
B

B
∀-E′

This is effective for getting rid of a ∀ in the premises.

Handling Quantifiers

Can derive476 ∀-E′ (≡ allE477) using ∀-E (≡ spec):

∀x.A(x)

[A(x)]
....
B

B
∀-E′

This is effective for getting rid of a ∀ in the premises.

Problem: ∀x.A(x) may still be needed.

Handling Quantifiers

Can derive476 ∀-E′ (≡ allE477) using ∀-E (≡ spec):

∀x.A(x)

[A(x),∀x.A(x)]
....
B

B
∀-dupE

This is effective for getting rid of a ∀ in the premises.

Problem: ∀x.A(x) may still be needed.

The sequent calculus inherently relies on classical reasoning

[Pau05, Ch. 11].

476You should do it in Isabelle. The rule is:

JALL x. P (x); P (x) =⇒ RK =⇒ R

477As you may have noticed earlier, there is a confusion be-

tween the names of proof rules as we present them for the

theory and the names used in Isabelle. For example, rule→-E

is called mp in Isabelle. This confusion concerns elimination

rules.

There is however a good reason for these choices. In tradi-

tional presentations of logic, one sets up the simplest possible

elimination rules for the connectives which naturally arise from

the meaning of those connectives. This is what we have done

as well. However, as we see in this lecture, these rules cannot

be applied blindly and are thus not very suitable for automa-

492

Solution: Introduce duplicating478 rules. Turns search infinite479!

tion. Therefore, combined tactics in Isabelle use derived rules

such as ∧-E (called conjE in Isabelle).

Since this is of such central importance for Isabelle, one

prefers to have the obvious names conjE, allE etc. for the

rules that are actually used in “advanced” applications of Is-

abelle.

478You should recall that elimination rules are used in combi-

nation with etac. Using allE will eliminate the quantifier.

You should try a proof of the formula (∀x.P (x))→ (P (a)∧
P (b)) in Isabelle to convince yourself that this is a problem

since the quantified formula ∀x.P (x) is needed twice as an

assumption, with two different instantiations of x.

The duplicating rule ∀-dupE has the effect that the univer-

sally quantified formula will still remain as an assumption.
479Given only the rules so far (in combination with the ap-

propriate tactics, rtac and etac, and swapping), excluding

∀-dupE, the proof search would be finite.

493

Check out allE and all dupE in IFOL lemmas.ML480!

http://isabelle.in.tum.de/library/

Check out allE and all dupE in IFOL lemmas.ML480!

The rule ∀-dupE is responsible for making the proof search

infinite. This can be no surprise however, as first-order logic

is undecidable [And02], and so there can be no automatic

procedure for proving all true first-order formulas.
480These files should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

494

http://isabelle.in.tum.de/library/

Side question: What is the difference481 to ∃-E482?

481The difference between

∃x.A(x)

[A(x)]
....
B

B
∃-E

and

∀x.A(x)

[A(x)]
....
B

B
∀-E′

is that the first rule has a side condition: x must not occur

free in any assumption on which B depends. See also what

this means in terms of Isabelle.
482The rule

∃x.A(x)

[A(x)]
....
B

B
∃-E

495

31.3 Proof Procedures (Simplified)

Tactics in Isabelle are performed in order483:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules)

2. canonize: propagate “x = t” throughout subgoal

3. rtac unsafe I rules ORELSE etac unsafe E rules

4. atac

There are variants of this. We do not study them in detail,

we just use them . . .

was derived previously (but in Isabelle, it is a basic rule in

IFOL.ML). It is

JALL x. P (x); !!x. P (x) =⇒ RK =⇒ R

Note that the rule allE (∀-E′) is

JALL x. P (x); P (x) =⇒ RK =⇒ R

The difference is that the former rule contains a metalevel

universal quantifier. In terms of paper-and-pencil proofs, ∃-E

has the side condition that x must not occur free in any as-

sumption on which B (see tree!) depends. There is no such

side condition for ∀-E′.
483Tactics in Isabelle are performed in order:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules);

2. canonize: propagate “x = t” . . . throughout subgoal;

3. rtac unsafe I rules ORELSE etac unsafe E rules ;

4. atac.

496

Combined Proof Search Tactics

• step tac : claset→ int→ tactic

(just safe steps)

• fast tac : claset→ int→ tactic

(safe and unsafe steps in depth-first stategy)

• best tac : claset→ int→ tactic

(safe and unsafe steps in breadth-first stategy)

• slow tac : claset→ int→ tactic

(like fast tac, but with backtracking atac’s)

• blast tac : claset→ int→ tactic

(like fast tac, but often more powerful)

One elementary proof step consists of trying a safe intro-

duction rule with rtac, or, if that is not possible, a safe

elimination rule with etac. This will be repeated as long as

possible.

Then in the current subgoal, any assumption of the form x =

t (where x is a metavariable) will be propagated throughout

the subgoal, i.e., all occurrences of x wil be replaced by t.

Then Isabelle will try one application of an unsafe intro-

duction rule with rtac, or, if that is not possible, an unsafe

elimination rule with etac.

Finally, she will use atac. Note that atac is unsafe. In

general, there are several premises in a subgoal and atac may

unify the conclusion of the subgoal with the wrong premise.

497

31.4 Summary on Automated Proof Search

• Proof search can be organized as a tree of theorems.

• Calculi can be set up to facilitate proof search (although

this must be done by specialists).

• Combined with search strategies, powerful automatic pro-

cedures arise. Can prove well-known hard problems such

as ((∃y.∀x.J(y, x)∨¬J(x, x))→ ¬(∀x.∃y.∀z.J(z, y)∨
¬J(z, x))

• Unfortunately, failure is difficult to interpret484.

484fast tac, blast tac just tell you that the tactic failed,

but not why. And it would be difficult to do that, since back-

tracking means that all attempts failed. This can have several

reasons: a rule is missing, a rule has been classified wrongly,

the search strategy was not adequate for the problem, enu-

meration of unifiers in a bad order. Or a combination thereof.

Or it might be that too many unsafe steps are needed, since

fast tac limits their number.

498

32 Term Rewriting

32.1 Higher-Order Rewriting

Motivation: Recall equational proofs. They work by replac-

ing equals by equals. They can be formally justified.

32 Term Rewriting

32.1 Higher-Order Rewriting

Motivation: Recall equational proofs. They work by replac-

ing equals by equals. They can be formally justified.

It is practical to view deduction to some extent as equa-

tional proving and give it some attention algorithmically. This

will be even more true later. We speak of simplification or

(higher-order) rewriting.

499

Simplification: Examples

• In a FOL proof: rewrite (∀x.Px ∧ Qx) to (∀x.Px) ∧
(∀x.Qx).

• In school arithmetic: simplify 0 + (x + 0)485 to x.

• In functional programming: simplify [a, b, d] @ [a, b]486 to

[a, b, d, a, b].

This is all based on rewrite rules as in functional program-

ming487:
[] @ X = X

(x :: X) @ Y = x :: (X @ Y)

485Simplifying 0 + (x+ 0) to x is something you have learned

in school. It is justified by the usual semantics of arithmetic

expressions. Here, however, we want to see more formally

how such simplification works, rather than why it is justified.
486Lists are a common datatype in functional programming.

[a, b, d, a, b] is a list. Actually, this notation is syntactic sugar

for a :: (b :: (d :: (a :: (b :: [])))). Here, [] is the empty list

and :: is a term constructor taking an alement and a list and

returning a list. @ stands for list concatenation.

Intuitively, it is clear that [a, b, d] concatenated with [a, b]

yields [a, b, d, a, b].

Term constructor is usual terminology in functional pro-

gramming. In first-order logic, we would speak of a function

symbol. In the λ-calculus, we would speak of a (special kind

of) constant (this will become clear later).
487For example, the lines

[] @ X = X

(x :: X) @ Y = x :: (X @ Y)

500

Why Higher-Order?

• Formally, rewriting operates on λ-terms, since we use the

λ-calculus to encode object logics.

• We speak of higher-order rewriting because the variables

in the rewriting rules might have functional type such as

i → o or (i → o) → o. Higher-order rewriting involves

higher-order unification.

define the list concatenation function @.

501

Term Rewriting: Foundation

• Recall: An equational theory consists of rules

x = x
refl

x = y

y = x
sym

x = y y = z

x = z
trans

x = y P (x)

P (y)
subst

• plus additional (possibly conditional) rules of the form

φ1 = ψ1, . . . , φn = ψn ⇒ φ = ψ.

The additional rules can be interpreted as rewrite rules488,

i.e. they are applied from left to right.
488An equational theory is a formalism based on equational

rules of the form φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ.

A term rewriting system (to be defined shortly) is another

formalism, based of rewrite rules. They also have the form

φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ, but they have a different

flavor in that = must be interpreted as a directed symbol.

One could also write instead of = to emphasize this.

502

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:

(a) pick a subterm t in e(t)

489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:

(a) pick a subterm t in e(t)

(b) for a rewrite rule φ = ψ,

match489 (unify) φ against t , i.e., find θ such that

φθ = t

489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:

(a) pick a subterm t in e(t)

(b) for a rewrite rule φ = ψ,

match489 (unify) φ against t , i.e., find θ such that

φθ = t

(d) replace e(t) by e(ψθ)

489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:

(a) pick a subterm t in e(t)

(b) for a rewrite rule φ = ψ,

match489 (unify) φ against t , i.e., find θ such that

φθ = t

(d) replace e(t) by e(ψθ)

3. goto 1

489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:

(a) pick a subterm t in e(t) (resp. e′(t))

(b) for a rewrite rule φ = ψ,

match489 (unify) φ against t , i.e., find θ such that

φθ = t

(d) replace e(t) by e(ψθ) (resp. e′(t) by e′(ψθ))

3. goto 1

489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:

(a) pick a subterm t in e(t) (resp. e′(t))

(b) for a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ,

match489 (unify) φ against t , i.e., find θ such that

φθ = t

(c) solve490 (φ1 = ψ1, . . . , φn = ψn)θ

(d) replace e(t) by e(ψθ) (resp. e′(t) by e′(ψθ))

3. goto 1

489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:

(a) pick a subterm t in e(t) (resp. e′(t))

(b) for a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ,

match489 (unify) φ against t , i.e., find θ such that

φθ = t

(c) solve490 (φ1 = ψ1, . . . , φn = ψn)θ

(d) replace e(t) by e(ψθ) (resp. e′(t) by e′(ψθ))

3. goto 1

This procedure + the rules define a term rewriting sys-

tem491.
489Given two terms s and t, a unifier is a substitution θ such

that sθ = tθ. A match is a substitution which only instanti-

ates one of s or t, so sθ = t or s = tθ (one should usually

clarify in the given context which of the terms is instantiated).
490This means that the procedure is called recusively for the

conditions of the rewrite rule.
491The procedure defines a term rewriting system [BN98,

Klo93].

Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the λ-calculus —

with all those different formalisms playing a role here, we must

agree on some terminology. In particular, the words term,

function, predicate, constant and variable are used somewhat

differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus

as it is built into Isabelle for representing object logics. In

particular:

• A term is a λ-term; object-level formulae (including equa-

503

Rewriting: Example

x + 0 = x (neutr)

x + y = y + x (comm)

(x + y) + z = x + (y + z) (assoc)

(1 + 3) + 5 = 1 + ((5 + 0) + 3)

tions) as well as object-level terms are all represented as

λ-terms, and so for example, when we rewrite an equa-

tion, we rewrite a term.

• One could say that a function is any λ-term of functional

type, i.e., of type containing at least one→. Apart from

that, there may be function symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• There may be predicate symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• A constant is a λ-term consisting of just one symbol from

a set Const . Constants of the λ-calculus may be used to

represent connectives, quantifiers, functions, predicates

or any other symbols that an object logic may contain.

• The notion of variable is that of the metalevel, and so we

504

Rewriting: Example

x + 0 = x (neutr)

x + y = y + x (comm)

(x + y) + z = x + (y + z) (assoc)

(1 + 3) + 5 = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + ((5 + 0) + 3)

tions) as well as object-level terms are all represented as

λ-terms, and so for example, when we rewrite an equa-

tion, we rewrite a term.

• One could say that a function is any λ-term of functional

type, i.e., of type containing at least one→. Apart from

that, there may be function symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• There may be predicate symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• A constant is a λ-term consisting of just one symbol from

a set Const . Constants of the λ-calculus may be used to

represent connectives, quantifiers, functions, predicates

or any other symbols that an object logic may contain.

• The notion of variable is that of the metalevel, and so we

504

Rewriting: Example

x + 0 = x (neutr)

x + y = y + x (comm)

(x + y) + z = x + (y + z) (assoc)

(1 + 3) + 5 = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + (5 + 3)

tions) as well as object-level terms are all represented as

λ-terms, and so for example, when we rewrite an equa-

tion, we rewrite a term.

• One could say that a function is any λ-term of functional

type, i.e., of type containing at least one→. Apart from

that, there may be function symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• There may be predicate symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• A constant is a λ-term consisting of just one symbol from

a set Const . Constants of the λ-calculus may be used to

represent connectives, quantifiers, functions, predicates

or any other symbols that an object logic may contain.

• The notion of variable is that of the metalevel, and so we

504

Rewriting: Example

x + 0 = x (neutr)

x + y = y + x (comm)

(x + y) + z = x + (y + z) (assoc)

(1 + 3) + 5 = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + (5 + 3)

1 + (3 + 5) = 1 + (3 + 5)

tions) as well as object-level terms are all represented as

λ-terms, and so for example, when we rewrite an equa-

tion, we rewrite a term.

• One could say that a function is any λ-term of functional

type, i.e., of type containing at least one→. Apart from

that, there may be function symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• There may be predicate symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• A constant is a λ-term consisting of just one symbol from

a set Const . Constants of the λ-calculus may be used to

represent connectives, quantifiers, functions, predicates

or any other symbols that an object logic may contain.

• The notion of variable is that of the metalevel, and so we

504

Rewriting: Example

x + 0 = x (neutr)

x + y = y + x (comm)

(x + y) + z = x + (y + z) (assoc)

(1 + 3) + 5 = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + ((5 + 0) + 3)

1 + (3 + 5) = 1 + (5 + 3)

1 + (3 + 5) = 1 + (3 + 5)

Similar to equational proofs.

tions) as well as object-level terms are all represented as

λ-terms, and so for example, when we rewrite an equa-

tion, we rewrite a term.

• One could say that a function is any λ-term of functional

type, i.e., of type containing at least one→. Apart from

that, there may be function symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• There may be predicate symbols in some object logic.

On the metalevel (and hence also for the purpose of term

rewriting), these would be constants.

• A constant is a λ-term consisting of just one symbol from

a set Const . Constants of the λ-calculus may be used to

represent connectives, quantifiers, functions, predicates

or any other symbols that an object logic may contain.

• The notion of variable is that of the metalevel, and so we

504

Term Rewriting is Non-Trivial

• There are two major problems: this decision procedure

may fail because:

– it diverges (the rules are not terminating), e.g. x+y =

y + x or x = y =⇒ x = y;

Term Rewriting is Non-Trivial

• There are two major problems: this decision procedure

may fail because:

– it diverges (the rules are not terminating), e.g. x+y =

y + x or x = y =⇒ x = y;

– rewriting does not yield a unique normal form (the

usually mean “variables including metavariables”.

Nevertheless, some confusion may arise wherever we use the

terminology from the point of view of an object logic.

See the following example:

The following is an example rewrite sequence, using the rules

for lists. The picked subterm which is being replaced is un-

derlined in each step:

(a :: (b :: (d :: []))) @ (a :: (b :: [])) = [a, b, d, a, b]
a :: ((b :: (d :: [])) @ (a :: (b :: []))) = [a, b, d, a, b]
a :: (b :: ((d :: []) @ (a :: (b :: [])))) = [a, b, d, a, b]
a :: (b :: (d :: ([] @ (a :: (b :: []))))) = [a, b, d, a, b]
a :: (b :: (d :: (a :: (b :: [])))) = [a, b, d, a, b]

Note the we are done now, as the right-hand side is identical

to the left-hand side, modulo the use of syntactic sugar.

Note that generally, a term rewriting sequence rewrites arbi-

trary terms. Here we only rewrite equations. From the point

of view of term rewriting, an equation is just a special case of

505

rules are not confluent), e.g. rules a = b, a = c492.

a term.

One could also imagine that object-level function and pred-

icate symbols are represented as variables, as is done in LF.

Recall Perlis’ epigram.

492For a rewriting system consisting of rules a = b, a = c,

one cannot rewrite b = c to prove the equality, although it

holds:
a = b
b = a

sym
a = c

b = c
trans

506

http://rewriting.loria.fr/rta/

rules are not confluent), e.g. rules a = b, a = c492.

• Providing criteria for terminating and confluent rule sets

is an active research area (see [BN98, Klo93], RTA, . . .).

a term.

One could also imagine that object-level function and pred-

icate symbols are represented as variables, as is done in LF.

Recall Perlis’ epigram.

492For a rewriting system consisting of rules a = b, a = c,

one cannot rewrite b = c to prove the equality, although it

holds:
a = b
b = a

sym
a = c

b = c
trans

506

http://rewriting.loria.fr/rta/

32.2 Extensions of Rewriting

• Symmetric rules are problematic, e.g. ACI:493

(x + y) + z = x + (y + z) (A)

x + y = y + x (C)

x + x = x (I)

32.2 Extensions of Rewriting

• Symmetric rules are problematic, e.g. ACI:493

(x + y) + z = x + (y + z) (A)

x + y = y + x (C)

x + x = x (I)

• Idea: apply only if replaced term gets smaller w.r.t. some

term ordering. In example, if (y + x)θ is smaller than

(x + y)θ.

• Ordered rewriting solves rewriting modulo ACI494, using

derived rules (exercise).

493ACI stands for associative, commutative and idempotent.

In
(x + y) + z = x + (y + z) (A)

x + y = y + x (C)

x + x = x (I)

the constant + is written infix.
494Consider an equational theory consisting only of those rules

(apart from refl, sym, trans, subst). Apart from that, the

language may contain arbitrary other constant symbols. For

such a language, it is possible to give a term ordering that will

assign more weight to the same term on the left-hand-side of

a + than on the right-hand side. We can base such a term

ordering on a norm495. For example, the inductive definition

of a norm | | might include the line:

|s + t| := 2|s| + |t|
This means that if |s| > |t|, then |s + t| = 2|s| + |t| >
2|t| + |s| = |t + s|.

This has two effects:

507

Extension: HO-Pattern Rewriting

Rules such as F (Gc) = . . .496 lead to highly ambiguous

matching and hence inefficiency.

Solution is to restrict to higher-order pattern rules:

– Applications of (A) or (I) always decrease the weight of a

term (provided the weight of s is > 0):

|(s + t) + r| = 2|s + t| + |r| = 4|s| + 2|t| + |r| >
2|s| + 2|t| + |r| = 2|s| + |t + r| = |s + (t + r)|.

– Applications of (C) are only possible if the left-hand side

is heavier than the right-hand side.

We haven’t worked out here how the norm should be defined

for the other symbols of the language. This would have to

depend on that language.

The notation | | (the argument is between the bars) is used

in standard mathematics for the absolute value of a number

and is standard for norms as well.
496For higher-order rewriting, it is very problematic to have

rules containing terms of the form F (Gc) on the left-hand

side, where F and G are free variables and c is a constant

or bound variable. The reason can be seen in an example:

Suppose you want to rewrite the term f (g(h(i c))) where f ,

508

Extension: HO-Pattern Rewriting

Rules such as F (Gc) = . . .496 lead to highly ambiguous

matching and hence inefficiency.

Solution is to restrict to higher-order pattern rules:

A term t is a HO-pattern if

• it is in β-normal form; and

• any free F in t occurs in a subterm F x1 . . . xn where the

xi are η-equivalent to distinct bound variables.

– Applications of (A) or (I) always decrease the weight of a

term (provided the weight of s is > 0):

|(s + t) + r| = 2|s + t| + |r| = 4|s| + 2|t| + |r| >
2|s| + 2|t| + |r| = 2|s| + |t + r| = |s + (t + r)|.

– Applications of (C) are only possible if the left-hand side

is heavier than the right-hand side.

We haven’t worked out here how the norm should be defined

for the other symbols of the language. This would have to

depend on that language.

The notation | | (the argument is between the bars) is used

in standard mathematics for the absolute value of a number

and is standard for norms as well.
496For higher-order rewriting, it is very problematic to have

rules containing terms of the form F (Gc) on the left-hand

side, where F and G are free variables and c is a constant

or bound variable. The reason can be seen in an example:

Suppose you want to rewrite the term f (g(h(i c))) where f ,

508

Extension: HO-Pattern Rewriting

Rules such as F (Gc) = . . .496 lead to highly ambiguous

matching and hence inefficiency.

Solution is to restrict to higher-order pattern rules:

A term t is a HO-pattern if

• it is in β-normal form; and

• any free F in t occurs in a subterm F x1 . . . xn where the

xi are η-equivalent to distinct bound variables.

Matching (unification) is decidable, unitary (’unique’) and

efficient algorithms exist.

– Applications of (A) or (I) always decrease the weight of a

term (provided the weight of s is > 0):

|(s + t) + r| = 2|s + t| + |r| = 4|s| + 2|t| + |r| >
2|s| + 2|t| + |r| = 2|s| + |t + r| = |s + (t + r)|.

– Applications of (C) are only possible if the left-hand side

is heavier than the right-hand side.

We haven’t worked out here how the norm should be defined

for the other symbols of the language. This would have to

depend on that language.

The notation | | (the argument is between the bars) is used

in standard mathematics for the absolute value of a number

and is standard for norms as well.
496For higher-order rewriting, it is very problematic to have

rules containing terms of the form F (Gc) on the left-hand

side, where F and G are free variables and c is a constant

or bound variable. The reason can be seen in an example:

Suppose you want to rewrite the term f (g(h(i c))) where f ,

508

HO-Pattern Rewriting (Cont.)

A rule . . .⇒ φ = ψ is a HO-pattern rule if:

• φ is a HO-pattern;

• all free variables in ψ occur also in φ; and

• φ is constant-head, i.e. of the form λx1..xm.c p1 . . . pn
(where c is a constant, m ≥ 0, n ≥ 0).

g, h, i are all constants. There are four unifiers of F (Gc)

and f (g(h(i c))):

[F ← f, G← (λx.g(h(i x)))],

[F ← (λx.f (g x)), G← (λx.h(i x))],

[(F ← λx.f (g(hx))), G← (λx.i x)],

[(F ← λx.f (g(h(i x)))), G← (λx.x)].

This ambiguity makes such TRSs very inefficient.
497Further examples:

• (∃x.Px ∨Qx) = (∃x.Px) ∨ (∃x.Qx)

• (∃x.P → Qx) = P → (∃x.Qx)

• (∃x.Px→ Q) = (∀x.Px)→ Q

In these examples, you may assume that first-order logic is

our object logic.

On the metalevel, and hence also for the sake of term rewrit-

ing, ∀,∃ are constants.

509

HO-Pattern Rewriting (Cont.)

A rule . . .⇒ φ = ψ is a HO-pattern rule if:

• φ is a HO-pattern;

• all free variables in ψ occur also in φ; and

• φ is constant-head, i.e. of the form λx1..xm.c p1 . . . pn
(where c is a constant, m ≥ 0, n ≥ 0).

Example:497 (∀x.Px ∧Qx) = (∀x.Px) ∧ (∀x.Qx)

Result: HO-pattern rules allow for very effective quantifier

reasoning.

g, h, i are all constants. There are four unifiers of F (Gc)

and f (g(h(i c))):

[F ← f, G← (λx.g(h(i x)))],

[F ← (λx.f (g x)), G← (λx.h(i x))],

[(F ← λx.f (g(hx))), G← (λx.i x)],

[(F ← λx.f (g(h(i x)))), G← (λx.x)].

This ambiguity makes such TRSs very inefficient.
497Further examples:

• (∃x.Px ∨Qx) = (∃x.Px) ∨ (∃x.Qx)

• (∃x.P → Qx) = P → (∃x.Qx)

• (∃x.Px→ Q) = (∀x.Px)→ Q

In these examples, you may assume that first-order logic is

our object logic.

On the metalevel, and hence also for the sake of term rewrit-

ing, ∀,∃ are constants.

509

Extensions Related to if− then− else

The if-then-else construct will play an important role

later. It asks for special rewrite rules.

In the notation (∀x.Px ∧ Qx), the symbols P and Q are

metavariables (as far as term rewriting is concerned, simply

think: variables).

Actually, (∀x.Px ∧Qx) mixes object and metalevel syntax

in a way which is typical for Isabelle: (∀x.Px ∧ Qx) is a

“pretty-printed” version of ALL (P & Q).

You may want to look at a theory file (say, IFOL.thy) to

get a flavor of this. The principle was explained thoroughly

before.

510

Extension: Congruence Rewriting

Problem :
ifA thenP elseQ = ifA thenP ′ elseQ

where P = P ′ under condition A

is not a rule498.

Solution in Isabelle: explicitely admit this extra class of

rules (congruence rewriting)

JA =⇒ P = P ′K =⇒
ifA thenP elseQ = ifA thenP ′ elseQ

498Rewrite rules have the form φ1 = ψ1, . . . , φn = ψn =⇒
φ = ψ (several equations imply one equation). It is not

possible that any of the equations φ1 = ψ1, . . . , φn = ψn
again depend on some condition, as in

ifA thenP elseQ = ifA thenP ′ elseQ

where P = P ′ under condition A

511

Extension: Splitting Rewriting

Problem:

P (ifA thenx else y) = ifA then (P x) else (P y)

is not a HO-pattern rule (since it is not constant-head).

Solution in Isabelle: explicitely admit this extra class of

rules (case splitting).

512

32.3 Organizing Simplification Rules

• Standard (HO-pattern conditional ordered rewrite) rules;

• congruence rules;

• splitting rules.

Isabelle data structure: simpset499. Some operations500:

• addsimps : simpset ∗ thm list→ simpset

• delsimps : simpset ∗ thm list→ simpset

• addcongs : simpset ∗ thm list→ simpset

• addsplits : simpset ∗ thm list→ simpset

Commutativity can be added without losing termination.
499The simpset is an abstract datatype and at the same time

an ML unit function for returning the current simplifier set.

This is in analogy to the classifier set.
500These function manipulate the simplifier set, in analogy to

the classifier set.

513

How to Apply the Simplifier?

Several versions of the simplifier:

• simp tac : simpset→ int→ tactic

• asm simp tac : simpset→ int→ tactic

(includes assumptions into simpset)

• asm full simp tac : simpset→ int→ tactic

(rewrites assumptions, and includes them into simpset)

Using global501 simplifier sets: Simp tac, Asm simp tac,

Asm full simp tac.

501Simp tac, Asm simp tac, Asm full simp tac work like

their lower-case counterparts but use the current (global) sim-

plifier set and hence do not take a simplifier set as first argu-

ment (e.g., Simp tac has type int→ tactic)

There are analogous capitalized versions for the tactics of

the classical reasoner.

514

32.4 Summary on Term Rewriting

Simplifier is a powerful proof tool for

• conditional equational formulas

• ACI-rewriting

• quantifier reasoning

• congruence rewriting

• automatic proofs by case splitting.

Fortunately, failure is quite easy to interpret502.

502When you use simp tac, usually you can just look at the

term that you get to understand which simplification has not

worked although you think that it should have worked.

515

32.5 Summary on Last Three Sections

• Although Isabelle is an interactive theorem prover, it is a

flexible environment with powerful automated proof pro-

cedures.

• For classical logic and set theory, tableau-like procedures

like blast tac and fast tac decide many tautologies.

• For equational theories (datatypes, evaluating functional

programs, but also higher-order logic) simp tac decides

many tautologies (and is fairly easy to control).

516

33 Isabelle’s Metalogic

517

Representing Syntax and Proofs

• Previously, we have seen how the (polymorphically) typed

λ-calculus can be used to represent the syntax of an ob-

ject logic.

503In Isabelle jargon, the metalogic is called Pure.

In this course, we will avoid calling the Isabelle metalogic

HOL, although you may find such uses in the literature.

In the literature and in Isabelle formalizations, we find var-

ious definitions of higher-order logic (HOL) that differ more

or less substantially.

But the important point to remember here is this: The

Isabelle metalogic M we study here is not identical to the

logic we will study during the entire second half of this course.

And the most important difference between M and HOL is

not in the logics themselves, but in the way we use them:

M is a (the) metalogic!

HOL is an object logic!

518

Representing Syntax and Proofs

• Previously, we have seen how the (polymorphically) typed

λ-calculus can be used to represent the syntax of an ob-

ject logic.

• Today, we will extend the λ-calculus to a logic (with for-

mulae and inference rules): Isabelle’s metalogic, which

goes under the names of M, Pure503, HOL.

This lecture is based on Paulson’s work [Pau89]. It is maybe

the most challenging lecture of this course.
503In Isabelle jargon, the metalogic is called Pure.

In this course, we will avoid calling the Isabelle metalogic

HOL, although you may find such uses in the literature.

In the literature and in Isabelle formalizations, we find var-

ious definitions of higher-order logic (HOL) that differ more

or less substantially.

But the important point to remember here is this: The

Isabelle metalogic M we study here is not identical to the

logic we will study during the entire second half of this course.

And the most important difference between M and HOL is

not in the logics themselves, but in the way we use them:

M is a (the) metalogic!

HOL is an object logic!

518

What Is Formality anyway?

• Ultimately, logic and formal reasoning have to resort to

natural language. Proofs of, say, the soundness of a

derivation system employ the usual mathematical rigor,

but that’s all. Imagine this for the situation that we just

want to do reasoning504 in propositional logic and nothing

else.

• We will now introduce a logic M. Its proof system is

small!

504We would formalize the language and the proof system

as we did in the first lecture. Any proofs of soundness and

completeness or other meta-properties should be rigorous, but

they still resort to natural language.

519

Proof Techniques = Meta-Theorems

• When constructing proofs, there are

– aspects that are specific to certain logics and its log-

ical symbols: the proof rules;

– aspects that reflect general principles of proof build-

ing: making and discharging assumptions, substitu-

tion, side conditions, resolution.

It seems that the latter must be justified by complicated

(and thus error-prone) explanations in natural language.

Proof Techniques = Meta-Theorems

• When constructing proofs, there are

– aspects that are specific to certain logics and its log-

ical symbols: the proof rules;

– aspects that reflect general principles of proof build-

ing: making and discharging assumptions, substitu-

tion, side conditions, resolution.

It seems that the latter must be justified by complicated

(and thus error-prone) explanations in natural language.

• Using a metalogic such as M has two benefits:

– Shared implementational support for the “general prin-

ciples”;

520

– to a wide extent, the “general principles” are formally

derived inM. This gives a high degree of confidence.

33.1 The Logic M

We first introduce M just like any other logic, without con-

sidering its special role as metalogic. Nonetheless, we use the

qualification “meta” to avoid confusion later.

Some variations are possible (mainly: polymorphism/type

classes or not), but those are not so important for us.

– to a wide extent, the “general principles” are formally

derived inM. This gives a high degree of confidence.

33.1 The Logic M

We first introduce M just like any other logic, without con-

sidering its special role as metalogic. Nonetheless, we use the

qualification “meta” to avoid confusion later.

Some variations are possible (mainly: polymorphism/type

classes or not), but those are not so important for us.

M will be based on λ→. Would you call λ→ a logic?

– to a wide extent, the “general principles” are formally

derived inM. This gives a high degree of confidence.

33.1 The Logic M

We first introduce M just like any other logic, without con-

sidering its special role as metalogic. Nonetheless, we use the

qualification “meta” to avoid confusion later.

Some variations are possible (mainly: polymorphism/type

classes or not), but those are not so important for us.

M will be based on λ→. Would you call λ→ a logic?

So far, λ→ is not a logic (no connectives, no formulae).

We will now define a particular language of λ→ that can be

called a logic.

521

Logic Based on λ→

Assume some B where bool ∈ B, and some505 signature Σ

where

• ⇒: bool → bool → bool ∈ Σ,

• ≡σ: σ → σ → bool ∈ Σ for all types σ, and

•
∧
σ : (σ → bool)→ bool ∈ Σ for all types σ.

We usually omit type subscripts506 and write ≡,
∧

.

⇒, ≡, and
∧

507 are the logical symbols of M. ⇒ and ≡
are written infix.

Terms of type bool are called

505Σ contains ⇒, ≡ and
∧

, but in addition, Σ may specify

other symbols.
506Alternatively, we could define that

• ≡α: α→ α→ bool ∈ Σ, and

•
∧
α : (α→ bool)→ bool ∈ Σ,

where α is a type variable.
507⇒ is called meta-implication, ≡ is called meta-equality,

and
∧

is called meta-universal-quantification.

522

Logic Based on λ→

Assume some B where bool ∈ B, and some505 signature Σ

where

• ⇒: bool → bool → bool ∈ Σ,

• ≡σ: σ → σ → bool ∈ Σ for all types σ, and

•
∧
σ : (σ → bool)→ bool ∈ Σ for all types σ.

We usually omit type subscripts506 and write ≡,
∧

.

⇒, ≡, and
∧

507 are the logical symbols of M. ⇒ and ≡
are written infix.

Terms of type bool are called (meta-)formulae: types gen-

eralize syntactic categories.
505Σ contains ⇒, ≡ and

∧
, but in addition, Σ may specify

other symbols.
506Alternatively, we could define that

• ≡α: α→ α→ bool ∈ Σ, and

•
∧
α : (α→ bool)→ bool ∈ Σ,

where α is a type variable.
507⇒ is called meta-implication, ≡ is called meta-equality,

and
∧

is called meta-universal-quantification.

522

Proof System for M
The proof system will be presented in the style of natural

deduction.

This is as formal as we get (for the metalogic): derivation

trees in natural deduction style are authoritative.

The judgements508, just like for natural deduction proofs in

propositional logic or first-order logic, are formulae, i.e., terms

of type bool . This is in contrast to derivability judgements or

type judgements.
508We define our proof system forM using natural deduction.

The judgements are formulae, i.e., term of type bool . This

means that a node φ in a derivation tree, as in
. . .
φ
. . .

must be a term of type bool . It cannot be a derivability

judgement or type judgement or a term of type, say bool →
bool .

523

Rules for ⇒

[φ]
....
ψ

φ⇒ ψ
⇒-I

φ⇒ ψ φ

ψ
⇒-E

Just like rules for →!

524

Rules for ⇒

[φ]
....
ψ

φ⇒ ψ
⇒-I

φ⇒ ψ φ

ψ
⇒-E

Just like rules for →!

For layout reasons we sometimes swap left and right:

φ φ⇒ ψ

ψ
⇒-E

524

Rules for
∧

Meta-universal-quantification is formalized in the style of higher-

order abstract syntax (
∧
σ : (σ → bool) → bool); may write∧

x.φ as syntactic sugar for
∧

(λx.φ).

Note: quantification over terms of arbitrary type!

525

Rules for
∧

Meta-universal-quantification is formalized in the style of higher-

order abstract syntax (
∧
σ : (σ → bool) → bool); may write∧

x.φ as syntactic sugar for
∧

(λx.φ).

Note: quantification over terms of arbitrary type!

Rules:
φ∧
x.φ

∧
-I∗

∧
x.φ

φ[x← b]

∧
-E

Side (eigenvariable) condition ∗: x is not free in any assump-

tion on which φ depends.

Just like rules for ∀.

525

Rules for ≡: Equivalence Relation

a ≡ a
≡-refl

a ≡ b
b ≡ a

≡-symm

a ≡ b b ≡ c
a ≡ c

≡-trans

Just like rules for =.

526

Rules for ≡: λ (i.e., α, β, η) Conversions

(λx.a) ≡ (λy.a[x← y])
α∗

(λx.a)b ≡ (a[x← b])
β

(λx.f x) ≡ f
η∗∗

Side condition ∗: y is not free in a.

Side condition ∗∗: x is not free in f .

Just like rules for =α,β,η.

η is equivalent to extensionality509.

509Extensionality is the rule
f x ≡ g x

f ≡ g

where the side condition is that x must not be free in f or g

or any assumption on which the proof of f x ≡ g x depends.

It is equivalent to the η-axiom [HS90, pages 72-74].

Recall that we have used the notion of extensionality before,

for sets. The idea is the same here.

527

Rules for ≡: Abstraction, Combination

a ≡ b

(λx.a) ≡ (λx.b)
≡-abstr∗

f ≡ g a ≡ b

f a ≡ g b
≡-comb

Side (eigenvariable) condition ∗: x is not free in any assump-

tion on which a ≡ b depends. Compare with β-reduction.

As defined for →β before, ≡ is propagated into contexts.

Conversion is built into the proof system!

Recall that e ≡ e′ is decidable in λ→ (≡-rules so far).

However, e ≡ e′ is not decidable in M (see next slide).

528

Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ
≡-I

φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here?

529

Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ
≡-I

φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here? φ and ψ are formulae,

hence bool .

What object-level connective does ≡ correspond to?

529

Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ
≡-I

φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here? φ and ψ are formulae,

hence bool .

What object-level connective does ≡ correspond to? ↔.

529

Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ
≡-I

φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here? φ and ψ are formulae,

hence bool .

What object-level connective does ≡ correspond to? ↔.

Using ≡-E, when we have a derivation of φ, and φ ≡ ψ can

also be derived, we get a derivation of ψ. We will sometimes

use this tacitly.

529

33.2 Encoding Syntax and Provability

We use FOL and its subset propositional logic (which we

call here Prop) as exemplary object logic.

We already know how to encode syntax.

33.2 Encoding Syntax and Provability

We use FOL and its subset propositional logic (which we

call here Prop) as exemplary object logic.

We already know how to encode syntax.

We will now see how to encode proof rules and mimic proofs

of the object logic.

To encode a particular object logic L, we have to extend

M by extending the type language, the term language (the

signature) and the proof rules. The thus extended logic will

be called ML.

530

Encoding Syntax: Review

As before, i, o ∈ B. Previously:

Σ ⊇ 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o,

all : (i→ o)→ o, exists : (i→ o)→ o〉

510So we have truth values in the metalogic (type bool) and

in the object logic (type o). To distinguish them clearly there

are two different types for them.

531

Encoding Syntax: Review

As before, i, o ∈ B. Previously:

Σ ⊇ 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o,

all : (i→ o)→ o, exists : (i→ o)→ o〉

Two types510 for truth values: o and bool .

We now need a more concise (sweeter) syntax or things will

become hopelessly unreadable.

But this is also quite demanding: you should always be able

to “unsugar” the syntax.

510So we have truth values in the metalogic (type bool) and

in the object logic (type o). To distinguish them clearly there

are two different types for them.

531

Encoding Syntax Readably

Σ ⊇ 〈⊥ : o,

¬ : o→ o,

∧,∨,→ 511 : o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉.

511We write
〈⊥ : o,

∧,∨,→: o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉
as shorthand for

〈⊥ : o,

∧ : o→ o→ o,

∨ : o→ o→ o,

→: o→ o→ o,

∀ : (i→ o)→ o,

∃ : (i→ o)→ o

true : o→ bool〉
512So we have truth values in the metalogic (type bool) and

in the object logic (type o).

Paulson [Pau89] says: “the meta-formula [[A]] abbreviates

true A and means that A is true”. More precisely, we can say

that [[A]] is a meta-formula that may or may not be derivable

532

Encoding Syntax Readably

Σ ⊇ 〈⊥ : o,

¬ : o→ o,

∧,∨,→ 511 : o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉.
• → is both a constant declared in Σ and the function type

arrow.

• ∧,∨,→ will be written infix, and we may write ∀x.φ for

∀(λx.φ), and likewise for ∃.

• true A512 is usually written [[A]].

511We write
〈⊥ : o,

∧,∨,→: o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉
as shorthand for

〈⊥ : o,

∧ : o→ o→ o,

∨ : o→ o→ o,

→: o→ o→ o,

∀ : (i→ o)→ o,

∃ : (i→ o)→ o

true : o→ bool〉
512So we have truth values in the metalogic (type bool) and

in the object logic (type o).

Paulson [Pau89] says: “the meta-formula [[A]] abbreviates

true A and means that A is true”. More precisely, we can say

that [[A]] is a meta-formula that may or may not be derivable

532

Encoding the Rules

The rules of the object logic are encoded as axioms of the

metalogic. These axioms are added to the proof system of

M (to obtain ML).

To avoid confusion, we will use distinctive terminology:

• There is a meta-rule called ⇒-E.

• There is a similar object rule that we call the →-E rule.

• It is encoded as a meta-axiom that we call the →-E ax-

iom.

in ML, and that this should reflect derivability of A in L.

In the file IFOL.thy in your Isabelle distribution, you find

Trueprop :: "o => prop"

Trueprop corresponds to true.

533

Encoding of the Rules of Propositional Logic∧
AB.[[A]]⇒ ([[B]]⇒ [[A ∧B]]) (∧-I)

534

Encoding of the Rules of Propositional Logic∧
AB.[[A]]⇒ ([[B]]⇒ [[A ∧B]]) (∧-I)∧
AB.[[A ∧B]]⇒ [[A]] (∧-EL)∧
AB.[[A ∧B]]⇒ [[B]] (∧-ER)∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL)∧
AB.[[B]]⇒ [[A ∨B]] (∨-IR)

534

Encoding of the Rules of Propositional Logic∧
AB.[[A]]⇒ ([[B]]⇒ [[A ∧B]]) (∧-I)∧
AB.[[A ∧B]]⇒ [[A]] (∧-EL)∧
AB.[[A ∧B]]⇒ [[B]] (∧-ER)∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL)∧
AB.[[B]]⇒ [[A ∨B]] (∨-IR)∧
ABC.[[A ∨B]]⇒

([[A]]⇒ [[C]])⇒ ([[B]]⇒ [[C]])⇒ [[C]]
(∨-E)

534

Encoding of the Rules of Propositional Logic∧
AB.[[A]]⇒ ([[B]]⇒ [[A ∧B]]) (∧-I)∧
AB.[[A ∧B]]⇒ [[A]] (∧-EL)∧
AB.[[A ∧B]]⇒ [[B]] (∧-ER)∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL)∧
AB.[[B]]⇒ [[A ∨B]] (∨-IR)∧
ABC.[[A ∨B]]⇒

([[A]]⇒ [[C]])⇒ ([[B]]⇒ [[C]])⇒ [[C]]
(∨-E)∧

AB.([[A]]⇒ [[B]])⇒ [[A→ B]] (→-I)∧
AB.[[A→ B]]⇒ [[A]]⇒ [[B]] (→-E)∧
A.[[⊥]]⇒ [[A]] (⊥-E)

534

Faithful Metalogics

For any object logic L, we define:

• ML is sound for L if, for every proof of [[B]] from as-

sumptions [[A1]], . . . , [[Am]] in ML, there is a proof of B

from assumptions A1, . . . , Am in L.

• ML is complete for L if, for every proof of B from as-

sumptions A1, . . . , Am in L, there is a proof of [[B]] from

assumptions [[A1]], . . . , [[Am]] in ML.

• ML is faithful for L ifML is sound and complete for L.

Using concepts of Prawitz [Pra65, Pra71], one can show by

structural induction that MProp is faithful for Prop.

535

An Example Proof

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

536

An Example Proof

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E

536

An Example Proof

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E

[[P ∧Q]]⇒ [[P]]

∧
-E

536

An Example Proof

[[P ∧Q]]

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E

[[P ∧Q]]⇒ [[P]]

∧
-E

[[P]]
⇒-E

536

An Example Proof

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E

[[P ∧Q]]⇒ [[P]]

∧
-E

[[P]]
⇒-E

[[P ∧Q]]⇒ [[P]] ⇒-I
1

536

An Example Proof

∧
AB.([[A]]⇒ [[B]])
⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P]])
⇒ [[P ∧Q→ P]]

∧
-E

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E

[[P ∧Q]]⇒ [[P]]

∧
-E

[[P]]
⇒-E

[[P ∧Q]]⇒ [[P]] ⇒-I
1

536

An Example Proof

∧
AB.([[A]]⇒ [[B]])
⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P]])
⇒ [[P ∧Q→ P]]

∧
-E

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E

[[P ∧Q]]⇒ [[P]]

∧
-E

[[P]]
⇒-E

[[P ∧Q]]⇒ [[P]] ⇒-I
1

[[P ∧Q→ P]]
⇒-E

536

An Example Proof

∧
AB.([[A]]⇒ [[B]])
⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P]])
⇒ [[P ∧Q→ P]]

∧
-E

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P]]

∧
-E

[[P ∧Q]]⇒ [[P]]

∧
-E

[[P]]
⇒-E

[[P ∧Q]]⇒ [[P]] ⇒-I
1

[[P ∧Q→ P]]
⇒-E

536

Example Proof Simplified

∧
AB.([[A]]⇒ [[B]])

⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])

⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P]])

⇒ [[P ∧Q→ P]]

∧
-E

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]

⇒ [[P]]

∧
-E

[[P ∧Q]]⇒ [[P]]

∧
-E

[[P ∧Q→ P]]
⇒-E

537

Remarks about Example Proof

• ∧-EL and →-E are not object rules but meta-axioms!

• The first, more complicated proof corresponds to the con-

struction one would use to show thatMProp is complete

for Prop.

• Proof fragments of the form

φ⇒ ψ [φ]

ψ
⇒-E

φ⇒ ψ
⇒-I

can be collapsed into φ⇒ ψ: proof normalization.

538

33.3 Reasoning with Resolution

In Isabelle, we mainly use backwards reasoning: we con-

struct a proof tree starting from the root working to the leaves.

33.3 Reasoning with Resolution

In Isabelle, we mainly use backwards reasoning: we con-

struct a proof tree starting from the root working to the leaves.

On the meta-level, this proof is in fact a forwards proof:

working from the leaves to the root.

This is achieved by starting the proof of ψ with the trivial

meta-theorem ψ ⇒ ψ513 and using a technique called reso-

lution.

513We have seen this before as a proof in propositional logic.

[ψ]1

ψ → ψ
⇒-I1

539

Folding Assumptions

We need another syntactic convention:

Lists of (meta-)formulae are denoted by Φ,Ψ,Ω. If Φ is

the list [φ1, . . . , φn], then

[φ1, . . . , φn]⇒ ψ, i.e.

Φ⇒ ψ

abbreviates the meta-formula φ1 ⇒ . . .⇒ φn ⇒ ψ.

You have seen this in the exercises.

Note that [φ1, . . . , φn] on its own is not a term in M!

540

The Resolution Rule

For any formulae ψ1, . . . , ψn, ψ, φ1, . . . , φm, φ where FV (φ1, . . . , φm, φ) ⊆
{x1, . . . , xk}, and φθ ≡ ψi for some i ∈ {1, . . . , n}, resolu-

tion is the following rule:∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

Intuition:
∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ is a meta-axiom such

as ∧-EL, [ψ1, . . . , ψn]⇒ ψ is the current goal (proof state).

Compare to phrasing using ∨514!

We will now derive the rule.
514You may have seen the following formulation of the reso-

lution rule:
A1 ∨ . . . ∨ An B1 ∨ . . . ∨Bm

(A1 ∨ . . . ∨ Ai−1, Ai+1 ∨ . . . ∨ An ∨B1 ∨ . . . ∨Bj−i, Bj+1 ∨ . . . ∨Bm)θ

where either Aiθ = ¬Bjθ or ¬Aiθ = Bjθ.

You can see the correspondence to the rule given here by

recalling that in first-order logic, φ1 → . . . → φm → φ is

equivalent to φ1 ∧ . . . ∧ φm → φ, which is in turn equivalent

to ¬φ1 ∨ . . . ∨ ¬φm ∨ φ.

You may still be wondering though why in the rule res, we

only allow instantiation of [φ1, . . . , φm]⇒ φ. This restriction

will in fact be lifted later.

541

Resolution as Derived Meta-Rule∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

[ψ1, . . . , ψn]
⇒ ψ

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

[ψi+1, . . . , ψn]⇒ ψ
⇒-E515

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

[φ1θ]
2 . . . [φmθ]

2

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

[ψi+1, . . . , ψn]⇒ ψ
⇒-E515

[φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I2

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

[φ1θ]
2 . . . [φmθ]

2

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

[ψ1]
1 . . . [ψi−1]

1 [ψ1, . . . , ψn]
⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

[ψi+1, . . . , ψn]⇒ ψ
⇒-E515

[φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I2

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I1

515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Resolution as Derived Meta-Rule

[φ1θ]
2 . . . [φmθ]

2

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

[ψ1]
1 . . . [ψi−1]

1 [ψ1, . . . , ψn]
⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

[ψi+1, . . . , ψn]⇒ ψ
⇒-E515

[φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I2

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I1

Here we assume that φθ and ψi are syntactically identical,

but in fact it is enough that516 φθ ≡ ψi.
515Recall that φθ ≡ ψi.
516This means, we do not show any applications of the con-

version rules explicitly. Otherwise, we would have to show

subderivations such as
([[∀z.G z]]⇒ (

∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
or ...

φ ≡ ψ

...
φ

ψ
≡-E

...

which would be using those conversion rules. Note that this

suppressing is the reason why you find the ≡-symbol so rarely

in this part of this chapter.

542

Deriving Resolution: Remarks

• We collapsed iterated applications of rules (denoted by

double horizontal line).

543

Deriving Resolution: Remarks

• We collapsed iterated applications of rules (denoted by

double horizontal line).

• This is not just a matter of simplicity. The derivation

is schematic not just in the sense that the Greek letters

could stand for arbitrary formulae; we don’t even know

how many formulae are involved (k,m, n, i could be any

natural numbers).

• But for any concrete ψ1, . . . , ψn, ψ, φ1, . . . , φm, φ, you

could do the formal derivation in M.

543

Dropping Outer Quantifiers

We adopt the convention that outer quantifiers in meta-formulae

are dropped. E.g. [[A]]⇒ [[B]]⇒ [[A ∧B]] instead of
∧
AB.[[A]]⇒

[[B]]⇒ [[A ∧B]].

In addition: use renaming for freshness517.

Then we can write the resolution rule as follows:
[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

where φθ ≡ ψi.

We will now work with this schematic form.
517The schematic form of the resolution rule is:

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

where φθ ≡ ψ.

We will work with this schematic form, but remember: if

necessary, you could construct an actual derivation in M.

In this schematic form, it is always assumed that

the free variables in [φ1, . . . , φm] ⇒ φ are fresh,

i.e. FV ([φ1, . . . , φm]⇒ φ) ∩ FV ([ψ1, . . . , ψn]⇒ ψ) = ∅.
This assumption may be justified considering the for-

mal derivation of the resolution rule. Suppose that the

free variables in [φ1, . . . , φm] ⇒ φ are not all fresh,

and consider
∧
x′1 . . . x

′
k.[φ

′
1, . . . , φ

′
m] ⇒ φ′, obtained from∧

x1 . . . xk.[φ1, . . . , φm] ⇒ φ by replacing each xi with x′i,

where the x′i are fresh.

It is easy to see that in the formal derivation of the resolution

544

Proof of A ∧B → C → A ∧ C (1)

Let’s prove A ∧ B → (C → A ∧ C) by resolution. We start

by resolution with →-I:

([[A1]]⇒ [[B1]])

⇒ [[A1 → B1]]

[[A ∧B → (C → A ∧ C)]]

⇒ [[A ∧B → (C → A ∧ C)]]

([[A ∧B]]⇒ [[C → A ∧ C]])

⇒ [[A ∧B → (C → A ∧ C)]]

res

rule, one can replace∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

with ∧
x′1 . . . x

′
k.[φ

′
1, . . . , φ

′
m]⇒ φ′

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

Therefore we can assume without loss of generality that the

free variables in [φ1, . . . , φm]⇒ φ are fresh.

The next question is: why do we want fresh variables?

Maybe this is clear intuitively: A rule is always meant to be

schematic and the choice of variables names in a rule should

be irrelevant. More concretely, one may say that if one does

not rename the variables in a rule and hence there is some

variable, say A, that occurs in the current subgoal, then res-

olution may lead to a subgoal containing occurrences of A

originating from the goal and others originating from the rule,

and these are inadvertently identified, leading to a proof state

545

What to do next518?

that is more instantiated than it should be.
518On the one hand, we want to resolve

([[A ∧B]]⇒ [[C → A ∧ C]])⇒ [[A ∧B → (C → A ∧ C)]],

i.e., we have to match ([[A ∧B]] ⇒ [[C → A ∧ C]]) against

the conclusion of some meta-axiom.

On the other hand, think what Isabelle would display in this

situation. The (only) subgoal would be

1. A ∧B ⇒ C → A ∧ C,
so we have to show C → A ∧ C (using assumption A ∧B).

So you should look at C → A∧C to guess which meta-axiom

should be used now.
519In our current situation, Isabelle would display:

Level 1(1 subgoal)

A ∧B → (C → A ∧ C)

1. A ∧B =⇒ C → A ∧ C
From your experience with Isabelle, it is clear that since the

546

What to do next518? Again resolution with →-I.

Problem: the conclusion of →-I is not unifiable519 with

[[A ∧B]]⇒ [[C → A ∧ C]].

that is more instantiated than it should be.
518On the one hand, we want to resolve

([[A ∧B]]⇒ [[C → A ∧ C]])⇒ [[A ∧B → (C → A ∧ C)]],

i.e., we have to match ([[A ∧B]] ⇒ [[C → A ∧ C]]) against

the conclusion of some meta-axiom.

On the other hand, think what Isabelle would display in this

situation. The (only) subgoal would be

1. A ∧B ⇒ C → A ∧ C,
so we have to show C → A ∧ C (using assumption A ∧B).

So you should look at C → A∧C to guess which meta-axiom

should be used now.
519In our current situation, Isabelle would display:

Level 1(1 subgoal)

A ∧B → (C → A ∧ C)

1. A ∧B =⇒ C → A ∧ C
From your experience with Isabelle, it is clear that since the

546

Lifting over Assumptions

The rule for lifting an object rule (meta-axiom) [φ1, . . . , φm]⇒
φ over a list of assumptions Ψ is

[φ1, . . . , φm]⇒ φ

[Ψ⇒ φ1, . . . ,Ψ⇒ φm]⇒ (Ψ⇒ φ)
a-lift

We will now derive it for one assumption, so Ψ = [ψ].

top-level symbol in C → A ∧ C is →, you would use →-I.

But look at the resolution rule again. We would take a fresh

instance of →-I, say ([[A2]] ⇒ [[B2]]) ⇒ [[A2 → B2]]. The

problem is that [[A2 → B2]] is not unifiable with [[A ∧B]] ⇒
[[C → A ∧ C]], and so res is not applicable.

547

Deriving Assumption Lifting for one Assumption

[φ1, . . . , φm]⇒ φ

ψ ⇒ φ1 ψ

φ1
⇒-E · · ·

ψ ⇒ φm ψ

φm
⇒-E

548

Deriving Assumption Lifting for one Assumption

[φ1, . . . , φm]⇒ φ

ψ ⇒ φ1 ψ

φ1
⇒-E · · ·

ψ ⇒ φm ψ

φm
⇒-E

φ
⇒-E

548

Deriving Assumption Lifting for one Assumption

[φ1, . . . , φm]⇒ φ

ψ ⇒ φ1 [ψ]2

φ1
⇒-E · · ·

ψ ⇒ φm [ψ]2

φm
⇒-E

φ
⇒-E

ψ ⇒ φ
⇒-I2

548

Deriving Assumption Lifting for one Assumption

[φ1, . . . , φm]⇒ φ

[ψ ⇒ φ1]
1 [ψ]2

φ1
⇒-E · · ·

[ψ ⇒ φm]1 [ψ]2

φm
⇒-E

φ
⇒-E

ψ ⇒ φ
⇒-I2

[ψ ⇒ φ1, . . . , ψ ⇒ φm]⇒ (ψ ⇒ φ)
⇒-I1

This process can be repeated for any number of assumptions

to get the general rule.

548

Proof of A ∧B → (C → A ∧ C) (2)

We do resolution using the→-I axiom520 lifted over [[A ∧B]]:

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))
⇒ ([[A ∧B]]⇒ [[A2 → B2]])

...

([[A ∧B]]⇒ [[C → A ∧ C]])

⇒ [[A ∧B → (C → A ∧ C)]]

([[A ∧B]]⇒ [[C]]⇒ [[A ∧ C]])

⇒ [[A ∧B → (C → A ∧ C)]]

res

520

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))⇒ ([[A ∧B]]⇒ [[A2 → B2]])

is the→-I-rule (meta-axiom) lifted over the assumptionA∧B.

549

Proof of A ∧B → (C → A ∧ C) (2)

We do resolution using the→-I axiom520 lifted over [[A ∧B]]:

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))
⇒ ([[A ∧B]]⇒ [[A2 → B2]])

...

([[A ∧B]]⇒ [[C → A ∧ C]])

⇒ [[A ∧B → (C → A ∧ C)]]

([[A ∧B]]⇒ [[C]]⇒ [[A ∧ C]])

⇒ [[A ∧B → (C → A ∧ C)]]

res

Before we proceed, we introduce the abbreviations

ω = [[A ∧B → (C → A ∧ C)]], Ω = [[[A ∧B]], [[C]]]

520

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))⇒ ([[A ∧B]]⇒ [[A2 → B2]])

is the→-I-rule (meta-axiom) lifted over the assumptionA∧B.

549

Proof of A ∧B → (C → A ∧ C) (2)

We do resolution using the→-I axiom520 lifted over [[A ∧B]]:

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))
⇒ ([[A ∧B]]⇒ [[A2 → B2]])

...

([[A ∧B]]⇒ [[C → A ∧ C]])

⇒ ω

(Ω ⇒ [[A ∧ C]])

⇒ ω

res

Before we proceed, we introduce the abbreviations

ω = [[A ∧B → (C → A ∧ C)]], Ω = [[[A ∧B]], [[C]]]

520

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))⇒ ([[A ∧B]]⇒ [[A2 → B2]])

is the→-I-rule (meta-axiom) lifted over the assumptionA∧B.

549

Proof of A ∧B → (C → A ∧ C) (3)

We do resolution using the ∧-I axiom521 lifted over Ω:

(Ω⇒ [[A3]])⇒ (Ω⇒ [[B3]])

⇒ (Ω⇒ [[A3 ∧B3]])

...

(Ω⇒ [[A ∧ C]])⇒ ω

(Ω⇒ [[A]])⇒ (Ω⇒ [[C]])⇒ ω
res

At this point, Isabelle would display Ω ⇒ [[A]] and Ω ⇒ [[C]]

as two subgoals.

The next step is to solve Ω⇒ [[C]] by assumption, but this

must be formalized.
521

(Ω⇒ [[A3]])⇒ (Ω⇒ [[B3]])⇒ (Ω⇒ [[A3 ∧B3]])

is the ∧-I-rule (meta-axiom) lifted over the assumption list Ω.

Recall that Ω was an abbreviation for [[[A ∧B]], [[C]]], but this

is obviously irrelevant for the process of lifting.

550

The Assumption Axiom

The assumption axiom is: for any i ∈ {1, . . . ,m}

[φ1, . . . , φm]⇒ φi
assum

It has a simple (schematic522) derivation:

[φi]
1

[φi+1, . . . , φm]⇒ φi
⇒-I

[φi, . . . , φm]⇒ φi
⇒-I1

[φ1, . . . , φm]⇒ φi
⇒-I523

522The assumption axiom

[φ1, . . . , φm]⇒ φi
assum

is schematic in two senses:

• the Greek letters could stand for arbitrary formulae;

• just like for resolution rule, we don’t even know how many

formulae are involved (m, i could be any natural num-

bers).

However, one could also write the axiom as

[A1, . . . , Am]⇒ Ai

assum

where the A’s are variables (of type bool) and instantiate it

later when it is used in some resolution step.
523Recall here that the rule ⇒-I, just like →-I, allows you to

discharge zero or more assumptions. In the present derivation,

we discharge the assumption φi at some point but we do not

551

Proof of A ∧B → (C → A ∧ C) (4)

We do resolution using the assumption axiom:

Ω⇒ [[C]]

...

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res

We used the correct instance of the assumption axiom. Alternatively524,

we could have use the more generic [A4, B4]⇒ B4.

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].)

discharge any other assumptions.
524As explained previously, we could use a more generic vari-

ant of the assumption axiom, in that we have variables in it

that may become instantiated upon resolution. As in previ-

ous proof steps we assume that these variables are suitably

renamed; for this purpose we index them by 4.

Note however that the variant is still specific in the sense

that m = 2. Like in meta-axioms used before, we use letters

from the beginning of the alphabet, so the variant of the

assumption axiom that we use is [A4, B4] ⇒ B4. The proof

fragment would then look as follows:

[A4, B4]⇒ B4

...

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res

where θ = {A4 ← [[A ∧B]], B4 ← [[C]]}.

552

Proof of A ∧B → (C → A ∧ C) (4)

We do resolution using the assumption axiom:

Ω⇒ [[C]]

...

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res

We used the correct instance of the assumption axiom. Alternatively524,

we could have use the more generic [A4, B4]⇒ B4.

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].) Resolution

with ∧-EL.
discharge any other assumptions.

524As explained previously, we could use a more generic vari-

ant of the assumption axiom, in that we have variables in it

that may become instantiated upon resolution. As in previ-

ous proof steps we assume that these variables are suitably

renamed; for this purpose we index them by 4.

Note however that the variant is still specific in the sense

that m = 2. Like in meta-axioms used before, we use letters

from the beginning of the alphabet, so the variant of the

assumption axiom that we use is [A4, B4] ⇒ B4. The proof

fragment would then look as follows:

[A4, B4]⇒ B4

...

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res

where θ = {A4 ← [[A ∧B]], B4 ← [[C]]}.

552

Proof of A ∧B → (C → A ∧ C) (5)

Magically, we guess the right instance of ∧-EL and lift it over

Ω:

(Ω⇒ [[A ∧B]])⇒ (Ω⇒ [[A]])

...

(Ω⇒ [[A]])⇒ ω

(Ω⇒ [[A ∧B]])⇒ ω
res

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].)

553

Proof of A ∧B → (C → A ∧ C) (5)

Magically, we guess the right instance of ∧-EL and lift it over

Ω:

(Ω⇒ [[A ∧B]])⇒ (Ω⇒ [[A]])

...

(Ω⇒ [[A]])⇒ ω

(Ω⇒ [[A ∧B]])⇒ ω
res

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].) Prove

the subgoal by assumption.

553

Proof of A ∧B → (C → A ∧ C) (6)

We do resolution using the assumption axiom:

Ω⇒ [[A ∧B]]

...

(Ω⇒ [[A ∧B]])⇒ ω

ω
res

Recall that ω = [[A ∧B → (C → A ∧ C)]]. Done!

554

Getting Rid of the Magic

In one step, we had to guess the right instance of ∧-EL. This

is not practical.

Solutions:

• Generalize the resolution rule to allow for instantiation of

the current proof state and not just of meta-axioms.

• Derive∧
ABC.[[[A ∧B]], ([[[A]], [[B]]]⇒ [[C]])]⇒ [[C]]

which encodes the ∧-E object rule.

555

The Whole Proof at a Glance

Compare proof in MProp with corresponding proof in Prop:

a.

∧-EL

a.

∧-I

→-I
→-I ω ⇒ ω
. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

ω

[A ∧B]1

A
∧-EL

[C]2

A ∧ C ∧-I

C → A ∧ C →-I2

A ∧B → (C → A ∧ C)
→-I1

525Intuitively, as far as the order in which the object rules,

resp. meta-axioms, are applied, the proof in MProp is the

proof in Prop turned upside-down.

However, this may seem suspicious for two reasons:

• In derivation trees, the direction of implication (forgetting

about whether it is meta- or object implication) is “down-

wards”: whatever is above implies whatever is below. So

it seems strange that this order should be reversed just

because we go from the object to the meta-level.

• In general, a derivation tree in the object level is a proper

tree, i.e., there are nodes where it branches. So what

sense does it make to “turn it upside-down”? The result

would not be any tree at all.

These points will now be addressed.

556

The Whole Proof at a Glance

Compare proof in MProp with corresponding proof in Prop:

a.

∧-EL

a.

∧-I

→-I
→-I ω ⇒ ω
. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

ω

[A ∧B]1

A
∧-EL

[C]2

A ∧ C ∧-I

C → A ∧ C →-I2

A ∧B → (C → A ∧ C)
→-I1

“The meta-level proof is the object level proof upside-down525.”

525Intuitively, as far as the order in which the object rules,

resp. meta-axioms, are applied, the proof in MProp is the

proof in Prop turned upside-down.

However, this may seem suspicious for two reasons:

• In derivation trees, the direction of implication (forgetting

about whether it is meta- or object implication) is “down-

wards”: whatever is above implies whatever is below. So

it seems strange that this order should be reversed just

because we go from the object to the meta-level.

• In general, a derivation tree in the object level is a proper

tree, i.e., there are nodes where it branches. So what

sense does it make to “turn it upside-down”? The result

would not be any tree at all.

These points will now be addressed.

556

Direction of the Implication

Is the direction of the implication reversed just because we go

from the object to the meta-level?

557

Direction of the Implication

Is the direction of the implication reversed just because we go

from the object to the meta-level?

No! The direction is reversed because we start from the

trivial meta-theorem ω ⇒ ω, and the resolution steps modify

the left-hand side of this meta-theorem.

557

How Can One Turn a Tree Upside-Down?

A proper tree has nodes where it branches. Also, in Isabelle

proofs, we frequently have to prove several subgoals. So how

is this branching reflected in the meta-proof?

526If one pictures the object level proof and how it is modeled

in MProp, one intutive way of thinking of it is as follows:

Each rule application in the object level proof must also be

performed at the meta-level. Now, starting at the root of the

object level proof, we may do any rule application that is the

child of a rule application we have done previously. Take for

example the following object level proof:

[A ∧ (B ∧ C)]1

A
∧-EL3

[A ∧ (B ∧ C)]1

B ∧ C ∧-ER5

C
∧-ER4

A ∧ C ∧-I2

A ∧ (B ∧ C)→ A ∧ C →-I1

Then in the meta-proof, the meta-axioms might be applied

in the following orders:

→-I1, ∧-I2, ∧-ER4, ∧-ER5, ∧-EL3, or

→-I1, ∧-I2, ∧-EL3, ∧-ER4, ∧-ER5, or

→-I1, ∧-I2, ∧-ER4, ∧-EL3, ∧-ER5.

558

How Can One Turn a Tree Upside-Down?

A proper tree has nodes where it branches. Also, in Isabelle

proofs, we frequently have to prove several subgoals. So how

is this branching reflected in the meta-proof?

A meta-formula of the form ψ1 ⇒ . . . ⇒ ψn ⇒ ψ corre-

sponds to a branching point in the object level proof. It means

that there are subgoals ψ1, . . . , ψn. But in the derivation tree

in MProp, there is no branching.

526If one pictures the object level proof and how it is modeled

in MProp, one intutive way of thinking of it is as follows:

Each rule application in the object level proof must also be

performed at the meta-level. Now, starting at the root of the

object level proof, we may do any rule application that is the

child of a rule application we have done previously. Take for

example the following object level proof:

[A ∧ (B ∧ C)]1

A
∧-EL3

[A ∧ (B ∧ C)]1

B ∧ C ∧-ER5

C
∧-ER4

A ∧ C ∧-I2

A ∧ (B ∧ C)→ A ∧ C →-I1

Then in the meta-proof, the meta-axioms might be applied

in the following orders:

→-I1, ∧-I2, ∧-ER4, ∧-ER5, ∧-EL3, or

→-I1, ∧-I2, ∧-EL3, ∧-ER4, ∧-ER5, or

→-I1, ∧-I2, ∧-ER4, ∧-EL3, ∧-ER5.

558

How Can One Turn a Tree Upside-Down?

A proper tree has nodes where it branches. Also, in Isabelle

proofs, we frequently have to prove several subgoals. So how

is this branching reflected in the meta-proof?

A meta-formula of the form ψ1 ⇒ . . . ⇒ ψn ⇒ ψ corre-

sponds to a branching point in the object level proof. It means

that there are subgoals ψ1, . . . , ψn. But in the derivation tree

in MProp, there is no branching.

In the construction of a meta-proof (just like in Isabelle),

one is always free to choose which subgoal to solve next.

Interleaving526 is possible.
526If one pictures the object level proof and how it is modeled

in MProp, one intutive way of thinking of it is as follows:

Each rule application in the object level proof must also be

performed at the meta-level. Now, starting at the root of the

object level proof, we may do any rule application that is the

child of a rule application we have done previously. Take for

example the following object level proof:

[A ∧ (B ∧ C)]1

A
∧-EL3

[A ∧ (B ∧ C)]1

B ∧ C ∧-ER5

C
∧-ER4

A ∧ C ∧-I2

A ∧ (B ∧ C)→ A ∧ C →-I1

Then in the meta-proof, the meta-axioms might be applied

in the following orders:

→-I1, ∧-I2, ∧-ER4, ∧-ER5, ∧-EL3, or

→-I1, ∧-I2, ∧-EL3, ∧-ER4, ∧-ER5, or

→-I1, ∧-I2, ∧-ER4, ∧-EL3, ∧-ER5.

558

33.4 Quantification

We add the following meta-axioms to obtain MFOL:∧
F.(
∧
x.[[F x]])⇒ [[∀x.F x]] (∀-I)∧

Fy.[[∀x.F x]]⇒ [[F y]] (∀-E)∧
Fy.[[F y]]⇒ [[∃x.F x]] (∃-I)∧
FB.[[∃x.F x]]⇒ (

∧
x.[[F x]]⇒ [[B]])⇒ [[B]] (∃-E)

Similarly as for Prop, one can show that MFOL is faithful

for FOL.

Side condition checking is shifted to the meta-level.

We now consider resolution proofs for FOL.

But this is not new to you: In Isabelle, you are always free

to choose the subgoal that you want to work on next, and so

you can interleave the proofs of the different subgoals.

559

Proof of (∀z.G z)→ (∀z.G z ∨H z) (1)

([[A1]]⇒ [[B1]])

⇒ [[A1 → B1]]

[[(∀z.G z)→ (∀z.G z ∨H z)]]

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next?

560

Proof of (∀z.G z)→ (∀z.G z ∨H z) (1)

([[A1]]⇒ [[B1]])

⇒ [[A1 → B1]]

[[(∀z.G z)→ (∀z.G z ∨H z)]]

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next? Resolution with ∀-I lifted over assumption

[[∀z.G z]].

560

Proof of (∀z.G z)→ (∀z.G z ∨H z) (2)

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [F1 ← λw.Gw ∨H w].

We suppress conversion, assuming terms are in normal form.

What to do next?

561

Proof of (∀z.G z)→ (∀z.G z ∨H z) (2)

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [F1 ← λw.Gw ∨H w].

We suppress conversion, assuming terms are in normal form.

What to do next? Resolution with ∨-IL after lifting over

assumption. Problem: the conclusion of ∨-IL is not unifiable

with
∧
z.[[Gz ∨H z]]).

561

Lifting over Parameters

Lifting over parameters seems easier to explain if outer
∧

’s are

not dropped. The rule for lifting a meta-axiom
∧
y1 . . . yk.[φ1, . . . , φm]⇒

φ over a parameter z is∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ∧

f1 . . . fk.[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒ (

∧
z.φ′)

p-lift

where ′ stands for application of the substitution [y1 ← f1 z, . . . , yk ←
fk z].

We will now derive it.

562

Deriving Parameter Lifting for one Parameter

′ stands for application of [y1 ← f1(z), . . . , yk ← fk(z)].∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

∧
z.φ′1

φ′1

∧
-E
· · ·

∧
z.φ′m

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I

563

Deriving Parameter Lifting for one Parameter

′ stands for application of [y1 ← f1(z), . . . , yk ← fk(z)].∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

[
∧
z.φ′1]

1

φ′1

∧
-E
· · ·

[
∧
z.φ′m]1

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′
⇒-I1

563

Deriving Parameter Lifting for one Parameter

′ stands for application of [y1 ← f1(z), . . . , yk ← fk(z)].∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

[
∧
z.φ′1]

1

φ′1

∧
-E
· · ·

[
∧
z.φ′m]1

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′
⇒-I1∧

f1 . . . fk.[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′

∧
-I

563

Deriving Parameter Lifting for one Parameter

′ stands for application of [y1 ← f1(z), . . . , yk ← fk(z)].∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

[
∧
z.φ′1]

1

φ′1

∧
-E
· · ·

[
∧
z.φ′m]1

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′
⇒-I1

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′

∧
-I

After parameter lifting, we drop outer quantifiers again.

563

Lifting ∨-IL

Lifting
∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL) over z gives∧
G2H2.(

∧
z.[[G2 z]])⇒ (

∧
z.[[G2 z ∨H2 z]]).

564

Lifting ∨-IL

Lifting
∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL) over z gives

(
∧

z.[[G2 z]])⇒ (
∧

z.[[G2 z ∨H2 z]]).

We drop outer quantifiers and lift over assumption [[∀z.G z]]

to obtain

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

This rule will be applied in the next step.

564

Proof of (∀z.G z)→ (∀z.G z ∨H z) (3)

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next?

565

Proof of (∀z.G z)→ (∀z.G z ∨H z) (3)

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next? Resolution with ∀-E lifted over z. However,

this cannot be guessed from looking at
∧
z.[[Gz]], but rather

from looking at premise [[∀z.G z]].

565

Lifting of ∀-E over z

Lifting
∧
Fy.[[∀x.F x]]⇒ [[F y]] (∀-E) over parameter z gives∧

G3f3.(
∧

z.[[∀x.(G3 z)x]])⇒ (
∧

z.[[G3 z(f3 z)]]).

We drop outer quantifiers and lift over assumption [[∀z.G z]]

to obtain

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

This rule will be applied in the next step.

566

Proof of (∀z.G z)→ (∀z.G z ∨H z) (4)

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

...

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [f3 ← λw.w, G3 ← λvw.Gw].

We suppress conversion, assuming terms are in normal form.

What to do next?

567

Proof of (∀z.G z)→ (∀z.G z ∨H z) (4)

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

...

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [f3 ← λw.w, G3 ← λvw.Gw].

We suppress conversion, assuming terms are in normal form.

What to do next? Since z /∈ FV (∀x.Gx), we can use a

modified assumption axiom.

567

Modified Assumption Axiom

[φ1, . . . , φm]⇒
∧
z.φi

assum
where z /∈ FV (φi).

It has the following derivation:

[φi]
1∧

z.φi

∧
-I

[φi+1, . . . , φm]⇒
∧
z.φi
⇒-I

[φi, . . . , φm]⇒
∧
z.φi

⇒-I1

[φ1, . . . , φm]⇒
∧
z.φi
⇒-I

568

Instance of Modified Assumption Axiom

In the next step, we will use the instance

[[∀z.G z]]⇒
∧

z.[[∀x.Gx]]

of

[φ1, . . . , φm]⇒
∧

z.φi.

We identified ∀z.G z and ∀x.Gx by conversion.

569

Proof of (∀z.G z)→ (∀z.G z ∨H z) (5)

...

[[∀z.G z]]⇒∧
z.[[∀x.Gx]]

...

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

[[(∀z.G z)→ (∀z.G z ∨H z)]]
res

Done!

570

Remark on Step 2

Recall Step 2:

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

One could have obtained
∧
z.([[∀z.G z]] ⇒ ([[Gz ∨H z]]))

instead of ([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]])) by lifting ∀-I in a

different way527. This will be an exercise.
527In our proof, we lifted ∀-I over assumption [[∀z.G z]] as

follows:

([[∀z.G z]]⇒ (
∧

x.[[F1 x]]))⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

It would have been possible to derive (formally, in M) the

following rule instead:

(
∧

x.[[∀z.G z]]⇒ [[F1 x]])⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

This is essentially so since z /∈ FV [[∀z.G z]]. If we had done

it like that, step 2 would have looked as follows

(
∧
x.[[∀z.G z]]⇒ [[F1 x]])

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

(
∧
z.[[∀z.G z]]⇒ [[Gz ∨H z]])

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The rest of the proof would then have looked slightly dif-

ferently due to the different scope of the
∧

. For example,

571

Checking Side Conditions

To demonstrate how side conditions are checked, we show a

proof attempt that fails due to a side condition.

Take ∃u.∀w. w = u in FOL with equality, so assume we

have a meta-axiom for reflexivity:∧
z. [[z = z]] (refl)

it would have been necessary to lift ∨-IL over assumptions

before lifting it over parameters.

In fact, if we denote a vector of variables by overlining, then

we can derive the following rule for lifting over assumptions:

[(
∧
x̄1.φ1), . . . , (

∧
x̄m.φm)]⇒ φ

[(
∧
x̄1.Ψ⇒ φ1), . . . , (

∧
x̄1.Ψ⇒ φm)]⇒ (Ψ⇒ φ)

where x̄1, . . . x̄m /∈ FV (Ψ). Compare this to rule a-lift. Us-

ing the more complicated rule, where the assumption list Ψ

is pulled into the scope of
∧

’s surrounding each rule premise

φi, would probably have made the presentation here some-

what more complicated. On the other hand, this is indeed

what happens in Isabelle (try to do the proof of (∀z.G z)→
(∀z.G z ∨H z) in Isabelle).

572

Failed Proof Attempt of ∃u.∀w.w = u

(
∧
x.[[F2 x]])

⇒ [[∀x.F2 x]]

[[F1 y1]]⇒
[[∃x.F1 x]]

[[∃u.∀w.w = u]]⇒
[[∃u.∀w.w = u]]

[[∀w.w = y1]]⇒ [[∃u.∀w.w = u]]
res

(
∧
x.[[x = y1]])⇒ [[∃y.∀x. x = y]]

res

Substitution? [F1 ← , F2 ←].

528Note that lifting refl ∧
z.[[z = z]]

over x gives ∧
g3.
∧

x.[[g3 x = g3 x]].

Here the variable z in refl was replaced by the variable g3 that

depends on x. However, we drop the outer quantification∧
g3. In this particular case,

∧
x is also an outer quantifica-

tion, but we keep it, since obtaining this quantification was

the very purpose of lifting (recall that lifting is done to achieve

unifiability).
529Recall that

∧
x.φ is syntactic sugar for

∧
x.(λx.φ).

So we have to unify λx.[[x = y1]] and λx.[[g3 x = g3 x]].

It turns out that this task can be decomposed into having

to unify λx.x and λx.g3 x on the one hand, and λx.y1 and

λx.g3 x on the other hand. Unification of λx.x and λx.g3 x

forces g3 to be λx.x, so we are left with having to unify λx.y1

and λx.x. But these terms are not unifiable!

573

Failed Proof Attempt of ∃u.∀w.w = u

(
∧
x.[[F2 x]])

⇒ [[∀x.F2 x]]

[[F1 y1]]⇒
[[∃x.F1 x]]

[[∃u.∀w.w = u]]⇒
[[∃u.∀w.w = u]]

[[∀w.w = y1]]⇒ [[∃u.∀w.w = u]]
res

(
∧
x.[[x = y1]])⇒ [[∃y.∀x. x = y]]

res

Substitution? [F1 ← λv.∀w.w = v, F2 ← λv. v = y1].

What to do next?

528Note that lifting refl ∧
z.[[z = z]]

over x gives ∧
g3.
∧

x.[[g3 x = g3 x]].

Here the variable z in refl was replaced by the variable g3 that

depends on x. However, we drop the outer quantification∧
g3. In this particular case,

∧
x is also an outer quantifica-

tion, but we keep it, since obtaining this quantification was

the very purpose of lifting (recall that lifting is done to achieve

unifiability).
529Recall that

∧
x.φ is syntactic sugar for

∧
x.(λx.φ).

So we have to unify λx.[[x = y1]] and λx.[[g3 x = g3 x]].

It turns out that this task can be decomposed into having

to unify λx.x and λx.g3 x on the one hand, and λx.y1 and

λx.g3 x on the other hand. Unification of λx.x and λx.g3 x

forces g3 to be λx.x, so we are left with having to unify λx.y1

and λx.x. But these terms are not unifiable!

573

Failed Proof Attempt of ∃u.∀w.w = u

(
∧
x.[[F2 x]])

⇒ [[∀x.F2 x]]

[[F1 y1]]⇒
[[∃x.F1 x]]

[[∃u.∀w.w = u]]⇒
[[∃u.∀w.w = u]]

[[∀w.w = y1]]⇒ [[∃u.∀w.w = u]]
res

(
∧
x.[[x = y1]])⇒ [[∃y.∀x. x = y]]

res

Substitution? [F1 ← λv.∀w.w = v, F2 ← λv. v = y1].

What to do next? Resolution with refl lifted over parameter

x:
∧
x.[[g3 x = g3 x]]528. But

∧
x.[[x = y1]] and

∧
x.[[g3 x = g3 x]]

are not unifiable529. Proof fails!
528Note that lifting refl ∧

z.[[z = z]]

over x gives ∧
g3.
∧

x.[[g3 x = g3 x]].

Here the variable z in refl was replaced by the variable g3 that

depends on x. However, we drop the outer quantification∧
g3. In this particular case,

∧
x is also an outer quantifica-

tion, but we keep it, since obtaining this quantification was

the very purpose of lifting (recall that lifting is done to achieve

unifiability).
529Recall that

∧
x.φ is syntactic sugar for

∧
x.(λx.φ).

So we have to unify λx.[[x = y1]] and λx.[[g3 x = g3 x]].

It turns out that this task can be decomposed into having

to unify λx.x and λx.g3 x on the one hand, and λx.y1 and

λx.g3 x on the other hand. Unification of λx.x and λx.g3 x

forces g3 to be λx.x, so we are left with having to unify λx.y1

and λx.x. But these terms are not unifiable!

573

33.5 Free Variables in Goals

The resolution rule can be generalized to allow for instantia-

tion of variables in goals:

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

([ψ1, . . . , ψi−1, φ1, . . . , φm, ψi+1, . . . , ψn]⇒ ψ)θ
res

where φθ ≡ ψiθ.

But then we must distinguish the status of the free vari-

ables. Denote the universal closure530 of ψ by
∧

.ψ. Then

. . .
This was just a semi-formal argument that

∧
x.[[x = y1]] and∧

x.[[g3 x = g3 x]] are not unifiable, but it gives you the idea.
530The universal closure of a meta-formula ψ is the formula∧
x1 . . . xn.ψ where FV (ψ) = {x1 . . . xn}.

As might be expected, the same concept is also used for

FOL formulae where it is defined in analogy using ∀ instead

of
∧

.

574

Instantiation of the Initial Goal

Previously, when we proved ψ we in fact proved
∧

.ψ.

...

ψ ⇒ ψ
...

ψ

531Suppose we want to prove ((A → B) → A) → A. If

we allow for instantiation of the free variables A and B, we

could easily end up proving ((A → A) → A) → A. This is

probably not what we want. In fact the proof has little to do

with the proof of ((A→ B)→ A)→ A that is schematic in

A and B.

In terms of MProp, we want to prove∧
AB.[[((A→ B)→ A)→ A]]

Recall that ((A→ B)→ A)→ A is Peirce’s law.
532The more free variables in the goal we allow Isabelle to

instantiate, the more unifiers there are. This may increase

the search space to the extent of making it impossible to find

a proof.

575

Instantiation of the Initial Goal

Previously, when we proved ψ we in fact proved
∧

.ψ.

...

∧
.ψ ⇒ ψ

ψ ⇒ ψ

∧
-E

...

ψ∧
.ψ

∧
-I

531Suppose we want to prove ((A → B) → A) → A. If

we allow for instantiation of the free variables A and B, we

could easily end up proving ((A → A) → A) → A. This is

probably not what we want. In fact the proof has little to do

with the proof of ((A→ B)→ A)→ A that is schematic in

A and B.

In terms of MProp, we want to prove∧
AB.[[((A→ B)→ A)→ A]]

Recall that ((A→ B)→ A)→ A is Peirce’s law.
532The more free variables in the goal we allow Isabelle to

instantiate, the more unifiers there are. This may increase

the search space to the extent of making it impossible to find

a proof.

575

Instantiation of the Initial Goal

Previously, when we proved ψ we in fact proved
∧

.ψ.

Now, allowing for instantiation of ψ, we in fact prove
∧

.ψθ.

...

∧
.ψ ⇒ ψ

ψ ⇒ ψ

∧
-E

...

ψθ∧
.ψθ

∧
-I

531Suppose we want to prove ((A → B) → A) → A. If

we allow for instantiation of the free variables A and B, we

could easily end up proving ((A → A) → A) → A. This is

probably not what we want. In fact the proof has little to do

with the proof of ((A→ B)→ A)→ A that is schematic in

A and B.

In terms of MProp, we want to prove∧
AB.[[((A→ B)→ A)→ A]]

Recall that ((A→ B)→ A)→ A is Peirce’s law.
532The more free variables in the goal we allow Isabelle to

instantiate, the more unifiers there are. This may increase

the search space to the extent of making it impossible to find

a proof.

575

Instantiation of the Initial Goal

Previously, when we proved ψ we in fact proved
∧

.ψ.

Now, allowing for instantiation of ψ, we in fact prove
∧

.ψθ.

...

∧
.ψ ⇒ ψ

ψ ⇒ ψ

∧
-E

...

ψθ∧
.ψθ

∧
-I

This may not be what we want531.

Problem: more unifiers, hence bigger search space532.
531Suppose we want to prove ((A → B) → A) → A. If

we allow for instantiation of the free variables A and B, we

could easily end up proving ((A → A) → A) → A. This is

probably not what we want. In fact the proof has little to do

with the proof of ((A→ B)→ A)→ A that is schematic in

A and B.

In terms of MProp, we want to prove∧
AB.[[((A→ B)→ A)→ A]]

Recall that ((A→ B)→ A)→ A is Peirce’s law.
532The more free variables in the goal we allow Isabelle to

instantiate, the more unifiers there are. This may increase

the search space to the extent of making it impossible to find

a proof.

575

Two Kinds of Free Variables

In Isabelle, control over instantiation is given by having two

kinds of free variables:

• ordinary variables must not become instatiated;

• metavariables (unknowns, schematic variables) may be-

come instantiated.

In goals we can have both kinds, in rules we have metavari-

ables. Try it out in Isabelle!533

Once a theorem is proven, any free variables will be made

metavariables534, and the reading is as for rules: The theorem

is implicitly universally quantified over the free variables.
533To understand the difference, try proving A∧B → P and

A ∧ B →?P in Isabelle. The first won’t succeed while the

second may succeed in various ways.
534Prove A ∧ B →?P in Isabelle and save (qed) it as a

theorem and then have a look at the theorem.

576

33.6 Conclusion on Isabelle’s Metalogic

The logic M and its proof system are small.

What makesM powerful enough to encode a large variety

of object logics?

• The λ-calculus is very powerful for expressing syntax and

syntactic manipulations (→ substitution). M must be

extended by appropriate signature for an object logic.

• Rules of the object logic can be encoded and added to

M535 as axioms.
535In some course on propositional logic, you may have learned

that the connective → is not really necessary since A → B

is equivalent to ¬A ∨ B. Likewise, we considered ¬A as

syntactic sugar for A→ ⊥.

Therefore, when we introduce a logicM that is so extremely

simple as far as the number of logical symbols is concerned

(just ⇒, ≡,
∧

), one might think that the idea is that all

the other logical symbols one usually needs are just syntactic

sugar. This is not the case!

To encode propositional logic or FOL in M, we must add

their rules as axioms.

Later, we will be working with a logic just slightly richer

than M but still quite simple, and there the idea is indeed

that all the other logical symbols one usually needs are just

syntactic sugar.

577

Conclusion (2)

General principles of proof building (e.g. resolution, proving

by assumption, side condition checking) are not something

that must be justified by complicated (and thus error-prone)

explanations in natural language — they are formal derivations

in the metalogic.

This has two big advantages: shared support and high de-

gree of confidence.

578

34 HOL: Foundations

34.1 Overview

HOL is expressive foundation536 for

• Mathematics: analysis, algebra, . . .

• Computer science: program correctness, hardware verifi-

cation, . . .

http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/
http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/

34 HOL: Foundations

34.1 Overview

HOL is expressive foundation536 for

• Mathematics: analysis, algebra, . . .

• Computer science: program correctness, hardware verifi-

cation, . . .

HOL is very similar to M, but it “is” an object logic537!

• HOL is classical538.

• Still539 important: modeling of problems/domains (now

within HOL).

• Still important: deriving relevant reasoning principles.

536Theorem proving in higher-order logic is an active research

area with some impressive applications.
537The differences between M and HOL are subtle and the

matter is further complicated by the fact that there are some

variations in the way in which the Isabelle metalogic M on

the one hand and the object logic HOL on the other hand are

presented.

But what matters for us here is that HOL is an object logic,

i.e., it is one of the object logic that can be represented by

M, just like propositional logic or first-order logic. That is to

say, we use HOL as object logic.
538Recall the distinction between classical and intuitionistic

logics. There is a particular rule in HOL from which the rule

of the excluded middle can be derived. This is in contrast to

constructive (intuitionistic) logics.
539We have previously looked at metatheory, i.e., how can

one logic be represented/modeled in a metalogic.

In particular, we have seen how general reasoning principles

579

http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/
http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/

Isabelle/HOL vs. Alternatives

We will use Isabelle/HOL540.

• Could forgo the use of a metalogic541 and employ alterna-

tives, e.g., HOL system or PVS, or constructive provers542

such as Coq or Nuprl.

• Choice depends on culture and application.

can be derived in the metalogic.

We now set aside the issue of metalogics, but there is still

an issue of modeling one system within another: how do we

model problems/domains within HOL? How do we derive rea-

soning principles?
540We use Isabelle/HOL, and this means that HOL is an ob-

ject logic represented by the metalogic M.
541There are theorem proving systems that have no metalogic,

but rather have a particular logic hard-wired into them, e.g. a

HOL system or PVS.
542Constructive provers are based on intuitionistic logic. The

rationale is that one has to give evidence for any statement.

Coq and Nuprl are examples of such systems.

580

http://www.cl.cam.ac.uk/research/hvg/HOL/
http://pvs.csl.sri.com/
http://coq.inria.fr/
http://www.cs.cornell.edu/info/Projects/Nuprl/

Safety through Strength

Safety543 via conservative (definitional) extensions:

• Small kernel of constants and rules;

• extend theory with new constants and types defined using

existing ones;

• derive properties/theorems.

Contrast with:

• Weak logics (e.g., propositional logic): can’t define much;

• axiomatic extensions544: can lead to inconsistency.

Bertrand Russell once likened the advantages of postulation

over definition to the advantages of theft over honest toil!
543The principle is simple: the smaller a system is, the easier

it is to check that it is correct, and the more confident one

can be about it.

We have seen this before when we argued for the use of

metalogics. However, in that context, we still had to add

further axioms to M. Here this is not the case.

Safety through strength means: HOL is strong enough to

model interesting systems without having to add further ax-

ioms – that’s what makes it safe.
544What we attempt to do here has similarities to the pro-

cess of representing an object logic in a metalogic. But an

important difference must be noted.

We will see many extensions of the HOL kernel by con-

stants (and types). The definitions of those constants and

types involve axioms that must be added according to a strict

discipline. Other than that, we will not add any axioms!

581

Set Theory as Alternative?

Set theory is the logician’s choice as basis for modern math-

ematics.

• ZFC545 [Zer07, Frä22]: has been implemented in Isabelle,

with impressive applications!

• Neumann-Bernays-Gödel [Ber91]: equivalent to ZFC, but

finitely axiomatizable546.

Set theories (both) distinguish between sets and classes.

• Consistency maintained as some collections are “too big”

to be sets, e.g., class of all sets V is not a set.

• A class cannot belong to another class (let alone a set)!

545ZFC stands for Zermelo-Fränkel set theory with

choice [Dev93, Ebb94].
546Strictly speaking, an axiom within the object language in

question. In this sense, the axiom of the excluded middle

from propositional logic, A ∨ ¬A (for example) is not an

axiom, because A is a meta-variable which could stand for an

arbitrary formula, and thus A ∨ ¬A is not within the object

language of propositional logic. One says that A ∨ ¬A is an

axiom schema that represents infinitely many axioms.

So far we have not made this distinction explicit in most

places, although we have raised this issue very early on.

Now a theory is finitely axiomatizable if it only uses axioms,

but no axiom schemata.

582

Finally: We Choose HOL!

HOL developed by [Chu40, Hen50] and rediscovered by [And02,

GM93].

• Rationale: one usually works with typed entities.

• Reasoning is then easier with support for types.

HOL is classical logic based on λ→.

• Isabelle/HOL also supports “mod cons”547 like polymor-

phism and type classes!

HOL is weaker than ZF set theory, but for most ap-

plications this does not matter. If you prefer ML to

Lisp, you will probably prefer HOL to ZF. (Larry

Paulson)

547“Mod cons” stands for “modern conveniences”.

583

What Does Higher-Order Mean?

“Type” order548 Logic order

Example

Just o 0? A ∧B → B ∧ A
1 1 ∀x, y. R(x, y)→ R(y, x)

+ quantification 2 False ≡ ∀P. P
P ∧Q ≡ ∀R. (P → Q→ R)

2 3

+ quantification 4 ∀X. (X(R, S)↔ (∀x.R(x)→ S(x)))

→ X(R′, S ′) (≡ subrel(R′, S ′))
...

548Recall the definition of an order on types and assume here,

as we did in the lecture on representing syntax, that there is

a type i of individuals and a type o for truth values.

In the sequel, we follow [And02, §50], who uses a definition

of order slightly different from ours. I will phrase his definition

using the concept of predicate type:

• i is a type of order 0.

• every type of the form

i→ . . . i→︸ ︷︷ ︸
n times

o,

where n ≥ 0, is a predicate type of order 1.

• If τ1, . . . , τn are predicate types, then τ1 → . . .→ τn →
o is a predicate type whose order is 1+ the maximum of

the orders of τ1, . . . , τn.

Note that this means that there are no function symbols,

since we did not consider types of the form . . . → i. How-

584

ever it is better to say that we simply disregard them in the

subsequent explanations, for simplicity.

In the table, we classify logics by the order of the non-

logical symbols (e.g., for first-order logic: variables, predicate

symbols).

A hierarchy of logics is obtained by the following alternation:

• admit an additional order for the non-logical symbols in

the logic;

• admit quantification over symbols of that order.

We start this hierarchy with first-order logic.

It has symbols of first-order type (predicate symbols), but

quantification is allowed only over individuals, which are of

order 0.

Now, if one admits quantification over symbols of first-order

type, i.e., over symbols of type o or i → . . . → i → o, one

obtains second-order logic.

585

Now, if one admits symbols of second-order type (symbols

taking predicate symbols as arguments), one obtains third-

order logic.

Now, if one admits quantification over symbols of second-

order type, one obtains fourth-order logic.

Hence quantification over nth-order variables corresponds

to (2n)th-order logic.

In the end, one will never bother to discuss, say, 7th-order

logic, since higher-order logic is the union of all logics of finite

order, and this is what we will be working with.

Andrews has said that propositional logic might be regarded

as zeroth order logic, but unfortunately, propositional logic

cannot be found in this hierarchy in a straightforward way.

According to the hierarchy, below first-order logic there should

be a logic where the symbols are of order 0 and quantification

over such symbols is allowed. But in fact, in propositional

logic the symbols are of type o, which is of order 1 but is not

the only type of order 1, and no quantification is allowed at

586

Explanation for subrel(R′, S ′).549

all.

However, once you take higher-order logic as your point of

reference and not propositional or first-order logic, which can

just be viewed as special cases, you will probably not find this

bothering anymore.
549Consider the binary predicate subrel which takes two unary

relations as arguments. subrel(R, S) is defined as true when-

ever R is a subrelation of S, i.e. when ∀x.R(x)→ S(x).

Now instead of defining such a predicate and writing, say,

a formula subrel(R′, S ′), one could abstract from that name

and write

∀X. (X(R, S)↔ (∀x.R(x)→ S(x)))→ X(R′, S ′)

The subformula X(R, S) ↔ (∀x.R(x) → S(x)) is true if

and only if X is indeed the predicate subrel and so the entire

formula is true if R′ is indeed a subrelation of S ′.

587

HOL = Union of All Finite Orders

ω-order logic, also called finite-type theory or higher-order

logic (HOL), includes logics of all finite orders.

588

34.2 Syntax

Syntactically, HOL is a polymorphic (although not neces-

sarily) variant of λ→ with certain default types and constants.

Default constants can be called logical symbols.

589

Types (Review)

Given a set of type constructors, say B550 = {bool , →
, ind 551, × 552, list , set , . . .}, polymorphic types are

defined by τ ::= α | (τ, .., τ) T , where α is a type

variable.

• bool is also called o in literature [Chu40, And02]. Con-

fusingly, the truth value type in Isabelle/HOL (i.e., object-

level) is called bool .

• bool and → always present in HOL; ind will also play a

special role; other type constructors may be defined.

• Note polymorphism553!

550As before, we use the letter B to denote a particular set

of type constructors.

Note that this set is not hard-wired into HOL, but can be

specified as part of a particular HOL language. One can there-

fore speak of B as a type signature.

B is some fixed set “defined by the user”. In Isabelle, there

is a syntax provided for this purpose.

However, some type constructors are always present.
551ind (“indefinite”) is a type constructor which stands for a

type with infinitely many members, a concept which is central

in HOL, as we will see later.
552For any two types τ and σ, we write τ × σ for the type of

pairs where the first component is of type τ and the second

component is of type σ.

The infix syntax is in analogy to →.

The pair type is not in the core of HOL, but it can be defined

in it.
553We have seen the generalization of λ→ to polymorphism.

590

Terms

Reminder: e ::= x | c | (ee) | (λxτ
554
. e)

Typing rules as in polymorphic λ-calculus, with Σ defining

and typing constants.

Terms of type bool are called

Note that in order to simplify the presentation, we neglect

polymorphism in the section on semantics. In that section,

τ and σ will be metavariables (used in the description of the

formalism) ranging over types, rather than type variables of a

polymorphic type system.

591

Terms

Reminder: e ::= x | c | (ee) | (λxτ
554
. e)

Typing rules as in polymorphic λ-calculus, with Σ defining

and typing constants.

Terms of type bool are called (well-formed) formulae.

In HOL, Σ always includes:

True,False555 : bool

= : α→ α→ bool (polymorphic, or set556)

→ : bool → bool → bool

ε : (α→ bool)→ α (in Isabelle: Eps or SOME557)

Note that in order to simplify the presentation, we neglect

polymorphism in the section on semantics. In that section,

τ and σ will be metavariables (used in the description of the

formalism) ranging over types, rather than type variables of a

polymorphic type system.

591

34.3 Semantics

Intuitively: many-sorted semantics + functions

• FOL: structure is domain and functions/relations.

A = 〈D , IA〉

34.3 Semantics

Intuitively: many-sorted semantics + functions

• FOL: structure is domain and functions/relations. Many-

sorted FOL: domains are sort-indexed

A = 〈D1, . . . ,Dn, IA〉

34.3 Semantics

Intuitively: many-sorted semantics + functions

• FOL: structure is domain and functions/relations. Many-

sorted FOL: domains are sort-indexed

A = 〈D1, . . . ,Dn, IA〉

• HOL extends idea: D indexed by (infinitely many) types.

• Complications due to polymorphism [GM93].

• We only give a monomorphic variant of semantics here!

592

Model Based on Universe of Sets U
U is a collection of sets (domains), fulfilling closure conditions:

Inhab: Each X ∈ U is a nonempty set

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U

Prod: If X, Y ∈ U then X × Y ∈ U .

Pow: If X ∈ U then ℘(X) = {Y | Y ⊆ X} ∈ U

Infty: U contains a distinguished infinite set558 I

Choice: There is a function ch ∈ ΠX∈U .X .

558The infinity axiom

∃f (ind→ind).injective f ∧ ¬surjective f
infty

says that there is a function from I to I (the postulated

infinite set in U) which is injective (any two different elements

e, e′ of I have different images under f) but not surjective

(there exists an element of I which is not the image of any

element).

Such a function can only exist if I is infinite, and in fact

the axiom expresses the very essence of infinity, as we will see

later.

Think of the natural numbers and the successor function

as an example: for any two different natural numbers, the

successors are different, and the number 0 is not the successor

of any number.

593

Prod: Encoding X × Y
X × Y is the Cartesian product, i.e., the set of pairs (x, y)

such that x ∈ X and y ∈ Y .

One can actually “encode” a tuple (x, y) without explic-

itly postulating the “existence of tuples”559. E.g.: (x, y) ≡
{{x}, {x, y}}.

559According to usual mathematical practice, one would argue

that if two sets A and B are well-defined, then the set A×B
of pairs (tuples) (a, b) where a ∈ A and b ∈ B is also well-

defined.

That is, we assume that if one understands what a and b

are, then one also understands what the pair (a, b) is. A pair

is a “semantic object”.

Ultimately, semantics can only be understood using one’s

intuition, and only be explained using natural language. (One

can only “hope” [GM93, page 193] that no confusion arises.)

One should try to base the semantics on a very small number

of fundamental concepts.

Therefore, one might want to avoid having a concept “pair”

(“tuple”) explicitly, or put differently, one might want to re-

duce “pairs” to something even more fundamental. That’s

what is intended by the encoding {{x}, {x, y}}.
Note that this reduction step somehow makes the type dis-

cipline invisible, because x and y might be semantic objects

594

Choice: Picking a Member

The function ch takes a set X ∈ U as argument and returns

a member of X .

We hence write ch ∈ ΠX∈U .X
560, i.e., ch is of dependent

type.

Essentially, the constant ε will be interpreted as ch, but

you will see the technical details later.

“of different type”.
560When we write ch ∈ ΠX∈U .X , i.e., ch is of dependent

type, then this is a statement on the semantic level. The

expression ΠX∈U .X is not part of the formal syntax of HOL

(unlike in LF, a system we have not treated here), and its

meaning is only described in plain English, by saying that ch

takes a set X ∈ U as argument and returns a member of X .

595

Function Space in U
Define set X → Y as (graphs of) functions561 from X to Y .

• For nonempty X and Y 562, this set is nonempty and is a

subset of ℘(X × Y).

• From closure conditions: X, Y ∈ U then X → Y ∈ U .

561In any basic math course on algebra, we learn that a binary

relation between X and Y is set of a pairs of tuples of the

form (x, y) where x ∈ X and y ∈ Y . One also calls such a

set a graph since one can view pairs (x, y) as edges.

We also learn that a relation R is called a function from X

to Y if for each x ∈ X , there exists exactly one y ∈ Y such

that (x, y) ∈ R. Provided that Y is nonempty, a function

from X to Y always exists.

Thus the set of functions from X to Y , denoted X → Y ,

is a nonempty subset of the set of relations on X and Y , i.e.,

℘(X × Y). Since X → Y is nonempty, by Prod we have

that X → Y ∈ U .
562It is crucial in the semantics that any type is inhabited,

i.e., has an element. The reason for this is that otherwise,

there would be terms for which we cannot give a semantics:

Suppose ρ was an empty (non-inhabited) type. Then we

cannot give any semantics to the term xρ. Moreover, if the

signature includes a constant cρ, then we cannot give a se-

596

Distinguished Sets

From

Infty: U contains a distinguished infinite set I

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U
it follows that the following sets exist in U :

mantics to cρ. Even if we only consider closed terms (i.e.,

terms without free variables), and we explicitly forbid the ex-

istence of a constant cρ for an empty type ρ, there will be

terms for which we cannot give a semantics. The simplest

example is the term λxρ.x.

We know that λ-terms denote functions, as in λxρ.x, and

so it is natural to expect that all functions we can write in

the λ-calculus actually exist in the semantics. Generally, the

function space X → Y is empty if X or Y is empty. This

means that Dτ→σ would necessarily be empty if τ is empty.

One way of understanding why it would be bad if some λ-

terms denoting functions had no semantics is by looking at

β-reduction: for any types τ ,σ and a constant c of type σ,

we expect (λxτ .c)x = c. But this wouldn’t hold if we cannot

give a semantics to (λxτ .c) since Dτ→σ is empty.

Therefore: inhabitation.

One specific point where inhabitation is crucial is related to

the ε-operator, as we will see later.

597

Unit: A distinguished 1-element563 set {1}

Bool: A distinguished 2-element set {T, F}.

In the book [GM93] that is one of the sources for this lecture,

inhabitation is mentioned, but it is not explained why it is

crucial.

Here we speak of semantic inhabitation, i.e., our semantic

universe must be big enough so that all terms (of type τ)

can be given a meaning (in Dτ). This is a different ques-

tion from whether there might be types that are not inhab-

ited (syntactically) in the first place, i.e., types for which

there exists no term of this type (compare this to the Curry-

Howard isomorphism). Thus we are concerned with making

sure that every term has a meaning, not that every meaning

has a term. However, it turns out that that in HOL, each

type τ is also syntactically inhabited, namely e.g. by the term

ε(τ→bool)→τ (λx
τ .True).

563Of course, the conditions on U do not per se enforce the

existence of sets containing the elements 1 or T or F . Just

as well, one could say that they enforce the existence of sets

containing elements K or ® or o.

598

Frames

For semantics, we neglect polymorphism. τ and σ range over

types.

A frame is a collection {Dτ}τ of non-empty sets (domains)

Dτ ∈ U , one for each type τ , where:

• Dbool = {T, F};

• Dτ→σ ⊆ Dτ → Dσ, i.e., some collection of functions

from Dτ to Dσ.

• Dind = I .

Note: for fundamental reasons discussed later, one cannot

simply define Dτ→σ=Dτ → Dσ at this stage.

It is only because the name of a semantic element is ul-

timately irrelevant that we claim, without loss of generality,

that there is a 1-element set {1} and a 2-element set {T, F}.
We say that these sets are distinguished because they play a

special role in the setup of the semantics.

599

Interpretations

An interpretation M = 〈{Dτ}τ ,J 〉 is a frame {Dτ}τ and a

denotation function J mapping each constant of type τ to

an element of Dτ where:

• J (True) = T and J (False) = F ;

• J (=τ→τ→bool)
564 is equality on Dτ ;

• J (→) is implication function over Dbool . For b, b′ ∈
{T, F},

J (→)(b, b′) =

{
F if b = T and b′ = F

T otherwise

564For = and ε, we give type subscripts in the presentation of

the semantics since we assume, conceptually, that there are

infinitely many copies of those constants, one for each type.

We do this to avoid explicit polymorphism in this presentation.

600

Interpretations (Cont.)

• J (ε(τ→bool)→τ) is defined by (for f ∈ (Dτ → Dbool)):

J (ε(τ→bool)→τ)(f)565 =

{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

Note: If a frame {Dτ}τ does not contain all of the functions

used above, then {Dτ}τ cannot belong to any interpretation.

565We have

J (ε(τ→bool)→τ)(f) =

{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

ch is a (semantic) function which takes a nonempty set and

returns an element from that set. f is a semantic function

from Dτ to Dbool . However, f can be interpreted as set. This

is done in all formality here: we write f−1({T}). One says

that f is the characteristic function of the set f−1({T}).

Now the type of ε is (τ → bool) → τ (for any τ), so ε

expects a function as argument, which can be interpreted as

a set as just stated. This set can be empty or nonempty. In

case it is nonempty, an element is picked from the set non-

deterministically. If the set is empty, an element from the type

τ (which must be nonempty since each type is interpreted as

nonempty set). Note the importance of inhabitation.

601

A Terminological Note

The terminology is slightly different from FOL:

In FOL, “〈{Dτ}τ ,J 〉” is called structure and “J ” is called

interpretation.

In HOL, 〈{Dτ}τ ,J 〉 is called interpretation and J is called

denotation function.

602

The Value of Terms (Näıve)

In analogy to FOL, given an interpretation M = 〈{Dτ}τ ,J 〉
and a type-indexed collection of assignments566 A = {Aτ}τ ,

define VM
A such that VM

A (tρ) ∈ Dρ for all t, as follows:

1. VM
A (xτ) = A(xτ);

2. VM
A (c) = J (c) for c a constant;

3. VM
A (sτ→σ

567tτ) = (VM
A (s))(VM

A (t)), i.e., the value of the

function VM
A (s) at the argument VM

A (t);

4. VM
A (λxτ . tσ) = the function fromDτ intoDσ whose value

for each e ∈ Dτ is VM
A[x←e]

568(t).

What is the problem?
566An assignment (previously called valuation) maps variables

to elements of a domain.

A type-indexed collection of assignments is an assignment

that respects the types: a variable of type τ will be assigned to

a member of Dτ [GM93]. Note that a variable has a type by

virtue of a context Γ, which is suppressed in our presentation

of models.
567In the presentation of models, we give type subscripts for

the cases VM
A (sτ→σtτ) and VM

A (λxτ . tσ) to indicate the types

of s and t in those definitions. Note that a term has a type in

a certain context Γ, which is suppressed in our presentation of

models. The semantics is only defined for well-formed terms,

in particular, applications and abstractions having types of the

indicated forms.
568A[x ← e] denotes the assignment that is identical to A

except that A(x) = e.

603

The Value of Terms (Näıve)

In analogy to FOL, given an interpretation M = 〈{Dτ}τ ,J 〉
and a type-indexed collection of assignments566 A = {Aτ}τ ,

define VM
A such that VM

A (tρ) ∈ Dρ for all t, as follows:

1. VM
A (xτ) = A(xτ);

2. VM
A (c) = J (c) for c a constant;

3. VM
A (sτ→σ

567tτ) = (VM
A (s))(VM

A (t)), i.e., the value of the

function VM
A (s) at the argument VM

A (t);

4. VM
A (λxτ . tσ) = the function fromDτ intoDσ whose value

for each e ∈ Dτ is VM
A[x←e]

568(t).

What is the problem? Condition 4!
566An assignment (previously called valuation) maps variables

to elements of a domain.

A type-indexed collection of assignments is an assignment

that respects the types: a variable of type τ will be assigned to

a member of Dτ [GM93]. Note that a variable has a type by

virtue of a context Γ, which is suppressed in our presentation

of models.
567In the presentation of models, we give type subscripts for

the cases VM
A (sτ→σtτ) and VM

A (λxτ . tσ) to indicate the types

of s and t in those definitions. Note that a term has a type in

a certain context Γ, which is suppressed in our presentation of

models. The semantics is only defined for well-formed terms,

in particular, applications and abstractions having types of the

indicated forms.
568A[x ← e] denotes the assignment that is identical to A

except that A(x) = e.

603

Condition 4 Is Critical

For VM
A to be well-defined, the function from Dτ into Dσ in

condition 4 must live

• in some domain of U (since it is required that VM
A (tρ) ∈

Dρ for all t, and Dρ ∈ U): this is guaranteed by closure

conditions on U ;

569In condition 4, the semantics of λxτ . tσ is defined unam-

biguously as a certain function. But in general, there is no

guarantee that this function is actually in Dτ→σ, and in this

case, M = 〈{Dτ}τ ,J 〉 would not be a model.
570General models must be distinguished from standard mod-

els, as we will see later.

We sometimes omit the word “general” in general model.

604

Condition 4 Is Critical

For VM
A to be well-defined, the function from Dτ into Dσ in

condition 4 must live

• in some domain of U (since it is required that VM
A (tρ) ∈

Dρ for all t, and Dρ ∈ U): this is guaranteed by closure

conditions on U ;

• in a certain domain of U , namely Dτ→σ569; for this, Dτ→σ
must be big enough.

If VM
A is well-defined, we call M = 〈Dτ ,J 〉 a (general)570

model.
569In condition 4, the semantics of λxτ . tσ is defined unam-

biguously as a certain function. But in general, there is no

guarantee that this function is actually in Dτ→σ, and in this

case, M = 〈{Dτ}τ ,J 〉 would not be a model.
570General models must be distinguished from standard mod-

els, as we will see later.

We sometimes omit the word “general” in general model.

604

Models

Hence: Not all interpretations are general models, but we

restrict our attention to the general models.

If Dτ→σ is the set of all functions from Dτ to Dσ, then it is

certainly “big enough”. In this case, we speak of a standard

model. Important for completeness.

If M is a general model and A an assignment, then VM
A is

uniquely determined.

VM
A (t) is value of t in M wrt. A.

Note that in contrast to first-order logic, “model” does not

mean “an interpretation that makes a formula true”.

605

Satisfiability and Validity

A formula (term of type bool) φ is satisfiable wrt. a model M

if there exists an assignment A such that VM
A (φ) = T .

A formula φ is valid wrt. a model M if for all assignments

A, we have VM
A (φ) = T .

A formula φ is valid in the general sense if it is valid in

every general model.

A formula φ is valid in the standard sense if it is valid in

every standard model.

606

Existence of Values

Closure conditions for general models guarantee every well-

formed term has a value under every assignment, and this

means that certain values must exist, e.g.,

• Closure under functions: since VM
A (λxτ . x) is defined, the

identity function from Dτ to Dτ must always belong to

Dτ→τ .

• Closure under application: if DN is natural numbers, and

DN→N→N contains addition function p where p x y = x+

y, then DN→N must contain k where k x = 2x+ 5, since

k = VM
A (λxN. f (f x x) y) where A(f) = p and A(y) =

5.

607

34.4 Basic Rules

We now give the core calculus of HOL. Its rules can be

stated using only the constants =,→, and ε. However, there

will be one rule, tof (“true or false”), which would be hard to

read if we did that.

So we allow ourselves to “cheat”571 and also use constants

True, False, ∨ to write rule tof.

Later we will define those constants, i.e., regard them as

syntactic sugar.
571Rule tof can be written as follows:

(λψ. (φ = (λx.x = λx.x)→ ψ)→
(φ = ((λη.η) = λx.(λx.x = λx.x))→ ψ)→ ψ) =

(λx.(λx.x = λx.x))

tof

Our notation for rule tof is thus based on the following def-

initions:
True = (λxbool .x = λx.x)

False = ∀φbool .φ

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

608

Basic Rules in Sequent Notation

Γ ` φ = φ
refl

Γ ` φ = η Γ ` P (φ)

Γ ` P (η)
subst

Γ ` φx = η x

Γ ` φ = η
ext∗572

Γ, φ ` η
Γ ` φ→ η

impI

Γ ` φ→ η Γ ` φ
Γ ` η

mp

Γ ` (φ→ η)→ (η → φ)→ (φ = η)
iff

φ = True ∨ φ = False
tof

Γ ` φx
Γ ` φ(εx.φx574)

selectI573

572The rule
Γ ` φx = η x

Γ ` φ = η
ext

has the side condition that x /∈ FV (Γ).

Phrased like
φx = η x

φ = η
ext

the rule has the side condition that x must not occur freely

in the derivation of φx = η x.
573You may wonder why there is no rule for eliminating ε.

We will later see a rule derivation where an ε is effectively

eliminated, and we will also see that this is done without

requiring a rule explicitly for this purpose.

Apart from that, the ε-operator is used in HOL as basis

for defining ∃ and the if-then-else constructs. Once we have

derived the appropriate rules for those, we will not explicitly

encounter ε anymore.
574For readability, we will frequently use a syntax that one is

609

Axiom of Infinity

There is one additional rule (axiom) that will give us the ex-

istence of infinite sets:

∃f (ind→ind).injective575 f ∧ ¬surjective f
infty

Has special role. Interesting to look at HOL with or without

infinity. Won’t consider infinity today.

Note “cheating” (use of ∃).

These eight (nine) rules are the entire basis!

more used to than higher-order abstract syntax:

εx.φx stands for ε(φ).

∀x.φ(x) stands for ∀(φ), and likewise for ∃.

We have done the same previously for M.

610

Soundness and Completeness

Soundness is straightforward [And02, p. 240].

611

Soundness and Completeness

Completeness only follows w.r.t. general models, as opposed

to standard models. Recall that a standard model is one where

Dτ→σ is always the set of all functions from Dτ to Dσ.

There are formulas that are valid in all standard models,

but not in all general models, and which cannot be proven

in our calculus. Our calculus can prove the formulas that

are true in all general models including non-standard ones

(Henkin models [Hen50]). This reconciles HOL with Gödel’s

incompleteness theorem576 [Hen50, Mil92].

If we consider a version of HOL without infinity, then every

model is a standard model577 and so completeness holds.
576This is a standard trick when faced with the problem that a

deductive system is not complete. One can either enlarge the

set of axioms, or one can weaken the models by permitting

more models. If we allow more models, then fewer theorems

will be valid (i.e., hold in all models), and so fewer theorems

will have to be provable in the derivation system.

Here, completeness is based on general models, and not

standard models. This resolves the apparent contradiction

with Gödel’s incompleteness theorem: HOL with infinity con-

tains I , hence the natural numbers, hence arithmetic By

Gödel’s incompleteness theorem, there cannot be a consistent

derivation system that can prove all valid theorems in the

natural numbers.

A readable account on this problem can be found in [And02,

ch. 7].
577We might consider a version of HOL without infinity, i.e.,

one where each domain is finite (note that U is still infinite,

since there are infinitely many types, e.g., bool , bool → bool ,

612

34.5 Isabelle/HOL

We now look at a particular instance of HOL (given by defining

certain types and constants) which essentially corresponds to

the HOL theory of Isabelle578.

bool → bool → bool , . . .)).

One can see that every function in such a finite domain is

representable as a λ-term, and so for any σ and τ , we must

have Dτ→σ=Dτ → Dσ.

For details consult [And02, §54].
578This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

There you will also find all the derivations of the rules pre-

sented in this lecture.

However, the presentation of this lecture is partly based on

HOL.thy of Isabelle 98, which in turn is based on a standard

book [GM93]. E.g., the definition of Ex def is now different

from the one presented here.

Note also that here in the slides, we use a style of displaying

Isabelle files which uses some symbols beyond the usual ASCII

set.

613

http://isabelle.in.tum.de/library/
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0506/csmr/HOL.thy

We present language and rules579 using “mathematical”

syntax, but also comparing with Isabelle (concrete/HOAS)

syntax.

We take polymorphism back on board.
579We will mix natural deduction (with discharging assump-

tions), natural deduction written in sequent style, and Isabelle

syntax.

For a thorough account of this, consult [SH84].

Some general remarks about the correspondence: A rule
ψ

φ

in ND notation corresponds to an Isabelle rule ψ =⇒ φ.

A rule
[ρ]
....
ψ

φ

is written as
ρ,Γ ` ψ

Γ ` φ

614

(Central Parts of the) Language

in sequent style or
ρ =⇒ ψ

φ

using the Isabelle meta-implication =⇒.

A rule
ψ

φ(x)

with side condition that x must not occur free in any undis-

charged assumption on which ψ depends is written as
Γ ` ψ

Γ ` φ(x)

in sequent style, where the side condition reads: x must not

occur free in Γ. Using the Isabelle meta-universal quantifica-

tion, the rule is written ∧
x.ψ

φ(x)

615

Σ0 =

{ True, False580 : bool ,

¬ 581 : bool → bool ,

∧ , ∨ , → : bool → bool → bool ,

∀ , ∃ : (α→ bool)→ bool ,

ε : (α→ bool)→ α,

if then else : bool → α→ α→ α,

= : α→ α→ bool}
We will switch between the various ways of writing the rules!

This means in particular that we will use =⇒ and
∧

from

Isabelle’s metalogic.
580For convenience (and to save space, we write . . . a : τ, b :

τ . . . as . . . a, b : τ . . . in a signature. This is of course syn-

tactic sugar.
581We use a notation with to indicate the arity and fixity of

constants, as this has been done for type constructors before.

The whole matter of arity of fixity is one of notational con-

venience. For example, as the type of ∧ indicates, we should

write (∧φ)ψ (Curryed notation), but we write φ ∧ ψ since it

is more what we are used to.

616

Basic Rules in Isabelle Notation

refl: "t = t"

subst: "[| s = t; P(s) |] ==> P(t)"

ext: "(!!x. (f x) = g x) ==>

(%x. f x) = (%x. g x)"

impI: "(P ==> Q) ==> P-->Q"

mp: "[| P-->Q; P |] ==> Q"

iff: "(P-->Q) --> (Q-->P) --> (P=Q)"

True_or_False: "(P=True) | (P=False)"

selectI: "P (x) ==> P (@x. P x)"

See HOL.thy.

617

Basic Rules in Mixed Notation

φ = φ
refl

φ = η P (φ)

P (η)
subst

φx = η x

φ = η
ext∗

φ =⇒ η

φ→ η
impI

φ→ η φ

η
mp

(φ→ η)→ (η → φ)→ (φ = η)
iff

φ = True ∨ φ = False
tof

φx

φ(εx.φx)
selectI

618

No more “Cheating”: The Definitions

619

True582 = 583 (λxbool .x = λx.x)

∀584 = λφα→bool .(φ = λx.True)

False585 = ∀φbool
586
.φ587

∨588 = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

∧589 = λφη.∀ψ.(φ→ η → ψ)→ ψ

¬590 = λφ.(φ→ False)

∃591 = (λφ.φ(εx.φx))

If 592 = λφboolxy.εz.(φ = True → z = x)∧
(φ = False → z = y)

582

True = (λxbool .x = λx.x)

The term λxbool .x = λx.x evaluates to T , and so it is a

suitable definition for the constant True.

Note that we give the type for x once. The right-hand side

λx.x will thereby also be forced to be of type bool → bool .

This is necessary for reasons that will become clear later.

Note that (λxbool .x = λx.x) is closed. Definitions must

always be closed.
583It is a design choice if we want to add these definitions at

the level of the object logic (HOL) or at the level of the M.

In the first case, we would use = and have axioms such as

True = (λxbool .x = λx.x)

In the second case, we would have meta-axioms

True ≡ (λxbool .x = λx.x)

This would mean that we would regard True merely as syn-

tactic sugar. The second way corresponds to what is done in

Isabelle, see HOL.thy. It is technically more convenient since

rewriting is based on meta-level equalities.

Logically, it is not a big difference which way one chooses.

We will have an exercise on this.
584

∀ = λφ.(φ = λx.True)

Note the use of HOAS here. ∀ should be a function that

expects an argument φ of type α → bool (generalizing the

technique we used for encoding first-order ∀). So φ is such

that when you pass it an argument x of type α, it will return

a proposition (something of type bool).

The expected semantics of ∀φ wrt. a model M and an as-

signment A is: VM
A (∀φ) = T iff VMA[x←e](φx) = T for any e

(from the domain of x’s type).

Now when does φx hold for all x? This is the case exactly

when φx evaluates to T for all x, which is the same (applying

some HOL rules) as saying that φ is the function λx.True.

Here α could be arbitrarily instantiated to some type.

585

False = ∀φ.φ

The essence of False is that anything can be derived from it.

But this is exactly what ∀φ.φ says.
586In HOL, the quantifiers, which one expects to be variable

binders, are realized using λ in the style of HOAS.

We have said binding occurrences of variables in a λ-term

should, strictly speaking, be annotated with a type, but that

this type can often be omitted.

Now whenever we use concrete quantifier syntax for conve-

nience, so we write ∀x.ψ instead of ∀(λx.ψ) (and likewise for

∃), we may annotate the variable in the obvious way: ∀xτ .ψ
is concrete syntax for ∀(λxτ .ψ).

Sometimes we will annotate variables for clarity, sometimes

we trust that the type is clear from the context.
587The HOL constant ∀ is defined first in the style of HOAS.

But we also use concrete syntax, so we write ∀x.ψ instead of

∀(λx.ψ). In the concrete syntax, one may also annotate the

variable with a type.
588

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

First, observe the similarity of this definition with the ∨-E rule

of propositional logic.

Secondly, just go through the cases:

• If φ is true, then:

– If ψ is false, then φ→ ψ is false and so (φ→ ψ)→
(η → ψ)→ ψ is true;

– If ψ is true, then (η → ψ) → ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ

is true.

• Otherwise, if η is true, then:

– If ψ is false, then η → ψ is false and so (η → ψ)→ ψ

is true and so (φ→ ψ)→ (η → ψ)→ ψ is true.

– If ψ is true, then (η → ψ) → ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ

is true.

• Otherwise (if both φ and η are false), then for all ψ, both

φ → ψ and η → ψ are true, and so there exists a ψ,

say ψ ≡ False, such that (φ→ ψ)→ (η → ψ)→ ψ is

false.

Thus it is not the case that for all ψ, (φ→ ψ)→ (η →
ψ)→ ψ is true.

So the definition of ∨ behaves exactly as it should.
589

∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ

Similarly as for ∨, we can go through the cases:

• If η is false, then there exists a ψ, namely ψ ≡ False,

such that η → ψ is true, hence φ → η → ψ is true,

hence (φ→ η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ

is true.

• Otherwise, if φ is false, then φ → η → ψ is true, and

there exists a ψ, namely ψ ≡ False, such that (φ →
η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ

is true.

• Otherwise (if φ and η are true), then:

– If ψ is false, then η → ψ is false, hence φ→ η → ψ

is false, hence (φ→ η → ψ)→ ψ is true.

– If ψ is true, then (φ→ η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ η → ψ)→ ψ is true.

So the definition of ∧ behaves exactly as it should.
590

¬ = λφ.(φ→ False)

We know that one already from propositional logic.
591

∃ = (λφ.φ(εx.φx))

Using the abstract syntax for ε, one could also write

∃ = (λφ.φ(εφ))

Recall first the definition of ∀ to understand the type of ∃.

The expected semantics of ∃φ wrt. a model M and an as-

signment A is: VM
A (∀φ) = T iff VMA[x←e](φx) = T for some e

(from the domain of x’s type).

The semantics of ε is such that φ(εφ) is true, if and only if

a term t exists for which φ(t) is true.

So this is exactly the expected semantics of ∃φ.

620

592

If = λφxy.εz.(φ = True → z = x)∧(φ = False → z = y)

The constant If stands for the if-then-else construct. Note

first that εz.(φ = True → z = x) ∧ (φ = False → z = y)

is η-equivalent to εz.(λz.(φ = True → z = x) ∧ (φ =

False → z = y)) z, which is written ε(λz.(φ = True → z =

x)∧ (φ = False → z = y)) in the “real” HOL syntax, which

uses the concept of HOAS.

The expression ε(λz.(φ = True → z = x)∧(φ = False →
z = y)) picks a term from the set of terms z such that

(φ = True → z = x) ∧ (φ = False → z = y) holds. But

this means that z = x if φ = True, or z = y if φ = False.

Since If should be a function which takes φ, x and y

as arguments, we must abstract over those variables, giving

λφxy.εz.(φ = True → z = x) ∧ (φ = False → z = y).

621

Note: Different Syntaxes

Mathematical vs. Isabelle, e.g.

¬φ Not Phi

λxbool .P %593x :: 594bool. P

HOAS vs. concrete, e.g.

∀ (λxτ .(∧p(x) q(x))) ∀xτ .p(x) ∧ q(x)

ε (P) εx.P (x)
We use all those forms as convenient. For displaying Is-

abelle files, we will sometimes use a style where some ASCII

words (e.g. %) are replaced with mathematical symbols (e.g. λ).

593Note that the λ-binder of the object logic HOL is not

distinguished from the λ-binder of Isabelle’s metalogic M.

One could introduce an object level constant lambda, but

one quickly sees that it would be an unnecessary overhead.
594As we have learned previously, λ-abstracted variables

should have a type superscript, although this superscript is

often omitted since the type can be inferred.

Since ∀x.p(x) ∧ q(x) is the “concrete syntax” version of

∀ (λx.(∧p(x) q(x))), it makes sense that we allow an optional

superscript also for ∀-bound (and likewise for ∃-bound) vari-

ables.

In Isabelle the optional type annotation is written using ::

instead of a superscript.

622

34.6 Conclusions on HOL

• HOL generalizes semantics of FOL:

– bool serves as type of propositions;

– Syntax/semantics allows for higher-order functions.

• Logic is rather minimal: 8 or 9 rules, based on 3 con-

stants, soundness straightforward.

• Logic complete (w.r.t. general models, but not standard

models).

• Next lecture we will see how all well-known inference rules

can be derived.

623

35 HOL: Deriving Rules

624

Outline

Last lecture: Introduction to HOL

• Basic syntax and semantics

• Basic eight (or nine) rules

• Definitions of True, False, ∧, ∨, ∀ . . .

Today:

• Deriving rules for the defined constants

• Outlook on the rest of this course

625

Reminder: Different Syntaxes

Mathematical vs. Isabelle, e.g.

¬φ Not Phi

λxbool .P %x :: bool. P

HOAS vs. concrete, e.g.

∀ (λxτ .(∧p(x) q(x))) ∀xτ .p(x) ∧ q(x)

ε (P) εx.P (x)

We use all those forms as convenient. For displaying Is-

abelle files, we will sometimes use a style where some ASCII

words (e.g. %) are replaced with mathematical symbols (e.g. λ).

626

Reminder: Definitions

True = (λxbool .x = λx.x)

∀ = λφα→bool .(φ = λx.True)

False = ∀φbool .φ

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ

¬ = λφ.(φ→ False)

∃ = (λφ.φ(εx.φx))

If = λφxy.εz.(φ = True → z = x)∧
(φ = False → z = y)

627

Derived Rules

The definitions can be understood either semantically (check-

ing if each definition captures the usual meaning of that con-

stant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for

them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving

a constant, then replace the constant with its definition (if

applicable), then show the derivation.

35.1 Equality

• Rule sym

s = t

t = s
sym

Derived Rules

The definitions can be understood either semantically (check-

ing if each definition captures the usual meaning of that con-

stant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for

them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving

a constant, then replace the constant with its definition (if

applicable), then show the derivation.

35.1 Equality

• Rule sym and ND derivation595

s = t s = s
refl

t = s
subst

595We present most of those proofs by giving a derivation tree

for it, but sometimes, we also give an Isabelle proof script.

Note also the mix of syntaxes.

628

• Isabelle rule s=t ==> t=s. Proof script:

Goal "s=t ==> t=s";

by (etac subst 1); (* P is %x.x=s *)

by (rtac refl 1); (* s=s *)

qed "sym";

629

Equality: Transitivity and Congruences

• Rule trans

r = s
s = t

r = t
trans

630

Equality: Transitivity and Congruences

• Rule trans and ND derivation

r = s
s = r

sym
s = t

r = t
subst

Isabelle rule [| r=s; s=t |] ==> r=t

630

Equality: Transitivity and Congruences

• Rule trans and ND derivation

r = s
s = r

sym
s = t

r = t
subst

Isabelle rule [| r=s; s=t |] ==> r=t

• Congruences (only Isabelle forms):

(f::’a=>’b) = g ==> f(x)=g(x) (fun cong)

x=y ==> f(x)=f(y) (arg cong)

Isabelle proofs using subst and refl.

630

Equality of Booleans (iffI)

Rule iffI

[P]
....
Q

[Q]
....
P

P = Q
iffI

631

Equality of Booleans (iffI)

Rule iffI and ND derivation

(P → Q)→ (Q→ P)→ (P = Q)
iff

[P]
....
Q

P → Q
impI

(Q→ P)→ (P = Q)
mp

[Q]
....
P

Q→ P
impI

P = Q
mp

Isabelle rule [| P ==> Q; Q ==> P |] ==> P=Q.

631

Equality of Booleans (iffD2)

Rule iffD2

P = Q

Q

P
iffD2

632

Equality of Booleans (iffD2)

Rule iffD2 and ND derivation

P = Q

Q = P
sym

Q

P
subst

Isabelle rule [| P=Q; Q |] ==> P.

632

35.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI

True
TrueI

35.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI

(λx.x) = (λx.x)
TrueI

35.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl

35.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl

• Rule eqTrueE

P = True

P
eqTrueE

35.2 True

True = ((λxbool.x) = (λx.x))

• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl

• Rule eqTrueE and ND derivation

P = True True
TrueI

P
iffD2

Isabelle rule P=True ==> P.

633

True (Cont.)

• Rule eqTrueI

P

P = True
eqTrueI

634

True (Cont.)

• Rule eqTrueI and ND derivation

True
TrueI

P

P = True
iffI

Note that 0 assumptions were discharged.

Isabelle rule P ==> P=True.

634

35.3 Universal Quantification

∀P = (P = (λx.True))

• Rule allI

P (x)

∀P allI

35.3 Universal Quantification

∀P = (P = (λx.True))

• Rule allI

P (x)

P = λx.True
allI

35.3 Universal Quantification

∀P = (P = (λx.True))

• Rule allI and ND derivation

P (x)

P (x) = True
eqTrueI

P = λx.True
ext

Inherits the side condition of ext: x must not occur freely

in the derivation of P (x).

Isabelle rule (!!x. P(x)) ==> ALL x. P(x).

635

Example Illustrating Side Condition

[r(x)]1

r(x)→ r(x)
→-I1

∀x. r(x)→ r(x)
allI

Why is this correct?

636

Example Illustrating Side Condition

[r(x)]1

r(x)→ r(x)
→-I1

∀x. r(x)→ r(x)
allI

Why is this correct? Let’s do it without using allI explicitly:

[r(x)]2

r(x)→ r(x)
→-I2

(r(x)→ r(x)) = True
eqTrueI

λx. (r(x)→ r(x)) = λx.True
ext

The side condition is respected.

636

Universal Quantification (Cont.)

• Rule spec (recall ∀P means ∀x.Px)

∀P

P (t)
spec

637

Universal Quantification (Cont.)

• Rule spec (recall ∀P means ∀x.Px)

P = λx.True

P (t)
spec

637

Universal Quantification (Cont.)

• Rule spec (recall ∀P means ∀x.Px) and ND derivation

P = λx.True

P (t) = True
fun cong

P (t)
eqTrueE

Isabelle rule ALL x::’a. P(x) ==> P(x).

Note: Need universal quantification to reason about False

(since False = (∀P.P)).

637

35.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI:

35.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI: No rule!

• Rule FalseE

False
P

FalseE

35.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI: No rule!

• Rule FalseE

∀P. P
P

FalseE

35.4 False

False = (∀P.P) (= ∀(λP.P))

• FalseI: No rule!

• Rule FalseE and ND derivation

∀P. P
P

spec

Isabelle rule False ==> P.

638

False (Cont.)

• Rule False neq True

False = True

P
False neq True

639

False (Cont.)

• Rule False neq True and ND derivation

False = True
False

eqTrueE

P
FalseE

Isabelle rule False=True ==> P.

• Similar:
True = False

P
True neq False

639

35.5 Negation

¬P = P → False

• Rule notI

[P]
....

False

¬P
notI

35.5 Negation

¬P = P → False

• Rule notI

[P]
....

False

P → False
notI

35.5 Negation

¬P = P → False

• Rule notI and ND derivation

[P]
....

False

P → False
impI

Isabelle rule (P ==> False) ==> ∼P.

640

Negation (2)

• Rule notE

¬P P

R
notE

641

Negation (2)

• Rule notE

P → False P

R
notE

641

Negation (2)

• Rule notE and ND derivation

P → False P
False

mp

R
FalseE

Isabelle rule [| ∼P; P |] ==> R.

641

Negation (3)

• Rule True Not False

¬(True = False) True Not False

642

Negation (3)

• Rule True Not False

(True = False)→ False True Not False

642

Negation (3)

• Rule True Not False and ND derivation

[True = False]1

False
True neq False

(True = False)→ False notI
1

Isabelle rule True ∼= False.

642

35.6 Existential Quantification

∃P = P (εx.P (x))

• Rule existsI

P (x)

∃P existsI

35.6 Existential Quantification

∃P = P (εx.P (x))

• Rule existsI

P (x)

P (εx.P (x))
existsI

35.6 Existential Quantification

∃P = P (εx.P (x))

• Rule existsI and ND derivation

P (x)

P (εx.P (x))
selectI

Isabelle rule P(x) ==> EX x::’a.P(x).

643

Existential Quantification (Cont.)

• Rule existsE

∃P

P (x)
....
Q

Q
existsE

597One can write the derivation of existsE as follows:

P (εx.P (x))

∧
x. P (x) =⇒ Q

Q
existsE

This is an attempt to capture in an ad-hoc tree notation how

this derivation can be done in Isabelle. In particular, existsE

inherits a side condition from the meta-level universal quan-

tification. However, while this may help to understand how

this derivation works in Isabelle, it is not very rigorous and

you could not be expected to believe that the side condition

checking is correct.

For a thorough account of side conditions in ND proofs,

consult [SH84].

You might also justify existsE in plain English words, i.e.,

completely on the meta-level: If I have a derivation of Q from

P (x) not making any assumptions about x, and in addition

I have a derivation of P (εx.P (x)), then I can combine these

644

Existential Quantification (Cont.)

• Rule existsE

P (εx.P (x))

P (x)
....
Q

Q
existsE

597One can write the derivation of existsE as follows:

P (εx.P (x))

∧
x. P (x) =⇒ Q

P (εx.P (x)) =⇒ Q

∧
−E

Q
=⇒-E

This is an attempt to capture in an ad-hoc tree notation how

this derivation can be done in Isabelle. In particular, existsE

inherits a side condition from the meta-level universal quan-

tification. However, while this may help to understand how

this derivation works in Isabelle, it is not very rigorous and

you could not be expected to believe that the side condition

checking is correct.

For a thorough account of side conditions in ND proofs,

consult [SH84].

You might also justify existsE in plain English words, i.e.,

completely on the meta-level: If I have a derivation of Q from

P (x) not making any assumptions about x, and in addition

I have a derivation of P (εx.P (x)), then I can combine these

644

Existential Quantification (Cont.)

• Rule existsE and ND derivation

P (εx.P (x))

[P (x)]1
....
Q

P (x)→ Q
impI1

∀x.(P (x)→ Q)
allI

P (εx.P (x))→ Q
spec

Q
mp596

Inherits side condition from allI (just like in FOL). On the

meta-level597, this derivation is extremely simple.

Isabelle rule [| EX x.P(x); !!x.P(x)==>Q |] ==>

Q.

597One can write the derivation of existsE as follows:∧
x. P (x) =⇒ Q

Q
=⇒-E

This is an attempt to capture in an ad-hoc tree notation how

this derivation can be done in Isabelle. In particular, existsE

inherits a side condition from the meta-level universal quan-

tification. However, while this may help to understand how

this derivation works in Isabelle, it is not very rigorous and

you could not be expected to believe that the side condition

checking is correct.

For a thorough account of side conditions in ND proofs,

consult [SH84].

You might also justify existsE in plain English words, i.e.,

completely on the meta-level: If I have a derivation of Q from

P (x) not making any assumptions about x, and in addition

I have a derivation of P (εx.P (x)), then I can combine these

644

35.7 Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI

P

Q

P ∧Q
conjI

35.7 Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI

P

Q

∀R.(P → Q→ R)→ R
conjI

35.7 Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI and ND derivation

[P → Q→ R]1 P

Q→ R
mp

Q

R
mp

(P → Q→ R)→ R
impI1

∀R.(P → Q→ R)→ R
allI

Isabelle rule [| P; Q |] ==> P & Q.

two derivations: modify the first one by instantiating x with

εx.P (x). This justifies having existsE.

What happens in our rather complicated derivation is that

we are turning a meta-level reasoning into an object-level one,

which is more trustworthy for an ND derivation.

645

Conjunction (Cont.)

• Rule conjEL

P ∧Q

P
conjEL

646

Conjunction (Cont.)

• Rule conjEL

∀R.(P → Q→ R)→ R

P
conjEL

646

Conjunction (Cont.)

• Rule conjEL and ND derivation

∀R.(P → Q→ R)→ R

(P → Q→ P)→ P
spec

[P]1

Q→ P
impI

P → Q→ P
impI1

P
mp

Isabelle rule P & Q ==> P.

646

Conjunction (Cont.)

• P ∧Q =⇒ Q (conjER)

• JP ∧ Q; JP ;QK =⇒ RK =⇒ R (conjE) (rule anal-

ogous to disjE)

647

35.8 Disjunction

P ∨Q = ∀R.(P → R)→ (Q→ R)→ R

• Rule disjIL

P

P ∨Q
disjIL

35.8 Disjunction

P ∨Q = ∀R.(P → R)→ (Q→ R)→ R

• Rule disjIL

P

∀R.(P → R)→ (Q→ R)→ R
disjIL

35.8 Disjunction

P ∨Q = ∀R.(P → R)→ (Q→ R)→ R

• Rule disjIL and ND derivation

[P → R]1 P

R
mp

(Q→ R)→ R
impI

(P → R)→ (Q→ R)→ R
impI1

∀R.(P → R)→ (Q→ R)→ R
allI

Isabelle rule P ==> P|Q.

648

Disjunction (Cont.)

• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE

P ∨Q

[P]
....
R

[Q]
....
R

R
disjE

649

Disjunction (Cont.)

• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE

∀R.(P → R)→ (Q→ R)→ R

[P]
....
R

[Q]
....
R

R
disjE

649

Disjunction (Cont.)

• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE and ND derivation

∀R.(P → R)→ (Q→ R)→ R

(P → R)→ (Q→ R)→ R
spec

[P]
....
R

P → R
impI

(Q→ R)→ R
mp

[Q]
....
R

Q→ R
impI

R
mp

Isabelle rule [| P | Q; P ==> R; Q ==> R |] ==>

R.

649

Disjunction (Cont.)

• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE and ND derivation

∀R.(P → R)→ (Q→ R)→ R

(P → R)→ (Q→ R)→ R
spec

[P]
....
R

P → R
impI

(Q→ R)→ R
mp

[Q]
....
R

Q→ R
impI

R
mp

Isabelle rule [| P | Q; P ==> R; Q ==> R |] ==>

R.

• P ∨ ¬P (excl midd). Follows using tof.

649

35.9 Miscellaneous Definitions

See HOL.thy!

Typical example (if-then-else):

If = λφboolxy.εz. (φ = True → z = x)

∧ (φ = False → z = y)

The way rules are derived should now be clear. E.g.,

P = True

(If P x y) = x

P = False

(If P x y) = y

650

35.10 Summary on Deriving Rules

HOL is very powerful in terms of what we can represen-

t/derive:

• All well-known inference rules can be derived.

• Other “logical” syntax (e.g. if-then-else) can be defined.

• Rich theories can be obtained by a method we see next

lecture.

651

35.11 Mathematics and Software Engineering in
HOL

In coming weeks, we will see how Isabelle/HOL can be used

as foundation for mathematics and software engineering.

Outline:

• The central method for making HOL scale up: conserva-

tive extensions (< 1 week)

• How the different parts of mathematics are encoded in

the Isabelle/HOL library (several weeks)

• How software systems are embedded in Isabelle/HOL (sev-

eral weeks)

652

Outlook on Mathematics

After some historical background, we will look at how central

parts of mathematics are encoded as Isabelle/HOL theories:

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

653

Outlook on Software Engineering

Some weeks from now, we will look at case studies of how

HOL can be applied in software engineering, i.e. how software

systems can be embedded in Isabelle/HOL:

• Foundations, functional languages and denotational se-

mantics

• Imperative languages, Hoare logic

• Z598 and data-refinement, CSP and process-refinement

• Object-oriented languages (Java-Light . . .)

Of the last three items, we want to treat only one in depth,

depending on the audience’s preferences.
598Z and CSP are specification languages. CSP stands for

communicating sequential processes.

654

Conservative Extensions: Motivation

But first, conservative extensions.

Stage of our course before studying HOL:

• fairly small theories,

• “intuitive” models, (e.g. näıve set theory),

• but inconsistent (due to foundational problems).

How can we use HOL to

• reason about a reasonably large part of mathematics and

software engineering;

• prevent inconsistencies?

655

What Is Needed for Scaling up?

Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

656

What Is Needed for Scaling up?

Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

• Reuse: Isabelle supports libraries and retrieval utilities.

656

What Is Needed for Scaling up?

Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

• Reuse: Isabelle supports libraries and retrieval utilities.

• Safe, well-understood integration mechanisms: Isabelle

supports conservative theory extensions.

656

What Is Needed for Scaling up?

Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

• Reuse: Isabelle supports libraries and retrieval utilities.

• Safe, well-understood integration mechanisms: Isabelle

supports conservative theory extensions.

Topic of next lecture.

656

36 Conservative Theory Extensions

657

Outline

In the previous lecture, we have derived all well-known infer-

ence rules. There is now the need to scale up. Today we look

at conservative theory extensions, an important method for

this purpose.

36.1 Conservative Theory Extensions: Basics

Some definitions [GM93, Hué]

Definition (theory): A (syntactic) theory T is a triple

(B,Σ, A), where B is a type signature, Σ a signature and A

a set of axioms599.

Definition (theory extension): A theory T ′ = (B′,Σ′, A′)
is an extension of a theory T = (B,Σ, A) iff B ⊆ B′ and

599The definition of theory extension requires that A consists

of axioms, not proper rules. However, we have seen that any

rule one might wish to postulate can also be phrased as an

axiom (using → rather than ⇒).

658

Outline

In the previous lecture, we have derived all well-known infer-

ence rules. There is now the need to scale up. Today we look

at conservative theory extensions, an important method for

this purpose.

In the weeks to come, we will look at how mathematics is

encoded in the Isabelle/HOL library.

36.1 Conservative Theory Extensions: Basics

Some definitions [GM93, Hué]

Definition (theory): A (syntactic) theory T is a triple

(B,Σ, A), where B is a type signature, Σ a signature and A

a set of axioms599.

Definition (theory extension): A theory T ′ = (B′,Σ′, A′)
is an extension of a theory T = (B,Σ, A) iff B ⊆ B′ and

599The definition of theory extension requires that A consists

of axioms, not proper rules. However, we have seen that any

rule one might wish to postulate can also be phrased as an

axiom (using → rather than ⇒).

658

Σ ⊆ Σ′ and A ⊆ A′.

659

Definitions (Cont.)

Definition (conservative extension): A theory extension

T ′ = (B′,Σ′, A′) of a theory T = (B,Σ, A) is conservative iff

for the set of derivable formulas600 Th we have

Th(T) = Th(T ′) |Σ,
where |Σ filters away all formulas not belonging to Σ.

600The derivable formulas are terms of type bool derivable

using the inference rules of HOL. We write Th(T) for the

derivable formulas of a theory T .
601Given a function f : α → α, a fixpoint of f is a term

t such that f t = t. Now Y is supposed to be a fixpoint

combinator, i.e., for any function f , the term Y f should be

a fixpoint of f . This is what the rule

∀fα→α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom allows us

to infer Y (¬) = ¬(Y (¬)), and it is easy to derive False from

this. This axiom is a standard example of a non-conservative

extension of a theory.

It is not surprising that this goes wrong: Not every function

has a fixpoint, so there cannot be a combinator returning a

fixpoint of any function.

Nevertheless, fixpoints are important and must be realized

in some way, as we will see later.

660

Definitions (Cont.)

Definition (conservative extension): A theory extension

T ′ = (B′,Σ′, A′) of a theory T = (B,Σ, A) is conservative iff

for the set of derivable formulas600 Th we have

Th(T) = Th(T ′) |Σ,
where |Σ filters away all formulas not belonging to Σ.

Counterexample:

∀fα→α. Y f = f (Y f)
fix601

600The derivable formulas are terms of type bool derivable

using the inference rules of HOL. We write Th(T) for the

derivable formulas of a theory T .
601Given a function f : α → α, a fixpoint of f is a term

t such that f t = t. Now Y is supposed to be a fixpoint

combinator, i.e., for any function f , the term Y f should be

a fixpoint of f . This is what the rule

∀fα→α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom allows us

to infer Y (¬) = ¬(Y (¬)), and it is easy to derive False from

this. This axiom is a standard example of a non-conservative

extension of a theory.

It is not surprising that this goes wrong: Not every function

has a fixpoint, so there cannot be a combinator returning a

fixpoint of any function.

Nevertheless, fixpoints are important and must be realized

in some way, as we will see later.

660

Consistency Preserved

Corollary (consistency):
If T ′ is a conservative extension of T , then

False /∈ Th(T)⇒ False /∈ Th(T ′).

661

Syntactic Schemata for Conservative Extensions

• Constant definition

• Type definition

• Constant specification

• Type specification

Will look at first two schemata now.

For the other two see [GM93].

662

36.2 Constant Definition

Definition (constant definition): A theory extension T ′ =

(B′,Σ′, A′) of a theory T = (B,Σ, A) is a constant definition,

iff

• B′ = B and Σ′ = Σ ∪ {c : τ}, where c /∈ dom602(Σ);

• A′ = A ∪ {c = E};

• E does not contain603 c and is closed604;

• no subterm of E has a type containing a type variable

that is not contained in the type of c.

602The domain of Σ, denoted dom(Σ), is {c | c : A ∈
Σ for some A}.

Likewise, the domain of Γ, denoted dom(Γ), is {x | x :

A ∈ Γ for some A}.
Note the abuse of notation.

603If E did contain c then we would speak of a recursive

definition, but at this stage, recursion is forbidden.
604A term is closed or ground if it does not contain any free

variables.

663

Constant Definitions Are Conservative

Lemma (constant definitions):
Constant definitions are conservative [GM93, page 223].

Proof Sketch:

• Th(T) ⊆ Th(T ′) |Σ : trivial.

• Th(T) ⊇ Th(T ′) |Σ : let π′ be a proof for φ ∈ Th(T ′) |Σ.

We unfold any subterm in π′ that contains c via c = E

into π. Then π must be a proof in T , implying φ ∈
Th(T).

664

The Need for the Side Conditions605

Here is a counterexample concerning closedness of E: Define

c : bool by the axiom c = x.

c = x
axiom

∀x.c = x
allI

c = False
spec

c = x
axiom

∀x.c = x
allI

c = True
spec

False = True
subst

False
False neq True

Intuition: when you define c as the variable x, then c just

isn’t a constant! Usually taken for granted.
605By side conditions we mean

• E does not contain c and is closed;

• no subterm of E has a type containing a type variable

that is not contained in the type of c;

in the definition.

The second condition also has a name: one says that the

definition must be type-closed.

The notion of having a type is defined by the type assign-

ment calculus. Since E is required to be closed, all variables

occurring in E must be λ-bound, and so the type of those

variables is given by the type superscripts.

665

The Need for the Side Conditions (2)

Now type-closedness: Let E ≡ ∃xαyα. x 6= y and suppose σ

is a type inhabited by only one term, and τ is a type inhabited

by at least two terms. Then we would have:

c = c holds by refl

=⇒ (∃xσyσ. x 6= y) = (∃xτyτ . x 6= y)

=⇒ False = True

=⇒ False

This explains definition of True606. Other (standard) example

later.

606True is defined as λxbool .x = λx.x and not λxα.x =

λx.x. The definition must be type-closed.

666

Constant Definition: Examples

Definitions of True, False, ∧, ∨, ∀ . . .

Here the original Isabelle syntax (Ex def changed). Note

the use of !607 and meta-level equality.

True_def: "True == ((%x::bool. x) = (%x. x))"

All_def: "All(P) == (P = (%x. True))"

Ex_def: "Ex(P) == P (SOME x. P x)"

False_def: "False == (!P. P)"

not_def: "~ P == P-->False"

and_def: "P & Q == !R. (P-->Q-->R) --> R"

or_def: "P | Q == !R. (P-->R) --> (Q-->R)

--> R"

607“!” is just another Isabelle notation for ALL, and “?”

is just another Isabelle notation for EX. See HOL.thy in the

section “syntax (HOL)” (this is Isabelle 2005).

667

More Constant Definitions in Isabelle

Function application (Let), if-then-else, unique existence608:

consts

Let :: [’a, ’a => ’b] => ’b

If :: [bool, ’a, ’a] => ’a

defs

Let_def "Let s f == f(s)"

if_def "If P x y == @z::’a.(P=True-->z=x) &

(P=False-->z=y)"

Ex1_def "Ex1(P) == ?x. P(x) & (!y. P(y) --> y=x)"

Note use of ?.

Recall: => is function type arrow; also recall [] syntax.

608We have never used unique existential quantification

(∃!) before. ∃!x1, . . . , xn.φ(x1, . . . , xn) is defined as

∃x1, . . . , xn.φ(x1, . . . , xn) ∧ (∀y1, . . . , yn.φ(y1, . . . , yn) →
x1 = y1 ∧ . . . ∧ xn = yn).

Note that in general ∃!x.(∃!y.φ) is not the same as ∃!xy.φ).

668

36.3 Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

609Although a set is formally a different object than a predi-

cate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true.

669

36.3 Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

• a predicate S : ρ→ bool , defining a non-empty “subset”609

of ρ;

609Although a set is formally a different object than a predi-

cate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true.

669

36.3 Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

• a predicate S : ρ→ bool , defining a non-empty “subset”609

of ρ;

• axioms stating an isomorphism between S and the new

type τ .

609Although a set is formally a different object than a predi-

cate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true.

669

...
.............
.

............
...

...........
....

...........
.....

...........
.....

..........

.....

..........

.....

..........

.....

...........
.....

...........
.....

............
....

............
...

.............
..

..............
.

...............
................
...............
...............
..............
...............

...............

................

................

................

...............

...............

................

................

...............

...............
...............

..............
...............

................
................................ρ

...
.............
.

............
...

...........
....

...........
.....

...........
.....

..........

.....

..........

.....

..........

.....

...........
.....

...........
.....

............
....

............
...

.............
..

..............
.

...............
................
...............
...............
..............
...............

...............

................

................

................

...............

...............

................

................

...............

...............
...............

..............
...............

................
................................ρ

...
............
...........
.
...........
.
..........
.
..........
..
...........
.
............

...........
...........
............
............
............
............
............
............
............

...........
............

........................S

...
.............
.

............
...

...........
....

...........
.....

...........
.....

..........

.....

..........

.....

..........

.....

...........
.....

...........
.....

............
....

............
...

.............
..

..............
.

...............
................
...............
...............
..............
...............

...............

................

................

................

...............

...............

................

................

...............

...............
...............

..............
...............

................
................................ρ

...
............
...........
.
...........
.
..........
.
..........
..
...........
.
............

...........
...........
............
............
............
............
............
............
............

...........
............

........................S ..
............
...........
.
...........
.
..........
..
..........
..
...........
.
............

...........
...........
............
............
............
............
............
............
............

...........
............

........................τ.
..

...

..

...
..

...
.....................................

......

.............................
...............

.........................
....................

.....................
.....................

....
s

Absτ : ρ→ τ

.
.....................

.....................
....

.........................
....................

.............................
...............

.....................................
......

..
..

...

..

...

..k

Repτ : τ → ρ

Type Definition: Definition

Definition (type definition): Assume a theory T =

(B,Σ, A) and a type ρ and a term S610 such that Σ ` S :

ρ→ bool .

A theory extension T ′ = (B′,Σ′, A′) of T is a type definition

for type τ 611 (where τ fresh612), iff
610Here, S is any “predicate”, i.e., term of type ρ → bool ,

not necessarily a constant.
611A type definition is supposed to define a type constructor

(where the arity and fixity are indicated in some way). We

abuse notation here: we use τ to denote a type constructor,

but also the type obtained by applying the type constructor

to a vector of different type variables (as many as the type

constructor requires).

So think of τ as either being a type constructor or a

“generic” type (just a type constructor being applied to type

variables).

We do the same in examples.
612The type constructor τ must not occur in B.

670

B′ = B]613 {τ},
Σ′ = Σ ∪ {Absτ 614 : ρ→ τ, Repτ : τ → ρ}
A′ = A ∪ {∀x.Absτ (Repτ x) = x615,

∀x.S x→ Repτ (Absτ x) = x}
Proof obligation616 ∃x. S x can be proven inside HOL!

613The symbol] denotes disjoint union, so the expression

A] B is well-formed only when A and B have no elements

in common. One thus uses this notation to indicate this fact.
614Of course we are giving a schematic definition here, so any

letters we use are metanotation.

Notice that Absτ and Repτ stand for new constants. For

any new type τ to be defined, two such constants must be

added to the signature to provide a generic way of obtaining

terms of the new type. Since the new type is isomorphic to

the “subset” S, whose members are of type ρ, one can say

that Absτ and Repτ provide a type conversion between (the

subset S of) ρ and τ .

So we have a new type τ , and we can obtain members of

the new type by applying Absτ to a term t of type ρ for which

S t holds.
615The formulas

∀x.Absτ (Repτ x) = x

∀x.S x→ Repτ (Absτ x) = x

671

Type Definitions Are Conservative

Lemma (type definitions):
Type definitions are conservative.

Proof see [GM93, pp.230].

state that the “set” S and the new type τ are isomorphic.

Note that Absτ should not be applied to a term not in “set”

S. Therefore we have the premise S x in the above equation.

Note also that S could be the “trivial filter” λx.True. In

this case, Absτ and Repτ would provide an isomorphism be-

tween the entire type ρ and the new type τ .
616We have said previously that S should be a non-empty

“subset” of τ . Therefore it must be proven that ∃x. S x.

This is related to the semantics.

Whenever a type definition is introduced in Isabelle, the

proof obligation must be shown inside Isabelle/HOL. Is-

abelle provides the typedef syntax for type definitions,

as we will see later. Using this syntax, the “author” of

a type definition can either explicitly provide a proof (see

Product Type.thy), or the proof is so easy that Isabelle

can do it automatically (see Sum Type.thy).

672

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale applications?

673

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale applications?

But in fact, due to ind and→, the types in HOL are already

very rich.

673

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale applications?

But in fact, due to ind and→, the types in HOL are already

very rich.

We now give three examples to convince you.

673

Example: Typed Sets

General scheme,

B′ = B] {τ },
Σ′ = Σ ∪ {Abs

τ
: ρ → τ ,

Rep
τ

: τ → ρ }
A′ = A ∪ {∀x.Abs

τ
(Rep

τ
x) = x,

∀x.S x → Rep
τ

(Abs
τ
x) = x}

617We have S ≡ λxα→bool .True, and so in (∃x.Sx), the

variable x has type α → bool . The proposition (∃x.Sx) is

true since the type α → bool is inhabited, e.g. by the term

λxα.True or λxα.False.

Beware of a confusion: This does not mean that the new

type α set, defined by this construction, is the type of non-

empty sets. There is a term for the empty set: The empty set

is the term Absset (λx.False).

So we see that inhabitation of types propagates in the fol-

lowing sense: since each type τ is inhabited, the type τ set

is inhabited as well.

674

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable),

B′ = B] {τ },
Σ′ = Σ ∪ {Abs

τ
: (α→ bool)→ τ ,

Rep
τ

: τ → (α→ bool)}
A′ = A ∪ {∀x.Abs

τ
(Rep

τ
x) = x,

∀x.S x → Rep
τ

(Abs
τ
x) = x}

617We have S ≡ λxα→bool .True, and so in (∃x.Sx), the

variable x has type α → bool . The proposition (∃x.Sx) is

true since the type α → bool is inhabited, e.g. by the term

λxα.True or λxα.False.

Beware of a confusion: This does not mean that the new

type α set, defined by this construction, is the type of non-

empty sets. There is a term for the empty set: The empty set

is the term Absset (λx.False).

So we see that inhabitation of types propagates in the fol-

lowing sense: since each type τ is inhabited, the type τ set

is inhabited as well.

674

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable), τ ≡ α set (or set),

B′ = B] {set},
Σ′ = Σ ∪ {Abs

set
: (α→ bool)→ α set ,

Rep
set

: α set → (α→ bool)}
A′ = A ∪ {∀x.Abs

set
(Rep

set
x) = x,

∀x.S x → Rep
set

(Abs
set
x) = x}

617We have S ≡ λxα→bool .True, and so in (∃x.Sx), the

variable x has type α → bool . The proposition (∃x.Sx) is

true since the type α → bool is inhabited, e.g. by the term

λxα.True or λxα.False.

Beware of a confusion: This does not mean that the new

type α set, defined by this construction, is the type of non-

empty sets. There is a term for the empty set: The empty set

is the term Absset (λx.False).

So we see that inhabitation of types propagates in the fol-

lowing sense: since each type τ is inhabited, the type τ set

is inhabited as well.

674

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable), τ ≡ α set (or set), S ≡ λxα→bool .True

B′ = B] {set},
Σ′ = Σ ∪ {Abs

set
: (α→ bool)→ α set ,

Rep
set

: α set → (α→ bool)}
A′ = A ∪ {∀x.Abs

set
(Rep

set
x) = x,

∀x.True → Rep
set

(Abs
set
x) = x}

617We have S ≡ λxα→bool .True, and so in (∃x.Sx), the

variable x has type α → bool . The proposition (∃x.Sx) is

true since the type α → bool is inhabited, e.g. by the term

λxα.True or λxα.False.

Beware of a confusion: This does not mean that the new

type α set, defined by this construction, is the type of non-

empty sets. There is a term for the empty set: The empty set

is the term Absset (λx.False).

So we see that inhabitation of types propagates in the fol-

lowing sense: since each type τ is inhabited, the type τ set

is inhabited as well.

674

Example: Typed Sets

General scheme, substituting ρ ≡ α → bool (α is any type

variable), τ ≡ α set (or set), S ≡ λxα→bool .True

B′ = B] {set},
Σ′ = Σ ∪ {Abs

set
: (α→ bool)→ α set ,

Rep
set

: α set → (α→ bool)}
A′ = A ∪ {∀x.Abs

set
(Rep

set
x) = x,

∀x. Rep
set

(Abs
set
x) = x}

Simplification since S ≡ λx.True. Proof obligation: (∃x.Sx)

trivial since (∃x.True) = True. Inhabitation propagates617!

617We have S ≡ λxα→bool .True, and so in (∃x.Sx), the

variable x has type α → bool . The proposition (∃x.Sx) is

true since the type α → bool is inhabited, e.g. by the term

λxα.True or λxα.False.

Beware of a confusion: This does not mean that the new

type α set, defined by this construction, is the type of non-

empty sets. There is a term for the empty set: The empty set

is the term Absset (λx.False).

So we see that inhabitation of types propagates in the fol-

lowing sense: since each type τ is inhabited, the type τ set

is inhabited as well.

674

Sets: Remarks

Any function r : α→ bool can be interpreted as a set of α; r

is called characteristic function. That’s what Absset r does;

Absset is a wrapper saying “interpret r as set”.

618We said that in the general formalism for defining a new

type, there is a term S of type ρ → bool that defines a

“subset” of a type ρ. In other words, it filters some terms

from type ρ. Thus the idea that a predicate can be interpreted

as a set is present in the general formalism for defining a new

type.

Now we are talking about a particular example, the type

α set. Having the idea “predicates are sets” in mind, one is

tempted to think that in the particular example, S will take

the role of defining particular sets, i.e., terms of type α set.

This is not the case!

Rather, S is λx.True and hence trivial in this example.

Moreover, in the example, ρ is α→ bool , and any term r of

type ρ defines a set whose elements are of type α; Absset r

is that set.

675

Sets: Remarks

Any function r : α→ bool can be interpreted as a set of α; r

is called characteristic function. That’s what Absset r does;

Absset is a wrapper saying “interpret r as set”.

S ≡ λx.True and so S is trivial618 in this case.
618We said that in the general formalism for defining a new

type, there is a term S of type ρ → bool that defines a

“subset” of a type ρ. In other words, it filters some terms

from type ρ. Thus the idea that a predicate can be interpreted

as a set is present in the general formalism for defining a new

type.

Now we are talking about a particular example, the type

α set. Having the idea “predicates are sets” in mind, one is

tempted to think that in the particular example, S will take

the role of defining particular sets, i.e., terms of type α set.

This is not the case!

Rather, S is λx.True and hence trivial in this example.

Moreover, in the example, ρ is α→ bool , and any term r of

type ρ defines a set whose elements are of type α; Absset r

is that set.

675

More Constants for Sets

For convenient use of sets, we define more constants:

676

{x | f x} = Collect619 f = Absset f

x ∈ A = (Repset A)620 x

A ∪B = {x | x ∈ A ∨ x ∈ B}
...

Consistent set theory621 adequate for most of mathematics
619We have seen Collect before in the theory file NSet.thy

(näıve set theory).

Collect f is the set whose characteristic function is f .

There is also a concrete (i.e., according to mathematical prac-

tice) syntax {x | f x}. It is called set comprehension. The

correspondence between the HOAS Collect f and the con-

crete syntax {x | f x} also makes it clear that set compre-

hension is a binding operator, as we learned some time ago.

Note also that Collect is the same as Absset here.

The file Set.thy should be contained in your Isabelle dis-

tribution. Or, if you only have an Isabelle executable, you can

find the sources here:

http://isabelle.in.tum.de/library/

620We define

x ∈ A = (Repset A) x

Since Repset has type α set→ (α→ bool), this means that

677

http://isabelle.in.tum.de/library/

and computer science.

In Isabelle/HOL however, sets are a special case.

Here, sets are just an example to demonstrate type defini-

tions. Later we study them for their own sake.

x is of type α and A is of type (α → bool). Therefore ∈ is

of type α→ (α set)→ bool (but written infix).

In the Isabelle theory file Set.thy, you will indeed find that

the constant : (Isabelle syntax for ∈) has type α→ (α set)→
bool .

However, you will not find anything directly corresponding

to Repset.
621Typed set theory is a conservative extension of HOL and

hence consistent.

Recall the problems with untyped set theory.

678

Example: Pairs

Consider type α → β → bool . We can regard a term f :

α → β → bool as a representation of the pair (a, b), where

a : α and b : β, iff f x y is true exactly for x = a and y = b.

Observe:

• For given a and b, there is exactly one622 such f (namely,

λxαyβ. x = a ∧ y = b).

• Some functions of type α → β → bool represent pairs

and others don’t (e.g., the function λxy.True does not

represent a pair). The ones that do are exactly the ones

that have the form λxαyβ. x = a ∧ y = b, for some a

and b.

622When we say that there is “exactly one” f , this is meant

modulo equality in HOL. This means that e.g. λxαyβ.y =

b∧ x = a is also such a term since (λxαyβ.x = a∧ y = b) =

(λxαyβ.y = b ∧ x = a) is derivable in HOL.

679

Type Definition for Pairs

This gives rise to a type definition where S is non-trivial:

ρ ≡ α→ β → bool

S ≡ λfα→β→bool .∃ab.f = λxαyβ.x = a ∧ y = b

τ ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be

confused with Rep×
623) as λaαbβ.λxαyβ. x = a ∧ y = b624.

Then Pair Rep a b = λxαyβ. x = a ∧ y = b.
623Rep× would be the generic name for one of the two

isomorphism-defining functions.

Since Rep× looks funny, the definition scheme for type defi-

nitions in Isabelle is such that it provides two names for a type,

one if the type is used as such, and one for the purpose of

generating the names of the isomorphism-defining functions.
624We write λaαbβ.λxαyβ.x = a ∧ y = b rather than

λaαbβxαyβ.x = a ∧ y = b to emphasize the idea that one

first applies Pair Rep to a and b, and the result is a function

representing a pair, wich can then be applied to x and y.

680

Now in Isabelle

Isabelle has a special set-based625 syntax for type definitions:

typedef (T)

〈typevars〉 ”T ′” 〈fixity〉
= ”{x.φ}”

625The syntax ”{x.φ}” does not just look like a set compre-

hension, it is one!

So, since the typedef syntax is based on sets, sets them-

selves could not have been defined using that syntax. This is

the reason why in Isabelle/HOL, sets are a special case of a

type definition.

See Typedef.thy, which should be contained in your Is-

abelle distribution. Or, if you only have an Isabelle executable,

you can find the sources here:

http://isabelle.in.tum.de/library/

681

http://isabelle.in.tum.de/library/

Now in Isabelle

Isabelle has a special set-based625 syntax for type definitions:

typedef (T)

〈typevars〉 ”T ′” 〈fixity〉
= ”{x.φ}”

How is this linked to our scheme:

• the new type is called T ′;

• ρ is the type of x (inferred);

• S is λx.φ;

• constants Abs T and Rep T are automatically generated.

625The syntax ”{x.φ}” does not just look like a set compre-

hension, it is one!

So, since the typedef syntax is based on sets, sets them-

selves could not have been defined using that syntax. This is

the reason why in Isabelle/HOL, sets are a special case of a

type definition.

See Typedef.thy, which should be contained in your Is-

abelle distribution. Or, if you only have an Isabelle executable,

you can find the sources here:

http://isabelle.in.tum.de/library/

681

http://isabelle.in.tum.de/library/

Isabelle Syntax for Pair Example

constdefs

Pair_Rep :: [’a, ’b] => [’a, ’b] => bool

"Pair_Rep == (%a b. %x y. x=a & y=b)"

626In Isabelle theory files, consts is the keyword preceding a

sequence of constant declarations (i.e., this is where the Σ is

defined), and defs is the keyword preceding the axioms that

define these constants (i.e., this is where the A is defined).

constdefs combines the two, i.e. it allows for a sequence

of both constant declarations and definitions. When the

constdefs syntax is used to define a constant c, then the

identifier c def is generated automatically. E.g.

constdefs

id :: "’a => ’a"

"id == %x. x"

will bind id def to id ≡ λx.x.
627This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

682

http://isabelle.in.tum.de/library/

Isabelle Syntax for Pair Example

constdefs

Pair_Rep :: [’a, ’b] => [’a, ’b] => bool

"Pair_Rep == (%a b. %x y. x=a & y=b)"

typedef (Prod)

(’a, ’b) "*" (infixr 20) =

"{f.?a b. f=Pair_Rep(a::’a)(b::’b)}"

The keyword constdefs626 introduces a constant defini-

tion. The definition and use of Pair Rep is for convenience.

There are “two names” ∗ and Prod.

See Product Type.thy627.
626In Isabelle theory files, consts is the keyword preceding a

sequence of constant declarations (i.e., this is where the Σ is

defined), and defs is the keyword preceding the axioms that

define these constants (i.e., this is where the A is defined).

constdefs combines the two, i.e. it allows for a sequence

of both constant declarations and definitions. When the

constdefs syntax is used to define a constant c, then the

identifier c def is generated automatically. E.g.

constdefs

id :: "’a => ’a"

"id == %x. x"

will bind id def to id ≡ λx.x.
627This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

682

http://isabelle.in.tum.de/library/

Example: Sums

An element of (α, β) sum628 is either Inl a where a : α or

Inr b where b : β.

So think of Inl a and Inr b as syntactic objects that we

want to represent.

Consider type α → β → bool → bool . We can regard

f : α→ β → bool → bool as a
representation of . . . iff f x y i is true for . . .

Inl a x = a, y arbitrary, and i = True

Inr b x arbitrary, y = b, and i = False.

Similar to pairs.
628Idea of sum or union type: t is in the sum of τ and σ if t is

either in τ or in σ. To do this formally in our type system, and

also in the type system of functional programming languages

like ML, t must be wrapped to signal if it is of type τ or of

type σ.

For example, in ML one could define

datatype (α, β) sum = Inl α | Inr β

So an element of (α, β) sum is either Inl a where a : α or

Inr b where b : β.

683

Isabelle Syntax for Sum Example

constdefs

Inl_Rep :: [’a, ’a, ’b, bool] => bool

"Inl_Rep == (%a. %x y p. x=a & p)"

Inr_Rep :: [’b, ’a, ’b, bool] => bool

"Inr_Rep == (%b. %x y p. y=b & ~p)"

629This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

630Suppose we have a type nat and a constant + with the

expected meaning. We want to define a type even of even

numbers. What is an even number?

http://isabelle.in.tum.de/library/

Isabelle Syntax for Sum Example

constdefs

Inl_Rep :: [’a, ’a, ’b, bool] => bool

"Inl_Rep == (%a. %x y p. x=a & p)"

Inr_Rep :: [’b, ’a, ’b, bool] => bool

"Inr_Rep == (%b. %x y p. y=b & ~p)"

typedef (Sum)

(’a,’b)"+" =

"{f. (?a. f = Inl_Rep(a::’a)) |

(?b. f = Inr_Rep(b::’b))}"

See Sum Type.thy629.

How would you define630 a type even based on nat?
629This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

630Suppose we have a type nat and a constant + with the

expected meaning. We want to define a type even of even

numbers. What is an even number?

The following choice of S is adequate:

S ≡ λx.∃n.x = n + n

Using the Isabelle scheme, this would be

typedef (Even)

even = "{x. ?y. x=y+y}"
We could then go on by defining an operation PLUS on even,

684

http://isabelle.in.tum.de/library/

36.4 Summary on Conservative Extensions

We have seen two schemata:

• Constant definition: new constant must be defined us-

ing old constants. No recursion! Subtle side condition

concerning types.

• Type definition: new type must be isomorphic to a “sub-

set” S of an existing type ρ. Not possible to define any

type that is “structurally” richer than the types one al-

ready has. But HOL is rich enough.

say as follows:

constdefs

PLUS::[even,even] => even (infixl 56)

PLUS def "PLUS ==

%xy. Abs Even (Rep Even(x)+Rep Even(x))"

Note that we chose to use names even and Even, but we

could have used the same name twice as well.

685

37 Mathematics in the Isabelle/HOL
Library: Introduction

686

Isabelle/HOL at Work

We have seen how the mechanism of conservative extensions

works in principle.

For several lectures, we will now look at theories of the

Isabelle/HOL library, all built by conservative extensions and

modelling significant portions of mathematics.

687

Sets: The Basis of Principia Mathematica

Sets are ubiquitious in mathematics:

• 17th century: geometry can be reduced to numbers [Des16,

vL16].

• 19th century: numbers can be reduced to sets [Can18,

Pea18, Fre93, Fre03].

• 20th century: sets can be represented in logics [Zer07,

Frä22, WR25, Göd31, Ber91, Chu40].

We call this the Principia Mathematica Structure [WR25].

The libraries of theorem provers follow this Principia Math-

ematica Structure — in reverse order!631

631It is not surprising that the logical built-up of theorem

prover is reversed w.r.t. to the historical development of math-

ematics and logics. Research usually starts from applications

and the intuition and works its way back to the foundations.

688

The Roadmap

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

689

38 Orders

690

The Roadmap

We are looking at how the different parts of mathematics are

encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

691

The Roadmap

We are looking at how the different parts of mathematics are

encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

691

Three Order Classes

We first define a syntactic class ord. It is the class of types

for which symbols < and <= exist.

692

Three Order Classes

We first define a syntactic class ord. It is the class of types

for which symbols < and <= exist.

We then define two axiomatic classes order and linorder

for which < and <= are required to have certain properties,

that of being a partial order, or a linear order, resp.

692

Orders (in Orderings.thy632)

axclass

ord < type

consts

"op <" :: [’a::ord, ’a] => bool

"op <=" :: [’a::ord, ’a] => bool

constdefs

min :: "[’a::ord, ’a] => ’a"

"min a b == (if a <= b then a else b)"

max :: "[’a::ord, ’a] => ’a"

"max a b == (if a <= b then b else a)"

Recall constdefs syntax and note two uses of <633.
632 In previous versions of Isabelle, there used to be a

theory file Ord.thy. Nowadays orders are defined in

Orderings.thy.
633The line

axclass order < ord

in the theory file states that order is a subclass of ord.

The line

"op <" :: [’a::ord, ’a] => bool ("(<)" [50, 51] 50)

in the theory file declares a constant < with a certain type.

type is the class containing all types. In previous versions

of Isabelle, it used to be called term.

693

Orders (Cont.)

axclass order < ord

order_refl "x <= x"

order_trans "[|x <= y; y <= z|] ==> x <= z"

order_antisym "[|x <= y; y <= x|] ==> x = y"

order_less_le "x < y = (x <= y & x ~= y)"

%

axclass linorder < order

linorder_linear "x <= y | y <= x"

694

Least Elements

In Orderings.thy, least elements used to be defined as:

Least :: "(’a::ord => bool) => ’a"

Least_def "Least P == @x. P(x) &

(ALL y. P(y) ==> x <= y)"

Now it is done without using the Hilbert operator.

695

Monotonicity

In Orderings.thy, monotonicity used to be defined as:

mono :: [’a::ord => ’b::ord] => bool

mono_def "mono(f) ==

(!A B. A <= B --> f(A) <= f(B))

Now it is done using a completely different syntax, but one

can still use monotonicity as before.

696

Some Theorems634 about Orders

monoI (
∧
AB.A ≤ B =⇒ f A ≤ f B)

=⇒ mono f

monoD Jmono f ;A ≤ BK =⇒ f A ≤ f B

order eq refl x = y =⇒ x ≤ y

order less irrefl ¬x < x

order le less (x ≤ y) = (x < y ∨ x = y)

linorder less linear x < y ∨ x = y ∨ y < x

linorder neq iff (x 6= y) = (x < y ∨ y < x)

min same minxx = x

le min iff conj (z ≤ min x y) = (z ≤ x ∧ z ≤ y)

38.1 Summary on Orders

Type classes are a structuring mechanism in Isabelle:

634In the rest of the course, we will mostly be dealing with

Isabelle HOL, and so when we speak of a theorem, we ususally

mean an Isabelle theorem, i.e., a theorem in Isabelle’s meta-

logic, what we also call a thm. Such theorems may contain

the meta-level implication =⇒ and universal quantifier
∧

.

So they are not theorems within HOL. Logically, this is not

a big deal as one switches between object and meta-level by

the introduction and elimination rules for → and ∀. But

technically (for the proof procedures), it makes a difference.

To see a theorem displayed in Isabelle, simply type the name

of the theorem followed by “;”.

697

• Syntactic classes (e.g. t :: α :: ord as in Haskell [HHPW96]):

merely a mechanism to structure visibility of operations.

• Syntactic classes (e.g. t :: α :: ord as in Haskell [HHPW96]):

merely a mechanism to structure visibility of operations.

• Axiomatic classes (e.g. t :: α :: order): a mechanism for

structuring semantic knowledge635 in types (foundation

to be discussed later).

635The Isabelle type system records for any type variable what

class constraints there are for this type variable. These class

constraints may arise from the types of the constants used in

an expression, or they may be given explicitly by the user in a

goal. E.g. one might type

Goal "(x::’a::order)<y ==> x<=y";

to specify that x must be of a type in the type class order.

The axioms of an axiomatic class can only be applied if

any constant declared in the axiomatic class (or a syntactic

superclass) is applied to arguments of a type in the axiomatic

class. E.g. order refl can only be used to prove y <= y if

the type of y is in the type class order.

In this sense the type information (y is of type in class

order) is semantic knowledge (y <= y holds).

698

39 Sets

699

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

700

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

700

Set.thy

theory Set = HOL:

typedecl ’a set

instance set :: (type) ord ..

consts

"{}" :: ’a set ("{}")

UNIV :: ’a set

insert :: [’a, ’a set] => ’a set

Collect :: (’a => bool) => ’a set

"op :" :: "’a => ’a set => bool"

Note that Collect and “:” correspond to Absset and Repset.

701

Sets Are a Special Case

Recall that the typedef syntax is based on set comprehen-

sion. Therefore, sets are a special case of type definitions.

In deviation from our conservative approach, sets are ax-

iomatized as follows:
axioms

mem Collect eq [iff]636: "(a : {x. P(x)}) = P(a)"

Collect mem eq [simp]: "{x. x:A} = A"

One can see though that this is equivalent637 to the type

definition scheme.
637We earlier presented a definition of α set according to

the scheme of type definitions. However, in Isabelle/HOL

(Set.thy), it is not done exactly like that. The reason lies

in the special set-based syntax used for type definitions.

The type α set is defined in Isabelle/HOL in a way which

essentially corresponds to the type definition scheme, but is

different in the technical details. In particular, there are no

constants Absset and Repset. Instead, we have Collect and

the ∈-sign. We will now explain how.

Concerning Absset, there is no worry, since it corresponds

exactly to Collect .

Repset is related to the ∈-sign via

x ∈ A = (Repset A) x

Let us see that this setup is equivalent to the scheme of type

702

Set.thy: More Constant Declarations

Un, Int :: [’a set, ’a set] => ’a set

Ball, Bex :: [’a set, ’a => bool] => bool

UNION, INTER:: [’a set, ’a => ’b set] => ’b set

Union, Inter:: ((’a set) set) => ’a set

Pow :: ’a set => ’a set set

"image" :: [’a => ’b, ’a set] => (’b set)

We use old syntax here but only since it is more concise.

In what follows, recall that

{x | f x} = Collect f = Absset f

definitions. There are two axioms in Set.thy:

axioms

mem Collect eq [iff]: "(a : {x. P(x)}) = P(a)"

Collect mem eq [simp]: "{x. x:A} = A"

We translate these axioms using the definitions:

a ∈ {x | P x} = P a
a ∈ (Collect P) = P a
a ∈ (Absset P) = P a
Repset(Absset P) a = P a
Repset(Absset P) = P

The last step uses extensionality.

Now the second one:
{x | x ∈ A} = A
{x | (RepsetA)x} = A
Collect(RepsetA) = A

Ignoring some universal quantifications (these are implicit in

Isabelle), these are the isomorphy axioms for set.

703

Set.thy: Constant Definitions

empty_def: "{} == {x. False}"

UNIV_def: "UNIV == {x. True}"

Un_def: "A Un B == {x. x:A | x:B}"

Int_def: "A Int B == {x. x:A & x:B}"

insert_def: "insert a B == {x. x=a} Un B"

Ball_def: "Ball A P == ALL x. x:A --> P(x)"

Bex_def: "Bex A P == EX x. x:A & P(x)"

Nice syntax:
{x, y, z} for insert x (insert y (insert z {}))
ALL x : A. Sx for Ball A S

EX x : A. Sx for Bex A S

704

Set.thy: Constant Definitions (2)

subset_def: "A <= B == ALL x:A. x:B"

Compl_def: "- A == {x. ~x:A}"

set_diff_def: "A - B == {x. x:A & ~x:B}"

UNION_def: "UNION A B == {y. EX x:A. y: B(x)}"

INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}"

Note use of <=638 instead of ⊆!

Nice syntax:
UN x : A. S x or

⋃
x∈A . S x for UNION A S

INT x : A. S x or
⋂
x∈A . S x for INTER A S

638Sets are an instance of the type class ord, where the

generic constant <= is the subset relation in this particular

case.

In fact, the subset relation is reflexive, transitive and anti-

symmetric, and so sets are an instance of the axiomatic class

order. This is non-obvious and must be proven, which is

done not in Set.thy itself but in Fun.thy, later. This is a

technicality of Isabelle.

705

Set.thy: Constant Definitions (3)

Union_def: "Union S == (UN x:S. x)"

Inter_def: "Inter S == (INT x:S. x)"

Pow_def: "Pow A == {B. B <= A}"

image_def: "f‘A == {y. EX x:A. y = f(x)}"

Nice syntax:⋃
S for Union S⋂
S for Inter S

706

Some Theorems in Set.thy

CollectI P a =⇒ a ∈ {x.P x}
CollectD a ∈ {x.P x} =⇒ P a

set ext (
∧
x.(x ∈ A) = (x ∈ B)) =⇒ A = B

subsetI (
∧
x.x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

eqset imp iff A = B =⇒ (x ∈ A) = (x ∈ B)

UNIV I x ∈ UNIV

subset UNIV A ⊆ UNIV

empty subsetI {} ⊆ A

Pow iff (A ∈ PowB) = (A ⊆ B)

IntI Jc ∈ A; c ∈ BK =⇒ c ∈ A ∩B

707

More Theorems in Set.thy

insert iff (a ∈ insert b A) = (a = b ∨ a ∈ A)

image Un f ‘(A ∪B) = f ‘A ∪ f ‘B

Inter lower B ∈ A =⇒
⋂
A ⊆ B

Inter greatest (
∧
X.X ∈ A =⇒ C ⊆ X) =⇒ C ⊆

⋂
A

39.1 Summary on Sets

Rich and powerful set theory available in HOL:

• No problems with consistency

• Weaker than ZFC (since typed set-theory:) there is no

“union of sets639”; but: complement-closed640

639In typed set theory (what we have here in HOL), it is not

possible to form the union of two sets of different type. This

is in contrast to ZFC.
640The complement of a typed set A, i.e.

{x | x /∈ A}
is again a set, whose type is the same as the type of A. In

ZFC, the complement construction is not generally allowed

since it opens the door to Russell’s Paradox.

708

• Good mechanical support for many set tautologies (Fast tac,

fast tac set cs, fast tac eq cs, . . . simp tac set ss

. . .)

• Powerful basis for many problems in modeling

709

40 Functions

710

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

711

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

711

Fun.thy

The theory Fun.thy641 defines some important notions on

functions, such as concatenation, the identity function, the

image of a function, etc.

We look at it briefly.

641This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

Fun.thy builds on Set.thy, and it is here that it is proven

and used that sets are an instance of the type class order.

712

http://isabelle.in.tum.de/library/

Two Extracts from Fun.thy

Composition and the identity function:

constdefs

id :: "’a => ’a"

"id == %x. x"

comp :: "[’b => ’c, ’a => ’b, ’a] => ’c"

"f o g == %x. f(g(x))"

Recall constdefs syntax.

713

Instantiating an Axiomatic Class

Sets are partial orders: set is an instance of the axiomatic

class order.

For some reason, this is proven in Fun.thy.

instance set :: (type) order

by (intro_classes,

(assumption | rule subset_refl

subset_trans subset_antisym psubset_eq)+)

• Axiomatic classes result in proof obligations642.

• These are discharged643 whenever instance is stated.

• Type-checking has access to the established properties.

642To claim that a type is an instance of an axiomatic

class, it has to be proven that the axioms (in the case of

order: order refl, order trans, order antisym, and

order less le) are indeed fulfilled by that type.
643The Isabelle mechanism is such that the line
instance set :: (type) order

by (intro classes,

(assumption | rule

subset refl subset trans subset antisym psubset eq)+)

instructs Isabelle to prove the axioms using the pre-

viously proven theorems subset refl, subset trans,

subset antisym, and psubset eq.

714

40.1 Conclusion of Orders, Sets, Functions

• Theory says: conservative extensions can be used to build

consistent libraries.

• Sets as one important package of Isabelle/HOL library:

– Set theory is typed, but very rich and powerfully sup-

ported.

– Sets are instance of ord and order type class, demon-

strates type classes as structuring mechanism in Isabelle.

40.1 Conclusion of Orders, Sets, Functions

• Theory says: conservative extensions can be used to build

consistent libraries.

• Sets as one important package of Isabelle/HOL library:

– Set theory is typed, but very rich and powerfully sup-

ported.

– Sets are instance of ord and order type class, demon-

strates type classes as structuring mechanism in Isabelle.

• Will see more examples: Isabelle/HOL contains some

10000 thm’s.

715

41 Background: Recursion, Induction, and
Fixpoints

716

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

717

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

717

Recursion Based on Set Theory

Current stage of our course:

• On the basis of conservative extensions, set theory can

be built safely.

• But: our mathematical world is still quite small and quite

remote from computer science: we have no means of

introducing recursive definitions (recursive programs, re-

cursive set equations, . . .).

How can we benefit from set theory to introduce recursion?

718

Recursion and General Fixpoints

Näıve Approach: One could axiomatize fixpoint combinator

Y as

Y = λF.F (Y F)
fix

This axiom is not a constant definition644.

Then we could easily derive

∀F α→α.Y F = F (Y F)645.

644The axiom

Y = λF.F (Y F)

is not a constant definition, since Y occurs again on the right-

hand side.
645In words, this says that Y F is a fixpoint of F .

719

Recursion and General Fixpoints

Näıve Approach: One could axiomatize fixpoint combinator

Y as

Y = λF.F (Y F)
fix

This axiom is not a constant definition644.

Then we could easily derive

∀F α→α.Y F = F (Y F)645.

• Why are we interested in Y ?

• What is the problem with such a definition?

644The axiom

Y = λF.F (Y F)

is not a constant definition, since Y occurs again on the right-

hand side.
645In words, this says that Y F is a fixpoint of F .

719

Why Are We Interested in Y ?

First, why are we interested in recursion (solutions to recursive

equations646)?

Why Are We Interested in Y ?

First, why are we interested in recursion (solutions to recursive

equations646)?

• Recursively defined functions are solutions of such equa-

tions (example: fac647).

• Inductively defined sets are solutions of such equations

646By a recursive equation, we mean an equation of the form

f = e

where f occurs in e. A fortiori, such an equation does not

qualify as constant definition.
647In the following explanations, any constants like 1 or + or

if-then-else are intended to have their usual meaning.

A fixpoint combinator is a function Y that returns a fix-

point of a function F , i.e., Y must fulfill the equation

Y F = F (Y F). Doing λ-abstraction over F on both sides

and η-conversion (backwards) on the left-hand side, we have

Y = λF.F (Y F)

This is a recursive equation. We will now demonstrate how a

definition of a function fac (factorial) using a recursive equa-

tion can be transformed to a definition that uses Y instead of

using recursion directly.

720

In a functional programming language we might define

fac n = (if n = 0 then 1 else n ∗ fac (n− 1)).

We now massage this equation a bit. Doing λ-abstraction on

both sides we get

λn. fac n = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which is the η-conversion of

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which in turn is a β-reduction of

fac = ((λf. λn. if n = 0 then 1 else n ∗ f (n− 1)) fac)

(5)

We are looking for a solution to (5). We abbreviate the un-

derlined expression by Fac. We claim fac = Y Fac, i.e., it is

a solution to (5). Simply replacing fac with Y Fac in (5) we

get

Y Fac = Fac (Y Fac)

721

(example: Fin A648, all finite subsets of A).

(example: Fin A648, all finite subsets of A).

We are interested in Y because it is the mother of all re-
which holds by the definition of Y .

Thus we see that a recursive definition of a function can be

transformed so that the function is the fixpoint of an appro-

priate functional (a function taking a function as argument).
648We want to define a function Fin such that Fin A is the

set of all finite subsets of A.

How do you construct the set of all finite subsets of A? The

following pseudo-code suggests what you have to do:

S := {{}};
forever do

foreach a ∈ A do

foreach B ∈ S do

add ({a} ∪B) to S

od od od

This means that you have to add new sets forever (however,

when you actually do this construction for a finite set A, it

will indeed reach a fixpoint, i.e., adding new sets won’t change

anything).

722

Generally (even if A is infinite), Fin A is a set such

that adding new sets as suggested by the pseudo-code won’t

change anything. Written as recursive equation:

Fin A = {{}} ∪
⋃

x ∈ A.((insertx) ‘ (Fin A))

Recall that ‘ is nice syntax for image, defined in Set.thy.

The above is a β-reduction of

Fin A = (λX. {{}} ∪
⋃

x ∈ A.((insertx) ‘X)) (Fin A)

(6)

We are looking for a solution to (6). We abbreviate the un-

derlined expression by FA. We claim

Fin A = Y FA,

i.e., it is a solution to (6). Simply replacing Fin A with Y FA

in (6) we get

Y FA = FA(Y FA),

which holds by the definition of Y .

723

cursions. With Y , recursive axioms can be converted649 into

constant definitions.

You should compare this to what we said about fac. Note

that in this example, there is no such thing as a recursive call

to a “smaller” argument as in fac example.

649Any recursive function can be defined by an expression

(functional) which is not itself recursive, but instead relies on

the recursive equation defining Y .

Consider fac or Fin A as an example.

724

What’s the Problem with such an Axiom?

Such a definition would lead to inconsistency.

This is not surprising because not all functions have a fix-

point.

Therefore we only consider special forms of fixpoint com-

binators.

We consider two approaches: Least fixpoints (Tarski) and

well-founded orderings.

725

42 Least Fixpoints

726

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

727

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

727

42.1 First Approach: Least Fixpoints (Tarski)

• Recall: We would like to define Y = λF.F (Y F), where

F is of arbitrary type α→ α, but we must not.

42.1 First Approach: Least Fixpoints (Tarski)

• Recall: We would like to define Y = λF.F (Y F), where

F is of arbitrary type α→ α, but we must not.

• Restriction: F is of set type (α set → α set).

• Instead of Y define lfp by an equation which is not re-

cursive.

• lfp is fixpoint combinator, but only under additional con-

dition that F is monotone650, and: this is not obvious

(requires non-trivial proof)!

This leads us towards recursion and induction.
650A function f is monotone w.r.t. a partial order ≤ if the

following holds: A ≤ B implies f (A) ≤ f (B).

In particular, we consider the order given by the subset re-

lation.

728

Lfp.thy651

Lfp = Product_Type +

constdefs

lfp :: [’a set => ’a set] => ’a set

"lfp(f) == Inter({u. f(u) <= u})"

• => is function type arrow.

• <= (“⊆”) is a partial order.

• Inter (“
⋂

”) gives a “minimum”: ∀A ∈ S.(
⋂
S) ⊆ A.

Note that

–
⋂
∅ = UNIV, i.e., if {u|f (u) ⊆ u} = ∅, then lfp(f) =

UNIV;
651These files should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

729

http://isabelle.in.tum.de/library/

– If f has a fixpoint a, then f (a) = a and hence a

fortiori f (a) ⊆ a, and so {u|f (u) ⊆ u} 6= ∅.

730

Is it a Fixpoint?

We have

lfp(f) :=
⋂
{u|f (u) ⊆ u}

Definition of lfp is conservative. That’s fine. But is it a

fixpoint combinator?

731

42.2 Tarski’s Fixpoint Theorem

Theorem (Tarski):
If f is monotone, then lfp f = f (lfp f).

In Isabelle, the theorem is shown in Lfp.ML and called

lfp unfold.

We show the theorem using mathematical notation and a

graphical illustration to help intuition.

The proof has four steps.

42.2 Tarski’s Fixpoint Theorem

Theorem (Tarski):
If f is monotone, then lfp f = f (lfp f).

In Isabelle, the theorem is shown in Lfp.ML and called

lfp unfold.

We show the theorem using mathematical notation and a

graphical illustration to help intuition.

The proof has four steps.

Side remark: if f is monotone, then clearly f has some

fixpoint, since f UNIV = UNIV and thus UNIV is always a

fixpoint.

732

Tarski’s Fixpoint Theorem (1)

Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

652α is not a set but a type (variable). But we can consider

the set of all terms of that type (UNIV of type α).

The polymorphic constant UNIV was defined in Set.thy.

UNIV of type τ set is the set containing all terms of type τ .
653In general, needless to say, there could be any number of

such sets, but the picture is to be understood in the sense that

the three circles are all the sets A with the property f A ⊆ A.

733

Tarski’s Fixpoint Theorem (1)

Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

The box denotes “the set” α652. The

three circles653 denote the sets A for

which f A ⊆ A.

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................
.
................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

652α is not a set but a type (variable). But we can consider

the set of all terms of that type (UNIV of type α).

The polymorphic constant UNIV was defined in Set.thy.

UNIV of type τ set is the set containing all terms of type τ .
653In general, needless to say, there could be any number of

such sets, but the picture is to be understood in the sense that

the three circles are all the sets A with the property f A ⊆ A.

733

Tarski’s Fixpoint Theorem (1)

Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

The box denotes “the set” α652. The

three circles653 denote the sets A for

which f A ⊆ A.

By definition, lfp f is the intersec-

tion. .
................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................
.
................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

.
...............
...............
...............
...............

..............
...

...............
..............
.

..............
.
.............
..
.

652α is not a set but a type (variable). But we can consider

the set of all terms of that type (UNIV of type α).

The polymorphic constant UNIV was defined in Set.thy.

UNIV of type τ set is the set containing all terms of type τ .
653In general, needless to say, there could be any number of

such sets, but the picture is to be understood in the sense that

the three circles are all the sets A with the property f A ⊆ A.

733

Tarski’s Fixpoint Theorem (1)

Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

The box denotes “the set” α652. The

three circles653 denote the sets A for

which f A ⊆ A.

By definition, lfp f is the intersec-

tion.

Pick an A for which f A ⊆ A.

Clearly, lfp f ⊆ A.

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................
.
................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

.
...............
...............
...............
...............

..............
...

...............
..............
.

..............
.
.............
..
.

.

................

.................
.................
.................

................
................

................
................

..
...............
.

...............
..

..............
...
..............
...

.............

...

.............

...

..............
...
..............
...
...............
..
...............
.

................
................
................
................
................
.................
.................
.................

................

Or as proof tree.
652α is not a set but a type (variable). But we can consider

the set of all terms of that type (UNIV of type α).

The polymorphic constant UNIV was defined in Set.thy.

UNIV of type τ set is the set containing all terms of type τ .
653In general, needless to say, there could be any number of

such sets, but the picture is to be understood in the sense that

the three circles are all the sets A with the property f A ⊆ A.

733

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.......
.......
............

..
............
.......
......

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

(1st,
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.......
.......
............

..
............
.......
......

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

(1st, 2nd,
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.......
.......
............

..
............
.......
......

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

(1st, 2nd, 3rd . . .).
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.......
.......
............

..
............
.......
......

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

(1st, 2nd, 3rd . . .).

By definition, lfp f is the intersec-

tion.

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.
...............

...............

...............

...............
..............

..............

.
..............

............
..

............
...

...........
....

...........
....

..........
.....
.

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

(1st, 2nd, 3rd . . .).

By definition, lfp f is the intersec-

tion.

Clearly, A ⊆ lfp f .

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.......
.......
............

..
............
.......
......

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.
...............

...............

...............

...............
..............

..............

.
..............

............
..

............
...

...........
....

...........
....

..........
.....
.

734

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For allA, if for all U , f U ⊆ U implies A ⊆ U ,

then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U

(1st, 2nd, 3rd . . .).

By definition, lfp f is the intersec-

tion.

Clearly, A ⊆ lfp f .

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................
.
................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.......
.......
............

..
............
.......
......

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

..........
.......

..........

......

..........

......

..........
.......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.
...............

...............

...............

...............
..............

..............

.
..............

............
..

............
...

...........
....

...........
....

..........
.....
.

Or as proof tree.

734

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

735

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f (lfp f) ⊆ U .

735

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f (lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

.

...................

...................

....................

....................

...................

..................

..................
...................

....................
....................

..
.................
..

..............
....

............
......

............
.......

...........
.........

...........
.........

..........
.........

..........

.........

..........

.........

..........
.........

...........
.........

...........
.........

............
.......

............
......

..............
....

.................
..

....................
....................

....................
...................
..................

..................

...................

....................

....................

...................

...................

.
..................

..................

..................

.................

.................

.................

.
..............
...

.............
....

...........
......

...........
.......

...........
.......

..........
........
.

735

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f (lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).

.

...................

...................

....................

....................

...................

..................

..................
...................

....................
....................

..
.................
..

..............
....

............
......

............
.......

...........
.........

...........
.........

..........
.........

..........

.........

..........

.........

..........
.........

...........
.........

...........
.........

............
.......

............
......

..............
....

.................
..

....................
....................

....................
...................
..................

..................

...................

....................

....................

...................

...................

.
..................

..................

..................

.................

.................

.................

.
..............
...

.............
....

...........
......

...........
.......

...........
.......

..........
........
.

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

...........
......

..........

......

..........

......

...........
......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

735

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f (lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).

f (lfp f) ⊆ f U (monotonicity).

.

...................

...................

....................

....................

...................

..................

..................
...................

....................
....................

..
.................
..

..............
....

............
......

............
.......

...........
.........

...........
.........

..........
.........

..........

.........

..........

.........

..........
.........

...........
.........

...........
.........

............
.......

............
......

..............
....

.................
..

....................
....................

....................
...................
..................

..................

...................

....................

....................

...................

...................

.
..................

..................

..................

.................

.................

.................

.
..............
...

.............
....

...........
......

...........
.......

...........
.......

..........
........
.

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

...........
......

..........

......

..........

......

...........
......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

.................
...................

..................

.
............
......

...........
........
.

735

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f (lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).

f (lfp f) ⊆ f U (monotonicity).

f (lfp f) ⊆ U (transitivity of ⊆).

Claim 3∗ shown.

.

...................

...................

....................

....................

...................

..................

..................
...................

....................
....................

..
.................
..

..............
....

............
......

............
.......

...........
.........

...........
.........

..........
.........

..........

.........

..........

.........

..........
.........

...........
.........

...........
.........

............
.......

............
......

..............
....

.................
..

....................
....................

....................
...................
..................

..................

...................

....................

....................

...................

...................

.
..................

..................

..................

.................

.................

.................

.
..............
...

.............
....

...........
......

...........
.......

...........
.......

..........
........
.

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

...........
......

..........

......

..........

......

...........
......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

.................
...................

..................

.
............
......

...........
........
.

735

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f (lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).

f (lfp f) ⊆ f U (monotonicity).

f (lfp f) ⊆ U (transitivity of ⊆).

Claim 3∗ shown.

By Claim 2 (letting A := f (lfp f)),

f (lfp f) ⊆ lfp f .

.

...................

...................

....................

....................

...................

..................

..................
...................

....................
....................

..
.................
..

..............
....

............
......

............
.......

...........
.........

...........
.........

..........
.........

..........

.........

..........

.........

..........
.........

...........
.........

...........
.........

............
.......

............
......

..............
....

.................
..

....................
....................

....................
...................
..................

..................

...................

....................

....................

...................

...................

.
..................

..................

..................

.................

.................

.................

.
..............
...

.............
....

...........
......

...........
.......

...........
.......

..........
........
.

.

................

.................

.................

.................

................

................
................

................
.................

...
..............
..

.............
...

............
....

...........
......

...........
......

...........
......

..........

......

..........

......

...........
......

...........
......

...........
......

............
....

.............
...

..............
..

................
.................
................
................
................

................

.................

.................

.................

................

.
...................

..................

.
............
......

...........
........
.

735

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone then lfp f ⊆ f (lfp f).

736

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone then lfp f ⊆ f (lfp f).

By Claim 3, f (lfp f) ⊆ lfp f .

.

..............................

..............................

..............................

..............................

............................

............................

.
..............
..............

............
............
....

...........
...........
.......

...........
...........
........

...........
...........
........

..........
..........
..........

.
...............................

.

...........................

...........................

..........................

.........................

.
............
............
.

............
............
..

...........
...........
.....

...........
...........
.....

.

736

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone then lfp f ⊆ f (lfp f).

By Claim 3, f (lfp f) ⊆ lfp f .

By monotonicity,

f (f (lfp f)) ⊆ f (lfp f).

.

..............................

..............................

..............................

..............................

............................

............................

.
..............
..............

............
............
....

...........
...........
.......

...........
...........
........

...........
...........
........

..........
..........
..........

.
...............................

.

...........................

...........................

..........................

.........................

.
............
............
.

............
............
..

...........
...........
.....

...........
...........
.....

.
.

......................

.....................

.....................

.
............
.........

...........
..........

...........
............

736

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone then lfp f ⊆ f (lfp f).

By Claim 3, f (lfp f) ⊆ lfp f .

By monotonicity,

f (f (lfp f)) ⊆ f (lfp f).

By Claim 1 (letting A := f (lfp f)),

lfp f ⊆ f (lfp f).
.

..............................

..............................

..............................

..............................

............................

............................

.
..............
..............

............
............
....

...........
...........
.......

...........
...........
........

...........
...........
........

..........
..........
..........

.
...............................

.

............................

............................

............................

............................

............................

...........................

..........................

..........................

...........................

.
................
...........

..............
............

............
............
..

............
............
...

............
............
....

...........
...........
......

..........
..........
........

..........
..........
........

..........

..........

........

.
........................

....
............................

............................
............................

736

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone then lfp f ⊆ f (lfp f).

By Claim 3, f (lfp f) ⊆ lfp f .

By monotonicity,

f (f (lfp f)) ⊆ f (lfp f).

By Claim 1 (letting A := f (lfp f)),

lfp f ⊆ f (lfp f).
.

..............................

..............................

..............................

..............................

............................

............................

.
..............
..............

............
............
....

...........
...........
.......

...........
...........
........

...........
...........
........

..........
..........
..........

.
...............................

.

............................

............................

............................

............................

............................

...........................

..........................

..........................

...........................

.
................
...........

..............
............

............
............
..

............
............
...

............
............
....

...........
...........
......

..........
..........
........

..........
..........
........

..........

..........

........

.
........................

....
............................

............................
............................

Or as proof tree.

736

Tarski’s Fixpoint Theorem: QED

Claim 3 (lfp f ⊆ f (lfp f)) and Claim 4 (f (lfp f) ⊆ lfp f)

together give the result:

If f is monotone, then lfp f = f (lfp f).

So under appropriate conditions, lfp is a fixpoint combina-

tor.

We will later reuse Claim 1.

737

Alternative: A Natural-Deduction Style Proof

The proof can also be presented in natural deduction style.

738

Tarski’s Fixpoint Theorem (1)

Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

[f A ⊆ A]1

A ∈ {u.fu ⊆ u} CollectI⋂
{u.fu ⊆ u} ⊆ A

Inter lower

lfp f ⊆ A
Def. lfp

f A ⊆ A→ lfp f ⊆ A
→-I1

739

Tarski’s Fixpoint Theorem (2)

Claim 2 (“lfp greatest”): For all A, if for all U , f U ⊆ U

implies A ⊆ U , then A ⊆ lfp f .

[∀x.fx ⊆ x→ A ⊆ x]1

∀x.x ∈ {u.fu ⊆ u} → A ⊆ x
subst,CollectI

A ⊆ ∩{u.fu ⊆ u}
Inter greatest

A ⊆ lfpf
Def. lfp

(∀x.fx ⊆ x→ A ⊆ x)→ A ⊆ lfpf
→-I1

740

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone then f (lfp f) ⊆ lfp f .

[mono f]1
[fx ⊆ x]2

lfp f ⊆ x

f (lfp f) ⊆ f x [fx ⊆ x]2

f (lfp f) ⊆ x
order trans

∀x.fx ⊆ x→ f (lfp f) ⊆ x
∀-I,→-I2

f (lfp f) ⊆ lfp f
lfp greatest, →-E

mono f → f (lfp f) ⊆ lfp f
→-I1

741

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone then lfp f ⊆ f (lfp f).

[mono f]1
[mono f]1

f (lfp f) ⊆ lfp f
Claim 3,→-E

f (f (lfp f)) ⊆ f (lfp f)
monoD

lfp f ⊆ f (lfp f)
lfp lowerbound, →-E

mono f → lfp f ⊆ f (lfp f)
→-I1

742

Completing Proof Tree

[mono f]1

lfp f ⊆ f (lfp f)
Claim 4

[mono f]1

f (lfp f) ⊆ lfp f
Claim 3

lfp f = f (lfp f)
equalityI

mono f → lfp f = f (lfp f)
→-I1

743

42.3 Induction Based on Lfp.thy

Theorem (lfp induction):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x},
then lfp f ⊆ {x | P x}.

42.3 Induction Based on Lfp.thy

Theorem (lfp induction):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x},
then lfp f ⊆ {x | P x}.

In Isabelle654, it is called lfp induct:

Ja ∈ lfp f ;mono f ;
∧
x.x ∈ f (lfp f ∩ {x.P x}) =⇒ P xK

=⇒ P a

We now show the theorem similarly as Tarski’s Theorem.
654The theorem is phrased a bit differently in the “mathe-

matical” version we give here and in the Isabelle version (see

Lfp.ML). This is convenient for the graphical illustration of

the proof.

The “mathematical phrasing” corresponding closely to the

Isabelle version would be the following:

Theorem (Induct (alternative)):
If

• a ∈ lfp f , and

• f is monotone, and

• for all x, x ∈ f (lfp f ∩ {x | P x}) implies P x

then P a holds.

Other phrasings, which may help to get some intuition about

the theorem:

Theorem (Induct (alternative)):
If

744

Showing lfp induct

• a ∈ lfp f , and

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}

then P a holds.

Theorem (Induct (alternative)):
If

• f is monotone, and

• f (lfp f ∩ {x | P x}) ⊆ {x | P x}

then for all x in lfp f , we have P x.

745

Circles denote lfp f and {x | P x}.

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

655lfp f ∩ {x | P x} ⊆ lfp f , so by monotonicity, f (lfp f ∩
{x | P x}) ⊆ f (lfp f).

656We have just seen f (lfp f ∩ {x | P x}) ⊆
lfp f ∩ {x | P x}.

By Claim 1

If f A ⊆ A then lfp f ⊆ A

(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆
lfp f ∩ {x | P x}.

657We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆
lfp f ∩ {x | P x}, and so lfp(f) = lfp f ∩ {x | P x} by the

antisymmetry of ⊆.

746

Circles denote lfp f and {x | P x}.
By monotonicity655,

f (lfp f ∩ {x | P x}) ⊆ f (lfp f).

By Tarski, lfp f = f (lfp f).
.
....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.
...............
...

................
.

.................
..................
.................
.................
.................
..................
.

..................
.................

.................
.................

..................
..

................
.

...............
...

655lfp f ∩ {x | P x} ⊆ lfp f , so by monotonicity, f (lfp f ∩
{x | P x}) ⊆ f (lfp f).

656We have just seen f (lfp f ∩ {x | P x}) ⊆
lfp f ∩ {x | P x}.

By Claim 1

If f A ⊆ A then lfp f ⊆ A

(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆
lfp f ∩ {x | P x}.

657We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆
lfp f ∩ {x | P x}, and so lfp(f) = lfp f ∩ {x | P x} by the

antisymmetry of ⊆.

746

Circles denote lfp f and {x | P x}.
By monotonicity655,

f (lfp f ∩ {x | P x}) ⊆ f (lfp f).

By Tarski, lfp f = f (lfp f). Hence

f (lfp f ∩ {x | P x}) ⊆ lfp f . .
....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.
...............
...

................
.

.................
..................
.................
.................
.................
..................
.

..................
.................

.................
.................

..................
..

................
.

...............
...

.

.............
.............
.............
............

............
..

.............

.......................................
............
............
.............
.............
.............

655lfp f ∩ {x | P x} ⊆ lfp f , so by monotonicity, f (lfp f ∩
{x | P x}) ⊆ f (lfp f).

656We have just seen f (lfp f ∩ {x | P x}) ⊆
lfp f ∩ {x | P x}.

By Claim 1

If f A ⊆ A then lfp f ⊆ A

(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆
lfp f ∩ {x | P x}.

657We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆
lfp f ∩ {x | P x}, and so lfp(f) = lfp f ∩ {x | P x} by the

antisymmetry of ⊆.

746

Circles denote lfp f and {x | P x}.
By monotonicity655,

f (lfp f ∩ {x | P x}) ⊆ f (lfp f).

By Tarski, lfp f = f (lfp f). Hence

f (lfp f ∩ {x | P x}) ⊆ lfp f .

By hypothesis, f (lfp f ∩ {x | P x}) ⊆
{x | P x}, and so we must adjust picture:

f (lfp f ∩ {x | P x}) ⊆ lfp f ∩ {x | P x}.

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.
...............
...

................
.

.................
..................
.................
.................
.................
..................
.

..................
.................

.................
.................

..................
..

................
.

...............
...

.

.............
.............
.............
............

............
..

.............

.......................................
............
............
.............
.............
.............

655lfp f ∩ {x | P x} ⊆ lfp f , so by monotonicity, f (lfp f ∩
{x | P x}) ⊆ f (lfp f).

656We have just seen f (lfp f ∩ {x | P x}) ⊆
lfp f ∩ {x | P x}.

By Claim 1

If f A ⊆ A then lfp f ⊆ A

(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆
lfp f ∩ {x | P x}.

657We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆
lfp f ∩ {x | P x}, and so lfp(f) = lfp f ∩ {x | P x} by the

antisymmetry of ⊆.

746

Circles denote lfp f and {x | P x}.
By monotonicity655,

f (lfp f ∩ {x | P x}) ⊆ f (lfp f).

By Tarski, lfp f = f (lfp f). Hence

f (lfp f ∩ {x | P x}) ⊆ lfp f .

By hypothesis, f (lfp f ∩ {x | P x}) ⊆
{x | P x}, and so we must adjust picture:

f (lfp f ∩ {x | P x}) ⊆ lfp f ∩ {x | P x}.
By Claim 1656, lfp f ⊆ lfp f ∩ {x | P x}
and so657 lfp f = lfp f ∩ {x | P x}.

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.
...............
...

................
.

.................
..................
.................
.................
.................
..................
.

..................
.................

.................
.................

..................
..

................
.

...............
...

.

.............
.............
.............
............

............
..

.............

.......................................
............
............
.............
.............
..............

...............
..

................
.

................
.................
.................
................
.................
.................
.

.................
.................

................
.................

.................
..

................
.

...............
..

655lfp f ∩ {x | P x} ⊆ lfp f , so by monotonicity, f (lfp f ∩
{x | P x}) ⊆ f (lfp f).

656We have just seen f (lfp f ∩ {x | P x}) ⊆
lfp f ∩ {x | P x}.

By Claim 1

If f A ⊆ A then lfp f ⊆ A

(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆
lfp f ∩ {x | P x}.

657We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆
lfp f ∩ {x | P x}, and so lfp(f) = lfp f ∩ {x | P x} by the

antisymmetry of ⊆.

746

Circles denote lfp f and {x | P x}.
By monotonicity655,

f (lfp f ∩ {x | P x}) ⊆ f (lfp f).

By Tarski, lfp f = f (lfp f). Hence

f (lfp f ∩ {x | P x}) ⊆ lfp f .

By hypothesis, f (lfp f ∩ {x | P x}) ⊆
{x | P x}, and so we must adjust picture:

f (lfp f ∩ {x | P x}) ⊆ lfp f ∩ {x | P x}.
By Claim 1656, lfp f ⊆ lfp f ∩ {x | P x}
and so657 lfp f = lfp f ∩ {x | P x}.
Conclusion: lfp f ⊆ {x | P x}.

.

....................

.....................

.....................

.....................

....................

...................
...................

....................
.....................

...
..................
.

................
...

...............
.....

...............
......

..............
.......

..............
.......

.............

.......

.............

.......

..............
.......

..............
.......

...............
......

...............
.....

................
...

..................
.

....................
.....................
....................
...................
...................

....................

.....................

.....................

.....................

....................

.
...............
...

................
.

.................
..................
.................
.................
.................
..................
.

..................
.................

.................
.................

..................
..

................
.

...............
...

.

.............
.............
.............
............

............
..

.............

.......................................
............
............
.............
.............
..............

...............
..

................
.

................
.................
.................
................
.................
.................
.

.................
.................

................
.................

.................
..

................
.

...............
..

655lfp f ∩ {x | P x} ⊆ lfp f , so by monotonicity, f (lfp f ∩
{x | P x}) ⊆ f (lfp f).

656We have just seen f (lfp f ∩ {x | P x}) ⊆
lfp f ∩ {x | P x}.

By Claim 1

If f A ⊆ A then lfp f ⊆ A

(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆
lfp f ∩ {x | P x}.

657We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆
lfp f ∩ {x | P x}, and so lfp(f) = lfp f ∩ {x | P x} by the

antisymmetry of ⊆.

746

Approximating Fixpoints

Looking ahead: Suppose we have the set N of natural num-

bers (the type is formally introduced later). The theorem

approx

(∀S. f (
⋃

S) =
⋃

(f ‘ S)) =⇒
⋃
n∈N

(fn{})) = lfp f

shows a way of approximating lfp, which is important for

algorithmic solutions658 (e.g. in program analysis).

There will be an exercise on this.
658The theorem

(∀S. f (
⋃

S) =
⋃

(f ‘ S)) =⇒
⋃
n∈N

(fn{})) = lfp f

says that under a certain condition, lfp f can be computed

by applying f to the empty set over and over again:

• although the expression uses the union over all natural

numbers, which is an infinite set, this can sometimes ef-

fectively be computed. Under certain conditions, there

exists a k such that f k {} = f k+1{}.

• Even if
⋃
n ∈ N.fn {} cannot be effectively computed,

it can still be approximated: for any k, we know that⋃
i ≤ k.f i {} ⊆

⋃
n ∈ N.fn {}.

747

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S?

748

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S?

It has the form: S is the smallest set such that:

• ∅ ⊆ S (just mentioned for emphasis);

• if S ′ ⊆ S then F (S ′) ⊆ S (for some appropriate F).

748

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S?

It has the form: S is the smallest set such that:

• ∅ ⊆ S (just mentioned for emphasis);

• if S ′ ⊆ S then F (S ′) ⊆ S (for some appropriate F).

At the same time, S is the smallest solution of the recursive

equation S = F (S).

Induction and recursion are two faces of the same coin.

748

Lfp.thy for Inductive Definitions

Least fixpoints are for building inductive definitions of sets in

a definitional way659: S := lfp F .

This is obviously well-defined, so why this fuss about mono-

tonicity and Tarski?

659Recall why we were interested in fixpoints.

The problem with Y is that it leads to inconsistency (and

of course, the definition of Y is not a constant defini-

tion/conservative extension.).

The definition of lfp is conservative.

And in appropriate situations, it can be used to define re-

cursive functions.

Compared to Y , the type of lfp is restricted.

This restriction means that there is no obvious way to use

lfp for defining recursive numeric functions such as fac.

749

Lfp.thy for Inductive Definitions

Least fixpoints are for building inductive definitions of sets in

a definitional way659: S := lfp F .

This is obviously well-defined, so why this fuss about mono-

tonicity and Tarski?

Tarski allows us to exploit the equation lfp f = f (lfp f)

in proofs about S! That’s what lfp is all about.
659Recall why we were interested in fixpoints.

The problem with Y is that it leads to inconsistency (and

of course, the definition of Y is not a constant defini-

tion/conservative extension.).

The definition of lfp is conservative.

And in appropriate situations, it can be used to define re-

cursive functions.

Compared to Y , the type of lfp is restricted.

This restriction means that there is no obvious way to use

lfp for defining recursive numeric functions such as fac.

749

Example (from Motivation)

The set of all finite subsets of a set A:

Fin A = lfp F

where F = λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X).

660This proof is of course done in Isabelle.
661This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

662Above, we defined the set of finite subsets of a set A. Al-

ternatively, one could define “the set of all finite sets whose

elements have type τ”. In this case, no fixed set A is in-

volved, and it is closer to what actually happens in Isabelle.

In Finite Set.thy a constant Finites is defined. It has

polymorphic type α set set . We have A ∈ Finites if and

only if A is a finite set. However, it would be wrong to think

of Finites as one single set that contains all finite sets. In-

stead, for each τ , there is a polymorphic instance of Finites

of type τ set set containing all finite sets of element type τ .

In Finite Set.thy we find the lines

750

http://isabelle.in.tum.de/library/

Example (from Motivation)

The set of all finite subsets of a set A:

Fin A = lfp F

where F = λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X).

Thus we can do using lfp what we would have wanted to

do using Y .

To show: F is monotone660!

In the Isabelle library661, this is done a bit differently662.

There will be an exercise on this.
660This proof is of course done in Isabelle.
661This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

662Above, we defined the set of finite subsets of a set A. Al-

ternatively, one could define “the set of all finite sets whose

elements have type τ”. In this case, no fixed set A is in-

volved, and it is closer to what actually happens in Isabelle.

In Finite Set.thy a constant Finites is defined. It has

polymorphic type α set set . We have A ∈ Finites if and

only if A is a finite set. However, it would be wrong to think

of Finites as one single set that contains all finite sets. In-

stead, for each τ , there is a polymorphic instance of Finites

of type τ set set containing all finite sets of element type τ .

In Finite Set.thy we find the lines

750

http://isabelle.in.tum.de/library/

42.4 The Package for Inductive Sets

Since monotonicity proofs can be automated, Isabelle has spe-

cial proof support for inductive definitions. Example:

consts Fin :: ’a set => ’a set set

inductive "Fin(A)"

intrs

emptyI "{} : Fin(A)"

insertI "[| a: A; b: Fin(A) |] ==>

insert a b : Fin(A)"

Translated into expression using lfp.

inductive "Finites"

intros

emptyI [simp, intro!]: "{} : Finites"

insertI [simp, intro!]: "A : Finites ==>

insert a A : Finites"

The Isabelle mechanism of interpreting the keyword

inductive translates this into the following definition:

Finites = lfp G where

G ≡ λS. {x | x = {} ∨ (∃A a. x = insert a A ∧ A ∈ S)}
You can see this by typing in your proof script:

open Finites;

defs;

Talking (ML-)technically, Finites is a structure (module),

and defs is a value (component) of this structure.

751

As a sanity-check, consider the type of this expression. The

expression insert aA forces A to be of type τ set for some

τ and a to be of type τ . Next, insert aA is of type τ set ,

and hence x is also of type τ set . Moreover, the expression

A ∈ S forces S to be of type τ set set . The expression

{x | x = {} ∨ (∃Aa. x = insert aA ∧ A ∈ S)} is of type

τ set set . Next, G is of type τ set set → τ set set , and so

finally, Finites is of type τ set set . But actually, since τ is

arbitrary, we can replace it by a type variable α.

Note that there is a convenient syntactic translation

translations "finite A" == "A : Finites"

When does Isabelle generate ML-structures, and what are

the names of those structures?

This question is highly Isabelle-technical, related to different

formats used for writing theory files, which is in turn partly

due to mere historic reasons.

It used to be the case that for a theory file called F .thy,

752

a structure F would be generated. Certain keywords in

F .thy such as inductive, recursive, and datatype,

would trigger the creation of substructures, so for example

inductive I would call for the creation of a substructure I .

For a newer format of theory files, this is no longer the case.

The treatment of the keyword constdefs, followed by the

declaration and definition of a constant C, also depends on

the format used for writing theory files.

• Sometimes (when an older format is used), it will au-

tomatically generate a thm called C def which is the

definition of C.

• Sometimes (when a newer format is used), it will insert

the definition of C into a database which can be accessed

by a function called thm taking a string as argument. In

this case, not C def would be the definition of C, but

rather

thm ”C def”

753

Package relies on proven lemma663 lfp unfold.

You should be aware of such problems, but we do not treat

them in this course.
663If you look around in the ML-files of the Isabelle/HOL li-

brary, you might not find any uses of lfp unfold, so you

may wonder: why is it important then? But you must bear

in mind that the package for inductive sets relies on these

lemmas.

This is a general insight about proven results in the library:

Even though you might not find them being used in other

ML-files, special packages of Isabelle/HOL might use those

results.

754

Technical Support for Inductive Definitions

Support important in practice since many constructions are

based on inductively defined sets (datatypes, . . .). Support

provided for:

• Automatic proof of monotonicity

• Automatic proof of induction rule, for example664:

Jxa ∈ Fin A;P {};
∧
a b.Ja ∈ A; b ∈ Fin A;P bK =⇒

P (insert a b)K =⇒ P xa

664The theorem
Jxa ∈ Fin A;P {};

∧
ab.Ja ∈ A; b ∈ Fin A;P bK =⇒ P (insert a b)K

=⇒ P xa

is an instance of the general induction scheme. That is to say,

if we take the general induction scheme lfp induct

Ja ∈ lfp f ;mono f ;
∧

x.x ∈ f (lfp f∩{x.P x}) =⇒ P xK =⇒ P a

and instantiate f to λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X)

then some massaging using the definitions will give us the first

theorem.

Note here that monotonicity has disappeared from the as-

sumptions. This is because the monotonicity of F is shown

by Isabelle once and for all. This is one aspect of what we

mean by special proof support for inductive definitions.

The least fixpoint of the functional is Fin A (the set of

finite subsets of A) in this case.

755

This works also for mutually recursive665 definitions, co-inductive666

definitions, . . .

665Two functions f and g are mutually recursive if f is defined

in terms of g and vice versa.
666Co-induction is a construction analogous to induction but

using greatest fixpoints.

756

42.5 Summary on Least Fixpoints

We are interested in recursion because inductively defined sets

and recursively defined functions are solutions to recursive

equations.

We cannot have general fixpoint operator Y , but we have,

by conservative extension, least fixpoints for defining sets.

There is an induction scheme (lfp induction) for proving

theorems about an inductively defined set.

Restriction of F to set type (α set → α set) means that

least fixpoints are not generally suitable for defining functions

. . .

757

43 Well-Founded Recursion

758

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

759

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

759

Well-Founded Recursion

After least fixpoints, well-founded recursion is our second con-

cept of recursion (and fixpoint combinator).

Idea: Modeling “terminating” recursive functions, i.e. re-

cursive definitions that use “smaller” arguments for the recur-

sive call.

43.1 Prerequisite: Relations

We need some standard operations on binary relations (sets

of pairs), such as converse, composition, image of a set and

a relation, the identity relation, . . .

These are provided by Relation.thy667.
667 This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

760

http://isabelle.in.tum.de/library/

Relation.thy (Fragment)

constdefs

converse :: "(’a * ’b) set => (’b * ’a) set"

"r^-1 == {(y, x). (x, y):r}"

rel_comp :: "[(’b * ’c) set, (’a * ’b) set] =>

(’a * ’c) set"

"r O s == {(x,z). EX y. (x, y):s & (y, z):r}"

Image :: "[(’a * ’b) set, ’a set] => ’b set"

"r ‘‘ s == {y. EX x:s. (x,y):r}"

Id :: "(’a * ’a) set"

"Id == {p. EX x. p = (x,x)}"

Somewhat similar to Fun.thy.

761

43.2 Prerequisite: Closures

We need the transitive, as well as the reflexive transitive clo-

sure of a relation.

These are provided by Transitive Closure.thy668.

How would you define those inductively, ad-hoc?669

668 This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

669r∗ is the smallest set such that:

• Id ⊆ r∗;

• if r′ ⊆ r∗ then r′ ∪ r ◦ r′ ⊆ r′.

Or, in line with the schema for inductive definitions:

• ∅ ⊆ r∗;

• if r′ ⊆ r∗ then (λs.Id ∪ (r ◦ s))r′ ⊆ r∗.

The latter form corresponds to the definition in

Transitive Closure.thy.

The definition of r+ is similar.

762

http://isabelle.in.tum.de/library/

Transitive Closure.thy (Fragment)

consts

rtrancl :: "(’a * ’a) set => (’a * ’a) set"

("(_^*)" [1000] 999)

inductive "r^*"

intros

rtrancl_refl [...]: "(a, a) : r^*"

rtrancl_into_rtrancl [...]: "(a, b) : r^* ==>

(b, c) : r ==> (a, c) : r^*"

763

Transitive Closure.thy (Fragment Cont.)

consts

trancl :: "(’a * ’a) set => (’a * ’a) set"

("(_^+)" [1000] 999)

inductive "r^+"

intros

r_into_trancl [...]: "(a, b) : r ==>

(a, b) : r^+"

trancl_into_trancl [...]: "(a, b) : r^+ ==>

(b, c) : r ==> (a,c) : r^+"

764

43.3 Well-Founded Orderings

Defined in Wellfounded Recursion.thy670.

Wellfounded_Recursion = Transitive_Closure +

constdefs

wf :: "(’a * ’a) set => bool"

"wf(r) ==

(!P. (!x. (!y. (y,x):r --> P(y)) --> P(x))

--> (!x. P(x)))"

What does this mean?

http://isabelle.in.tum.de/library/

43.3 Well-Founded Orderings

Defined in Wellfounded Recursion.thy670.

Wellfounded_Recursion = Transitive_Closure +

constdefs

wf :: "(’a * ’a) set => bool"

"wf(r) ==

(!P. (!x. (!y. (y,x):r --> P(y)) --> P(x))

--> (!x. P(x)))"

What does this mean? r is well-founded if well-founded

(Noetherian) induction based on r is a valid proof scheme671.
670This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

In older versions the file used to be called WF.thy.
671For a moment, forget everything you have ever heard about

proofs using induction! The definition of wf has the form

wf (r) ≡ ∀P.φ(r, P)→ ∀x.P (x)

That is, it says: a relation r is well-founded if a certain scheme

φ can be used to show a property P that holds for all x.

By the fact that this is a constant definition (conservative

extension), it is immediately clear that this gives us a correct

method of proving ∀x.P (x). To prove ∀x.P (x) for some

given P , find some r such that ∀P.φ(r, P)→ ∀x.P (x) holds,

and show φ(r, P).

Once again, this method is correct regardless of what φ is.

Forget about induction!

765

http://isabelle.in.tum.de/library/

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

wf (r) ≡ (∀P.(∀x.(∀y.(y, x) ∈ r → P (y))→ P (x))→ (∀x.P (x)))

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ (∀P.(∀x.(∀y.(y, x) ∈ ∅ → P (y))→ P (x))→ (∀x.P (x)))

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ (∀P.(∀x.(∀y.False → P (y))→ P (x))→ (∀x.P (x)))

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ (∀P.(∀x.(∀y.True)→ P (x))→ (∀x.P (x)))

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ (∀P.(∀x. True → P (x))→ (∀x.P (x)))

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ (∀P.(∀x. P (x))→ (∀x.P (x)))

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ (∀P.True)

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ True

So the empty set is well-founded.

673Let us check (in an intuitive way) whether < on the inte-

766

Example: Is ∅ well-founded672? < on the integers673?

But how is that possible? How is it ensured that only true

statements can be proven, if the method is correct for any old

φ?

The point is this: The method is correct in principle, but it

will typically not work unless φ is something sensible, e.g. an

induction scheme as in the actual definition of wf . It will not

work simply because we will fail to show either ∀P.φ(r, P)→
∀x.P (x) or φ(r, P).

672The definition of wf is:

Let’s instantiate r to ∅.
wf (∅) ≡ (∀x. P (x))→ (∀x.P (x))

So the empty set is well-founded.

Let’s go back 2 steps. Note that the well-foundedness of

∅ is useless for proving any P , because the induction step

degenerates to the proof obligation ∀x.P (x).

673Let us check (in an intuitive way) whether < on the inte-

766

Intuition of Well-Foundedness

Intuition of wf : All descending chains are finite.

gers is well-founded. So we must check whether

(∀P.(∀x.(∀y.y < x→ P (y))→ P (x))→ (∀x.P (x)))

holds. Instantiating P to λx.False we obtain

(∀x.(∀y.y < x→ False)→ False)→ (False)

Now since for every x there exists a y with y < x, it follows

that (∀y.y < x → False) is equivalent to False and hence

we obtain

(∀x.False → False)→ (False)

and thus

False

Thus, assuming that < on the integers is well-founded, we

derived a contradiction. You might think of (∀y.y < x →
False) as being a conjunction containing infinitely many

Falses, and such a non-empty conjunction is False.

767

But: Cannot express infinity; must look for alternatives674.

• Not symmetric:

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• - •

6

•

?

•�

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles:

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

•
•
•
•
•
•
•
•
•
•

?

?

?

?

?

?

?

?

?

...

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

• r has minimal element:

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?

Note: Trivial for r = ∅.

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?

Note: Trivial for r = ∅. •
•
•
•
•
•

?

?

?

?

?

	 R

•
•
•
•

?

?

?
•

...

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?

Note: Trivial for r = ∅.

• Any subrelation must have minimal element:

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?

Note: Trivial for r = ∅.

• Any subrelation must have minimal element:

∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p?

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

But: Cannot express infinity; must look for alternatives674.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?

Note: Trivial for r = ∅.

• Any subrelation must have minimal element:

∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p? “Minimal

element” badly formalized675 (already in pre-

vious point).

•
•
•
•
•
•

?

?

?

?

?

	

•
•
•
•

?

?

?
•

...

What is different when we assume < on the natural num-

bers? The difference is that it is not the case that for all x,

we have that (∀y.y < x → False) is equivalent to False.

Namely, for x = 0, we have (∀y.y < 0 → False) is equiv-

alent to True because y < 0 is always False. Compared to

the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded

recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P (0).
674We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either

too weak or too strong, using an example. Finally, we will

give the correct condition.
675In this attempt, we formalized the “minimal element in p”

as an x such that there is no y with (x, y) ∈ p. But this is

a bad formalization since an isolated element, i.e., one that

is completely unrelated to p, or even to r, would meet the

768

A Characterization

All these attempts are just necessary but not sufficient condi-

tions for well-foundedness.

The following theorem wf eq minimal gives a characterization

of well-foundedness676.:

wf r = (∀Q . x ∈ Q→ (∃z ∈ Q.∀y.(y, z) ∈ r → y /∈ Q))

Proof uses split =677, wf def, rest routine.

Ergo: Definition of wf meets textbook definitions “every

non-empty set Q has a minimal element in r”.

definition.

In fact, this problem was already present for the previous

attempt where we just required ∃x.∀y.(y, x) /∈ r (i.e., r has

a minimal element).
676The final condition

(∀Q . x ∈ Q→ (∃z ∈ Q.∀y.(y, z) ∈ r → y /∈ Q))

expresses the absence of infinite descending chains without

explicitly using the concept of infinity.

It is a characterization of well-foundedness. One could say

that the above formula expresses what well-foundedness is,

while the “official” definition is somewhat indirect since it

defines well-foundedness by what one can do with it.
677By this we simply mean to split a proof of φ = ψ into two

proofs φ =⇒ ψ and ψ =⇒ φ.

769

Alternative Characterization

Here is an alternative characterization (exercise):

(∀r.r 6= {} ∧ r ⊆ p→ (∃x ∈ Domain r.∀y.(y, x) /∈ r))

770

Alternative Characterization

Here is an alternative characterization (exercise):

(∀r.r 6= {} ∧ r ⊆ p→ (∃x ∈ Domain r.∀y.(y, x) /∈ r))

Let’s see some theorems to confirm our intuition, including

the characterization attempts just seen.

770

A Theorem678 on the Empty Set

wf empty wf {}
Proof sketch: wf empty: substitute r into definition, simplify.

678The theorems we present here are proven in

Wellfounded Recursion.ML.

This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

but in older versions the file used to be called WF.ML

771

http://isabelle.in.tum.de/library/

A Theorem for Induction

By massage679 of the definition of well-foundedness

∀P.(∀x.(∀y.(y, x) ∈ r → P y)→ P x)→ (∀x.P x)

one obtains the theorem wf induct

Jwf r;
∧

x.∀y.(y, x) ∈ r → P y =⇒ P xK =⇒ P a.

This is a form suitable for doing induction proofs in Isabelle.
679As far as the induction principle is concerned, induct wf

states the same as the very definition of wf. All that

happens is that some explicit universal object-level quanti-

fiers are removed and the according variables are (implicitly)

universally quantified on the meta-level, and some shifting

from object-level implications to meta-level implications us-

ing mp. This is why we dare say “logical massage”. See

Wellfounded Recursion.ML.

772

Induction Theorem as Proof Rule

The Isabelle theorem wf induct

Jwf r;
∧

x.∀y.(y, x) ∈ r → P y =⇒ P xK =⇒ P a.

as proof rule:

wf r

[∀y.(y, x) ∈ r → P y]
....
P x

P a
wf induct

773

A Theorem on Antisymmetry

wf not sym Jwf r; (a, x) ∈ rK =⇒ (x, a) /∈ r
Proof sketch:

wf r

[∀y.(y, x) ∈ r → (∀z.(y, z) ∈ r → (z, y) /∈ r)]
....

∀z.(x, z) ∈ r → (z, x) /∈ r
∀z.(a, z) ∈ r → (z, a) /∈ r

wf induct

The induction part needs classical reasoning.

We will first give an intuitive proof.

774

The Induction Part Intuitively

Notation: Write a < b instead of (a, b) ∈ r.

775

The Induction Part Intuitively

Notation: Write a < b instead of (a, b) ∈ r.

Hypothesis: for every y < x have ∀z . y < z → z 6< y.

To show: It holds that ∀z. x < z → z 6< x.

775

The Induction Part Intuitively

Notation: Write a < b instead of (a, b) ∈ r.

Hypothesis: for every y < x have ∀w. y < w → w 6< y.

To show: It holds that ∀z. x < z → z 6< x. Renaming.

775

The Induction Part Intuitively

Notation: Write a < b instead of (a, b) ∈ r.

Hypothesis: for every y < x have ∀w. y < w → w 6< y.

To show: It holds that ∀z. x < z → z 6< x. Renaming.

We make a case distinction on z.

Case 1: z 6< x. Then trivially x < z → z 6< x.

775

The Induction Part Intuitively

Notation: Write a < b instead of (a, b) ∈ r.

Hypothesis: for every y < x have ∀w. y < w → w 6< y.

To show: It holds that ∀z. x < z → z 6< x. Renaming.

We make a case distinction on z.

Case 1: z 6< x. Then trivially x < z → z 6< x.

Case 2: z < x. Then setting y := z and w := x in the

hypothesis, we get z < x → x 6< z, which is equivalent to

x < z → z 6< x.

In both cases x < z → z 6< x holds, and thus ∀z. x <
z → z 6< x.

775

The Induction Part Formally

We will now give the induction part at a level of detail that

shows the essential reasoning but hides all the swapping in-

volved in the Isabelle proof.

A variation will be done as exercise.

776

The Induction Part in More Detail

∀y.(y, x) ∈ r → (∀z.(y, z) ∈ r → (z, y) /∈ r)
(w, x) ∈ r → (∀z.(w, z) ∈ r → (z, w) /∈ r) ∀-E

(w, x) /∈ r ∨ (∀z.(w, z) ∈ r → (z, w) /∈ r) ≡ φ
(c)680

“(c)” stands for classical reasoning steps.

φ

[(w, x) /∈ r]1

(x,w) ∈ r → (w, x) /∈ r impI2

[∀z.(w, z) ∈ r → (z, w) /∈ r]1

∀z.(z, w) ∈ r → (w, z) /∈ r
(c)681

(x,w) ∈ r → (w, x) /∈ r ∀-E

(x,w) ∈ r → (w, x) /∈ r disjE1

∀z.(x, z) ∈ r → (z, x) /∈ r ∀-I

777

Theorems on Absence of Cycles

wf not refl wf r =⇒ (a, a) /∈ r
wf trancl wf r =⇒ wf (r+)

wf acyclic wf r =⇒ acyclic r
(acyclic r ≡ ∀x.(x, x) /∈ r+)

Proof sketch:

wf not refl: Corollary of wf not sym.

wf trancl: Uses induction.

wf acyclic: Apply wf not refl and wf trancl

Ergo: Definition of wf really meets our intuition of “no

cycles”.

778

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

φ wf minimal

This is what we must construct.

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)

∀w.(w, v)
∈ r+ → φ

φ

φ wf induct

Note “special case”: w and v do not occur in φ!

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

(w, v) ∈ r+

∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

∀w.(w, v)
∈ r+ → φ

φ

φ wf induct

This is wf trancl.

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

(w, v) ∈ r+

∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ φ

¬φ
¬φ ∀w.(w, v)

∈ r+ → φ

φ

φ disjE

φ wf induct

We now try a proof by case distinction on φ.

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

∃w.(w, v) ∈ r+

(w, v) ∈ r+

∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

φ

¬φ
¬φ ∀w.(w, v)

∈ r+ → φ

φ

φ disjE

φ wf induct

Classical reasoning.

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

∃w.(w, v) ∈ r+

[(w, v) ∈ r+]4
∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

φ
existsE4

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

φ

¬φ
∀x.∃y.(y, x) ∈ r+

. . .

¬φ ∀w.(w, v)
∈ r+ → φ

φ

φ disjE

φ wf induct

Using some elementary equivalences683.

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

¬φ
∃w.(w, v) ∈ r+

[(w, v) ∈ r+]4
∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

φ
existsE4

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

φ

¬φ
∀x.∃y.(y, x) ∈ r+

. . .

¬φ ∀w.(w, v)
∈ r+ → φ

¬∃w.(w, v) ∈ r+ •682

φ

φ disjE

φ wf induct

This subproof works for any φ. Think semantically or check

(5 rule applications)!

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

¬φ
∃w.(w, v) ∈ r+

[(w, v) ∈ r+]4
∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

φ
existsE4

False
notE

779

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

φ

¬φ
∀x.∃y.(y, x) ∈ r+

. . .

¬φ ∀w.(w, v)
∈ r+ → φ

¬∃w.(w, v) ∈ r+ •682

False
. . .

φ
FalseE

φ disjE

φ wf induct

It is routine to derive False.

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

¬φ
[∃w.(w, v) ∈ r+]3

[(w, v) ∈ r+]4
∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

φ
existsE4

False
notE

¬∃w.(w, v) ∈ r+ notI3

779

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

[φ]2

[¬φ]2

∀x.∃y.(y, x) ∈ r+
. . .

[¬φ]2
∀w.(w, v)
∈ r+ → φ

¬∃w.(w, v) ∈ r+ •682

False
. . .

φ
FalseE

φ disjE
2

φ wf induct

This completes the proof by case distinction . . .

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

¬φ
∃w.(w, v) ∈ r+

(w, v) ∈ r+

779

Another Theorem (“Exists Minimal Element”)

wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

[φ]2

[¬φ]2

∀x.∃y.(y, x) ∈ r+
. . .

[¬φ]2 [
∀w.(w, v)
∈ r+ → φ

]1

¬∃w.(w, v) ∈ r+ •682

False
. . .

φ
FalseE

φ disjE
2

φ wf induct
1

. . . and the proof by induction.

682In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold

no matter what φ is (unlike the entire proof)

In detail, the sub-proof looks as follows:

¬φ
∃w.(w, v) ∈ r+

(w, v) ∈ r+

779

Remarks on the Proof

We used an instance of wf induct, where we instantiated

x by v, y by w, and P by λw.(∃x.∀y.(y, x) /∈ r+). I.e., φ

does not contain the “induction variables” w and v.

Still this is a “proper” induction proof: Although φ does

not contain the “induction variables”, the proof does depend

on the actual form of φ! (Try doing it without induction . . .)

Scoping of quantifiers (e.g., in general (∀w.(w, v) ∈ r+ →
φ) 6≡ (∀w.(w, v) ∈ r+) → φ) and side conditions are very

subtle in this proof. Underlines the importance of machine-

checked proofs.

780

Remarks on wf minimal

Ergo: Definition of wf fulfills the condition cor-

responding to our first attempt of characterizing

well-foundedness using minimal elements.

However, this formalization had a problem: there

could be local minima, and

•
•
•
•
•
•

?

?

?

?

?

	 R

•
•
•
•

?

?

?
•

...

781

Remarks on wf minimal

Ergo: Definition of wf fulfills the condition cor-

responding to our first attempt of characterizing

well-foundedness using minimal elements.

However, this formalization had a problem: there

could be local minima, and isolated points are

also always minima. In particular, if r is empty,

then any element is trivially a minimum.

•
•
•
•
•
•

?

?

?

?

?

	

•
•
•
•

?

?

?
•

...

781

A Theorem on Subsets

wf subset Jwf r; p ⊆ rK =⇒ wf p

Proof sketch: wf subset: simplification tactic using wf eq minimal.

782

A Theorem on Subrelations

wf subrel

wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p+

Proof sketch:

Combine wf minimal and wf subset.

This implies wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(x, y) /∈ p.

Ergo: Definition of wf fulfills the condition corresponding

to our second attempt of characterizing well-foundedness us-

ing minimal elements.

783

A Theorem on Subrelations

wf subrel

wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p+

Proof sketch:

Combine wf minimal and wf subset.

This implies wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(x, y) /∈ p.

Ergo: Definition of wf fulfills the condition corresponding

to our second attempt of characterizing well-foundedness us-

ing minimal elements.

However, this formalization still had a problem: The mini-

mum could be an isolated element, unrelated to the subrela-

tion.

783

43.4 Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive

equation f = e, e.g.

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Define F = λf.e, e.g.

Fac = (λfac. λn. if n = 0 then 1 else n ∗ fac(n− 1))

43.4 Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive

equation f = e, e.g.

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Define F = λf.e, e.g. (α-conversion of what you have seen)

Fac = (λf . λn. if n = 0 then 1 else n ∗ f (n− 1))

We say: F is the functional defining f .

Recall that Y F would solve f = e, but we don’t have Y ,

so what can we do?

784

Coherent Functionals

A functional F is coherent w.r.t. < if all recursive calls are

with arguments “smaller” than the original argument. This

means that if F has the form

λf.λn.e′

then for any (f m) occurring in e′, we have m < n.

Here < could be any relation (although the idea is that it

should be a well-founded ordering).

(Simplification, assumes that recursion is on the first argu-

ment of f .)

785

Using Bad f ’s

Let f |<a be a function that is like f on all values < a, and

arbitrary elsewhere. f |<a is an approximation, a “bad” f .

If F is coherent, then we would expect that for any a,

f a = (F f) a = (F f |<a) a. (7)

It’s not that we are ultimately interested in constructing

such a “bad” f , but our formalization of well-founded recur-

sion defines coherence by the fact that one could use such a

“bad” f , i.e., via (7).

786

“Bad” f ’s: Example

Consider fac. On the right-hand side, we show one possibil-

ity684 for fac|<4):

- -

6 6

•••

•

•

fac

•••

•

fac|<4

••••••••••••••••••••

684For the construction we have in mind, it would be fine

that f |<a be a function that is like f on all values < a, and

arbitrary elsewhere. E.g., fac|<4 could be

- -

6 6

•••

•

•

fac

•••

•

fac|<4

•

•

••

•

••

•

However, such a fac|<4 could not be in a model for HOL

(with the extensions we consider here). The way that arbi-

trary elements are formalized in HOL.thy, it turns out that

in any model and for each type, there must be one specific

domain element for the constant arbitrary (you don’t have

to understand why this is so). That is, in different models we

could have different ones, but within each model the element

must be a specific one. Since the value of fac|<4 is “arbi-

787

cut (in Wellfounded Recursion.thy)

constdefs

cut :: "(’a => ’b) => (’a * ’a) set =>

’a => ’a => ’b"

"cut f r x ==

(%y. if (y,x):r then f y else arbitrary)"

cut f r x is what we denoted by f |<x (taking < for r).

arbitrary is defined in HOL.thy.

trary” for all arguments ≥ 4, this means that in each model,

this value must be the same for all arguments ≥ 4, ruling out

the function above.

Of course, these are considerations taking place only in our

heads. In the actual deduction machinery, one never con-

structs these “arbitrary” terms.

788

cut (in Wellfounded Recursion.thy)

constdefs

cut :: "(’a => ’b) => (’a * ’a) set =>

’a => ’a => ’b"

"cut f r x ==

(%y. if (y,x):r then f y else arbitrary)"

cut f r x is what we denoted by f |<x (taking < for r).

arbitrary is defined in HOL.thy.

The function cut f r x is unspecified for arguments y

where (y, x) /∈ r, but for each such argument, (cut f r x) y

must be the same (in any particular model).

trary” for all arguments ≥ 4, this means that in each model,

this value must be the same for all arguments ≥ 4, ruling out

the function above.

Of course, these are considerations taking place only in our

heads. In the actual deduction machinery, one never con-

structs these “arbitrary” terms.

788

Theorems Involving cut

cuts eq
(cut f r x = cut g r x) =

(∀y.(y, x) ∈ r → f y = g y)

cut apply (x, a) ∈ r =⇒ cut f r a x = f x

Or, using the more intuitive notation:

cuts eq (f |<x = g|<x) = (∀y.y < x→ f y = g y)

cut apply x < a =⇒ f |<a x = f x

789

wfrec rel (in Wellfounded Recursion.thy)

Auxiliary construction: “approximate” f by a relation wfrec rel RF .

wfrec_rel :: "(’a * ’a) set =>

((’a => ’b) => ’a => ’b) => (’a * ’b) set"

inductive "wfrec_rel R F"

intrs

wfrecI

"ALL z. (z, x) : R -->

(z, g z) : wfrec_rel R F

==> (x, F g x) : wfrec_rel R F"

790

wfrec rel Explained

∀z.(z, x) ∈ R→ (z, g z) ∈ wfrec rel RF =⇒
(x, F g x) ∈ wfrec rel RF

• For R and F arbitrary, wfrec rel RF is defined but we

wouldn’t want to know what it is.

• But if R is well-founded and F is coherent, wfrec rel RF

defines a recursive “function”685.

Show that (4, 24) ∈ (wfrec rel ‘< ’ Fac)!

Now let us really turn wfrec rel RF into a function . . .

685When we say that a binary relation r : τ × σ is in fact a

function, we mean that for t : τ , there is exactly one s : σ

such that (t, s) ∈ r.

791

wfrec (in Wellfounded Recursion.thy)

wfrec :: "(’a * ’a) set =>

((’a => ’b) => ’a => ’b) => ’a => ’b"

"wfrec R F == %x. THE y.

(x, y) : wfrec_rel R (%f x. F (cut f R x) x)"

THEx.P x686 picks the unique a such that P a holds, if it

exists. We don’t care what it does otherwise (see HOL.thy).

686The operator THE is similar to the Hilbert operator, but it

returns the unique element having a certain property rather

than an arbitrary one. The Isabelle formalization of HOL

nowadays heavily relies on THE rather than the Hilbert oper-

ator.

792

wfrec Explained

wfrec RF ≡
λx.THE y.(x, y) ∈ wfrec rel R (λfx.F (cut f Rx)x)

We don’t care what this means for arbitrary R and F .

But ifR is well-founded and F is coherent, then F (cut f Rx)x =

F f x (by (7)), and so λfx.F (cut f Rx)x = F , and so

λx.THE y.(x, y) ∈ wfrec rel R (λfx.F (cut f Rx)x) is the

function defined by wfrec rel RF in the obvious way.

wfrecRF is the recursive function defined by functional

F .

793

The “Fixpoint” Theorem

wfrec wf r =⇒ wfrec r H a = H(cut(wfrec r H) r a) a

Note that wfrec is used here both as a name of a constant

(defined above) and a theorem.

So if r is well-founded and H is coherent, we have (by (7))

wfrec r H a = H(wfrec r H) a

Theorem states that wfrec is like a fixpoint combinator

(disregarding the additional argument r).

Thus we can do using wfrec what we would have liked to

do using Y .

794

43.5 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for defin-

ing recursive functions. We illustrate this using nat, the type

of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional

to define a function.

43.5 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for defin-

ing recursive functions. We illustrate this using nat, the type

of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional

to define a function.

First, define predecessor relation:

constdefs

pred_nat :: "(nat * nat) set"

pred_nat_def "pred_nat == {(m,n). n = Suc m}"

795

Defining Addition and Subtraction

add :: [nat, nat] => nat (infixl 70)

"m add n == wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Recursive in first argument687.

subtract :: [nat, nat] => nat (infixl 70)

"m subtract n == wfrec (pred nat^+)

(%f j. if j=0 then m else pred (f (pred j))) n"

Recursive in second argument.
687

add :: [nat, nat] => nat (infixl 70)

"m add n == wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Here we suppose that we have a predecessor function pred.

The implementation in Isabelle is different, but conceptually,

the above is a definition of the add function.

Note that add is a function of type nat → nat → nat

(written infix), but it is only recursive in one argument, namely

the first one.

You may be confused about this and wonder: how do I know

that it is the first? Is this some Isabelle mechanism saying that

it is always the first? The answer is: no. You must look at

the two sides in isolation. On the right-hand side, we have

wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j)))

By the definitions (of wfrec most importantly), this expression

is a function of type nat → nat , namely the function that

796

Defining Division and Modulus

div :: [’a::div, ’a] => ’a (infixl 70)

"m div n == wfrec (pred_nat^+)

(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"

mod :: [’a::div, ’a] => ’a (infixl 70)

"m mod n == wfrec (pred_nat^+)

(%f j. if j<n | n=0 then j else f (j-n)) m"

Here, div is a syntactic class for which division is defined

(don’t worry about it). We know how to define −.

The functions are recursive in one argument (just like add).

adds n (which is not known looking at this expression alone;

it occurs on the left-hand side) to its argument. The function

is recursive in its argument (and hence not in n). Now, this

function is applied to m. Therefore we say that the final

function add is recursive in m but not in n.

Now look at subtraction:
subtract :: [nat, nat] => nat (infixl 70)

"m subtract n == wfrec (pred nat^+)

(%f j. if j=0 then m else pred (f (pred j))) n"

Note that subtract is recursive in its second argument, sim-

ply because the right-hand side of the defining equation was

constructed in a different way than for add.

Similar considerations apply for other binary functions de-

fined by recursion in one argument.

797

Theorems of the Example

wf pred nat wf pred nat

mod if
mmod n =

(if m < n then m else (m− n) mod n)

div if
0 < n =⇒ m div n =

(if m < n then 0 else Suc((m− n) div n))

798

Theorems of the Example

wf pred nat wf pred nat

mod if
mmod n =

(if m < n then m else (m− n) mod n)

div if
0 < n =⇒ m div n =

(if m < n then 0 else Suc((m− n) div n))

This is very similar to functional programming code and

hence lends itself to real computations (rewriting), as opposed

to only doing proofs.

798

43.6 Conclusion on Well-founded Recursion

Well-founded recursion allows us to define recursive functions

in HOL and thus reason about computations.

We can derive recursive theorems that can be used for

rewriting just like in a functional programming language.

799

Isabelle Package for Primitive Recursion

For primitive recursion688, finding a well-founded ordering is

simple enough for automation689!

688A function is primitive recursive if the recursion is based on

the immediate predecessor w.r.t. the well-founded order used

(e.g., the predecessor on the natural numbers, as opposed to

any arbitrary smaller numbers).

This is not the same concept as used in the context of com-

putation theory, where primitive recursive is in contrast to

µ-recursive [LP81].
689The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for

functions on the natural numbers, it will use the usual <

ordering.

800

Isabelle Package for Primitive Recursion

For primitive recursion688, finding a well-founded ordering is

simple enough for automation689!

Examples (use nat and case-syntax): . . .
688A function is primitive recursive if the recursion is based on

the immediate predecessor w.r.t. the well-founded order used

(e.g., the predecessor on the natural numbers, as opposed to

any arbitrary smaller numbers).

This is not the same concept as used in the context of com-

putation theory, where primitive recursive is in contrast to

µ-recursive [LP81].
689The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for

functions on the natural numbers, it will use the usual <

ordering.

800

Recursion and Arithmetic

primrec

add_0: "0 + n = n"

add_Suc: "Suc m + n = Suc (m + n)"

primrec

diff_0: "m - 0 = m"

diff_Suc: "m - Suc n =

(case m - n of 0 => 0 | Suc k => k)"

primrec

mult_0: "0 * n = 0"

mult_Suc: "Suc m * n = n + (m * n)"

801

43.7 Conclusion on Recursion and Induction

We are interested in recursion because inductively defined sets

and recursively defined functions are solutions to recursive

equations.

We cannot have general fixpoint operator Y , but we have,

by conservative extension:

• Least fixpoints for defining sets;

• well-founded orders for defining functions.

Both concepts come with induction schemes (lfp induction

and definition of well-foundedness) for proving properties of

the defined objects.

802

Summary: Proof Support

The methodological overhead can be faced by powerful me-

chanical support in Isabelle, since many proof-tasks are rou-

tine.

803

44 Arithmetic

804

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

805

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

805

Current Stage of our Course

• On the basis of conservative embeddings, set theory can

be built safely.

• Inductive sets can be defined using least fixpoints and

suitably supported by Isabelle.

• Well-founded orderings can be defined without referring

to infinity. Recursive functions can be based on these.

Needs inductive sets though. Support by Isabelle provided.

806

Current Stage of our Course

• On the basis of conservative embeddings, set theory can

be built safely.

• Inductive sets can be defined using least fixpoints and

suitably supported by Isabelle.

• Well-founded orderings can be defined without referring

to infinity. Recursive functions can be based on these.

Needs inductive sets though. Support by Isabelle provided.

Next important topic: arithmetic.

806

Which Approach to Take?

• Purely definitional?

690Our intuition/knowledge about arithmetics clearly requires

that there are infinite sets, e.g., the set of infinite numbers.

Technically, the HOL model of the set of natural numbers

must be an infinite set, otherwise we would not be willing to

say that have “modeled” arithmetic.
691The Peano axioms are

– 0 ∈ nat

– ∀x.x ∈ nat → Suc(x) ∈ nat

– ∀x.Suc(x) 6= 0

– ∀x y.Suc(x) = Suc(y)→ x = y

– ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).

However, there are various ways of phrasing the Peano axioms.

807

Which Approach to Take?

• Purely definitional?

Not possible with eight basic rules (cannot enforce infin-

ity690 of HOL model)!

690Our intuition/knowledge about arithmetics clearly requires

that there are infinite sets, e.g., the set of infinite numbers.

Technically, the HOL model of the set of natural numbers

must be an infinite set, otherwise we would not be willing to

say that have “modeled” arithmetic.
691The Peano axioms are

– 0 ∈ nat

– ∀x.x ∈ nat → Suc(x) ∈ nat

– ∀x.Suc(x) 6= 0

– ∀x y.Suc(x) = Suc(y)→ x = y

– ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).

However, there are various ways of phrasing the Peano axioms.

807

Which Approach to Take?

• Purely definitional?

Not possible with eight basic rules (cannot enforce infin-

ity690 of HOL model)!

• Heavily axiomatic? I.e., we state natural numbers by

Peano axioms691 and claim analogous axioms for any other

number type?

690Our intuition/knowledge about arithmetics clearly requires

that there are infinite sets, e.g., the set of infinite numbers.

Technically, the HOL model of the set of natural numbers

must be an infinite set, otherwise we would not be willing to

say that have “modeled” arithmetic.
691The Peano axioms are

– 0 ∈ nat

– ∀x.x ∈ nat → Suc(x) ∈ nat

– ∀x.Suc(x) 6= 0

– ∀x y.Suc(x) = Suc(y)→ x = y

– ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).

However, there are various ways of phrasing the Peano axioms.

807

Which Approach to Take?

• Purely definitional?

Not possible with eight basic rules (cannot enforce infin-

ity690 of HOL model)!

• Heavily axiomatic? I.e., we state natural numbers by

Peano axioms691 and claim analogous axioms for any other

number type?

Danger of inconsistency!

690Our intuition/knowledge about arithmetics clearly requires

that there are infinite sets, e.g., the set of infinite numbers.

Technically, the HOL model of the set of natural numbers

must be an infinite set, otherwise we would not be willing to

say that have “modeled” arithmetic.
691The Peano axioms are

– 0 ∈ nat

– ∀x.x ∈ nat → Suc(x) ∈ nat

– ∀x.Suc(x) 6= 0

– ∀x y.Suc(x) = Suc(y)→ x = y

– ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).

However, there are various ways of phrasing the Peano axioms.

807

Which Approach to Take?

• Purely definitional?

Not possible with eight basic rules (cannot enforce infin-

ity690 of HOL model)!

• Heavily axiomatic? I.e., we state natural numbers by

Peano axioms691 and claim analogous axioms for any other

number type?

Danger of inconsistency!

• Minimally axiomatic? We construct an infinite set, and

define numbers etc. as inductive subset?

690Our intuition/knowledge about arithmetics clearly requires

that there are infinite sets, e.g., the set of infinite numbers.

Technically, the HOL model of the set of natural numbers

must be an infinite set, otherwise we would not be willing to

say that have “modeled” arithmetic.
691The Peano axioms are

– 0 ∈ nat

– ∀x.x ∈ nat → Suc(x) ∈ nat

– ∀x.Suc(x) 6= 0

– ∀x y.Suc(x) = Suc(y)→ x = y

– ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).

However, there are various ways of phrasing the Peano axioms.

807

Which Approach to Take?

• Purely definitional?

Not possible with eight basic rules (cannot enforce infin-

ity690 of HOL model)!

• Heavily axiomatic? I.e., we state natural numbers by

Peano axioms691 and claim analogous axioms for any other

number type?

Danger of inconsistency!

• Minimally axiomatic? We construct an infinite set, and

define numbers etc. as inductive subset?

Yes. Finally use infinity axiom.

690Our intuition/knowledge about arithmetics clearly requires

that there are infinite sets, e.g., the set of infinite numbers.

Technically, the HOL model of the set of natural numbers

must be an infinite set, otherwise we would not be willing to

say that have “modeled” arithmetic.
691The Peano axioms are

– 0 ∈ nat

– ∀x.x ∈ nat → Suc(x) ∈ nat

– ∀x.Suc(x) 6= 0

– ∀x y.Suc(x) = Suc(y)→ x = y

– ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).

However, there are various ways of phrasing the Peano axioms.

807

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms.

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open,

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward692,

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward692, the new guest walks towards

the first room,

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward692, the new guest walks towards

the first room, they turn around,

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward692, the new guest walks towards

the first room, they turn around, enter their new rooms.

44.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward692, the new guest walks towards

the first room, they turn around, enter their new rooms. The

doors close, all guests are accomodated.

692This means, there must be a successor function on rooms.

To each room, it assigns the “next” room.

808

Axiom of Infinity

The axiomatic core693 of datatypes (and hence, numbers694):

∃f :: (ind→ ind). injective f ∧ ¬surjective f
infty

where

injective695 f = ∀xy. f x = f y → x = y

surjective f = ∀y.∃x. y = f x

Forces ind to be “infinite type” (called “I” in [Chu40]).

We will see soon how this is done in Isabelle.
693Note that theoretically, it is not needed to add the infinity

axiom (or some equivalent formulation) to HOL. Instead one

could add the infinity axiom as premise to each arithmetic

theorem that one wants to prove.

However this would not be a viable approach since the re-

sulting formulas would be very, very complicated.
694The natural numbers can be built as an algebraic datatype

by having a constant 0 and a term constructor Suc (for suc-

cessor).
695These constants (actually called inj and sur) are defined

in Fun.thy.

809

44.2 Type-Closed Conservative Extensions

Why must conservative extensions be type-closed [GM93, page

221]?

Consider H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f

44.2 Type-Closed Conservative Extensions

Why must conservative extensions be type-closed [GM93, page

221]?

Consider H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f

Then the type of H is bool , but H contains a subterm of

type α⇒ α (H is not type-closed).

Then we could reason as follows . . .

810

Type-Closed Conservative Extensions (2)

(H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f)

696We use inj and sur as abbreviations for injective and

surjective.

811

Type-Closed Conservative Extensions (2)

(H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f)

H = H holds by refl

⇒ ∃f :: bool ⇒ bool .inj 696 f ∧ ¬sur f =

∃f :: ind ⇒ ind .inj f ∧ ¬sur f

⇒ False = True

⇒ False
(unfolding H using two different type instantiations, and

then using axiom of infinity and the fact that there are only

finitely many functions on bool).

696We use inj and sur as abbreviations for injective and

surjective.

811

Types Affect the Semantics

Type instantiations may change semantic values, and hence

cause inconsistency!

This example was somewhat more concrete than our previ-

ous simpler example.

812

44.3 Natural Numbers: Nat.thy

consts

Zero_Rep :: ind

Suc_Rep :: "ind => ind"

axioms

inj_Suc_Rep: "inj Suc_Rep"

Suc_Rep_not_Zero_Rep: "Suc_Rep x ~= Zero_Rep"

So the axiom of infinity is formulated by defining a constant

Suc Rep having the two required properties.

inj is defined in Fun.thy.

Think of Zero Rep, Suc Rep as provisional 0, successor.

813

Defining the Set Nat

Want to define new type nat. How?

814

Defining the Set Nat

Want to define new type nat. How?

Must define a set isomorphic to the natural numbers. How?

814

Defining the Set Nat

Want to define new type nat. How?

Must define a set isomorphic to the natural numbers. How?

By induction using the inductive syntax:

inductive Nat

intros

Zero_RepI: "Zero_Rep : Nat"

Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"

Translated by Isabelle to:

Nat = lfp (λX.{Zero Rep} ∪ (Suc Rep ‘X))

814

Defining the Type nat

Now we have the set Nat . What next?

697

Note the two ingredients for defining the type nat:

• An inductively defined set Nat, i.e., a set defined as fix-

point of a monotone function. In Isabelle (Nat.thy), the

inductive syntax is used for this purpose. This auto-

matically generates an induction rule for the set.

• A type definition based on this set, defined using the

typedef syntax.

Recall that this process automatically generates the two

constants Abs Nat and Rep Nat.

But note: the induction theorem is not inherited automati-

cally. More precisely, the typedef syntax does not cause the

type nat to inherit the inductive theorem of the set Nat. The

theorem nat induct is explicitly proven in Nat.thy.

815

Defining the Type nat

Now we have the set Nat . What next?

Define the type nat , isomorphic to Nat , using the typedef

syntax:

typedef (open Nat)

nat = "Nat" by (rule exI, rule Nat.Zero_RepI)

After these two steps697 we have the type nat .
697

Note the two ingredients for defining the type nat:

• An inductively defined set Nat, i.e., a set defined as fix-

point of a monotone function. In Isabelle (Nat.thy), the

inductive syntax is used for this purpose. This auto-

matically generates an induction rule for the set.

• A type definition based on this set, defined using the

typedef syntax.

Recall that this process automatically generates the two

constants Abs Nat and Rep Nat.

But note: the induction theorem is not inherited automati-

cally. More precisely, the typedef syntax does not cause the

type nat to inherit the inductive theorem of the set Nat. The

theorem nat induct is explicitly proven in Nat.thy.

815

Constants in nat

Moreover, define698:

consts

Suc :: "nat => nat"

pred_nat :: "(nat * nat) set"

defs

Zero_nat_def: "0 == Abs_Nat Zero_Rep"

Suc_def: "Suc ==

(%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"

pred_nat_def: "pred_nat == {(m, n). n = Suc m}"

698Based on the generic constants Abs Nat and Rep Nat,

we define all the constants that we need to work conveniently

with nat, most importantly, 0 and Suc.

816

Some Theorems in Nat.thy699

nat induct JP 0;
∧
n.P n =⇒ P (Suc n)K =⇒ P n

diff induct

J
∧
x.P x 0;

∧
y.P 0 (Suc y);∧

xy.P x y =⇒ P (Suc x) (Suc y)K
=⇒ P mn

We can now exploit that nat is defined based on a set de-

fined using least fixpoints. In particular, nat induct follows

(but not “automatically”!) from the induct theorem of Lfp.

699This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

817

http://isabelle.in.tum.de/library/

Nat and Well-Founded Orders

Examples of theorems involving well-founded orders:

wf pred nat wf pred nat

less linear m < n ∨m = n ∨ n < m

Suc less SucD Suc m < Suc n =⇒ m < n

818

Using Primitive Recursion

Nat.thy defines rich theory on nat . Uses primrec syntax
for defining recursive functions, and case700 construct.

primrec

add_0 "0 + n = n"

add_Suc "Suc m + n = Suc(m + n)"

primrec

diff_0 "m - 0 = m"

diff_Suc "m - Suc n =

(case m - n of 0 => 0 | Suc k => k)"

primrec

mult_0 "0 * n = 0"

mult_Suc "Suc m * n = n + (m * n)"

700The case statement for nat is a function of type nat ⇒
(nat ⇒ nat) ⇒ nat ⇒ nat . case z f n is defined as

follows (using a common mathematical notation):

case z f n =

{
z if n = 0

f k if n = Suc k

The syntax

diff Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"

used on the slide is a paraphrasing (“concrete syntax”) of the

original (“abstract”) syntax. In the original syntax it would

read case 0 (λx.x) (n−m).

819

Some Theorems in Nat

add 0 right m + 0 = m

add ac m + n + k = m + (n + k)

m + n = n + m

x + (y + z) = y + (x + z)

mult ac m ∗ n ∗ k = m ∗ (n ∗ k)

m ∗ n = n ∗m
x ∗ (y ∗ z) = y ∗ (x ∗ z)

Note third part701 of add ac, mult ac, respectively.

Technically, add ac and mult ac are lists of thm’s.
701The theorems x+ (y+ z) = y+ (x+ z) and x ∗ (y ∗ z) =

y ∗ (x ∗ z) are called left-commutation laws and are crucial

for (ordered) rewriting.

Suppose we have the term shown below.

+
�

�
�

��

@
@
@
@@+

�
��

@
@@

+
�
��

@
@@+ + + +

1 8 4 2 7 5 6 3

Some Theorems in Nat

add 0 right m + 0 = m

add ac m + n + k = m + (n + k)

m + n = n + m

x + (y + z) = y + (x + z)

mult ac m ∗ n ∗ k = m ∗ (n ∗ k)

m ∗ n = n ∗m
x ∗ (y ∗ z) = y ∗ (x ∗ z)

Note third part701 of add ac, mult ac, respectively.

Technically, add ac and mult ac are lists of thm’s.
701The theorems x+ (y+ z) = y+ (x+ z) and x ∗ (y ∗ z) =

y ∗ (x ∗ z) are called left-commutation laws and are crucial

for (ordered) rewriting.

Suppose we have the term shown below. Using associativity

(m + n + k = m + (n + k)) this will be rewritten to the

second term.

+
�

�
�

��

@
@
@
@@+

�
��

@
@@

+
�
��

@
@@+ + + +

1 8 4 2 7 5 6 3

+
+

+
+

+
+

+

1
8

4
2

7
5

6 3

Some Theorems in Nat

add 0 right m + 0 = m

add ac m + n + k = m + (n + k)

m + n = n + m

x + (y + z) = y + (x + z)

mult ac m ∗ n ∗ k = m ∗ (n ∗ k)

m ∗ n = n ∗m
x ∗ (y ∗ z) = y ∗ (x ∗ z)

Note third part701 of add ac, mult ac, respectively.

Technically, add ac and mult ac are lists of thm’s.
701The theorems x+ (y+ z) = y+ (x+ z) and x ∗ (y ∗ z) =

y ∗ (x ∗ z) are called left-commutation laws and are crucial

for (ordered) rewriting.

Suppose we have the term shown below. Using associativity

(m + n + k = m + (n + k)) this will be rewritten to the

second term. Using left-commutation, this will be rewritten

to the third term. This is a so-called AC-normal form, for an

appropriately chosen term ordering.

+
�

�
�

��

@
@
@
@@+

�
��

@
@@

+
�
��

@
@@+ + + +

1 8 4 2 7 5 6 3

+
+

+
+

+
+

+

1
8

4
2

7
5

6 3

+
+

+
+

+
+

+

1
2

3
4

5
6

7 8

820

Proof of add 0 right

m+ 0 = m add 0 right

821

Proof of add 0 right

add 0
0 + 0 = 0

n+ 0 = n

Suc n+ 0 = Suc n

m+ 0 = m nat induct

821

Proof of add 0 right

add 0
0 + 0 = 0

add Suc

Suc n+ 0 = Suc(n+ 0)

Suc(n+ 0) = Suc n+ 0
sym

n+ 0 = n

Suc(n+ 0) = Suc n
arg cong

Suc n+ 0 = Suc n
subst

m+ 0 = m nat induct

Note that Suc n+0 = Suc(n+0) is an instance of Suc m+

n = Suc(m + n).

821

Proof of add 0 right

add 0
0 + 0 = 0

add Suc

Suc n+ 0 = Suc(n+ 0)

Suc(n+ 0) = Suc n+ 0
sym

[n+ 0 = n]1

Suc(n+ 0) = Suc n
arg cong

Suc n+ 0 = Suc n
subst

m+ 0 = m nat induct
1

Note that Suc n+0 = Suc(n+0) is an instance of Suc m+

n = Suc(m + n).

821

44.4 Integers

The integers are implemented702 as equivalence classes703 over

nat × nat .

IntDef = Equiv + NatArith +

constdefs

intrel :: "((nat * nat) * (nat * nat)) set"

"intrel == {p. EX x1 y1 x2 y2.

p=((x1::nat,y1),(x2,y2)) & x1+y2 = x2+y1}"

typedef (Integ)

int = "UNIV//intrel" (quotient_def)

702The file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

703Recall the general concept of an equivalence relation. Gen-

erally, for a set S and an equivalence relation R defined on

the set, one can define S//R, the quotient of S w.r.t. R.

S//R = {A | A ⊆ S ∧ ∀x, y ∈ A.(x, y) ∈ R}
That is, one partitions the set S into subsets such that each

subset collects equivalent elements. This is a standard math-

ematical concept.

We do not go into the Isabelle details here, but we explain

how this works for the integers. One can view a pair (n,m) of

natural numbers as representation of the integer n−m. But

then (n,m) and (n′,m′) represent the same integer if and

only if n−m = n′ −m′, or equivalently, n + m′ = n′ + m.

822

http://isabelle.in.tum.de/library/

Some Theorems in IntArith

zminus zadd distrib −(z + w) = −z +−w
zminus zminus −(−z) = z

zadd ac z1 + z2 + z3 = z1 + (z2 + z3)

z + w = w + z

x + (y + z) = y + (x + z)

zmult ac z1 ∗ z2 ∗ z3 = z1 ∗ (z2 ∗ z3)

z ∗ w = w ∗ z
z1 ∗ (z2 ∗ z3) = z2 ∗ (z1 ∗ z3)

Compare to nat theorems.

In this case (n,m) and (n′,m′) are said to be equivalent.

The construction of the integer type is based on this equiv-

alence relation, called intrel. More precisely, the definition

of the integers will be based on the set of all pairs of nat-

urals (which corresponds to the UNIV constant on the type

nat × nat) modulo the equivalence intrel. In other words,

it will be based on the quotient of the set of pairs of naturals

w.r.t. intrel.

823

44.5 Further Number Theories

• Binary Integers (Integ/Bin.thy704, for fast computa-

tion)

• Rational Numbers (Real/PRat.thy705)

• Reals706 (Real/PReal.thy707: based on Dedekind-cuts

of rationals [Fle00])

704This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

705This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

706The reals have been axiomatized by Dedekind by stating

that a set R is partitioned into two sets A and B such that

R = A∪B and for all a ∈ A and b ∈ B, we have a < b. Now

there is a number s such that a ≤ s ≤ b for all a ∈ A and b ∈
B. The irrational numbers are characterised by the fact that

there exists exactly one such s. This axiomatization has been

used as a basis for formalizing real numbers in Isabelle/HOL.
707This file should be contained in your Isabelle distribution.

824

http://isabelle.in.tum.de/library/
http://isabelle.in.tum.de/library/

• Hyperreals708 (Real/RealDef.thy709 for non-standard

analysis)

• Machine numbers (floats); see work for Intel’s PentiumIV;

built in HOL-light [Har98, Har00]

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

708In non-standard analysis, one works with sequences that

are not necessarily converging. This is a relatively new field

in mathematics and Isabelle/HOL has been successfully ap-

plied in it [FP98]. We just mention this here to say that Is-

abelle/HOL is used for “cutting-edge” mathematics and not

just toy examples.
709This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

825

http://www.intel.com/
http://isabelle.in.tum.de/library/
http://isabelle.in.tum.de/library/

44.6 Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

• the naturals (as type definition based on ind), and

• higher number theories (via equivalence construction).

44.6 Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

• the naturals (as type definition based on ind), and

• higher number theories (via equivalence construction).

Potential for

• analysis of processor arithmetic units, and

• function analysis in HOL (combination with computer al-

gebra systems such as Mathematica).

Future: analysis of hybrid systems710.

The methodological overhead can be tackled by powerful

mechanical support, since many proof-tasks are routine.
710Hybrid systems is a field in software engineering concerned

with using finite automata for controlling physical systems

such as ABS in cars etc.

826

45 Datatypes

827

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

828

The Roadmap

We are still looking at how the different parts of mathematics

are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

828

What Are Datatypes?

We have seen types, but what are data711types?

What Are Datatypes?

We have seen types, but what are data711types?

• Order 0 (no → in type).

• Terms defined by finite set of term constructors.

• Typically inductive definition.

• Term constructed by syntactic rule is unique.
711We have seen types, but what are datatypes?

First of all, a datatype must be of order 0, so it must be

a non-functional type. Note that if we do not have polymor-

phism, this means that a datatype must be a in B. But if we

have polymorphism, it just means that the type must not con-

tain→. E.g., α list could be a datatype. However, when one

describes a datatype, one would usually speak about generic

instances such as α list , and not about, say, nat list .

Secondly, the terms that inhabit a datatype τ must be de-

fined using a finite set of term constructors that have τ as

result type. At least one term constructor should just have

type τ . E.g., Nil : α list and Cons : α→ (α list)→ α list

are the term constructors that define the list datatype. One

also finds a syntax where Nil is written [] and Cons is writ-

ten ::. Intuitively, we could say: the terms of a datatype

are exactly the terms that can be constructed by some finite

syntactic construction rule.

Whenever we have a term constructor that has τ as argu-

829

Counterexample712: α set .

ment as well as result, the construction rule is inductive. E.g.,

we have

• Nil is a list;

• if t is a list h is of type α, then Cons(h, t) is a list.

This is an inductive construction of lists. Usually, when one

speaks about datatypes, one has inductively defined ones in

mind. Examples are lists, natural numbers, trees. One could

say that e.g. bool is also a datatype defined by the constants

True and False, but it is not particularly interesting in this

context.

At the same time, each term constructed by such a syntactic

rule is unique. So if we say: lists are defined by the above

inductive construction, then we imply that Cons(1,Nil) must

not be equal to Cons(1,Cons(1,Nil)).
712To understand better the distinction of a datatype from

another type, consider the following counterexample: α set .

Sets are not a datatype:

830

Datatypes: Motivation

We will now construct “datatypes” (as in ML [Pau96]). This

construction is based on so-called S-expressions [Pau97b].

Caveat: We will only sketch the construction and we will

simplify, meaning that the technical details will not be strictly

1. While the type α set does not contain an →, it is iso-

morphic to α→ bool which does contain an →.

2. The most basic way of defining “what a set is” is: if f is of

type τ → bool , then Absset f (alternatively: Collect f)

is a set. This is not an inductive syntactic construction

rule.

3. One could define sets similarly to lists by an inductive rule

saying: {} is a set; if S is a set and h is some term of

type α, then Insert(h, S) is a set. But then Insert(1, {})
would be different from Insert(1, Insert(1, {})), which is

not what we want! Moreover, we could not define infinite

sets this way.

4. In point 2 we say: the definition of the terms called “sets”

is not an inductive definition. This is not in contradic-

tion to the inductive definition of particular sets. These

inductive definitions have the form: If foo is in the set

then bar is in the set, e.g., if n is in the set then Suc n

831

correct! See Datatype Universe.thy713 and [Wen99].

is in the set. This is in contrast to what is suggested in

point 3, where we say: If foo is a set then bar is a set.

713This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

832

http://isabelle.in.tum.de/library/

S-Expressions as Basis

In the end we want to have datatypes such as lists and trees.

It turns out that LISP-like S-expressions are a datatype that

is so rich that other datatypes can nicely be embedded in it.

Since we do not have the concept of datatype yet, we must

first represent S-expressions using constructs we already have.

45.1 S-Expressions

LISP-like S-expressions714 are a kind of of binary trees. We

call the type α dtree. This uses α + nat .

� JĴ

h

� JĴ

h

a b

c

S-Expressions as Basis

In the end we want to have datatypes such as lists and trees.

It turns out that LISP-like S-expressions are a datatype that

is so rich that other datatypes can nicely be embedded in it.

Since we do not have the concept of datatype yet, we must

first represent S-expressions using constructs we already have.

45.1 S-Expressions

LISP-like S-expressions714 are a kind of of binary trees. We

call the type α dtree. This uses α + nat .

� JĴ

h

� JĴ

h

a b

c

714The datastructure we have in mind here consists of binary

trees where the inner nodes are not labeled, and the leaves

are labeled

• either with a term of arbitrary type, in which case the leaf

would be an actual “piece of content” in the datastruc-

ture,

• or with a natural number, in which case the leaf serves

special purposes for organizing our datastructure, as we

will see later.

I.e., such binary trees have a type parametrized by a type

variable α, the type of the latter kind of leaves. Let us call

the type of such trees α dtree.

As always with parametric polymorphism, when we consider

how the datastructure as such works, we are not interested

in what the values in the former kind of leaves are. This is

just like the type and values of list elements are irrelevant for

concatenating two lists. Of course, α could, by coincidence,

833

This is encoded as a set of “leaves”715 (defined by their

path from the root and a value), e.g.:

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}
The type definition of α dtree uses such an encoding.

be instantiated to type nat .

Think of a label of the first kind as content label and a label

of the second kind as administration label.

Technically, if something is either of this type or of that

type, we are talking about a sum type. So a leaf label has type

α + nat (written (α, nat) sum before), and it has the form

either Inl(a) for some a :: α, or Inr (n) for some n :: nat .
715 The set

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}
represents the tree

The path 〈0, 0〉 means: from the root take left subtree, then

again left subtree. The path 〈1〉 means: take right subtree.

How can a path 〈p0, . . . , pn〉 be represented? One idea is

834

Building Trees

• Atom(n)716

n

• Scons X Y 717

� JĴ

h

� JĴ

h
+

� JĴ

h

� JĴ

h
=

� JĴ

h

� JĴ

h

� JĴ

h

� JĴ

h��� HHj

h

to use the function f :: nat ⇒ nat defined by

f i =

{
pi if i ≤ n

2 otherwise

as representation of 〈p0, . . . , pn〉.
716Atom takes a leaf label and turns it into a (simplest pos-

sible) S-expression (tree).

So it has type α + nat ⇒ α dtree.
717Scons takes two S-expressions and creates a new S-

expression as illustrated below:

=

So it has type [α dtree, α dtree]⇒ α dtree.

835

Tagging Trees

We want to tag an S-expression by either 0 or 1. This can be

done by “Scons”-ing it with an S-expression consisting of an

administration label. By convention, the tag is to the left.

• In0 def In0 (X) ≡ Scons Atom(Inr (0)) X

� JĴ

h →

� JĴ

h

� JĴ

h
0

• In1 def In1 (X) ≡ Scons Atom(Inr (1)) X

� JĴ

h →

� JĴ

h

� JĴ

h
1

836

Products and Sums on Sets of S-Expressions

Product of two sets A and B of S-expressions: All Scons-

trees where left subtree from A, right subtree from B.

uprod def uprod AB ≡
⋃
x∈A

⋃
y∈B

{(Scons x y)}

718 Recall that ‘ denotes the image of a function applied to a

set.

837

Products and Sums on Sets of S-Expressions

Product of two sets A and B of S-expressions: All Scons-

trees where left subtree from A, right subtree from B.

uprod def uprod AB ≡
⋃
x∈A

⋃
y∈B

{(Scons x y)}

Sum of two sets A and B of S-expressions: union of A

and B after S-expressions in A have been tagged 0 and S-

expressions in B have been tagged 1, so that one can tell

where they come from.

usum def usum AB ≡ In0 ‘ 718A ∪ In1 ‘B

718 Recall that ‘ denotes the image of a function applied to a

set.

837

Some Properties of Trees and Tree Sets

• Atom, In0 , In1 , Scons are719 injective.

• Atom and Scons are pairwise distinct. In0 are In1

pairwise distinct.

719This means that any of Atom, In0 , In1 , Scons applied

to different S-expressions will return different S-expressions.

Moreover, a term with root Scons is definitely different from

a term with root Atom, and a term with root In0 is definitely

different from a term with root In1 .

Why is this important? It is an inherent characteristic of

a datatype. A datatype consists of terms constructed using

term constructors and is uniquely defined by what it is syntac-

tically (one also says that terms are generated freely using the

constructors). For example, injectivity of Suc and pairwise-

distinctness of 0 and Suc mean for any two numbers m and

n, the terms Suc(. . . Suc︸ ︷︷ ︸
m times

(0) . . .) and Suc(. . . Suc︸ ︷︷ ︸
n times

(0) . . .) are

different.
720Given a set T of trees (S-expressions), the closure of T

under Atom, In0 , In1 , Scons , usum, uprod is the smallest

set T ′ such that T ⊆ T ′ and given any tree (or two trees,

as applicable) from T ′, any tree constructable using Atom,

838

Some Properties of Trees and Tree Sets

• Atom, In0 , In1 , Scons are719 injective.

• Atom and Scons are pairwise distinct. In0 are In1

pairwise distinct.

• Tree sets represent a universe that is closed under prod-

ucts and sums: usum, uprod have type [(α dtree) set , (α dtree) set]⇒
(α dtree) set .

• uprod and usum are monotone.

719This means that any of Atom, In0 , In1 , Scons applied

to different S-expressions will return different S-expressions.

Moreover, a term with root Scons is definitely different from

a term with root Atom, and a term with root In0 is definitely

different from a term with root In1 .

Why is this important? It is an inherent characteristic of

a datatype. A datatype consists of terms constructed using

term constructors and is uniquely defined by what it is syntac-

tically (one also says that terms are generated freely using the

constructors). For example, injectivity of Suc and pairwise-

distinctness of 0 and Suc mean for any two numbers m and

n, the terms Suc(. . . Suc︸ ︷︷ ︸
m times

(0) . . .) and Suc(. . . Suc︸ ︷︷ ︸
n times

(0) . . .) are

different.
720Given a set T of trees (S-expressions), the closure of T

under Atom, In0 , In1 , Scons , usum, uprod is the smallest

set T ′ such that T ⊆ T ′ and given any tree (or two trees,

as applicable) from T ′, any tree constructable using Atom,

838

Some Properties of Trees and Tree Sets

• Atom, In0 , In1 , Scons are719 injective.

• Atom and Scons are pairwise distinct. In0 are In1

pairwise distinct.

• Tree sets represent a universe that is closed under prod-

ucts and sums: usum, uprod have type [(α dtree) set , (α dtree) set]⇒
(α dtree) set .

• uprod and usum are monotone.

• Tree sets represent a universe that is closed under prod-

ucts and sums720 combined with arbitrary applications of

lfp.

Reminder: we simplified!
719This means that any of Atom, In0 , In1 , Scons applied

to different S-expressions will return different S-expressions.

Moreover, a term with root Scons is definitely different from

a term with root Atom, and a term with root In0 is definitely

different from a term with root In1 .

Why is this important? It is an inherent characteristic of

a datatype. A datatype consists of terms constructed using

term constructors and is uniquely defined by what it is syntac-

tically (one also says that terms are generated freely using the

constructors). For example, injectivity of Suc and pairwise-

distinctness of 0 and Suc mean for any two numbers m and

n, the terms Suc(. . . Suc︸ ︷︷ ︸
m times

(0) . . .) and Suc(. . . Suc︸ ︷︷ ︸
n times

(0) . . .) are

different.
720Given a set T of trees (S-expressions), the closure of T

under Atom, In0 , In1 , Scons , usum, uprod is the smallest

set T ′ such that T ⊆ T ′ and given any tree (or two trees,

as applicable) from T ′, any tree constructable using Atom,

838

45.2 Lists in Isabelle

Similar to the construction of nat , we first construct a set

of S-expressions having the “structure of lists”. We start by

defining “provisional” list constructors:

constdefs

NIL :: ’a dtree

"NIL == In0(Atom(Inr(0)))"

CONS :: [’a dtree, ’a dtree] => ’a dtree

"CONS M N == In1(Scons M N)"

What type do you expect721 Cons to have, and how does

CONS compare?

45.2 Lists in Isabelle

Similar to the construction of nat , we first construct a set

of S-expressions having the “structure of lists”. We start by

defining “provisional” list constructors:

constdefs

NIL :: ’a dtree

"NIL == In0(Atom(Inr(0)))"

CONS :: [’a dtree, ’a dtree] => ’a dtree

"CONS M N == In1(Scons M N)"

What type do you expect721 Cons to have, and how does

CONS compare? Must wrap list elements by Atom ◦ Inl .

In0 , In1 , Scons , usum, uprod is also contained in T ′.

Remembering the construction of inductively defined sets,

the closure is the least fixpoint of a monotone function adding

trees to a tree set. This function must be constructed us-

ing Atom, In0 , In1 , Scons , usum, uprod . We do not go

into the details, but note that it is crucial that uprod and

usum are monotone, and note as well that slight complica-

tions arise from the fact that usum and uprod have type

[(α dtree) set , (α dtree) set] ⇒ (α dtree) set rather than

(α dtree) set ⇒ (α dtree) set .
721Cons should have the polymorphic type [α, α list] ⇒
α list . The important point is: the first argument is of differ-

ent type than the second argument. If the first is of type τ ,

then the second must be of type τ list .

In contrast, CONS is of type [(α dtree), (α dtree)] ⇒
α dtree.

In order to apply CONS to a “list” (in fact an S-expression)

and a “list element”, we must first wrap the list element by

839

Lists as S-Expressions: Intuition

Examples of how lists would be represented as S-expressions:

Nil 722 []

Cons(7,Nil) [7]

Cons(5,Cons(7,Nil)) [5, 7]

Atom ◦ Inl , so that it becomes an S-expression.
722Nil , Cons(7,Nil), Cons(5,Cons(7,Nil)) are lists writ-

ten according to what some programming languages introduce

as the first, “official” syntax for lists.

For convenience, programming languages typically allow for

the same lists to be written as [], [7], [5, 7].

840

Lists as S-Expressions: Intuition

Examples of how lists would be represented as S-expressions:

Nil 722 []

In0 (Atom(Inr 0))

Cons(7,Nil) [7]

Cons(5,Cons(7,Nil)) [5, 7]

Atom ◦ Inl , so that it becomes an S-expression.
722Nil , Cons(7,Nil), Cons(5,Cons(7,Nil)) are lists writ-

ten according to what some programming languages introduce

as the first, “official” syntax for lists.

For convenience, programming languages typically allow for

the same lists to be written as [], [7], [5, 7].

840

Lists as S-Expressions: Intuition

Examples of how lists would be represented as S-expressions:

Nil 722 []

In0 (Atom(Inr 0))

Cons(7,Nil) [7]

CONS (Atom(Inl 7)) In0 (Atom(Inr 0))

Cons(5,Cons(7,Nil)) [5, 7]

Atom ◦ Inl , so that it becomes an S-expression.
722Nil , Cons(7,Nil), Cons(5,Cons(7,Nil)) are lists writ-

ten according to what some programming languages introduce

as the first, “official” syntax for lists.

For convenience, programming languages typically allow for

the same lists to be written as [], [7], [5, 7].

840

Lists as S-Expressions: Intuition

Examples of how lists would be represented as S-expressions:

Nil 722 []

In0 (Atom(Inr 0))

Cons(7,Nil) [7]

CONS (Atom(Inl 7)) In0 (Atom(Inr 0))

Cons(5,Cons(7,Nil)) [5, 7]

CONS (Atom(Inl 5))

(CONS (Atom(Inl 7)) In0 (Atom(Inr 0)))

Now let’s construct the S-expressions having this form.

Atom ◦ Inl , so that it becomes an S-expression.
722Nil , Cons(7,Nil), Cons(5,Cons(7,Nil)) are lists writ-

ten according to what some programming languages introduce

as the first, “official” syntax for lists.

For convenience, programming languages typically allow for

the same lists to be written as [], [7], [5, 7].

840

Lists as S-Expressions: Inductive Construction

Idea: let A :: (α dtree) set be the set of all “wrapped” ele-

ments, e.g. for α = nat , the set {(Atom Inl 0), (Atom Inl 1), . . .}.
Then define list(A), the set of S-expressions that represent

lists of element type α:

list :: "’a dtree set => ’a dtree set"

inductive "list(A)"

intrs

NIL_I "NIL : list(A)"

CONS_I "[|a : A; M : list(A) |] ==>

CONS a M : list(A)"

See SList.thy723 for how it’s really done!
723This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

841

http://isabelle.in.tum.de/library/

Defining the “Real” List Type

We now apply the type definition mechanism using the typedef

syntax. How do we define A formally?

842

Defining the “Real” List Type

We now apply the type definition mechanism using the typedef

syntax. How do we define A formally?

typedef (List)

’a list =

"list(range (Atom o Inl)) :: ’a dtree set"

by ...

Choosing A as range (Atom ◦ Inl) together with the ex-

plicit type declaration forces A to be the set containing all

Atom (Inl t), for each t :: α.

Example of a definition of a polymorphic type.

842

List Constructors

We define the real constructor names for lists:

Nil_def "Nil::’a list == Abs_list(NIL)"

Cons_def "x#(xs::’a list) ==

Abs_list(CONS (Atom(Inl(x))) (Rep_list xs))"

We then forget about NIL and CONS .

843

Isabelle’s Datatype Package

Similar to the typedef syntax, Isabelle provides the datatype

syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.

724The datatype syntax is very convenient since the complex

construction we have seen today is transparent to the normal

user.

In particular, proofs of the induction theorem are automated.

This is in contrast to the construction of nat where this the-

orem was not generated automatically.

So why didn’t we use the datatype syntax to define nat ,

since it is so much more convenient?

The reason is that we needed nat to define S-expressions, so

the type nat must exist before there can be a datatype pack-

age, and so the datatype package cannot be used to define

nat .

844

Isabelle’s Datatype Package

Similar to the typedef syntax, Isabelle provides the datatype

syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.

The package also works for mutually recursive datatype defi-

nitions.

Question: Why didn’t we use this package to define nat724?

724The datatype syntax is very convenient since the complex

construction we have seen today is transparent to the normal

user.

In particular, proofs of the induction theorem are automated.

This is in contrast to the construction of nat where this the-

orem was not generated automatically.

So why didn’t we use the datatype syntax to define nat ,

since it is so much more convenient?

The reason is that we needed nat to define S-expressions, so

the type nat must exist before there can be a datatype pack-

age, and so the datatype package cannot be used to define

nat .

844

46 Summary of HOL Library / Outlook on
Modeled Systems

845

Summary

In the previous weeks, we looked at how the different parts of

mathematics are encoded in the Isabelle/HOL library:

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes

846

Summary (Cont.)

We conclude: HOL is a logical framework for theoretical com-

puter science. Its features are:

• a clean methodology, which can be supported automati-

cally to a surprising extent;

• a powerful set theory and proof support;

• adequate theories for arithmetics (proof-support: not quite

satisfactory so far);

• a package for induction;

• a package for recursion;

• a package for datatypes.

847

Outline

We will now look at how various formalisms (specification and

programming languages) can be embedded in HOL:

• Z and data-refinement

• Imperative languages

• Denotational semantics and functional languages

• Object-oriented languages (Java-Light . . .)

848

47 IMP

47.1 IMP: Introduction

IMP is a small imperative programming language. We

study how its syntax and semantics are represented in HOL.

47 IMP

47.1 IMP: Introduction

IMP is a small imperative programming language. We

study how its syntax and semantics are represented in HOL.

Semantics come in different flavors725:

• operational,

• denotational,

• axiomatic (Hoare-logic).

725One distinguishes

• operational,

• denotational,

• axiomatic

semantics.

For operational semantics, the idea is that our machine is

always in some state, essentially consisting of the values of the

program variables. The instructions of a program transform

a state into a new state. Operational semantics are useful for

compiler construction.

For denotational semantics, the idea is that the meaning of

a particular program is a relation between “input” states and

“output” states.

Axiomatic semantics consist of a calculus for constructing

proof obligations. This allows us to state the desired behavior

of a program as a logic formula and check it.

849

Imperative Languages in the Isabelle/HOL Library

There are several embeddings of imperative languages in

Isabelle/HOL [Nip02]:

• Hoare726

• IMP

• IMPP

• MicroJava

850

Imperative Languages in the Isabelle/HOL Library

There are several embeddings of imperative languages in

Isabelle/HOL [Nip02]:

• Hoare726: shallowish727, good examples

• IMP: deepish, good theory

• IMPP: extends IMP with procedures

• MicroJava: complex, powerful, state-of-the-art

850

Imperative Languages in the Isabelle/HOL Library

There are several embeddings of imperative languages in

Isabelle/HOL [Nip02]:

• Hoare726: shallowish727, good examples

• IMPIMP: deepish, good theory

• IMPP: extends IMP with procedures

• MicroJava: complex, powerful, state-of-the-art

We choose IMP to learn a bit about “good ole imperative

languages”.

850

Semantics Provided for IMP

IMP offers:

• operational semantics;

– natural semantics;

– transition semantics;

• denotational semantics;

• axiomatic semantics (Hoare logic);

728Summarizing, we have the following equivalence results:

– natural vs. transition semantics

– denotational vs. natural semantics.

851

Semantics Provided for IMP

IMP offers:

• operational semantics;

– natural semantics;

– transition semantics;

• denotational semantics;

• axiomatic semantics (Hoare logic);

• equivalence proofs728;

• weakest preconditions and verification condition genera-

tor.

It closely follows the standard textbook [Win96].

728Summarizing, we have the following equivalence results:

– natural vs. transition semantics

– denotational vs. natural semantics.

851

An Imperative Language Embedding

We will now define the syntax and various semantics of IMP,

but in fact, we define those as Isabelle theories. We say that

we embed IMP in Isabelle/HOL.

You will see that such an embedding is more abstract and

less detailed than if we were really going to define IMP for use

as a programming language, i.e., if we were going to define a

compiler for it.

852

The Command Language (Syntax)

The (abstract) syntax is defined in Com.thy729.
Com = Main +

types

loc

val = nat (*e.g.*)

state = loc => val

aexp = state => val

bexp = state => bool

datatype com =

SKIP

| ":==" loc aexp (infixl 60)

| Semi com com ("_ ; _" [60, 60] 10)

| Cond bexp com com

("IF _ THEN _ ELSE _" 60)

| While bexp com ("WHILE _ DO _" 60)

The type loc stands for locations730.

Note the abstractness731 of aexp and bexp.

729This file defines the command syntax. An Isabelle term of

type com is an IMP program.

You should find the files in your Isabelle distribution. Or, if

you only have an Isabelle executable, you can find the sources

here:

http://isabelle.in.tum.de/library/

730We realize program variables via pointers (locations). The

type of pointers is an abstract datatype.

We take the type of values to be nat , just to have something

simple.

A state is a function taking a location to a value, i.e. intu-

itively, each program variable has a value in a state.
731

In a formalization of the syntax of an imperative language,

there will usually be some grammar saying that 1, x+ 1 (pro-

vided that x is an arithmetic variable) etc. are arithmetic ex-

pressions and that True, x == 1 etc. are Boolean expressions.

853

http://isabelle.in.tum.de/library/

The Command Language (Syntax)

The (abstract) syntax is defined in Com.thy729.
Com = Main +

types

loc

val = nat (*e.g.*)

state = loc => val

aexp = state => val

bexp = state => bool

datatype com =

SKIP

| ":==" loc aexp (infixl 60)

| Semi com com ("_ ; _" [60, 60] 10)

| Cond bexp com com

("IF _ THEN _ ELSE _" 60)

| While bexp com ("WHILE _ DO _" 60)

The type loc stands for locations730.

Note the abstractness731 of aexp and bexp.

The datatype com stands for command(sequence)s.
729This file defines the command syntax. An Isabelle term of

type com is an IMP program.

You should find the files in your Isabelle distribution. Or, if

you only have an Isabelle executable, you can find the sources

here:

http://isabelle.in.tum.de/library/

730We realize program variables via pointers (locations). The

type of pointers is an abstract datatype.

We take the type of values to be nat , just to have something

simple.

A state is a function taking a location to a value, i.e. intu-

itively, each program variable has a value in a state.
731

In a formalization of the syntax of an imperative language,

there will usually be some grammar saying that 1, x+ 1 (pro-

vided that x is an arithmetic variable) etc. are arithmetic ex-

pressions and that True, x == 1 etc. are Boolean expressions.

853

http://isabelle.in.tum.de/library/

47.2 Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states732):

state -a :== b
state ′ �

���
��

���
�:

WHILE . . .
XXXXXXXXXXz

SKIP
state ′′

state ′′′

47.2 Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states732):

state -a :== b
state ′ �

���
��

���
�:

WHILE . . .
XXXXXXXXXXz

SKIP
state ′′

state ′′′

evalc :: (com ∗ state ∗ state) set

47.2 Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states732):

state -a :== b
state ′ �

���
��

���
�:

WHILE . . .
XXXXXXXXXXz

SKIP
state ′′

state ′′′

evalc :: (com ∗ state ∗ state) set

Such expressions can only be evaluated if the state, i.e. the

value of the program variables, is given.

Now, our notion of expressions (as realized by the types aexp

and bexp) is much more abstract than that. An expression is

e function taking a state to a value or Boolean, as applicable.

The fact that IMP has no explicit expression language allows

for simple and abstract proofs.
732The idea of the natural semantics is that a program relates

two states, the “input state” and the “output state”.

This may remind you of denotational semantics, and in fact,

the natural semantics is a kind of hybrid between operational

and denotational semantics.

The fact that the natural semantics just relates an “input

state” and an “output state” means, so to say, that it does

not record what happens in between, i.e. at the single steps

of a computation. In that respect, it resembles denotational

semantics.

But the way the meaning of a whole program is defined is

854

Transition semantics (idea: sequence of “configurations”733):

a :== b;X, state - X, state ′ ��
��

���
��:

XXXXXXXXXzX ′′′, state ′′′

X ′′, state ′′

Transition semantics (idea: sequence of “configurations”733):

a :== b;X, state - X, state ′ ��
��

���
��:

XXXXXXXXXzX ′′′, state ′′′

X ′′, state ′′

evalc1 :: ((com ∗ state) ∗ (com ∗ state)) set

still operational in nature. Essentially, it is defined in terms

of the meaning of the first execution step and the meaning of

the rest of the program.
733

Unlike the natural semantics, the transition semantics

records the single steps of the computation. A configura-

tion is a pair consisting of a program and a state, and one

step reaches a new program and a new state.

Why “reaching a new program”? This realizes a program

counter. For example, if the first line of the program is an

assignment, then the new program is obtained by removing

that line from the old program.

855

47.3 Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:

47.3 Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:

consts evalc :: ”(com ∗ state ∗ state) set”

translations ”〈c, s0〉
c−→ s1” ≡ ”(c, s0, s1) ∈ evalc”

Note that
c−→ (in ASCII: -c->) is one fixed arrow symbol.

47.3 Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:

consts evalc :: ”(com ∗ state ∗ state) set”

translations ”〈c, s0〉
c−→ s1” ≡ ”(c, s0, s1) ∈ evalc”

Note that
c−→ (in ASCII: -c->) is one fixed arrow symbol.

We now start giving the actual inductive definition. It de-

fines the
c−→ transitions (implicit: these are the only

c−→
transitions) . . .

856

Inductive Definition: Skip and Assignment

inductive evalc

intrs

Skip: 〈SKIP, s〉 c−→ s

Assign: 〈x :== a, s〉 c−→ s[x ::= (a s)]

857

Inductive Definition: Skip and Assignment

inductive evalc

intrs

Skip: 〈SKIP, s〉 c−→ s

Assign: 〈x :== a, s〉 c−→ s[x ::= (a s)]

Skip and Assign are just names for the clauses of the

inductive definition.

s[x ::= v] is short for update s x v, where

update s x v ≡ λy. if y = x then v else (s y)

Note that a is of type aexp or bexp.

857

Inductive Definition: Semicolon

Semi : J〈c0, s〉
c−→ s1; 〈c1, s1〉

c−→ s2K
=⇒ 〈c0; c1, s〉

c−→ s2

858

Inductive Definition: Semicolon

Semi : J〈c0, s〉
c−→ s1; 〈c1, s1〉

c−→ s2K
=⇒ 〈c0; c1, s〉

c−→ s2

The rationale of natural semantics: To figure out the mean-

ing of a program consisting of a “first instruction” c0 and a

“rest” c1, starting from state s, you have to show two sub-

goals: c0 starting from state s goes to some state s1, and c1

starting in state s1 goes to some state s2.

Note that by the definition of Semi, c0 does not have to

be “atomic” (whatever this means).

858

Inductive Definition: Control

IfTrue: Jb s; 〈c0, s〉
c−→ s1K

=⇒ 〈IF b THEN c0 ELSE c1, s〉
c−→ s1

IfFalse: J¬b s; 〈c1, s〉
c−→ s1K

=⇒ 〈IF b THEN c0 ELSE c1, s〉
c−→ s1

WhileFalse: J¬b sK =⇒ 〈WHILE b DO c, s〉 c−→ s

WhileTrue: Jb s; 〈c, s〉 c−→ s1; 〈WHILE b DO c, s1〉
c−→ s2K

=⇒ 〈WHILE b DO c, s〉 c−→ s2

Note the termination problem in WhileTrue! Simplest

example: b ≡ λx.True. Then, no proof is possible and no s2

can effectively be computed.

859

47.4 Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also given by

an inductive definition. We first declare its type and define a

paraphrasing, as before:

47.4 Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also given by

an inductive definition. We first declare its type and define a

paraphrasing, as before:

consts evalc1 :: ”((com ∗ state) ∗ (com ∗ state)) set”

translations ”cs0
1−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 ”

Note that
1−→ is one fixed arrow symbol.

47.4 Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also given by

an inductive definition. We first declare its type and define a

paraphrasing, as before:

consts evalc1 :: ”((com ∗ state) ∗ (com ∗ state)) set”

translations ”cs0
1−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 ”

Note that
1−→ is one fixed arrow symbol.

We now start giving the actual inductive definition . . .

860

Inductive Definition

inductive evalc1

intrs

Assign: ”(x :== a, s)
1−→ (SKIP, s[x ::= (a s)])”

Semi1: ”(SKIP; c, s)
1−→ (c, s)”

Semi2: ”(c0, s)
1−→ (c′0, s

′) =⇒ (c0; c1, s)
1−→ (c′0; c1, s

′)”

861

Inductive Definition

inductive evalc1

intrs

Assign: ”(x :== a, s)
1−→ (SKIP, s[x ::= (a s)])”

Semi1: ”(SKIP; c, s)
1−→ (c, s)”

Semi2: ”(c0, s)
1−→ (c′0, s

′) =⇒ (c0; c1, s)
1−→ (c′0; c1, s

′)”

So far, we see that the component of com type in the

configuration corresponds to a program stack (built by ”;”),

which represents a program counter.

861

Inductive Definition: Control

IfTrue: ”b s =⇒ (IF b THEN c1 ELSE c2, s)
1−→ (c1, s)”

IfFalse: ”¬b s =⇒ (IF b THEN c1 ELSE c2, s)
1−→ (c2, s)”

WhileFalse: ”¬b s =⇒ (WHILE b DO c, s)
1−→ (SKIP, s)”

WhileTrue: ”b s =⇒ (WHILE b DO c, s)
1−→ (c; WHILE b DO c, s)”

Termination problem as before, but somehow less disturb-

ing: we cannot be shocked about the fact that some computa-

tions are infinite, and at least, the transition semantics assigns

a meaning to any finite prefix of an infinite computation.

862

Generalizations to more than one Step

n-step semantics:

”cs0
n−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 n”

Unlike
c−→ and

1−→,
n−→ is not a fixed arrow symbol, but

meta-notation: for any number n, there is the paraphrasing734

n−→ defined as above. Here, evalc1 n (ASCII: ^n) is defined

in Relation Power.thy735.

multistep-semantics:

”cs0
∗−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 ∗”

∗−→ is a fixed arrow symbol.

734As you see, paraphrasing in Isabelle is very powerful. One

can think of
c−→ and

1−→ as infix symbols. But
n−→ is by no

means one single symbol. In fact the term cs0
n−→ cs1 is a

paraphrasing of (cs0, cs1) ∈ evalc1 n.
735This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

863

http://isabelle.in.tum.de/library/

Equivalence of Semantics

Natural semantics vs. transition semantics.

Theorem (evalc1 eq evalc):

(c, s)
∗−→ (SKIP, t) = (〈c, s〉 c−→ t)

The proof is by induction on the structure of programs.

864

47.5 Embedding of the Denotational Semantics

Domain: A semantics relates states (similar to natural se-

mantics)

com den = (state ∗ state) set

Semantic function: assigns semantics to a program

consts C :: com⇒ com den

Before, semantics were relations.

865

Characteristics of Denotational Semantics

A denotational semantics is a function (here: C) assigning

a meaning to a program. More precisely, the meaning of a

program is some “mathematical” function of the meanings of

its components.

This is in contrast to the operational view where computa-

tion order (“first do this, then that. . . ”) and logical reasoning

using proof rules (“if (. . .) computes (. . .) then (. . .) com-

putes (. . .)”) are focused.

The “mathematics” uses the lfp operator.

866

The Recursive Definition

The semantics C is defined recursively736:

primrec

C skip ”C(SKIP) = Id”

C assign ”C(x :== a) = {(s, t) | t = s[x ::= (a s)]}”
C comp ”C(c0; c1) = C(c1) ◦ C(c0)”

C if ”C(IF b THEN c1 ELSE c2) =

{(s, t) | (s, t) ∈ C(c1) ∧ b(s)}∪
{(s, t) | (s, t) ∈ C(c2) ∧ ¬b(s)}”

C while ”C(WHILE b DO c) = lfp(Γ b (C c))”

where737 ”Γ b cd ≡ (λφ.{(s, t) | (s, t) ∈ (φ ◦ cd) ∧ b(s)}∪
{(s, t) | s = t ∧ ¬b(s)})”

736Recall that the primrec syntax is used for defining func-

tions recursively. Here, the argument type of the function

C is the datatype com. It is characteristic for the definition

of a datatype that its elements are defined by (structural)

induction, i.e., its elements are syntactic terms formed from

previously generated syntactic forms using a specific set of

term constructors. For datatypes, it is clear that the sub-

term relation is a well-founded order. Hence it is legitimate

to define C using recursion.

867

Equivalence of Programs

We have seen an equivalence result relating different seman-

tics.

868

Equivalence of Programs

We have seen an equivalence result relating different seman-

tics.

The following is an equivalence relating program fragments.

Theorem (C While If):
C(WHILE b DO c) = C(IF b THEN (c; WHILE b DO c) ELSE SKIP)

Such a result is important because it justifies a program

transformation (the two fragments have the same semantics

and so they are interchangeable).

868

Equivalence of Semantics

We have already suggested that the natural semantics is a

hybrid between operational and denotational semantics. In

fact, there is a simple equivalence relationship between the

two:

Theorem (denotational is natural):
((s, t) ∈ C c) = (〈c, s〉 c−→ t)

869

47.6 Axiomatic (Hoare) Semantics

Idea: we relate “legal states” before and after a program

execution. A set of legal states is modeled as “assertion”:

types assn = state⇒ bool

47.6 Axiomatic (Hoare) Semantics

Idea: we relate “legal states” before and after a program

execution. A set of legal states is modeled as “assertion”:

types assn = state⇒ bool

So rather than reasoning about single states, we reason

about properties or sets of states. This is what we really need

for verification of programs.

Semantics called axiomatic for historic reasons738. It is also

called Hoare semantics.

738

In terms of Isabelle/HOL, the semantics is not defined by

axioms, but is an inductive definition.

870

Embedding of the Hoare Semantics

The Hoare semantics encoding in Isabelle is also given by an

inductive definition. We first declare its type and a paraphras-

ing:

consts hoare :: ”(assn ∗ com ∗ assn) set”

translations ” ` {P} c {Q}” ≡ ”(P, c,Q) ∈ hoare”
An object of the form {P} c {Q} is called a Hoare-triple.

We now start giving the actual inductive definition . . .

871

Inductive Definition: SKIP

inductive hoare

intrs

skip ” ` {P} SKIP {P}”
No surprise here.

872

The Inductive Definition

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
This may be counter-intuitive, why not the other way round?

739Things are getting a bit complicated, maybe it helps to

recall the types of the terms occurring in

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
P has type assn, which is state ⇒ bool . In turn , state is

loc ⇒ val .

x has type loc.

a has type aexp, which is state ⇒ val .

s has type state.
740You can also argue a bit more generally. Let Q be an

arbitrary assertion, and let

P ≡ λs. ∃s′. s = s′[x ::= (a s′)] ∧Q s′

Intuitively: P is an assertion allowing any state obtained from

a state allowed by Q by updating that state at location x with

the expression a. Now consider the rule for assignment:

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
in particular the assertion on the left-hand side. It reduces as

873

The Inductive Definition

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
This may be counter-intuitive, why not the other way round?

Consider an example: a ≡ λs.1 and P ≡ λs. s x = 1
{λs.(λs.s x = 1)(s[x ::= 1])} x :== λs.1 {λs.s x = 1} −→β

{λs.(s[x ::= 1])x = 1} x :== λs.1 {λs.s x = 1} −→β

{λs.(1 = 1)} x :== λs.1 {λs.s x = 1} −→β

{λs.True} x :== λs.1 {λs.s x = 1}
What do we see? (You might also check the types739.)

739Things are getting a bit complicated, maybe it helps to

recall the types of the terms occurring in

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
P has type assn, which is state ⇒ bool . In turn , state is

loc ⇒ val .

x has type loc.

a has type aexp, which is state ⇒ val .

s has type state.
740You can also argue a bit more generally. Let Q be an

arbitrary assertion, and let

P ≡ λs. ∃s′. s = s′[x ::= (a s′)] ∧Q s′

Intuitively: P is an assertion allowing any state obtained from

a state allowed by Q by updating that state at location x with

the expression a. Now consider the rule for assignment:

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
in particular the assertion on the left-hand side. It reduces as

873

The Inductive Definition

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
This may be counter-intuitive, why not the other way round?

Consider an example: a ≡ λs.1 and P ≡ λs. s x = 1
{λs.(λs.s x = 1)(s[x ::= 1])} x :== λs.1 {λs.s x = 1} −→β

{λs.(s[x ::= 1])x = 1} x :== λs.1 {λs.s x = 1} −→β

{λs.(1 = 1)} x :== λs.1 {λs.s x = 1} −→β

{λs.True} x :== λs.1 {λs.s x = 1}
What do we see? (You might also check the types739.)

The ass rule is such that it relates the pre-state True with

the post-state λs. s x = 1, which is what we expect740.
739Things are getting a bit complicated, maybe it helps to

recall the types of the terms occurring in

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
P has type assn, which is state ⇒ bool . In turn , state is

loc ⇒ val .

x has type loc.

a has type aexp, which is state ⇒ val .

s has type state.
740You can also argue a bit more generally. Let Q be an

arbitrary assertion, and let

P ≡ λs. ∃s′. s = s′[x ::= (a s′)] ∧Q s′

Intuitively: P is an assertion allowing any state obtained from

a state allowed by Q by updating that state at location x with

the expression a. Now consider the rule for assignment:

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”
in particular the assertion on the left-hand side. It reduces as

873

Inductive Definition: Semi and IF − THEN − ELSE

semi ”J` {P} c {Q};` {Q} d {R}K =⇒` {P} c; d {R}”
If ”J` {λs.P s ∧ b s} c {Q};` {λs.P s ∧ ¬b s} d {Q}K

=⇒` {P} IF b THEN c ELSE d {Q}”

Since we are reasoning about sets of states, b s may some-

times be true and sometimes false, and so we have two premises

for those two cases. It turns out that if b s is trivially true or

trivially false, then one of the premises will be trivial to prove.

follows:
λs. P (s[x ::= (a s)]) −→β

λs. (∃s′. Q s′ ∧ s[x ::= (a s)] = s′[x ::= (a s′)]) −→β . . .

λs. (∃s′. Q s′ ∧ s = s′) −→β . . . λs. (Q s) −→η Q

So you see that any pre-state Q will be related to a post-state

P as given above.

By this argument, we have only shown which post-states are

possible given an arbitrary pre-state, not which post-states are

not. Such an argument is more complicated.

874

Inductive Definition: WHILE

While ” ` {λs.P s ∧ b s} c {P} =⇒
` {P} WHILE b DO c {λs.P s ∧ ¬b s}”

This has a flavor of loop invariants: in the pre-state, b s

holds, in the post-state, b s does not hold, and P holds all

the time.

875

Inductive Definition: Weakening and Strengthening

conseq ”J∀s.P ′s→ P s;` {P} c {Q}; ∀s.Q s→ Q′ sK
=⇒` {P ′} c {Q′}”

One can always strengthen the pre-condition or weaken the

post-condition.

876

The Rules at a Glance

inductive hoare
intrs

skip ” ` {P} SKIP {P}”
ass ” ` {λs.P (s[x ::= a s])} x :== a {P}”
semi ”J` {P} c {Q};` {Q} d {R}K =⇒` {P} c; d {R}”
If ”J` {λs.P s ∧ b s} c {Q};` {λs.P s ∧ ¬b s} d {Q}K =⇒

` {P} IF b THEN c ELSE d {Q}”
While ” ` {λs.P s ∧ b s} c {P} =⇒

` {P} WHILE b DO c {λs.P s ∧ ¬b s}”
conseq ”J∀s.P ′s→ P s;` {P} c {Q};∀s.Q s→ Q′ sK =⇒

` {P ′} c {Q′}”

877

Validity Relation

We define a validity relation:

|= {P} c {Q} ≡ ∀s t.(s, t) ∈ C(c)→ (P s)→ (Q t)

741You may wonder: Why do we raise the issue of a seman-

tics being valid, why don’t we just say “it’s defined like this,

full stop”? After all, we didn’t question the operational and

denotational semantics in the same way. So why do we take

the denotational semantics as the real semantics of a program

that another semantics such as the Hoare semantics has to

be somehow equivalent to in order to be correct? Couldn’t

we do it the other way round?

Validity Relation

We define a validity relation:

|= {P} c {Q} ≡ ∀s t.(s, t) ∈ C(c)→ (P s)→ (Q t)

A Hoare triple {P}c{Q} is valid if it relates a set of input

states and a set of output states correctly w.r.t. the denota-

tional (or equivalently, operational) semantics: for any input

state s and output state t related by the denotational seman-

tics, if P holds for s, then Q must hold for t.

741You may wonder: Why do we raise the issue of a seman-

tics being valid, why don’t we just say “it’s defined like this,

full stop”? After all, we didn’t question the operational and

denotational semantics in the same way. So why do we take

the denotational semantics as the real semantics of a program

that another semantics such as the Hoare semantics has to

be somehow equivalent to in order to be correct? Couldn’t

we do it the other way round?

First: If you want to accept anything as the real semantics of

a program, it would be the transition semantics, since we be-

lieve that by the transition semantics, we have modeled what

the compiler of the programming language actually does. The

transition semantics records the actual computation steps.

Secondly, we have shown that the transition semantics is

equivalent to the natural semantics, which in turn is equivalent

to the denotational semantics.

Thirdly, someone might claim that the Hoare semantics “ob-

viously” reflects the real semantics of a program, but that

878

Validity Relation

We define a validity relation:

|= {P} c {Q} ≡ ∀s t.(s, t) ∈ C(c)→ (P s)→ (Q t)

A Hoare triple {P}c{Q} is valid if it relates a set of input

states and a set of output states correctly w.r.t. the denota-

tional (or equivalently, operational) semantics: for any input

state s and output state t related by the denotational seman-

tics, if P holds for s, then Q must hold for t.

Why741 do we raise the issue of a semantics being valid,

why don’t we just say “it’s defined like this, full stop”?
741You may wonder: Why do we raise the issue of a seman-

tics being valid, why don’t we just say “it’s defined like this,

full stop”? After all, we didn’t question the operational and

denotational semantics in the same way. So why do we take

the denotational semantics as the real semantics of a program

that another semantics such as the Hoare semantics has to

be somehow equivalent to in order to be correct? Couldn’t

we do it the other way round?

First: If you want to accept anything as the real semantics of

a program, it would be the transition semantics, since we be-

lieve that by the transition semantics, we have modeled what

the compiler of the programming language actually does. The

transition semantics records the actual computation steps.

Secondly, we have shown that the transition semantics is

equivalent to the natural semantics, which in turn is equivalent

to the denotational semantics.

Thirdly, someone might claim that the Hoare semantics “ob-

viously” reflects the real semantics of a program, but that

878

Relating Hoare and Denotational Semantics

Theorem (Hoare soundness):

` {P} c {Q} =⇒|= {P} c {Q}
Theorem (Hoare relative completeness):

|= {P} c {Q} =⇒` {P} c {Q}
Why relative742?

So the Hoare relation is in fact compatible with the deno-

tational semantics of IMP.
would seem quite far-fetched, because the semantics speaks

about properties of states rather than about states directly.

Together this explains why we call a Hoare triple valid if it

is correct w.r.t. the denotational semantics.
742We will not give any details here, but the completeness

result is restricted in the same way that the completeness of

HOL is restricted to general models, as opposed to standard

models.

879

47.7 Example Program

tm :== λx.1;

sum :== λx.1;

i :== λx.0;

WHILE λs.(s sum) <= (s a) DO

(i :== λs.(s i) + 1;

tm :== λs.(s tm) + 2;

sum :== λs.(s tm) + (s sum))

47.7 Example Program

tm :== λx.1;

sum :== λx.1;

i :== λx.0;

WHILE λs.(s sum) <= (s a) DO

(i :== λs.(s i) + 1;

tm :== λs.(s tm) + 2;

sum :== λs.(s tm) + (s sum))

What does this program do?

47.7 Example Program

tm :== λx.1;

sum :== λx.1;

i :== λx.0;

WHILE λs.(s sum) <= (s a) DO

(i :== λs.(s i) + 1;

tm :== λs.(s tm) + 2;

sum :== λs.(s tm) + (s sum))

What does this program do?

Try a = 1, a = 2, . . . , and look at i!743

743a is not modified anywhere. You should think of a as input

of the program.

i counts the number of times the loop is entered, i.e. the

final value of i is the number of times the loop was entered.

This number depends on a. The following table shows that

final values of i, tm and sum depending on the value of a:

i tm sum

0 ≤ a < 1 0 1 1

1 ≤ a < 4 1 3 4

4 ≤ a < 9 2 5 9

9 ≤ a < 16 3 7 16

16 ≤ a < 25 4 9 25

25 ≤ a < 36 5 11 36

36 ≤ a < 49 6 13 49

sum takes the values of all squares successively, computed

by the famous binomial formula:

(i + 1)2 = i2 + 2i + 1

880

Square Root

Answer: The program computes the square root. Informally:

Pre ≡ ”True”

Since tm takes the value 2i+1 for all i successively, it follows

that sum + tm always gives the next value of sum.

881

Square Root

Answer: The program computes the square root. Informally:

Pre ≡ ”True”

Post ≡ ”i2 ≤ a < (i + 1)2”

Since tm takes the value 2i+1 for all i successively, it follows

that sum + tm always gives the next value of sum.

881

Square Root

Answer: The program computes the square root. Informally:

Pre ≡ ”True”

Post ≡ ”i2 ≤ a < (i + 1)2”

Formally

Pre ≡ λs. True

Since tm takes the value 2i+1 for all i successively, it follows

that sum + tm always gives the next value of sum.

881

Square Root

Answer: The program computes the square root. Informally:

Pre ≡ ”True”

Post ≡ ”i2 ≤ a < (i + 1)2”

Formally

Pre ≡ λs. True

Post ≡ λs. (s i)744 ∗ (s i) ≤ (s a) ∧
s a < (s i + 1) ∗ (s i + 1)

Since tm takes the value 2i+1 for all i successively, it follows

that sum + tm always gives the next value of sum.

881

Proving {Pre} . . . {Post}

We will now construct a proof tree showing that the program

computes the square root.

Generally, the difficulty745 is to know when to apply conseq.

We try to illustrate the search for the proof tree by anima-

tion. Still you may not understand each choice immediately,

but only in hindsight!

We use two metavariables: Inv for the loop invariant, PW

for the enter condition of the loop. We instantiate later.

Abbreviation: ExC ≡ λs.Inv s ∧ ¬s sum ≤ s a (“exit

condition”). We omit `!

745The conseq rule can always be applied. If one decides not

to apply the conseq rule, then the choice of any other rule is

deterministic.

882

Proof

{Pre} tm . . . 746{Post}

This is what we want to prove.

883

Proof

747 { } tm . . . {ExC} I2 759

{Pre} tm . . . 746{Post}
conseq

Nothing happens after the loop, so intuition says that ExC

must imply Post .

883

Proof

747

749

752

755 {PW}WH . . . 756{ExC}

{ } i . . . 754{ExC}
semi

{ } sum . . . 751{ExC}
semi

{ } tm . . . {ExC}
semi

I2 759

{Pre} tm . . . 746{Post}
conseq

Apply semi three times. PW (“pre while”) is just a sensible

choice of name: we don’t know yet what it is.

883

Proof

747

749

752

A3
755 {PW}WH . . . 756{ExC}

{ } i . . . 754{ExC}
semi

{ } sum . . . 751{ExC}
semi

{ } tm . . . {ExC}
semi

I2 759

{Pre} tm . . . 746{Post}
conseq

This application of ass will allow us to reconstruct the pre-

condition in the line just below.

883

Proof

747

749

A2
752

A3
755 {PW}WH . . . 756{ExC}

{λs.PW (s[”i”]753)} i . . . 754{ExC}
semi

{ } sum . . . 751{ExC}
semi

{ } tm . . . {ExC}
semi

I2 759

{Pre} tm . . . 746{Post}
conseq

And likewise A2 .

883

Proof

747

A1
749

A2
752

A3
755 {PW}WH . . . 756{ExC}

{λs.PW (s[”i”]753)} i . . . 754{ExC}
semi

{λs.PW (s[”i, sum”]750)} sum . . . 751{ExC}
semi

{ } tm . . . {ExC}
semi

I2 759

{Pre} tm . . . 746{Post}
conseq

And likewise A1 .

883

Proof

I1 747

A1
749

A2
752

A3
755 {PW}WH . . . 756{ExC}

{λs.PW (s[”i”]753)} i . . . 754{ExC}
semi

{λs.PW (s[”i, sum”]750)} sum . . . 751{ExC}
semi

{λs.PW (s[”i, sum, tm”]748)} tm . . . {ExC}
semi

I2 759

{Pre} tm . . . 746{Post}
conseq

We now know (by the form of conseq) what I1 is.

883

Proof

I1 747

A1
749

A2
752

A3
755

I3 757 {Inv}WH . . . {ExC} I4 758

{PW}WH . . . 756{ExC}
conseq

{λs.PW (s[”i”]753)} i . . . 754{ExC}
semi

{λs.PW (s[”i, sum”]750)} sum . . . 751{ExC}
semi

{λs.PW (s[”i, sum, tm”]748)} tm . . . {ExC}
semi

I2 759

{Pre} tm . . . 746{Post}
conseq

Intuition says that PW must imply Inv .

Of course, we are not ready yet. . .

883

Completing the Proof

A1 , A2 and A3 are complete, and I4 is trivial.

884

Completing the Proof

A1 , A2 and A3 are complete, and I4 is trivial.

I1 , I2 , I3 , and {Inv}WH . . . {ExC} remain to be

shown.

884

Completing the Proof

A1 , A2 and A3 are complete, and I4 is trivial.

I1 , I2 , I3 , and {Inv}WH . . . {ExC} remain to be

shown.

This also involves the question of how the metavariables

must be instantiated.

884

What is PW?

The metavariable PW (“precondition of WHILE ”) must fulfill

(to show I1)

∀s.Pre s→ PW (s[i ::= 0][sum ::= 1][tm ::= 1])

where

s[i ::= 0][sum ::= 1][tm ::= 1] = λy. if y = tm then 1 else

(if y = sum then 1 else(if y = i then 0 else (s y)))

885

What is PW?

The metavariable PW (“precondition of WHILE ”) must fulfill

(to show I1)

∀s.Pre s→ PW (s[i ::= 0][sum ::= 1][tm ::= 1])

where

s[i ::= 0][sum ::= 1][tm ::= 1] = λy. if y = tm then 1 else

(if y = sum then 1 else(if y = i then 0 else (s y)))

Solution (recall that Pre ≡ λs.True):

PW = λs.s i = 0 ∧ s sum = 1 ∧ s tm = 1

885

What is Inv?

Continuing our proof tree construction:

{λs.Inv s ∧ s sum ≤ s a} ”body” 760{Inv}

{Inv}WH . . . {ExC}
While

761Of course, these three formulas should be side by side in

the proof tree, but this cannot be displayed.

886

What is Inv?

Continuing our proof tree construction:

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}

{P ′′}sum :== λs.s tm+ s sum{Inv}

{λs.Inv s ∧ s sum ≤ s a} ”body” 760{Inv}
semi2

{Inv}WH . . . {ExC}
While

Just blindly applying semi twice gives three formulas761 to be

proven using ass , one for each assignment in the loop.

761Of course, these three formulas should be side by side in

the proof tree, but this cannot be displayed.

886

What is Inv?

Continuing our proof tree construction:

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}

{P ′′}sum :== λs.s tm+ s sum{Inv}

{λs.Inv s ∧ s sum ≤ s a} ”body” 760{Inv}
semi2

{Inv}WH . . . {ExC}
While

Just blindly applying semi twice gives three formulas761 to be

proven using ass , one for each assignment in the loop.

Now what are P ′ and P ′′? Have a look at rule ass first!

761Of course, these three formulas should be side by side in

the proof tree, but this cannot be displayed.

886

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv (s[sum ::= s tm + s sum])

887

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv (s[sum ::= s tm + s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm + 2]) (rule ass)

887

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv (s[sum ::= s tm + s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm + 2]) (rule ass)

= λs′.(λs.Inv (s[sum ::= s tm + s sum]))

(s′[tm ::= s′ tm + 2])

887

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv (s[sum ::= s tm + s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm + 2]) (rule ass)

= λs′.(λs.Inv (s[sum ::= s tm + s sum]))

(s′[tm ::= s′ tm + 2])

= λs′.Inv ((s′[tm ::= s′ tm + 2])

[sum ::= (s′[tm ::= s′ tm + 2]) tm+

(s′[tm ::= s′ tm + 2]) sum])

887

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv (s[sum ::= s tm + s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm + 2]) (rule ass)

= λs′.(λs.Inv (s[sum ::= s tm + s sum]))

(s′[tm ::= s′ tm + 2])

= λs′.Inv ((s′[tm ::= s′ tm + 2])

[sum ::= (s′[tm ::= s′ tm + 2]) tm+

(s′[tm ::= s′ tm + 2]) sum])

= λs′.Inv (s′[tm ::= s′ tm + 2]

[sum ::= s′ tm + 2 + s′ sum]).

887

Applying ass to i :== λs.s i + 1

Now treat i :== λs.s i + 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv (s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

762Recall that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
{P ′}tm :== λs.s tm + 2{P ′′}
{P ′′}sum :== λs.s tm + s sum{Inv}

all by ass . Dealing with the second and third formula using

ass , we found that

P ′ = λs′.Inv (s′[tm ::= s′ tm+2][sum ::= s′ tm + 2+s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
as well, Inv must have such a form that the formula becomes

an instance of ass .

888

Applying ass to i :== λs.s i + 1

Now treat i :== λs.s i + 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv (s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i + 1]) (by rule ass)

762Recall that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
{P ′}tm :== λs.s tm + 2{P ′′}
{P ′′}sum :== λs.s tm + s sum{Inv}

all by ass . Dealing with the second and third formula using

ass , we found that

P ′ = λs′.Inv (s′[tm ::= s′ tm+2][sum ::= s′ tm + 2+s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
as well, Inv must have such a form that the formula becomes

an instance of ass .

888

Applying ass to i :== λs.s i + 1

Now treat i :== λs.s i + 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv (s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i + 1]) (by rule ass)

= λs′.(λs.Inv (s[tm ::= s tm + 2][sum ::= s tm + 2 + s sum]))

(s′[i ::= s′ i + 1])

762Recall that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
{P ′}tm :== λs.s tm + 2{P ′′}
{P ′′}sum :== λs.s tm + s sum{Inv}

all by ass . Dealing with the second and third formula using

ass , we found that

P ′ = λs′.Inv (s′[tm ::= s′ tm+2][sum ::= s′ tm + 2+s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
as well, Inv must have such a form that the formula becomes

an instance of ass .

888

Applying ass to i :== λs.s i + 1

Now treat i :== λs.s i + 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv (s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i + 1]) (by rule ass)

= λs′.(λs.Inv (s[tm ::= s tm + 2][sum ::= s tm + 2 + s sum]))

(s′[i ::= s′ i + 1])

= λs′.Inv ((s′[i ::= s′ i + 1])

[tm ::= (s′[i ::= s′ i + 1]) tm + 2]

[sum ::= (s′[i ::= s′ i + 1]) tm + 2 + (s′[i ::= s′ i + 1]) sum]))

762Recall that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
{P ′}tm :== λs.s tm + 2{P ′′}
{P ′′}sum :== λs.s tm + s sum{Inv}

all by ass . Dealing with the second and third formula using

ass , we found that

P ′ = λs′.Inv (s′[tm ::= s′ tm+2][sum ::= s′ tm + 2+s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
as well, Inv must have such a form that the formula becomes

an instance of ass .

888

Applying ass to i :== λs.s i + 1

Now treat i :== λs.s i + 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv (s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i + 1]) (by rule ass)

= λs′.(λs.Inv (s[tm ::= s tm + 2][sum ::= s tm + 2 + s sum]))

(s′[i ::= s′ i + 1])

= λs′.Inv ((s′[i ::= s′ i + 1])

[tm ::= (s′[i ::= s′ i + 1]) tm + 2]

[sum ::= (s′[i ::= s′ i + 1]) tm + 2 + (s′[i ::= s′ i + 1]) sum]))

= λs.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum]).

762Recall that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
{P ′}tm :== λs.s tm + 2{P ′′}
{P ′′}sum :== λs.s tm + s sum{Inv}

all by ass . Dealing with the second and third formula using

ass , we found that

P ′ = λs′.Inv (s′[tm ::= s′ tm+2][sum ::= s′ tm + 2+s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
as well, Inv must have such a form that the formula becomes

an instance of ass .

888

Applying ass to i :== λs.s i + 1

λs.Inv s ∧ s sum ≤ s a

= λs.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum]).

So Inv must solve762 this equation.
762Recall that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
{P ′}tm :== λs.s tm + 2{P ′′}
{P ′′}sum :== λs.s tm + s sum{Inv}

all by ass . Dealing with the second and third formula using

ass , we found that

P ′ = λs′.Inv (s′[tm ::= s′ tm+2][sum ::= s′ tm + 2+s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i + 1{P ′}
as well, Inv must have such a form that the formula becomes

an instance of ass .

888

Inv Must Fulfill the Equation

Inv must fulfill the equation

λs.Inv s ∧ s sum ≤ s a=

λs.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum])

889

Inv Must Fulfill the Equation

Inv must fulfill the equation

∀s.Inv s ∧ s sum ≤ s a↔
∀s.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum])

Don’t think syntactically! We are in HOL: = means ↔, and

we can replace λ by ∀.

889

Inv Must Fulfill the Equation

Inv must fulfill the equation

∀s.Inv s ∧ s sum ≤ s a↔
∀s.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum])

Don’t think syntactically! We are in HOL: = means ↔, and

we can replace λ by ∀.

Guessing the right Inv is obviously difficult! Informally

Inv ≡ ”(i + 1)2 = sum ∧ tm = (2 ∗ i) + 1 ∧ i2 ≤ a”

889

Checking that Inv Fulfills Equation

s sum ≤ s a ∧ (8)

(s i + 1)2 = (s sum) ∧ (9)

s tm = (2 ∗ (s i)) + 1 ∧ (10)

(s i)2 ≤ (s a) ∧ (11)

(recall: = means ↔) = (12)

((s i + 1) + 1)2 = (s sum) + (s tm) + 2 ∧ (13)

(s tm + 2) = (2 ∗ (s i + 1)) + 1 ∧ (14)

(s i + 1)2 ≤ (s a) (15)

890

Proof Sketch

First show the “→”-direction:

(10) → (14) and (8) ∧ (9) → (15) by simple arithmetic.

(13) is shown as follows:

((s i + 1) + 1)2 = (s i + 1)2 + 2 ∗ (s i + 1) + 1
(9)
= (s sum) + 2(s i) + 1 + 2

(10)
= (s sum) + (s tm) + 2

891

Proof Sketch (Cont.)

Now show the “←”-direction:

(14) → (10) and (15) → (11) by simple arithmetic. (9) is

shown as follows:

(s i + 1)2 = ((s i + 1) + 1)2 − 2 ∗ (s i + 1)− 1
(13)
= (s sum) + (s tm) + 2− 2 ∗ (s i + 1)− 1

(14)
= (s sum) + 2 ∗ (s i + 1) + 1

−2 ∗ (s i + 1)− 1

= s sum

Finally, (9) ∧ (15) → (8).

892

Proof Sketch (Cont.)

Now show the “←”-direction:

(14) → (10) and (15) → (11) by simple arithmetic. (9) is

shown as follows:

(s i + 1)2 = ((s i + 1) + 1)2 − 2 ∗ (s i + 1)− 1
(13)
= (s sum) + (s tm) + 2− 2 ∗ (s i + 1)− 1

(14)
= (s sum) + 2 ∗ (s i + 1) + 1

−2 ∗ (s i + 1)− 1

= s sum

Finally, (9) ∧ (15) → (8). So Inv is indeed an invariant!

892

The WHILE Loop: Remarks

We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

893

The WHILE Loop: Remarks

We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

One would definitely expect →, but ← is remarkable!

893

The WHILE Loop: Remarks

We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

One would definitely expect →, but ← is remarkable!

We can show this because our invariant is so strong: for

showing →, the weaker invariant (9) ∧ (10), i.e.

”(i + 1)2 = sum ∧ tm = (2 ∗ i) + 1

would do (check it!).

893

The WHILE Loop: Remarks

We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

One would definitely expect →, but ← is remarkable!

We can show this because our invariant is so strong: for

showing →, the weaker invariant (9) ∧ (10), i.e.

”(i + 1)2 = sum ∧ tm = (2 ∗ i) + 1

would do (check it!).

But the extra condition i2 ≤ a is needed for showing Post ,

which states what the program actually computes.

893

Taking Care of Post

We have shown I1 and {Inv}WH . . . {ExC}. Now con-

tinue with I2 .

Does Post s follow from Inv s ∧ ¬s sum ≤ s a?

894

Taking Care of Post

We have shown I1 and {Inv}WH . . . {ExC}. Now con-

tinue with I2 .

Does Post s follow from Inv s ∧ ¬s sum ≤ s a?

Yes!

(s i)2 ≤ (s a) follows from (11)

(s a) < (s i + 1)2 follows from ¬s sum ≤ (s a) and (9).

894

The Final Missing Part

I3 remains to be shown, i.e.

∀s.PW s→ Inv s

or, expanding the solutions for PW and Inv

∀s. s i = 0 ∧ s sum = 1 ∧ s tm = 1→
(s i + 1)2 = s sum ∧
s tm = (2 ∗ (s i)) + 1 ∧
(s i)2 ≤ (s a)

This is easy to check.

895

An Alternative for Tackling the Loop Part

Recall that our loop invariant was “too strong”. An alterna-
tive:

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}

{Inv}WH . . . {ExC}
While

896

An Alternative for Tackling the Loop Part

Recall that our loop invariant was “too strong”. An alterna-
tive:

∀s.(Inv s∧
s sum ≤ s a)→
Inv ′ s

{Inv ′} ”body” {Inv}

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}
conseq

{Inv}WH . . . {ExC}
While

896

An Alternative for Tackling the Loop Part

Recall that our loop invariant was “too strong”. An alterna-
tive:

∀s.(Inv s∧
s sum ≤ s a)→
Inv ′ s

{Inv ′}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}
{P ′′}sum :== λs.s tm+ s sum{Inv}

{Inv ′} ”body” {Inv}
semi2

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}
conseq

{Inv}WH . . . {ExC}
While

896

Alternative (Cont.)

Applying ass as before gives

Inv ′ = λs.Inv (s[i ::= s i + 1][tm ::= s tm + 2]

[sum ::= s tm + 2 + s sum])

We are left with the proof obligation

∀s.(Inv s ∧ s sum ≤ s a)→ Inv (s[i ::= s i + 1]

[tm ::= s tm + 2][sum ::= s tm + 2 + s sum])

Just this could be shown setting weak Inv ≡ (9) ∧ (10), but

for actually showing Post , i2 ≤ a is still needed.

897

47.8 Automating Hoare Proofs

In the example, we have verified a program computing the

square root.

But this was tedious, and parts of the task can be auto-

mated.

898

Weakest Liberal Preconditions

Observation: the Hoare relation is deterministic to a certain

extent.

Idea: we use this fact for the generation of (weakest liberal)

preconditions.

Weakest liberal preconditions are:

constdefs wp :: com⇒ assn ⇒ assn

”wp c Q ≡ (λs.∀t.(s, t) ∈ C(c)→ Q t)”

So wp c Q returns the set of states containing all states s

such that if t is reached from s via c, then the post-condition

Q holds for t. Computable?

899

Weakest Liberal Preconditions

Observation: the Hoare relation is deterministic to a certain

extent.

Idea: we use this fact for the generation of (weakest liberal)

preconditions.

Weakest liberal preconditions are:

constdefs wp :: com⇒ assn ⇒ assn

”wp c Q ≡ (λs.∀t.(s, t) ∈ C(c)→ Q t)”

So wp c Q returns the set of states containing all states s

such that if t is reached from s via c, then the post-condition

Q holds for t. Computable? Not obvious.

899

Equivalence Proofs

Main results of the wp-generator are:
wp SKIP: wp SKIP Q = Q
wp Ass: wp (x :== a) Q = (λs. Q (s[x ::= a s]))
wp Semi: wp (c; d) Q = wp c (wp d Q)
wp If: wp (IF b THEN c ELSE d) Q =

(λs.(b s→ wp c Q s) ∧ (¬b s→ wp d Q s))
wp While True: b s =⇒ wp (WHILE b DO c) Q s =

wp (c; WHILE b DO c) Q s
wp While False: ¬b s =⇒ wp (WHILE b DO c) Q s = Q s
wp While if: wp (WHILE b DO c) Q s =

(if b s then wp(c; WHILE b DO c) Q s else Q s)

Last case summarises the two before.

900

WP-Semantics

Except for termination problem due to While, (weakest lib-

eral) precondition wp can be computed.

This fact can be used for further proof support by verifica-

tion condition generation.

901

Verification Condition Generation

First, we must enrich the syntax by loop-invariants:

datatype acom =

Askip

| Aass loc aexp

| Asemi acom acom

| Aif bexp acom acom

| Awhile bexp assn acom

Almost same as com, but While gets an additional ar-

gument for asserting a loop invariant. Asserting this is the

difficult, creative step to be done by a human.

902

Computing a Weakest Liberal Precondition

We define a function that computes a wp:
primrec

”awp Askip Q = Q”

”awp (Aass x a) Q = (λs.Q(s[x ::= as]))”

”awp (Asemi c d) Q = awp c (awp d Q)”

”awp (Aif b c d) Q = (λs.(b s→ awp c Q s)∧
(¬b s→ awp d Q s))”

”awp (Awhile b Inv c) Q = Inv”
Idea: for all statements, the exact wp is computed, except

for While, where the assertion provided by the user is taken as

approximation. Proof obligation: show that such an assertion

is compatible with the program and the desired property . . .

903

A Verification Condition

Construct a formula vc c Q s with the intuitive reading: as

far as the invariant assertions are concerned, s is a good pre-

state for reaching desired post-property Q using annotated

program c.

This is not about distinguishing good pre-states from bad

pre-states! It is about formalising well-chosen invariants. For

an annotated program with well-chosen invariants, ∀s.vc c Q s

holds, i.e. vc c Q ≡ λs.True.

904

The Definition of vc

Roughly, an annotated programm has well-chosen invariants

if its components have well-chosen invariants, so most of the

definition is saying just that:
primrec

”vc Askip Q = (λs.True)”

”vc (Aass x a) Q = (λs.True)”

”vc (Asemi c d) Q = (λs.vc c (awp d Q) s ∧ vc d Q s)”

”vc (Aif b c d) Q = (λs.vc c Q s ∧ vc d Q s)”

”vc (Awhile b Inv c) Q = (λs.(Inv s ∧ ¬b s→ Q s)∧
(Inv s ∧ b s→ awp c Inv s) ∧ vc c Inv s)”

Only the case for While is non-trivial . . .

905

vc: The While case

”vc (Awhile b Inv c)Q = (λs.(Inv s ∧ ¬b s→ Q s)∧
(Inv s ∧ b s→ awp c Inv s)∧
vc c Inv s)”

Why is Inv a well-chosen invariant?

• Inv + exit condition imply Q: Inv s ∧ ¬(b s)→ Q s;

• Inv + loop condition imply precondition of Inv (so that

Inv will hold after one execution of c): Inv s ∧ (b s)→
awp c Inv s.

• vc c Inv s is in the spirit of the rest of the definition of

vc: call vc recursively for the component.

906

Results of the wp-Generator

vc sound: ∀Q.(∀s.vc ac Q s)→
` {awp ac Q} astrip763 ac {Q}
vc complete: ` {P} c {Q} =⇒ ∃ac.astrip ac = c∧
(∀s.vc ac Q s) ∧ (∀s.P s→ awp ac Q s)

To prove that c has property Q after execution, annotate

it with loop invariants (ac) and show ∀s. vc ac Q s. This

implies that a Hoare proof exists, for the computable precon-

dition awp ac Q. For good (robust) programs, awp ac Q =

λs.True.

907

Summary

IMP closely follows the standard textbook [Win96].

Isabelle/HOL is a powerful framework for embedding im-

perative languages.

Isabelle/HOL is also a framework for state-of-the-art lan-

guages like JAVA including interfaces, inheritance, dynamic

methods.

It works in theory and for non-trivial problems in practice

(but of modest size).

908

48 A Taste of some Isabelle and HOL
Applications

909

Just a few Isabelle or HOL Applications

We briefly introduce two Isabelle/HOL applications, and one

application of HOL Light:

• Java bytecode verification;

• floating-point arithmetic;

• red-black trees.

This is just to stimulate you to look for more applications on

your own!

48.1 Java Bytecode Verification

Typically, Java programs are delivered as bytecode, as opposed

to source code on the one hand and machine code on the other

hand. Bytecode is machine-independent.

910

http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/projects.html

A Java runtime system provides the Java Virtual Machine,

i.e., an interpreter for Java bytecode.

Java is a typed language: the type system forbids things like

pointer arithmetic, thus preventing illegal764 memory access.

However, bytecode is not type-safe by itself. For various

reasons, bytecode could be corrupted. This is obviously criti-

cal for security and possibly safety.

764By “illegal memory access”, we mean access to regions not

assigned to the program.

911

Ensuring Type Safety

The loader of a typical JVM has a bytecode verifier: A pro-

gram that checks whether bytecode is type-safe.

Klein and Nipkow have specified a JVM and a bytecode

verifier in Isabelle and proved its correctness using Isabelle

[KN03, Nip03].

Such applications may have big impact since they are con-

cerned with the correctness of not just some particular pro-

gram, but rather the programming language (implementation)

itself.

912

JavaCard

JavaCard is a subset of Java employed on smart cards. As-

pects in contrast to full Java:

• Memory on smart cards is limited765.

• Security is vital for smart card applications (banking etc.).

Project Verificard concerned with ensuring reliability of smart

card applications.

Verificard @ Munich have applied the work on bytecode

verification (using Isabelle) to JavaCard.

End user panel includes Ericsson, France Télécom R&D,

and Gemplus.
765The memory on smart cards is limited. A full-fledged byte-

code verifier would be too large/slow. One approach to tack-

ling this problem is to work with bytecode programs with type

annotations. Checking if a bytecode program is consistent

with its type annotations is a much simpler task than comput-

ing these type annotations, which is what a bytecode verifier

is supposed to do. The task can therefore be performed on a

smart card more easily than full bytecode verification.

913

http://www.verificard.org/
http://isabelle.in.tum.de/verificard/
http://www.ericsson.com
http://www.francetelecom
http://www.gemplus.com/

48.2 Floating Point Arithmetic

John Harrison has done much work on verifying arithmetic

functions operating on various number types adhering to cer-

tain standards [Har98, Har99, Har00].

He has used HOL Light, not Isabelle. This means: no

metalogic, specialized theorem prover for HOL.

He formally proved that the floating point operations of an

Intel processor behave according to the IEEE standard 754

[IEE85]. First machine-checked proof of this kind.

We briefly review his work [Har99] using an Isabelle-like

syntax where helpful.

914

http://www.cl.cam.ac.uk/users/jrh/
http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html

What Are Floats?

Conventionally: floats have the form ±2e · k.

e is called exponent, Emin ≤ e ≤ Emax.

k is called mantissa, can be represented with p bits.

915

Floats in HOL

For formalization in HOL, equivalent representation

(−1)s · 2e−N · k

with k < 2p and 0 ≤ e < E.

Thus a particular float format is characterized by maximal

exponent E, precision p, and exponent offset (“ulpscale”) N .

The set of real numbers representable by a triple is:

format (E, p,N) =

{x | ∃s e k. s < 2 ∧ e < E ∧ k < 2p ∧ x = (−1)s · 2e · k/2N}

916

Rounding

Rounding takes a real to a representable real nearby. E.g. round-

ing up:

round fmt x = εa. a ∈ format fmt ∧ a ≤ x∧
∀b ∈ format fmt . b ≤ x→ b ≤ a

Formalization of the Standard [IEE85].

Useful lemmas such as:

x ≤ y =⇒ round fmt x ≤ round fmt y

a ∈ format fmt ∧ b ∈ format fmt ∧ 0.5 ≤ a
b ≤ 2 =⇒

(b− a) ∈ format fmt

917

Operations

For operations such as addition, multiplication etc., it is proven

in HOL that they behave as if they computed the exact result

and rounded afterwards.

However, there are some debatable questions related to the

sign of zeros.

918

48.3 Red-Black Trees

Red-black trees are trees that can be used for implementing

sets/dictionaries, just like AVL trees. To formulate “balanced-

ness” invariants, nodes are colored:

1. Every red node has a black parent.

2. Each path from the root to a leaf has the same number

of black nodes.

Together these invariants ensure that maximal paths can differ

in length by at most factor 2.

These invariants must be maintained by insertion and dele-

tion operations.

919

Red-Black Trees in SML

Red-black trees provided in New Jersey SML library [Pau96].

Angelika Kimmig766 tried to verify the insertion operation

of red-black trees using Isabelle. Findings?

766Angelika Kimmig is a student who took this course in Win-

tersemester 02/03 in Freiburg. She then continued working

with Isabelle in a Studienarbeit (a project required by com-

puter science students in Freiburg).

920

http://www.smlnj.org/

Red-Black Trees in SML

Red-black trees provided in New Jersey SML library [Pau96].

Angelika Kimmig766 tried to verify the insertion operation

of red-black trees using Isabelle. Findings?

• There is a mistake in the implementation of red-black

trees in New Jersey SML! Insertion may lead to a violation

of the first invariant, since the root may become red.

• As long as one just inserts, this is just a slight constant

deterioration.

• Angelika has suggested a fix and proven the correctness

of red-black tree insertion using Isabelle.

766Angelika Kimmig is a student who took this course in Win-

tersemester 02/03 in Freiburg. She then continued working

with Isabelle in a Studienarbeit (a project required by com-

puter science students in Freiburg).

920

http://www.smlnj.org/

Node Deletion

• Deletion is also wrongly implemented!

• With deletion, not just the root can become red, but the

tree coloring can become completely wrong.

• Angelika has an idea for fixing deletion as well, but no

proof (yet?).

Read the Studienarbeit for more details [Kim03]!

References

[AHMP92] Arnon Avron, Furio Honsell, Ian A. Mason, and

Robert Pollack. Using typed lambda calculus to

921

implement formal systems on a machine. Journal

of Automated Reasoning, 9(3):309–354, 1992.

[And02] Peter B. Andrews. An Introduction to Mathemat-

ical Logic and Type Theory: To Truth Through

Proofs. Kluwer Academic Publishers, 2002. Sec-

ond Edition.

[Apt97] Krzysztof R. Apt. From Logic Programming to

Prolog. Prentice Hall, 1997.

[Ari] Aristotle. Analytica priora I, chapter 4.

[Ber91] Paul Bernays. Axiomatic Set Theory. Dover Pub-

lications, 1991.

[BM00] David A. Basin and Seàn Matthews. Structuring

metatheory on inductive definitions. Information

922

and Computation, 162(1-2):80–95, 2000. Down-

load.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting

and All That. Cambridge University Press, 1998.

[Can18] Georg Cantor. ?? ??, 18??

[Chu40] Alonzo Church. A formulation of the simple the-

ory of types. Journal of Symbolic Logic, 5:56–68,

1940.

[dB80] Nicolaas G. de Bruijn. A survey of the project

AUTOMATH. In Essays in Combinatory Logic,

Lambda Calculus, and Formalism. Academic

Press, 1980.

[Des16] Rene Descartes. ?? ??, 16??

923

http://www.informatik.uni-freiburg.de/~basin/pubs/metaind.ps.Z
http://www.informatik.uni-freiburg.de/~basin/pubs/metaind.ps.Z

[Dev93] Keith Devlin. The Joy of Sets. Fundamentals of

Contemporary Set Theory. Undergraduate Texts

in Mathematics. Springer-Verlag, 1993.

[Ebb94] Heinz-Dieter Ebbinghaus. Einführung in die Men-

genlehre. BI-Wissenschaftsverlag, 1994.

[Fit96] M. Fitting. First-order Logic and Automated The-

orem Proving. Springer-Verlag, 1996.

[Fle00] Jacques D. Fleuriot. On the mechanization of

real analysis in isabelle/hol. In Proceedings of the

13th International Conference on Theorem Prov-

ing in Higher Order Logics, volume 1869 of Lec-

ture Notes in Computer Science, pages 145–161.

Springer, 2000.

924

[FP98] Jacques D. Fleuriot and Lawrence C. Paulson. A

combination of nonstandard analysis and geome-

try theorem proving, with application to newton’s

principia. In Claude Kirchner and Hélène Kirch-

ner, editors, Proceedings of the 15th CADE, vol-

ume 1421 of LNCS, pages 3–16. Springer-Verlag,

1998.

[Frä22] Adolf Fränkel. Zu den Grundlagen der Cantor-

Zermeloschen Mengenlehre. Mathematische An-

nalen, 86:230–237, 1922. See [vH67].

[Fre93] Gottlob Frege. Grundgesetze der Arithmetik, vol-

ume I. Verlag Hermann Pohle, 1893. Translated

in part in [Fur64].

[Fre03] Gottlob Frege. Grundgesetze der Arithmetik, vol-

925

ume II. Verlag Hermann Pohle, 1903. Translated

in part in [Fur64].

[Fur64] Montgomery Furth. The Basic Laws of Arith-

metic. Berkeley: University of California Press,

1964. Translation of [Fre03].

[Gen35] Gerhard Gentzen. Untersuchungen über das lo-

gische Schliessen. Mathematische Zeitschrift,

39:176–210, 405–431, 1935. English translation

in [Sza69].

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor.

Proofs and Types. Cambridge University Press,

1989.

[GM93] Michael J. C. Gordon and Tom F. Melham, edi-

tors. Introduction to HOL. Cambridge University

926

Press, 1993.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze

der Principia Mathematica und verwandter Sys-

teme. Monatshefte für Mathematik und Physik,

38:173–198, 1931.

[Har98] John Harrison. Theorem Proving with the Real

Numbers. Springer-Verlag, 1998.

[Har99] John Harrison. A machine-checked theory of float-

ing point arithmetic. In Yves Bertot, Gilles Dowek,

André Hirschowitz, C. Paulin, and Laurent Théry,

editors, Proceedings of the 12th TPHOLs, volume

1690 of LNCS, pages 113–130. Springer-Verlag,

1999.

927

[Har00] John Harrison. Formal verification of the IA/64 di-

vision algorithms. In Mark Aagaard and John Har-

rison, editors, Proceedings of the 13th TPHOLs,

volume 1869 of LNCS, pages 233–251. Springer-

Verlag, 2000.

[HC68] George E. Hughes and Maxwell John Cresswell.

An Introduction to Modal Logic. Muthuen and

Co. Ltd, London, 1968.

[Hen50] Henkin. Completeness in the theory of types.

Journal of Symbolic Logic, 15(2):81–91, 1950.

[HHP93] Robert Harper, Furio Honsell, and Gordon D.

Plotkin. A framework for defining logics. JACM,

40(1):143–184, 1993.

928

[HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L. Pey-

ton Jones, and Philipp Wadler. Type classes in

Haskell. ACM Transactions on Programming Lan-

guages and Systems, 18(2):109–138, 1996.

[Höl90] Steffen Hölldobler. Conditional equational theo-

ries and complete sets of transformations. Theo-

retical Computer Science, 75(1&2):85–110, 1990.

[HP93] G. Huet and G. Plotkin, editors. Logical Environ-

ments. Cambridge University Press, 1993.

[HR04] Michael Huth and Mark Ryan. Logic in Computer

Science. Modelling and Reasoning about Systems.

Cambridge University Press, 2nd edition edition,

2004.

929

[HS90] J. Roger Hindley and Jonathan P. Seldin. Intro-

duction to Combinators and λ-Calculus. Cam-

bridge University Press, 1990.

[Hué] Gerard Huét. ?? ??, ??

[IEE85] The Institute of Electrical and Electronic Engi-

neers, Inc. IEEE. Standard for binary floating

point arithmetic. ANSI/IEEE Standard 754-1985,

1985.

[Kim03] Angelika Kimmig. Red-black trees of slmnj. Studi-

enarbeit at Universität Freiburg, Download, 2003.

[Klo93] Jan Willem Klop. Handbook of Logic in Computer

Science, chapter ”Term Rewriting Systems”. Ox-

ford: Clarendon Press, 1993.

930

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0506/csmr/rbt.pdf

[KN03] Gerwin Klein and Tobias Nipkow. Verified byte-

code verifiers. Theoretical Computer Science,

3(298):583–626, 2003.

[LP81] Harry R. Lewis and Christos H. Papadimitriou. El-

ements of the Theory of Computation. Prentice-

Hall, 1981.

[Mil78] Robin Milner. A theory of type polymorphism in

programming. Journal of Computer and System

Sciences, 17(3):348–375, 1978.

[Mil92] Dale Miller. Logic, higher-order. In Stuart C.

Shapiro, editor, Encyclopedia of Artificial Intelli-

gence. John Wiley & Sons, 2 edition, 1992.

931

[Min00] Grigori Mints. A Short Introduction to Intuition-

istic Logic. Kluwer Academic/Plenum Publishers,

2000.

[Nip93] Tobias Nipkow. Order-Sorted Polymorphism in

Isabelle, pages 164–188. Cambridge University

Press, 1993. In [HP93].

[Nip98] Tobias Nipkow. Winskel is (almost) right: To-

wards a mechanized semantics. Formal Aspects

of Computing, 10(2):171–186, 1998.

[Nip02] Tobias Nipkow. Hoare logics in Isabelle/HOL.

In H. Schwichtenberg and R. Steinbrüggen, ed-

itors, Proof and System-Reliability, pages 341–

367. Kluwer, 2002.

932

[Nip03] Tobias Nipkow. Java bytecode verification. Jour-

nal of Automated Reasoning, 30(3-4):233–233,

2003.

[NN99] Wolfgang Naraschewski and Tobias Nipkow. Type

inference verified: Algorithm W in Isabelle/HOL.

Journal of Automated Reasoning, 23(3-4):299–

318, 1999.

[NP93] Tobias Nipkow and Christian Prehofer. Type

checking type classes. In Proceedings of the 20th

ACM Symposium Principles of Programming Lan-

guages, pages 409–418. ACM Press, 1993.

[Pau89] Lawrence C Paulson. The foundation of a generic

theorem prover. Journal of Automated Reasoning,

5(3):363–397, 1989.

933

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theo-

rem Prover, volume 828 of LNCS. Springer, 1994.

[Pau96] Lawrence C. Paulson. ML for the Working Pro-

grammer. Cambridge University Press, 1996.

[Pau97a] Lawrence C. Paulson. Generic automatic proof

tools. In Robert Veroff, editor, Automated Rea-

soning and its Applications: Essays in Honor of

Larry Wos, chapter 3. MIT Press, 1997.

[Pau97b] Lawrence C. Paulson. Mechanizing coinduction

and corecursion in higher-order logic. Journal

of Logic and Computation, 7(2):175–204, 1997.

Download.

934

http://arxiv.org/pdf/cs.LO/9711105

[Pau05] Lawrence C. Paulson. The Isabelle Reference

Manual. Computer Laboratory, University of

Cambridge, October 2005.

[Pea18] Guiseppe Peano. ?? ??, 18??

[Plo81] Gordon D. Plotkin. A structural approach to oper-

ational semantics. Technical Report DAIMI FN-

19, Computer Science Department, Aarhus Uni-

versity, Denmark, 1981.

[PM68] Dag Prawitz and Per-Erik Malmnäs. A sur-

vey of some connections between classical, intu-

itionistic and minimal logic. In A. Schmidt and

H. Schütte, editors, Contributions to Mathemati-

cal Logic, pages 215–229. North-Holland, 1968.

935

[Pra65] Dag Prawitz. Natural Deduction: A proof theo-

retical study. Almqvist and Wiksell, 1965.

[Pra71] Dag Prawitz. Ideas and results in proof theory. In

Jens Erik Fenstad, editor, Proceedings of the Sec-

ond Scandinavian Logic Symposium, pages 235–

308. North-Holland, 1971.

[SH84] Peter Schroeder-Heister. A natural extension of

natural deduction. Journal of Symbolic Logic,

49(4):1284–1300, 1984.

[Sza69] M. E. Szabo. The Collected Papers of Gerhard

Gentzen. North-Holland, 1969.

[Tho91] Simon Thompson. Type Theory and Functional

Programming. Addison-Wesley, 1991.

936

[Tho95a] Della Thompson, editor. The Concise Oxford Dic-

tionary. Clarendon Press, 1995.

[Tho95b] Simon Thompson. Miranda: The Craft of Func-

tional Programming. Addison-Wesley, 1995.

[Tho99] Simon Thompson. Haskell: The Craft of Func-

tional Programming. Addison-Wesley, 1999. Sec-

ond Edition.

[vD80] Dirk van Dalen. Logic and Structure. Springer-

Verlag, 1980. An introductory textbook on logic.

[Vel94] Daniel J. Velleman. How to Prove It. Cambridge

University Press, 1994.

[vH67] Jean van Heijenoort, editor. From Frege to Gödel:

A Source Book in Mathematical Logic, 1879-193.

937

Harvard University Press, 1967. Contains transla-

tions of original works by David Hilbert and Adolf

Fraenkel and Ernst Zermelo.

[vL16] Gottfried Wilhelm von Leibniz. ?? ??, 16??

[WB89] Phillip Wadler and Stephen Blott. How to make

ad-hoc polymorphism less ad-hoc. In Conference

Record of the 16th ACM Symposium on Principles

of Programming Languages, pages 60–76, 1989.

[Wen99] Markus Wenzel. Inductive datatypes in HOL -

lessons learned in formal-logic engineering. In

Yves Bertot, Gilles Dowek, André Hirschowitz,

and and Laurent Théry C. Paulin, editors, Pro-

ceedings of TPHOLs, volume 1690 of LNCS,

pages 19–36. Springer-Verlag, 1999.

938

[Win96] Glynn Winskel. The Formal Semantics of Pro-

gramming Languages – An Introduction. MIT

Press, 1996. 3rd ed.

[WR25] Alfred N. Whitehead and Bertrand Russell. Prin-

cipia Mathematica, volume 1. Cambridge Univer-

sity Press, 1925. 2nd edition.

[Zer07] Ernst Zermelo. Untersuchungen über die Grund-

lagen der Mengenlehre. Mathematische Annalen,

65:261–281, 1907. See [vH67].

939

	1. History and Organization
	2. General Introduction
	3. Propositional Logic
	3.1. Propositional Logic: Language
	3.2. Deductive System: Natural Deduction
	3.3. Deductive System: Rules of Propositional Logic
	3.4. Deductive System: Derived Rules
	3.5. Alternative Deductive System Using Sequent Notation

	4. First-Order Logic
	4.1. First-Order Logic: Syntax
	4.2. First-Order Logic: Deductive System
	4.3. Conclusion on FOL

	5. First-Order Logic with Equality
	6. The -Calculus
	6.1. Untyped -Calculus
	6.2. Simple Type Theory
	6.3. Polymorphism
	6.4. Summary on -Calculus

	7. Resolution
	7.1. Summary on Resolution

	8. Automation by Proof Search
	8.1. Proof Search and Backtracking
	8.2. Classifying Rules
	8.3. Proof Procedures (Simplified)
	8.4. Summary on Automated Proof Search

	9. Term Rewriting
	9.1. Higher-Order Rewriting
	9.2. Organizing Simplification Rules

	10. HOL: Foundations
	10.1. Overview
	10.2. Syntax
	10.3. Semantics
	10.4. Basic Rules
	10.5. Isabelle/HOL
	10.6. Conclusions on HOL

	11. HOL: Deriving Rules
	11.1. Equality
	11.2. True
	11.3. Universal Quantification
	11.4. False
	11.5. Negation
	11.6. Existential Quantification
	11.7. Conjunction
	11.8. Disjunction
	11.9. More Definitions
	11.10. Summary on Deriving Rules
	11.11. Outlook

	12. Conservative Theory Extensions
	12.1. Conservative Theory Extensions: Basics
	12.2. Constant Definition
	12.3. Type Definitions
	12.4. Summary on Conservative Extensions

	13. Sets
	14. Functions
	14.1. Conclusion of Sets, Functions

	15. Background: Recursion and Induction
	16. Least Fixpoints
	16.1. First Approach: Least Fixpoints (Tarski)
	16.2. Induction Based on Lfp.thy
	16.3. The Package for Inductive Sets
	16.4. Summary on Least Fixpoints

	17. Well-Founded Recursion
	17.1. Defining Recursive Functions
	17.2. Example for wfrec: Natural Numbers
	17.3. Conclusion on Well-founded Recursion
	17.4. Conclusion on Recursion and Induction

	18. Arithmetic
	18.1. What is Infinity? Cantor's Hotel
	18.2. Natural Numbers: Nat.thy
	18.3. Further Number Theories
	18.4. Conclusion on Arithmetic

	19. Datatypes
	20. Summary of HOL Library / Outlook on Modeled Systems
	21. General Introduction
	22. Propositional Logic
	22.1. Propositional Logic: Overview
	22.2. Formalizing Propositional Logic
	22.3. Propositional Logic: Language
	22.4. Deductive System: Natural Deduction
	22.5. Deductive System: Rules of Propositional Logic
	22.6. Deductive System: Derived Rules
	22.7. Alternative Deductive System Using Sequent Notation

	23. Natural Deduction: Review
	24. First-Order Logic
	24.1. First-Order Logic: Overview
	24.2. First-Order Logic: Syntax
	24.3. First-Order Logic: Semantics
	24.4. Towards a Deductive System
	24.5. First-Order Logic: Deductive System
	24.6. Conclusion on FOL

	25. First-Order Logic with Equality
	26. First-Order Theories
	26.1. Example 1: Partial Orders
	26.2. Example 2: Groups

	27. Naïve Set Theory
	27.1. Naïve Set Theory: Basics
	27.2. Operations on Sets
	27.3. Extending Set Comprehensions
	27.4. Outlook

	28. The -Calculus
	28.1. Untyped -Calculus
	28.2. Simple Type Theory
	28.3. Polymorphism and Type Classes
	28.4. Higher-Order Unification
	28.5. Summary on -Calculus

	29. Encoding Syntax
	29.1. : Review
	29.2. Representing Syntax of Propositional Logic
	29.3. Representing Syntax of First-Order Logic
	29.4. Higher-Order Abstract Syntax (HOAS)
	29.5. Summary of Encoding Syntax

	30. Resolution
	30.1. Summary on Resolution

	31. Automation by Proof Search
	31.1. Proof Search and Backtracking
	31.2. Classifying Rules
	31.3. Proof Procedures (Simplified)
	31.4. Summary on Automated Proof Search

	32. Term Rewriting
	32.1. Higher-Order Rewriting
	32.2. Extensions of Rewriting
	32.3. Organizing Simplification Rules
	32.4. Summary on Term Rewriting
	32.5. Summary on Last Three Sections

	33. Isabelle's Metalogic
	33.1. The Logic M
	33.2. Encoding Syntax and Provability
	33.3. Reasoning with Resolution
	33.4. Quantification
	33.5. Free Variables in Goals
	33.6. Conclusion on Isabelle's Metalogic

	34. HOL: Foundations
	34.1. Overview
	34.2. Syntax
	34.3. Semantics
	34.4. Basic Rules
	34.5. Isabelle/HOL
	34.6. Conclusions on HOL

	35. HOL: Deriving Rules
	35.1. Equality
	35.2. True
	35.3. Universal Quantification
	35.4. False
	35.5. Negation
	35.6. Existential Quantification
	35.7. Conjunction
	35.8. Disjunction
	35.9. Miscellaneous Definitions
	35.10. Summary on Deriving Rules
	35.11. Mathematics and Software Engineering in HOL

	36. Conservative Theory Extensions
	36.1. Conservative Theory Extensions: Basics
	36.2. Constant Definition
	36.3. Type Definitions
	36.4. Summary on Conservative Extensions

	37. Mathematics in the Isabelle/HOL Library: Introduction
	38. Orders
	38.1. Summary on Orders

	39. Sets
	39.1. Summary on Sets

	40. Functions
	40.1. Conclusion of Orders, Sets, Functions

	41. Background: Recursion, Induction, and Fixpoints
	42. Least Fixpoints
	42.1. First Approach: Least Fixpoints (Tarski)
	42.2. Tarski's Fixpoint Theorem
	42.3. Induction Based on Lfp.thy
	42.4. The Package for Inductive Sets
	42.5. Summary on Least Fixpoints

	43. Well-Founded Recursion
	43.1. Prerequisite: Relations
	43.2. Prerequisite: Closures
	43.3. Well-Founded Orderings
	43.4. Defining Recursive Functions
	43.5. Example for wfrec: Natural Numbers
	43.6. Conclusion on Well-founded Recursion
	43.7. Conclusion on Recursion and Induction

	44. Arithmetic
	44.1. What is Infinity? Cantor's Hotel
	44.2. Type-Closed Conservative Extensions
	44.3. Natural Numbers: Nat.thy
	44.4. Integers
	44.5. Further Number Theories
	44.6. Conclusion on Arithmetic

	45. Datatypes
	45.1. S-Expressions
	45.2. Lists in Isabelle

	46. Summary of HOL Library / Outlook on Modeled Systems
	47. IMP
	47.1. IMP: Introduction
	47.2. Operational Semantics: Two Kinds
	47.3. Embedding of the Natural Semantics
	47.4. Embedding of the Transition Semantics
	47.5. Embedding of the Denotational Semantics
	47.6. Axiomatic (Hoare) Semantics
	47.7. Example Program
	47.8. Automating Hoare Proofs

	48. A Taste of some Isabelle and HOL Applications
	48.1. Java Bytecode Verification
	48.2. Floating Point Arithmetic
	48.3. Red-Black Trees

