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How to Use Screen Notes

These screen notes are generated from sources that were
originally intended for hypermedia, as lecture slides or online
course. Frequently, the slides contain highlighted terms that
come with an annotation, i.e., a more detailed explanation
that would usually be given by the lecturer during the lecture.
When one looks at the slides on the screen, one can click on
such a term and will be linked to the annotation. However,
there is a danger that one gets lost. In the present rendering,
Screen Notes, the annotations are realised as footnotes. Thus
the thread of the lecture can be followed without any jumping
within the document, while forward and backward references
are still realised as hyperlinks. Screen Notes are not suitable
for being printed! For printing use Lecture Notes.



1 History and Organization



Organizational Matters

e PD Dr. Jan-Georg Smaus

e This three-week course Pearls of Computer-Supported
Modeling and Reasoning is integrated in the Corso in-
tegrato di Metodi Formali e di Verifica by Daniele Maga-
zzeni and Monica Nesi.

e Language: English (domande anche in italiano!).
e Oral exam at the end?

e See webpage for further organizational info.


http://www.informatik.uni-freiburg.de/~smaus/
http://informatica.di.univaq.it/infoataq.php?corso=107&pid=86&lid=it

Organizational Matters (2)

e [imetable:

Day March . .. Times Aula
Monday | 15th, 22nd, 29th | 16.30 - 18.30 | 1.7
Tuesday | 16th, 23rd, 30th | 11.30 - 13.30 | 2.5
Tuesday | 16th, 23rd, 30th | 14.30 - 18.30 | 1.27

e Bus problems: let's go from 16:30 to 18:00 without break;
otherwise, let’s start each hour at x:30 sharp and have a

break after 45 minutes. | am available for questions until
18:30.



History of this Course

This course covers around 25% of the course Computer-Supported
Modeling and Reasoning. Jan-Georg Smaus gave this course
at the University of Freiburg in each winter semester from
WS03/04.

In previous years, this course was given by Prof. Dr. David
Basin and Prof. Dr. Burkhart Wolff.

As of 2003, David Basin moved to ETH Zurich.

Jan-Georg Smaus is now in the group of Prof. Dr. Bernhard
Nebel.


http://www.inf.ethz.ch/people/detail?id=19
http://www.inf.ethz.ch/people/detail?id=19
http://www.lri.fr/~wolff/
http://www.ethz.ch/
http://www.informatik.uni-freiburg.de/~gkiabt/
http://www.informatik.uni-freiburg.de/~gkiabt/

The Slides

The slides are available at http: //www.informatik.uni-freiburg.de/~ki/teaching /ws0
You might take notes of things written on the blackboard.
If you note mistakes or have suggestions, please tell me!


http://www.informatik.uni-freiburg.de/~ki/teaching/ws0910/csmr/aquila.html

The Slides (2)

The slides are actually an online course. They are also avail-
able as lecture notes that can be printed out, and as screen
notes.

For easy reference, the slides/notes contain the material of
the full course as appendix, marked by pink background color.
Do not get lost there!

The documents are huge! The lecture notes are designed
for being printed at a rate of four pages per sheet side. So
please be mindful of resources when you print. In particular,
do not print the pink pages.



Exercises

We will mix lectures and exercises as seems fit. Since we have
no computer pool here at I'Aquila, please bring your laptops.



2 General Introduction
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What this Course is about

Making logic come to life by making it run on a computer,
using the tool Isabelle. Applications in

e Mathematics!

In the 1920's, David Hilbert attempted a single rigorous
formalization of all of mathematics, named Hilbert's program.
He was concerned with the following three questions:

1. Is mathematics complete in the sense that every statement
can be proved or disproved?

2. |s mathematics consistent in the sense that no statement
can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a
definite method to determine the truth or falsity of any
mathematical statement?

Hilbert believed that the answer to all three questions was
'yes'.

Thanks to the the incompleteness theorem of Godel (1931)
and the undecidability of first-order logic shown by Church
and Turing (1936-37) we know now that his dream will never
be realized completely. This makes it a never-ending task to

find partial answers to Hilbert's questions.
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http://isabelle.in.tum.de/

e program and hardware verification?

(For the impacient: some Isabelle/HOL applications)

For more details:

— Panel talk by Moshe Vardi

— Lecture by Michael J. O'Donnell

— Article by Stephen G. Simpson

— Original works Uber das Unendliche and Die Grundlagen
der Mathematik [vH67]

— Some quotations shedding light on Godel's incompleteness
theorem

— Eric Weisstein's world of mathematics explaining Godel's
incompleteness theorem

2\erification is the process of formally proving that a pro-
gram has the desired properties. To this end, it is necessary
to define a specification language in which the desired prop-
erties can be formulated, i.e. specified. One must define a
semantics for this language as well as for the program. These
semantics must be linked in such a way that it is meaningful
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http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

What this Course is Useful for
After attending this course, you might ...

e pursue an academic career focused on the topic of this
course or some other topic in formal methods;

e apply formal methods in a company? like Intel or Gemplus;

e work in a different area in academia or industry; even
then, understanding mathematical and logical reasoning
improves understanding of how to build correct systems
and do more rigorous proofs.

to say: “Program X makes formula ¢ true”.
3The last 20 years have seen spectacular hardware and soft-

ware failures (e.g. the Pentium bug) and the birth of a new
discipline: the verification engineer.
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http://www.intel.com/
http://www.gemplus.com/

Overview: Three Parts

1. Logics* (propositional, first-order, higher-order)

“The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,
it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-
guage allowing to write down statements, together with a
predefined meaning for some of the syntactic entities of this
language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
5Intuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the
“world”, the portion that your problem lives in. For example,
rational numbers may or may not exist in this portion. A
theory is such a formalization of a tiny portion of the “world".
A theory extends a logic by axioms that describe that portion
of the “world".

Theories will be considered in more detail later.
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3 Propositional Logic

3.1 Propositional Logic: Language

Let a set V' of (propositional) variables® be given. Lp, the’
language of propositional logic, is defined by the following

In mathematics, logic and computer science, there are var-
lous notions of variable. In propositional logic, a variable is a
propositional variable, i.e., it stands for a proposition; it can
be interpreted as True or False.

This will be different in logics that we will learn about later.
"Strictly speaking, the definition of Lp depends on V. A

different choice of variables leads to a different language of
propositional logic, and so we should not speak of the lan-
guage of propositional logic, but rather of a language of propo-
sitional logic. However, for propositional logic, one usually
does not care much about the names of the variables, or about
the fact that their number could be insufficient to write down
a certain formula of interest. We usually assume that there
are countably infinitely many variables.
Later, we will be more fussy about this point.
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grammar® (X € V):
P = X | L% | (PANP) | (PVP) | (P — P) | ((=P)")

8A notation like

P =X |1| (PANP)| (PVP)| (P—P)| (=P))
T =z | fT,...,T)
times
Fo=...| pnT,...;T) | V. F | 3x. F
n times
e =ux | c| (ee) | (Az.e)

To=T | 17—>71

e :=x | c| (ee) | (Ax".€)

P:=z | -P| P\P| P—P...

for specifying syntax is called Backus-Naur form (BNF) for ex-
pressing grammars. For example, the first BNF-clause reads:
a propositional formula can be

a variable, or

1, or

Py N\ P, where P, and P, are propositional formulae, or
P,V Py, where P, and P, are propositional formulae, or

P, — P,, where P, and P, are propositional formulae, or

16



=Py, where P, is a propositional formula.

The symbol P is called a non-terminal, and when we apply
the rules starting from P until we reach an expression without
non-terminal we say that this expression is a production of P
or it is in the language generated by P.

The BNF is a very common formalism for specifying syntax,
e.g., of programming languages. See here or here.

9

The symbol L stands for “false”.
©The connectives are called conjunction (A), disjunction

(V), implication (—) and negation (—).
The connectives A, V, — are binary since they connect two
formulas, the connective — is unary (most of the time, one

only uses the word connective for binary connective).
1"“Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or
syntactic sugar'?, for reasons of convenience. In paper-and-
pencil proofs, we are allowed to erase any occurrence of =P

17


http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

The elements of Lp are called (propositional) formulas®>.

and replace it with P — _L, or vice versa, at any time. How-
ever, we shall see that when proofs are automated, this process

must be made explicit.
13|n logic, the word “formula” has a specific meaning. For-

mulae are a syntactic category, namely the expressions that
stand for a statement. So formulas are syntactic expressions
that are interpreted (on the semantic level) as True or False.
We will later learn about another syntactic category, that of
terms.
| propositional logic, a formula may also be called a propo-
sition.
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3.2 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].
Designed to support ‘natural’ logical arguments:

e we make (temporary) assumptions;
e we derive new formulas by applying rules;

e there is also a mechanism for “getting rid of” assump-
tions.

19



Natural Deduction (2)
Derivations are trees

A—-(B—-C) A
B—C —E B
C

where the leaves are called assumptions.

—-E

20



Natural Deduction (2)
Derivations are trees

A—-(B—-C) A
B—C —E B
C

where the leaves are called assumptions.
A proof is a derivation where we “got rid” of all assump-

—-E

tions.
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3.3 Deductive System: Rules of Propositional Logic

We have rules for conjunction, implication, disjunction, fal-
sity and negation.
Rules of two kinds: introduce' connectives

A B/\l
ANB "




3.3 Deductive System: Rules of Propositional Logic

We have rules for conjunction, implication, disjunction, fal-
sity and negation.
Rules of two kinds: introduce!* and eliminate!® connectives

A B ANB ANB
A/\B/\_l P N-EL B N-ER

4]t is typical that the basic rules of a proof system can be
classified as introduction or elimination rules for a particular
connective.

This classification provides obvious names for the rules and
may guide the search for proofs.

The rules for conjunction are pronounced and-introduction,
and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are

also derived rules.
15t is typical that the basic rules of a proof system can be

classified as introduction or elimination rules for a particular
connective.

This classification provides obvious names for the rules and
may guide the search for proofs.

The rules for conjunction are pronounced and-introduction,
and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are
also derived rules.
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Overview of Rules

A B ANB ANB
anrp M T AEL 5 AER
[A] [B]
A B AVB C C

avp VIt Ay VIR - V-E
[A]

B A— B A 1

1= ! 5 —E G LE
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Example Derivation with Conjunction
The rules:

A B

A/\BA_/
ANB

A
A

N-EL

AANB

B N-ER

16

16All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

23



Example Derivation with Conjunction

The rules:
A B A
AANB'"
ANB AN(BAC)
A NEL 1 A-EL
ANB
B N-ER

16

16All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

23



Example Derivation with Conjunction

The rules:

A BA—/

AND AN(BAC)
ANB | o AN (BAC) Brc  VER
A A N-EL

AgB/\—ER

16

16All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

23



Example Derivation with Conjunction

The rules:
4D A-1
AND AN(BAC)
ANB | o AN (BAC) Brc  NVER
1 1 N-EL o /ER
AgB N-ER

16

16All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

23



Example Derivation with Conjunction

The rules:
A BA—/

AND AN(BAC)
ANB | o AN (BAC) Brc  NVER
1 1 N-EL CMA-ER

AgBA-ER ANC

16

16All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

23



Example Derivation with Conjunction

The rules:
A BA—/

AND AN(BAC)
ANB | o AN (BAC) Brc  NVER
1 1 N-EL CMA-ER

AgBA-ER ANC

Can we prove anything with just these three rules?!®

16All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

23



Examples with Conjunction and Implication

The simplest proof we can think of is the proof of P — P.

P
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Examples with Conjunction and Implication

The simplest proof we can think of is the proof of P — P.

Do you find this strange?!’

1. A— B — A8

2.AN(BAC) — ANCY

"When we make the assumption P, we obtain a forest con-

sisting of one tree. In this tree, P is at the same time a leaf

and the root. Thus the tree P is a degenerate example of the

schema

B

where both A and B are replaced with P.
Therefore we may apply rule —-/, similarly as in our abstract

example.
The rule(s): The proof.
4 |
B B— A = X
A—>BH_I A>B—aA!
The rules:
A D N-1
AANB"
The proof:
ANB
A N-EL AN(BANC)
0 A A B AN(BACO) Brc ER
- A-ER P N-EL C N-ER
ANC Al
[A} —>-/2
5 (ANBAC) — (AAC)
B




3.A-B—-C)—(A—-B)—A—C%

The rules: The proof:
A | Py
20 B
A— B !
A—B A -
—




3.A-B—-C)—(A—-B)—A—C%

The rules: The proof:
A
20 B
A— B !
A—-B A _
Bk




3.A-B—-C)—(A—-B)—A—C%

The rules: The proof:
4] (A=B—0C) A (A-B) A
113 B—C o B, T
20 B C e
A_>B_>/ A—>C—>-I5 s
A-B A | (A—-B)—A—C s
B e (A-B—-C)—-(A—B)—A—-C

25



Intuitionistic versus Classical Logic

e Peirce's Law: (A — B) — A) — A.
s this valid®!? Provable???



Intuitionistic versus Classical Logic

e Peirce's Law: (A — B) — A) — A.
s this valid®!? Provable???

2Yes, simply check the truth table:

A B |[((A—-B)— A — A
True | True True
True | False True
False | True True
Fualse | False True

2|n the proof system given so far, this is not provable. To
prove that it is not provable requires an analysis of so-called
normal forms of proofs. However, we do not do this here.

26



e It is provable in classical logic?*, obtained by adding

-4 -4

- AA A lassical
AV =A% or AR 25 or A a9

2 The proof system we have given so far is a proof system for

intuitionistic logic. The main point about intuitionistic logic
is that one cannot claim that every statement is either true or
false, but rather, evidence must be given for every statement.
In classical reasoning, the law of the excluded middle holds.
One also says that proofs in intuitionistic logic are construc-
tive whereas proofs in classical logic are not necessarily con-
structive.
We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar
classical logic which allows an effective interpretation
and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has
been the topic of a fundamental discourse in the literature on
logic [PM68] [Tho91, chapter 3]. Often proofs contain case
distinctions, assuming that for any statement ), either v or
—1) holds. This reasoning is classical; it does not apply in
intuitionistic logic.

27



e Deep, “philosophical” issue in logic.

2 A\ —A is called axiom of the excluded middle.
5 The rule
-4

- AA
AR

is called reduction ad absurdum.

%6 The rule
A

A
— classical

A

corresponds to the formulation is Isabelle.

28



3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

29



3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

RvVS =S
R

It looks like this.
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3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5

RVS =S RvS
R R

We build a fragment of a derivation by writing the conclusion
R and the assumptions RV S and —S.
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3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5

RvS -5  BRVS R
R R V-E
Since we have assumption RV S, using V-E seems a good
idea. So we should make assumptions R and S. First R. But
that is a derivation of R from R!
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3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5 S

RvS -5  BRVS R
7 R V-E

So now S.
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3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

RvS -5  BRVS R
7 R V-E

=S and S allow us to apply —-E.
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3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-S S
—
— 1 -E
PVS S RVS R R
R R \/—E

To apply V-E in the end, we need to derive R. But that's
easy using 1 -£!

29



3.4 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5 [S]!
—
— 1 -E
PVS S RvVS [R' R
R R \/—E

Finally, we can apply V-E. The derivation with open assump-
tions is a new rule that can be used like any other rule.
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3.5 Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability
judgement?’, i.e., reason about I' - A where ' = A4, ..., A,
instead of individual formulae.

2An object like A — (B — ('), A, B+ C'is called a deriv-
ability judgement. We explained it earlier as simply asserting
the fact that there exists a derivation tree with C' at its root
and open assumptions A — (B — (), A, B.

However, it is also possible to make such judgements the
central objects of the deductive system, i.e., have rules in-
volving such objects.

The notation I' = A is called sequent notation. However,
this should not be confused with the sequent calculus (we
will consider it later). The sequent calculus is based on se-
quents, which are syntactic entities of the form A;,..., A, -
By, ...,B,,, where the Ay,..., A,, By,...,B,, are all for-
mulae. You see that this definition is more general than the
derivability judgements we consider here.

What we are about to present is a kind of hybrid between
natural deduction and the sequent calculus, which we might
call natural deduction using a sequent notation.
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Sequent Rules (for — /A Fragment)

Rules for assumptions®® and weakening??:

['-B

' A% (where A €T) ATLR weaken

2The special rule for assumptions takes the role in this se-
quent style notation that the process of making and discharg-
ing assumptions had in natural deduction based on trees.

It is not so obvious that the two ways of writing proofs
are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
»The rule weaken is

'R
ATFB

Intuitively, the soundness of rule weaken should be clear:

weaken

having an additional assumption in the context cannot hurt
since there is no proof rule that requires the absence of some
assumption.

We will see an application of that rule later.
An axiom is a rule without premises. We call a rule with

premises proper.
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Sequent Rules (for — /A Fragment)

Rules for assumptions®® and weakening??:
'+ B

30 i rb
I'F A" (where A €T) Ajrl_Bweaken
Rules for A and —:

I'FA '+ B I'FAAB I'FAAB
rrang ™ rea ML Tpop AER
A T'-B Ny '~A— B FI—A_}E
'-A—B I'-B i
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premises proper.
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Proof in Sequent Notation with Metavariables

FAAN(BAC)— ANC

We want to show that AA (BAC) — AAC is a tautology,
i.e., that it is derivable without any assumptions.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic
contain no axioms. In the sequent style formalization, having
the assumption rule (axiom) is essential for being able to prove
anything, but in the natural deduction style we learned first,
we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just
an axiom at the level of Isabelle’s meta-logic. This will be
explained later.
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Proof in Sequent Notation with Metavariables

ANBANC)FANC
FAAN(BAC)— ANC

—-/

The topmost connective of the formula is —, so the best
rule3! to choose is —-I.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic
contain no axioms. In the sequent style formalization, having
the assumption rule (axiom) is essential for being able to prove
anything, but in the natural deduction style we learned first,
we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just
an axiom at the level of Isabelle’s meta-logic. This will be
explained later.
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Proof in Sequent Notation with Metavariables

AN(BANC)E A AN(BAC)EC
ANBANC)FANC
FAAN(BAC)— ANC

N-1

—-/

The topmost connective of the formula is A, so the best rule
to choose is A-I.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic
contain no axioms. In the sequent style formalization, having
the assumption rule (axiom) is essential for being able to prove
anything, but in the natural deduction style we learned first,
we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just
an axiom at the level of Isabelle’s meta-logic. This will be
explained later.
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—-/
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N-1

—-/
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—-/
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One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic
contain no axioms. In the sequent style formalization, having
the assumption rule (axiom) is essential for being able to prove
anything, but in the natural deduction style we learned first,
we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just
an axiom at the level of Isabelle’s meta-logic. This will be
explained later.
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Comments on Sequent Notation
This crazy way of carrying out proofs is the (standard) Isabelle-
way!

e In constructing the proof we work from goals to axioms>?

e metavariables used to delay commitments

22As you saw in our animation, we worked from the root of
the tree to the leaves.
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4 First-Order Logic
4.1 First-Order Logic: Syntax

e Two syntactic categories: terms>® and formulae

e A first-order language3* is characterized by giving a finite
collection of function symbols F and predicate symbols
P as well as a set Var of variables.
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4 First-Order Logic
4.1 First-Order Logic: Syntax

e Two syntactic categories: terms>® and formulae

e A first-order language3* is characterized by giving a finite
collection of function symbols F and predicate symbols
P as well as a set Var of variables.

e Sometimes write f* (or p') to indicate that function sym-
bol f (or predicate symbol p) has arity i € N.

e One often calls the pair (F,P) a signature.

33We have already learned about the syntactic category of
formulae last lecture.

A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have
terms that stand for “things” and formulae that stand for
statements/propositions about those “things”.

But couldn’t a statement also be a “thing”? And couldn't
a “thing” depend on a statement?

In first-order logic: nol!
3#There isn't simply the language of first-order logic! Rather,

the definition of a first-order language is parametrised by giv-
ing a F and a P. Each symbol in F and P must have an
associated arity, i.e., the number of arguments the function
or predicate takes. This could be formalized by saying that
the elements of F are pairs of the form f/n, where f is the
symbol itself and n, and likewise for P. All that matters is
that it is specified in some unambiguous way what the arity
of each symbol is.
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Terms and Formulae in First-Order Logic

Consider the following grammar (x € Var, f* € F, p" € P):

T = ner0 T
x| f( Iyt )
n times>®
F o= ... |p"T,....,7T) | Ve.F | dx. F
T
T times

The productions of T" are called terms (set Term3°).

The generic notation for function application is f(¢1, ..., t,),
but note special notations®: infix, prefix, etc.
The productions of F' are called formulae (set Form).

One often calls the pair (F,P) a signature. Generally, a sig-
nature specifies the “fixed symbols” (as opposed to variables)
of a particular logic language.

Strictly speaking, a first-order language is also parametrised
by giving a set of variables Var, but this is inessential. Var
is usually assumed to be a countably infinite set of symbols,
and the particular choice of names of these symbols is not

relevant.
3 Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the
signature, but we always assume that the signature is clear

from the context.
7So a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f(t1,...,t,) is a "thing"
that depends on “things” t1,...,t,.

The generic notation for function application is like this:
f(t1,...,t,), but the brackets are omitted for nullary func-
tions (= constants), and many common function symbols like
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4.2 First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic. All
the rules of propositional logic are “inherited” 8.
But we must introduce rules for the quantifiers.

+ are denoted infix, so we write 0+ 0 instead of +(0,0). An-
other common notation is prefix notation without brackets, as

in —2. There are also other notations.
8First-order logic inherits all the rules of propositional logic.

Note however that the metavariables in the rules now range
over first-order formulae.
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Universal Quantification (V): Rules

P(x) , Va. P(x) vE
vr.Px) " Pu)
where side condition (also called: proviso or eigenvariable con-
dition) * means: x must be arbitrary.

»Similarly as in the previous lecture, one should note that P
is not a predicate, but rather P(x) is a schematic expression:
P(z) stands for any formula, possibly containing occurrences
of x.

In the context of V-E, P(t) stands for the formula obtained
from P(z) by replacing all occurrences of x by t.
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Universal Quantification (V): Rules

P(x) Va. P(x)
ve.P@) T Tpw
where side condition (also called: proviso or eigenvariable con-
dition) * means: x must be arbitrary.
Note that rules are schematic®®: P(z) stands for any for-
mula, and P(t) stands for the formula obtained by substituting
t for z.

»Similarly as in the previous lecture, one should note that P
is not a predicate, but rather P(x) is a schematic expression:
P(z) stands for any formula, possibly containing occurrences
of x.

In the context of V-E, P(t) stands for the formula obtained
from P(z) by replacing all occurrences of x by t.
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”
x =10

“When one has a predicate symbol =, it is usual to have a
rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
“The side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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-

V-1
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z = 0]
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V-E
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
Vx.x:()v_l X
:1::0—>V:1:.x:()_>_l
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Ve.x =0
Formal meaning of side condition: x not free in any open

assumption on which P(z) depends. Violated!*
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A Proof?

Va. A(z) N B(x)

“[n both cases, x does not occur free in V. A(x) A B(z),

which is the open assumption on which A(z), respectively
B(x), depends.
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A Proof?

Va. A(z) N B(x)
A(z) N B(z) /\_\EVIL_E
A(x)

“[n both cases, x does not occur free in V. A(x) A B(z),

which is the open assumption on which A(z), respectively
B(x), depends.
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A Proof?

Va. Ax
Az

) A B(z)
) A B(z)
Alz)
Va. A(x)

V-E
N-EL
V-1
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A Proof?

Va. A(x) A B(z)]! Vx. A(x) A B(z)]!
A(z) A B(x) /\_\EVIL_E A(z) A B(x) /\_‘Ev;E
Alz) v B(x) v
Vo, A(z) Vo. B(z)
N-1

N—
S— °

(Vx. A(x)) A (Vz. B(x
(Vx. A(x) A B(z)) — (Vz. A(x)) A (Vx. B(x))

Yes (check side conditions*? of V-/).

“[n both cases, x does not occur free in V. A(x) A B(z),

which is the open assumption on which A(z), respectively
B(x), depends.
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Boys Don’t Cry
Let ¢ = (Vx.b(z) — m(z)) A (Vz. m(x) — —c(z)).

[¢]!
(4] V. b(x) — m(x)
Vo.m(@) — —e@) T @) —mz) T )P

m(z) — —c(z) m(z)

N-EL
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Existential Quantification (3): Rules
P(a)

P(t) 3. P(x) R

Jz. P(x) ! R +E

e J-F has side condition similar to V*3.

e We just give these rules here as part of the deduction
system.

e |t would be possible to define** 3z. A as =Vx. A and
use the given rules for V to derive ND proof rules for .

434-F will inherit the side condition from V-/. Hence, the
side condition for 3-E is:

x must not be free in R or in hypotheses of the subderiva-
tion of R other than P(x) (occurrences in (P(x) are allowed
because the assumption P(x) was discharged before the ap-
plication of V-/). Contrast this with V-/.

“By defining we mean, use dx. A as shorthand for =Vx. —A,
in the same way as we regard negation as a shorthand.

However, we have already introduced 3 as syntactic entity,
and also its semantics. If we now want to treat it as being
defined in terms of V, for the purposes of building a deductive
system, we must be sure that dz. A is semantically equivalent

to V. A, i.e., that A(Jz. A) = A(=Vz. -A).
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where 2 does not occur free in B.
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where x does not occur free in B.
V. A(z) — B
V-E
A(x) — B A(x)
Jz. A(x) B

—-E
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where x does not occur free in B.
V. A(z) — B
V-E 3
A(z) — B [A()]
Jz. A(x) B
B

—-E

-
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where x does not occur free in B.
Vx. A(z) — B!
V-E 3
A(z) — B [A()]
[Hx. A(z)]? B
B
(3z. Alz)) — B~

/2
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4.3 Conclusion on FOL

e Propositional logic is good for modeling simple patterns
of reasoning like “if ...then ...else".



4.3 Conclusion on FOL

e Propositional logic is good for modeling simple patterns
of reasoning like “if ...then ...else".

e In first-order logic, one has “things” and relations on /

properties of “things”. Quantify over “things”. Powerful*!

|n first-order logic, one has “things” and relations/proper-
ties that may or may not hold for these “things”. Quantifiers
are used to speak about “all things” and “some things".

For example, one can reason:

All men are mortal, Socrates is a man, therefore
Socrates is mortal.

The idea underlying first-order logic is so general, abstract,
and powerful that vast portions of human (mathematical) rea-
soning can be modeled with it.

In fact, first-order logic is the most prominent logic of all.
Many people know about it: not only mathematicians and
computer scientists, but also linguists, philosophers, psychol-
ogists, economists etc. are likely to learn about first-order logic
in their education.

While some applications in the fields mentioned above re-
quire other logics, e.g. modal logics*®, those can often be
reduced to first-order logic, so that first-order logic remains
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the point of reference.

On the other hand, logics that are strictly more expressive
than first-order logic are only known to and studied by few
specialists within mathematics and computer science.

This example about Socrates and men is a very well-known
one. You may wonder: what is the history of this example?

In English, the example is commonly given using the word
“man”, although one also finds “human”. Like many lan-
guages (e.g., French, ltalian), English often uses “man” for
“human being”, although this use of language may be con-

sidered discriminating against women. E.g. [Tho95a]:

man [...] 1 an adult human male, esp. as distinct
from a woman or boy. 2 a human being; a person (no
man is perfect).

While the example does not, strictly speaking, imply that
“man” is used in the meaning of “human being”, this is
strongly suggested both by the content of the example (or
should women be immortal?) and the fact that languages
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that do have a word for “human being” (e.g. “Mensch” in
German) usually give the example using this word. In fact,
the example is originally in Old Greek, and there the word
&vBpwtoc (anthropos = human being), as opposed to &vrip
(anér = human male), is used.

The example is a so-called syllogism of the first figure, which
the scholastics called Barbara. It was developed by Aristotle
[Ari] in an abstract form, i.e., without using the concrete name
“Socrates”. In his terminology, &vBpwtoc is the middle term
that is used as subject in the first premise and as predicate in
the second premise (this is what is called first figure). Aristotle
formulated the syllogism as follows: If A of all B and B is said
of all C, then A must be said of all C.

And why “Socrates’? It is not exactly clear how it
came about that this particular syllogism is associated with
Socrates. In any case, as far it is known, Socrates did not in-
vestigate any questions of logic. However, Aristotle frequently
uses Socrates and Kallias as standard names for individuals
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e Limitation: cannot quantify over predicates*’.

[Ari]. Possibly there were statutes of Socrates and Kallias
standing in the hall where Aristotle gave his lectures, so it
was convenient for him to point to the statutes whenever he

was making a point involving two individuals.
“The idea underlying first-order logic seems so general that

it is not so apparent what its limitations could be. The limi-
tations will become clear as we study more expressive logics.

For the moment, note the following: in first-order logic, we
quantify over variables (hence, domain elements), not over
predicates. The number of predicates is fixed in a particular
first-order language. So for example, it is impossible to express
the following:

For all unary predicates p, if there exists an x such
that p(x) is true, then there exists a smallest = such
that p(x) is true,

since we would be quantifying over p.
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5 First-Order Logic with Equality
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FOL with Equality

If we introduce into FOL the predicate “=" with a special
meaning®®, we get first-order logic with equality.

Syntax: = is a binary infix predicate.
t1 =ty € Form if t1,t9 € Term.

Semantics: The semantics of the two sides must be identi-
cal.

48

In logic languages, it is common to distinguish between log-
ical and non-logical symbols. We explain this for first-order
logic.

Recall that there isn't just the language of first-order logic,
but rather defining a particular signature gives us a first-order
language. The logical symbols are those that are part of any
first-order language and whose meaning is “hard-wired” into
the formalism of first-order logic, like A or V. The non-logical
symbols are those given by a particular signature, and whose
meaning must be defined “by the user” by giving a structure.

Above we say “mathematical” instead of “non-logical” be-
cause we assume that mathematics is our domain of discourse,
so that the signature contains the symbols of “mathematics”.

Now what status should the equality symbol = have? We
will assume that = is a symbol whose meaning is hard-wired
into the formalism. One then speaks of first-order logic with
equality.
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Rules®

e Equality is an equivalence relation®®

s=1 r=s s=t
sym trans
i=t" " = r—t




Rules®

e Equality is an equivalence relation®®
s=1 r=s s=t
fl sym trans
t=t"" t=3s r=1t

Alternatively, one could regard = as an ordinary (binary in-
fix) predicate. However, even if one does not give = a special
status, anyone reading = has a certain expectation. Thus it
would be very confusing to have a structure that defines = as

a, say, non-reflexive relation.
“Since = is a logical symbol in the formalism of first-order

logic with equality, there should be derivation rules for = to

derive which formulas a = b are true.
%|n general mathematical terminology, a relation = is an

equivalence relation if the following three properties hold:
Reflexivity: a = a for all a;
Symmetry: a = b implies b = q;
Transitivity: a = b and b = ¢ implies a = c.
Example: being equal modulo 6.
“a is equal b modulo 6" is often written @ = b mod 6.
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5 52

e Equality is also a congruence®® on terms and all relations

r=Ss

T(r)=T(s)

cong

cong,

P(s)

1ln general mathematical terminology, a relation = is a
congruence w.r.t. (or: on) f, where f has arity n, if
a; = by, ..., a, = by, implies f(ay,...,a,) = f(b1,...,by).

Example: being equal modulo 6 is congruent w.r.t. multipli-
cation.

14 = 8 mod 6 and 15 = 9 mod 6, hence 14 - 15 = & -
9 mod 6.

This can be defined in an analogous way for a property
(relation) P.

Example: being equal modulo 6 is congruent w.r.t. divisibil-
ity by 3.

15 = 9 mod 6 and 15 is divisible by 3, hence 9 is divisible
by 3.

14 = 8 mod 6 and 14 is not divisible by 3, hence 8 is not
divisible by 3.

22Why did we use letters 1" and P here?

Recall the rules for building terms and atoms.

Is T'(r) a term, and P(r) an atom, obtained by one applica-
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Isabelle Rule

The Isabelle FOL rule is simply>® (using a tree syntax)
r=s P(r)
P(s)

subst

or literally
[a =0b; P(a)] = P(b)

tion of such a rule, i.e.: is T" a function symbol in F, applied
to s, and is P a predicate symbol in P, applied to s?



Isabelle Rule
The Isabelle FOL rule is simply>® (using a tree syntax)
r=s P(r)
P(s)

subst

or literally
[a =0b; P(a)] = P(b)

tion of such a rule, i.e.: is T" a function symbol in F, applied
to s, and is P a predicate symbol in P, applied to s?

In general, no! The notations 7T'(r) and P(r) are metanota-
tions. T'(r) stands for any term in which 7 occurs, and P(r)
stands for any formula in which r occurs.

And in this context, the notation T'(s) stands for the term
obtained from T'(r) by replacing all occurrences of r with s.
In analogy the notation P(s) is defined.

Note that r and s arbitrary terms.

This description is not very formal, but this is not too prob-
lematic since we will be more formal once we have some useful

machinery for this at hand.
53The Isabelle FOL rule is:

r=s P(r)
P(s)

In this rule, P is an Isabelle metavariable.

subst

Why doesn’t the Isabelle rule contain a z to mark which
occurrences should be replaced?

51



Proving dz.t =2«

ref]
-/

t=1t
dr.t==x

We cannot understand this yet, but think of P as a formula
where some positions are marked in such a way that once we
apply P to r (we write P(r)), r will be inserted into all those
positions. This is why P(r) is a formula and P(s) is a formula
obtained by replacing some occurrences of r with s.
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Proving dz.t =2«

t:tmgl
Jr.t=x"
P(t) -
In the rule 3z. P(z) ~ , “P(x)" is metanotation. In the

example, P(z) = (t = x).

We cannot understand this yet, but think of P as a formula
where some positions are marked in such a way that once we
apply P to r (we write P(r)), r will be inserted into all those
positions. This is why P(r) is a formula and P(s) is a formula
obtained by replacing some occurrences of r with s.
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where some positions are marked in such a way that once we
apply P to r (we write P(r)), r will be inserted into all those
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obtained by replacing some occurrences of r with s.
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6 The )\-Calculus
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The )-Calculus: Motivation

A way of writing functions. E.g., Ax.x + 5 is the function
taking any number n to n + 5. Theory underlying functional
programming.

One of the most important formalisms of (theoretical) com-
puter science!
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The )-Calculus: Motivation

A way of writing functions. E.g., Ax.x + 5 is the function
taking any number n to n + 5. Theory underlying functional
programming.

One of the most important formalisms of (theoretical) com-
puter science!

Why is it interesting for us? The A-calculus is the syntactic
basis of higher-order logic.
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Outline of this Lecture

e The untyped A-calculus
e The simply typed A-calculus (A7)

e An extension of the typed A-calculus

6.1 Untyped )\-Calculus

From functional programming, you may be familiar with
function definitions such as

fr=x+5

The A-calculus is a formalism for writing nameless functions.
The function Ax. x + 5 corresponds to f.
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e The untyped A-calculus
e The simply typed A-calculus (A7)

e An extension of the typed A-calculus

6.1 Untyped )\-Calculus

From functional programming, you may be familiar with
function definitions such as

fr=x+5

The A-calculus is a formalism for writing nameless functions.
The function Ax. x + 5 corresponds to f.
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The application to say, 3, is written (Az. x+5)(3). Its result
is computed by substituting 3 for x, yielding 3 + 5, which in
usual arithmetic evaluates to 8*.

As you might guess, the formalism of the A-calculus is not
directly related to usual arithmetic and so it is not built into
this formalism that 3 + 5 should evaluate to 8. However, it
may be a reasonable choice, depending on the context, to
extend the A-calculus in this way, but this is not our concern
at the moment.
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Syntax

(x € Var, c € Const™)
e :=x | c| (ee) | (Aw.e)®
The objects generated by this grammar are called A\-terms
or simply terms.

5Similarly as for first-order logic, a language of the untyped
A-calculus is characterized by giving a set of variables and a
set of constants.

One can think of Const as a signature.

Note that C'onst could be empty.

Note also that the word constant has a different meaning
in the A-calculus from that of first-order logic. In both for-
malisms, constants are just symbols.

In first-order logic, a constant is a special case of a function
symbol, namely a function symbol of arity 0.

In the A-calculus, one does not speak of function symbols.
In the untyped A-calculus, any A-term (including a constant)
can be applied to another term, and so any A-term can be
called a “unary function”. A constant being applied to a
term is something which would contradict the intuition about
constants in first-order logic. So for the A-calculus, think
of constant as opposed to a variable, an application, or an

abstraction.
56A \-term can either be
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Conventions: iterated \ & left-associated application®’

(Az. (Ay. (Az. ((z2)(y2))))) = (Azyz. ((x2)(y2)))
Aryz. xz2(yz)

Is \x. x + 5 a A-term??®

e a variable (case x), or
e a constant (case c), or

e an application of a A\-term to another A-term (case (ee)),

or

e an abstraction over a variable = (case (Ax. ¢)).

\We write Ax1xs . .. x,.€ instead of A\x1.(Axa.(...€)...).

€1 €s...e, is equivalent to (...(e; e)...€,)..., not
(e1(eg...e,)...). Note that this is in contrast to the as-
sociativity of logical operators. There are some good reasons

for these conventions.
8Strictly speaking, Ax.z 4+ 5 does not adhere to the defini-

tion of syntax of A-terms, at least if we parse it in the usual
way: + is an infix constant applied to arguments x and 5.

If we parse z+5 as ((x+)5), i.e., x applied to (the constant)
+, and the resulting term applied to (the constant) 5, then
Ax.x + 5 would indeed adhere to the definition of syntax of
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Substitution

e Will see shortly that “computations” are based on sub-
stitutions, defined similarly as in FOL.

(g 3)[x « 5] = g53
e Must respect free and bound variables,
(x(Az. zy))|x «— €] = e(Ax. )

e Same problems as with quantifiers

Va. (P(x) A dz. Q(x,y)) V. (P(z) A Jy. Q(z,y))

PO A3 Qy) T Py A3n Qo)

A-terms, but of course, this is pathological and not intended
here.

It is convenient to allow for extensions of the syntax of A-
terms, allowing for:

e application to several arguments rather than just one;

e infix notation.

Such an extension is inessential for the expressive power of the
A-calculus. Instead of having a binary infix constant 4+ and
writing Ax.x + 5, we could have a constant plus according
to the original syntax and write \z. ((plus x)5) (i.e., write +
in a Curryed way).

“Here we use the notation e[z «— t| for the term obtained
from e by replacing x with t. There is also the notation
elt/z|, and confusingly, also e|x/t]. We will attempt to be
consistent within this course, but be aware that you may find
such different notations in the literature.
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Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same here:

A-calculus FOL
FV(x) =
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Recall the notions of bound, free, and binding occurrences of
variables in a term. Same here:

A-calculus FOL

FV(x) = {xz} = FV(x)
FVi(c):=1 = FV(c)
FV(MN) = FV(M)UFV(N) = FV(M A N)
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Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same here:

A-calculus FOL

FV(x) = {xz} = FV(x)
FVi(c):=1 = FV(c)
FV(MN):=FV(M)UFV(N) =FV(MAN)
FV(Ax. M) = FV(M)\{z} =FV(Vx. M)

Example: F'V (ry(Ayz. 1yz)) = {z,y}
A term with no free variable occurrences is called closed.
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Definition of Substitution
M [z < N] means substitute IV for x in M
1. z[z «— N =
2. alr +— N| =
3. (PQ)[r — N] =
4. (\x. P)|lx < N] =
5. (\y. P)lx — N| =

6. (\y. P)lx «— N] =

%0Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-
eral concepts. So far, we have seen four binding operators: ,
YV and A, and set comprehensions. The \ operator is the most
generic of those operators, in that it does not have a fixed
meaning hard-wired into it in the way that the quantifiers do.
In fact, it is possible to have it as the only operator on the
level of the metalogic. We will see this later.
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Definition of Substitution
M [z < N] means substitute IV for x in M
1. zjlx < N]=N
2. alr < N| = a if a is a constant or variable other than x
3. (PQ)lr — N| = (Plz — N|Q|z — NJ)
4. (\x. P)lx < N| = Xz. P
5. (A\y. P)lx < N|] = My.Plx «— N]ify #xandy ¢
FV(N)
6. (\y. P)[x < N] = Az. Ply « z][x « N]if y # x and
y € FV(N), and z is fresh: z ¢ FV(N)U FV(P)

%0Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-
eral concepts. So far, we have seen four binding operators: ,
YV and A, and set comprehensions. The \ operator is the most
generic of those operators, in that it does not have a fixed
meaning hard-wired into it in the way that the quantifiers do.
In fact, it is possible to have it as the only operator on the
level of the metalogic. We will see this later.
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Definition of Substitution
M [z < N] means substitute IV for x in M
1. zjlx < N]=N
2. alr < N| = a if a is a constant or variable other than x
3 (PQ)ls — N = (Plz — N|Qls — N)
4. (\x. P)lx < N| = Xz. P
5

. (ANy.P)lx «— N] = \y.Plx < N]ify #xand y ¢
FV(N)
6. (\y. P)lx «— N| = Az. Ply « z][lx «— N]if y # x and
y € FV(N), and z is fresh: 2z ¢ FV(N)U FV (P)

Cases similar to those for quantifiers: \ binding is ‘generic’®°.

%0Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-
eral concepts. So far, we have seen four binding operators: ,
YV and A, and set comprehensions. The \ operator is the most
generic of those operators, in that it does not have a fixed
meaning hard-wired into it in the way that the quantifiers do.
In fact, it is possible to have it as the only operator on the
level of the metalogic. We will see this later.
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Substitution: Example

(x(Ax. zy))|T — A2. 2]

s1|f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (A\z. xy)ly < ] would be
L. XX,
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Substitution: Example

(x(Ax. zy))|T — A2. 2] 4 zlr — Az. z](Ax. xy)|[x — Az 2]

—_

& (Az. 2)A\z. 2y

s1|f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (A\z. xy)ly < ] would be

AL, TX.
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Substitution: Example

(x(Ax. zy))|T — A2. 2] 4 zlr — Az. z](Ax. xy)|[x — Az 2]

—_

& (Az. 2)A\z. 2y

(Az.zy)ly « x|

s1|f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (A\z. xy)ly < ] would be

AL, TX.
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Substitution: Example

(x(Ax. zy))|T — A2. 2] 4 zlr — Az. z](Ax. xy)|[x — Az 2]
= (Az. 2)A\z. 2y
Ao.ay)ly — 2] = e ((y)lr  2ly — 2]
= Az (zyly )
=D PP

In the last example, clause 6 avoids capture, i.e., Ax. ra®l,

s1|f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (A\z. xy)ly < ] would be

AL, TX.
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Reduction: Intuition

Reduction is the notion of “computing”, or “evaluation”, in

the A-calculus.

fr=x4+5 ~ f=Xx.c+5

f3=345 ~ (Az.x+5)(3) =5 (x+5)[x«—3]=3+5
B-reduction replaces a parameter by an argument®’.

This should propagate into contexts®, e.g.

Ax.((Az.x +5)(3)) =5 A\x.(3+5).

2[n the A-term (Ax.M)N, we say that N is an argument
(and the function Ax.M is applied to this argument), and
every occurrence of z in M is a parameter (we say this because
x is bound by the \).

This terminology may be familiar to you if you have experi-
ence in functional programming, but actually, it is also used
in the context of function and procedure declarations in im-
perative programming.

63| n

Ax.(Az. x +5)(3)),

the underlined part is a subterm occurring in a context. (-
reduction should be applicable to this subterm.
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Reduction: Definition

e Axiom for (-reduction: (Az.M)N —3 M|z «— N]*

e Rules for 3-reduction of redices® in contexts:

M—>5M/ M—>3M’ M—>5M/
*
NM —3 NM' MN —3 M'N  Xz.M —g \z2.M'

e Reduction is reflexive-transitive closure

M —4 N M —%N N3P
M—5N  M—5M M —% P

e A term without redices is in (3-normal form.

As you see, J-reduction is defined using rules (two of them
being axioms, the rest proper rules) in the same way that we
have defined proof systems for logic before. Note that we
wrote the first axiom defining (3-reduction without a horizontal

bar.
%In a A-term, a subterm of the form (Ax. M )N is called a

redex (plural redices). It is a subterm to which (-reduction

can be applied.
%The rule for propagating — 3 to an abstraction, let us call

it \-abstr,
M —z M

Ao M —5 Az M’

actually has a vacuous side condition:

A-abstr

% is not free in any open assumption on which M —
M’ depends.

The side condition is just like for V.
The side condition is vacuous because in the derivation sys-
tem for — 3 (or —7) we present here, there is no rule involving
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Reduction: Examples

(Az. A\y.gxy)ab —z

discharging open assumptions, and thus there is no point in
making assumptions. The root of a derivation tree for —4
is always an application of the axiom for (-reduction. When
we consider —7, we may in addition have applications of the
reflexivity axiom.

However, we will have exercises on — g using an Isabelle
theory called RED, and in this theory, the above rule is called
epsi and looks as follows:

"[M1x. M(x) -——> N(x)I|] ==> (lam x. M(x)) --> (lam x. N(x

Observe that there is a meta-level universal quantifier in this
rule. From the exercises, you know that the meta-level uni-
versal quantifier corresponds to a side condition in paper-and-
pencil proofs.

Moreover, when we later look at the meta-logic, there will
be a rule

a=0b
(Ax.a) = (Azx.b)

looking very similar to the A-abstr rule and having a side

=-abstr*
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Reduction: Examples

(Az. Ay. gz y)ab —p5 (Ay. (gay))b —p

discharging open assumptions, and thus there is no point in
making assumptions. The root of a derivation tree for —4
is always an application of the axiom for (-reduction. When
we consider —7, we may in addition have applications of the
reflexivity axiom.

However, we will have exercises on — g using an Isabelle
theory called RED, and in this theory, the above rule is called
epsi and looks as follows:

"[M1x. M(x) -——> N(x)I|] ==> (lam x. M(x)) --> (lam x. N(x

Observe that there is a meta-level universal quantifier in this
rule. From the exercises, you know that the meta-level uni-
versal quantifier corresponds to a side condition in paper-and-
pencil proofs.

Moreover, when we later look at the meta-logic, there will

be a rule
a=>b

(Ax.a) = (Az.D)

looking very similar to the A-abstr rule and having a side

=-abstr*
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Reduction: Examples
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6.2 Simple Type Theory \™

Motivation: Suppose you have constants 1, 2 with usual
meaning. ls it sensible to write 1 2 (1 applied to 2)?



6.2 Simple Type Theory \™

Motivation: Suppose you have constants 1, 2 with usual
meaning. ls it sensible to write 1 2 (1 applied to 2)?

A~ (simply typed A-calculus, simple type theory) restricts
syntax to “meaningful expressions”.

condition.

To illustrate why the side condition is needed in general,
consider a derivation system where in addition to the rules for
— 3 and —7, we also allow applications of the rule for rules
for — (implication) and V of first-order logic.

For the example we give, suppose that we have an encoding
of the number 0 and the + function in the untyped A-calculus,
and that these behave as expected (in fact we will have an
exercise showing this; in the following we use “0" and “+"
just for simplicity and clarity; + is written infix).

Under these assumptions, we will now derive Azy. y+x —3
Ary.y. Before looking at the derivation tree, think about
what this says intuitively: it says that + is a function that
takes two arguments, ignores the first argument and returns
the second argument. Clearly, this does not correspond to the
usual definition of +! The trick in the following derivation is
to smuggle in an instantiation of x, namely to force = to be
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In untyped A-calculus, we have syntactic objects®’ called
terms.


http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

In untyped A-calculus, we have syntactic objects®’ called
terms.
We now introduce syntactic objects called types®.


http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

In untyped A-calculus, we have syntactic objects®’ called
terms.

We now introduce syntactic objects called types®.

We will say “a term has a type” or “a term is of a type”.

0. The derivation looks as follows:

ly+z—syl
\-abstr
ANY.Y+T —3 Y. Y
\-abstr
AZY. Y+ —3 ATY. Y

]

(y+x—py) = Azy.y+x —5 Azy.y v
Ve(y+a —py) — Aey.y +x —5 Avy.y V_E (routine)

(y+0—-5y) = Azy.y+ax —p A\xy.y ) y+0—p5y

-E
AZY. Y+ T —3 ATY. Y -

In the above derivation, the side condition for \-abstr is vio-
lated.
In Isabelle, such a “smuggling in” of an instantiation can be

achieved using instantiate_tac, see RED_wrongepsi.thy

and wrongepsi.ML.
s’We also say that we have defined a term language. A

particular language is given by a signature, although for the

untyped A-calculus this is simply the set of constants Const.
8\We can say that we define a type language, i.e., a language
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Two Syntaxes

e Syntax for types (B a set of base types, T' € B)
To=T | 7—71
Exampless N, N — N, (N - N) = N, N - N —
N?O

consisting of types. A particular type language is characterized

by giving a set of base types 3. One might also call B a type
signature.

A typical example of a set of base types would be {N, bool},
where N represents the natural numbers and bool the Boolean
values 1 and T.

All that matters is that B is some fixed set “defined by the

user’ .
%The type N — N is the type of a function that takes a

natural number and returns a natural number.
The type (N — N) — N is the type of a function that
takes a function, which takes a natural number and returns a

natural number, and returns a natural number.
“To save parentheses, we use the following convention:

types associate to the right, so N — N — N stands for
N — (N — N).

Recall that application associates to the left. This may seem
confusing at first, but actually, it turns out that the two con-
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e Syntax for (raw’') terms: M-calculus augmented with
types’?
e :=x | c| (ee) | (Ax".€)

(x € Var, c € Const™)

ventions concerning associativity fit together very neatly.
In the context of typed versions of the A-calculus, raw

terms are terms built ignoring any typing conditions. So raw
terms are simply terms as defined for the untyped \-calculus,

possibly augmented with type superscripts.
2So far, this is just syntax!

The notation (Az".e) simply specifies that binding occur-
rences of variables in simple type theory are tagged with a
superscript, where the use of the letter 7 makes it clear (in
this particular context) that the superscript must be some

type, defined by the grammar we just gave.
3 Var and Const are the sets of variables and constants,

respectively, as for the untyped A-calculus.
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Signatures and Contexts

Generally (in various logic-related formalisms™) a signature
defines the “fixed” symbols of a language, and a context de-

fines the “variable” symbols of a language.



Signatures and Contexts

Generally (in various logic-related formalisms™) a signature
defines the “fixed” symbols of a language, and a context de-

fines the “variable” symbols of a language. In A7,

“For propositional logic, we did not use the notion of sig-
nature, although we mentioned that strictly speaking, there
is not just the language of propositional logic, but rather a
language of propositional logic which depends on the choice
of the variables.

In first-order logic, a signature was a pair (F, P) defining the
function and predicate symbols, although strictly speaking,
the signature should also specify the arities of the symbols
in some way. Recall that we did not bother to fix a precise
technical way of specifying those arities. We were content
with saying that they are specified in “some unambiguous
way' .

In sorted logic, the signature must also specify the sorts of
all symbols. But we did not study sorted logic in any detail.

In the untyped A-calculus, the signature is simply the set of
constants.

Summarizing, we have not been very precise about the no-
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e a signature X is a sequence (¢ € Const)
Niu={() | S,c:7P

e a context I' is a sequence (x € Var)
M=) | e 7

tion of a signature so far.

For A7, the rules for “legal” terms become more tricky, and
it is important to be formal about signatures.

In A7, a signature associates a type with each constant
symbol by writing ¢ : 7.

Usually, we will assume that Const is clear from the context,
and that X contains an expression of the form ¢ : 7 for each
c € Const, and in fact, that X is clear from the context as
well. Since Y contains an expression of the form ¢ : 7 for
each ¢ € Const, it is redundant to give Const explicitly. It

is sufficient to give ..
“We call an expression of the form x : 7 or ¢ : 7 a type

binding.

The use of the letter 7 makes it clear (in this particular
context) that the superscript must be some type, defined by
the grammar we just gave.
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Type Assignment Calculus

We now define type judgements:“a term has a type” or “a
term is of a type”. Generally this depends on a signature X
and a context I'. For example

by cx:o’

whereX =c:7—ocand ' =2 : 7.

The expression
I'Fycx:o

is called a type judgement. It says that given the signature
> =c:7 — o and the context I' = z : 7, the term
c x has type o or
c x is of type o or
c x is assigned type 0.

Recall that you have seen other judgements before.
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Type Assignment Calculus

We now define type judgements:“a term has a type” or “a
term is of a type”. Generally this depends on a signature X
and a context I'. For example

by cx:o’

where Y =c:7—oand'=2: 7.
We usually leave X implicit and write - instead of Fy.
If " is empty it is omitted.

The expression
I'Fycx:o

is called a type judgement. It says that given the signature
> =c:7 — o and the context I' = z : 7, the term
c x has type o or
c x is of type o or
c x is assigned type 0.

Recall that you have seen other judgements before.
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Type Assignment Calculus: Rules’’

c: T e ®y
assum : : 79
Lo o De:m, AFz:7 hyp
- ' Dax:0Fe:
Fl—e.a—>7/F|—e.aapp o T b
['Fee : T I'FXeP.e :o— T

7 Type assignment is defined as a system of rules for deriving
type judgements, in the same way that we have defined deriv-
ability judgements for logics, and (3-reduction for the untyped

A-calculus.
sRecall that X is a sequence. By abuse of notation, we

sometimes identify this sequence with a set and allow our-
selves to write ¢ : 7 € X..
We may also write X C ¥/ meaning that ¢ : 7 € X implies
c:Tex
One could also formulate hyp as follows:
x:Tel

= h
I'Fx: 7T P

That would be in close analogy to LF, a system not treated

here.
80A sequence is a collection of objects which differs from sets

in that a sequence contains the objects in a certain order, and
there can be multiple occurrences of an object.
We write a sequence containing the objects o1,...,0, as
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-Reduction in A\~

(-reduction defined as before, has subject reduction prop-
erty®! and is strongly normalizing®.

(01, ...,0p,), or sometimes simply o1, ..., 0,.

If ) is the sequence o1,...,0,, then we write ()0
for the sequence (01,...,0,,0) and 0,€) for the sequence
(0,01,...,0p).

An empty sequence is denoted by ().
siSubject reduction is the following property: reduction does

not change the type of a term, soif -z M : 7and M —3 N,

then vy N : 7.
22The simply-typed A-calculus, unlike the untyped -

calculus, is normalizing, that is to say, every term has a normal
form. Even more, it is strongly normalizing, that is, this nor-
mal form is reached regardless of the reduction order.
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Example 1

FX? Ny 0 — (T — o)
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Example 1

abs
FX? Ny 0 — (T — o)
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Example 1

x:obFXN.x:T—0

abs
FX? Ny 0 — (T — o)
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Example 1

abs
x:obFXN.x:T—0

abs
FX? Ny 0 — (T — o)
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Example 1

x. .o, y:ThEx:0o

abs
x:obFXN.x:T—0

abs
FX? Ny 0 — (T — o)
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Example 1

hyp
x. .o, y:ThEx:0o

abs
x:obFXN.x:T—0

abs
FX? Ny 0 — (T — o)
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Example 1

hyp

x. .o, y:ThEx:0o
abs

rx.oFXN. . T—0

abs
FX? Ny 0 — (T — o)

For simplicity, applications of hyp are usually not explicitly
marked in proof.
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Example 2

'=f:0—0—T12:0

AT N faax
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Example 2

'=f:0—0—T12:0

AT N fex i (00— T) >0 —T
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Example 2
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76



Example 2

'=f:0—0—T12:0

fio—oc—T1FXN . frax.0—T

abs
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Example 2

'=f:0—0—T12:0

b
f:0—>0—>Tl—)\:UO.fx:U:O—>TaS

abs
AT N fex i (00— T) >0 —T
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Example 2

'=f:0—0—T12:0

I'Efaxx: 7

fio—oc—T1FXN . frax.0—T

abs

abs
AT N fex i (00— T) >0 —T
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Example 2

'=f:0—0—T12:0

app
I'Efaxx: 7

fio—oc—T1FXN . frax.0—T

abs

abs
AT N fex i (00— T) >0 —T
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Example 2

'=f:0—0—T12:0

I'-fx.:0—r7 I'Fx:0o
I'Efaxx: 7

fio—oc—T1FXN . frax.0—T

app

abs

abs
AT N fex i (00— T) >0 —T
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Example 2

'=f:0—0—T12:0

app
I'-fx.:0—r7 I'Fx:0o
app
I'Efaxx: 7
abs
fio—oc—T1FXN . frax.0—T
abs

AT N fex i (00— T) >0 —T
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Example 2

'=f:0—0—T12:0

I'-f.0—-0—-717 I'Fax:0

app
I'-fx.:0—r7 I'Fx:0o
app
I'Efaxx: 7
abs
fio—oc—T1FXN . frax.0—T
abs

AT N fex i (00— T) >0 —T
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Example 3

Y =fi0—>0—T
I'=2:0
' fzxax: 7

8|n Example 3, we have f : 0 — 0 — 7€ X, and so f is
a constant.

In Example 2, we have f : 0 — 0 — 7 €1, andso fisa
variable.

Looking at the different derivations of the type judgement
'+ fxax:7in Examples 2 and 3, you may find that they are
very similar, and you may wonder: What is the point? Why
do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When
setting up a type theory or programming language, there are
choices to be made about whether there should be a distinc-
tion between variables and constants, and what it should look
like. There is a famous epigram by Alan Perlis:

One man’s constant is another man'’s variable.

For our purposes, it is much clearer conceptually to make the
distinction. For example, if we want to introduce the natural
numbers in our A~ language, then it is intuitive that there
should be constants 1, 2, . .. denoting the numbers. If 1,2, ...

7
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Example 3

Y =fi0—>0—T
I'=x:0
fio—0—T€EX
assum
I'f:o0—0—r7 I'Fxz:o
app
I'Ffx.:0—r7 I'Fz:o
app
' faxx: 7

Note that this time, f is a constant®3,

8|n Example 3, we have f : 0 — 0 — 7€ X, and so f is
a constant.

In Example 2, we have f : 0 — 0 — 7 €1, andso fisa
variable.

Looking at the different derivations of the type judgement
'+ fxax:7in Examples 2 and 3, you may find that they are
very similar, and you may wonder: What is the point? Why
do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When
setting up a type theory or programming language, there are
choices to be made about whether there should be a distinc-
tion between variables and constants, and what it should look
like. There is a famous epigram by Alan Perlis:

One man’s constant is another man'’s variable.

For our purposes, it is much clearer conceptually to make the
distinction. For example, if we want to introduce the natural
numbers in our A~ language, then it is intuitive that there
should be constants 1, 2, . .. denoting the numbers. If 1,2, ...
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Example 3

Y =fi0—>0—T
I'=2:0
I'f:o0—0—r7 I'Fx:o
app
I'Efx:o—rT I'Fx:o
app
' fzxax: 7
Note that this time, f is a constant®3,

We will often suppress applications of assum.

8|n Example 3, we have f : 0 — 0 — 7€ X, and so f is
a constant.

In Example 2, we have f : 0 — 0 — 7 €1, andso fisa
variable.

Looking at the different derivations of the type judgement
'+ fxax:7in Examples 2 and 3, you may find that they are
very similar, and you may wonder: What is the point? Why
do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When
setting up a type theory or programming language, there are
choices to be made about whether there should be a distinc-
tion between variables and constants, and what it should look
like. There is a famous epigram by Alan Perlis:

One man’s constant is another man'’s variable.

For our purposes, it is much clearer conceptually to make the
distinction. For example, if we want to introduce the natural
numbers in our A~ language, then it is intuitive that there
should be constants 1, 2, . .. denoting the numbers. If 1,2, ...
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6.3 Polymorphism

We will now look at the typed A-calculus extended by poly-
morphism.

were variables, then we could write strange expressions like
A2N=N 4 so we could use 2 as a variable of type N — N.
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Polymorphism: Intuition

In functional programming, the function append for con-
catenating two lists works the same way on integer lists and
on character lists: append is polymorphic®*.

Type language must be generalized to include type variables
(denoted by «, 5. ..) and type constructors.

Example: append has type « list — « list — « list, and
by type instantiation, it can also have type, say, int list —
int list — int list.

8|n functional programming, you will come across functions
that operate uniformly on many different types. For example,
a function append for concatenating two lists works the same
way on integer lists and on character lists. Such functions are
called polymorphic.

More precisely, this kind of polymorphism, where a function
does exactly the same thing regardless of the type instance, is
called parametric polymorphism, as opposed to ad-hoc poly-
morphism.

In a type system with polymorphism, the notion of base type
(which is just a type constant, i.e., one symbol) is generalized
to a type constructor with an arity > 0. A type constructor of
arity n applied to n types is then a type. For example, there
might be a type constructor [ist of arity 1, and int of arity 0.
Then, nt list is a type.

Note that application of a type constructor to a type is
written in postfix notation, unlike any notation for function
application we have seen. However, other conventions exist,
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Polymorphism: Two Syntaxes

e Syntax for polymorphic types (B a set of type construc-
tors®® including —), T' € B, « is a type variable)

Tio=a | (1,...,7)T

even within Isabelle.

A type constructor of arity > 0 is called type operator by
some authors [GM93, page 196], but we do not follow this
terminology. Also, those authors say type constant for what
we call “type constructor” (i.e., of arity 0 as well as > 0),
but again, we do not follow this terminology: for us a type
constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
55As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized
by giving a certain set of symbols B. But unlike before, B is
now a set of type constructors. Each type constructor has an
arity associated with it just like a function in first-order logic.
The intention is that a type constructor may be applied to
types.

Following the conventions of ML [Pau96], we write types in
postfix notation, something we have not seen before. |.e., the
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Polymorphism: Two Syntaxes
e Syntax for polymorphic types (B a set of type construc-
tors®® including —), T' € B, « is a type variable)
Tio=a | (1,...,7)T
Examples: N, N — N, «list, Nlist, (N, bool) pair.

even within Isabelle.

A type constructor of arity > 0 is called type operator by
some authors [GM93, page 196], but we do not follow this
terminology. Also, those authors say type constant for what
we call “type constructor” (i.e., of arity 0 as well as > 0),
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Polymorphism: Two Syntaxes
e Syntax for polymorphic types (B a set of type construc-
tors®® including —), T' € B, « is a type variable)
Tio=a | (1,...,7)T
Examples: N, N — N, «list, Nlist, (N, bool) pair.
e Syntax for (raw) terms as before:
e ==z | c| (ee) | (A\x".¢)

(x € Var, ¢ € Const)

even within Isabelle.

A type constructor of arity > 0 is called type operator by
some authors [GM93, page 196], but we do not follow this
terminology. Also, those authors say type constant for what
we call “type constructor” (i.e., of arity 0 as well as > 0),
but again, we do not follow this terminology: for us a type
constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
55As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized
by giving a certain set of symbols B. But unlike before, B is
now a set of type constructors. Each type constructor has an
arity associated with it just like a function in first-order logic.
The intention is that a type constructor may be applied to
types.

Following the conventions of ML [Pau96], we write types in
postfix notation, something we have not seen before. |.e., the
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Polymorphic Type Assignment Calculus

Type substitutions (denoted ©) defined in analogy to substi-
tutions in FOL®®. Apart from application of © in rule assum,
type assignment is as for \7:

C:T €N § P A "
F}_C:T@assum T LT nyp

I'Fe:o—7 I'Feé:o Noe:oke:T
app
Fee: 71 FI—)\:U".e:a—M'abs

*: © is any type substitution.

type constructor comes after the arguments it is applied to.
It makes perfect sense to view the function construction
arrow — as type constructor, however written infix rather
than postfix.
So the B is some fixed set “defined by the user”, but it

should definitely always include —.
A type substitution replaces a type variable by a type, just

like in first-order logic, a substitution replaces a variable by a
term.
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6.4 Summary on \-Calculus

e )\-calculus is a formalism for writing functions.
e (3-reduction is the notion of “computing” in A-calculus.
® )\ restricts syntax to “meaningful’ A-terms.

e Add-on feature: Polymorphism.
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7 Resolution
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Three Sections on Deduction Techniques

We look at a more practical issue: resolution. We want to
understand better how Isabelle works on an intuitive level.
There is another topic relevant in this context that Monica

Nesi strongly emphasises: term rewriting. | will leave this to
her!

34



Resolution

Resolution is the basic mechanism for transforming proof states
in Isabelle in order to construct a proof.

It involves unifying a certain part of the current goal (state)
with a certain part of a rule, and replacing that part of the
current goal.

We have already explained this in the labs and you have
been working with it all the time, but now we want to under-
stand it more thoroughly.

We look at several variants of resolution.
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Resolution (rtac, as in Prolog®’)

®1, ..., ¢y are current sub-
goals and 1) is original goal.
Isabelle displays

Level ... (n subgoals)

(0
b G e by 1-:¢1
(2 n. o,

Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a
current goal (corresponding to our ¢1, ..., ¢,) with a Horn
clause (corresponding to our [a;. . .; o] = ).
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Resolution (rtac, as in Prolog®’)

Gr o i e O

®1, ..., ¢y are current sub-
goals and 1) is original goal.
Isabelle displays

Level ... (n subgoals)
(8

1. ¢
n. 6

laq; ..o, = Fis rule.

Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our ¢1, ..., ¢,) with a Horn

clause (corresponding to our [a; ..

86
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Resolution (rtac, as in Prolog®’)

Simple scenario where ¢; has
o no premises®®. Now (3 must

1 o ‘&777/ - - -
be unifiable with selected sub-

goal ¢;.
R .

Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a
current goal (corresponding to our ¢1, ..., ¢,) with a Horn
clause (corresponding to our [a;. . .; o] = ).
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Resolution (rtac, as in Prolog®’)

Simple scenario where ¢; has
no premises®®. Now (3 must
be unifiable with selected sub-

goal ¢;.

We apply the unifier (%)

Prolog is a logic programming language [Apt97].
The computation mechanism of Prolog is resolution of a

current goal (corresponding to our ¢, ..
clause (corresponding to our [a; ..

86
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Resolution (rtac, as in Prolog®’)

Simple scenario where ¢; has
no premises®®. Now (3 must
be unifiable with selected sub-

goal ¢;.

R R We apply the unifier (%)
wl

We replace ¢/ by the premises
of the rule.

Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a
current goal (corresponding to our ¢1, ..., ¢,) with a Horn
clause (corresponding to our [a;. . .; o] = ).
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Resolution (with Lifting over Assumptions)

(B~ D]

(3

Now, suppose the i'th (selected) subgoal has assumptions

gbila cey gbzkz
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Resolution (with Lifting over Assumptions)

611+ ;

(3

As before, we have a rule. Here, 3 is (hopefully) unifiable
with ¢;, but 3 is not®® unifiable with the entire i'th subgoal.
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Resolution (with Lifting over Assumptions)

[Gi1 Pk, [@ir - - Din]

a1 s 7

(Di1- - - Din;) [Pi1 - - - Di]
R T

(3

Rule must be lifted over assumptions®’. No unification so far!
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Resolution (with Lifting over Assumptions)

[Gi1 Pk, [@ir - - Din]

1

Now, subgoal and rule conclusion (below the bar) are unifiable®.
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Resolution (with Lifting over Assumptions)

[Gi1 Pk, [@ir - - Din]

a1 s 7

(D1 - Din,] [Di1 - Dir]

b1 /gb\*

'
v

Now, subgoal and rule conclusion (below the bar) are unifiable®.
Non-trivially?®, 3 must be unifiable with ¢;.
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Resolution (with Lifting over Assumptions)

We apply the unifier.
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Resolution (with Lifting over Assumptions)

(@ -+ Fin) [l - -l
Or---diy oy A G
¢/

We replace the subgoal.
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Elimination-Resolution
(i1 i) 3

(8

Same scenario as before®

7.1 Summary on Resolution

e Build proof resembling sequent style notation;

%S0 the scenario looks as for resolution with lifting over
assumptions. However, this time we do not show the lifting

over assumptions in our animation.
sElimination-resolution is used to eliminate a connective in

the premises.
For example, if the current goal is

A A B]
B
ANB — B

and the rule is

I ;: Q]

PAQ R
R

N-E

38



Elimination-Resolution

---Ozm
[Cbu"‘
y 5

(0

Same scenario as before’*, but now 3 must be unifiable
with ¢;, and «; must be unifiable with ¢;;, for some [.

1
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the premises.
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A A B]
B
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R

N-E

38



Elimination-Resolution

/
@,
n

w/
Same scenario as before’*, but now 3 must be unifiable
with ¢;, and «; must be unifiable with ¢;;, for some [.

Apply the unifier.

7.1 Summary on Resolution

e Build proof resembling sequent style notation;

%S0 the scenario looks as for resolution with lifting over
assumptions. However, this time we do not show the lifting

over assumptions in our animation.
sElimination-resolution is used to eliminate a connective in

the premises.
For example, if the current goal is

A A B]
B
ANB — B

and the rule is

I ;: Q]

PAQ R
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N-E
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Elimination-Resolution

[/ ]17¢1[—¢—1" ] [/ ]17¢11_¢_1" ]

/ /
Q5/1"'¢,[;_1Oé2 am +1 " '/n,
w/
Same scenario as before’*, but now 3 must be unifiable
with ¢;, and «; must be unifiable with ¢;;, for some [.
Apply the unifier.

We replace ¢/ by the premises of the rule except the first®.

), inherit the assumptions of ¢;, except ¢/,.

/
oy .o

7.1 Summary on Resolution

e Build proof resembling sequent style notation;

%S0 the scenario looks as for resolution with lifting over
assumptions. However, this time we do not show the lifting

over assumptions in our animation.
sElimination-resolution is used to eliminate a connective in

the premises.

For example, if the current goal is
A A B]

B
ANB — B

and the rule is

I ;: Q]

PAQ R
R

N-E
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e technically: replace goals with rule premises, or goal premises
with rule conclusions;

e metavariables and unification to obtain appropriate in-
stance of rule, delay commitments.

then the result of elimination resolution is
[A; B
B
ANB — B

Effectively, the interplay between elimination rules and
elimination-resolution is such that one “does not throw any
information away”. Before we had the assumption A A B.
This was replaced by the components A and B as separate
assumptions.
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8 Automation by Proof Search
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Outline of this Part

e Proof search and backtracking
e Classifying rules

e Proof procedures

8.1 Proof Search and Backtracking
Some aspects in proof construction are non-deterministic:

e unification: which unifier to choose?
e resolution: where®® to apply a rule (which 'subgoal’)?

e which rule to apply?

The question is: how to organize proof-search?

%\\/e have seen in the exercises (and also in the lecture) that
one can choose the subgoal to which one wants to apply a
rule.
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Organizing Proof Search Conceptually

Organize proof search as a tree’” of theorems® (thm's).

S1
/\
59 S3
7\
S4 S5 S6

S71 |58
!
T

"We have seen in the previous lecture that resolution trans-
forms a proof state into a new proof state. Since in general,
a proof state has several successor states (states that can be
obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
%Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which lsabelle regards as true.

%For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
10Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,
i.e., go up one level (just like undo();), and then try alternative
SUCCESSOTs.
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i.e. something which lsabelle regards as true.

%For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
10Note that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,
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Organizing Proof Search Operationally

The search space of proof search can be thought of as such
a tree, but it cannot be implemented like this straightaway:
Organize proof search as a function on theorems'®! (thm's)

type tactic = thm — thm seq

where seq'?? is the type constructor for infinite lists.
This allows us to have tacticals'®: THEN, ORELSE, REPEAT,

101 This way of understanding and origanizing proof search is
not so abstract, but rather operational. Instead of saying that
¢ and ¢ are in a relation, one says that ¢’ is in the sequence
returned by the tactic applied to ¢. There is an order among
the successors of a proof state.

One still does not represent a tree explicitly, although con-

ceptually, proof search is about exploring this tree.
102For any type T, the type 7 seq (recall the notation) is the

type of (possibly) infinite lists of elements of type 7. This is
of course an abstract datatype. There should be functions to
return the head and the tail of such an infinite list.

An abstract datatype is a type whose terms cannot be rep-
resented explicitly and accessed directly, but only via certain
functions for that type.

103

e THEN
e ORELSE
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8.2 Classifying Rules

In your early Isabelle exercises, you only used backward
reasoning (rtac). You experienced that some rules can be
applied blindly most of the time, e.g. —-/ or A-I. Others in-
volve “guessing”, e.g. A-EL or A-ER (you do not know which
to apply to deal with a A in the premises).



8.2 Classifying Rules

In your early Isabelle exercises, you only used backward
reasoning (rtac). You experienced that some rules can be
applied blindly most of the time, e.g. —-/ or A-I. Others in-
volve “guessing”, e.g. A-EL or A-ER (you do not know which
to apply to deal with a A in the premises).

Later on you learned about etac combined with specially
tailored rules (they have an “E" in their name). That helps
reduce, but not completely eliminate the “guessing”.

e REPEAT
e INTLEAVE, BREADTHFIRST, DEPTHFIRST, ...

are called tacticals.

Tacticals are operations on tactics. They play an impor-
tant role in automating proofs in Isabelle. The most ba-
sic tacticals are THEN and ORELSE. Both of those tacti-
cals are of type tactic * tactic — tactic and are writ-
ten infix: tacy THEN taco applies tac; and then taco, while
tacy ORELSE tacy applies tac; if possible and otherwise ap-
plies taco [Pau05, Ch. 4].
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Safe and Unsafe Rules

Combined tactics rely on classification of rules, maintained in
Isabelle data structure claset!?* and accessed by functions!®®

of type claset * thm 1ist — claset.

Class: To add use function:

Safe introduction rules  addSIs
Safe elimination rules addSEs
Unsafe introduction rules addIs
Unsafe elimination rules addEs

sclaset is an abstract datatype. Overloading notation,
claset is also an ML unit function which will return a term of
that datatype when applied to (), namely, the current classifier
set.

A classifier set determines which rules are safe and unsafe
introduction, respectively elimination rules. The current clas-
sifier set is a classifier set used by default in certain tactics.

The current classifier set can be accessed via special func-

tions for that purpose.
105The functions addSIs, addSEs, addIs, addEs are all of

type claset x thm 1ist — claset. They add rules to the
current classifier set. For example, addSIs adds a rule as safe
introduction rule.
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8.3 Proof Procedures (Simplified)
Tactics in Isabelle are performed in order'®®:
1. REPEAT (rtac safe I rules ORELSE etac safe E rules)

2. canonize: propagate “r =t" throughout subgoal
3. rtac unsafe_I _rules ORELSE etac unsafe_E _rules
4,

atac

There are variants of this. We do not study them in detalil,
we just use them ...

6 Tactics in Isabelle are performed in order:
1. REPEAT (rtac safe I rules ORELSE etac safe E rules);

2. canonize: propagate “r =t" ...throughout subgoal;
3. rtac unsafe_I _rules ORELSE etac unsafe_E _rules;

4. atac.

One elementary proof step consists of trying a safe intro-
duction rule with rtac, or, if that is not possible, a safe
elimination rule with etac. This will be repeated as long as
possible.

Then in the current subgoal, any assumption of the form x =
t (where z is a metavariable) will be propagated throughout
the subgoal, i.e., all occurrences of x wil be replaced by .

Then Isabelle will try one application of an unsafe intro-
duction rule with rtac, or, if that is not possible, an unsafe
elimination rule with etac.
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Combined Proof Search Tactics

e step_tac : claset — int — tactic
e fast tac: claset — int — tactic
e best_tac : claset — int — tactic
e slow tac : claset — int — tactic

e blast tac : claset — int — tactic

Finally, she will use atac. Note that atac is unsafe. In
general, there are several premises in a subgoal and atac may
unify the conclusion of the subgoal with the wrong premise.
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8.4 Summary on Automated Proof Search

e Proof search can be organized as a tree of theorems.

e Calculi can be set up to facilitate proof search (although
this must be done by specialists).

e Combined with search strategies, powerful automatic pro-
cedures arise.
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9 Term Rewriting

9.1 Higher-Order Rewriting

Motivation: In your last years at school, you might have
done some equational proofs. They work by replacing equals
by equals.



9 Term Rewriting

9.1 Higher-Order Rewriting

Motivation: In your last years at school, you might have
done some equational proofs. They work by replacing equals
by equals.

It is practical to view deduction to some extent as equa-
tional proving and give it some attention algorithmically. This
will be even more true later. We speak of simplification or
(higher-order) rewriting.
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9.2 Organizing Simplification Rules
e Standard (HO-pattern conditional ordered rewrite) rules;
e congruence rules;

e splitting rules.

108

£197. Some operations!'%:

Isabelle data structure: simpse

e addsimps : simpset * thm 1list — simpset
e delsimps : simpset * thm 1ist — simpset
e addcongs : simpset * thm 1ist — simpset

e addsplits : simpset * thm 1list — simpset

" The simpset is an abstract datatype and at the same time
an ML unit function for returning the current simplifier set.

This is in analogy to the classifier set.
18T hese function manipulate the simplifier set, in analogy to

the classifier set.
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How to Apply the Simplifier?
Several versions of the simplifier:
e simp tac : simpset — int — tactic

e asm simp_tac : simpset — int — tactic
(includes assumptions into simpset)

e asm full simp tac : simpset — int — tactic
(rewrites assumptions, and includes them into simpset)

|109

Using global*™” simplifier sets: Simp tac, Asm simp tac,

Asm full simp tac.

10Simp tac, Asm simp tac, Asm full simp tac work like
their lower-case counterparts but use the current (global) sim-
plifier set and hence do not take a simplifier set as first argu-
ment (e.g., Simp tac has type int — tactic)

There are analogous capitalized versions for the tactics of
the classical reasoner.
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10 HOL: Foundations
10.1 Overview

HOL is expressive foundation!!? for

e Mathematics: analysis, algebra, ...

e Computer science: program correctness, hardware verifi-
cation, . ..


http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/
http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/

10 HOL: Foundations
10.1 Overview

HOL is expressive foundation!!? for
e Mathematics: analysis, algebra, ...

e Computer science: program correctness, hardware verifi-
cation, . ..

HOL developed by [Chu40, Henb0] and rediscovered by
[And02, GM93].

e HOL is classical logic based on the (polymorphically) typed
A-calculus.

e We will use Isabelle/HOL!. Several variations and alter-
natives would be possible.

uoTheorem proving in higher-order logic is an active research
area with some impressive applications.

11\We use Isabelle/HOL, and this means that HOL is an ob-
ject logic represented by the metalogic M.
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Safety through Strength
Safety!!2 via conservative (definitional) extensions:
e Small kernel of constants and rules:
e extend theory with new constants and types defined using
existing ones;
e derive properties/theorems.
Contrast with:

e Weak logics (e.g., propositional logic): can’t define much;

113

e axiomatic extensions ~>: can lead to inconsistency.

Bertrand Russell once likened the advantages of postulation
over definition to the advantages of theft over honest toil!

12T he principle is simple: the smaller a system is, the easier
it is to check that it is correct, and the more confident one
can be about it.

We have seen this before when we argued for the use of
metalogics. However, in that context, we still had to add
further axioms to M. Here this is not the case.

Safety through strength means: HOL is strong enough to
model interesting systems without having to add further ax-

ioms — that's what makes it safe.
113\What we attempt to do here has similarities to the pro-

cess of representing an object logic in a metalogic. But an
important difference must be noted.

We will see many extensions of the HOL kernel by con-
stants (and types). The definitions of those constants and
types involve axioms that must be added according to a strict
discipline. Other than that, we will not add any axioms!
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What Does Higher-Order Mean?

“Type" order'* | Logic order

Example
Just bool 0?lANB— BAA
1 1 |Va,y. R(z,y) — Ry, z)

+ quantification | 2 | False = VP. P
PANQ=VR.(P—@Q — R)

2 3

+ quantification | 4 |VX. (X(R,S) < (Vz. R(x) — S(x)))

— X(R,S") (= subrel(R',S"))

114Recall the definition of an order on types and assume here,
as we did in the lecture on representing syntax, that there is
a type ¢ of individuals and a type o for truth values.

In the sequel, we follow [And02, §50], who uses a definition
of order slightly different from ours. | will phrase his definition
using the concept of predicate type:

® 7 is a type of order 0.

e every type of the form

i— ...1—0,
TV

n times
where n > 0, is a predicate type of order 1.

o If 7,..., 7, are predicate types, then 77 — ... — 7, —
o is a predicate type whose order is 1+ the maximum of
the orders of 7,..., 7.

Note that this means that there are no function symbols,
since we did not consider types of the form ... — 7. How-
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ever it is better to say that we simply disregard them in the
subsequent explanations, for simplicity.

In the table, we classify logics by the order of the non-
logical symbols (e.g., for first-order logic: variables, predicate
symbols).

A hierarchy of logics is obtained by the following alternation:

e admit an additional order for the non-logical symbols in
the logic;

e admit quantification over symbols of that order.

We start this hierarchy with first-order logic.

It has symbols of first-order type (predicate symbols), but
quantification is allowed only over individuals, which are of
order 0.

Now, if one admits quantification over symbols of first-order
type, i.e., over symbols of type 0o or i — ... — i — 0, one
obtains second-order logic.
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Now, if one admits symbols of second-order type (symbols
taking predicate symbols as arguments), one obtains third-
order logic.

Now, if one admits quantification over symbols of second-
order type, one obtains fourth-order logic.

Hence quantification over nth-order variables corresponds
to (2n)th-order logic.

In the end, one will never bother to discuss, say, 7th-order
logic, since higher-order logic is the union of all logics of finite
order, and this is what we will be working with.

Andrews has said that propositional logic might be regarded
as zeroth order logic, but unfortunately, propositional logic
cannot be found in this hierarchy in a straightforward way.
According to the hierarchy, below first-order logic there should
be a logic where the symbols are of order 0 and quantification
over such symbols is allowed. But in fact, in propositional
logic the symbols are of type 0, which is of order 1 but is not
the only type of order 1, and no quantification is allowed at
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Explanation for subrel(R’, S").11°

all.

However, once you take higher-order logic as your point of
reference and not propositional or first-order logic, which can
just be viewed as special cases, you will probably not find this

bothering anymore.
1sConsider the binary predicate subrel which takes two unary

relations as arguments. subrel(R,.S) is defined as true when-
ever R is a subrelation of S, i.e. when Vx. R(x) — S(x).

Now instead of defining such a predicate and writing, say,
a formula subrel(R',S"), one could abstract from that name
and write

VX.(X(R,S) < (Vx. R(x) — S(x))) — X (R, 5"
The subformula X(R,S) < (Vx. R(z) — S(x)) is true if

and only if X is indeed the predicate subrel and so the entire
formula is true if R’ is indeed a subrelation of S’
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HOL = Union of All Finite Orders

w-order logic, also called finite-type theory or higher-order
logic (HOL), includes logics of all finite orders.
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10.2 Syntax

Syntactically, HOL is based on the typed A-calculus with
certain default types and constants.
Default constants can be called logical symbols.
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Types (Review)

Given a set of type constructors, say B® = {bool,  —
Land™T, o x 118 list._ set,...}, polymorphic types are
defined by 7 == « | (7,..,7) T, where « is a type
variable.

bool and — are always present in HOL; ind will also play
a special role; other type constructors may be defined.

16As before, we use the letter B to denote a particular set
of type constructors.

Note that this set is not hard-wired into HOL, but can be
specified as part of a particular HOL language. One can there-
fore speak of BB as a type signature.

B is some fixed set “defined by the user”. In Isabelle, there
is a syntax provided for this purpose.

However, some type constructors are always present.
w7ind (“indefinite”) is a type constructor which stands for a

type with infinitely many members, a concept which is central

in HOL, as we will see later.
1sFor any two types 7 and o, we write 7 X ¢ for the type of

pairs where the first component is of type 7 and the second
component is of type o.

The infix syntax is in analogy to —.

The pair type is not in the core of HOL, but it can be defined
In It.
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Terms

Reminder: e = x | ¢ | (ee) | ()\337119.6)

Typing rules as in polymorphic A-calculus, with > defining
and typing constants.
Terms of type bool are called
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Terms

Reminder: e = x | ¢ | (ee) | ()\337119.6)

Typing rules as in polymorphic A-calculus, with > defining
and typing constants.

Terms of type bool are called (well-formed) formulae.

In HOL, X always includes:

True, False'®® : bool
= . a— a — bool
— 1 bool — bool — bool
€ : (o — bool) — o (in lsabelle: Eps or SOME!?!)
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10.3 Semantics

Intuitively: many-sorted semantics + functions

e When explaining semantics, one always has to rely on
intuition. This is even more true for this crash course
where we cannot present any details.

e What “are” semantic objects?



10.3 Semantics

Intuitively: many-sorted semantics + functions

e When explaining semantics, one always has to rely on
intuition. This is even more true for this crash course
where we cannot present any details.

e What “are” semantic objects? Numbers, lists, sets, all
kinds of functions .. .

e We have a semantic universe D indexed by (infinitely
many) types, i.e., one D, for each type 7.
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Model Based on Universe of Sets U/
U is a collection of (domains) with closure conditions:

Inhab: Each X € U is a nonempty set

Sub: f X elUandY C X andY # 0, thenY e U
Prod: If XY €U then X XY € U.

Pow: If X € U then p(X)={Y | Y C X} eclU
Infty: U/ contains a distinguished infinite set'?? |

Choice: There is a function ch that takes a set X € U as
argument and returns a member of X.

122The infinity axiom

— infty

3 flind—ind) yniective f A —surjective f
says that there is a function from I to I (the postulated
infinite set in U) which is injective (any two different elements
e, ¢ of I have different images under f) but not surjective
(there exists an element of I which is not the image of any
element).

Such a function can only exist if I is infinite, and in fact
the axiom expresses the very essence of infinity, as we will see
later.

Think of the natural numbers and the successor function
as an example: for any two different natural numbers, the
successors are different, and the number 0 is not the successor
of any number.
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Function Space in U/
Define X — Y as the set of functions from X to Y.

e For nonempty X and Y''?3, this set is nonempty and is a
subset of p(X x Y).

e From closure conditions: X, Y € U then X — Y € U.

23]t js crucial in the semantics that any type is inhabited,
i.e., has an element. The reason for this is that otherwise,
there would be terms for which we cannot give a semantics:

Suppose p was an empty (non-inhabited) type. Then we
cannot give any semantics to the term z”. Moreover, if the
signature includes a constant ¢”, then we cannot give a se-
mantics to ¢’. Even if we only consider closed terms (i.e.,
terms without free variables), and we explicitly forbid the ex-
istence of a constant ¢’ for an empty type p, there will be
terms for which we cannot give a semantics. The simplest
example is the term A\z”.x.

We know that A-terms denote functions, as in Ax”.x, and
so it is natural to expect that all functions we can write in
the \-calculus actually exist in the semantics. Generally, the
function space X — Y is empty if X or Y is empty. This
means that D, ., would necessarily be empty if 7 is empty.

One way of understanding why it would be bad if some A-
terms denoting functions had no semantics is by looking at
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Distinguished Sets

From

Infty: U contains a distinguished infinite set [
Sub: f X elUandY C X andY #0(, thenY e U

it follows that the following sets exist in I/:

(-reduction: for any types 7,0 and a constant ¢ of type o,
we expect (Ax7.c) z = c. But this wouldn't hold if we cannot
give a semantics to (A\z7.c) since D,_,, is empty.

Therefore: inhabitation.

One specific point where inhabitation is crucial is related to
the e-operator, as we will see later.

In the book [GM93] that is one of the sources for this lecture,
inhabitation is mentioned, but it is not explained why it is
crucial.

Here we speak of semantic inhabitation, i.e., our semantic
universe must be big enough so that all terms (of type 7)
can be given a meaning (in D;). This is a different ques-
tion from whether there might be types that are not inhab-
ited (syntactically) in the first place, i.e., types for which
there exists no term of this type (compare this to the Curry-
Howard isomorphism). Thus we are concerned with making
sure that every term has a meaning, not that every meaning
has a term. However, it turns out that that in HOL, each
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Unit: A distinguished 1-element'* set {1}

Bool: A distinguished 2-element set {7, F'}.

type 7 is also syntactically inhabited, namely e.g. by the term

€(r—bool)—7(ATT. True).
1240f course, the conditions on U/ do not per se enforce the

existence of sets containing the elements 1 or T" or F'. Just
as well, one could say that they enforce the existence of sets
containing elements # or & or &,

It is only because the name of a semantic element is ul-
timately irrelevant that we claim, without loss of generality,
that there is a 1-element set {1} and a 2-element set {7, F'}.
We say that these sets are distinguished because they play a
special role in the setup of the semantics.
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The Domain for each Type

We now have a universe of domains. Now we want to specify,
for each type, what the domain for this type should be. We
write D,. one for each type 7, where:

L Dbool - {T7 F},
e D, ., =D, — D, (simplification!);
([ J Dm/d — [

117



Interpretations

We define the denotation function (& interpretation) J map-
ping each constant of type 7 to an element of D,

o J(True) =T and J(Fulse) = F,

o J(=r—r—poot)*? is equality on D;;

e J(—) is implication function over Dy,,. For b,V €
{T, F},

ﬂ_})(b’b,){F ifb=Tand b = F

T otherwise

25For = and €, we give type subscripts in the presentation of
the semantics since we assume, conceptually, that there are
infinitely many copies of those constants, one for each type.
We do this to avoid explicit polymorphism in this presentation.
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Interpretations (Cont.)
® J(€(r—boo)—7) is defined by (for f € (D; — Dyoy)):
T (€tr—booty—r ) ()12 = { ch(f7({T}) i f{T}H) #0

ch(D;) otherwise
126\\Ve have
T (6ot () = { LTI T 70

ch is a (semantic) function which takes a nonempty set and
returns an element from that set. f is a semantic function
from D, to Dy,,;. However, f can be interpreted as set. This
is done in all formality here: we write f~1({T'}). One says
that f is the characteristic function of the set f~1({T'}).
Now the type of € is (7 — bool) — 7 (for any T), so €
expects a function as argument, which can be interpreted as
a set as just stated. This set can be empty or nonempty. In
case it is nonempty, an element is picked from the set non-
deterministically. If the set is empty, an element from the type
7 (which must be nonempty since each type is interpreted as
nonempty set). Note the importance of inhabitation.
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The Value of Terms

Given a denotation function J and a type-indexed collection
of assignments'?’ A = {A,},, define VJ such that VY (¢,) €
D, for all t, as follows:
LV (z,) = Az,);
2.V (c) = J(c) for c a constant;
3. VY (5,-588) = (V] (5))(V{(t)), i.e., the value of the
function V' (s) at the argument VY (t);

4. VX(A:CT. t,) = the function from D, into D, whose value
for each e € D, is VI ]129(75).

[x—e

127An assignment (previously called valuation) maps variables
to elements of a domain.

A type-indexed collection of assignments is an assignment
that respects the types: a variable of type 7 will be assigned to
a member of D, [GM93]. Note that a variable has a type by
virtue of a context I', which is suppressed in our presentation

of models.
128]n the presentation of models, we give type subscripts for

the cases V¥'(s,_,t,) and VT Az7.1,) to indicate the types
of s and t in those definitions. Note that a term has a type in
a certain context I', which is suppressed in our presentation of
models. The semantics is only defined for well-formed terms,
in particular, applications and abstractions having types of the

indicated forms.
Az < e] denotes the assignment that is identical to A

except that A(z) = e.
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Satisfiability and Validity

A formula (term of type bool) ¢ is satisfiable wrt. a denotation
function 7 if there exists an assignment A such that V¥ (¢) =
T.

A formula ¢ is valid wrt. a denotation function J for all
assignments A, we have VY (¢) = T.

A formula ¢ is valid if it is valid wrt. every denotation
function.
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Existence of Values

Closure conditions guarantee every well-formed term has a
value under every assignment, and this means that certain
values must exist, e.g.,

e Closure under functions: since V¥ (Ax7. x) is defined, the

identity function from D, to D, must always belong to
D,_...

e Closure under application: if Dy is natural numbers, and
Dy_.n_n contains addition function p where pry = x+
Yy, then Dy_,n must contain k£ where kx = 22 + 5, since
k= V] \rn. f(frx)y) where A(f) = p and A(y) =
53
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10.4 Basic Rules

We now give the core calculus of HOL. Its rules can be
stated using only the constants =, —, and ¢. However, there
will be one rule, tof (“true or false” ), which would be hard to
read if we did that.

So we allow ourselves to “cheat”!*? and also use constants
True, False, V to write rule tof.

Later we will define those constants, i.e., regard them as
syntactic sugar.

130Rule tof can be written as follows:

(M. (o= (Ar.x = Ar.x) — @) —
(¢ = ((An.n) = Az.(Arv.x = Av.x)) = ) — ) =
(Ax.(Ax.x = A\z.7))
Our notation for rule tof is thus based on the following def-
Initions:
True = (Az"'.2 = \v.7)
False Vool ¢

Voo = A V(o — ) = (n— ) =4

tof
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Basic Rules in Sequent Notation

I'Fo=n T'F Po)

'+ qb = ¢ refl Ik P(n) subst
[~ ¢a =gz Lok
F'g=n ext* 131 Fl—gb—wylmp/
PF¢—n TFo
['En
iff
¢ = True V ¢ = Fulse to [ ¢lex.gz') sélec
131The rule
has the side condition that z ¢ FV(I).
Phrased like
pxr=nz .
— Y €&X
¢ =1

the rule has the side condition that x must not occur freely

in the derivation of ¢ x = n .
122You may wonder why there is no rule for eliminating e.

We will later see a rule derivation where an ¢ is effectively
eliminated, and we will also see that this is done without
requiring a rule explicitly for this purpose.

Apart from that, the e-operator is used in HOL as basis
for defining 3 and the if-then-else constructs. Once we have
derived the appropriate rules for those, we will not explicitly

encounter € anymore.
133For readability, we will frequently use a syntax that one is
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Axiom of Infinity

One additional rule, the axiom of infinity, will be studied later.
Note “cheating” (use of 3).
These eight (nine) rules are the entire basis!

more used to than higher-order abstract syntax:
ex.¢x stands for €(¢).

Va.¢(x) stands for V(¢), and likewise for 3.
We have done the same previously for M.
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Soundness and Completeness

Soundness is straightforward [And02, p. 240].

Completeness does not hold in general, but only under cer-
tain conditions. Otherwise, there would be a contradition
to Godel's incompleteness theorem!3* [Hen50, Mil92]: There
must be formulas that are valid in HOL that cannot be proven

within HOL.

134 This is a standard trick when faced with the problem that a
deductive system is not complete. One can either enlarge the
set of axioms, or one can weaken the models by permitting
more models. If we allow more models, then fewer theorems
will be valid (i.e., hold in all models), and so fewer theorems
will have to be provable in the derivation system.

Here, completeness is based on general models, and not
standard models. This resolves the apparent contradiction
with Godel's incompleteness theorem: HOL with infinity con-
tains I, hence the natural numbers, hence arithmetic .... By
Godel's incompleteness theorem, there cannot be a consistent
derivation system that can prove all valid theorems in the
natural numbers.

A readable account on this problem can be found in [And02,
ch. 7].
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10.5 Isabelle/HOL

We now extend the HOL language, introducing the standard
symbols A,V,.... As said, we stick to the HOL theory of
Isabelle!®®.

We present language and rules'® using “mathematical”

syntax, but also comparing with Isabelle syntax.

135This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

There you will also find all the derivations of the rules pre-
sented in this lecture.

However, the presentation of this lecture is partly based on
HOL.thy of Isabelle 98, which in turn is based on a standard
book [GM93]. E.g., the definition of Ex def is now different
from the one presented here.

Note also that here in the slides, we use a style of displaying
Isabelle files which uses some symbols beyond the usual ASCII

set.
126\We will mix natural deduction (with discharging assump-

tions), natural deduction written in sequent style, and Isabelle
syntax.
For a thorough account of this, consult [SH84].
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(Central Parts of the) Language

Some general remarks about the correspondence: A rule

W

¢

in ND notation corresponds to an Isabelle rule ¢y = ¢.

A rule
[/3]

0

¢

p, I =
[k ¢

Is written as

in sequent style or
p =1

¢

using the Isabelle meta-implication —>.
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A rule
(0

()
with side condition that & must not occur free in any undis-

charged assumption on which v depends is written as
'

['F o(x)
in sequent style, where the side condition reads: = must not

occur free in I'. Using the Isabelle meta-universal quantifica-
tion, the rule is written

Nz
¢(x)

We will switch between the various ways of writing the rules!

This means in particular that we will use = and /\ from
Isabelle’s metalogic.
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S =

{ True, False™®"  : bool,
—_138 . bool — bool,
AN, _V_, _— _ :bool — bool — bool,
vV, 3 . (e — bool) — bool,
€ . (a0 — bool) — «,
iof _then _else_ : bool — a — a — a,

= ra — a — bool}

157For convenience (and to save space, we write ...a : 7, b :
T...as...a,b:7...in asignature. This is of course syn-

tactic sugar.
138\Ve use a notation with _ to indicate the arity and fixity of

constants, as this has been done for type constructors before.

The whole matter of arity of fixity is one of notational con-
venience. For example, as the type of A indicates, we should
write (A¢)1 (Curryed notation), but we write ¢ A 1 since it
is more what we are used to.
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Basic Rules in Isabelle Notation

refl:
subst:
ext:

impl:

mp:
iff:

True_or_False:

selectl:

See HOL. thy.

ng o= g0
"[I s =t; P(s) []1 ==> P(t)"
"(Mx., (f x) = g x) ==>

(Bx. £ x) = (hx. g x)"
"(p ==> Q) ==> P-->Q"
"[I P-->Q; P[] ==> Q"
"(P-—>Q) --> (@-->P) -—> (P=Q)"
"(P=True) | (P=False)"
"P (x) ==> P (@x. P x)"
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No more “Cheating”: The Definitions
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True® =10 (\x?l x = \z.2)

VIH = X2 (p = \w. True)
Fulse2 — v ¢booll43. p144
VIR = AV (¢ — ) — (1 — ) — 4
NS = (o — )
M = \g.(¢p — False)
3 = (Ap.(en.))
If1% = \¢"ay.ez.(¢p = True — z = x)A

(¢ = False — z = y)

139

True = (A" x = \z.x)

The term Mz’ .z = A\z.x evaluates to T, and so it is a
suitable definition for the constant True.

Note that we give the type for x once. The right-hand side
Az.x will thereby also be forced to be of type bool — bool.
This is necessary for reasons that will become clear later,

Note that (\x"'.z = Az.z) is closed. Definitions must

always be closed.
0]t is a design choice if we want to add these definitions at

the level of the object logic (HOL) or at the level of the M.
In the first case, we would use = and have axioms such as

True = (Ax"' .o = Az.x)
In the second case, we would have meta-axioms

True = (Az"'.2 = \x.x)

This would mean that we would regard True merely as syn-
tactic sugar. The second way corresponds to what is done in
Isabelle, see HOL . thy. It is technically more convenient since
rewriting is based on meta-level equalities.

Logically, it is not a big difference which way one chooses.

We will have an exercise on this.
141

1
V= Xo.(¢ 3 True)
NaAate +the 11ce Af HOAS harea Y chAanilld he a2 fiinctian +that
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If = Xpxy.ez.(¢p = True — z = x) AN (¢ = False — z = y)

The constant If stands for the if-then-else construct. Note
first that e2.(¢p = True — z = x) A (¢ = False — z = y)
is 7-equivalent to ez.(Az.(¢p = True — z = x) A (¢ =
False — z = y)) z, which is written €(Az.(¢ = True — z =
x) N (¢ = False — z = y)) in the "real” HOL syntax, which
uses the concept of HOAS.

The expression €(Az.(¢p = True — z = z) A\ (¢ = False —
z = y)) picks a term from the set of terms z such that
(¢ = True — z = x) A\ (¢ = False — z = y) holds. But
this means that z = x if ¢ = True, or z = y if ¢ = Fulse.

Since If should be a function which takes ¢, = and y
as arguments, we must abstract over those variables, giving
Aoxy.ez.(¢p = True — z = x) A\ (¢ = False — z = y).
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10.6 Conclusions on HOL

e HOL generalizes semantics of FOL:

— bool serves as type of propositions;

— Syntax/semantics allows for higher-order functions.

e Logic is rather minimal: 8 or 9 rules, based on 3 con-
stants, soundness straightforward.

e Logic is complete under certain restrictions.

e Next: how can all well-known inference rules be derived.
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11 HOL: Deriving Rules
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Derived Rules

The definitions can be understood either semantically (check-
ing if each definition captures the usual meaning of that con-
stant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for
them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving
a constant, then replace the constant with its definition (if
applicable), then show the derivation.

11.1 Equality

e Rule sym




Derived Rules

The definitions can be understood either semantically (check-
ing if each definition captures the usual meaning of that con-
stant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for
them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving
a constant, then replace the constant with its definition (if
applicable), then show the derivation.

11.1 Equality

e Rule sym and ND derivation'®°

refl

subst

s=t s=3s

t=s

150\\e present most of those proofs by giving a derivation tree
for it, but sometimes, we also give an Isabelle proof script.
Note also the mix of syntaxes.
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e Isabelle rule s=t ==> t=s. Proof script:

Goal "s=t ==> t=s";

by (etac subst 1); (x P is %x.x=s *)
by (rtac refl 1); (* s=s *)
ged "sym",
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Equality: Transitivity and Congruences

e Rule trans
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Equality: Transitivity and Congruences

e Rule trans

e Congruences (only Isabelle forms):
(f::’a=>’b) = g ==> f(x)=g(x) (fun_cong)
x=y ==> f(x)=£(y) (arg _cong)
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Equality of Booleans

Isabelle rule iffl: [| P ==>Q; Q ==> P |] ==> P=Q.
|sabelle rule iffD2: [| P=Q; Q |] ==> P.
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11.2 True

True = (A2 .x) = (\x.2))
e Rule Truel

Truel
True rue



11.2 True

True = (A2 .x) = (\x.2))
e Rule Truel

(Ar.x) = (A\z.2) Truel



11.2 True
True = (A2 .x) = (\x.2))

e Rule Truel and ND derivation

(Ar.x) = (A\z.2) refl



11.2 True
True = (A2 .x) = (\x.2))

e Rule Truel and ND derivation

(Ar.x) = (A\z.2) refl

e Isabelle rule eqTrueE: P=True ==> P.

e Rule eqTruel: P ==> P=True.
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11.3 Universal Quantification

The type of V (and ) was declared as (a« — bool) — bool.
Why?
Intuitively, a quantified formula Vx.1) should be of type
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11.3 Universal Quantification

The type of V (and ) was declared as (a« — bool) — bool.
Why?
Intuitively, a quantified formula Vx.1) should be of type

bool, and it depends on x (a variable of type o) and ) (which
is of type



11.3 Universal Quantification

The type of V (and ) was declared as (a« — bool) — bool.
Why?

Intuitively, a quantified formula Vx.1) should be of type
bool, and it depends on x (a variable of type o) and ) (which
is of type bool). This suggests type "« restricted to variables” —
bool — bool.

However, " «v restricted to variables” does not exist and there
would be various problems with this. Instead, writing Az.9
to encode x and ) does the job. This is called higher-order
abstract syntax.
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V: Definition and Introduction Rule
VP = (P = (Az.True))
e Rule alll

alll
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V: Definition and Introduction Rule
VP = (P = (Az.True))
e Rule alll
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V: Definition and Introduction Rule
VP = (P = (Ax.True))

e Rule alll and ND derivation

P(x)
eq Truel
P(x) = True
t
P = X\x. True x

Inherits the side condition of ext: & must not occur freely
in the derivation of P(x).

Isabelle rule ('1x. P(x)) ==> ALL x. P(x).
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Universal Quantification (Cont.)

e Rule spec (recall VP means Vx.Px)

VP
P(t)

spec

Isabelle rule ALL x::’a. P(x) ==> P(x).
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Universal Quantification (Cont.)

e Rule spec (recall VP means Vx.Px)

VP
P(t)

spec

Isabelle rule ALL x::’a. P(x) ==> P(x).

Note: Need universal quantification to reason about Fulse

(since False = (VP.P)).
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11.4 Fulse
False = (VP.P) (= V(AP.P))

e Falsel:



11.4 Fulse
False = (VP.P) (= V(AP.P))

e Falsel: No rule!

e Rule FalseE

False
P

FalseE



11.4 Fulse
False = (VP.P) (= V(AP.P))

e Falsel: No rule!

e Rule FalseE

VP. P
P

FalseE



11.4 Fulse
False = (VP.P) (= V(AP.P))

e Falsel: No rule!

e Rule FalseE and ND derivation

VP. P
P

spec

Isabelle rule False ==> P.
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False (Cont.)

False = True

False_neq_True

P

True = Fualse

2 True_neq_False
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11.5 Negation
—-P =P — Fulse

e Rule notl
P
Fa.lse |
~p not
e Rule notE
-P P iE
I no
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11.6 Existential Quantification
4P = P(ex.P(x))

e Rule existsl/

P(x)
1P
Isabelle rule P(x) ==> EX x::’a.P(x).

existsl/

e Rule existsE )
[P(x)]

P 0
Q

Inherits side condition from alll (just like in FOL).

existsE
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11.7 Conjunction
PANQ=VR.(P—-Q—R)— R

e Rule conj/

conjl

PAQ



11.7 Conjunction
PANQ=VR.(P—-Q—R)— R

e Rule conj/

conjl

VR(P—-Q — R)— R



11.7 Conjunction
PANQ=VR.(P—-Q—R)— R
e Rule conjl/ and ND derivation
P—Q—R" P
Q—R Q

VR(P—-Q— R)— R

|sabelle rule [| P; Q |] ==> P & Q.
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Conjunction (Cont.)

e PNQ =P (conjEL)
e PNQ =@ (conjER)
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11.8 Disjunction

e P— PV Q (dislL)

e Q = PV Q (disjIR)

o [PVQ;P= R;Q = R] = R (disjE)
o PV —P (excl-midd).
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11.9 More Definitions

See HOL.thy!
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11.10 Summary on Deriving Rules

HOL is very powerful in terms of what we can represen-
t/derive:

e All well-known inference rules can be derived.

e Other “logical” syntax (e.g. if-then-else) can be defined.
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11.11 Outlook

We will see how Isabelle/HOL can be used as foundation for
mathematics and computer science (programming languages).
Outline:

e The central method for making HOL scale up: conserva-
tive extensions

e How the different parts of mathematics are encoded in
the Isabelle/HOL library

e How software systems are embedded in Isabelle/HOL
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12 Conservative Theory Extensions

12.1 Conservative Theory Extensions: Basics

Some definitions [GM93, Hué]

Definition (theory): A (syntactic) theory T is a triple
(B, >, A), where B is a type signature, 3. a signature and A
a set of axioms™!.

Definition (theory extension): A theoryT' = (B’ A')
is an extension of a theory T = (B,X, A) iff B C B’ and
Y CY¥ and AC A

151The definition of theory extension requires that A consists
of axioms, not proper rules. However, we have seen that any
rule one might wish to postulate can also be phrased as an
axiom (using — rather than =).

155



Definitions (Cont.)

Definition (conservative extension): A theory extension
T = (B,Y, A") of atheory T = (B, 3, A) is conservative iff
for the set of derivable formulast®®> Th we have

Th(T) = Th(T") |s.

where |y, filters away all formulas not belonging to ..

122The derivable formulas are terms of type bool derivable
using the inference rules of HOL. We write Th(T') for the
derivable formulas of a theory T
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Consistency Preserved

Corollary (consistency):
If T' is a conservative extension of T', then

False ¢ Th(T) = False ¢ Th(T").
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Syntactic Schemata for Conservative Extensions

e Constant definition

e Type definition
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12.2 Constant Definition

Definition (constant definition): A theory extensionT" =
(B',> A") of a theory T = (B, X, A) is a constant definition,
iff

e B=Band¥ =XU{c: 7},

o A'=AU{c=FE};

53

e E does not contain'®3 ¢ and is closed™*:

153]f F/ did contain ¢ then we would speak of a recursive

definition, but at this stage, recursion is forbidden.
154 term is closed or ground if it does not contain any free

variables.
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Constant Definitions Are Conservative

Lemma (constant definitions):
Constant definitions are conservative [GM93, page 223].
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Constant Definition: Examples

Definitions of True, Fualse, N\, \V, ¥V ...

Function application (Let), if-then-else, unique existence!®:
consts
If :: [bool, ’a, ’al => ’a
defs

if _def "If P x y == @z::’a.(P=True-->z=x) &
(P=False-->z=y)"
Exl_def "Ex1(P) == 7x. P(x) & (ly. P(y) ——> y=x)"

15\\le have never used unique existential quantification
(3!) before. Axy, ..., xp.P(x1,...,x,) is defined as
dry, . (T, ) A VY, Y @Yy ) —
TI=Y1 N ... ATy =1Yp).

Note that in general Jlz.(3ly.¢) is not the same as Jlzy.¢).
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12.3 Type Definitions

Type definitions, explained intuitively: we have

® an existing type p;

156Although a set is formally a different object than a predi-
cate, it is standard to interpret a predicate a set: the set of
terms for which the predicate returns true.
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12.3 Type Definitions

Type definitions, explained intuitively: we have
® an existing type p;

e a predicate S : p — bool, defining a non-empty “subset’ 1>
of p;

156Although a set is formally a different object than a predi-
cate, it is standard to interpret a predicate a set: the set of
terms for which the predicate returns true.
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12.3 Type Definitions

Type definitions, explained intuitively: we have
® an existing type p;

e a predicate S : p — bool, defining a non-empty “subset’ 1>
of p;

e axioms stating an isomorphism between S and the new
type 7.

156Although a set is formally a different object than a predi-
cate, it is standard to interpret a predicate a set: the set of
terms for which the predicate returns true.
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Type Definition: Definition

Definition (type definition): Assume a theory T =
(B,%, A) and a type p and a term S¥" such that © S :
p — bool.

A theory extension T" = (B’ A’) of T is a type definition
for type T1°° (where T fresh'®), iff

5’Here, S is any “predicate”, i.e., term of type p — bool,

not necessarily a constant.
158/ type definition is supposed to define a type constructor

(where the arity and fixity are indicated in some way). We
abuse notation here: we use 7 to denote a type constructor,
but also the type obtained by applying the type constructor
to a vector of different type variables (as many as the type
constructor requires).

So think of 7 as either being a type constructor or a
“generic” type (just a type constructor being applied to type
variables).

We do the same in examples.
159 The type constructor 7 must not occur in B.
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B/ — B L‘U160 {,7-}7
Y =32 U {Abs®l:p— 7 Rep, : T — p}
A = AU {Va.Abs,(Rep,z) = 2%,

Vx.Sx — Rep,;(Abs, ) = x}

10T he symbol W denotes disjoint union, so the expression
AW B is well-formed only when A and B have no elements

in common. One thus uses this notation to indicate this fact.
1:Qf course we are giving a schematic definition here, so any

letters we use are metanotation.

Notice that Abs, and Rep, stand for new constants. For
any new type 7 to be defined, two such constants must be
added to the signature to provide a generic way of obtaining
terms of the new type. Since the new type is isomorphic to
the “subset” S, whose members are of type p, one can say
that Abs; and Rep, provide a type conversion between (the
subset S of) p and 7.

So we have a new type 7, and we can obtain members of

the new type by applying Abs, to a term t of type p for which
S't holds.

122The formulas
Va.Abs (Rep, x) = x
Vr.Sx — Rep;(Abs,z) =x
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Type Definitions Are Conservative

Lemma (type definitions):
Type definitions are conservative.
Proof see [GM93, pp.230].

state that the “set” S and the new type 7 are isomorphic.
Note that Abs, should not be applied to a term not in “set”
S. Therefore we have the premise S x in the above equation.

Note also that S could be the “trivial filter” Ax.True. In
this case, Abs, and Rep, would provide an isomorphism be-
tween the entire type p and the new type 7.
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HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale applications?
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HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale applications?

But in fact, due to :nd and —, the types in HOL are already
very rich.
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HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale applications?
But in fact, due to :nd and —, the types in HOL are already
very rich.
We now give two examples to convince you.
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Example: Typed Sets

General scheme,

B"=Bw{r }

X=X U {dbs_ :p —T
Rep 1 —p }

Al = A U {Vz.Abs_(Rep_ z)=r=,
Ve.Sx — Rep  (Abs_ x) =w}
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Example: Typed Sets

General scheme, substituting p = o — bool (« is any type
variable),

B"=Bw{r }

=3 U {AbST (o — bool) - 17 |
Rep 1 — (o — bool) }

Al = A U {Vz.Abs_(Rep_ z)=r=,
Ve.Sx — Rep  (Abs_ x) =w}
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Example: Typed Sets

General scheme, substituting p = o — bool (« is any type
variable), 7 = « set (or set),

B" = B W {set},

X=X U {dbs_ (o — bool) — aset,
Rep . :aset — (o — bool)}

Al = A U {Vz.Abs (Rep  x)=rz,
Ve.Sx — Rep (Abs  x)=uw}
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Example: Typed Sets

General scheme, substituting p = o — bool (« is any type
variable), 7 = a set (or set), S = \x® 7! Trye

B" = B W {set},

X=X U {dbs_ (o — bool) — aset,
Rep . :aset — (o — bool)}

Al = A U {Vz.Abs (Rep  x)=rz,
Va.True — Rep  (Abs  x) = w}
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Example: Typed Sets

General scheme, substituting p = o — bool (« is any type
variable), 7 = a set (or set), S = \x® 7! Trye

B" = B W {set},

X=X U {dbs_ (o — bool) — aset,
Rep . :aset — (o — bool)}

Al = A U {Vz.Abs (Rep  x)=rz,
V. Rep [(Abs )=z}

Simplification since S = A\z. True.
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Sets: Remarks

Any function r : @ — bool can be interpreted as a set of a; r
is called characteristic function. That's what Abs,.; r does;
Abs,.; is a wrapper saying “interpret r as set”.

13\e said that in the general formalism for defining a new
type, there is a term S of type p — bool that defines a
“subset” of a type p. In other words, it filters some terms
from type p. Thus the idea that a predicate can be interpreted
as a set is present in the general formalism for defining a new
type.

Now we are talking about a particular example, the type
« set. Having the idea “predicates are sets” in mind, one is
tempted to think that in the particular example, S will take
the role of defining particular sets, i.e., terms of type « set.
This is not the casel

Rather, S is Ax.True and hence trivial in this example.
Moreover, in the example, p is &« — bool, and any term r of
type p defines a set whose elements are of type «; Absgy T
is that set.
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Sets: Remarks

Any function r : @ — bool can be interpreted as a set of a; r
is called characteristic function. That's what Abs,.; r does;
Abs,.; is a wrapper saying “interpret r as set”.

S = A\x.True and so S is trivial'®® in this case.

13\e said that in the general formalism for defining a new
type, there is a term S of type p — bool that defines a
“subset” of a type p. In other words, it filters some terms
from type p. Thus the idea that a predicate can be interpreted
as a set is present in the general formalism for defining a new
type.

Now we are talking about a particular example, the type
« set. Having the idea “predicates are sets” in mind, one is
tempted to think that in the particular example, S will take
the role of defining particular sets, i.e., terms of type « set.
This is not the casel

Rather, S is Ax.True and hence trivial in this example.
Moreover, in the example, p is &« — bool, and any term r of
type p defines a set whose elements are of type «; Absgy T
is that set.
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More Constants for Sets

For convenient use of sets, we define more constants:
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{x | fz} = Collect’® f = Abs, f
v €A = (Repsey A 1
AUB = {z |z € AVz e B}

166

Consistent set theory™° adequate for most of mathematics

1\We have seen Collect before in the theory file NSet . thy
(naive set theory).

Collect f is the set whose characteristic function is f.
There is also a concrete (i.e., according to mathematical prac-
tice) syntax {x | fx}. It is called set comprehension. The
correspondence between the HOAS Collect f and the con-
crete syntax {z | fx} also makes it clear that set compre-
hension is a binding operator, as we learned some time ago.

Note also that Collect is the same as Abs,,.; here.

The file Set.thy should be contained in your Isabelle dis-
tribution. Or, if you only have an Isabelle executable, you can
find the sources here:

http://isabelle.in.tum.de/library/

15\\/e define
r €A = (Repst A) x

Since Repg; has type aset — (a — bool), this means that
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and computer science.

In Isabelle/HOL however, sets are a special case.

Here, sets are just an example to demonstrate type defini-
tions. Later we study them for their own sake.

x is of type o and A is of type (v — bool). Therefore € is
of type a — (aset) — bool (but written infix).

In the Isabelle theory file Set . thy, you will indeed find that
the constant : (Isabelle syntax for €) has type @ — (« set) —
bool.

However, you will not find anything directly corresponding

to Repget.
6 Typed set theory is a conservative extension of HOL and

hence consistent.
Recall the problems with untyped set theory.
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Example: Pairs

Consider type &« — (3 — bool. We can regard a term f :
a — 3 — bool as a representation of the pair (a,b), where
a:aand b: 3, iff fxyis true exactly for x = a and y = b.
Observe:

e For given a and b, there is exactly one'®” such f (namely,
My’ x =a Ay =b).

e Some functions of type &« — 3 — bool represent pairs
and others don't (e.g., the function Axy. True does not
represent a pair). The ones that do are exactly the ones
that have the form )\:Uo‘yﬁ.x = a Ay = b, for some a

and b.

17\When we say that there is “exactly one” f, this is meant
modulo equality in HOL. This means that e.g. \x“y".y =
bAz = ais also such a term since (\x°y .2 =aAy =b) =
(Ax®y’.y = b Az = a) is derivable in HOL.
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Type Definition for Pairs

This gives rise to a type definition where S' is non-trivial:

p = a— [ — bool
S = Nfooh=bold Jap f = Xy’ x=aNy=>b
T = axf (X infix)

It is convenient to define a constant Pair Rep (not to be
confused with Rep, %) as \a®b’ Nz’ 2 = a Ay = b,
Then Pair Repab = Mz"y .z =a Ay =0

18 ?ep,, would be the generic name for one of the two
isomorphism-defining functions.

Since Repy looks funny, the definition scheme for type defi-
nitions in Isabelle is such that it provides two names for a type,
one if the type is used as such, and one for the purpose of
generating the names of the isomorphism-defining functions.

o\We write A\a®b’ \x®y’ 2 = a Ay = b rather than
Aa®b’zy’ .z = a A y = b to emphasize the idea that one
first applies Pair_Rep to a and b, and the result is a function
representing a pair, wich can then be applied to x and y.
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Now in Isabelle

d170

Isabelle has a special set-base syntax for type definitions:

typedef (7))
(typevars) "T" (fixity)
— 7 {x.¢}77

10 The syntax "{z.¢}" does not just look like a set compre-
hension, it is onel

So, since the typedef syntax is based on sets, sets them-
selves could not have been defined using that syntax. This is
the reason why in Isabelle/HOL, sets are a special case of a
type definition.

See Typedef .thy, which should be contained in your Is-
abelle distribution. Or, if you only have an Isabelle executable,
you can find the sources here:

http://isabelle.in.tum.de/library/
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Now in Isabelle

d170

Isabelle has a special set-base syntax for type definitions:

typedef (7))
(typevars) "T" (fixity)
— 7 {x.¢}77

How is this linked to our scheme:

e the new type is called 77;
e p is the type of = (inferred);
e Sis \x.¢;

e constants Abs 1" and Rep_T' are automatically generated.

10 The syntax "{z.¢}" does not just look like a set compre-
hension, it is onel

So, since the typedef syntax is based on sets, sets them-
selves could not have been defined using that syntax. This is
the reason why in Isabelle/HOL, sets are a special case of a
type definition.

See Typedef .thy, which should be contained in your Is-
abelle distribution. Or, if you only have an Isabelle executable,
you can find the sources here:

http://isabelle.in.tum.de/library/

174


http://isabelle.in.tum.de/library/

Isabelle Syntax for Pair Example

constdefs
Pair_Rep :: [’a, ’b] => [’a, ’b] => bool
"Pair_Rep == (%a b. %x y. x=a & y=b)"

11 Isabelle theory files, consts is the keyword preceding a
sequence of constant declarations (i.e., this is where the ¥ is
defined), and defs is the keyword preceding the axioms that
define these constants (i.e., this is where the A is defined).

constdefs combines the two, i.e. it allows for a sequence
of both constant declarations and definitions. When the
constdefs syntax is used to define a constant ¢, then the
identifier c_def is generated automatically. E.g.

constdefs
id :: "a => ’a"
"id == Yx. x"

will bind id_def to id = A\z.z.
12This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/
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Isabelle Syntax for Pair Example

constdefs
Pair_Rep :: [’a, ’b] => [’a, ’b] => bool
"Pair_Rep == (%a b. %x y. x=a & y=b)"

typedef (Prod)
(’a, ’b) "x" (infixr 20) =
"{f.7a b. f=Pair_Rep(a::’a)(b::’b)}"

171

The keyword constdefs ' introduces a constant defini-

tion. The definition and use of Pair Rep is for convenience.
There are “two names” * and Prod.

See Product_Type.thy!’2.

11 Isabelle theory files, consts is the keyword preceding a
sequence of constant declarations (i.e., this is where the ¥ is
defined), and defs is the keyword preceding the axioms that
define these constants (i.e., this is where the A is defined).

constdefs combines the two, i.e. it allows for a sequence
of both constant declarations and definitions. When the
constdefs syntax is used to define a constant ¢, then the
identifier c_def is generated automatically. E.g.

constdefs
id :: "’a => ’a"
"id == Yx. x"

will bind id_def to id = A\z.z.
12This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/
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12.4 Summary on Conservative Extensions
We have seen two schemata:

e Constant definition: new constant must be defined using
old constants. No recursion!

e Type definition: new type must be isomorphic to a “sub-
set” S of an existing type p. Not possible to define any
type that is “structurally” richer than the types one al-
ready has. But HOL is rich enough.
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13 Sets
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Sets

e Functions

e Induction

e (Well-founded) recursion
e Arithmetic

e Datatypes
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Sets

e Functions

e Induction

e (Well-founded) recursion
e Arithmetic

e Datatypes

178



Set.thy

theory Set = HOL:
typedecl ’a set

instance set :: (type) ord ..
consts
{3 ;1 ’a set ("{}")
UNIV :: ’a set
insert :: [’a, ’a set] => ’a set
Collect :: (’a => bool) => ’a set
"op :" :: "’?a => ’a set => bool"

Note that Collect and " correspond to Abs,; and Reps.;.
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Sets Are a Special Case

Recall that the typedef syntax is based on set comprehen-
sion. Therefore, sets are a special case of type definitions.

In deviation from our conservative approach, sets are ax-
lomatized as follows:

axioms
mem Collect_eq [iff]!"™: "(a : {x. P(x)}) = P(a)"
Collect mem eq [simp]l: "{x. x:A} = A"
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Set.thy: More Constant Declarations

Un, Int :: [’a set, ’a set] => ’a set

Ball, Bex :: [’a set, ’a => bool] => bool
UNION, INTER:: [’a set, ’a => ’b set] => ’b set
Union, Inter:: ((’a set) set) => ’a set

Pow ;. ’a set => ’a set set

"image" :: [’a => b, ’a set] => (’b set)

In what follows, recall that

{z | fz} = Collect f = AbSget f
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Set.thy: Constant Definitions

empty_def : "{} == {x. Falsel}"
UNIV_def: "UNIV == {x. Truel}"
Un_def: "A Un B == {x. x:A | x:B}"
Int_def: "A Int B == {x. x:A & x:B}"
insert_def: "insert a B == {x. x=a} Un B"
Ball_def: "Ball A P == ALL x. x:A ——> P(x)"
Bex_def: "Bex A P == EX x. x:A & P(x)"
Nice syntax:
{z,y, 2} for insert x (insert y (insert z {}))

AlLLz: A.Sx for Ball A S
EXx:A Sxr for Bex A S
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Set.thy: Constant Definitions (2)

subset_def: "A <= B == ALL x:A. x:B"
Compl_def: "— A == {x. "x:A}"
set_diff_def: "A - B == {x. x:A & “x:B}"
UNION_def: "UNION A B == {y. EX x:A. y: B(x)}"
INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}"

Note use of <=!"% instead of C!

Nice syntax:
UNz:A. Sz or J,ey.-Sx for UNION A S

INTx: A Sz or (),.4-Sx for INTER A S

1#Sets are an instance of the type class ord, where the
generic constant <= is the subset relation in this particular
case.

In fact, the subset relation is reflexive, transitive and anti-
symmetric, and so sets are an instance of the axiomatic class
order. This is non-obvious and must be proven, which is
done not in Set.thy itself but in Fun.thy, later. This is a
technicality of Isabelle.
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Set.thy: Constant Definitions (3)

Union_def: "Union S == (UN x:S. x)"
Inter_def: "Inter S == (INT x:S. x)"

Pow_def: "Pow A == {B. B <= A}"
image_def: "fA == {y. EX x:A. y = £(x)}"
Nice syntax:

UUS for Union S
(S for Inter S
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Some Theorems in Set.thy

CollectI Pa= ac{z.Px}

CollectD a € {v.Px} = Pa

set_ext (ANz.(reA)=(reB)=— A=B8B
subsetI (Nexe A=—2re€eB)=— ACB

eqset_imp iff A=B=— (x € A) = (z € B)
Set theory is well-supported in Isabelle and provides a good
basis for mathematics.
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14 Functions
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Sets

e Functions

e Induction

e (Well-founded) recursion
e Arithmetic

e Datatypes
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are encoded in the Isabelle/HOL library.

e Sets

e Functions

e Induction

e (Well-founded) recursion
e Arithmetic
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Fun.thy

The theory Fun.thy!”™ defines some important notions on
functions, such as concatenation, the identity function, the
image of a function, etc.

We look at it briefly.

15 This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

Fun.thy builds on Set.thy, and it is here that it is proven
and used that sets are an instance of the type class order.
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Two Extracts from Fun.thy

Composition and the identity function:

constdefs

id :: "’a => ’a"

"id == Yx. x"

comp :: "[’b => ’c, ’a => ’b, ’a] => ’c"

"f o g = Ux. f(gx))"

Recall constdefs syntax.

14.1 Conclusion of Sets, Functions

e Theory says: conservative extensions can be used to build
consistent libraries.
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e Sets as one important package of Isabelle/HOL library:
Set theory is typed, but very rich and powerfully sup-
ported.
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15 Background: Recursion and Induction
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e Induction

e (Well-founded) recursion
e Arithmetic

e Datatypes
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e Induction

e (Well-founded) recursion
e Arithmetic

e Datatypes
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Recursion and General Fixpoints

Fixpoints are important for induction and recursion. Naive
approach: One could have axiom

fix

Y = AF.F(YF)
This axiom is not a constant definition'’®. Then derive

VEO™OY F = F (Y F)I77,

16 The axiom
Y =AF.F(YF)
is not a constant definition, since Y occurs again on the right-

hand side.
7In words, this says that Y F' is a fixpoint of F'.
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Recursion and General Fixpoints

Fixpoints are important for induction and recursion. Naive
approach: One could have axiom

fix

Y = AF.F(YF)
This axiom is not a constant definition'’®. Then derive

VEO™OY F = F (Y F)I77,

e Why are we interested in Y7

e What is the problem with such a definition?

16 The axiom
Y =AF.F(YF)
is not a constant definition, since Y occurs again on the right-

hand side.
7In words, this says that Y F' is a fixpoint of F'.
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Why Are We Interested in Y?

First, why are we interested in recursion (solutions to recursive
equations!’®)?



Why Are We Interested in Y?

First, why are we interested in recursion (solutions to recursive
equations!’®)?
e Recursively defined functions are solutions of such equa-

tions (example: fac'™).

e Inductively defined sets are solutions of such equations

8By a recursive equation, we mean an equation of the form
J=e
where f occurs in e. A fortiori, such an equation does not

qualify as constant definition.
17]n the following explanations, any constants like 1 or + or

if-then-else are intended to have their usual meaning.
A fixpoint combinator is a function Y that returns a fix-
point of a function F', i.e., Y must fulfill the equation

YF = F(YF). Doing A-abstraction over F' on both sides
and n-conversion (backwards) on the left-hand side, we have

Y = AE.F(YF)

This is a recursive equation. We will now demonstrate how a
definition of a function fac (factorial) using a recursive equa-
tion can be transformed to a definition that uses Y instead of
using recursion directly.

194



In a functional programming language we might define
fac n = (if n =0 then 1 else n * fac (n — 1)).
We now massage this equation a bit. Doing A-abstraction on
both sides we get
An. fac n = (An. if n =0 then 1 else n * fac(n — 1))
which is the n-conversion of
fac = (An. if n =0 then 1 else n * fac(n — 1))
which in turn is a S-reduction of
fac = (A\f. An. if n =0 then 1 else nx f(n — 1)) fac)
(1)

We are looking for a solution to (5). We abbreviate the un-
derlined expression by Fac. We claim fac =Y Fuc, i.e., itis
a solution to (5). Simply replacing fac with Y Fac in (5) we
get

Y Fac = Fac (Y Fac)
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(example: Fin A0 all finite subsets of A).



(example: Fin A0 all finite subsets of A).

We are interested in Y because it is the mother of all re-

which holds by the definition of Y.
Thus we see that a recursive definition of a function can be
transformed so that the function is the fixpoint of an appro-

priate functional (a function taking a function as argument).
180\\le want to define a function Fin such that Fin A is the

set of all finite subsets of A.
How do you construct the set of all finite subsets of A? The

following pseudo-code suggests what you have to do:

S = {{}};

forever do

foreach a € A do
foreach B € S do
add ({a}UB) to S

od od od
This means that you have to add new sets forever (however,
when you actually do this construction for a finite set A, it
will indeed reach a fixpoint, i.e., adding new sets won't change
anything).

196



Generally (even if A is infinite), Fin A is a set such
that adding new sets as suggested by the pseudo-code won't
change anything. Written as recursive equation:

Fin A={{}} U Ux € A.((insertx)‘ (Fin A))

Recall that ‘ is nice syntax for 1mage, defined in Set.thy.
The above is a J-reduction of

Fin A= (AX. {{}} Ul J= € A((insert z)' X)) (Fin A)
(2)

We are looking for a solution to (6). We abbreviate the un-

derlined expression by FA. We claim
Fin A=Y FA,
i.e., it is a solution to (6). Simply replacing Fin A with Y FA
in (6) we get
Y FA = FA(Y FA),
which holds by the definition of Y.
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cursions. With Y, recursive axioms can be converted!®! into
constant definitions.

You should compare this to what we said about fac. Note
that in this example, there is no such thing as a recursive call
to a “smaller” argument as in fac example.

81 Any recursive function can be defined by an expression
(functional) which is not itself recursive, but instead relies on
the recursive equation defining Y.

Consider fac or Fin A as an example.
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What’s the Problem with such an Axiom?

Such a definition would lead to inconsistency.

This is not surprising because not all functions have a fix-
point.

Therefore we only consider special forms of fixpoint com-
binators.

We consider two approaches: Least fixpoints (Tarski) and
well-founded orderings.
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16 Least Fixpoints
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

® Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

e Arithmetic

e Datatypes
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16.1 First Approach: Least Fixpoints (Tarski)

e Recall: We would like to define Y = AF.F(Y F'), where
F'is of arbitrary type @ — «, but we must not.



16.1 First Approach: Least Fixpoints (Tarski)

e Recall: We would like to define Y = AF.F(Y F'), where
F'is of arbitrary type @ — «, but we must not.

e Restriction: [ is of set type (a set — « set).

e Instead of Y define Ifp by an equation which is not re-
cursive.

e [fp is fixpoint combinator, but only under additional con-

182

dition that F' is monotone*°s, and: this is not obvious

(requires non-trivial proof)!

This leads us towards recursion and induction.

A function f is monotone w.r.t. a partial order < if the
following holds: A < B implies f(A) < f(B).

In particular, we consider the order given by the subset re-
lation.
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We define (in Isabelle: Lfp.thy'%)

fp(f) = Nulf(u) € u}

Definition of [fp is conservative. That's fine. But is it a
fixpoint combinator?

183 T hese files should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/
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We define (in Isabelle: Lfp.thy'%)

fp(f) = Nulf(u) € u}

Definition of [fp is conservative. That's fine. But is it a
fixpoint combinator?

Theorem (Tarski):

If f is monotone, then lfp f = f (Ifp f).
1fp unfold. Non-obvious!

183 T hese files should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/
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16.2 Induction Based on Lfp.thy

Theorem (Ifp induction):
If

e f is monotone, and

o fUfp f{x| Pa}) C{x| Paj,
then ifp f C {x | Px}.



16.2 Induction Based on Lfp.thy

Theorem (Ifp induction):
If

e f is monotone, and

o fUfp f{z]|Pa}) C{x]|Px},
then lfp f C {x | Px}.

In Isabelle®* it is called 1fp_induct:

la € lfp fymono f; Nx.x € f(ifp fN{x.Pz}) = Px]
— Pa

184The theorem is phrased a bit differently in the “mathe-
matical” version we give here and in the Isabelle version (see
Lfp.ML). This is convenient for the graphical illustration of
the proof.

The “mathematical phrasing” corresponding closely to the
Isabelle version would be the following:

Theorem (Induct (alternative)):
If

eaclifpf,and
e f is monotone, and

o forallxz, x € f(ifp f{x | Px}) implies P x

then P a holds.
Other phrasings, which may help to get some intuition about
the theorem:

Theorem (Induct (alternative)):
If
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Where Are We Going? Induction and Recursion

Let's step back: What is an inductive definition of a set 57

eaclfyf, and

e f is monotone, and

o flfp fNix | Pa}) C iz | P}
then P a holds.

Theorem (Induct (alternative)):
If

e f is monotone, and

o ffp f{z]| Pa}) C{x|Px}
then for all x in lfp f, we have P x.
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Where Are We Going? Induction and Recursion

Let's step back: What is an inductive definition of a set 57
It has the form: S is the smallest set such that:

e ) C S (just mentioned for emphasis);
o if 5" C S then F/(S’) C S (for some appropriate F').

eaclfyf, and

e f is monotone, and

o flfp fNix | Pa}) C iz | P}
then P a holds.

Theorem (Induct (alternative)):
If

e f is monotone, and

o ffp f{z]| Pa}) C{x|Px}
then for all x in lfp f, we have P x.

205



Where Are We Going? Induction and Recursion

Let's step back: What is an inductive definition of a set 57
It has the form: S is the smallest set such that:

e ) C S (just mentioned for emphasis);
o if 5" C S then F/(S’) C S (for some appropriate F').

At the same time, S is the smallest solution of the recursive
equation S = F'(S).
Induction and recursion are two faces of the same coin.

eaclfyf, and

e f is monotone, and

o flfp fNix | Pa}) C iz | P}
then P a holds.

Theorem (Induct (alternative)):
If

e f is monotone, and

o ffp f{z]| Pa}) C{x|Px}
then for all x in lfp f, we have P x.
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Lfp.thy for Inductive Definitions
Least fixpoints are for building inductive definitions of sets in
a definitional way'®>: S := Ifp F.
This is obviously well-defined, so why this fuss about mono-
tonicity and Tarski?

185Recall why we were interested in fixpoints.

The problem with Y is that it leads to inconsistency (and
of course, the definition of Y is not a constant defini-
tion/conservative extension.).

The definition of [fp is conservative.

And in appropriate situations, it can be used to define re-
cursive functions.

Compared to Y/, the type of [fp is restricted.

This restriction means that there is no obvious way to use
Ifp for defining recursive numeric functions such as fac.
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Lfp.thy for Inductive Definitions

Least fixpoints are for building inductive definitions of sets in
a definitional way'®>: S := Ifp F.

This is obviously well-defined, so why this fuss about mono-
tonicity and Tarski?

Tarski allows us to exploit the equation Ifp f = f(Ifp f)
in proofs about S! That's what [fp is all about.

185Recall why we were interested in fixpoints.

The problem with Y is that it leads to inconsistency (and
of course, the definition of Y is not a constant defini-
tion/conservative extension.).

The definition of [fp is conservative.

And in appropriate situations, it can be used to define re-
cursive functions.

Compared to Y/, the type of [fp is restricted.

This restriction means that there is no obvious way to use
Ifp for defining recursive numeric functions such as fac.
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Example (from Motivation)
The set of all finite subsets of a set A:
Fin A=lfp F
where FF = AX.{{}} UJx € A.((insertz)  X).
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Example (from Motivation)
The set of all finite subsets of a set A:
Fin A=lfp F
where FF = AX.{{}} UJx € A.((insertz)  X).

Thus we can do using [fp what we would have wanted to
do using Y.
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16.3 The Package for Inductive Sets

Since monotonicity proofs can be automated, Isabelle has spe-
cial proof support for inductive definitions. Example:

consts Fin :: ’a set => ’a set set
inductive "Fin(A)"
intrs

emptyI "{} : Fin(A)"
insertI "[| a: A; b: Fin(A) |] ==>
insert a b : Fin(A)"

Translated into expression using Ifp.

208



16.4 Summary on Least Fixpoints

We are interested in recursion because inductively defined sets
and recursively defined functions are solutions to recursive
equations.

We cannot have general fixpoint operator Y, but we have,
by conservative extension, least fixpoints for defining sets.

There is an induction scheme (Ifp induction) for proving
theorems about an inductively defined set.

Restriction of F' to set type (v set — « set) means that
least fixpoints are not generally suitable for defining functions
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17 Well-Founded Recursion
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

o Arithmetic

e Datatypes

211



The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
o (Well-founded) recursion

e Arithmetic

e Datatypes

211



Well-Founded Recursion

After least fixpoints, well-founded recursion is our second con-
cept of recursion (and fixpoint combinator).

|dea: Modeling “terminating” recursive functions, i.e. re-
cursive definitions that use “smaller” arguments for the recur-
sive call.

17.1 Defining Recursive Functions

|dea of well-founded recursion: Wish to define f by recursive
equation f = e, e.g.

fac = (An. if n = 0 then 1 else n * fac(n — 1))
Define F' = A\f.e, e.g.
Fac = (Mac. An. if n =0 then 1 else n * fac(n — 1))



Well-Founded Recursion

After least fixpoints, well-founded recursion is our second con-
cept of recursion (and fixpoint combinator).

|dea: Modeling “terminating” recursive functions, i.e. re-
cursive definitions that use “smaller” arguments for the recur-
sive call.

17.1 Defining Recursive Functions

|dea of well-founded recursion: Wish to define f by recursive
equation f = e, e.g.

fac = (An. if n = 0 then 1 else n * fac(n — 1))
Define F' = Af.e, e.g. (a-conversion of what you have seen)

Fac=(Nf .An.if n=0thenlelsenxf (n—1))
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We say: F'is the functional defining f.
Recall that Y F' would solve f = e, but we don't have Y,
so what can we do?
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wfrec

wfrec RF = ...

If R is well-founded and F' is coherent, then wfrec R F' is
the recursive function defined by functional F.
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The “Fixpoint” Theorem

There is a theorem that has a complicated general form, but
if  is well-founded and H is coherent, then

wfrec r H = H(wfrecr H)

Theorem states that wfrec is like a fixpoint combinator (dis-
regarding the additional argument 7).

Thus we can do using wfrec what we would have liked to
do using Y.
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17.2 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism /support for defin-
ing recursive functions. We illustrate this using nat, the type
of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional
to define a function.



17.2 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism /support for defin-
ing recursive functions. We illustrate this using nat, the type
of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional
to define a function.

First, define predecessor relation:

constdefs
pred_nat :: "(nat * nat) set"
pred_nat_def "pred_nat == {(m,n). n = Suc m}"
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Defining Addition and Subtraction

add :: [nat, nat] => nat (infix1l 70)
"m add n == wfrec (pred nat~+)
(%f j. if j=0 then n else Suc (f (pred j))) m"

Recursive in first argument!®°.

186

add :: [nat, nat] => nat (infixl 70)
"m add n == wfrec (pred nat”+)
(%f j. if j=0 then n else Suc (f (pred j))) m"

Here we suppose that we have a predecessor function pred.

The implementation in Isabelle is different, but conceptually,
the above is a definition of the add function.

Note that add is a function of type nat — nat — nat
(written infix), but it is only recursive in one argument, namely
the first one.

You may be confused about this and wonder: how do | know
that it is the first? Is this some Isabelle mechanism saying that
it is always the first? The answer is: no. You must look at
the two sides in isolation. On the right-hand side, we have

wfrec (pred nat~+)
(%f j. if j=0 then n else Suc (f (pred j)))

By the definitions (of wfrec most importantly), this expression
is a function of type nat — nat, namely the function that
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17.3 Conclusion on Well-founded Recursion

Well-founded recursion allows us to define recursive functions
in HOL and thus reason about computations.

We can derive recursive theorems that can be used for
rewriting just like in a functional programming language.

adds n (which is not known looking at this expression alone;
it occurs on the left-hand side) to its argument. The function
is recursive in its argument (and hence not in n). Now, this
function is applied to m. Therefore we say that the final
function add is recursive in m but not in n.

Now look at subtraction:

subtract :: [nat, nat] => nat (infixl 70)

"m subtract n == wfrec (pred nat”+)

(%f j. if j=0 then m else pred (f (pred j))) n"

Note that subtract is recursive in its second argument, sim-
ply because the right-hand side of the defining equation was
constructed in a different way than for add.

Similar considerations apply for other binary functions de-
fined by recursion in one argument.
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Isabelle Package for Primitive Recursion

For primitive recursion'®’, finding a well-founded ordering is

simple enough for automation'®®!

187A function is primitive recursive if the recursion is based on
the immediate predecessor w.r.t. the well-founded order used
(e.g., the predecessor on the natural numbers, as opposed to
any arbitrary smaller numbers).

This is not the same concept as used in the context of com-
putation theory, where primitive recursive is in contrast to

p-recursive [LP81].
18 The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for
functions on the natural numbers, it will use the usual <
ordering.
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Isabelle Package for Primitive Recursion

For primitive recursion'®’, finding a well-founded ordering is

simple enough for automation'®®!

Example (use nat and case-syntax):

primrec
add_O: "O + n = n"
add_Suc: "Sucm +n = Suc (m + n)"

187A function is primitive recursive if the recursion is based on
the immediate predecessor w.r.t. the well-founded order used
(e.g., the predecessor on the natural numbers, as opposed to
any arbitrary smaller numbers).

This is not the same concept as used in the context of com-
putation theory, where primitive recursive is in contrast to

p-recursive [LP81].
18 The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for
functions on the natural numbers, it will use the usual <
ordering.
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17.4 Conclusion on Recursion and Induction

We are interested in recursion because inductively defined sets
and recursively defined functions are solutions to recursive
equations.

We cannot have general fixpoint operator Y, but we have,
by conservative extension:

e Least fixpoints for defining sets;
e well-founded orders for defining functions.

Both concepts come with induction schemes (Ifp induction
and definition of well-foundedness) for proving properties of
the defined objects. Good Isabelle support.

220



18 Arithmetic
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

e Arithmetic

e Datatypes

222



The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

e Arithmetic

e Datatypes

222



The Approach

Minimally axiomatic: We construct an infinite set, and define
numbers etc. as inductive subset.
We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms.
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The Approach

Minimally axiomatic: We construct an infinite set, and define
numbers etc. as inductive subset.
We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.
The doors open, and all guests come out of their rooms.
They move one room forward'®?, the new guest walks towards

18T his means, there must be a successor function on rooms.
To each room, it assigns the “next” room.
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The Approach

Minimally axiomatic: We construct an infinite set, and define
numbers etc. as inductive subset.
We finally use infinity axiom.

18.1 What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.
The doors open, and all guests come out of their rooms.
They move one room forward'®?, the new guest walks towards

18T his means, there must be a successor function on rooms.
To each room, it assigns the “next” room.
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the first room,



the first room, they turn around,



the first room, they turn around, enter their new rooms.



the first room, they turn around, enter their new rooms. The
doors close, all guests are accomodated.
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Axiom of Infinity

190 191):

The axiomatic core'”” of datatypes (and hence, numbers

. S aE— ——— infty
Af :: (ind — ind). injective f N —surjective f

where

injective’® f = Vay. fo=fy—ax=y
surjective f = Vy.dr.y= fx

Forces ind to be “infinite type” (called “I" in [Chu40]).

10Note that theoretically, it is not needed to add the infinity
axiom (or some equivalent formulation) to HOL. Instead one
could add the infinity axiom as premise to each arithmetic
theorem that one wants to prove.

However this would not be a viable approach since the re-

sulting formulas would be very, very complicated.
11T he natural numbers can be built as an algebraic datatype

by having a constant 0 and a term constructor Suc (for suc-

cessor).
192These constants (actually called inj and sur) are defined

in Fun. thy.
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18.2 Natural Numbers: Nat.thy

consts

Zero_Rep :: 1nd

Suc_Rep :: "ind => ind"
axioms

inj_Suc_Rep: "inj Suc_Rep"

Suc_Rep_not_Zero_Rep: "Suc_Rep x "= Zero_Rep"

So the axiom of infinity is formulated by defining a constant
Suc_Rep having the two required properties.
Think of Zero Rep, Suc Rep as provisional 0, successor.
Based on this, one can define the type nat.
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Constants in nat

Moreover, define!®3:

consts
Suc :: "nat => nat"
pred_nat :: "(nat * nat) set"

Defined intuitively.

13Based on the generic constants Abs Nat and Rep Nat,
we define all the constants that we need to work conveniently
with nat, most importantly, 0 and Suc.
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Some Theorems in Nat.thy!*

nat_induct [P0; An.Pn= P (Sucn)] = Pn

We can now exploit that nat is defined based on a set de-
fined using least fixpoints. In particular, nat_induct follows
(but not “automatically”!) from the induct theorem of Lfp.

194 This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/
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Nat and Well-Founded Orders

Examples of theorems involving well-founded orders:

wf pred nat  wf pred _nat
less linear m<nVm=nVn<m
Suc less SucD Sucm < Sucn = m <n
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Using Primitive Recursion

Nat.thy defines rich theory on nat. Uses primrec syntax
195

for defining recursive functions, and case” construct.
primrec

add_o0 "O+ n=n"

add_Suc "Suc m + n = Suc(m + n)"
primrec

mult_O "0 x n = 0"
mult Suc "Sucm *n =n + (m * n)"

15 The case statement for nat is a function of type nat =
(nat = nat) = nat = nat. case z f n is defined as
follows (using a common mathematical notation):

case z fn= 2 ifn=0
| fk ifn=Suck
The syntax

diff Suc "m - Suc n = (casem - n of 0 => 0 | Suc k => k)

used on the slide is a paraphrasing ( “concrete syntax”) of the
original (“abstract”) syntax. In the original syntax it would
read case 0 (Az.z) (n —m).
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Some Theorems in Nat

add 0 right m+0=m

add ac m+n+k=m+ (n+k)
m+n=n-+m
r+(y+z)=y+(z+2)
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18.3 Further Number Theories

e Integers
e Rational Numbers (Real/PRat.thy!®)
e Reals'”” (Real/PReal.thy!®)

e Machine numbers (floats); see work for Intel's PentiumlV;

built in HOL-light [Har98, Har00]

1965 This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

1The reals have been axiomatized by Dedekind by stating
that a set R is partitioned into two sets A and B such that
R=AUBandforalla € Aand b € B, we have a < b. Now
there is a number s such thata < s < bforalla € Aand b €
B. The irrational numbers are characterised by the fact that
there exists exactly one such s. This axiomatization has been

used as a basis for formalizing real numbers in Isabelle/HOL.
198 This file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/
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18.4 Conclusion on Arithmetic

Using conservative extensions in HOL, we can build
e the naturals (as type definition based on ind), and

e higher number theories (via equivalence construction).



18.4 Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

e the naturals (as type definition based on ind), and

e higher number theories (via equivalence construction).
Potential for

e analysis of processor arithmetic units, and

e function analysis in HOL (combination with computer al-
gebra systems such as Mathematica).

The methodological overhead can be tackled by powerful
mechanical support, since many proof-tasks are routine.
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19 Datatypes
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The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

e Arithmetic

e Datatypes
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What Are Datatypes?
We have seen types, but what are data'*’types?

e Order 0 (no — in type).
e Terms defined by finite set of term constructors.
e Typically inductive definition.

e Term constructed by syntactic rule is unique.

19\\le have seen types, but what are datatypes?

First of all, a datatype must be of order 0, so it must be
a non-functional type. Note that if we do not have polymor-
phism, this means that a datatype must be a in 5. But if we
have polymorphism, it just means that the type must not con-
tain —. E.g., a list could be a datatype. However, when one
describes a datatype, one would usually speak about generic
instances such as « list, and not about, say, nat list.

Secondly, the terms that inhabit a datatype 7 must be de-
fined using a finite set of term constructors that have 7 as
result type. At least one term constructor should just have
type 7. E.g., Nil : a list and Cons : a — (« list) — « list
are the term constructors that define the list datatype. One
also finds a syntax where Nil is written || and Cons is writ-
ten ::. Intuitively, we could say: the terms of a datatype
are exactly the terms that can be constructed by some finite
syntactic construction rule.

Whenever we have a term constructor that has 7 as argu-
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200.

Counterexample™™: « set.

ment as well as result, the construction rule is inductive. E.g.,
we have

o Nil is a list;

o if tis a list h is of type «, then Cons(h,t) is a list.

This is an inductive construction of lists. Usually, when one
speaks about datatypes, one has inductively defined ones in
mind. Examples are lists, natural numbers, trees. One could
say that e.g. bool is also a datatype defined by the constants
True and False, but it is not particularly interesting in this
context.

At the same time, each term constructed by such a syntactic
rule is unique. So if we say: lists are defined by the above
inductive construction, then we imply that Cons(1, Nil) must

not be equal to Cons(1, Cons(1, Nil)).
20To understand better the distinction of a datatype from

another type, consider the following counterexample: « set.
Sets are not a datatype:
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Isabelle’s Datatype Package

Similar to the typedef syntax, Isabelle provides the datatype
syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)
In particular, this automates the proofs of:
e the induction theorem;

e distinctness;

e injectivity of constructors.

1. While the type « set does not contain an —, it is iso-
morphic to a — bool which does contain an —.

2. The most basic way of defining “what a set is” is: if f is of
type 7 — bool, then Abs,.; [ (alternatively: Collect f)
is a set. This is not an inductive syntactic construction
rule.

3. One could define sets similarly to lists by an inductive rule
saying: {} is a set; if S is a set and h is some term of
type o, then Insert(h,S) is a set. But then Insert(1, {})
would be different from Insert(1, Insert(1,{})), which is
not what we want! Moreover, we could not define infinite
sets this way.

4. In point 2 we say: the definition of the terms called “sets”
is not an inductive definition. This is not in contradic-
tion to the inductive definition of particular sets. These
inductive definitions have the form: If foo is in the set
then bar is in the set, e.g., if n is in the set then Suc n
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Isabelle’s Datatype Package

Similar to the typedef syntax, Isabelle provides the datatype
syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)
In particular, this automates the proofs of:
e the induction theorem;

e distinctness;

e injectivity of constructors.

1. While the type « set does not contain an —, it is iso-
morphic to a — bool which does contain an —.

2. The most basic way of defining “what a set is” is: if f is of
type 7 — bool, then Abs,.; [ (alternatively: Collect f)
is a set. This is not an inductive syntactic construction
rule.

3. One could define sets similarly to lists by an inductive rule
saying: {} is a set; if S is a set and h is some term of
type o, then Insert(h,S) is a set. But then Insert(1, {})
would be different from Insert(1, Insert(1,{})), which is
not what we want! Moreover, we could not define infinite
sets this way.

4. In point 2 we say: the definition of the terms called “sets”
is not an inductive definition. This is not in contradic-
tion to the inductive definition of particular sets. These
inductive definitions have the form: If foo is in the set
then bar is in the set, e.g., if n is in the set then Suc n
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20 Summary of HOL Library / Outlook on
Modeled Systems

is in the set. This is in contrast to what is suggested in
point 3, where we say: If foo is a set then bar is a set.
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Summary

We looked at how the different parts of mathematics are en-

coded in the Isabelle/HOL library:
e Orders
e Sets
e Functions
e (Least) fixpoints and induction
e (Well-founded) recursion
o Arithmetic

e Datatypes
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Summary (Cont.)

We conclude: HOL is a logical framework for theoretical com-
puter science. lts features are:

e a clean methodology, which can be supported automati-
cally to a surprising extent;

e a powerful set theory and proof support;
e adequate theories for arithmetics;

e a package for induction;

e a package for recursion;

e a package for datatypes.
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The End

This is the end of the slides of Pearls of Computer-Supported
Modeling and Reasoning held at I'Aquila in March 2010. In
the sequel, you find the material for the full course Computer-
Supported Modeling and Reasoning.
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21 General Introduction
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What this Course is about

Making logic come to life by making it run on a computer,

using the tool Isabelle. Applications in

201 (

e Mathematics™" (Hilbert's program)

201ln the 1920's, David Hilbert attempted a single rigorous
formalization of all of mathematics, named Hilbert's program.
He was concerned with the following three questions:

1. Is mathematics complete in the sense that every statement
can be proved or disproved?

2. |s mathematics consistent in the sense that no statement
can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a
definite method to determine the truth or falsity of any
mathematical statement?

Hilbert believed that the answer to all three questions was
'yes'.

Thanks to the the incompleteness theorem of Godel (1931)
and the undecidability of first-order logic shown by Church
and Turing (1936-37) we know now that his dream will never
be realized completely. This makes it a never-ending task to

find partial answers to Hilbert's questions.
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e program and hardware verification®??

(For the impacient: some Isabelle/HOL applications)

For more details:

— Panel talk by Moshe Vardi

— Lecture by Michael J. O'Donnell

— Article by Stephen G. Simpson

— Original works Uber das Unendliche and Die Grundlagen
der Mathematik [vH67]

— Some quotations shedding light on Godel's incompleteness
theorem

— Eric Weisstein's world of mathematics explaining Godel's
incompleteness theorem

202\/erification is the process of formally proving that a pro-
gram has the desired properties. To this end, it is necessary
to define a specification language in which the desired prop-
erties can be formulated, i.e. specified. One must define a
semantics for this language as well as for the program. These
semantics must be linked in such a way that it is meaningful

245


http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

What this Course is Useful for
After attending this course, you might . ..

e pursue an academic career focused on the topic of this
course or some other topic in formal methods;

e apply formal methods in a company?® like Intel or Gem-
plus;

e work in a different area in academia or industry; even
then, understanding mathematical and logical reasoning
improves understanding of how to build correct systems
and do more rigorous proofs.

to say: “Program X makes formula ® true”.
203The last 20 years have seen spectacular hardware and soft-

ware failures (e.g. the Pentium bug) and the birth of a new
discipline: the verification engineer.
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Overview: Four Parts

204 (

1. Logics™™ (propositional, first-order, higher-order): appr. 6

units

24The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,
it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-
guage allowing to write down statements, together with a
predefined meaning for some of the syntactic entities of this
language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
205A metalogic is a logic that allows us to express properties

of another logic.
26|ntuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the
“world”, the portion that your problem lives in. For example,
rational numbers may or may not exist in this portion. A
theory is such a formalization of a tiny portion of the “world".
A theory extends a logic by axioms that describe that portion
of the “world”.

Theories will be considered in more detail later.
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Overview: Four Parts

204 (

1. Logics™™ (propositional, first-order, higher-order): appr. 6

units

2. Metalogics®® (Isabelle): appr. 2 units

24The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,
it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-
guage allowing to write down statements, together with a
predefined meaning for some of the syntactic entities of this
language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
205A metalogic is a logic that allows us to express properties

of another logic.
26|ntuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the
“world”, the portion that your problem lives in. For example,
rational numbers may or may not exist in this portion. A
theory is such a formalization of a tiny portion of the “world".
A theory extends a logic by axioms that describe that portion
of the “world”.

Theories will be considered in more detail later.
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A theory extends a logic by axioms that describe that portion
of the “world”.

Theories will be considered in more detail later.
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units
2. Metalogics®® (Isabelle): appr. 2 units

3. Modeling mathematics and computer science (program-
ming languages) in higher-order logic: appr. 6 units

206

4. Two case studies in formalizing a theory="® (functional

and imperative programming): appr. 2 units

Presentation roughly follows this structure.

24The word logic is used in a wider and a narrower sense.
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of another logic.
26|ntuitively, whenever you do computer-supported modeling

and reasoning, you have to formalize a tiny portion of the
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rational numbers may or may not exist in this portion. A
theory is such a formalization of a tiny portion of the “world".
A theory extends a logic by axioms that describe that portion
of the “world”.

Theories will be considered in more detail later.
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Relationship to other Courses

Logic: deduction, foundations, and applications
Software engineering: specification, refinement, verification
Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reasoning,
deduction

248



Requirements

" is useful for this course, but

we will try to accommodate different backgrounds, e.g.
with pointers to additional material. Your feedback is
essential!

e Some knowledge of logic?

e You must be willing to participate in the labs and get your
hands dirty! Also, you must follow the course each week,
or you will quickly get lost. It is hard in the beginning
but the rewards are large.

e Being familiar with the editor emacs and basic Linux com-
mands is very helpful.

207\We will introduce different logics and formal systems (so-
called calculi) used to deduce formulas in a logic. We will
neglect other aspects that are usually treated in classes or
textbooks on logic, e.g.:

— semantics (interpretations) of logics; and
— correctness and completeness of calculi.

As an introduction we recommend [vD80].
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22 Propositional Logic
22.1 Propositional Logic: Overview

e System for formalizing certain valid patterns of reasoning

e Expressions built by combining “atomic propositions” us-
ing not, if...then..., and, or, etc.

e Validity?*® means: no counterexample. Validity indepen-
dent of content. Depends on form of the expressions =
can make patterns explicit by replacing words by symbols

From if A then B and A it follows that B.
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22 Propositional Logic
22.1 Propositional Logic: Overview

e System for formalizing certain valid patterns of reasoning

e Expressions built by combining “atomic propositions” us-
ing not, if...then..., and, or, etc.

e Validity?*® means: no counterexample. Validity indepen-
dent of content. Depends on form of the expressions =
can make patterns explicit by replacing words by symbols

A— B A
B

208A and B are symbols whose meaning is not “hard-wired”

into propositional logic.
From if A then B and A it follows that B

is valid because it is true regardless of what A and B “mean”,
and in particular, regardless of whether A and B stand for true
or false propositions.
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e What about?%®

From if A then B and B it follows that A7

209

From if A then B and B it follows that A

is invalid because there is a counterexample:
Let A be “Kim is a man” and B be “Kim is a person”.
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More Examples

. If it is Sunday, then | don't need to work.

It is Sunday.
Therefore | don't need to work.

. It will rain or snow.

It will not snow.
Therefore it will rain.

. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty.

210

. If it is Sunday, then | don’t need to work.

It is Sunday.
Therefore | don’t need to work. VALID

It will rain or snow.
It is too warm for snow.

Therefore it will rain. VALID

. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty.
NOT VALID
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More Examples (Which are Valid?)2'

. If it is Sunday, then | don't need to work.

It is Sunday.
Therefore | don't need to work.

. It will rain or snow.

It will not snow.
Therefore it will rain.

. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty.

210

. If it is Sunday, then | don’t need to work.

It is Sunday.
Therefore | don’t need to work. VALID

It will rain or snow.
It is too warm for snow.

Therefore it will rain. VALID

. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty.
NOT VALID
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History

e Propositional logic was developed to make this all precise.

e Laws for valid reasoning were known to the Stoic philoso-
phers (about 300 BC).

e The formal system is often attributed to George Boole
(1815-1864).

Further reading: [vD80], [Tho91, chapter 1].
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More Formal Examples

Formalization allows us to “turn the crank” 2!,

211By formalizing patterns of reasoning, we make it possible
for such reasoning to be checked or even carried out by a
computer.

From known patterns of reasoning new patterns of reasoning

can be constructed.
22/t this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right
of”. In other words, our formalization consists of geometrical
objects like trees.

We study formalization in more detail later.
23A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules
are grafted together to trees in natural deduction. We will see
this shortly, but note that natural deduction is just one style
of proof systems.

We call the rules in that particular set basic rules. Later we
will see one can also derive rules.
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More Formal Examples

Formalization allows us to “turn the crank”?!.
Phrases like “from . . . it follows” or “therefore’” are formalized??
as derivation rules, e.g.

A— B A
B

—-E
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will see one can also derive rules.

254



More Formal Examples

Formalization allows us to “turn the crank”?!!.
Phrases like “from .. .it follows" or “therefore” are formalized?'?
as derivation rules, e.g.
A—B A
B

Rules are grafted together to build trees called derivations.
213

—-E

This defines a proof system<*” in the style of natural de-

duction.

211By formalizing patterns of reasoning, we make it possible
for such reasoning to be checked or even carried out by a
computer.

From known patterns of reasoning new patterns of reasoning

can be constructed.
22/t this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right
of”. In other words, our formalization consists of geometrical
objects like trees.

We study formalization in more detail later.
23A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules
are grafted together to trees in natural deduction. We will see
this shortly, but note that natural deduction is just one style
of proof systems.

We call the rules in that particular set basic rules. Later we
will see one can also derive rules.
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e We must formalize

1. Language®'* and semantics

2. Deductive system
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22.2 Formalizing Propositional Logic
e We must formalize

1. Language®'* and semantics

2. Deductive system

e Here we will focus on formalizing the deductive machin-

215 (

ery and say little about metatheorems<*> (soundness and

completeness?'®).

e For labs we will carry out proofs using the Isabelle System.

24By language we mean the language of formulae. We can
also say that we define the (object) logic. Here “logic” is used

in the narrower sense.
25A metatheorem is a theorem about a proof system, as

opposed to a theorem derived within the proof system. The

statement “proof system XYZ is sound” is a metatheorem.
216A proof system is sound if only valid propositions can be

derived in it.
A proof system is complete if all valid propositions can be
derived in it.
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22.3 Propositional Logic: Language

Let a set V' of (propositional) variables?!” be given. Lp, the?!
language of propositional logic, is defined by the following

27In mathematics, logic and computer science, there are var-

ious notions of variable. In propositional logic, a variable is a
propositional variable, i.e., it stands for a proposition; it can
be interpreted as True or False.

This will be different in logics that we will learn about later.
218Strictly speaking, the definition of Lp depends on V. A

different choice of variables leads to a different language of
propositional logic, and so we should not speak of the lan-
guage of propositional logic, but rather of a language of propo-
sitional logic. However, for propositional logic, one usually
does not care much about the names of the variables, or about
the fact that their number could be insufficient to write down
a certain formula of interest. We usually assume that there
are countably infinitely many variables.
Later, we will be more fussy about this point.
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grammar®®® (X € V):
P =X | L? | (PA2IP) | (PVP) | (P— P) | ((=P)*®?)

29/ notation like
P:= X |L| (PAP) | (PVP) | (P—P) | (~P))

T = “ir,...,T
z | s )
Fo=...|p"T,...;7T) | V. F | 3x. F
T
e =ux | c| (ee) | (A\z.e)

To=T | 17—>71

e =ux | c| (ee) | (A\z7.¢)

P:=xz | -P| P\P| P—P...

for specifying syntax is called Backus-Naur form (BNF) for ex-
pressing grammars. For example, the first BNF-clause reads:
a propositional formula can be

a variable, or

1, or

Py N\ P, where P, and P, are propositional formulae, or
P,V Py, where P, and P, are propositional formulae, or

P, — P,, where P, and P, are propositional formulae, or
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=Py, where P, is a propositional formula.

The symbol P is called a non-terminal, and when we apply
the rules starting from P until we reach an expression without
non-terminal we say that this expression is a production of P
or it is in the language generated by P.

The BNF is a very common formalism for specifying syntax,

e.g., of programming languages. See here or here.
220

The symbol L stands for “false”.
21The connectives are called conjunction (A), disjunction

(V), implication (—) and negation (—).
The connectives A, V, — are binary since they connect two
formulas, the connective — is unary (most of the time, one

only uses the word connective for binary connective).
22 “Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or
syntactic sugar®?®, for reasons of convenience. In paper-and-
pencil proofs, we are allowed to erase any occurrence of =P

258


http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

The elements of Lp are called (propositional) formulas®?*.

We omit unnecessary brackets®?>.

and replace it with P — _L, or vice versa, at any time. How-
ever, we shall see that when proofs are automated, this process

must be made explicit.
24|n logic, the word “formula” has a specific meaning. For-

mulae are a syntactic category, namely the expressions that
stand for a statement. So formulas are syntactic expressions
that are interpreted (on the semantic level) as True or False.

We will later learn about another syntactic category, that of
terms.

| propositional logic, a formula may also be called a propo-
sition.

25To save brackets, we use standard associativity and prece-
dences. All binary connectives are right-associative:

AoBo(C=A0o(Bo(C)

The precedences are — before A before \V before —. So for
example

A—BA-CVD=A— (BA(=C)) VD)
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Propositional Logic: Semantics

An assignment is a function A : V' — {0,1}. We say that
A assigns a truth value to each propositional variable. We
identify 1 with True and 0 with Fualse.

A is lifted (=extended) to formulas in Lp as follows . ..
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Propositional Logic: Semantics (2)

A(L) =0

A= ) e
4009 = {5 e
4000 = () e
o0 - {0
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Propositional Logic: Semantics (3)

If A(p) =1, we write A = ¢.

Two formulae are equivalent if they yield the same truth
value for any assignment of the propositional variables.

The semantics will be generalised later.
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22.4 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].
Designed to support ‘natural’ logical arguments:

e we make (temporary) assumptions;
e we derive new formulas by applying rules;

e there is also a mechanism for “getting rid of” assump-
tions.
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Natural Deduction (2)

Derivations are trees

A= (B—C) A
B—C —E g
C

where the leaves are called assumptions.

—-E

27For the moment, the way to understand it is as follows:
by writing A — (B — (), A, B - C, we assert that C
can be derived in this proof system under the assumptions
A— (B— (), A B.

We will say more about the - notation later.
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Natural Deduction (2)

Derivations are trees

A—(B—-C) A
B—C .
C
where the leaves are called assumptions.
We write A4, ..., A, = A if there exists a derivation of A
with assumptions Ay, ..., A,, eg. A — (B — (), A, B I
0227.

—-E

27For the moment, the way to understand it is as follows:
by writing A — (B — (), A, B - C, we assert that C
can be derived in this proof system under the assumptions
A— (B— (), A B.

We will say more about the - notation later.
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Natural Deduction (2)

Derivations are trees

A= (B—C) A
B—C —E g
C

where the leaves are called assumptions.

We write A4, ..., A, = A if there exists a derivation of A
with assumptions Ay, ..., A,, eg. A — (B — (), A, B I
0227.

A proof is a derivation where we “got rid" of all assump-

—-E

tions.

27For the moment, the way to understand it is as follows:
by writing A — (B — (), A, B - C, we assert that C
can be derived in this proof system under the assumptions
A— (B— (), A B.

We will say more about the - notation later.
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Natural Deduction: an Abstract Example®?®

o Language L = {9V, % & ¢}

28Natural deduction is not just about propositional logic! We
explain here the general principles of natural deduction, not
just the application to propositional logic.

In order to emphasize that applying natural deduction is a
completely mechanical process, we give an example that is
void of any intuition.

It is important that you understand this process. Apply-
ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
29T he first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ¢, then you are allowed
to draw a line underneath that ¢ and write % underneath that
line.

The third rule reads: if the forest you have constructed so
far contains two neighboring trees, where the left tree has root
% and the right tree has root #, then you are allowed to draw
a line underneath those two roots and write ¥ underneath

that line.
230The last rule reads: if at some root of a tree in the forest
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Natural Deduction: an Abstract Example®?®

o Language L = {9V, % & ¢}

e Deductive system given by rules of proof:

¢ ¢ S 4
e
How do you read these rules???°

28Natural deduction is not just about propositional logic! We
explain here the general principles of natural deduction, not
just the application to propositional logic.

In order to emphasize that applying natural deduction is a
completely mechanical process, we give an example that is
void of any intuition.

It is important that you understand this process. Apply-
ing rules mechanically is one thing. Understanding why this
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28Natural deduction is not just about propositional logic! We
explain here the general principles of natural deduction, not
just the application to propositional logic.

In order to emphasize that applying natural deduction is a
completely mechanical process, we give an example that is
void of any intuition.

It is important that you understand this process. Apply-
ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
29T he first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ¢, then you are allowed
to draw a line underneath that ¢ and write % underneath that
line.
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% and the right tree has root #, then you are allowed to draw
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Natural Deduction: an Abstract Example®?®

o Language L = {9V, % & ¢}

e Deductive system given by rules of proof:
4]

How about this one?%3°

a, (3,7, 0 are just names for the rules.

28Natural deduction is not just about propositional logic! We
explain here the general principles of natural deduction, not
just the application to propositional logic.

In order to emphasize that applying natural deduction is a
completely mechanical process, we give an example that is
void of any intuition.

It is important that you understand this process. Apply-
ing rules mechanically is one thing. Understanding why this

process is semantically justified is another.
29T he first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ¢, then you are allowed
to draw a line underneath that ¢ and write % underneath that
line.

The third rule reads: if the forest you have constructed so
far contains two neighboring trees, where the left tree has root
% and the right tree has root #, then you are allowed to draw
a line underneath those two roots and write ¥ underneath

that line.
230The last rule reads: if at some root of a tree in the forest
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Proof of ¥
The proof:

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath that
line. Moreover you are allowed to discharge (eliminate, close)
0 or more occurrences of # at the leaves of the tree.

Discharging is marked by writing [| around the discharged
formula.

Note that generally, the tree may contain assumptions other
than ¢ at the leaves. However, these must not be discharged
in this rule application. They will remain open until they might
be discharged by some other rule application later.

266



Proof of ¥
The proof:

¢

We make?3! an assumption. The assumption is now open®3?.

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath that
line. Moreover you are allowed to discharge (eliminate, close)
0 or more occurrences of # at the leaves of the tree.

Discharging is marked by writing [| around the discharged
formula.

Note that generally, the tree may contain assumptions other
than ¢ at the leaves. However, these must not be discharged
in this rule application. They will remain open until they might
be discharged by some other rule application later.
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Proof of ¥

The proof:
¢
¢
—
¢ ¢ v L J
v v

We apply a.

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath that
line. Moreover you are allowed to discharge (eliminate, close)
0 or more occurrences of # at the leaves of the tree.

Discharging is marked by writing [| around the discharged
formula.

Note that generally, the tree may contain assumptions other
than ¢ at the leaves. However, these must not be discharged
in this rule application. They will remain open until they might
be discharged by some other rule application later.

266



Proof of ¥

The proof:
¢
¢ ¢
—a —f
¢ ¢ v L ]
v v

Similarly with (.

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath that
line. Moreover you are allowed to discharge (eliminate, close)
0 or more occurrences of # at the leaves of the tree.

Discharging is marked by writing [| around the discharged
formula.

Note that generally, the tree may contain assumptions other
than ¢ at the leaves. However, these must not be discharged
in this rule application. They will remain open until they might
be discharged by some other rule application later.
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The proof:
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We apply 7.

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath that
line. Moreover you are allowed to discharge (eliminate, close)
0 or more occurrences of # at the leaves of the tree.

Discharging is marked by writing [| around the discharged
formula.

Note that generally, the tree may contain assumptions other
than ¢ at the leaves. However, these must not be discharged
in this rule application. They will remain open until they might
be discharged by some other rule application later.
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Proof of ¥

The proof:
¢
[¢]' [o] 3
- a -
¢ ¢ v L ]
——7
v v v
_ 51
v

We apply 9, discharging two occurrences of . We mark the
brackets and the rule with a label so that it is clear which
assumption is discharged in which step. The derivation is
now a proof: it has no open assumptions (all discharged).

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath that
line. Moreover you are allowed to discharge (eliminate, close)
0 or more occurrences of # at the leaves of the tree.

Discharging is marked by writing [| around the discharged
formula.

Note that generally, the tree may contain assumptions other
than ¢ at the leaves. However, these must not be discharged
in this rule application. They will remain open until they might
be discharged by some other rule application later.
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22.5 Deductive System: Rules of Propositional
Logic

We have rules for conjunction, implication, disjunction, fal-
sity and negation.
S les introduce?3, oth limi '
ome rules introduce”, others eliminate connectives.

23]t is typical that the basic rules of a proof system can be
classified as introduction or elimination rules for a particular
connective.

This classification provides obvious names for the rules and
may guide the search for proofs.

The rules for conjunction are pronounced and-introduction,
and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are
also derived rules.
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Rules of Propositional Logic: Conjunction

e Rules of two kinds: introduce connectives
A B A
AANB '

24The letters A and B in the rules are not propositional
variables. Instead, they can stand for arbitrary propositional
formulas. One can also say that A and B are metavariables,
I.e., they are variables of the proof system as opposed to object
variables, i.e., variables of the language that we reason about
(here: propositional logic).

When a rule is applied, the metavariables of it must be
replaced with actual formulae. We say that a rule is being
instantiated.

We will see more about the use of metavariables later.
257 rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as
well.

This is consistent with the earlier intuitive explanation of
validity of a formula. Details can be found in any textbook
on logic [vD80].

Note that while the notation A = ... will be used again
later, there A will not stand for an assignment, but rather for
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Rules of Propositional Logic: Conjunction

e Rules of two kinds: introduce and eliminate connectives

A B ANDB ANB
A/\B/\_l P N-EL B N-ER

24The letters A and B in the rules are not propositional
variables. Instead, they can stand for arbitrary propositional
formulas. One can also say that A and B are metavariables,
I.e., they are variables of the proof system as opposed to object
variables, i.e., variables of the language that we reason about
(here: propositional logic).

When a rule is applied, the metavariables of it must be
replaced with actual formulae. We say that a rule is being
instantiated.

We will see more about the use of metavariables later.
257 rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as
well.

This is consistent with the earlier intuitive explanation of
validity of a formula. Details can be found in any textbook
on logic [vD80].

Note that while the notation A = ... will be used again
later, there A will not stand for an assignment, but rather for
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Rules of Propositional Logic: Conjunction

e Rules of two kinds: introduce and eliminate connectives

A B ANDB ANB
A/\B/\_l P N-EL B N-ER

e Rules are schematic?3*.

e Why valid®®? If all assumptions are true, then so is con-
clusion

AEANBiff A= Aand A B

24The letters A and B in the rules are not propositional
variables. Instead, they can stand for arbitrary propositional
formulas. One can also say that A and B are metavariables,
I.e., they are variables of the proof system as opposed to object
variables, i.e., variables of the language that we reason about
(here: propositional logic).

When a rule is applied, the metavariables of it must be
replaced with actual formulae. We say that a rule is being
instantiated.

We will see more about the use of metavariables later.
257 rule is valid if for any assignment under which the as-

sumptions of the formula are true, the conclusion is true as
well.

This is consistent with the earlier intuitive explanation of
validity of a formula. Details can be found in any textbook
on logic [vD80].

Note that while the notation A = ... will be used again
later, there A will not stand for an assignment, but rather for
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Example Derivation with Conjunction

236

a construct having an assignment as one constituent. This
is because we will generalize, and in the new setting we need
something more complex than just an assignment. But in

spirit A |= . .. will still mean the same thing.
26All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.
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Example Derivation with Conjunction

AN(BAC)

N-EL
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a construct having an assignment as one constituent. This
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open assumptions.
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Example Derivation with Conjunction

AN(BAC)

AN(BAC) BAC
A N-EL

N-ER

236

a construct having an assignment as one constituent. This
is because we will generalize, and in the new setting we need
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Example Derivation with Conjunction

AN(BAC)
N-ER
AN(BAC) BAC
A N-EL O ;\-ER
ANC A

Can we prove anything with just these three rules??3°

a construct having an assignment as one constituent. This
is because we will generalize, and in the new setting we need
something more complex than just an assignment. But in

spirit A |= . .. will still mean the same thing.
26All three rules have a non-empty sequence of assumptions.

Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no
open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.
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Rules of Propositional Logic: Implication

e Rules
A
B . A— B A £
A—B B
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Rules of Propositional Logic: Implication

e Rules
A
B L, A-B A
A— B = B i

e —-F is also called modus ponens.
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Rules of Propositional Logic: Implication

e Rules
A
B L, A-B A
A— B = B i

e —-F is also called modus ponens.

e —-/ formalizes strategy:
To derive A — B, derive B under the additional assump-
tion A.
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A very Simple Proof
The simplest proof we can think of is the proof of P — P.

P

27\When we make the assumption P, we obtain a forest con-
sisting of one tree. In this tree, P is at the same time a leaf
and the root. Thus the tree P is a degenerate example of the
schema

B

where both A and B are replaced with P.

Therefore we may apply rule —-/, similarly as in our abstract
example.

271



A very Simple Proof
The simplest proof we can think of is the proof of P — P.

P!
P—P

Ny

Do you find this strange??3’

27\When we make the assumption P, we obtain a forest con-
sisting of one tree. In this tree, P is at the same time a leaf
and the root. Thus the tree P is a degenerate example of the
schema

B

where both A and B are replaced with P.

Therefore we may apply rule —-/, similarly as in our abstract
example.
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Examples with

1. A— B — A28

Conjunction and Implication

2.AN(BAC)— ANC?

The rule(s):
The proof:
- 4]
B B— A = :
A—>BH_I A>B—A !
The rules:
A B L
AANB'"
The proof:
ANB
g e [AA(BAC)P
oo |AABACE NoER
s A-ER " N-EL C N-ER
. ANC Al ,
= (ANBAC) — (Anc)
B
A— B B

272



3.:A—-—B—C)—(A—B)—A—C*

Are these object or metavariables here?*

240

The proof:
(A—-B—-C) [4P e [(A— B)]* [AP
B—C B
C —E
A—-C 7
(A—>B)—>A—>C'_>_I4 s

(A-B—C)—»(A—B) - A—C

21]n these examples, you may regard A, B, C' as propositional

variables. On the other hand, the proofs are schematic, i.e.,

they go through for any formula replacing A, B, and C.
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e Rules

A
AV B

V-IL

Disjunction

AV B YLl
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Disjunction

e Rules
4] (8]
A B AV B C O
e V-IL T V-IR C V-E

e Formalizes case-split strategy for using AV B.
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Disjunction: Example

e Rules
4] [B]
A B AVB C ©
AV B Ve AV B WL C

e Example: formalize and prove

When it rains then | wear my jacket.
When it snows then | wear my jacket.
|t is raining or snowing.

Therefore | wear my jacket.
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Falsity and Negation

e Falsity

1-E

SN

No introduction rule!?*?



Falsity and Negation

e Falsity

1-E

SN

No introduction rule!?*?

e Negation: define = A as A — 1. Rules for — just special

cases?®® of rules for —. Convenient to have

22T he symbol L stands for “false”.
It should be intuitively clear that since the purpose of a proof

system is to derive true formulae, there is no introduction rule
for falsity. One may wonder: what is the role of 1L then? We
will see this soon. The main role is linked to negation. We
quote from [And02, p. 152]:

L plays the role of a contradiction in indirect proofs.

23The rule
-A A
1
is simply an instance of —-E (since —A is shorthand for
A—1).
Likewise, the rule
A
1
—A
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-A A

a4 T —-E
| 44 .
B ~-E derived by B L-£

is simply an instance of —-/. Therefore, we will not introduce
these as special rules. But there is a special rule —-E.
244For negation, it is common to have a rule
-A A
B

—-E

We have seen how this rule can be derived. The concept of
deriving rules will be explained more systematically later.
This rule is also called ex falso quod libet (from the false

whatever you like).
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Intuitionistic versus Classical Logic

e Peirce's Law: (A — B) — A) — A.
s this valid®**? Provable?*0?



Intuitionistic versus Classical Logic

e Peirce's Law: (A — B) — A) — A.
s this valid®**? Provable?*0?

25Yes, simply check the truth table:

A B |[((A—-B)— A — A
True | True True
True | False True
False | True True
False | False True

246|n the proof system given so far, this is not provable. To
prove that it is not provable requires an analysis of so-called
normal forms of proofs. However, we do not do this here.
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e It is provable in classical logic®*’, obtained by adding

-4 -4

AV A28 o A RAA, o A classica/250.

247The proof system we have given so far is a proof system for

intuitionistic logic. The main point about intuitionistic logic
is that one cannot claim that every statement is either true or
false, but rather, evidence must be given for every statement.
In classical reasoning, the law of the excluded middle holds.
One also says that proofs in intuitionistic logic are construc-
tive whereas proofs in classical logic are not necessarily con-
structive.
We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar
classical logic which allows an effective interpretation
and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has
been the topic of a fundamental discourse in the literature on
logic [PM68] [Tho91, chapter 3]. Often proofs contain case
distinctions, assuming that for any statement ), either ¢ or
—1) holds. This reasoning is classical; it does not apply in
intuitionistic logic.
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248 4 \V = A is called axiom of the excluded middle.
249The rule
-4

- AA
AR

is called reduction ad absurdum.

250The rule
A

A
— classical

A

corresponds to the formulation is Isabelle.
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Example of Classical Reasoning

Recall the story of Oedipus from greek mythology:
e |okaste is the mother of Oedipus.
e lokaste and Oedipus are the parents of Polyneikes.
e Polyneikes is the father of Thersandros.
e Oedipus is a patricide.

e Thersandros is not a patricide.
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Example of Classical Reasoning (cont.)

lokaste

§ Oedipus (patr.)
;
Polyneikes

;
Thersandros (— patr.)

Does lokaste have a child that is a patricide and that itself
has a child that is not a patricide?

1 There exist irrational numbers @ and b such that a® is
rational.



Example of Classical Reasoning (cont.)

lokaste
§ Oedipus (patr.)
¥
Polyneikes (  patr.)
¥
Thersandros (— patr.)

Does lokaste have a child that is a patricide and that itself
has a child that is not a patricide?

Case 1: If Polyneikes is a patricide, then lokaste has
a child (Polyneikes) that is a patricide and that itself has a
child (Thersandros) that is not a patricide.

1 There exist irrational numbers @ and b such that a® is

rational.
Proof: Let b be /2 and consider whether or not b’ is

rational.

Case 1: If rational, let a = b = /2
Case 2: If irrational, let a = \/5\/§ and then

\/E *
ab:\/é\/§ :\@(ﬂﬁ):\/?:Q



Example of Classical Reasoning (cont.)

lokaste
§ Oedipus (patr.)
¥
Polyneikes (— patr.)
¥
Thersandros (— patr.)

Does lokaste have a child that is a patricide and that itself
has a child that is not a patricide?

Case 2: If Polyneikes is not a patricide, then lokaste has
a child (Oedipus) that is a patricide and that itself has a
child (Polyneikes) that is not a patricide.

Here®®! is another example.

1 There exist irrational numbers @ and b such that a® is

rational.
Proof: Let b be /2 and consider whether or not b’ is

rational.
Case 1: If rational, let a = b = /2

Case 2: If irrational, let a = \/5\/§ and then
\/E *

a =
We still don't know how to choose a and b so that a’ is
rational. Hence the proof if non-constructive.
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Overview of Rules

A B AANB AANB
ang M o AEL 5 AER
[A] [B]
A B AVB C C

avp V"t Ay VIR 5 V-E
[A]

B A—- B A 1

1= ! 5 —~E G LE
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22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

284



22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

RvVS =S
R

It looks like this.
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22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5

RVS =S RvS
R R

We build a fragment of a derivation by writing the conclusion
R and the assumptions RV .S and —S.
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22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5

RvS -5  BVS R
R R kA
Since we have assumption RV S, using V-E seems a good
idea. So we should make assumptions R and S. First R. But
that is a derivation of R from R!
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22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5 S

RvS -5  BVS R
7 7 V-E

So now S.
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22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

RvS -5  BVS R
7 7 V-E

=S and S allow us to apply —-E.
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22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-S S
. O F
— 1 -E
PVS S RVS R R
R R \/—E

To apply V-E in the end, we need to derive R. But that's
easy using 1 -£!
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22.6 Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5 [S]!
— 7 F
— 1 -E
PVS S RvS [R' R
R R \/—E

Finally, we can apply V-E. The derivation with open assump-
tions is a new rule that can be used like any other rule.
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A Variation of Natural Deduction: Boxes

We have seen just one deductive system.

One variation of natural deduction is the following: A deriva-
tion is not a tree, but a sequence of numbered lines. Instead of
subtrees relying on open assumptions, a subderivation relying

on an assumption is enclosed in a box.
You find this explained in [HRO04].
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22.7 Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability
judgement®?, i.e., reason about I' - Awhere' = A,,..., A,
instead of individual formulae.

%2An object like A — (B — C'), A, B+ C'is called a deriv-
ability judgement. We explained it earlier as simply asserting
the fact that there exists a derivation tree with C' at its root
and open assumptions A — (B — (), A, B.

However, it is also possible to make such judgements the
central objects of the deductive system, i.e., have rules in-
volving such objects.

The notation I' = A is called sequent notation. However,
this should not be confused with the sequent calculus (we
will consider it later). The sequent calculus is based on se-
quents, which are syntactic entities of the form A;,..., A, -
By, ...,B,,, where the Ay,...,A,, By,...,B,, are all for-
mulae. You see that this definition is more general than the
derivability judgements we consider here.

What we are about to present is a kind of hybrid between
natural deduction and the sequent calculus, which we might
call natural deduction using a sequent notation.
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Sequent Rules (for — /A Fragment)

253 5nd Weakening254:

I'-DB

['F A%5  (where A €T AT B weaken

Rules for assumptions



Sequent Rules (for — /A Fragment)

253 5nd Weakening254:

I'-DB

Rules for assumptions

255 b
'FA (where A € T') A7F|_Bweaken
Rules for A and —:

I'FA T'+HB I'FAAB I'FAANB
TEAne 7 TERa T TRp
A T'=B N '~A—- B FI—A_}E
'-A—-B '-B i

23The special rule for assumptions takes the role in this se-
quent style notation that the process of making and discharg-
ing assumptions had in natural deduction based on trees.

It is not so obvious that the two ways of writing proofs
are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
»4The rule weaken is

B
ATFB

Intuitively, the soundness of rule weaken should be clear:

weaken

having an additional assumption in the context cannot hurt
since there is no proof rule that requires the absence of some
assumption.

We will see an application of that rule later.
25An axiom is a rule without premises. We call a rule with

premises proper.
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More rules can be derived®°.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic
contain no axioms. In the sequent style formalization, having
the assumption rule (axiom) is essential for being able to prove
anything, but in the natural deduction style we learned first,
we can construct proofs without having any axioms.

Note also that even a proper rule in the object logic is just
an axiom at the level of Isabelle’s meta-logic. This will be

explained later.
26 As an example, consider

A BTHFC THAAB
T-C

N-E
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Example: Refinement Style with Metavariables

FAAN(BAC)— ANC

We want to show that AA (BAC) — AAC is a tautology,
i.e., that it is derivable without any assumptions.

This rule can be derived as follows:
A BTFC

—-1
AT'FB—C lr|—A/\B =
rFA-BoC ' Tra A/_; [FANB
IFB—C e r-p /"

I'=cC
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Example: Refinement Style with Metavariables

ANBANC)FANC
FAAN(BAC)— ANC

—-/

The topmost connective of the formula is —, so the best
rule®®’ to choose is —-I.

This rule can be derived as follows:

ABTFC
A,FI—B—>C_>_ I AARB

TFAsBoCc 0 1ra " B

'-BoC —E rEB ER

I'=cC
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Example: Refinement Style with Metavariables

AN(BAC)FA AN(BAC)EC
ANBANC)FANC
FAAN(BAC)— ANC

N-1

—-/

The topmost connective of the formula is A, so the best rule
to choose is A-I.

This rule can be derived as follows:

ABTFC
A,FI—B—>C_>_ I AARB

rFAasBoc ! TFa AfLFFAAB

'-BoC —E rEB ER

I'=cC
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Example: Refinement Style with Metavariables

AN(BAC)FANTX

AN(BAC)FA AN(BAC)EC
AN(BAC)FANC

FAAN(BAC)— ANC

N-EL

N-1

—-/

Things are becoming less obvious. To know that A-EL is the
best rule for the r.h.s., you need to inspect the assumption

AN(BAC).

This rule can be derived as follows:

ABTFC
A,FI—B—>C_>_ I AARB

TFAsBoCc 0 1ra " B

'-BoC —E rEB ER

I'=cC
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Example: Refinement Style with Metavariables

ANBANC)FANTX ANBANC)E (Y NC)
ANBAOFAa  NME ANBAC)FC
AN(BAC)FAANC

FAAN(BAC)— ANC

N-ER

N-1

—-/

Now it's becoming even more difficult. To know that A-ER
is the best rule for the |.h.s., you need to look deep into the
assumption A A (B A C).

This rule can be derived as follows:
A BTFC

—-1
AT'FB—C lr|—A/\B =
rFA-BoC ' Tra A/_; [FANB
IFB—C e r-p /"

I'=cC
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Example: Refinement Style with Metavariables

ANBANC)YE?ZANCYY ANC)
ANBANC)FANTX ANBANC)E (Y NC)
ANBAO Fa  NME ANBAC)FC
AN(BAC)FANC
FAAN(BAC)— ANC

N-ER
N-ER

N-1

—-/

Again you need to look at both sides of the - to decide what
to do.

This rule can be derived as follows:

ABTFC
A,FI—B—>C_>_ I AARB

rFAasBoc ! TFa AfLFFAAB

'-BoC —E rEB ER

I'=cC

289



Example: Refinement Style with Metavariables

ANBANC)YE?ZANCYY ANC)

ANBAC)FANIX AANBAC)E (Y AC) NER
ANBACO)FA  NME ANBACO FC  NMER
ANBAC)FAAC A
FAANBAC) = AnC !
Solution for 77 = A, 7Y = B and 7X = (B A ().
This rule can be derived as follows:
A BTFC
—-1
AT'FB—C lr|—A/\B =
rFA-BoC ' Tra A/_; [FANB
I'FB—C e rep /v
r'EC e
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Example: Refinement Style with Metavariables

ANBANC)EA AN(B AC)

AAN(BAC)FAA(BAC) AN(BAC)F (B AC) NER
ANBACO)FA  NME ANBACO FC  NMER
ANBAC)FAAC A
FAANBAC) = AnC !
Solution for 77 = A, 7Y = Band X = (BAC).
This rule can be derived as follows:
ABTFC
—-1
AT +FB—-C lr|—A/\B =
rFA-BoC ' Tra A/_; [FANB
'FB—C = rrB "V
TFC e
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Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-
way!

e Refinement style means we work from goals to axioms?>®

e metavariables used to delay commitments

Isabelle allows other refinements®? /alternatives too (see

labs).

28As you saw in our animation, we worked from the root of

the tree to the leaves.
290ne aspect you might have noted in the proof is that the

steps at the top, where A-EL and A-ER were used, required
non-obvious choices, and those choices were based on the
assumptions in the current derivability judgement.

In Isabelle, we will apply other rules and proof techniques
that allow us to manipulate assumptions explicitly. These
techniques make the process of finding a proof more deter-
ministic.

But that is just one aspect. We will give a more theoretic
account of the way Isabelle constructs proofs later.
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23 Natural Deduction: Review
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Overview

e Short review: ND Systems and proofs
e First-Order Logic

— QOverview
— Syntax
— Semantics

— Deduction, some derived rules, and examples
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How Are ND Proofs Built?

ND proofs®® build derivations under (possibly temporary) as-
sumptions.

20ND stands for Natural Deduction. It was explained in the
previous lecture.
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ND: Example for — /A Fragment

Rules:

A B A\B
AANB " A

N-EL

B

Proof:

[A A B! [A A B!

N-ER A N-EL

BANA

ANB —- BAA

294

—



Alternative Formalization Using Sequents®®!

Rules (for — /A fragment). Here, ' is a set of formulae.

A (where A€T)
I'HA T'HB I'FAAB I'FAANB

reanB ' T1tra ML TpEg AER

AFFB_%IFFAHB ' A
r'rA— B I'B

Two representations equivalent. Sequent notation seems

simpler in practice®®?.

—-E

%1 The judgement (I' = ¢) means that we can derive ¢ from
the assumptions in I using certain rules. As explained in the
previous lecture, one can make such judgements the central

objects of the deductive system.
22|n particular, the sequent style notation is more amenable

to automation, and thus it is closer to what happens in Is-
abelle.

295



Example: Refinement Style with Metavariables

ANBNANC)E?ZANCY NC)

ANBANC)FAN?X ANBAC)F (Y ANC)

ANBANC)FA ANBANC)EC
ANBANC)FANC
FAAN(BAC)— ANC

Solution for 77 = A, 7Y = B and X = (BAC).
We went through this example in detail last lecture.
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Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-
way!

e Refinement style means we work from goals to axioms
e Metavariables used to delay commitments

Isabelle allows other refinements/alternatives too (see labs).
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24 First-Order Logic

24.1 First-Order Logic: Overview

3 combina-

In propositional logic, formulae are Boolean®
tions of propositions. This will remain important for modeling
simple patterns of reasoning.

An atomic proposition is just a letter (variable). All one can
say about it is that it is true or false. E.g. it is meaningless to
say “A and B state something similar”. Also, infinity plays

no role.

%63The set (or “type”) bool contains the two truth values
True, False. A propositional formula containing n variables
can be viewed as a function bool" — bool. For each com-
bination of values True, False for the variables, the whole
formula assumes the value True or False.

298



First-Order Logic: the Essence

In first-order logic, an atom(ic proposition) says that “things”

"264 Infinitely many “things” can be

have certain “properties
denoted, hence infinitely many atoms generated and distin-
guished. Comparisons of atoms become meaningful: “Tim is
a boy” and “Carl is a boy" state something similar.

Example reasoning: “Tim is a boy”; “boys don't cry”;
hence “Tim doesn't cry”.

Further reading: [vD80], [Tho91, chapter 1].

24|n propositional logic, there is no notation for writing
“thing x has property p” or “things x and y are related as
follows™ or for denoting the “thing obtained from thing x by
applying some operation”.

In particular, no statement about all elements of a possibly
infinite domain can be expressed in propositional logic, since
each formula involves only finitely many different variables,
and up to equivalence and for a set containing n variables,
there are only finitely many (to be precise 2(2")) different
propositional formulae.
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Variables: Intuition

In first-order logic, we talk about “things” that have certain
“properties’” .
A variable in first-order logic stands for a “thing”.
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Variables: Intuition

In first-order logic, we talk about “things” that have certain
“properties’” .

A variable in first-order logic stands for a “thing”.

This is in contrast to propositional logic where variables
stand for propositions.

It is common to use letters z, y, z for variables.
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Predicates: Intuition
A predicate denotes a property/relation.

p(x) = x is a prime number d(z,y) = z is divisible by y
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A predicate denotes a property/relation.
p(x) = x is a prime number d(z,y) = z is divisible by y
Propositional connectives are used to build statements
e 1 is a prime and y or z is divisible by x

p(x) A (dy,z) V d(z, )

e 7 is a man and y is a woman and x loves y but not vice
versa
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Predicates: Intuition
A predicate denotes a property/relation.
p(x) = x is a prime number d(z,y) = z is divisible by y
Propositional connectives are used to build statements
e 1 is a prime and y or z is divisible by x

p(x) A (dy,z) V d(z, )

e 7 is a man and y is a woman and x loves y but not vice
versa
m(z) Aw(y) Al(z,y) Ay, )
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Predicates: Intuition (2)

We can represent only “abstractions” of these in propositional
logic, e.g., p A (dy V ds) could be an abstraction of p(x) A
(d(y, ) V d(z,z)).

Here p stands for “z is a prime” and d; stands for “y is
divisible by z".

But the sense in which p(z), d(y,z), d(z,x) state some-
thing similar is lost. What it means to be divisible or to be a
prime cannot be expressed.
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Functions: Intuition

e A constant stands for a “fixed thing” 2% in a domain®°°.

265As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.
26For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
27N denotes the natural numbers.
2850 a function symbol f denotes an operation that takes

n “things" and returns a “thing”. f(t1,...,%,) is a “thing”
that depends on “things” t1,...,t,.

The generic notation for function application is like this:
f(t1,...,t,), but the brackets are omitted for nullary func-
tions (= constants), and many common function symbols like
+ are denoted infix, so we write 0+ 0 instead of +(0,0). An-
other common notation is prefix notation without brackets, as
in —2. There are also other notations.
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e A constant stands for a “fixed thing” 2% in a domain®°°.

e More generally, a function of arity n expresses an n-ary
operation over some domain, e.g.

Function arity expresses . . .

0 nullary number “0"

S unary  successor in N2¢7

+ binary  function plus in N
The generic notation for function application is f(¢y, ..., t,),

but note special notations?®®: infix, prefix, etc.

265As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.
26For example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
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Quantifiers: Intuition

e A variable stands for “some2%°

thing” in a domain of dis-
course. Quantifiers V, d are used to speak about all or

some members of this domain.

209 Just like a constant, a variable stands for a “thing”.
The most important difference between a constant and a
variable is that one can quantify over a variable, so one can

make statements such as “for all z ..." or “there exists x

such that ...".
20|ntuitively, satisfiable means “can be made true” and valid

means “always true”.
More formally, this will be defined later.
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such that ...".
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such that ...".

20|ntuitively, satisfiable means “can be made true” and valid
means “always true”.

More formally, this will be defined later.
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209 Just like a constant, a variable stands for a “thing”.
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make statements such as “for all z ..." or “there exists x
such that ...".

20|ntuitively, satisfiable means “can be made true” and valid
means “always true”.

More formally, this will be defined later.
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209 Just like a constant, a variable stands for a “thing”.
The most important difference between a constant and a
variable is that one can quantify over a variable, so one can

make statements such as “for all z ..." or “there exists x

such that ...".
20|ntuitively, satisfiable means “can be made true” and valid

means “always true”.
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Quantifiers: Intuition

269 thing” in a domain of dis-

e A variable stands for “some
course. Quantifiers V, d are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?2"

Va.dy.y *x2 = x true for rationals
r<y—dz.x <zAz<y true for any dense order

dx.x #0 true for domains with
more than one element

(Vz.p(z,x)) — p(a,a)

209 Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a
variable is that one can quantify over a variable, so one can
make statements such as “for all x ..." or “there exists x

such that ...".
20|ntuitively, satisfiable means “can be made true” and valid

means “always true”.
More formally, this will be defined later.
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e A variable stands for “some
course. Quantifiers V, d are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?2"

Va.dy.y *x2 = x true for rationals
r<y—dz.x <zAz<y true for any dense order
dx.x #0 true for domains with
more than one element

(Vx.p(z, 7)) — pla,a) valid

209 Just like a constant, a variable stands for a “thing”.
The most important difference between a constant and a
variable is that one can quantify over a variable, so one can

make statements such as “for all z ..." or “there exists x

such that ...".
20|ntuitively, satisfiable means “can be made true” and valid

means “always true”.
More formally, this will be defined later.
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24.2 First-Order Logic: Syntax

2

e Two syntactic categories: terms®>’! and formulae

e A first-order language®’? is characterized by giving a finite
collection of function symbols F and predicate symbols
P as well as a set Var of variables.
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e Sometimes write f* (or p) to indicate that function sym-
bol f (or predicate symbol p) has arity i € N.



24.2 First-Order Logic: Syntax

2

e Two syntactic categories: terms®>’! and formulae

e A first-order language®’? is characterized by giving a finite
collection of function symbols F and predicate symbols
P as well as a set Var of variables.

e Sometimes write f* (or p) to indicate that function sym-
bol f (or predicate symbol p) has arity i € N.

e One often calls the pair (F,P) a signature.

21\\e have already learned about the syntactic category of
formulae last lecture.

A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have
terms that stand for “things” and formulae that stand for
statements/propositions about those “things”.

But couldn’t a statement also be a “thing”? And couldn't
a "“thing” depend on a statement?

In first-order logic: no!
22T here isn't simply the language of first-order logic! Rather,

the definition of a first-order language is parametrised by giv-
ing a F and a P. Each symbol in F and P must have an
associated arity, i.e., the number of arguments the function
or predicate takes. This could be formalized by saying that
the elements of F are pairs of the form f/n, where f is the
symbol itself and n, and likewise for P. All that matters is
that it is specified in some unambiguous way what the arity
of each symbol is.
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Terms and Formulae in First-Order Logic

Consider the following grammar (x € Var, f" € F, p" € P):

T = ner T
x| f( 1yt )
n times>’3
F o= ... |p"T,....,7T) | Ve.F | dx. F
T
. times

The productions of T" are called terms (set Term?™).

The productions of F' are called formulae (set Form).

One often calls the pair (F,P) a signature. Generally, a sig-
nature specifies the “fixed symbols” (as opposed to variables)
of a particular logic language.

Strictly speaking, a first-order language is also parametrised
by giving a set of variables Var, but this is inessential. Var
is usually assumed to be a countably infinite set of symbols,
and the particular choice of names of these symbols is not

relevant.
24 'Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the
signature, but we always assume that the signature is clear

from the context.
25\\e adopt the convention that the scope of a quantifier

extends as much as possible to the right, e.g.

Va.p(z) V q(z)

vz.(p(z) V q(z))
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. times

The productions of T" are called terms (set Term?™).

The productions of F' are called formulae (set Form).
Formulae of the form p"(...) are called atoms.
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Variable Occurrences

276

e All occurrences of a variable in a formula<’® are bound or

free or binding.

e Example:

(g(z) Vv 3z.Vy. p(f(z), 2) A q(y)) V Vz.7(2, 2, 9())
Which are bound?

and not
(V.p(z)) V g(z)
This is a matter of dispute and other conventions are around,
but the one we adopt here corresponds to Isabelle.
Compare this to the precedences and associativity in propo-

sitional logic.
26 A || occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on
the structure of terms/formulae. This is why the following
definition is along the lines of our definition of terms and
formulae.

1. The (only) occurrence of x in the term x is a free occur-
rence of  in x;

2. the free occurrences of x in f(t1,...,t,) are the free oc-
currences of x inty,....t,;

3. there are no free occurrences of x in L;

4. the free occurrences of x in p(ty,...,t,) are the free oc-

307



Variable Occurrences

276

e All occurrences of a variable in a formula<’® are bound or

free or binding.

e Example:

(q(x) vV 3z. Vy. p(f(x),2) A q(y)) V Vx. (2, 2, g(7))
Which are bound? Which are free?

and not
(V.p(z)) V g(z)
This is a matter of dispute and other conventions are around,
but the one we adopt here corresponds to Isabelle.
Compare this to the precedences and associativity in propo-

sitional logic.
26 A || occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on
the structure of terms/formulae. This is why the following
definition is along the lines of our definition of terms and
formulae.

1. The (only) occurrence of x in the term x is a free occur-
rence of  in x;

2. the free occurrences of x in f(t1,...,t,) are the free oc-
currences of x inty,....t,;

3. there are no free occurrences of x in L;

4. the free occurrences of x in p(ty,...,t,) are the free oc-

307



Variable Occurrences

276

e All occurrences of a variable in a formula<’® are bound or

free or binding.

e Example:

(q(z) v Iz.Vy.p(f(z),2) Aq(y)) V Va.r(z, 2, g(x))
Which are bound? Which are free? Which are binding?

and not
(V.p(z)) V g(z)
This is a matter of dispute and other conventions are around,
but the one we adopt here corresponds to Isabelle.
Compare this to the precedences and associativity in propo-

sitional logic.
26 A || occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on
the structure of terms/formulae. This is why the following
definition is along the lines of our definition of terms and
formulae.

1. The (only) occurrence of x in the term x is a free occur-
rence of  in x;

2. the free occurrences of x in f(t1,...,t,) are the free oc-
currences of x inty,....t,;

3. there are no free occurrences of x in L;

4. the free occurrences of x in p(ty,...,t,) are the free oc-

307



Variable Occurrences

276

e All occurrences of a variable in a formula<’® are bound or

free or binding.

e Example:

(q(z) vV Iz.Vy.p(f(z),2) A q(y)) V Va.r(z, 2, g(x))
Which are bound? Which are free? Which are binding?

e A formula with no free variable occurrences is called closed.

e [ here will be an exercise.

and not
(V.p(z)) V g(z)
This is a matter of dispute and other conventions are around,
but the one we adopt here corresponds to Isabelle.
Compare this to the precedences and associativity in propo-

sitional logic.
26 A || occurrences of a variable in a term or formula are bound

or free or binding. These notions are defined by induction on
the structure of terms/formulae. This is why the following
definition is along the lines of our definition of terms and
formulae.

1. The (only) occurrence of x in the term x is a free occur-
rence of  in x;

2. the free occurrences of x in f(t1,...,t,) are the free oc-
currences of x inty,....t,;

3. there are no free occurrences of x in L;

4. the free occurrences of x in p(ty,...,t,) are the free oc-
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24.3 First-Order Logic: Semantics

currences of x inty,....t,;

5. the free occurrences of x in —¢ are the free occurrences
of x in ¢;

6. the free occurrences of = in 1) o ¢ are the free occurrences
of x in ¢ and the free occurrences of z in ¢ (0 € {A,V, —
1)

7. the free occurrences of x in Vy. 1, where y # x, are the
free occurrences of x in v; likewise for J;

8. x has no free occurrences in Vx.; in Vz. 1, the (outer-
most) V binds all free occurrences of x in 1; the occur-
rence of x next to V is a binding occurrence of z; likewise

for .
A variable occurrence is bound if it is not free and not bind-

Ing.
We also define

FV(¢) :={x | x has a free occurrence in ¢}
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7

A structure?”” is a pair A = (Uy, I4) where Uy is an

nonempty set, the universe, and [ 4 is a mapping where
1. I4(f") is an n-ary (total) function on Uy, for f" € F,

2. I4(p") is an n-ary relation on Uy, for p" € P, and

3. I4(x) is an element of Uy, for each = € Var.

277As usual, there isn't just one way of formalizing things,
and so we now explain some other notions that you may have
heard in the context of semantics for first-order logic.
A universe is sometimes also called domain.
As you saw, a structure gives a meaning to functions, pred-
icates, and variables.
An alternative formalization is to have three different map-
pings for this purpose:
1. an algebra gives a meaning to the function symbols (more
precisely, an algebra is a pair consisting of a domain and
a mapping giving a meaning to the function symbols);

2. in addition, an interpretation gives a meaning also to the
predicate symbols;

3. a variable assignment, also called valuation, gives a mean-
ing to the variables.

As before, we assume that the signature is clear from the
context. Strictly speaking, we should say “structure for a
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A278

As shorthand, write p for I4(p"), etc.

particular signature” .

Details can be found in any textbook on logic [vD80].

78| the notation p*, the superscript has nothing to do with
the superscript we sometimes use to indicate the arity.
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The Value of Terms

Let A be a structure. We define the value of a term ¢ under

A, written A(t), as

1. A(z) = A for x € Var, and

2. A(f(tr, - ta)) = FACAL), .., Alts)).
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The Value of Formulae

We define the (truth-)value of the formula ¢ under A, written

A(¢), as
(A, .. Alt) € p?
Alpltr, - 1) = {(1) ;ﬁ«;‘rxii VA(t) € p

: 279 _
A(Vz. §) = { (1) if for all u € UA,A[I/U] () =1

otherwise

A(3z. ) = { (1) if for some u € UA,.A[x/u](qb) =3

Rest as for propositional logic.

otherwise

279

Al /) is the structure A’ identical to A, except that A =
u.
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Models

o If A(¢p) =1, we write A = ¢ and say ¢ is true in A or
A is a model of ¢.

20A structure is suitable for ¢ if it defines meanings for the
signature of ¢, i.e., for the symbols that occur in ¢. Of
course, these meanings must also respect the arities, so an
n-ary function symbols must be interpreted as an n-ary func-
tion. Without explicitly mentioning it, we always assume that

structures are suitable.
21| you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember
a different definition from your previous studies of logic, then
these comments may help.

As explained before, it is common to distinguish an interpre-
tation, which gives a meaning to the symbols in the signature,
from an assignment, which gives a meaning to the variables.
Let us use Z to denote an interpretation and A to denote an
assignment.

Recall that we wrote A(.) for the meaning of a term or
formula. In the alternative terminology, we write Z(A)(.) in-
stead. This makes sense since in the alternative terminology,
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o If A(¢p) =1, we write A = ¢ and say ¢ is true in A or
A is a model of ¢.
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o If every suitable structure®®® is a model, we write = ¢

and say ¢ is valid or ¢ is a tautology.

o If there is at least one model for ¢, then ¢ is satisfiable.
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Models

o If A(¢p) =1, we write A = ¢ and say ¢ is true in A or
A is a model of ¢.

80

o If every suitable structure®®® is a model, we write = ¢

and say ¢ is valid or ¢ is a tautology.
o If there is at least one model for ¢, then ¢ is satisfiable.

e If there is no model for ¢, then ¢ is contradictory.
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course, these meanings must also respect the arities, so an
n-ary function symbols must be interpreted as an n-ary func-
tion. Without explicitly mentioning it, we always assume that

structures are suitable.
21| you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember
a different definition from your previous studies of logic, then
these comments may help.

As explained before, it is common to distinguish an interpre-
tation, which gives a meaning to the symbols in the signature,
from an assignment, which gives a meaning to the variables.
Let us use Z to denote an interpretation and A to denote an
assignment.

Recall that we wrote A(.) for the meaning of a term or
formula. In the alternative terminology, we write Z(A)(.) in-
stead. This makes sense since in the alternative terminology,
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Models

o If A(¢p) =1, we write A = ¢ and say ¢ is true in A or
A is a model of ¢.

80

o If every suitable structure®®® is a model, we write = ¢

and say ¢ is valid or ¢ is a tautology.
o If there is at least one model for ¢, then ¢ is satisfiable.

e If there is no model for ¢, then ¢ is contradictory.

There is also more differentiated terminology.%!

20A structure is suitable for ¢ if it defines meanings for the
signature of ¢, i.e., for the symbols that occur in ¢. Of
course, these meanings must also respect the arities, so an
n-ary function symbols must be interpreted as an n-ary func-
tion. Without explicitly mentioning it, we always assume that

structures are suitable.
21| you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember
a different definition from your previous studies of logic, then
these comments may help.

As explained before, it is common to distinguish an interpre-
tation, which gives a meaning to the symbols in the signature,
from an assignment, which gives a meaning to the variables.
Let us use Z to denote an interpretation and A to denote an
assignment.

Recall that we wrote A(.) for the meaning of a term or
formula. In the alternative terminology, we write Z(A)(.) in-
stead. This makes sense since in the alternative terminology,
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An Example
V. p(z, s())

We now show a model and a non-model . ..

7 and A together contain the same information as A in the
original terminology. We define:

e For a given 7, we say that ¢ is satisfiable in Z if there
exists an A so that Z(A)(¢) = 1;

e for a given 7, we write Z = ¢ and say ¢ is true in Z or
7 is a model of ¢, if for all A, we have Z(A)(¢) = 1;

e we say ¢ is satisfiable if there exists an Z so that ¢ is
satisfiable in Z;

e we write = ¢ and say ¢ is valid if for every (suitable) Z,
we have 7 = ¢.
Note that satisfiable (without “for ...") and valid mean the
same thing in both terminologies, whereas true in ... means
slightly different things, since a structure is not the same thing
as an interpretation.
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A model?82:

Uy = N
p* = {(m,n) | m <*n}
sMz) = z+1

282|t s true that for all numbers n, n is less than n + 1.
23|n logic, we insist on the distinction between syntax and

semantics. In particular, we set up the formalism so that the
syntax is fixed first and then the semantics, and so there could
be different semantics for the same syntax.

But the dilemma is that once we want to give a particu-
lar semantics, we can only do so using again some kind of
language, hence syntax. This is usually natural language in-
terspersed with usual mathematical notation such as <, +
etc.

Some people try to mark the distinction between syntax and
semantics somehow, e.g., by saying 0 is a constant that could
mean anything, whereas 0 is the number zero as it exists in
the mathematical world.

When we give semantics, the symbols <, +, and 1 have
their usual mathematical meanings. The function that maps
x to x + 1 is also called successor function. Of course, when

we write m < n, we assume that m,n € N, in this context.
24T he identity function maps every object to itself.
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A model?®?: Not a model?®*:

UA = N UA — {a,b,c}
pt = {(m,n) | m <®npA = {(a,b),(a,c)}
sMz) = z+1 s = “the identity function”

282|t s true that for all numbers n, n is less than n + 1.
23|n logic, we insist on the distinction between syntax and

semantics. In particular, we set up the formalism so that the
syntax is fixed first and then the semantics, and so there could
be different semantics for the same syntax.

But the dilemma is that once we want to give a particu-
lar semantics, we can only do so using again some kind of
language, hence syntax. This is usually natural language in-
terspersed with usual mathematical notation such as <, +
etc.

Some people try to mark the distinction between syntax and
semantics somehow, e.g., by saying 0 is a constant that could
mean anything, whereas 0 is the number zero as it exists in
the mathematical world.

When we give semantics, the symbols <, +, and 1 have
their usual mathematical meanings. The function that maps
x to x + 1 is also called successor function. Of course, when

we write m < n, we assume that m,n € N, in this context.
24T he identity function maps every object to itself.
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24.4 Towards a Deductive System
In natural language, quantifiers are often implicit®®:

males don't cry.
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24.4 Towards a Deductive System

In natural language, quantifiers are often implicit®®®: all
males don't cry.

Some phrases in natural language proofs have the flavor of
introduction rules.

Take “boys are males” and “males don't cry” implies “boys
don't cry”: assume an arbitrary boy x; then x is a male; hence
x doesn't cry; hence “z is a boy" implies “x doesn’'t cry”

; since x was arbitrary, we can say this for all x.
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In natural language, quantifiers are often implicit®®®: all
males don't cry.

Some phrases in natural language proofs have the flavor of
introduction rules.

Take “boys are males” and “males don't cry” implies “boys
don't cry”: assume an arbitrary boy x; then x is a male; hence
x doesn't cry; hence “z is a boy" implies “x doesn’'t cry”
(—-/); since x was arbitrary, we can say this for all z. (V-/).
See later.



24.4 Towards a Deductive System
In natural language, quantifiers are often implicit®®®: all
males don't cry.

Some phrases in natural language proofs have the flavor of
introduction rules.

Take “boys are males” and “males don't cry” implies “boys
don't cry”: assume an arbitrary boy x; then x is a male; hence
x doesn't cry; hence “z is a boy" implies “x doesn’'t cry”
(—-/); since x was arbitrary, we can say this for all z. (V-/).
See later.

Existential statements are proven by giving a witness.

It is not true that for every character o € {a,b,c}, (a, ) €

{(a;b),(a,¢)}. Eg., (a,a) ¢ {(a,b),(a,c)}.

25|n the statement
if > 2 then 22 > 4
the V-quantifier is implicit. It should be
for all z, if x > 2 then z2 > 4.
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24.5 First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic.

All the rules of propositional logic are “inherited” 2%,

But we must introduce rules for the quantifiers.

26First-order logic inherits all the rules of propositional logic.
Note however that the metavariables in the rules now range
over first-order formulae.
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Universal Quantification (V): Rules

P(x) . Va. P(x) E
vr.P(x) " PE)
where side condition (also called: proviso or eigenvariable
condition) * means: x must be arbitrary.

27Similarly as in the previous lecture, one should note that P
is not a predicate, but rather P(x) is a schematic expression:
P(z) stands for any formula, possibly containing occurrences
of x.

In the context of V-E, P(t) stands for the formula obtained
from P(x) by replacing all occurrences of x by t.
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Universal Quantification (V): Rules

P(x) Va. P(x)
vr.P@) T T P@w
where side condition (also called: proviso or eigenvariable
condition) * means: x must be arbitrary.
Note that rules are schematic®®’: P(z) stands for any for-
mula, and P(t) stands for the formula obtained by substituting
t for z.

27Similarly as in the previous lecture, one should note that P
is not a predicate, but rather P(x) is a schematic expression:
P(z) stands for any formula, possibly containing occurrences
of x.

In the context of V-E, P(t) stands for the formula obtained
from P(x) by replacing all occurrences of x by t.
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”
x =0

28\\hen one has a predicate symbol =, it is usual to have a
rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”
x =0

Ve.z =0 V-l

28\\hen one has a predicate symbol =, it is usual to have a
rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
Vz.z =0 v '
a::0—>Va:.a::O_>_l
28\\hen one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”
[z =0]'
Ve.z =0
r=0—-Vr.x=0
Ve.(r =0 — Vz.z =0)

V-1

-

V-1

28\\hen one has a predicate symbol =, it is usual to have a
rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
Vz.z =0 v '
a::0—>Va:.a::O_>_l
Ve.(r =0 — Vz.z =0) vl
0=0—>Veo=0 '°©
28\\hen one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
Vz.z =0 v '
a::0—>Va:.a::O_>_l
Ve.(r =0 — Vz.z =0) vl
0—0=Vezs=0 "C g=orf
28\\hen one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
Vz.z =0 v '
a::0—>Va:.a::O_>_vl/I
Ve (z=0—-Vz.z=0) "

0—0oveo=0 "t g=grf

—_ -
Ve.x =0
28\\hen one has a predicate symbol =, it is usual to have a

rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
V:U.:U:Ov_l '
a::0—>Va:.a::O_>_l
Ve.(r =0 — Vz.z =0) vl
0—0ovVeo=0 " g=ort"
—-E

Ve.x =0
Formal meaning of side condition: x not free in any open

assumption on which P(z) depends. Violated!?®

28\\hen one has a predicate symbol =, it is usual to have a
rule that says that = is reflexive.
Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later.
29T he side condition is violated in the proof since in the first

V-I step, x does occur free in x = 0.

Note that saying “x must not free in any open assumption
on which P(x) depends’ means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-/, the P(x) above the line will be the root
of a derivation tree constructed so far, and this tree cannot
be the trivial tree just consisting of the assumption P(x).
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Another Proof? (1)

Is the following a proof? Is the conclusion valid?
Vx. —Vy. z = y]!

Vy.y=y
(Vo.-Vy.x =y) —» Vy.y =y

V-E

-
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Another Proof? (1)

Is the following a proof? Is the conclusion valid?
Vx. —Vy. z = y]!

Vy.y=y
(Vo.-Vy.x =y) —» Vy.y =y

V-E

-

Conclusion is not valid.

The formula is false when U4 has at least 2 elements.?”
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Another Proof? (1)

Is the following a proof? Is the conclusion valid?
Vx. —Vy. z = y]!

Vy.y=y
(Vo.-Vy.x =y) —» Vy.y =y

V-E

-

Proof is incorrect.
Reason: Substitution®”’ must avoid capturing®®? variables.

Replacing = with y in V-E is illegal because y is bound in
—Vy.y = y. This detail concerns substitution (and renaming
of bound variables), not V-E. Exercise
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Another Proof? (2)

Va. A(z) A B(x)

23|n both cases, x does not occur free in Va. A(x) A B(x),

which is the open assumption on which A(z), respectively
B(x), depends.
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Another Proof? (2)

23|n both cases, x does not occur free in Va. A(x) A B(x),

which is the open assumption on which A(z), respectively
B(x), depends.
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Another Proof? (2)

Va. A(z) A B(x)
A(z) A B(x)
Alz)

V-E
N-EL

23|n both cases, x does not occur free in Va. A(x) A B(x),

which is the open assumption on which A(z), respectively
B(x), depends.
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Another Proof? (2)

Va. A(z) A B(x)
A(z) A B(z)
A(x)

Va. A(x)

V-E

23|n both cases, x does not occur free in Va. A(x) A B(x),

which is the open assumption on which A(z), respectively
B(x), depends.
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Another Proof? (2)

Va. A(z) A B(x) Va. A(z) N\ B(x)
A(z) A B(x) /\_\EVIL_E A(z) A B(z) /\_\EV;E
Vo, A(z) Vz. B(z)

23|n both cases, x does not occur free in Va. A(x) A B(x),

which is the open assumption on which A(z), respectively
B(x), depends.
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Another Proof? (2)

Va. A(z) A B(x) Va. A(z) N\ B(x)
A(z) A B(x) /\_\EVIL_E A(z) A B(z) /\_\EV;E

A(z) v B(z) v

Va. A(x) Va. B(x) o

23|n both cases, x does not occur free in Va. A(x) A B(x),

which is the open assumption on which A(z), respectively
B(x), depends.
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Another Proof? (2)

Vz. A(x) A B(:U)] Vz. A(x) A B(x)]
A@)AB@ ©  A@ABE@) -
N-EL N-ER
Az Ba)
Va. A(x) Va. B(x)
N-1

(Vx. A(x)) A (V. B(x))
(Vx. A(x) A B(z)) — (Vz. A(x)) A (Vx. B(x))

-

23|n both cases, x does not occur free in Va. A(x) A B(x),
which is the open assumption on which A(z), respectively

B(x), depends.
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Another Proof? (2)

Vz. A(z) A B(z)]! vE Vz. A(z) A B(z)]!
Afz) A B(z) A(z) A B(x)
N-EL
A(z) v B(z)
V. A(x) Vz. B(x)
(Vx. A(x)) A (V. B(x))

(Vx. A(x) A B(z)) — (Vz. A(x)) A (Vx. B(x))

Yes (check side conditions®”* of V-/).

V-E
N-ER
V-1

N-1

-

23|n both cases, x does not occur free in Va. A(x) A B(x),
which is the open assumption on which A(z), respectively

B(x), depends.
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Boys Don’t Cry
Let ¢ = (Vz.b(z) — m(z)) A (Vz. m(x) — —c(z)).

[¢]!
(4]} V. b(x) — m(x)
Vo.m(@) — —c@) T @) —m@) T @)

m(z) — —c(z) m(z)

N-EL

322



Aside: A < B

Define®®* A« Bas A — BA B — A.
The following rule can be derived (in propositional logic,

actually):
4] (B
B A
A< B =

You could do this as an exercise!

2¢By defining we mean, use A <+ B as shorthand for A —
B ANB — A, in the same way as we regard negation as a
shorthand.
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Proof?

Al V. Al

V-1

Ve, A A

A—Vz. A
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Proof?

[A] 1 V. A 1
V-1
Vr. A A

A—Vz. A

V-E

-

Yes, but only if x not free in A.

324



Proof?

4] W AL
v A T4 Vl'E
Aove A o

Yes, but only if x not free in A.
Similar requirement arises in proving (Vx. A — B(x)) <

(A — Vz. B(x)).
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Side Conditions and Proof Boxes

We mentioned previously a style of writing derivations where
subderivations based on temporary assumptions are enclosed
in boxes.

These boxes are also handy for doing derivations in first-
order logic, since one can use the very clear formulation: a
variable occurs inside or outside of a box. See [HR04].
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Existential Quantification

e We could define?®® Jx. A as V. - A.

e Equivalence follows from our definition of semantics.

1T ifAA)=0
A(4) = { 0 otherwise
B 1 if for all u € UA,A[:,;/U](A) — 1l
Al Al = { 0 otherwise
| 1 iffor some u € Uy, Apjy(A) =1
Algi A) = { 0 otherwise

Conclude: A(Jx. A) = A(—Vz.—A)

25By defining we mean, use dz. A as shorthand for =Vz. - A,
in the same way as we regard negation as a shorthand.

However, we have already introduced d as syntactic entity,
and also its semantics. If we now want to treat it as being
defined in terms of V, for the purposes of building a deductive
system, we must be sure that dz. A is semantically equivalent

to ~Vz. A4, i.e., that A(Jx. A) = A(=Vx. -A).
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e We can

Where do the Rules for 4 Come from?

2% use definition 3z. A = —Vz. = A and the given

rules for V to derive ND proof rules.

296

We can use definition dx. A = —Vx. = A and the given
rules for V to derive ND proof rules.

In this case, the soundness of the derived rules is guaran-
teed since

* the rules for V are sound:

* we have proven the equivalence of dx. A and =Vz. - A
semantically.

Alternative: give rules as part of the deduction system and
prove the equivalence as a lemma, instead of by definition.
In this case, the soundness must be proven by hand (how-
ever, proving rules sound is an aspect we neglect in this
course). But once this is done, the equivalence of Jx. A
and —Vx. —A can be proven within the deductive system,
rather than by hand, provided that the deductive system
is complete.
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Where do the Rules for 4 Come from?

o We can?” use definition 3z. A = —=Vx. —~A and the given

rules for V to derive ND proof rules.

e Alternatively, we can give rules as part of the deduction
system and prove equivalence as a lemma, instead of by
definition.

We will do the first here. The Isabelle formalization fol-
lows the second approach.

296

— We can use definition dz. A = —=Vx.—-A and the given
rules for V to derive ND proof rules.
In this case, the soundness of the derived rules is guaran-
teed since

* the rules for V are sound;
* we have proven the equivalence of dx. A and =Vz. - A
semantically.

— Alternative: give rules as part of the deduction system and
prove the equivalence as a lemma, instead of by definition.
In this case, the soundness must be proven by hand (how-
ever, proving rules sound is an aspect we neglect in this
course). But once this is done, the equivalence of Jx. A
and —Vx. —A can be proven within the deductive system,
rather than by hand, provided that the deductive system
is complete.
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The rule:

3-/ as a Derived Rule

Jz. P(x)

We want to have Jz. P(z) as conclusion.
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The rule:

3-/ as a Derived Rule

—Vz. - P(x)

But by definition that's =Vz. = P(x).
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3-/ as a Derived Rule

The rule: Vz. - P(z)
P(t)
Iz. P(z) ! -
—Vz. - P(x)

We aim for applying —-/ in the last step (recall =-definition).
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3-/ as a Derived Rule

The rule: Vz. = P(z)
Iz V-E
P() 1)
z. P(z) —
—Vz. - P(x)
We apply V-E.
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3-/ as a Derived Rule

The rule: Vz. - P(z) o
P) Pl PY
Az, P(z) ~ -
—Vz. - P(x)

Making assumption P(t) allows us to use —-E (recall —-
definition).
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3-/ as a Derived Rule

The rule: Vz. ~P(z)]! o
P(t) . -P(t)  P(t) o
Jz. P(z) ~ Lt '
—Vz. - P(x)

Finally we can apply —-/. Note that the assumption P(t) is
still open.
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J-E as a Derived Rule

The rule:
()
dz. P(x) R
R 3-E
Jz. P(x)

We will use dx. P(x) as one assumption.
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J-E as a Derived Rule

The rule:
()
dz. P(x) R
R 3-E
V. - P(x)

But by definition that's =Vz. = P(x).
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J-E as a Derived Rule

The rule:
[P(x)
dz. P(x) R
R 3-E

We assume a hypothetical derivation®”’.

V. - P(x)

7
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J-E as a Derived Rule

The rule: P(z)
P .
: —-E
dz. P(x) R L
i 3-E
V. - P(x)

We make an additional assumption and apply —-E (recall —-definition)

329



J-E as a Derived Rule

The rule: [P(:z:)]z
P .
dz. P(x) R = _)__2>_
o 3E ~P()
V. - P(x)

Now we can discharge the assumption P(x) made in the hypothetical
derivation.
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J-E as a Derived Rule

The rule: [P(:z:)]2
[P(z)] 5 R
Jz. P(z R - _2>_
(R) S ~P(z) —-l
—Vz.-P(z) Vz.-P(x) v

At this step, the side condition from V-/ applies. 3-E will inherit it!>%®
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J-E as a Derived Rule

The rule:

PP
P() I
: T —-E
dz. P(x) R P
—Vz.-P(z) Vz.-P(z)
—-E
1
We apply —-E.
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J-E as a Derived Rule

The rule:
[P(x)
dz. P(x) R
i 3-E

We are done. Note that this proof uses classica

[P(;?f)]2

~R' R
1
~P(z)
—Vz.-P(z) Vz.-P(x)

—-E
P

V-1

1 -k
_ 1
= RAA

129 reasoning.
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where 2 does not occur free in B.
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where x does not occur free in B.
V. A(z) — B
V-E
A(x) — B A(x)
Jz. A(x) B

—-E
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where x does not occur free in B.
V. A(z) — B
V-E 5
A(z) — B [A(z)]
Jz. A(x) B
B

—-E

-
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Example Derivation Using 3-E£

We want to prove (Vx. A(z) — B) — ((3z. A(z)) — B),

where x does not occur free in B.
Vx. A(z) — B!
V-E 5
A(z) — B [A(z)]
[Hx. A(z)]? B
B
(3z. A(z)) — B~

/2
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24.6 Conclusion on FOL

e Propositional logic is good for modeling simple patterns
of reasoning like “if ...then ...else".



24.6 Conclusion on FOL

e Propositional logic is good for modeling simple patterns
of reasoning like “if ...then ...else".

e In first-order logic, one has “things’ and relations on /

properties of “things”. Quantify over “things”. Powerful3%!

0|n first-order logic, one has “things" and relations/proper-
ties that may or may not hold for these “things”. Quantifiers
are used to speak about “all things” and “some things".

For example, one can reason:

All men are mortal, Socrates is a man, therefore
Socrates is mortal.

The idea underlying first-order logic is so general, abstract,
and powerful that vast portions of human (mathematical) rea-
soning can be modeled with it.

In fact, first-order logic is the most prominent logic of all.
Many people know about it: not only mathematicians and
computer scientists, but also linguists, philosophers, psychol-
ogists, economists etc. are likely to learn about first-order logic
in their education.

While some applications in the fields mentioned above re-
quire other logics, e.g. modal logics®*?, those can often be
reduced to first-order logic, so that first-order logic remains

331



the point of reference.

On the other hand, logics that are strictly more expressive
than first-order logic are only known to and studied by few
specialists within mathematics and computer science.

This example about Socrates and men is a very well-known
one. You may wonder: what is the history of this example?

In English, the example is commonly given using the word
“man”, although one also finds “human”. Like many lan-
guages (e.g., French, ltalian), English often uses “man” for
“human being”, although this use of language may be con-

sidered discriminating against women. E.g. [Tho95a]:

man [...] 1 an adult human male, esp. as distinct
from a woman or boy. 2 a human being; a person (no
man is perfect).

While the example does not, strictly speaking, imply that
“man” is used in the meaning of “human being”, this is
strongly suggested both by the content of the example (or
should women be immortal?) and the fact that languages
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that do have a word for “human being” (e.g. “Mensch” in
German) usually give the example using this word. In fact,
the example is originally in Old Greek, and there the word
&vBpwtoc (anthropos = human being), as opposed to &vrip
(anér = human male), is used.

The example is a so-called syllogism of the first figure, which
the scholastics called Barbara. It was developed by Aristotle
[Ari] in an abstract form, i.e., without using the concrete name
“Socrates” . In his terminology, &vBpwoc is the middle term
that is used as subject in the first premise and as predicate in
the second premise (this is what is called first figure). Aristotle
formulated the syllogism as follows: If A of all B and B is said
of all C, then A must be said of all C.

And why “Socrates’? It is not exactly clear how it
came about that this particular syllogism is associated with
Socrates. In any case, as far it is known, Socrates did not in-
vestigate any questions of logic. However, Aristotle frequently
uses Socrates and Kallias as standard names for individuals
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e Limitation: cannot quantify over predicates>%?.

e “A” world or “the” world is modeled in first-order logic
using so-called first-order theories. This will be studied
next lecture.

[Ari]. Possibly there were statutes of Socrates and Kallias
standing in the hall where Aristotle gave his lectures, so it
was convenient for him to point to the statutes whenever he

was making a point involving two individuals.
32The idea underlying first-order logic seems so general that

it is not so apparent what its limitations could be. The limi-
tations will become clear as we study more expressive logics.

For the moment, note the following: in first-order logic, we
quantify over variables (hence, domain elements), not over
predicates. The number of predicates is fixed in a particular
first-order language. So for example, it is impossible to express
the following:

For all unary predicates p, if there exists an = such
that p(x) is true, then there exists a smallest = such
that p(z) is true,

since we would be quantifying over p.
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25 First-Order Logic with Equality
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Overview

Last lecture: first-order logic.
This lecture:

e first-order logic with equality and first-order theories;
e set-theoretic reasoning.

We extend language and deductive system to formalize and
reason about the (mathematical) world.

336



FOL with Equality
03

Equality is a logical symbol rather than a mathematical one3®3.
Speak of first-order logic with equality rather than adding
equality as “just another predicate”.

303

In logic languages, it is common to distinguish between log-
ical and non-logical symbols. We explain this for first-order
logic.

Recall that there isn't just the language of first-order logic,
but rather defining a particular signature gives us a first-order
language. The logical symbols are those that are part of any
first-order language and whose meaning is “hard-wired” into
the formalism of first-order logic, like A or V. The non-logical
symbols are those given by a particular signature, and whose
meaning must be defined “by the user” by giving a structure.

Above we say “mathematical” instead of “non-logical”’ be-
cause we assume that mathematics is our domain of discourse,
so that the signature contains the symbols of “mathematics”.

Now what status should the equality symbol = have? We
will assume that = is a symbol whose meaning is hard-wired
into the formalism. One then speaks of first-order logic with
equality.
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Syntax and Semantics

Syntax: = is a binary infix predicate.
t1 =ty € Form if t1,t9 € Term.

Alternatively, one could regard = as an ordinary (binary in-
fix) predicate. However, even if one does not give = a special
status, anyone reading = has a certain expectation. Thus it
would be very confusing to have a structure that defines = as
a, say, non-reflexive relation.

L= {

The first = is a predicate symbol.

1 if T4(s)=14(1)

0 otherwise



Syntax and Semantics

Syntax: = is a binary infix predicate.
t1 =ty € Form if t1,t9 € Term.

Semantics: recall a structure is a pair A = (Uy, [4) and
I4(t) is the interpretation of ¢.

(s =1) = { 1 if T4(s) = 14(¢)

0 otherwise
Note the three completely different uses of “= here!

Alternatively, one could regard = as an ordinary (binary in-
fix) predicate. However, even if one does not give = a special
status, anyone reading = has a certain expectation. Thus it
would be very confusing to have a structure that defines = as
a, say, non-reflexive relation.

e {

The first = is a predicate symbol.

1 if T4(s)=14(1)
0 otherwise

The second = is a definitional occurrence: The expression
on the left-hand side is defined to be equal to the value of the
right-hand side.



Syntax and Semantics

Syntax: = is a binary infix predicate.
t1 =ty € Form if t1,t9 € Term.

Semantics: recall a structure is a pair A = (Uy, [4) and
I4(t) is the interpretation of ¢.

(s =1) = { 1 if T4(s) = 14(¢)

0 otherwise
Note the three completely different uses of “= here!

Alternatively, one could regard = as an ordinary (binary in-
fix) predicate. However, even if one does not give = a special
status, anyone reading = has a certain expectation. Thus it
would be very confusing to have a structure that defines = as
a, say, non-reflexive relation.

e {

The first = is a predicate symbol.

1 if T4(s)=14(2)
0 otherwise

The second = is a definitional occurrence: The expression
on the left-hand side is defined to be equal to the value of the
right-hand side.

The third = is semantic equality, i.e., the identity relation
on the domain.
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Rules3®®

e Equality is an equivalence relation3%

s=1 r=s s=t
sym trans
=1 1= r=t




Rules3®®

e Equality is an equivalence relation3%
s=1t r=s s=t
fl sym trans
t=t""" t=s r=1t

307

e Equality is also a congruence™’ on terms and all rela-

5Since = is a logical symbol in the formalism of first-order
logic with equality, there should be derivation rules for = to

derive which formulas a = b are true.
36]n general mathematical terminology, a relation = is an

equivalence relation if the following three properties hold:
Reflexivity: a = a for all a;
Symmetry: a = b implies b = q;
Transitivity: a = b and b = ¢ implies a = c.
Example: being equal modulo 6.

“a is equal b modulo 6" is often written a = b mod 6.
7In general mathematical terminology, a relation = is a

congruence w.r.t. (or: on) f, where f has arity n, if
a; = by, ..., a, = b, implies f(ay,...,a,) = f(b1,...,by).

Example: being equal modulo 6 is congruent w.r.t. multipli-
cation.

14 = 8 mod 6 and 15 = 9 mod 6, hence 14 - 15 = 8 -
9 mod 6.
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308

tions - —
— cong
T(r)=T(s)
r=s P(r
cong,
P(s)

This can be defined in an analogous way for a property

(relation) P.

Example: being equal modulo 6 is congruent w.r.t. divisibil-
ity by 3.

15 = 9 mod 6 and 15 is divisible by 3, hence 9 is divisible
by 3.

14 = 8 mod 6 and 14 is not divisible by 3, hence 8 is not
divisible by 3.

38\Why did we use letters T" and P here?

Recall the rules for building terms and atoms.

Is T'(r) a term, and P(r) an atom, obtained by one applica-
tion of such a rule, i.e.: is T" a function symbol in F, applied
to s, and is P a predicate symbol in P, applied to s?
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tions - —
— cong
T(r)=T(s)
r=s P(r
cong,
P(s)

This can be defined in an analogous way for a property
(relation) P.

Example: being equal modulo 6 is congruent w.r.t. divisibil-
ity by 3.

15 = 9 mod 6 and 15 is divisible by 3, hence 9 is divisible
by 3.

14 = 8 mod 6 and 14 is not divisible by 3, hence 8 is not
divisible by 3.

38\Why did we use letters T" and P here?

Recall the rules for building terms and atoms.

Is T'(r) a term, and P(r) an atom, obtained by one applica-
tion of such a rule, i.e.: is T" a function symbol in F, applied
to s, and is P a predicate symbol in P, applied to s?

In general, no! The notations 7'(r) and P(r) are metanota-
tions. T'(r) stands for any term in which r occurs, and P(r)
stands for any formula in which r occurs.

And in this context, the notation T'(s) stands for the term
obtained from T'(r) by replacing all occurrences of r with s.
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Soundness of Rules

For any Uy, equality in Uy is an equivalence relation®® and
functions/predicates/logical-operators are “truth-functional” 3.

In analogy the notation P(s) is defined.

Note that r and s arbitrary terms.

This description is not very formal, but this is not too prob-
lematic since we will be more formal once we have some useful

machinery for this at hand.
3090n the semantic level, two things are equal if they are

identical. Semantic equality is an equivalence relation. This
semantic fact is so fundamental that we cannot explain it any
further.

So one can prove that 4(s = s) = 1 for all all terms s, be-
cause [ 4(s) = I4(s) for all terms, and likewise for symmetry

and transitivity.
2w|f T'(x) is a term containing = and T'(y) is the term ob-

tained from T'(x) by replacing all occurrences of x with 3, and
moreover [ 4(x = y) = 1, then I 4(x) = I4(y). One can show
by induction on the structure of ¢ that I 4(7T(x)) = I4(T(y)).

So by “truth-functional” we mean that the value I 4(7'(z))
depends on [ 4(x), not on x itself.
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Congruence: Alternative Formulation

One can specialize congruence rules to replace only some term

occurrences.
r=s»s cong,
Tz —r|=Tz « s
r=s Pz« s
cong,

Plz « 7]

One time z is replaced with r and one time with s.3!!

This can be generalized to n variables as in the rule.

An analogous proof can be done for rule cong,.
31 The notation 7'z «<— 7| stands for the term obtained from

T by replacing z with r. [z < 7] is called a substitution.

To have an unambiguous notation for “replacing some oc-
currences of 7", we start from a term I' containing occur-
rences of a variable z. On the LHS, z is replaced with r,
on the RHS z is replaced with s. So on the RHS we have a
term obtained from the term on the LHS by replacing some
occurrences of 7 with s.

One can say that z is introduced to mark the occurrences
of r that should be replaced by s.

Note that r and s can be arbitrary terms, whereas z is a
variable (substitutions replace variables, not arbitrary terms).
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Congruence: Example

How many ways are there to choose some occurrences of x in
2+ w? > 12 27

22The atom 22 + y? > 12 - = contains two occurrences of
x. There are four ways to choose some occurrences of x in
w2 +y? > 12 7.

Each of those ways corresponds to an atom obtained from
x? + y* > 12 - x by replacing some occurrences of x with
z. That is, there are four different A's such that Alzx/z] =
22 +y? > 12-2. Now the atom above the line in the examples
is obtained by substituting x for z, and the atom below the
line is obtained by substituting y for z.
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Congruence: Example
How many ways are there to choose some occurrences of x in
2? + w? > 12 - 2? 4, namely:
A=+ u?>12-2, A=22+w?>12-z,
A=x24w?>12-2, A=224+w*>12- 2.

22The atom 22 + y? > 12 - = contains two occurrences of
x. There are four ways to choose some occurrences of x in
w2 +y? > 12 7.

Each of those ways corresponds to an atom obtained from
x? + y* > 12 - x by replacing some occurrences of x with
z. That is, there are four different A's such that Alzx/z] =
22 +y? > 12-2. Now the atom above the line in the examples
is obtained by substituting x for z, and the atom below the
line is obtained by substituting y for z.
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Congruence: Example
How many ways are there to choose some occurrences of x in
2? + w? > 12 - 2? 4, namely:
A=2"+w*> 122, A=224+w?>> 12 7, 5,
A=2*+w*>12-2, A=224w?>12- 2.
We show two ways:
r=3 *+w' >12-x
3F4+w >12-x
r=3 r’+uw>12.x
> +w?>12-3

with A =224+ >12 -2

with A =22 +w?*> 122

22The atom 22 + y? > 12 - = contains two occurrences of
x. There are four ways to choose some occurrences of x in
w2 +y? > 12 7.

Each of those ways corresponds to an atom obtained from
2? + y?> > 12 - = by replacing some occurrences of = with
z. That is, there are four different A's such that Alzx/z] =
22 +y? > 12-2. Now the atom above the line in the examples
is obtained by substituting x for z, and the atom below the
line is obtained by substituting y for z.
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Generalized Congruence

The congruence rules can be generalized to n equalities in-
stead of just 1 equality. The generalized rules are derivable
from the simple ones by n-fold application.

=581 -"p=35y

cong,
Tz — 11, oy 2n—1n) =T[21 < 81, .., 2n < Sy
rN=281 - Th=35, Plz1—r1,...,2, < 1]
cong,
Plzy < $1,..., 2, < Sy
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Isabelle Rule
The Isabelle FOL rule is simply>!® (using a tree syntax)
r=s P(r)
P(s)

subst

or literally
[a =0, P(a)] = P(b)

33The |sabelle FOL rule is:
r=s P(r)

P(s)

In this rule, P is an Isabelle metavariable.

subst

Why doesn’t the Isabelle rule contain a z to mark which

occurrences should be replaced?

We cannot understand this yet, but think of P as a formula
where some positions are marked in such a way that once we
apply P to r (we write P(r)), r will be inserted into all those
positions. This is why P(r) is a formula and P(s) is a formula

obtained by replacing some occurrences of r with s.
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Proving dz.t ==«

ref]
-/

t=t

dr.t =z
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Proving dz.t ==«

t:tmgl
Jr.t=x "
P(t) -
In the rule 3z. P(z) ~ , “P(x)" is metanotation. In the

example, P(z) = (t = x).
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Proving dz.t ==«

P(t)
In the rule EI:U—P(:E)
example, P(x) = (t = x).

3-1
, “P(z)" is metanotation. In the

Notational confusion avoided by a precise metalanguage.
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26 First-Order Theories
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What Is a Theory?

Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols
for which certain “laws” hold.

Depending on the context, these symbols may co-exist with
other symbols.

Technically, the laws are added as rules (in particular, ax-
ioms) to the proof system.

A structure in which these rules are true is then called a
model of the theory.

26.1 Example 1: Partial Orders

e The language of the theory of partial orders3!4; <315



What Is a Theory?

Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols
for which certain “laws” hold.

Depending on the context, these symbols may co-exist with
other symbols.

Technically, the laws are added as rules (in particular, ax-
ioms) to the proof system.

A structure in which these rules are true is then called a
model of the theory.

26.1 Example 1: Partial Orders

e The language of the theory of partial orders3!4; <315

314/ partial order is a binary relation that is reflexive, transi-
tive, and anti-symmetric: a < b and b < a implies a = b.

25 is (by convention) a binary infix predicate symbol.

The theory of partial orders involves only this symbol, but
that does not mean that there could not be any other symbols
in the context.
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e Axioms

Ve, y,z.c <yAy <z —x < 2310
Ve,y e <yAy <z z=yY



e Axioms

Ve, y,z.c <yAy <z —x < 2310
Ve,y e <yAy <z z=yY

e Alternative to axioms is to use rules

Ty y<z r<y y<zx T =1y
trans antisym <-refl
r <z T =1 r <y
Such a conversion is possible since implication is the main
connective. 318

36 The axiom Vz,y,z.x < y ANy < z — x < z encodes
transitivity.

"Note that Vo, y.x < y Ay < x <> x = y encodes both
antisymmetry (—) and reflexivity («—). Recall that A < B

as shorthand for A - B A B — A.
3180Qne can see that using —-/ and —-E, one can always

convert a proof using the axioms to one using the proper
rules.
More generally, an axiom of the form Vzi,...,z,. A; A
...\ A, — B can be converted to a rule
A LA,
B

Do it in Isabelle!
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More on Orders

e A partial order < is a linear or total order®!® when

Ve,yr <yVy<zx

320

Note: no “pure” rule formulation®<” of this disjunction.

319\\e define these notions according to usual mathematical
terminology.

A partial order < is a linear or total order if for all a, b,
either a < b or b < a.

A partial order < is dense if for all a, b where a < b, there

exists a ¢ such that a < c and ¢ < b.
20The axiom Vx,y.z < y V y < x cannot be phrased as a

proper rule in the style of, for example, the transitivity axiom.
221\\le use s < t as shorthand for s <t A —s = t.

We say that < is the strict part of the partial order <.
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More on Orders

e A partial order < is a linear or total order®!® when
Ve,yr <yVy<zx

320

Note: no “pure” rule formulation®<” of this disjunction.

e A total order < is dense when, in addition

Vo,y.x <3y — Jz(z <2 Az < y)
What does < mean?

319\\e define these notions according to usual mathematical
terminology.

A partial order < is a linear or total order if for all a, b,
either a < b or b < a.

A partial order < is dense if for all a, b where a < b, there

exists a ¢ such that a < c and ¢ < b.
20The axiom Vx,y.z < y V y < x cannot be phrased as a

proper rule in the style of, for example, the transitivity axiom.
221\\le use s < t as shorthand for s <t A —s = t.

We say that < is the strict part of the partial order <.
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Structures for Orders ...
Give structures for orders that are ...

1. not total:

32The C-relation is partial but not total. As an example,
consider the C-relation on the set of subsets of {1,2}.

1,2}

{1f//// \\\\{2}
\./

0

Depicting partial orders by a such a graph is quite common.
Here, node a is below node b and connected by an arc if and
only if a < b and there exists no ¢ with a < ¢ < .

In this example, we have the partial order

{(@,0), ({1}, {1}), ({1}, {1}), ({1,2},{1,2}),
(@0,{1}), (0, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.
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Give structures for orders that are . ..

1. not total: C-relation3%?;

2. total but not dense:

32The C-relation is partial but not total. As an example,
consider the C-relation on the set of subsets of {1,2}.
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(@0,{1}), (0, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.
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Structures for Orders ...

Give structures for orders that are . ..

1. not total: C-relation3%?;

2. total but not dense: integers with <;

3. dense:

32The C-relation is partial but not total. As an example,
consider the C-relation on the set of subsets of {1,2}.

1,2}

{1f//// \\\\{2}
\./

0

Depicting partial orders by a such a graph is quite common.
Here, node a is below node b and connected by an arc if and
only if a < b and there exists no ¢ with a < ¢ < .

In this example, we have the partial order

{(@,0), ({1}, {1}), ({1}, {1}), ({1,2},{1,2}),
(@0,{1}), (0, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.
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Structures for Orders ...

Give structures for orders that are . ..

1. not total: C-relation3%?;

2. total but not dense: integers with <;

3. dense: reals with <.

32The C-relation is partial but not total. As an example,
consider the C-relation on the set of subsets of {1,2}.

1,2}

{1f//// \\\\{2}
\./

0

Depicting partial orders by a such a graph is quite common.
Here, node a is below node b and connected by an arc if and
only if a < b and there exists no ¢ with a < ¢ < .

In this example, we have the partial order

{(@,0), ({1}, {1}), ({1}, {1}), ({1,2},{1,2}),
(@0,{1}), (0, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.
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26.2 Example 2: Groups

e Language: Function symbols _-_, =1 ¢33

o A group is*** a model®®® of

Ve,y,z.(x-y)-z2 = x-(y-2) (assoc)

Ve.x-e = x (r-neutr)
Ve.x- -zt = ¢ (r-inv)
2. s a binary infix function symbol (in fact, only - is the

symbol, but the notation _- _ is used to indicate the fact that
the symbol stands between its arguments).

_~!is a unary function symbol written as superscript. Again,
the _ is used to indicate where the argument goes.

e is a nullary function symbol (= constant).

Note that groups are very common in mathematics, and
many different notations, i.e., function names and fixity (infix,

prefix. .. ) are used for them.
2¢|n general mathematical terminology, a group consists of

three function symbols _-_, !, e, obeying the following laws:

Associativity (a-b)-c=a-(b-c) for all a,b,c,
Right neutral a - ¢ = a for all a,

1

Right inverse a - a= = e for all a.

325A model of the group axioms is a structure in which the
group axioms are true.
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It is an example of an equational theory3?.



It is an example of an equational theory3?.

Two theorems: (3) 27! -z =cand (4)e-z =2
We will now prove them.

However, when we say something like, “this model is a
group”, then this is a slight abuse of terminology, since there
may be other function symbols around that are also inter-
preted by the structure.

So when we say “this model is a group”, we mean, “this
model is a model of the group axioms for function symbols

_-_, ~1.and e clear from the context”.
26An equational theory is a set of equations. Each equation

IS an axiom.

Sometimes, each equation is surrounded by several V-
quantifiers binding all the free variables in the equation, but
often the equation is regarded as implicitly universally quan-
tified.

More generally, a conditional equational theory consists of
proper rules where the premises are called conditions [H5190)].

Note also that sometimes, one also considers the basic rules
of equality as being part of every equational theory. Whenever
one has an equational theory, one implies that the basic rules
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Equational Proofs

A typical proof in an equational theory looks very different
from the natural deduction style, but it looks very much like
the proofs you know from school mathematics.

An equational proof consists simply of a sequence of equa-
tions, written as t; = ¢y = ... = t,,, where each t;,1 is
obtained from t; by replacing some subterm s with a term ¢/,
provided the equality s = s’ holds.

More on the justification later.

are present; whether or not one assumes that they are formally
elements of the equational theory is just a technical detail.
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Theorem 3

Ve,y,z.(x-y)-z = x-(y-z) (assoc)

Ve.z-e — x (r-neutr)
Vo z -z e (r-inv)
rtr=e (3)
—1 Cr =
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Vo z -z e (r-inv)
e-r=ux (4)
ez=(x -z ) z=x - (x7! 1) (Theorem 3)
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Equational Proofs Justified

Translated to natural deduction style, an equational proof
looks like this:

AX1
AXQ 60 o =5
— V-E ~ (sym) refl
e s1 =8 t1="1%
- (sym) cong,
S9 = Sy t1h =1
Ax,,_1 cong,
V-E _
(sym) :
Spn—1 — Sn—l tl =1 -1
cong,
t1 =1,

where each Ax; is an axiom of the equational theory®?’.

27The double line marked with V-E stands for 0 or more
applications of the V-E rule. Moreover, there might be an
application of sym.
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Lessons Learned from this Example

e Equational proofs are often tricky! Equalities are used in
different directions, “eureka’ 3% terms are needed, etc.

e In some cases (the word problem®?° is) decidable.

e In Isabelle, equational proofs are accomplished by term
rewriting.

e Explicit natural deduction proofs are tedious in practice.
Try it on above examples!®3°

3By “eureka” terms we mean terms that have to be guessed
in order to find a proof. At least at first sight, it seems like
these terms simply fall from the sky.

The Greek gupeka (heureka) is 1st person singular perfect
of evplokew (heuriskein), “to find”. It was exclaimed by
Archimedes upon discovering how to test the purity of Hi-

ero’s crown.
2 The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms
s and t are equal in the theory, that is to say, whether the

formula s =t is true in any model of the theory.
330
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27 Naive Set Theory
27.1 Naive Set Theory: Basics

e A set is a collection of objects where order and repetition
are unimportant.

Sets are central in mathematical reasoning [Vel94].
e In what follows we consider a simple, intuitive formaliza-
tion: naive set theory.

We will be somewhat less formal than usual. Our goal is
to understand standard mathematical practice.

Later, in HOL, we will be completely formal.

This is an example of the general scheme.
Most steps use the congruence rule cong,.
Each framed box in the derivation tree stands for a sub-tree

consisting of a group axiom and possibly several applications
of V-E.
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Sets: Language

Assuming any first-order language with equality, we add:

}331

e set-comprehension {z|P(x)}°*>* and a binary membership

predicate €.

21Set comprehension is a way of defining sets. {z|P(z)}
stands for the set of elements of the universe for which P(x)

(some formula usually containing x) holds.
32|t is more adequate to regard a set as a term than as a

formula. A set is a “thing”, not a statement about “things”.

After all, we have the predicate € expecting a set on the
RHS (and even the LHS may be a set!), and predicates take
terms as arguments.

However, the syntax used in set comprehensions is not legal
syntax for terms, since P(x) is a formula.

This is why we introduce a special syntactic category for
sets.
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Examples

e What does the following say?

r € {y|y mod 6 =0}
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Examples

e What does the following say?
r € {y|y mod 6 =0}

Answer: £ mod 6 = 0.

e What about this?
2 € {w|6 & {z|z is divisible by w}}

Answer: 6 ¢ {x|x divisible by 2} i.e., 6 not divisible by
2.
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Proof Rules for Sets

Introduction, elimination, extensional equality333

P(t) t € {z|P(z)}
compr-I compr-E
t € {x|P(z)} P(t)
Vx.xEAHxEB_I A=B B
A=DB ~ Vz.x€A—zxzeEB

The following equivalence is derivable33*:

Va. P(x) < z € {y|P(y)}

-E

33Two things are extensionally equal if they are “equal in
their effects”. Thus two sets are equal if they have the same
members, regardless of what syntactic expressions are used to
define those sets.

Note that extensional equality may be undecidable.

[P(x)]! [z € {y|P(y)}]'

compr-/ compr-E

P(x)

-

P(z) « x € {y|P(y)}
Vz. P(x) < z € {y|P(y)}

Rule V-/ was defined in a previous lecture.

V-1
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Digression: Sorts

e The following notations are common in mathematics and
logic:
{z € U|P(z)}
Vxe U. P(x)
Jre U. P(x)

35\We already know what a universe or domain is. To inter-
pret a particular language, we have a structure interpreting all
function symbols as functions on the universe.

However, it is often adequate to subdivide the universe into
several “sub-universes”. Those are called sorts. Note that a
sort is a set.

For example, in a usual mathematical context, one may dis-
tinguish R (the real numbers) and N (the natural numbers)
to say that \/x requires = to be of sort R and z! requires x

to be of sort N.
336|n sorted logic, sorts are part of the syntax. So the sig-

nature contains a fixed set of sorts. For each constant, it is
specified what its sort is. For each function symbol, it is spec-
ifled what the sort of each argument is, and what the sort of
the result is. For each predicate symbol, it is specified what
the sort of each argument is.

Terms and formulas that do not respect the sorts are not
well-formed, and so they are not assigned a meaning.
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nature contains a fixed set of sorts. For each constant, it is
specified what its sort is. For each function symbol, it is spec-
ifled what the sort of each argument is, and what the sort of
the result is. For each predicate symbol, it is specified what
the sort of each argument is.

Terms and formulas that do not respect the sorts are not
well-formed, and so they are not assigned a meaning.
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27.2 Operations on Sets

e Functions on sets

ANP'B = {z|lz € ANz € B}
AUB {z|lr € AVz e B}
A\ B {z|]r € ANz & B}
e Predicates on sets

ACB=Ve.x € A—-z€B

In contrast, our logic is unsorted. The special syntax we
provide for sorted reasoning is just syntactic sugar, i.e., we
use it as shorthand and since it has an intuitive reasoning,

but it has no impact on how expressive our logic is.
337

N is called intersection.
U is called union.

\ is called set difference.
C is called inclusion.
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are AN B, AUB, A\ B?
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are AN B, AUB, A\ B?

A\ B
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Correspondence between Set-Theoretic and Logical
Operators

r€ANB < € ANz EB
r€AUB < z€ AVzeB
r€A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the set-
theoretic operators and Vx. P(z) < x € {y|P(y)}.

338\When we transform an expression containing set operators
N, U, \, C into an expression using A, V,—, —, we call the
latter the logical form of the expression.
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Correspondence between Set-Theoretic and Logical
Operators

r€ANB < € ANz EB
r€AUB < z€ AVzeB
r€A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the set-

theoretic operators and Vx. P(z) < x € {y|P(y)}.
Example: what is the logical form®® of z € (AN B) U

(ANC))? (re ANzeB)V(zxe ANz el

338\When we transform an expression containing set operators
N, U, \, C into an expression using A, V,—, —, we call the
latter the logical form of the expression.
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Proof of AN(BUC)=(ANB)UANC)

39A Venn diagram draws sets as bubbles. Intersecting sets
are drawn as overlapping bubbles, and the overlapping area is
meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof accord-
ing to usual mathematical practice. If it is unknown whether
two sets have a non-empty intersection, how are we supposed
to draw them? Trying to make a case distinctions (drawing
several diagrams depending on the cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they
are not proofs.
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Proof of AN(BUC)=(ANB)U(ANC) (1)

Venn diagram (Is this a proof?)3%

39A Venn diagram draws sets as bubbles. Intersecting sets
are drawn as overlapping bubbles, and the overlapping area is
meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof accord-
ing to usual mathematical practice. If it is unknown whether
two sets have a non-empty intersection, how are we supposed
to draw them? Trying to make a case distinctions (drawing
several diagrams depending on the cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they
are not proofs.
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Proof of AN (BUC)=(ANB)U(ANC) (2)

Natural deduction (natural language*")

30\We intersperse formal notation with natural language here
in order to give an intuitive and short proof.
We can also do this more formally in Isabelle.
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Proof of AN (BUC)=(ANB)U(ANC) (2)
Natural deduction (natural language*")

By extensionality, suffices to show
Ve.x e AN(BUC) «—ze(ANB)UANC).
For an arbitrary x, this is equivalent to establishing

(xre AN(xe Bvze()) «
(xe ANz eB)V(xe Anx e C)

30\We intersperse formal notation with natural language here
in order to give an intuitive and short proof.
We can also do this more formally in Isabelle.
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Proof of AN (BUC)=(ANB)U(ANC) (2)
Natural deduction (natural language*")

By extensionality, suffices to show
Ve.x e AN(BUC) «—ze(ANB)UANC).
For an arbitrary x, this is equivalent to establishing

(xe AN(zeBvzel)) <
(xe ANz eB)V(xe Anx e C)

But that is a propositional tautology.
Do it in Isabelle!

30\We intersperse formal notation with natural language here
in order to give an intuitive and short proof.
We can also do this more formally in Isabelle.

368
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Let's try a similar semi-formal proof:
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Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let = be element of (AU B) \ B.

So(x € AVae e B)\N—x € B.
Therefore x € A.

Therefore t € (AUB)\ B — x € A.
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Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let = be element of (AU B) \ B.

So(x € AVae e B)\N—x € B.
Therefore x € A.

Therefore t € (AUB)\ B — x € A.
Therefore (AU B) \ B) C A.

341

Let A and B be arbitrary sets. (V-1
Let = be an element of (AU B) \ B  (temporary assumption
So(re AvVee B)A-xz€B (equivalent proposition
Therefore z € A (P follows from (P V Q) A ﬁQ
Thereforer € (AUB)\ B -z € A (—
Therefore (AU B)\ B) C A (def of Q)

Concerning forward and backwards reasoning, one may look
at it as follows: we first construct the derivation step at the
root of the proof tree (V-/), and then we jump to a leaf (by
making the temporary assumption) and work downwards from

there.
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Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let = be element of (AU B) \ B.

So(x € AVae e B)\N—x € B.
Therefore x € A.

Therefore t € (AUB)\ B — x € A.
Therefore (AU B) \ B) C A.

Combination3*

of forward reasoning with backward rea-

soning. This is common in practice and usually easy to un-

scramble.
341
Let A and B be arbitrary sets. (V-1)
Let = be an element of (AU B)\ B  (temporary assumption)
So(re AvVee B)A-xz€B (equivalent proposition)
Therefore z € A (P follows from (P V Q) A =Q)
Thereforer € (AUB)\ B -z € A (—-))
Therefore (AU B)\ B) C A (def of Q)

Concerning forward and backwards reasoning, one may look
at it as follows: we first construct the derivation step at the
root of the proof tree (V-/), and then we jump to a leaf (by
making the temporary assumption) and work downwards from

there.
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27.3 Extending Set Comprehensions

Recall set comprehensions {x|P(z)}.
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27.3 Extending Set Comprehensions

Recall set comprehensions {x|P(z)}.
Now what do you think this is?

{f(@)|P(x)} = {y[Fz. P(z) Ny = f(2)}

Example: t € {z*|z > 5} equivalent to Iz. z > SAt = z°.
True for t € {36,49,...}
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Indexing

Sometimes, it is natural to denote a function f applied to an
argument x as “f indexed by z", so f;, rather than f(x).
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Indexing

Sometimes, it is natural to denote a function f applied to an
argument x as “f indexed by z", so f;, rather than f(x).

Example: let S = set of students and let m, stand for “the
mother of s”, for s a student. Call S an index set.

r€{mslse S} « xze{ylds.s € SAy=ms}
— ds.se SNz =m,
— dse S .z =my

Uses extended comprehensions, indexing syntax, and sorted
quantification.
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Logical Forms of the New Notation
What is the logical form of {z;|i € I} C A7

342

{ziliel} CA=Ve.xe{zliecl} -z A

follows from the definition of C.
We want to show

Ve.x e{xliel} -reA=Ve.(Jiel.o=x) >z €A
r € {x;|i € I}
re{ylFi.ie I Ny=ux;}
di.eel Nx =ux;
el x=ux

(def. of notation)
compr-I

(Sorted quantification)

34|t may be helpful to pronounce both forms out loud in nat-
ural language to get an intuitive feeling that they are equiva-

lent.
15\Want to prove

Ve (Fiel.o=x)—az€A) — VMelxecA
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Logical Forms of the New Notation
What is the logical form of {z;|i € I} C A7

Ve.z e {z;li e I} —» € A3, e,
Vo (diel.x=ux)— x e A,
Intuition®** suggests that Vi € I.x; € A is also correct,
l.e.,
Vez.(diel.z=2)—>ax€A)— (Viel.ax,cA).

345

Proving this would be another exercise®* on using extended

comprehensions, indexing syntax, and sorted quantification.

342

{ziliel} CA=Ve.xe{zliecl} -z A

follows from the definition of C.
343

We want to show

Ve.x e{xliel} -reA=Ve.(Jiel.o=x) >z €A
r € {x;|i € I}
re{ylFi.ie I Ny=ux;}
di.eel Nx =ux;
el x=ux

(def. of notation)
compr-I

(Sorted quantification)

34|t may be helpful to pronounce both forms out loud in nat-
ural language to get an intuitive feeling that they are equiva-

lent.
15\Want to prove

Ve (Fiel.o=x)—az€A) — VMelxecA
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Powersets
p(A) = {z]z € A}.
What is the logical form of:
1. x € p(A)?

. “H”
Let ¢ € I be arbitrary. Now from assumption (for the

instance x;) we have (35 € [.x; = z;) — x; € A. But
premise is true for 1 = j, so x; € A.



Powersets
o(4) = {]z C A}
What is the logical form of:
1. x € p(A)?
rCA ie,Vy(yex—yeA
2. p(4) € p(B)?

o —

Let ¢ € I be arbitrary. Now from assumption (for the
instance x;) we have (35 € [.x; = z;) — x; € A. But
premise is true for 1 = j, so x; € A.

® <

Let = be arbitrary and assume 3: € [.x = x;. So for
some 7 € I, we have x = z;. Now Vi € [.x; € A.
Hence x € A.

“—" in more detail: Want to prove

Ve (diel.o=x)—ax€eA) — VMelxgecA



Powersets
o(A) = {z]z C A}
What is the logical form of:
1. x € p(A)?
rCAie, Vy.(yex—yecA)
2. p(A) C p(B)?
Ve.x € p(A) — x € p(B), i.e,

. “H”
Let ¢ € I be arbitrary. Now from assumption (for the
instance x;) we have (35 € [.x; = z;) — x; € A. But
premise is true for 1 = j, so x; € A.

. “H”
Let = be arbitrary and assume 3: € [.x = x;. So for

some 7 € I, we have x = z;. Now Vi € [.x; € A.
Hence x € A.

“—" in more detail: Want to prove
Ve (diel.o=x)—ax€eA) — VMelxgecA

We show Vi € I.x; € A assuming Vz.(di € [.x = ;) —
x € A.

So we show that for arbitrary ¢ € I, assuming Vz.(di €
I.x =x;)) > x € A, we have z; € A. So let i € I be
arbitrary.
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Powersets
o(4) = {]z C A}
What is the logical form of:
1. x € p(A)?
rCA ie,Vy(yex—yeA
2. p(4) € p(B)?

Ve.x € p(A) — x € p(B), i.e,
Ve.x CA— xCB,i.e,

. “H”
Let ¢ € I be arbitrary. Now from assumption (for the
instance x;) we have (35 € [.x; = z;) — x; € A. But
premise is true for 1 = j, so x; € A.

. “H”
Let = be arbitrary and assume 3: € [.x = x;. So for

some 7 € I, we have x = z;. Now Vi € [.x; € A.
Hence x € A.

“—" in more detail: Want to prove
Ve (diel.o=x)—ax€eA) — VMelxgecA

We show Vi € I.x; € A assuming Vz.(di € [.x = ;) —
x € A.

So we show that for arbitrary ¢ € I, assuming Vz.(di €
I.x =x;)) > x € A, we have z; € A. So let i € I be
arbitrary.
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Powersets
p(A) = {z|r C A}.
What is the logical form of:
1.z € p(A)?
rCA ie,Vy(yex—yeA
2. p(4) C p(B)?
Ve.x € p(A) — x € p(B), i.e,
Ve.x CA— xCB,i.e,
Ve.Vy.yex—ye A — (Vy.yex—y € DB)

Exercise: prove that the last answer is equivalent to A C
B,ie, Vr.x € A — x € B.

. “H”
Let ¢ € I be arbitrary. Now from assumption (for the
instance x;) we have (35 € [.x; = z;) — x; € A. But
premise is true for 1 = j, so x; € A.

. “H”
Let = be arbitrary and assume 3: € [.x = x;. So for

some 7 € I, we have x = z;. Now Vi € [.x; € A.
Hence x € A.

“—" in more detail: Want to prove
Ve (diel.o=x)—ax€eA) — VMelxgecA

We show Vi € I.x; € A assuming Vz.(di € [.x = ;) —
x € A.

So we show that for arbitrary ¢ € I, assuming Vz.(di €
I.x =x;)) > x € A, we have z; € A. So let i € I be
arbitrary.
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27.4 Outlook

Sets can have other sets as elements.

Since we have Vx.(3i € [.x = x;) — x € A, by rule V-E
we can specialize to (37 € [.z; = z;) — x; € A. But
premise (37 € [.x; = x;) is true for i = j, and so x; € A,
which is what was to be proven.

This proof could be made more formal by drawing a proof
tree or using Isabelle.

<" in more Detail: Want to prove

Ve.(Fielz=2)—2xcA)— MelzcA



27.4 Outlook

Sets can have other sets as elements.

Since we have Vx.(3i € [.x = x;) — x € A, by rule V-E
we can specialize to (37 € [.z; = z;) — x; € A. But
premise (37 € [.x; = x;) is true for i = j, and so x; € A,
which is what was to be proven.

This proof could be made more formal by drawing a proof
tree or using Isabelle.

<" in more Detail: Want to prove

Ve (diel.o=x)—ac€eA) VMielrxecA

We show Vz.(3i € .2 = x;) — x € A, assuming Vi €
I.x; € A

So we show that for arbitrary x, assuming Vi € I.x; € A,
we have (Fi € [.o =z;) — x € A. So let x be arbitrary.

Toshow (i € [.x =x;) - x € A, assume i € [.x =
x;. So for some v € I, we have x = x;. Now by our earlier
assumption Vi € I.x; € A, and so it follows that z € A.
thus we have shown x € A under the assumption (37 €
I.x = x;), thus we have shown (Ji € .oz = x;) — x € A,
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Implicitly assume that universe of discourse is collection34°

of all sets.

which is what was to be proven.
This proof could be made more formal by drawing a proof

tree or using Isabelle.
346\\e speak of collection of all sets rather than set of all sets

in order to pretend that we are being careful since we are not
sure if there is such a thing as a set of all sets. Therefore we
use the “neutral” word collection whose meaning is obvious. . .
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Implicitly assume that universe of discourse is collection34°

of all sets.

which is what was to be proven.
This proof could be made more formal by drawing a proof

tree or using Isabelle.
346\\e speak of collection of all sets rather than set of all sets

in order to pretend that we are being careful since we are not
sure if there is such a thing as a set of all sets. Therefore we
use the “neutral” word collection whose meaning is obvious. . .

s it?

Recall that we have defined set as collection of objects in
the first place. So it is rather futile to suggest now that there
should be some difference between collections and sets.

The fact of the matter is: the approach of allowing arbi-
trary collections of “objects” and regarding such collections
as ‘objects” themselves is naive. We will see this shortly.
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Russell’s Paradox

Suppose U := {x | T3*"}. Then®® U € U.
Quite strange but no contradiction yet.

347Assume that T is syntactic sugar for a proposition that is
always true, say T = L — 1. We have not introduced this,
but it is convenient.

So semantically, we have I4(T) =1 for all 14.
#sRecall that a set comprehension has the form {z|P(x)},

where P(x) is a formula usually containing x.

The set comprehension U := {x | T} is strange since T
does not contain z.

But by the introduction rule for set comprehensions, this

means that x € U for any x. Thus in particular, U € U.
9]t tells us that there can be no such thing as the set of all

sets.

The fundamental flaw of naive set theory is in saying that
a set is a collection of “objects” without worrying what an
object is. If we make no restriction as to what an object is,
then a set is obviously also an object. But then we effectively
base the definition of the new concept set on the existence of
sets, so the definition is circular.
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Russell’s Paradox

Suppose U := {x | T3*"}. Then®® U € U.
Quite strange but no contradiction yet.
Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R := {A|A & A}.

Assume R € R. By the definition of R, this means R €
{A|A & A}. Using compr-E, this implies R ¢ R.

Now assume R ¢ R. Using compr-I, this implies R €
{A|A & A}. By the definition of R, this means R € R.

What does this tell us about sets?3*’

347Assume that T is syntactic sugar for a proposition that is
always true, say T = L — 1. We have not introduced this,
but it is convenient.

So semantically, we have I4(T) =1 for all 14.
#sRecall that a set comprehension has the form {z|P(x)},

where P(x) is a formula usually containing x.

The set comprehension U := {x | T} is strange since T
does not contain z.

But by the introduction rule for set comprehensions, this

means that x € U for any x. Thus in particular, U € U.
9]t tells us that there can be no such thing as the set of all

sets.

The fundamental flaw of naive set theory is in saying that
a set is a collection of “objects” without worrying what an
object is. If we make no restriction as to what an object is,
then a set is obviously also an object. But then we effectively
base the definition of the new concept set on the existence of
sets, so the definition is circular.
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Where Do We Go from here?

e The \-calculus as basis for a metalanguage to avoid no-
tational confusion

Note that while the proof of the contradiction looks classical
(it seems that we make the assumption R € RV R ¢ R, it
is in fact not classical. There will be an exercise on this.

The intuition for the solution to this dilemma is not difficult:
A set is a collection of objects of which we are already sure
that they exist. In particular, since we are only just about to
define sets, these objects may not themselves be sets.

Once we have such sets, we can introduce “sets of second
order”, that is, sets that contain sets of the first kind. This
process can be continued ad infinitum.

The formal details will come later.
3%0Higher-order logic is a solution to the dilemma posed by

Russell's paradox.

It is a surprisingly simple formalism which can be extended
conservatively: this means that it can be ensured that the ex-
tensions cannot compromise the truth or falsity of statements
that were already expressible before the extension.
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Where Do We Go from here?

e The \-calculus as basis for a metalanguage to avoid no-
tational confusion

e Resolution and other deduction techniques: understand-
ing Isabelle better and achieving a higher level of automation

Note that while the proof of the contradiction looks classical
(it seems that we make the assumption R € RV R ¢ R, it
is in fact not classical. There will be an exercise on this.

The intuition for the solution to this dilemma is not difficult:
A set is a collection of objects of which we are already sure
that they exist. In particular, since we are only just about to
define sets, these objects may not themselves be sets.

Once we have such sets, we can introduce “sets of second
order”, that is, sets that contain sets of the first kind. This
process can be continued ad infinitum.

The formal details will come later.
3%0Higher-order logic is a solution to the dilemma posed by

Russell's paradox.

It is a surprisingly simple formalism which can be extended
conservatively: this means that it can be ensured that the ex-
tensions cannot compromise the truth or falsity of statements
that were already expressible before the extension.
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28 The )\-Calculus
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The )\-Calculus: Motivation

A way of writing functions. E.g., Ax.x + 5 is the function
taking any number n to n + 5. Theory underlying functional
programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical) com-
puter science!
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The )\-Calculus: Motivation

A way of writing functions. E.g., Ax.x + 5 is the function
taking any number n to n + 5. Theory underlying functional
programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical) com-
puter science!

Why is it interesting for us? The A-calculus is used for
representing object logics in Isabelle. It is the core of Isabelle’s
metalogic!

Further reading: [Tho91, chapter 2], [HS90, chapter 1].
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Outline of this Lecture

e The untyped \-calculus
e The simply typed A-calculus (A7)
e An extension of the typed A-calculus

e Higher-order unification

28.1 Untyped )\-Calculus

From functional programming, you may be familiar with
function definitions such as

fx=x4+5
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The A\-calculus is a formalism for writing nameless functions.
The function A\x.x + 5 corresponds to f.



The A\-calculus is a formalism for writing nameless functions.
The function \x.x + 5 corresponds to f.

The application to say, 3, is written (Az. x+5)(3). Its result
is computed by substituting 3 for x, yielding 3 + 5, which in
usual arithmetic evaluates to 8%,

#1As you might guess, the formalism of the A-calculus is not
directly related to usual arithmetic and so it is not built into
this formalism that 3 + 5 should evaluate to 8. However, it
may be a reasonable choice, depending on the context, to
extend the A-calculus in this way, but this is not our concern
at the moment.
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Syntax
(x € Var, c € Const®?)
e :=x | c| (ee) | (M\w.e)*

The objects generated by this grammar are called A\-terms
or simply terms.

2Similarly as for first-order logic, a language of the untyped
A-calculus is characterized by giving a set of variables and a
set of constants.

One can think of Const as a signature.

Note that C'onst could be empty.

Note also that the word constant has a different meaning
in the A-calculus from that of first-order logic. In both for-
malisms, constants are just symbols.

In first-order logic, a constant is a special case of a function
symbol, namely a function symbol of arity 0.

In the A-calculus, one does not speak of function symbols.
In the untyped A-calculus, any A-term (including a constant)
can be applied to another term, and so any A-term can be
called a “unary function”. A constant being applied to a
term is something which would contradict the intuition about
constants in first-order logic. So for the A-calculus, think
of constant as opposed to a variable, an application, or an

abstraction.
353 \-term can either be
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Conventions: iterated \ & left-associated application3>*

(Az. (Ay. (Az. ((z2)(y2))))) = (Azyz. ((z2)(yz)))
Aryz. xz2(yz)

Is A\r.z + 5 a A-term?3%®

e a variable (case x), or
e a constant (case c), or

e an application of a A\-term to another A-term (case (ee)),

or

e an abstraction over a variable = (case (Ax. ¢e)).

#=\We write \z125 . .. T,.€ instead of Axi.(Aza.(...€)...).

€1 €s...e, is equivalent to (...(e; e)...€,)..., not
(e1(eg...e,)...). Note that this is in contrast to the as-
sociativity of logical operators. There are some good reasons

for these conventions.
355trictly speaking, Ax. x + 5 does not adhere to the defini-

tion of syntax of A\-terms, at least if we parse it in the usual
way: + is an infix constant applied to arguments x and 5.

If we parse z+5 as ((x+)5), i.e., x applied to (the constant)
+, and the resulting term applied to (the constant) 5, then
Ax.x + 5 would indeed adhere to the definition of syntax of
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Substitution

e Will see shortly that “computations” are based on sub-
stitutions, defined similarly as in FOL.

(g2 3)[x « 5]*° =g53
e Must respect free and bound variables,
(x(Az. zy))|x — €] = e(Ax. xY)

e Same problems as with quantifiers

Va. (P(z) A Jdz. Q(z,y)) V. (P(z) A Jy. Q(z,y))

PN Qy) T Pl AT Q2

A-terms, but of course, this is pathological and not intended
here.

It is convenient to allow for extensions of the syntax of \-
terms, allowing for:

e application to several arguments rather than just one;

e infix notation.

Such an extension is inessential for the expressive power of the
A-calculus. Instead of having a binary infix constant 4+ and
writing Ax.x + 5, we could have a constant plus according
to the original syntax and write \z. ((plus x)5) (i.e., write +
in a Curryed way).

sHere we use the notation e[z <« t] for the term obtained
from e by replacing x with t. There is also the notation
elt/z|, and confusingly, also e|x/t]. We will attempt to be
consistent within this course, but be aware that you may find
such different notations in the literature.
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Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same here:

A-calculus FOL
FV(x) =
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Recall the notions of bound, free, and binding occurrences of
variables in a term. Same here:
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FV(c) :=
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Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same here:

A-calculus FOL

FV(x) = {z} = FV(x)
FVi(c):=1 = FV(c)
FV(MN) = FV(M)UFV(N) = FV(M A N)
FV(Ax. M) =
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Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same here:

A-calculus FOL

FV(x) = {z} = FV(x)
FVi(c):=1 = FV(c)
FV(MN):=FV(M)UFV(N) =FV(MAN)
FV(Ax. M) = FV(M)\{z} =FV(Vx. M)

Example: F'V (ry(Ayz.1yz)) = {z,y}
A term with no free variable occurrences is called closed.
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Definition of Substitution
M [z < N] means substitute IV for x in M
1. zjlx «— N] =

2. alr +— N| =

3. (PQ)lx — N| =

4. (\x. P)|lx < N] =
5. (A\y. P)lz — N| =

6. (\y. P)lx «— N] =

»7Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-
eral concepts. So far, we have seen four binding operators: d,
YV and A, and set comprehensions. The \ operator is the most
generic of those operators, in that it does not have a fixed
meaning hard-wired into it in the way that the quantifiers do.
In fact, it is possible to have it as the only operator on the
level of the metalogic. We will see this later.
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Definition of Substitution
M [z < N] means substitute IV for x in M
l.zlx < N]=N
2. alr < N| = a if a is a constant or variable other than x
3. (PQ)lz — N| = (Plz — N|Q|z — NJ)
4. (\x. P)lx < N| = Xz. P
5. (A\y. P)[x <+ N|] = M\y.Plx «— N]ify #xandy ¢
FV(N)
6. (\y. P)[x < N] = Az. Ply < z][x « N]|if y # x and
y € FV(N), and z is fresh: z ¢ FV(N)U FV(P)
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eral concepts. So far, we have seen four binding operators: d,
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In fact, it is possible to have it as the only operator on the
level of the metalogic. We will see this later.
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Definition of Substitution
M [z < N] means substitute IV for x in M
l.zlx < N]=N
2. alr < N| = a if a is a constant or variable other than x
3. (PQ)fs — N] = (Plz — N|Qls — N)
4. (\x. P)lx < N| = Xz. P
5

. (MNy.P)lx «— N] = \y.Plx «— N]ify # x and y ¢
FV(N)
6. (\y. P)[x < N] = Az. Ply < z][x « N]|if y # x and
y € FV(N), and z is fresh: z ¢ FV(N)U FV (P)
357

Cases similar to those for quantifiers: A binding is ‘generic’>>".

»7Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very gen-
eral concepts. So far, we have seen four binding operators: d,
YV and A, and set comprehensions. The \ operator is the most
generic of those operators, in that it does not have a fixed
meaning hard-wired into it in the way that the quantifiers do.
In fact, it is possible to have it as the only operator on the
level of the metalogic. We will see this later.
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Substitution: Example

(x(Ax. zy))|T — Az2. 2]

6]f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (Az. xy)ly < ] would be
L. XX,
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Substitution: Example

(x(Ax. zy))|T — Az2. 2] 2 zlr — Az. z](Az. xy)[x — Az 2]

—_

= (Az. 2)A\z. 2y

6]f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (Az. xy)ly < ] would be

AL. TX.
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Substitution: Example

(x(Ax. zy))|T — Az2. 2] 2 zlr — Az. z](Az. xy)[x — Az 2]

—_

= (Az. 2)A\z. 2y

(Az. zy)ly « x|

6]f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (Az. xy)ly < ] would be

AL. TX.
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Substitution: Example

(x(Ax. zy))|T — Az2. 2] 2 zlr — Az. z](Az. xy)[x — Az 2]
= (Az. 2)A\z. 2y
(Az.oy)ly — 2] = e ((@y)lw — Aly — )
= Az (ayly )
=D P

In the last example, clause 6 avoids capture, i.e., Ax. zx328,

6]f it wasn't for clause 6, i.e., if we applied clause 5 ignoring
the requirement on freeness, then (Az. xy)ly < ] would be

AL. TX.
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Reduction: Intuition

Reduction is the notion of “computing”, or “evaluation”, in

the A-calculus.

fr=x4+5 ~ f=Xx.c+5

f3=34+5 ~ (Az.2+5)(3) 55 (x+5)[xr—3]=3+5
B-reduction replaces a parameter by an argument®>°.

This should propagate into contexts®®, e.g.

Ax.(Az.x +5)(3)) =5 A\x.(3+5).

|n the A-term (Az.M)N, we say that N is an argument
(and the function Ax.M is applied to this argument), and
every occurrence of z in M is a parameter (we say this because
x is bound by the \).

This terminology may be familiar to you if you have experi-
ence in functional programming, but actually, it is also used
in the context of function and procedure declarations in im-
perative programming.

360| N

Ax.(Az. x +5)(3)),

the underlined part is a subterm occurring in a context. (-
reduction should be applicable to this subterm.
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Reduction: Definition

e Axiom for J-reduction: (Az.M)N —3 M|x N6t

e Rules for 3-reduction of redices®®? in contexts:

M—>5M/ M—>3M’ M—>5M/
*
NM —3 NM'  MN —s M'N  Xz.M —g Az.M' 36

e Reduction is reflexive-transitive closure

M —4 N M—%N N—34P
M—3N M5 M M —% P

e A term without redices is in (3-normal form.

%1As you see, (J-reduction is defined using rules (two of them
being axioms, the rest proper rules) in the same way that we
have defined proof systems for logic before. Note that we
wrote the first axiom defining (3-reduction without a horizontal

bar.
%2|n a \-term, a subterm of the form (Ax. M)N is called a

redex (plural redices). It is a subterm to which (-reduction

can be applied.
% The rule for propagating — 3 to an abstraction, let us call

it \-abstr,
M —z M

Ae.M —5 Az.M'

actually has a vacuous side condition:

\-abstr

2 is not free in any open assumption on which M —
M’ depends.

The side condition is just like for V.
The side condition is vacuous because in the derivation sys-
tem for — ;3 (or —7) we present here, there is no rule involving
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Reduction: Examples

(Az. A\y.gxy)ab —4




Reduction: Examples

(Az. Ay. gz y)ab —p5 (Ay. (gay))b —4




Reduction: Examples

(Az. A\y.gxy)ab —5 (Ay.(gay))b —s gab
So (A\r. \y.gxy)ab—jgab

discharging open assumptions, and thus there is no point in
making assumptions. The root of a derivation tree for —g
is always an application of the axiom for 3-reduction. When
we consider —7%, we may in addition have applications of the
reflexivity axiom.

However, we will have exercises on — 43 using an Isabelle
theory called RED, and in this theory, the above rule is called
epsi and looks as follows:

"[]I!x. M(x) ——> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x

Observe that there is a meta-level universal quantifier in this
rule. From the exercises, you know that the meta-level uni-
versal quantifier corresponds to a side condition in paper-and-
pencil proofs.

Moreover, when we later look at the meta-logic, there will
be a rule

a=b
(Ax.a) = (Azx.b)

looking very similar to the A-abstr rule and having a side

=-abstr’
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condition.

To illustrate why the side condition is needed in general,
consider a derivation system where in addition to the rules for
— 3 and —7, we also allow applications of the rule for rules
for — (implication) and V of first-order logic.

For the example we give, suppose that we have an encoding
of the number 0 and the + function in the untyped A-calculus,
and that these behave as expected (in fact we will have an
exercise showing this; in the following we use “0" and “+"
just for simplicity and clarity; + is written infix).

Under these assumptions, we will now derive Azy. y+x —3
Azry.y. Before looking at the derivation tree, think about
what this says intuitively: it says that + is a function that
takes two arguments, ignores the first argument and returns
the second argument. Clearly, this does not correspond to the
usual definition of +! The trick in the following derivation is
to smuggle in an instantiation of x, namely to force = to be
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Shows Currying>**


http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

Shows Currying>**

(Az. z2)(Ax. 22) —)5



http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

Shows Currying>**

(Az.z2)(Ax. 22) — 5 (A2 22)( A2 2) — 5 ...

0. The derivation looks as follows:
ly+a —pyl
ANY.Y+T —3 Y.y

\-abstr
\-abstr

AZY. Y+ T —p5 ATY. Y

Ny

V-1
Ve(y+x —py) — Aey.y+ 2z —5 Ary. y vE (routine)

(Yy+z—py) — Ay y+x —5 A\ay.y

(y+0—p5y) = Azy.y+x —3 Ary.y y+0—p5y

-E
AZY. Y+ T —3 ATY. Y -

In the above derivation, the side condition for \-abstr is vio-
lated.

In Isabelle, such a “smuggling in” of an instantiation can be
achieved using instantiate tac, see RED wrongepsi.thy

and wrongepsi.ML.
3You may be familiar with functions taking several argu-

ments, or equivalently, a tuple of arguments, rather than just
one argument.
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http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

Shows divergence3®

In the A-calculus, but also in functional programming, it is
common not to have tuples and instead use a technique called
Currying (Schonfinkeln in German). So instead of writing
g(a,b), we write g a b, which is read as follows: g is a function
which takes an argument a and returns a function which then
takes an argument b.

Recall that application associates to the left, so g a b is read
(ga)b.

Currying will become even clearer once we introduce the

typed A-calculus.
65\\e say that a J-reduction sequence diverges if it is infinite.

Note that for (Axy.y)((Ax.zx)(Ax.zx)), there is a finite
(-reduction sequence

(Azy. y)(A\x. zz)(Az. 22)) —5 A\Y. Y

but there is also a diverging sequence

(Azy. y)(Ax. zz)(Az. 2x)) —p (Azy. y)(Az. zz)(Ax. zx)) —45 ...

393



Shows divergence3®
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Conversion

e (J-conversion: “symmetric closure” of (3-reduction
M —>E N M =5 N
M= N N=sM

s6-conversion is usually applied implicitly, i.e., without mak-
ing it an explicit step. So for example, one would simply write:

N2.2 =3 A\T. T

3s7p-conversion is defined as
M =, \x.(Mz) ifx & FV(M)

It is needed for reasoning about normal forms.

gr =, Ay.gzy reflects gxb=5(Ay.gzy)b
More specifically: if we did not have the n-conversion rule,
then g x and \y. g x y would not be “equivalent” up to con-
version. But that seems unreasonable, because they behave
the same way when applied to . Applied to b, both terms
can be converted to gx b. This is why it is reasonable to

introduce a rule such that g x and \y. gz y are “equivalent”
up to conversion.
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A\-Calculus Meta-Properties®®®

Confluence (equivalently®®®, Church-Rosser): reduction is order-
independent.

For all M, Ny, Ny, if M —>Z, Ny and M —>; N>, then there
exists a P where NV, —% P and Ny —>E P.

there exists a P where Ny —* P and Ny —* P.
A reduction is called Church-Rosser if

for all Ny, Ny, if N; <& N, then there exists a P
where N7 —* P and Ny —* P,

Here, «+—:= (—>)_1 is the inverse of —, and <=« U — is
the symmetric closure of —, and <>:= («)* is the reflexive
transitive symmetric closure of —.

So for example, if we have

My — My — M3y — My «— My «+— Mg — M; «— Mg «— My

then we would write M, < M.
Confluence is equivalent to the Church-Rosser property

[BN98, page 10].
One also says that the 7-conversion expresses the idea of

extensionality [HS90, chapter 7].
Note that with the help of [-reduction and transitivity,
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Uniqueness of Normal Forms

Corollary of the Church-Rosser property:
If M —>; Ny and M —>E N5 where N7 and N5 in normal

form, then
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Corollary of the Church-Rosser property:
If M —>; Ny and M —>E N5 where N7 and N5 in normal
form, then N; =, N>.



VAN
\

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:
If M —>; Ny and M —>E N5 where N7 and N5 in normal
form, then N; =, N>.
Example:
(Azy. y)((Az. 2x)a) —5 (Azy.y)(aa) —p Ay.y
(Azy. y)((Az. 22)a) —5 Ay.y

n-conversion can be generalized to more than one variable,

ie. M =5, A\vy...2p. Maxy...7,. E.g. we can derive
Axyz. Mxyz =g, M:
M Mzyz=,Mzy
ANz Mxyz=g, \y Mzy Iy Mzy=,Mx
Ayz. Mxyz=g, Mz
Aeyz. Mxyz =g, \z. M x Ar. M x =, M
Axyz. Mxyz=g, M

For any n, we call Axq...x,. M x1...x, an 1-expansion of

M.

368

By metaproperties, we mean properties about reduction and
conversion sequences in general.

A redgciony §,aST Mt I Ar e Ny, then
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Turing Completeness

The A-calculus can represent all computable functions.3"

0 The untyped A-calculus is Turing complete. This is usu-
ally shown not by mimicking a Turing machine in the \-
calculus, but rather by exploiting the fact that the Turing
computable functions are the same class as the fi-recursive
functions [HS90, chapter 4]. In a lecture on theory of compu-
tation, you have probably learned that the p-recursive func-
tions are obtained from the primitive recursive functions by so-
called unbounded minimalization, while the primitive recursive
functions are built from the 0-place zero function, projection
functions and the successor function using composition and
primitive recursion [LP81].

The proof that the untyped A-calculus can compute all 1~
recursive functions is thus based on showing that each of
the mentioned ingredients can be encoded in the untyped -
calculus. While we are not going to study this, one crucial
point is that it should be possible to encode the natural num-
bers and the arithmetic operations in the untyped A-calculus.
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A~ (simply typed A-calculus, simple type theory) restricts
syntax to “meaningful expressions”.

371

In untyped A-calculus, we have syntactic objects’’* called

terms.
We now introduce syntactic objects called types®’?.

We will say “a term has a type” or “a term is of a type”.

s1\We also say that we have defined a term language. A
particular language is given by a signature, although for the

untyped A-calculus this is simply the set of constants Const.
2\\e can say that we define a type language, i.e., a language

consisting of types. A particular type language is characterized
by giving a set of base types B. One might also call B a type
signature.

A typical example of a set of base types would be {N, bool},
where N represents the natural numbers and bool the Boolean
values | and T.

All that matters is that B is some fixed set “defined by the
user”.
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Two Syntaxes

e Syntax for types (B a set of base types, T' € B)
To=T | 7—>71
Exampless: N, N — 3N, (N - N) - N, N - N —
Fﬂ374

375)

e Syntax for (raw terms: A-calculus augmented with

types’7®
e =z | c| (ee) | (A\z".¢€)

3The type N — N is the type of a function that takes a
natural number and returns a natural number.

The type (N — N) — N is the type of a function that
takes a function, which takes a natural number and returns a

natural number, and returns a natural number.
4To save parentheses, we use the following convention:

types associate to the right, so N — N — N stands for
N— (N— N).

Recall that application associates to the left. This may seem
confusing at first, but actually, it turns out that the two con-

ventions concerning associativity fit together very neatly.
%|n the context of typed versions of the A-calculus, raw

terms are terms built ignoring any typing conditions. So raw
terms are simply terms as defined for the untyped A-calculus,

possibly augmented with type superscripts.
3750 far, this is just syntax!

The notation (A\z".e) simply specifies that binding occur-
rences of variables in simple type theory are tagged with a
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(x € Var, c € Const®™)

superscript, where the use of the letter 7 makes it clear (in
this particular context) that the superscript must be some

type, defined by the grammar we just gave.
37 Var and Const are the sets of variables and constants,

respectively, as for the untyped A-calculus.
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Signatures and Contexts

378) a signature

Generally (in various logic-related formalisms
defines the “fixed” symbols of a language, and a context de-

fines the “variable” symbols of a language. In A7,

sFor propositional logic, we did not use the notion of sig-
nature, although we mentioned that strictly speaking, there
is not just the language of propositional logic, but rather a
language of propositional logic which depends on the choice
of the variables.

In first-order logic, a signature was a pair (F, P) defining the
function and predicate symbols, although strictly speaking,
the signature should also specify the arities of the symbols
in some way. Recall that we did not bother to fix a precise
technical way of specifying those arities. We were content
with saying that they are specified in “some unambiguous
way' .

In sorted logic, the signature must also specify the sorts of
all symbols. But we did not study sorted logic in any detail.

In the untyped A-calculus, the signature is simply the set of
constants.

Summarizing, we have not been very precise about the no-
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e a signature X is a sequence (¢ € Const)
Yiu= ()| Z,c: 7
e a context [' is a sequence (x € Var)
Fo=() | I,x:7

tion of a signature so far.

For A7, the rules for “legal” terms become more tricky, and
it is important to be formal about signatures.

In A\, a signature associates a type with each constant
symbol by writing ¢ : 7.

Usually, we will assume that Const is clear from the context,
and that X contains an expression of the form ¢ : 7 for each
c € Const, and in fact, that X is clear from the context as
well. Since Y contains an expression of the form ¢ : 7 for
each ¢ € Const, it is redundant to give Const explicitly. It

is sufficient to give ..
39\We call an expression of the form x : 7 or ¢ : 7 a type

binding.

The use of the letter 7 makes it clear (in this particular
context) that the superscript must be some type, defined by
the grammar we just gave.
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Type Assignment Calculus

We now define type judgements:“a term has a type” or “a
term is of a type”. Generally this depends on a signature X
and a context I'. For example

Iy cx: o380

whereX =c:7—ocand ' =2 : 7.

380The expression
['Fycx:o

is called a type judgement. It says that given the signature
> =c:7 — o and the context [' = z : 7, the term
c = has type o or
c x is of type o or
c x is assigned type 0.

Recall that you have seen other judgements before.
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We now define type judgements:“a term has a type” or “a
term is of a type”. Generally this depends on a signature X
and a context I'. For example

Iy cx: o380

where Y =c:7—oand'=2: 7.
We usually leave X implicit and write - instead of Fy.
If " is empty it is omitted.

380The expression
['Fycx:o
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Type Assignment Calculus: Rules®®!

: 6382
CF7_|_ e assum F)x 0 T,A T hyp383
: ' Dx:0%Fe:T

['Fee: 7 TEN 6 0 — 7



Type Assignment Calculus: Rules®®!

.7 € 382y
CFTI—C:T assum Dx:7,AFz:7 hyp®s
, , . 384 .
NlFe:o—T1 Fl—e’.aapp No:okFe:T b
'Fee : 71 Xl e :o—T

Note that due to requiring x : o to occur at the end, rule

#1Type assignment is defined as a system of rules for deriving
type judgements, in the same way that we have defined deriv-
ability judgements for logics, and (3-reduction for the untyped

A-calculus.
32Recall that Y is a sequence. By abuse of notation, we

sometimes identify this sequence with a set and allow our-
selves to write ¢ : 7 € ..
We may also write > C ¥’ meaning that ¢ : 7 € X implies
c:T e
330ne could also formulate hyp as follows:
x:.Tel

h
I'Fx:T yP

That would be in close analogy to LF, a system not treated

here.
384 A sequence is a collection of objects which differs from sets

in that a sequence contains the objects in a certain order, and
there can be multiple occurrences of an object.
We write a sequence containing the objects o4,...,0, as
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385

abs is deterministic®®® when applied bottom-up.

(01, ...,0p,), or sometimes simply o1, ..., 0,.

If ) is the sequence o1,...,0,, then we write ), 0
for the sequence (01,...,0,,0) and 0,€) for the sequence
(0,01, ...,0p).

An empty sequence is denoted by ().
5ignatures and contexts are sequences, and intuitively, the

order in which the type bindings occur in these sequences does
not matter.

Now, the way we have set up the type assignment calculus,
it would seem that the order does matter, namely since in rule
abs, the binding = : ¢ above the horizontal line must be the
last binding in the context. An alternative formulation would

be
Iez:o,AkFe:T

VAF M. e co— T

However, the original formulation is more straightforward in

abs

light of the fact that type derivations are usually constructed
bottom-up. The bottom-up application of the original abs
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Also note the analogy to minimal logic over —3%°.

is deterministic, whereas the alternative formulation would
confront us with the choice of how to split up the context.
For example, we could start a derivation of ¢y : p,2 : w F
Ax?.c . 0 — T in three ways:
rxioy . p, 2z wkc:T

y:p,z:wl—)\x".c:a—w‘abs
or
y:p,r:0,z . wke:T
5 abs
y:p,z:wkEA’.c:0o—T
or
y:p, 2w, x:obc:T
abs

y:p,zwkEX’.c.0—T
Recall the sequent rules of the “— /A" fragment of propo-

sitional logic. Consider now only the “—" fragment. We call
this fragment minimal logic over —.
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(-Reduction in A\~

(-reduction defined as before, has subject reduction prop-

If you take the rule
Dx:1, Az :7 hyp

of A~ and throw away the terms (so you keep only the types),
you obtain essentially the rule for assumptions

' A (where AeTl)

of propositional logic.
Likewise, if you do the same with the rule
'Fe:o—7 I'keé:o
['Fee: 7
of A™, you obtain essentially the rule
'FA—-B T'HA
I'-B

app

—-E

of propositional logic.
Finally, if you do the same with the rule
x:okFe:T

' Xxl.e :O_”_abs
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of A™", you obtain essentially the rule

ATFB
rcA—B

of propositional logic.

/

Note that in this setting, there is no analogous propositional

logic rule for
c:TEX

IF'Ee: 7

So for the moment, we can observe a close analogy between

assum

A, for X being empty, and the — fragment of propositional
logic, which is also called minimal logic over —.

Such an analogy between a type theory (of which A~ is an
example) and a logic is referred to in the literature as Curry-
Howard isomorphism [Tho91]. One also speaks of proposi-
tions as types [GLT89]. The isomorphism is so fundamental
that it is common to characterize type theories by the logic
they represent, so for example, one might say:
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387

erty®®” and is strongly normalizing>®®.

A~ is the type theory of minimal logic over —.

Note that for this analogy, it is quite crucial that we have
no constants (X is empty). Namely, this condition implies
that for some types, we cannot give a closed term that has
this type. For example, we can give a closed term of type
T — 0 — 7, namely Azy. z, while we cannot give a closed
term of type (1 — 7) — 7. We say that 7 — 0 — 7T is
inhabited while (T — 7) — 7 is not inhabited.

The inhabited types correspond exactly to the formulas that
are derivable in minimal logic over —, and the inhabiting term

is regarded as a proof.
%7Subject reduction is the following property: reduction does

not change the type of a term, soif = M : 7 and M —3 N,

then Fv N : 7.
#The simply-typed A-calculus, unlike the untyped -

calculus, is normalizing, that is to say, every term has a normal
form. Even more, it is strongly normalizing, that is, this nor-
mal form is reached regardless of the reduction order.

410



Example 1

il Vs D ¥ VAR

3|n this example, you may regard o and 7 as base types
(this would require that 0,7 € B), but in fact, it is more
natural to regard them as metavariables standing for arbitrary
types. Whatever types you substitute for o and 7, you obtain
a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that X is irrelevant for the example and hence
arbitrary.
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Example 1

x.o,y.THx: 0o

abs
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FXe? Ny x 0 — (T — 0)

Note the use of schematic types>®°!

For simplicity, applications of hyp are usually not explicitly
marked in proof.

3|n this example, you may regard o and 7 as base types
(this would require that 0,7 € B), but in fact, it is more
natural to regard them as metavariables standing for arbitrary
types. Whatever types you substitute for o and 7, you obtain
a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that X is irrelevant for the example and hence
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Example 3

Y =fi0—=0—7T
I'=2:0
' fzxax: 7

3%|n Example 3, we have f : 0 — 0 — 7 € X, and so f is
a constant.

In Example 2, we have f : 0 - 0 — 7 €1, andso fisa
variable.

Looking at the different derivations of the type judgement
' fxax:7in Examples 2 and 3, you may find that they are
very similar, and you may wonder: What is the point? Why
do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When
setting up a type theory or programming language, there are
choices to be made about whether there should be a distinc-
tion between variables and constants, and what it should look
like. There is a famous epigram by Alan Perlis:

One man’s constant is another man'’s variable.

For our purposes, it is much clearer conceptually to make the
distinction. For example, if we want to introduce the natural
numbers in our A~ language, then it is intuitive that there
should be constants 1, 2, . .. denoting the numbers. If 1,2, ...
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We will often suppress applications of assum.
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Type Assignment and a/3n-Conversion

Type construction:

e Type construction®*! is decidable.

were variables, then we could write strange expressions like

X2N=N 4 so we could use 2 as a variable of type N — N.

9 Type construction is the problem of given a X, I' and e,
finding a 7 such that I' Fy e : 7.
Sometimes one also considers the problem where 1" is un-

known and must also be constructed.
220 3n-conversion is defined as for A™. Given two (extended)

A-terms e and €', it is decidable whether e =3, €.
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Type Assignment and a/3n-Conversion

Type construction:
e Type construction®*! is decidable.

e There is a practically useful implementation for type-
construction (Hindley-Milner algorithm WV [Mil78, NN99]).

392 (

Term congruence® (e =,3, €'?) is decidable.
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28.3 Polymorphism and Type Classes

We will now look at the typed A-calculus extended by poly-
morphism and type classes.

As we will see later, this is the universal representation for
object logics in Isabelle.

415



Polymorphism: Intuition

In functional programming, the function append for con-
catenating two lists works the same way on integer lists and
on character lists: append is polymorphic®®.

Type language must be generalized to include type variables
(denoted by «, G ...) and type constructors.

Example: append has type « list — a list — « list, and
by type instantiation, it can also have type, say, int list —

it list — int list.

39|n functional programming, you will come across functions
that operate uniformly on many different types. For example,
a function append for concatenating two lists works the same
way on integer lists and on character lists. Such functions are
called polymorphic.

More precisely, this kind of polymorphism, where a function
does exactly the same thing regardless of the type instance, is
called parametric polymorphism, as opposed to ad-hoc poly-
morphism.

In a type system with polymorphism, the notion of base type
(which is just a type constant, i.e., one symbol) is generalized
to a type constructor with an arity > 0. A type constructor of
arity n applied to n types is then a type. For example, there
might be a type constructor [ist of arity 1, and int of arity 0.
Then, nt list is a type.

Note that application of a type constructor to a type is
written in postfix notation, unlike any notation for function
application we have seen. However, other conventions exist,
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Polymorphism: Two Syntaxes

e Syntax for polymorphic types (B a set of type construc-

tors>** including —), T € B, «a is a type variable)

Tio=a | (1,...,7)T

even within Isabelle.

A type constructor of arity > 0 is called type operator by
some authors [GM93, page 196], but we do not follow this
terminology. Also, those authors say type constant for what
we call “type constructor” (i.e., of arity 0 as well as > 0),
but again, we do not follow this terminology: for us a type
constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
3% As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized
by giving a certain set of symbols B. But unlike before, B is
now a set of type constructors. Each type constructor has an
arity associated with it just like a function in first-order logic.
The intention is that a type constructor may be applied to
types.

Following the conventions of ML [Pau96], we write types in
postfix notation, something we have not seen before. |.e., the
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Polymorphism: Two Syntaxes

e Syntax for polymorphic types (B a set of type construc-

tors>** including —), T € B, «a is a type variable)

Tio=a | (1,...,7)T
Examples: N, N — N, «list, Nlist, (N, bool) pair.
e Syntax for (raw) terms as before:
e =ux | c| (ee) | (A\z".¢)

(x € Var, ¢ € Const)

even within Isabelle.

A type constructor of arity > 0 is called type operator by
some authors [GM93, page 196], but we do not follow this
terminology. Also, those authors say type constant for what
we call “type constructor” (i.e., of arity 0 as well as > 0),
but again, we do not follow this terminology: for us a type
constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic

type systems of functional programming languages.
3% As before, we define a type language, i.e., a language con-

sisting of types, and a particular type language is characterized
by giving a certain set of symbols B. But unlike before, B is
now a set of type constructors. Each type constructor has an
arity associated with it just like a function in first-order logic.
The intention is that a type constructor may be applied to
types.

Following the conventions of ML [Pau96], we write types in
postfix notation, something we have not seen before. |.e., the
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Polymorphic Type Assignment Calculus

Type substitutions (denoted ©) defined in analogy to substi-
tutions in FOL3%. Apart from application of © in rule assum,
type assignment is as for \:

C:TEX § P AL f
F}_C:T@assum T LT nyp

'Fe:o—7 TI'Feé:o Nex:oke:T
app
PFee : 71 FI—)\:U".e:a—M'abs

*: © is any type substitution.

type constructor comes after the arguments it is applied to.
It makes perfect sense to view the function construction
arrow — as type constructor, however written infix rather
than postfix.
So the B is some fixed set “defined by the user”, but it

should definitely always include —.
%A type substitution replaces a type variable by a type, just

like in first-order logic, a substitution replaces a variable by a
term.
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Type Classes: Intuition

396

Type classes®® are a way of ...

3% Type classes are a way of “making ad-hoc polymorphism
less ad-hoc” [HHPW96, WB89].

Type classes are used to group together types with certain
properties, in particular, types for which certain symbols are
defined.

For example, for some types, a symbol < (which is a binary
infix predicate) may exist and for some it may not, and we
could have a type class ord containing all types for which it
exists.

Suppose you want to sort a list of elements (smaller elements
should come before bigger elements). This is only defined for
elements of a type for which the symbol < exists.

Note that while a symbol such as < may have a similar
meaning for different types (for example, integers and reals),
one cannot say that it means exactly the same thing regardless
of the type of the argument to which it is applied. In fact, <
has to be defined separately for each type in ord.

This is in contrast to parametric poymorphism, but also

419



“making ad-hoc polymorphism>*" less ad-hoc” [HHPW96, WB89)].
Type classes are used to group together types with certain
properties, in particular, types for which certain symbols are
defined.
We only sketch the formalization here, and refer to [HHPW96,
Nip93, NP93] for details.

somewhat different from ad-hoc polymorphism: The types of
the symbols must not be declared separately. E.g., one has to

declare only once that < is of type (a :: ord, «).
397 Ad-hoc polymorphism, also called overloading, refers to

functions that do different (although usually similar) things
on different types. For example, a function < may be defined
as'a <'b"...oncharactersand 1 < 2...on integers. In this
case, the symbol < must be declared and defined separately

for each type.

This is in contrast to parametric pomorphism, but also
somewhat different from type classes.

Type classes are a way of “making ad-hoc polymorphism
less ad-hoc” [HHPW96, WB89].
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Type Classes in Isabelle

3% (similarly as in Haskell): E.g., declare

e Syntactic classes
that there exists a class ord which is a subclass of class
term, and that for any 7 :: ord, the constant < is defined

and has type 7 — 7 — bool. lIsabelle has syntax for this.



Type Classes in Isabelle

3% (similarly as in Haskell): E.g., declare

e Syntactic classes
that there exists a class ord which is a subclass of class
term, and that for any 7 :: ord, the constant < is defined

and has type 7 — 7 — bool. lIsabelle has syntax for this.

%A syntactic class is a class of types for which certain sym-
bols are declared to exist. Isabelle has a syntax for such dec-
larations. E.g., the declaration

sort ord < term

const <= : [’a::ord, ’al => bool
may form part of an Isabelle theory file. It declares a type
class ord which is a subclass (that's what the < means; in
mathematical notation it will be written <) of a class term,
meaning that any type in ord is also in term. We will write
the “class judgement” ord < term. The class term must be
defined elsewhere.

The second line declares a symbol <=. Such a declaration is
preceded by the keyword const. The notation « :: ord stands
for a type variable constrained to be in class ord. So <= is
declared to be of type [a :: ord, a] = bool, meaning that it
takes two arguments of a type in the class ord and returns a
term of type bool. The symbol =(=>) is the function type
arrow in Isabelle. Note that the second occurrence of « is
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e Axiomatic classes39-

Declare (axiomatize) that certain
theorems should hold for a 7 :: kK where & is a type class.
E.g., axiomatize that < is reflexive by an (Isabelle) theo-

rem "x < z". Isabelle has syntax for this.

written without :: ord. This is because it is enough to state
the class constraint once.

Note also that |« :: ord, ] => bool is in fact just another
way of writing o :: ord => a => bool, similarly as for goals.

Haskell [HHPWO96] has type classes but ML [Pau96] hasn't.
39|n addition to declaring the syntax of a type class, one can

axiomatize the semantics of the symbols. Again, Isabelle has
a syntax for such declarations. E.g., the declaration

axclass order < ord
order. refl: ’x <= x 7’
order trans: ’’[| x <=y; y <=z |] ==> x <=

may form part of an Isabelle theory file. It declares an ax-
lomatic type class order which is a subclass of ord defined
above.

The next two lines are the axioms. Here, order refl and
order_trans are the names of the axioms. Recall that = is
the implication symbol in Isabelle (that is to say, the metalevel
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To use a class, we can declare members*% of it e.g., Nis
a member of ord.

implication).

Whenever an Isabelle theory declares that a type is a member
of such a class, it must prove those axioms.

The rationale of having axiomatic classes is that it allows for
proofs that hold in different but similar mathematical struc-
tures to be done only once. So for example, all theorems that
hold for dense orders can be proven for all dense orders with

one single proof.
“0(Qne also speaks of a type being an instance of a type class,

but this is slightly confusing, since we also say that a type can
be an instance of another type, e.g., N — N is an instance
of a, since ajaw +— (N — N)] = N — N. So it is better to
speak of a member of a type class.

Isabelle provides a syntax for declaring that a type is a mem-
ber of a type class, e.g.

instance nat :: ord

declares that type nat is a member of class ord.
If the class k is a syntactic class, such a declaration must

423



Syntax: Classes, Types, and Terms

Based on

e aset of type classes*’!, say K = {ord, order, lattice, ...},

e a set of type constructors*®?, say

come with a definition of the symbols that are declared to
exist for k.

In addition, if x is an axiomatic class, such a declaration
must come with a proof of the axioms.

If a type 7 is (by declaration) a member of class , we write

the “class judgement” 7 :: k.
“1The set K we gave is incomplete and just exemplary.

So the set of type classes involved in an Isabelle theory is
a finite set of names (written lower-case), typically including
ord, order, and lattice.

We have seen some Isabelle syntax for declaring the type
classes previously.

In grammars and elsewhere, k is the letter we use for “type

class”.
“2As before, the set B we gave is is incomplete (there are

..") and just exemplary. We might call B a type signature.
Note also that an _ is used to denote the arity of a type

constructor.
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B = {bool, . — *% ind, _list,_set...},

ea set of constants Const and a set of
variables Var,

we define

— _ lzst means that [zst is unary type constructor;
— _ — _means that — is a binary infix type constructor.

The notation using _ is slightly abusive since the _ is not
actually part of the type constructor. _ [ist is not a type
constructor; [ist is a type constructor.

So the set of type constructors involved in an Isabelle the-
ory is a finite set of names (written lower-case) with each
having an arity associated, typically including bool, —, and
list. Note however that bool is fundamental (since object
level predicates are modeled as functions taking terms to a
Boolean), and so is —, the constructor of the function space
between two types.

In grammars and elsewhere, 1" is the letter we use for “type

constructor” .
“€|n A7, types were built from base types using a “special

symbol” —.
When we generalize A™ to a A-calculus with polymorphism,
this “special symbol” becomes a type constructor. However,
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e Polymorphic types*%*:
T o=ao|a k| (r...,7)T
e Raw terms (as before):
e == x | c| (ee) | (M\x".¢)
(«v is type variable, T' € B, k € K, x € Var, ¢ € Const)

the syntax is still special, and it is interpreted in a particular
way.

wr o= o | ek | (r,...,7) T

(«v is type variable)

is a grammar defining what polymorphic types are (syntac-
tically). As before, 7 is the non-terminal we use for (now:
polymorphic) types.

This grammar is not exemplary but generic, and it deserves
a closer look.

A type variable is a variable that stands for a type, as op-
posed to a term. We have not given a grammar for type
variables, but assume that there is a countable set of type
variables disjoint from the set of term variables. We use «
as the non-terminal for a type variable (abusing notation, we
often also use « to denote an actual type variable).

First, note that a type variable may be followed by a class
constraint :: k (recall that k is the non-terminal for type
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Type Assignment Calculus with Type Classes

Assume some syntax for declaring 7 :: k and Kk < K'. In

addition introduce the rule
Tk K=<K

T K

subclass

Type assignment rules as before, but type substitution © in
cC:TEX
I'Fc:70

must respect class constraints: for each « :: k occurring in 7

assum

where a© = o, judgement o :: kK must hold.

classes). However, a type variable is not necessarily followed
by such a constraint, for example if the type variable already
occurs elsewhere and is constrained in that place. We have
already seen this.

Moreover, a polymorphic type is obtained by preceding a
type constructor with a tuple of types. The arity of the tuple
must be equal to the declared arity of the type constructor.

It is not shown here that for some special type constructors,
such as —, the argument may also be written infix.
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Example
Suppose that by virtue of declarations, we have N :: order,
order < ord, and <: « :: ord — o — bool € >.. Derive

N :: order order < ord
N :: ord

subclass

and then (© = [a « N])

(<:(a:ord) — o — bool) € ¥
F<:N— N — bool

assum

which respects the class constraint since the judgement N ::
ord was derived above.

428



28.4 Higher-Order Unification

The A-calculus is “the” metalogic. Hence we now (some-
times) call its variables “metavariables” for emphasis and we
precede them with “?". E.g. they can stand for object-level
formulae. More details later.



28.4 Higher-Order Unification

The A-calculus is “the” metalogic. Hence we now (some-
times) call its variables “metavariables” for emphasis and we
precede them with “?". E.g. they can stand for object-level
formulae. More details later.

Two issues concerning metavariables are:

405

e suitable renamings™> of metavariables;

e unification*®® before rule application.

“0s\\henever a rule is applied, the metavariables occurring
in it must be renamed to fresh variables to ensure that no
metavariable in the rule has been used in the proof before.

The notion fresh is often casually used in logic, and it means:
this variable has never been used before. To be more precise,

one should say: never been used before in the relevant context.
%06The mechanism to instantiate metavariables as needed is

called (higher-order) unification. Unification is the process of
finding a substitution that makes two terms equal.

We will now see more formally what it is and later also where
it is used.
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What Is Higher-Order Unification?

Unification of terms e, €’: find substitution € for metavariables
such that ef =,3, €'0.

Examples*’:

X +7Y =afp T + T
'P(z) =opp ¢ +

fO0X ) =45y, Ya

TF(?Gx) =apy flg(z))

407

A solution for 7X +7Y =.3, x + xis [7X «— 2,7Y « x].
A solution for 7P (z) =43, * + xis [TP — (A\y.y +y)].
A solution for f(7Xx) =.5,7Y x is [7X — (A2.2),7Y «
fl.

Three solutions for 7F (G x) =43, f(g(x)) are

PF — f, 7G « ¢,

PF — (M\x.f(gz)), 7G — (A\z.7)],

"F — (A\x.z), 7G — (Ax.f(gx))],
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What Is Higher-Order Unification?

Unification of terms e, €’: find substitution € for metavariables
such that ef =,3, €'0.

Examples*’:

X +7Y =afp T + T
'P(z) =opp ¢ +
fO0X ) =45y, Ya
TF(?Gz) =apy f(g(2))
Why higher-order? Metavariables may be instantiated to
functions, e.g. [TP «— Ay.y + y|.

407

A solution for 7X +7Y =.3, x + xis [7X «— 2,7Y « x].
A solution for 7P (z) =43, * + xis [TP — (A\y.y +y)].
A solution for f(7Xx) =.5,7Y x is [7X — (A2.2),7Y «
fl.

Three solutions for 7F (G x) =43, f(g(x)) are

PF — f, 7G « ¢,

PF — (M\x.f(gz)), 7G — (A\z.7)],

"F — (A\x.z), 7G — (Ax.f(gx))],
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Higher-Order Unification: Facts

e Unification modulo*®® o3 (HO-unification) is semi-decidable
(in Isabelle: incomplete).

e Unification modulo a/3n is undecidable (in Isabelle: in-
complete).

«snification of terms e, ¢’ modulo a3 means finding a sub-
stitution 6 for metavariables such that 6(e) =3 6(€’).

Likewise, unification of terms e, ¢’ modulo o351 means find-
ing a substitution o for metavariables such that o(e) =.3,

o).
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Higher-Order Unification: Facts

e Unification modulo*®® o3 (HO-unification) is semi-decidable
(in Isabelle: incomplete).

e Unification modulo a/3n is undecidable (in Isabelle: in-
complete).

e HO-unification is well-behaved for most practical cases.
e Important fragments (like HO-patterns) are decidable.

e HO-unification has possibly infinitely many solutions.

We will look at some of these issues again later.

«snification of terms e, ¢’ modulo a3 means finding a sub-
stitution 6 for metavariables such that 6(e) =3 6(€’).

Likewise, unification of terms e, ¢’ modulo o351 means find-
ing a substitution o for metavariables such that o(e) =.3,

o).
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28.5 Summary on \-Calculus
e )\-calculus is a formalism for writing functions.
e (3-reduction is the notion of “computing” in A-calculus.
e \-calculus is Turing-complete.
® )\ restricts syntax to “meaningful’ A-terms.
e Add-on features: Polymorphism and type classes.

e The A-calculus will be used to represent syntax of object

409

logics. A-terms™” stand for object terms/formulae. This

will be explained next lecture.

e HO-unification is important in applying proof rules.

4950 just like first-order logic, the A-calculus has a syntactic
category called terms. Bit the word “term” has a different
meaning for the A-calculus than for first-order logic, and so
one can say A-term for emphasis.

Note that at this stage, we have no syntactic category called
“formula” for the A-calculus.
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29 Encoding Syntax
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Metatheory: Motivation

Previously, we have seen the (polymorphically) typed A-calculus
(with type classes).

Now, we will see how the typed A-calculus can be used as
a metalanguage (“metalogic”) for representing*? the syntax
of an object logic, e.g. first-order logic.

“w|n the following, we will distinguish between the object
logic and the metalogic. We have already seen this kind of
distinction before.

The object logic, or user-defined theory if you like, has a
syntax and has a notion of proof. Both must be represented
in the metalogic. This is what this lecture and a later lecture

are about.
411

¢ € Prop iff "¢ € o means: The object level formula ¢
is a well-formed (according to the syntactic rules of the object
logic) proposition if and only if its encoding in the metalogic,
written "¢, has type o.
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Metatheory: Motivation

Previously, we have seen the (polymorphically) typed A-calculus
(with type classes).
Now, we will see how the typed A-calculus can be used as

410 the syntax

a metalanguage (“metalogic") for representing
of an object logic, e.g. first-order logic.

|dea: An object-level proposition is a meta-level term. Met-
alogic type o for propositions.

The terms of type o encode object level propositions: ¢ €
Prop iff "¢ : o*1,

“w|n the following, we will distinguish between the object
logic and the metalogic. We have already seen this kind of
distinction before.

The object logic, or user-defined theory if you like, has a
syntax and has a notion of proof. Both must be represented
in the metalogic. This is what this lecture and a later lecture

are about.
411

¢ € Prop iff "¢ € o means: The object level formula ¢
is a well-formed (according to the syntactic rules of the object
logic) proposition if and only if its encoding in the metalogic,
written "¢, has type o.
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Metatheory: Motivation

Previously, we have seen the (polymorphically) typed A-calculus
(with type classes).
Now, we will see how the typed A-calculus can be used as

410 the syntax

a metalanguage (“metalogic") for representing
of an object logic, e.g. first-order logic.

|dea: An object-level proposition is a meta-level term. Met-
alogic type o for propositions.

The terms of type o encode object level propositions: ¢ €
Prop iff "¢ : o*1,

Later: representing proofs/provability. Then we will really
have a metalogic, not just metalanguage.

“w|n the following, we will distinguish between the object
logic and the metalogic. We have already seen this kind of
distinction before.

The object logic, or user-defined theory if you like, has a
syntax and has a notion of proof. Both must be represented
in the metalogic. This is what this lecture and a later lecture

are about.
411

¢ € Prop iff "¢ € o means: The object level formula ¢
is a well-formed (according to the syntactic rules of the object
logic) proposition if and only if its encoding in the metalogic,
written "¢, has type o.
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Why Have a Metalogic?

Why should we have a meta- or framework logic rather than
implementing provers for each object logic individually?

4

+ Implement ‘core’**? only once

+ Shared support for automation*!3

+ Conceptual framework*** for exploring what a logic is
But

+/— Metalayer*®® between user and logic

416

— Makes assumptions®® about structure of logic

29.1 \: Review

“12By the core we mean the syntax and proof rules of the met-

alogic. These should be simple, so that one can be reasonably

confident that the implementation is correct.
“3There are some general techniques involved in automating

the search for a proof that work for various object logics. It
is therefore useful to implement these techniques on a higher

level, rather than considering each object logic individually.
“4By implementing various object logics within the same

metalogic, we can compare the object logics in a more for-

mal way.
“5sHaving a logic and a metalogic can be very mind-boggling.

We already experienced that when working with Isabelle, it is
sometimes confusing to know whether we are at the level of a
particular theory, or at the level of general Isabelle syntax, or
at the level of ML, the programming language that Isabelle is

implemented in.
“sDesigning a metalogic is a bold endeavor.

How are we supposed to know that the metalogic is ex-
pressive enough to encode any object logic someone might
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A~ is sufficient for presentation here (no polymorphism, type
classes).

e Syntax for types (BB a set of base types, T' € B)
To=T | 7—7
Exampless N N —- N, (N—-N) - N, N—-N—> N
e Syntax for terms: A-calculus augmented with types
e =ux | c| (ee) | (A\x".¢)

(x € Var, ¢ € Const)

invent?

There is probably no general satisfactory answer to this ques-
tion.

In fact, we make assumptions that object logics are of a
certain kind.

This is related to the nature of implication. Roughly speak-
ing, we assume logics and proof systems for which the de-
duction theorem holds, i.e., for which A = B (B is derivable
under assumption A) holds if and only if m A — B (A — B
is derivable without any assumption).

There are logics (modal, relevance logics) for which the the-
orem does not hold [BMO0O].
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Type Assignment

e Signature X == () | X,c: 7.
e Context ' :=() | Iz : 7.

e Type assignment rules

T E N
?:massum De:7,AFxz:7 hyp
'te:oco—7 I'ké:o Nrx:oke:T
app
'Fee 7 Fl—)\aj".eza—>7'abs
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29.2 Representing Syntax of Propositional Logic

Let Prop™’ be our object logic:
P:=z|-P| P\P| P—>P



29.2 Representing Syntax of Propositional Logic
Let Prop™’ be our object logic:
P:=z|-P| P\P| P—>P
Let A~ be our metalogic. Declare
o B = {0}
e Signature assigns types to constants*®:

> = (not : ,and ,imp -



29.2 Representing Syntax of Propositional Logic
Let Prop™’ be our object logic:
P:=z|-P| P\P| P—>P
Let A~ be our metalogic. Declare
o B = {0}
e Signature assigns types to constants*®:

¥ = (not:0— o,and:0— 0— 0,imp:0— 0 — 0)

“7\We consider here the fragment of propositional logic con-
taining the logical symbols =, A, —, and we call it Prop. We
chose this small fragment because it is sufficient for our pur-
poses, namely to demonstrate how encoding syntax in A\~
works. It would be trivial to adapt everything in the sequel to
include V or L.

“sNow the object/meta distinction starts becoming mind-
boggling!

We declare

¥ = (not:0—o,and:0— o0 — o0,imp:0— 0— 0),

and so on the level of our metalogic A, not, and, and 1mp
are constants. However, these constants represent the logical
symbols of the object logic.

Note the types of the constants:
not has type o — o, so it takes a proposition and returns a
proposition.
and and imp have type o — 0 — o0, so each takes two
propositions and returns a proposition.
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e Context assigns types to variables*!®.

This approach is called first-order syntax (see later).

“1v\We identify metalevel variables and object level proposi-
tional variables. Hence I' should contain expressions of the
form a : o, where a is a A~ variable, representing a proposi-
tional variable. Note that under this agreement, I" should not
contain expressions like, e.g., a : 0 — o.
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Digression: Programming Languages

A~ is the theory underlying typed functional programming.
Our declaration of B and Y. on the previous slide corresponds
to the declaration of an algebraic datatype in a functional
programming language [Pau96]:

datatype Prop =
VarIngect of Variable | not of Prop
| and of Prop % Prop | imp of Prop x Prop
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Example of First-Order Syntax

a: ot imp (not a) a: o*®

2q ;0 F imp (not a) a : ois a judgement in A\~, which
may or may not be provable.

If we set up everything correctly and if a @ o I
imp (not a) a : o is provable, then the judgement repre-
sents the fact —a — a is a proposition.

In this sense, we could then say that derivability in A~ cap-
tures the syntax of Prop, i.e., it can distinguish a legal propo-
sition from a “non-proposition”.

Note that this has nothing to do with the question of
whether it is a true proposition! So far, we are only talking
about the representation of syntax.
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Example of First-Order Syntax

a: ot imp (not a) a: o*®

a:obFnot:o0—0 a:oFa:o

a:obFimp:0—0—o0 a:okFnota:o

a:ob imp(nota):o— o a:oba:o

a:obF imp(nota)a: o

Applications of hyp and assum suppressed. Otherwise al-
ways rule app.

2q ;0 F imp (not a) a : ois a judgement in A\~, which
may or may not be provable.

If we set up everything correctly and if a @ o I
imp (not a) a : o is provable, then the judgement repre-
sents the fact —a — a is a proposition.

In this sense, we could then say that derivability in A~ cap-
tures the syntax of Prop, i.e., it can distinguish a legal propo-
sition from a “non-proposition”.

Note that this has nothing to do with the question of
whether it is a true proposition! So far, we are only talking
about the representation of syntax.
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Non-example of First-Order Syntax

a: ot not (imp a) a: o**

g 0 F not (imp a) a : o is a judgement in A\~ which
may or may not be provable.

If we set up everything correctly and if a @ o I
not (imp a) a : o is provable, then the judgement repre-
sents the fact that (— a)—a is a proposition.

However, you may observe that (— a)—a is gibberish.
In fact, there is no formal sense whatsoever in saying that
not (imp a) a corresponds to (— a)—a.

We will see that a : o - not (imp a) a : o isn't prov-
able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
“2(Generally, it is difficult to prove that a proof of a given

judgement within a given proof system does not exist, since
there are infinitely many possible proofs and it is not obvious
to predict how big an existing proof might be.

However, under certain conditions, there are techniques for
simplifying proofs. In fact, there may be normal form proofs,
i.e., proofs simplified as much as possible. One can then
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Non-example of First-Order Syntax

a: ot not (imp a) a: o**

a:oFmmp:o—0—0 a:oka:o

a:oFnot:o— o a:oF mmpa:o— o
777

g 0 F not (imp a) a : o is a judgement in A\~ which
may or may not be provable.

If we set up everything correctly and if a @ o I
not (imp a) a : o is provable, then the judgement repre-
sents the fact that (— a)—a is a proposition.

However, you may observe that (— a)—a is gibberish.
In fact, there is no formal sense whatsoever in saying that
not (imp a) a corresponds to (— a)—a.

We will see that a : o - not (imp a) a : o isn't prov-
able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
“2(Generally, it is difficult to prove that a proof of a given

judgement within a given proof system does not exist, since
there are infinitely many possible proofs and it is not obvious
to predict how big an existing proof might be.

However, under certain conditions, there are techniques for
simplifying proofs. In fact, there may be normal form proofs,
i.e., proofs simplified as much as possible. One can then
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Non-example of First-Order Syntax
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a:oFmmp:o—0—0 a:oka:o

a:oFnot:o— o a:oF mmpa:o— o
777
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However, you may observe that (— a)—a is gibberish.
In fact, there is no formal sense whatsoever in saying that
not (imp a) a corresponds to (— a)—a.

We will see that a : o - not (imp a) a : o isn't prov-
able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
“2(Generally, it is difficult to prove that a proof of a given

judgement within a given proof system does not exist, since
there are infinitely many possible proofs and it is not obvious
to predict how big an existing proof might be.

However, under certain conditions, there are techniques for
simplifying proofs. In fact, there may be normal form proofs,
i.e., proofs simplified as much as possible. One can then
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Bijection between Prop and o
We desire bijection*?® ™-7: Prop — o that is

e adequate: each proposition in Prop can be represented
by a A7 -term of type o:

If P € Propthen'="P7':0

argue: if a proof of a certain judgement exists, it must be no
bigger than a certain size. By searching through all proofs
smaller than this size, one can prove that no proof exists.

In this lecture, we do not go into the details of this topic

[GLT89, Pra65].

“3|n general mathematical terminology, a bijection between
A and B is a mapping f : A — B such that for all a,ad’ € A,
where a # a’, we have f(a) # f(a'), and for each b € B,
there exists an a € A such that f(a) = 0.

For a bijection f, the inverse f~! is always defined, and we
have f(f~1(b)) = b for all b € B and f~!(f(a)) = a for all
a € A.
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Bijection between Prop and o
We desire bijection*?® ™-7: Prop — o that is

e adequate: each proposition in Prop can be represented
by a A7 -term of type o:

If P € Propthen'="P7':0

e faithful: each A™ term of type o represents a proposition
in Prop:

IfCFt:othen "t ! € Prop

argue: if a proof of a certain judgement exists, it must be no
bigger than a certain size. By searching through all proofs
smaller than this size, one can prove that no proof exists.

In this lecture, we do not go into the details of this topic

[GLT89, Pra65].

“3|n general mathematical terminology, a bijection between
A and B is a mapping f : A — B such that for all a,ad’ € A,
where a # a’, we have f(a) # f(a'), and for each b € B,
there exists an a € A such that f(a) = 0.

For a bijection f, the inverse f~! is always defined, and we
have f(f~1(b)) = b for all b € B and f~!(f(a)) = a for all
a € A.
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Adequacy of Bijection
Example: (—a) — b € Prop therefore imp (not a) b : o

2|t P € Prop, and if for each propositional variable z in P,
we have x ;o€ ', then'HF" P : o.

Proof: By structural induction on Prop.

Base case: P is a propositional variable.
Then"P'=P,andsoif P:o&€l, thenwehave'HF"P:
o by rule hyp.

Induction step: Suppose the claim holds for P € Prop and
Q) € Prop.

Consider the propositional formula =P. We have " —P ' =
not " P1. Assume that for each propositional variable x in
P, we have x : 0o € I". By the induction hypothesis, I' I
"P7: 0. Moreover I' - not : o — o0 by rule assum, and so
['Fnot"™P7': o by rule app.

Now consider the propositional formula P A (). We have
"PAQ"=and "P'"('. Assume that for each propo-
sitional variable x in P or (), we have x : 0o € ['. By
the induction hypothesis, ' F "TP1:0and ' F TQ" : o.
Moreover I' - and : 0 — o — o by rule assum, and so
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Adequacy of Bijection

Example: (—a) — b € Prop therefore imp (not a) b : o

Formalize mapping -

A1

' = 1 for x a variable
TP = not"™ P
I_P /\ Q—I — and I_P_| I_Q—I
I_P — Q—I — Zmp I_P_I I_Qj
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we have x ;o€ ', then'HF" P : o.
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o by rule hyp.
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Adequacy of Bijection

Example: (—a) — b € Prop therefore imp (not a) b : o
Formalize mapping -

A1

xr! = x for x a variable
"—P' = not" P
I_P \ Q—I — and I_P_| I_Q—I
I_P — Q—I — Zmp [_P_I I_Qj
Formal statement accounts for variables:
If P € Prop, and if for each propositional variable z in P,
we have z : 0 € I, then I' = TP : 0. Proof by induction*?*.

2|t P € Prop, and if for each propositional variable z in P,
we have x ;o€ ', then'HF" P : o.

Proof: By structural induction on Prop.

Base case: P is a propositional variable.
Then"P'=P,andsoif P:o&€l, thenwehave'HF"P:
o by rule hyp.

Induction step: Suppose the claim holds for P € Prop and
Q) € Prop.

Consider the propositional formula =P. We have " —P ' =
not " P1. Assume that for each propositional variable x in
P, we have x : 0o € I". By the induction hypothesis, I' I
"P7: 0. Moreover I' - not : o — o0 by rule assum, and so
['Fnot"™P7': o by rule app.

Now consider the propositional formula P A (). We have
"PAQ"=and "P'"('. Assume that for each propo-
sitional variable x in P or (), we have x : 0o € ['. By
the induction hypothesis, ' F "TP1:0and ' F TQ" : o.
Moreover I' - and : 0 — o — o by rule assum, and so
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Faithfulness of Bijection

Define ™71
el = g for x a variable
Cnot P—|—1 _||‘P—|—1
Cand P Q‘l—l rp—|—1 A I_Q—I—l
I‘Z'mp P Q—l_l — I_P—I—l — I_Q—I—l

I'Fand"P'"Q': o by two applications of rule app.
The case P — () is completely analogous.

5By the definition of Prop and the definition of -, it is
clear that " P is defined for all P € Prop. It is very easy to
show by induction on Prop that "" P71 = P.

Here is an example of a proof by induction on Prop.

Obviously, everything we say here depends on the particular
fragment of propositional logic, but in an inessential way. It
would be trivial to adapt to other fragments.
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Faithfulness of Bijection

Define - 171
Tl = ¢ for x a variable
Cnot P—|—1 — _||‘P—|—1
Cand P Q‘l—l — rp—|—1 A I_Q—I—l
I‘Z'mp PQ—'_l — I_P—I—l — I_Q—I—l
For bijection, should have P17l — P and 7T = ¢

Former is trivial*?®, but what about latter?

I'Fand"P'"Q': o by two applications of rule app.
The case P — () is completely analogous.

5By the definition of Prop and the definition of -, it is
clear that " P is defined for all P € Prop. It is very easy to
show by induction on Prop that "" P71 = P.

Here is an example of a proof by induction on Prop.

Obviously, everything we say here depends on the particular
fragment of propositional logic, but in an inessential way. It
would be trivial to adapt to other fragments.
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"t7-1 Is not Total

Example: For t = not ((Az°. x)a), we have a : o1 : 0

a:o,r:okFx:o0

abs
a:oFXxl.x:0— o0 a:okFa:o

app
a:obFnot:o—o a:obF (Ax°.z)a:o

a:oF not((Ax°.xz)a): o

app

But "¢ ! is undefined!
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Normal Forms

If £ : 0, then there exists a ¢’ such that t =3, t', where ¢’ : 0
and ¢’ is in canonical (3n-long) normal*® form, e.g.

not (A\z°. x) a) =3, nota

not =g, Ax’.notw

imp (not (A\x°.x)a)) =g, Ax’.imp (nota)x

426

A canonical 8n-long normal form of a A-term is obtained
by applying first (G-reduction as long as possible, and then
computing the maximal n-expansion.

You may wonder: Why is there such a thing as a
maximal n-expansion?  Can't | expand a A-term to
ATy ... xp. M xq... 2, for arbitrary n? In the untyped A-
calculus, this is indeed the case. But in the typed A-calculus,
the answer is no! Consider this example:

not can be expanded to Ax.not x since not is of function
type: it has type o — o. Therefore, not x can be assigned a
type, which is an intermediate step in typing Az. not x:

[x:oFnot:o—0 I'z:oFxz:0
app

[x:oFnotz:o

Fl—)\x.not:U:O—>0abs

But we cannot, say, expand not to Ary.not x y since it is
impossible to assign a type to not z y.

447



Bijection Theorem

The encoding " - "is a bijection between propositional formulae
with variables in I'*?” and canonical terms t’, where I' -t : o.

Effectively, when a term of type 74 — 7, — 7 is -
expanded, it will have the form Axixy. .. x,.€.

Normal forms are unique.
“7Saying that a propositional formula has variables in IT" is

an abuse of terminology, i.e., it isn't exactly true, but it is

trusted that the reader can guess the exact formulation.
What we mean is: a propositional formula such that for

each propositional variable x occurring in the formula, we

have x :0 €T
“28\What this picture says is that if the left hand side is a frag-

ment from a proof tree, deriving the judgement - (Ax7.e)e’ :
T, then there exists a proof of the judgement - e|z «— €'] : 7.
Be aware however that our argument here is very sketchy.

We do not go into the details in this course.
“29Simply writing t : o is again a bit sloppy. We should write:

[' ¢ : o for some I' containing only expressions of the form
x : 0, where x is a propositional variable in Prop.
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Bijection Theorem

The encoding " - "is a bijection between propositional formulae
with variables in I'*?” and canonical terms t’, where I' -t : o.

Proof: Based on normalization
r:oke:T
abs

FXz’.e :0—T Fe o

app
= (Ax?.e)e T = 4% befr €
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Bijection Theorem

The encoding " - "is a bijection between propositional formulae
with variables in I'*?” and canonical terms t’, where I' -t : o.

Proof: Based on normalization
r:oke:T
abs

FXz’.e :0—T Fe o

app
= (Ax?.e)e T = 4% befr €

Corollary: If ¢ : 0** then t =g, ¢ and "t'7"! € Prop for
some canonical t'.

Effectively, when a term of type 74 — 7, — 7 is -
expanded, it will have the form Axixy. .. x,.€.

Normal forms are unique.
“7Saying that a propositional formula has variables in IT" is

an abuse of terminology, i.e., it isn't exactly true, but it is

trusted that the reader can guess the exact formulation.
What we mean is: a propositional formula such that for

each propositional variable x occurring in the formula, we

have x :0 €T
“28\What this picture says is that if the left hand side is a frag-

ment from a proof tree, deriving the judgement - (Ax7.e)e’ :
T, then there exists a proof of the judgement - e|z «— €'] : 7.
Be aware however that our argument here is very sketchy.

We do not go into the details in this course.
“29Simply writing t : o is again a bit sloppy. We should write:

[' ¢ : o for some I' containing only expressions of the form
x : 0, where x is a propositional variable in Prop.
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29.3 Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae
(propositions), represented in A\~ by the type o.
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In Prop, we only have the syntactic category of formulae
(propositions), represented in A\~ by the type o.

In first-order**® logic, we also have the syntactic category
of terms. For representation in A\, we now introduce type ¢,

so B = {i,0}.



29.3 Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae
(propositions), represented in A\~ by the type o.

In first-order**® logic, we also have the syntactic category
of terms. For representation in A\, we now introduce type ¢,
so B = {i,0}.

Just like I' = a : 0 means that a represents a proposition,
[' =t : 1 means that ¢ represents a term.

30|n the previous section, we have seen how we can use first-
order syntax (of A7) to represent the syntax of an object logic,
then Prop. We haven't really understood yet why we speak
of first-order syntax, but note that the notion “first-order”
refers to A7, i.e., the metalevel.

We will now consider first-order logic as object language.
So we will now attempt to represent the syntax of first-order
logic (the object language) using first-order A~ syntax (the
metalanguage). To avoid confusion, it is best to imagine
that it is a mere coincidence that both the object and the
metalanguage are described as “first-order”. Of course there
are reasons why both languages are called like that, but it is
best to understand this separately for both levels. We will
come back to this.
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Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language®':

Terms T =2 | 0| s¥T | T+T | TxT
Formulae £ := T =T | -F | FAF | F—> F



Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language®':

Terms T =2 | 0| s¥T | T+T | TxT
Formulae £ := T =T | -F | FAF | F—> F

In A\~ (on metalevel), define signature ¥ = X +%° U Xp U

Yr = (zero: , succ: , plus : :
times : )
Yp = {eg: )
Ye = (not: ,and : . imp )

“1\With this grammar, we specify a certain language of a
fragment (since quantifiers, V, and L are missing) of first-
order logic.

Alternatively, we could say that F = {0,s,+, x} and
P = {=}. However, the way we defined first-order logic,
the language thus obtained would also include quantifiers, V,
and . For the moment we want to restrict ourselves to the

fragment given by the grammar for FOA.
225 is a unary prefix function, so s applied to 7' is written

sT.
433\\e have defined

Yor = (zero:i, succ:i — i, plus: i — i — i, times: i — i — 1)
Yip = (eq:1—1i— o)



Example: First-Order Arithmetic (FOA)
Following fragment of FOA is our object level language®':
Terms T =2 | 0| s¥T | T+T | TxT
Formulae £ := T =T | -F | FAF | F—> F

In A\~ (on metalevel), define signature ¥ = X +%° U Xp U

Yr = (zero:i, succ: i — i, plus:i— i — i,
times : i — i — 1)

Yp = {eq: i — 11— o)

Ye = (not:o0—o,and:0— 0— o0, imp:0— 0— 0)

“1\With this grammar, we specify a certain language of a
fragment (since quantifiers, V, and L are missing) of first-
order logic.

Alternatively, we could say that F = {0,s,+, x} and
P = {=}. However, the way we defined first-order logic,
the language thus obtained would also include quantifiers, V,
and . For the moment we want to restrict ourselves to the

fragment given by the grammar for FOA.
225 is a unary prefix function, so s applied to 7' is written

sT.
433\\e have defined

Yor = (zero:i, succ:i — i, plus: i — i — i, times: i — i — 1)
Yip = (eq:1—1i— o)
zero : i means: viewed on the object level, 0 is a term.
plus : © — 7 — 1 means: viewed on the object level, plus is
a function that takes two terms and returns a term. eq : 7 —
t — o means: viewed on the object level, = is a predicate
that takes two terms and returns a proposition.
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Example: "2 + s (073* =

On the metalevel (level of A7), zero, plus and eq are con-
stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical symbols of an object
logic as constants. It would however be possible to set up
the encoding in such a way that the non-logical symbols are
encoded as variables, so we would have a context [' UI'p and
instead of our X U Xp. This is in line with Perlis’ epigram.
We will sometimes take this approach in the exercises as the
encoding of A\ in Isabelle makes it more straightforward to

play around with different I''s than with different X's.
s4\\e extend the definition of "- ' as follows:

! = 5
"0 = zero
"st! = succ't'
"r+t!" = plus"Tr' Tt
"rxt!' = times"r1Tt
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Example: "2 + s (073* =

On the metalevel (level of A7), zero, plus and eq are con-
stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical symbols of an object
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the encoding in such a way that the non-logical symbols are
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instead of our X U Xp. This is in line with Perlis’ epigram.
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Example: "z + s 0% = plus z (succ zero).

On the metalevel (level of A7), zero, plus and eq are con-
stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical symbols of an object
logic as constants. It would however be possible to set up
the encoding in such a way that the non-logical symbols are
encoded as variables, so we would have a context [' UI'p and
instead of our X U Xp. This is in line with Perlis’ epigram.
We will sometimes take this approach in the exercises as the
encoding of A\ in Isabelle makes it more straightforward to

play around with different I''s than with different X's.
s4\\e extend the definition of "- ' as follows:

! = 5
"0 = zero
"st! = succ't'
"r+t!" = plus"Tr' Tt
"rxt!' = times"r1Tt
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Encoding FOL in General

In general, to encode some first-order language, we must de-
fine X and Xp so that for each n-ary f € F, pe P
Jene 8= ... 21 —>1 € X,

¥
n times

penc:@-%-‘;-—)@'_)o S 2777
n times

andthen ™ f(t1,....t,) "= fene "t1 ... Tty Tand Tp(ty, .. . ) ' =
Dene "1 1. T,

Abusing notation, we might skip the subscript enc.

Note that here, on the object level, x is a first-order variable
(a variable is a term), and hence on the metalevel, it has type
7.
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Quantifiers in First-Order Syntax
Along the same lines, one might suggest
all : var — o — o, so "Ve.P'=uallx"™ P

But this approach has some problems:

5|n first-order logic, variables are not a syntactic category
of their own, but rather they are a “sub-category” of terms.
Therefore one should expect that var should be a “subtype”
of 7, that is to say, every term of type var is automatically
also of type 7. However, there is no such notion in A,

436 There is a notion of substitution in A\™, hence on the
metalevel. But all is just a constant like any other on the
level of A7, and hence (and (p x)(all x (q z)))[z «— a] =
(and (p a)(all a (q a))), and not (and (p a)(all x (q x)))
as one should expect.

That is to say, the standard operation of substitution, which
exists on the metalevel, is of no use for implementing substi-
tution on the object level. Instead, substitution on the object
level must be “programmed explicitly”.

Note that the following question arises: on the A7~ level,
should the terms of type var be variables or constants?

One could imagine that they are variables. This means that
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Quantifiers in First-Order Syntax
Along the same lines, one might suggest
all : var — o — o, so "Ve.P'=uallx"™ P
But this approach has some problems:

e Variables are also terms, so “var C i"**? No subtyping!

e allis not a binding operatorin A\™”. E.g., (p(x)AVz. q(z))[x «—
a] cannot be modeled**® as (and (p z)(all z (q x)))[z —

a).

5|n first-order logic, variables are not a syntactic category
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of 7, that is to say, every term of type var is automatically
also of type 7. However, there is no such notion in A,
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29.4 Higher-Order Abstract Syntax (HOAS)

Example, full FOA: F = .. . V. A | dz. AX =3sUdpU
e U Xo:

Yo = {all : (i — o*") — o, ewists: (i — 0) — 0)



29.4 Higher-Order Abstract Syntax (HOAS)
Example, full FOA: F = .. . V. A | dz. AX =3sUdpU
Xe UXo:

Yo = {all : (i — o*") — o, ewists: (i — 0) — 0)

Extend the definition of ™.
Ny, PU = all (Xz®. TP
"Az. P7 = exists (Ax'."P7)

the signature > would not contain any constants of type var
or ... — wvar. The only terms of type var would be variables.
In this case, a A~ term like (and (p x)(all = (¢ x))) could
only be typed in a context I' containing x : var.

Alternatively, one could imagine that they are constants.
The signature signature >. would contain expressions of the
form x : var, where x would be a A\~ constant. One thing
that isn't nice about this approach is that > cannot be an
infinite sequence, and so we would have to fix a finite set of
variables that can be represented in A\ ™.

In either case, the operation of substitution on the metalevel

is of no use for implementing substitution on the object level.
“7Some intuition: a proposition is represented by a term of

type 0. Now a term of type ¢ — o represents a proposition
where some positions are marked in a special way. For exam-
ple, in \x'. eq x x, the positions where = occurs are marked in
a special way, by virtue of the fact that the X in front of the
expression binds the x. This “marking” allows us to “insert”
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Adequacy and faithfulness as before*32.

other terms in place of . We will see this soon.

all is a constant which can be applied to a term of type
1 — 0.

“*Terms and formulae are represented by (canonical) mem-
bers of ¢ and o. The principle is similar as for Prop.
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Examples
"Vr.x =2 = all(\z'.eqx )

Vr.Jy. o(z+x=y)" =
all(A\z'. exists(\y'. not (eq (plus x z) y)))
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Examples

"Vr.x =2 = all(\z'.eqx )
"Vr.dy.-(x+x=9)" =
all(A\z'. exists(\y'. not (eq (plus x z) y)))
Example derivation (all but one steps use rule app):

riitkFeqg:i—i—o0 x:i1kFx:0

r:ilkeqx:1— o0 ritkxii
r:ilkeqxx:o
_ : : abs
Fall: (i —o0)—o0 FXxl.eqrxii— o

= all(\x'.eqr ) : 0
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Order

Order of a type: For type 7 written 74 — ... — 7, right
associated, 7, € B:

e Ord(t)=0ifTe€B, ie, ifn=1,
e Ord(t) = 1+ maz(Ord(m;)),

A term of first-order type is a function taking (an arbitrary
number of) arguments all of which must be of base type.

A term of second-order type is a function taking (an arbitrary
number of) arguments some of which may be functions (of
first order type).

A term of third-order type is a function taking (an arbitrary
number of) arguments some of which may be functions, which
again take functions (of first order type) as arguments.

Obviously, it would be wrong to think of the order as “num-
ber of arrows in a type”. Instead, one can think of order as
the “nesting depth of arrows in a type”.

Sometimes, the notion “second-order” is used in the context
of type theories for quite a different concept, but we will avoid
that other use here.
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Order

Order of a type: For type 7 written 74 — ... — 7, right
associated, 7, € B:

e Ord(t)=0ifTe€B, ie, ifn=1,
e Ord(t) = 1+ maz(Ord(m;)),

Intuition: “functions as arguments” #3°.
A type of order 1 is first-order, of order 2 second-order etc.
A type of order > 1 is called higher order (although in
higher-order unification or higher-order rewriting, even order

1 is considered higher-order).

A term of first-order type is a function taking (an arbitrary
number of) arguments all of which must be of base type.

A term of second-order type is a function taking (an arbitrary
number of) arguments some of which may be functions (of
first order type).

A term of third-order type is a function taking (an arbitrary
number of) arguments some of which may be functions, which
again take functions (of first order type) as arguments.

Obviously, it would be wrong to think of the order as “num-
ber of arrows in a type”. Instead, one can think of order as
the “nesting depth of arrows in a type”.

Sometimes, the notion “second-order” is used in the context
of type theories for quite a different concept, but we will avoid
that other use here.
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Why “Higher Order”?

Constants representing propositional operators (logical sym-
bols) or non-logical symbols are first-order (hence first-order
syntax):

and :0— 0 — 0
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Why “Higher Order”?

Constants representing propositional operators (logical sym-
bols) or non-logical symbols are first-order (hence first-order

syntax):

and :0— 0— o0
Variable binding operators are higher-order (hence higher-order
syntax):

all - (i — 0) — o
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Exercise: Summation Operator

What is the order of the summation operator > 7
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Exercise: Summation Operator

What is the order of the summation operator > 7

sum i — 1 — (i — 1) — 1
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Exercise: Summation Operator

What is the order of the summation operator > 7

sum i — 1 — (i — 1) — 1

n
rZ:(a: +2)7 = sum zeron (Az'. plus x (succ succ zero))
=0

So the order is 2.
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Why “Abstract”?

HOAS looks quite different from the concrete object level syn-
tax and hence “abstracts” from this object level syntax.
More specifically, different object level binding operators
are represented by a combination of a constant (all, exists)
and the generic A-operator.
Thanks to this technique, standard operations on syntax
need no special encoding, but are supported implicitly by A™.
We will now see this.
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Binding

Binding on the object level and metalevel coincide.

So in Vz. P, all occurrences of x in P are bound, and
likewise, in all(Az'." P7), all occurrences of x in "P7 are
bound.

This provides support for substitution.
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Substitution
Recall rules for V:
Va. P(x)

P VL
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Recall rules for V:
Va. P(x)

P VL

Substitution
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Substitution

Recall rules for V:

Vz. P(x) all P
Py "5 v Pt
Ve.x ==x V.E

T = x[z «— 0]

Now apply substitution. ..

462



Substitution

Recall rules for V:

Vz. P(x) all P
Py "5 v Pt
Ve.x ==x V.E
0=0

Now apply substitution. ..
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Substitution

Recall rules for V:

Vz. P(z) all P
PO T 7 P@
_ all \z'.eqz x
Ve.x ==z V-E _ ( ) V.E
0=0 (Ax'.eq x x) zero

Now apply substitution. ..
Now apply 3-reduction. ..
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Substitution

Recall rules for V:

vz. P(z) all P
PO T 7 P@
_ all \z'.eqz x
Ve.x ==z V-E _ ( ) V.E
0=20 eq Zero zZero

Now apply substitution. ..
Now apply 3-reduction. ..
We now understand “marked positions in a formula”.
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Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming
of bound variables:

(Vz. P < Vy. Plx < y])
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Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming
of bound variables:

(Vz. P < Vy. Plx < y])

Likewise, on the metalevel, formulae obtained by bound
variable renaming are a-equivalent:

all(\z'. P) =, all(\y'. Plx < y))
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Syntactic category
Term, Prop
Variable x
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29.5 Summary of Encoding Syntax

Object Language

Metalanguage

Syntactic category
Term, Prop
Variable x
Non-logical symb. +
Logical symbol A

Binding operator V

Type declaration B = {i, 0}

Variable** 2

1st-order constant plus : 1 — 1 —
1st-order constant

and :0— o0 — 0



29.5 Summary of Encoding Syntax

Object Language

Metalanguage

Syntactic category
Term, Prop
Variable x
Non-logical symb. +
Logical symbol A

Binding operator V
Meaningful expr.
aNbé& Prop

Type declaration B = {i, 0}

Variable**0 2

1st-order constant plus : 1 — 1 —
1st-order constant
and : 0 — 0 — 0
2nd-order const. all : (i — 0) — o



29.5 Summary of Encoding Syntax
Object Language Metalanguage

Syntactic category  Type declaration B = {i, 0}
Term, Prop
Variable x Variable**? z
Non-logical symb. + 1st-order constant plus : i — i — @
Logical symbol A 1st-order constant

and:o0— 0— o0
Binding operator V' 2nd-order const. all : (i — 0) — o
Meaningful expr. Member of type (andab) : o
a/N\be Prop

“0Although propositional variables and first-order variables
are quite different concepts, the representation in A\~ uses
A~ -variables for both. Technically however, there is a dif-
ference between the representations of propositional variables
and first-order variables. In particular, propositional variables
are represented as A -variables of type o, and first-order vari-
ables are represented as \-variables of type .
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30 Resolution
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Three Sections on Deduction Techniques

After encoding syntax, the next topic in the theory is encoding
proofs.
But before, we look at some more practical issues:

e Resolution
e Proof search

e Term rewriting

We will explain many techniques relevant for Isabelle, but
not in extreme detail and rigor. We want to understand better
how lsabelle works, but not provide a formal proof that she
works correctly, or be able to rebuild her.
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Resolution

Resolution is the basic mechanism for transforming proof states
in Isabelle in order to construct a proof.

It involves unifying a certain part of the current goal (state)
with a certain part of a rule, and replacing that part of the
current goal.

We have already explained this in the labs and you have
been working with it all the time, but now we want to under-
stand it more thoroughly (in the next lecture, we will look at
it more abstractly).

We look at several variants of resolution.
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Resolution (rtac, as in Prolog*?)

¢1, ..., ¢y are current sub-
goals and 1) is original goal.
Isabelle displays

Level ... (n subgoals)

(U
b1 d e oy 1-:¢1
(02 n. ¢

“1Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a
current goal (corresponding to our ¢1, ..., ¢,) with a Horn
clause (corresponding to our [a;. . .; o] = ).
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Resolution (rtac, as in Prolog

Gr o i e O

441)

¢1, ..., ¢y are current sub-
goals and 1) is original goal.
Isabelle displays

Level ... (n subgoals)
(2

1. ¢
. ¢

[aq; ... ap] = B is rule.

“1Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a

current goal (corresponding to our ¢1, ..., ¢,) with a Horn

clause (corresponding to our [ay; ..

463
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Resolution (rtac, as in Prolog*?)

Simple scenario where ¢; has
no premises**?. Now (3 must

aq - - -Qy . )

be unifiable with selected sub-

goal o;.
@ oo o @

“1Prolog is a logic programming language [Apt97].
The computation mechanism of Prolog is resolution of a

current goal (corresponding to our ¢1, ..., ¢,) with a Horn
clause (corresponding to our [a;. . .; o] = ).
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Resolution (rtac, as in Prolog

441)

Simple scenario where ¢; has
no premises**?. Now (3 must
be unifiable with selected sub-

goal o;.

We apply the unifier ("443)

“1Prolog is a logic programming language [Apt97].
The computation mechanism of Prolog is resolution of a

current goal (corresponding to our ¢, . .
clause (corresponding to our [ay; ..

463
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Resolution (rtac, as in Prolog*?)

Simple scenario where ¢; has
no premises**?. Now (3 must
be unifiable with selected sub-

goal o;.

/ / / / e
@10y P We apply the unifier ("443)

w/

We replace ¢/ by the premises
of the rule.

“1Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a
current goal (corresponding to our ¢1, ..., ¢,) with a Horn
clause (corresponding to our [a;. . .; o] = ).
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Resolution (with Lifting over Parameters)

& - ANz o b

02

Now suppose the i'th (selected) subgoal is preceded by A

(metalevel universal quantifier***).
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Resolution (with Lifting over Parameters)

1 o 799

d o Az o b

Rule
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Resolution (with Lifting over Parameters)
N z.aq[z] - N\ zap,[z]
N .0lx]

& - ANz o b

Rule is lifted** over z: Apply [7X «7X(z)].
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Resolution (with Lifting over Parameters)
N z.aq[z] - N\ zap,[z]

A 2By
/’
@ oo /\5,j e by,

P
Rule is lifted** over z: Apply [7X «7X(z)].
As before, (7 must be unifiable with ¢;;
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Resolution (with Lifting over Parameters)
Nz.aqlz]-- - \way,[z]

/
&, /\x. A

Rule is lifted** over z: Apply [7X «7X(z)].
As before, 7 must be unifiable with ¢;; apply the unifier.
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Resolution (with Lifting over Parameters)

R AR i A e TN
/
Rule is lifted** over z: Apply [7X «7X(z)].
As before, 7 must be unifiable with ¢;; apply the unifier.

We replace ¢ by the premises of the rule. o/,... a/ are

preceded by A x.
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Resolution (with Lifting over Assumptions)

(B - - D]

02

Now, suppose the i'th (selected) subgoal has assumptions

gbila SR gbzkz
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Resolution (with Lifting over Assumptions)

(e E

P

As before, we have a rule. Here, 3 is (hopefully) unifiable
with ¢;, but 3 is not** unifiable with the entire i'th subgoal.
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Resolution (with Lifting over Assumptions)

[Gi1 - Pir;] @i - - - D]

a1 ce 7

[Di1 - Dix,] [Pi1 - - Dir]

P

Rule must be lifted over assumptions
far!

447 No unification so
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Resolution (with Lifting over Assumptions)

[Gi1 - Pir;] @i - - - D]

d1

Now, subgoal and rule conclusion (below the bar) are unifiable

470
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Resolution (with Lifting over Assumptions)

[Gi1 - Pir;] @i - - - D]

a1 ce 7

b1 /gb\*

'
v

Now, subgoal and rule conclusion (below the bar) are unifiable
Non-trivially**?, 3 must be unifiable with ¢;.

448
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Resolution (with Lifting over Assumptions)

We apply the unifier.
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Resolution (with Lifting over Assumptions)

AR 7o B [ SRR
$ro-dii 0y Gy
¢/

We replace the subgoal.
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Rule Premises Containing —
[ Lo ]
il ik;
/ -/ /
¢1”° ng RN

wl

What if some o has the form [(;...;v] = 07

*0(Generally, Isabelle makes no distinction between

[b1; - s n] = [pas - ] = ¢
and
[W1; - ns s s ] = &
and displays the second form. Semantically, this corresponds
to the equivalence of Ay A...NA, - Band A — ... —
A, — B.

We have seen this in the exercises.
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Rule Premises Containing —

(@ - - P
¢ sl =0 -,

wl
What if some o has the form [(;...;v] = 07
Is this what we get?

*0(Generally, Isabelle makes no distinction between

[b1; - s n] = [pas - ] = ¢
and
[W1; - ns s s ] = &
and displays the second form. Semantically, this corresponds
to the equivalence of Ay A...NA, - Band A — ... —
A, — B.

We have seen this in the exercises.
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Rule Premises Containing —
/ AN | /
[o jk',w%"'%}

wl

What if some o has the form [(;...;v] = 07

Is this what we get?

Well, we write : for =>, and use A - B — (C
[A; B] = C*°.

*0(Generally, Isabelle makes no distinction between

[1; s n] = [ ] = ¢
and
[W1; - ns s s ] = &
and displays the second form. Semantically, this corresponds
to the equivalence of Ay A...NA, - Band A — ... —
A, — B.

We have seen this in the exercises.
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Elimination-Resolution
(i S ik 5

(2

Same scenario as before®!

150 the scenario looks as for resolution with lifting over
assumptions. However, this time we do not show the lifting

over assumptions in our animation.
s22E|imination-resolution is used to eliminate a connective in

the premises.
For example, if the current goal is

[AA B
B
ANB — B

and the rule is

[P ;: Q]

PAQ R
R

N-E
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Elimination-Resolution

...gm
[Cbu"‘
y 5

02

Same scenario as before®™!, but now 3 must be unifiable
with ¢;, and «; must be unifiable with ¢;;, for some [.

1

150 the scenario looks as for resolution with lifting over
assumptions. However, this time we do not show the lifting

over assumptions in our animation.
s22E|imination-resolution is used to eliminate a connective in

the premises.
For example, if the current goal is

[AA B
B
ANB — B

and the rule is

[P ;: Q]

PAQ R
R

N-E
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Elimination-Resolution

Same scenario as before®™!, but now 3 must be unifiable
with ¢;, and «; must be unifiable with ¢;;, for some [.
Apply the unifier.

150 the scenario looks as for resolution with lifting over
assumptions. However, this time we do not show the lifting

over assumptions in our animation.
s22E|imination-resolution is used to eliminate a connective in

the premises.
For example, if the current goal is

[AA B
B
ANB — B

and the rule is

[P ;: Q]

PAQ R
R

N-E
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Elimination-Resolution

[/ ’ ]17¢1[—¢—1" ] [/ ’ ]17¢11+1" ]

/ / / /
¢1” 1052 am i+1 """ %n
w/
Same scenario as before®™!, but now 3 must be unifiable
with ¢;, and «; must be unifiable with ¢;;, for some [.
Apply the unifier.

We replace ¢! by the premises of the rule except the firs

«/ inherit the assumptions of ¢, except ¢§,

t452.

/
Ay, - . s

150 the scenario looks as for resolution with lifting over
assumptions. However, this time we do not show the lifting

over assumptions in our animation.
s22E|imination-resolution is used to eliminate a connective in

the premises.
For example, if the current goal is

[AA B
B
ANB — B

and the rule is

[P ;: Q]

PAQ R
R

N-E
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Destruct-Resolution
Q

Y

Simple rule

30.1 Summary on Resolution

e Build proof resembling sequent style notation;

e technically: replace goals with rule premises, or goal premises
with rule conclusions;

then the result of elimination resolution is
|A; B
B
ANB — B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any
information away”. Before we had the assumption A A B.
This was replaced by the components A and B as separate

assumptions.
s3Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution
can be seen in the following example. Unlike elimination-
resolution, destruct-resolution “throws information away".
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Destruct-Resolution

[fi1 -+ @) - - D] 3
¢1 - </5z o
Y

Simple rule, and & must be unifiable with ¢;;, for some [.

30.1 Summary on Resolution

e Build proof resembling sequent style notation;

e technically: replace goals with rule premises, or goal premises
with rule conclusions;

then the result of elimination resolution is
|A; B
B
ANB — B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any
information away”. Before we had the assumption A A B.
This was replaced by the components A and B as separate

assumptions.
s3Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution
can be seen in the following example. Unlike elimination-
resolution, destruct-resolution “throws information away".
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Destruct-Resolution

b @
VI A
wl

Simple rule, and & must be unifiable with ¢;;, for some [.
We apply the unifier.

30.1 Summary on Resolution

e Build proof resembling sequent style notation;

e technically: replace goals with rule premises, or goal premises
with rule conclusions;

then the result of elimination resolution is
|A; B
B
ANB — B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any
information away”. Before we had the assumption A A B.
This was replaced by the components A and B as separate

assumptions.
s3Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution
can be seen in the following example. Unlike elimination-
resolution, destruct-resolution “throws information away".
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Destruct-Resolution
/
(@ - B - Pl

R S
w/

Simple rule, and & must be unifiable with ¢;;, for some [.

We apply the unifier.

We replace premise®> ¢/, with the conclusion of the rule.

30.1 Summary on Resolution

e Build proof resembling sequent style notation;

e technically: replace goals with rule premises, or goal premises
with rule conclusions;

then the result of elimination resolution is
|A; B
B
ANB — B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any
information away”. Before we had the assumption A A B.
This was replaced by the components A and B as separate

assumptions.
s3Destruct-resolution is used to eliminate a connective in the

premises. The difference compared to elimination-resolution
can be seen in the following example. Unlike elimination-
resolution, destruct-resolution “throws information away".

473



e metavariables and unification to obtain appropriate in-
stance of rule, delay commitments;

e lifting over parameters and assumptions;

e various techniques to manipulate premises or conclusions,
as convenient: rtac, etac, dtac.

For example, if the current goal is
|A A B]
B
ANB — B

and the rule is
PAQ

conjunct?

then the result of destruct-resolution is
B]
B
ANB — B

If we had instead used rule
PAQ

conjunct2
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31 Automation by Proof Search

the result would have been

4]

B
ANB — B

and we would be stuck. We accidentally “threw away” the
assumption B.
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Outline of this Part
e Proof search and backtracking
e Classifying rules

e Proof procedures

31.1 Proof Search and Backtracking

e Need for more automation®*

e Some aspects in proof construction are highly non-deterministic:

— unification: which unifier to choose?

s4\\e have seen in the exercises that doing a proof step by
step is very tedious and often involves difficult guessing or
alternatively, backtracking. We cannot hope to prove any-
thing about realistic systems if proving simple theorems is so
tedious.

Efficiency considerations are important for automation. The
non-determinacy in proof search obviously leads to inefficien-
cies as many possibilities have to be explored.
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— resolution: where®® to apply a rule (which 'subgoal’)?
— which rule to apply?

e How to organize proof-search technically*>°?

55\We have seen in the exercises (and also in the lecture) that
one can choose the subgoal to which one wants to apply a

rule.
s6\\/e have seen in the previous lecture that resolution trans-

forms a proof state into a new proof state. But how does
one organize all those potential proof states in order to find
proofs?
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Organizing Proof Search Conceptually

Organize proof search as a tree*’ of theorems*® (thm's).

S1
/\
59 53
O\
S4 S5 S6

S71 |58
!
T

*7\We have seen in the previous lecture that resolution trans-
forms a proof state into a new proof state. Since in general,
a proof state has several successor states (states that can be
obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
“¢Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which lsabelle regards as true.

*9For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
“wNote that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,
i.e., go up one level (just like undo();), and then try alternative
SUCCESSOrs.
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Organizing Proof Search Conceptually

Organize proof search as a tree*’ of theorems*® (thm's).

e Tactic applications move us along

S1 leftmost path.
/\
S9 S3
N
S4 S5 S6
S7| |58

A ()

*7\We have seen in the previous lecture that resolution trans-
forms a proof state into a new proof state. Since in general,
a proof state has several successor states (states that can be
obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
“¢Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which lsabelle regards as true.

*9For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
“wNote that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,
i.e., go up one level (just like undo();), and then try alternative
SUCCESSOrs.
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Organizing Proof Search Conceptually

Organize proof search as a tree*’ of theorems*® (thm's).

e Tactic applications move us along

S1 leftmost path.
3‘2/\93 .. e Using undo();*° moves us up-
N\ wards (previous proof state).
S4| |55 S6

S71 |58
!
T

*7\We have seen in the previous lecture that resolution trans-
forms a proof state into a new proof state. Since in general,
a proof state has several successor states (states that can be
obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
“¢Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which lsabelle regards as true.

*9For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
“wNote that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,
i.e., go up one level (just like undo();), and then try alternative
SUCCESSOrs.
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Organizing Proof Search Conceptually

Organize proof search as a tree*’ of theorems*® (thm's).

e Tactic applications move us along

S1 leftmost path.
3‘2/\93 .. e Using undo();*° moves us up-
N\ wards (previous proof state).
S4| |55 S6

e Using back(); moves us (up and)

right (alternative successors*®® due

S7| |58 :
Fﬁ @ to different unifiers).

*7\We have seen in the previous lecture that resolution trans-
forms a proof state into a new proof state. Since in general,
a proof state has several successor states (states that can be
obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
“¢Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which lsabelle regards as true.

*9For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
“wNote that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,
i.e., go up one level (just like undo();), and then try alternative
SUCCESSOrs.
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Organizing Proof Search Conceptually

Organize proof search as a tree*’ of theorems*® (thm's).

e Tactic applications move us along

S1 leftmost path.
3‘2/\93 .. e Using undo();*° moves us up-
N\ wards (previous proof state).
S4| |55 S6

e Using back(); moves us (up and)

right (alternative successors*®® due

S7l |88 :
Fﬁ @ to different unifiers).

e T his can be understood as tableau
proving [Pau97al.

*7\We have seen in the previous lecture that resolution trans-
forms a proof state into a new proof state. Since in general,
a proof state has several successor states (states that can be
obtained by one resolution step), conceptually one obtains a

tree where the children of a state are the successors.
“¢Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which lsabelle regards as true.

*9For more details on Isabelle technicalities, you should con-

sult the reference manual [Pau05].
“wNote that when there are no more successors (you cannot

go right) anymore, back(); will go to the previous proof state,
i.e., go up one level (just like undo();), and then try alternative
SUCCESSOrs.
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Problems

The search space of proof search can be thought of as such a
tree, but it cannot be implemented like this straightaway:

e Branching of the tree infinite in general (HO-unification).

6

e Explicit tree representation*! expensive in time and space.

As an aside*?

, it is also possible to understand proof search
more abstractly. But we are interested in the operational as-

pects.

*1Qbviously, an infinite tree cannot be represented explicitly.
But even if the tree is finite, it is generally expensive to rep-
resent it explicitly. In particular, the tree may contain many
failing branches and only few successful ones, which begs the
question if representing the unsuccessful branches cannot be

avoided somehow.
2T he explicit tree representation is not very abstract in that

each node has a defined order of the children (first successor,
second successor, ...). This order is an artefact of the order
in which unifiers are enumerated by the unification algorithm
used. It is inessential for the proofs that are contained in the
tree.

As a more abstract understanding of proof search, one can
organize proof search as a relation on theorems (thm's)

prooftrees = P(thm X thm)

More precisely, one can look at a fragment of a tree of theo-
rems as before.
One could say that each tactic application (with a particular
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Organizing Proof Search Operationally

rule) gives rise to a relations on theorems. That is to say, s
and s’ are in the relation if s’ is a successor proof state of s.

This is abstract in that there is no order among the succes-
sors of a proof state.

Also, one does not represent a tree explicitly.

Advantage: we have an abstract algebra.

e PTi o PT): sequential composition (“then”).

Given two relations between thm's, P77 and P15, we
define composition P17 o P15 as the relation

{(s,s") | there is s” such that (s,s") € PT} and (s”,s") € PT»}

e P11 U PTy: alternative of proof attempts ( “or”)

The union of two relations is defined as usual for sets. If
PTi and PT5 each model the application of a particular
tactic, then P71} U PT5 models the application of “first
tactic or second tactic” .

e PT™ : reflexive transitive closure (“repeat ")
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PT* is inductively defined as the smallest set where

— (s,8) € PT* for all s;
—if (s,8') € PT and (s,s") € PT* then (s",s') €
PT™,
So if PT models the application of a particular tactic,
then PT™ models the application of that tactic arbitrarily
many times.
o ()= ¢,¢) € PI* = ‘thereis a proof for ¢"
Note that the initial proof state is o = ¢.
Isabelle will display this as

Level 1 : (1 subgoal)

¢
1. ¢

It might contradict your intuition and experience with |s-
abelle to think that the initial proof state is ¢ — ¢.
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Shouldn't it be just ¢? However, this seeming contradic-
tion can be resolved.

The way Isabelle displays the proof state focuses on what
has to be proven, the subgoals. The proof state should
be read as: if | have proven ¢ (the ¢ occurring after the
1.), | am done.

Technically, the proof state is an Isabelle theorem (thm),
i.e. something which lsabelle regards as true. Now of
course, she cannot initially regard ¢ as true, as ¢ is what
is to be proven. But she can regard ¢ =—> ¢ as true. The
aim of a proof search is to transform ¢ = ¢ (¢ can be
shown if | assume ¢) into ¢ (¢ can be shown if | assume
nothing).

However, this also has some disadvantages:

e Union U is difficult to implement (needs comparison with
all previous results since one wants to avoid duplicates).

e More operational, strategic interpretations of union U are
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Organize proof search as a function on theorems*®> (thm's)
type tactic = thm — thm seq

where seq*®* is the type constructor for infinite lists.

This allows us to have tacticals*®:

e THEN

e ORELSE

e REPEAT

e INTLEAVE, BREADTHFIRST, DEPTHFIRST, ...

desirable (try this — then that, interleave attempts in
PTy with attempts in P75, and so forth).

*3This way of understanding and origanizing proof search is
not so abstract, but rather operational. Instead of saying that
¢ and ¢ are in a relation, one says that ¢’ is in the sequence
returned by the tactic applied to ¢. There is an order among
the successors of a proof state.

One still does not represent a tree explicitly, although con-

ceptually, proof search is about exploring this tree.
“For any type 7, the type T seq (recall the notation) is the

type of (possibly) infinite lists of elements of type 7. This is
of course an abstract datatype. There should be functions to
return the head and the tail of such an infinite list.

An abstract datatype is a type whose terms cannot be rep-
resented explicitly and accessed directly, but only via certain
functions for that type.

465

483



31.2 Classifying Rules

In your early Isabelle exercises, you o