
11.  Learning in Multi-Agent
Systems (Part B)

Reinforcement Learning, Hierarchical
Learning, Joint-Action Learners

Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Reinforcement Learning (RL)
•  Hierarchical Learning
•  Case Study: Learning to play soccer
•  Joint-Action Learners
•  Markov Games
•  Summary

Reinforcement Learning

•  Learning from interaction with an external
environment or other agents

•  Goal-oriented learning
•  Learning and making observations are

interleaved
•  Process is modeled as MDP or variants

Key Features of RL

•  Learner is not told which actions to take
•  Possibility of delayed reward (sacrifice short

-term gains for greater long-term gains)
•  Model-free: Models are learned online, i.e.,

 have not to be defined in advance!
•  Trial-and-Error search
•  The need to explore and exploit

Some Notable RL Applications

•  TD-Gammon: Tesauro
•  world’s best backgammon program

•  Elevator Control: Crites & Barto
•  high performance down-peak elevator controller

•  Dynamic Channel Assignment: Singh &
 Bertsekas, Nie & Haykin

•  high performance assignment of radio channels to
 mobile telephone calls

•  …

Some Notable RL Applications
TD-Gammon

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection
by 2–3 ply search

Value

TD error

Tesauro, 1992–1995

Effective branching factor 400

Some Notable RL Applications
Elevator Dispatching

10 floors, 4 elevator cars

STATES: button states; positions,
directions, and motion states of
cars; passengers in cars & in
halls

ACTIONS: stop at, or go by, next
floor

REWARDS: roughly, –1 per time
step for each person waiting

Conservatively about 10 states 22

Crites and Barto, 1996

Some Notable RL Applications
Performance Comparison Elevator Dispatching

Q-Learning (1)

Q-Learning (2)

•  At time t the agent performs the following
 steps:
– Observe the current state st
– Select and perform action at

– Observe the subsequent state st+1

– Receive immediate payoff rt

– Adjust Q-value for state st

Q-Learning (3)
Update and Selection

•  Update function:

•  Where k denotes the version of the Q function, and α
 denotes a learning step size parameter that should decay
 over time

•  Intuitively, actions can be selected by:

Q-Learning (4)
Algorithm

The Exploration/Exploitation Dilemma

•  Suppose you form estimates

•  The greedy action at time t is:

•  You can’t exploit all the time; you can’t explore all the time
•  You can never stop exploring; but you should always reduce

 exploring

action value estimates

e-Greedy Action Selection

•  Greedy action selection:

•  e-Greedy:

–  Continuously decrease of ε during each episode
 necessary!

{

 the simplest way to try to balance
exploration and exploitation

Eligibility Traces (1)

•  Convergence speed of Q-Learning and other RL methods can
 be improved by eligibility traces

•  Idea: simultaneous update of all Q values of states that have
 been visited within the current episode
–  A whole trace can be updated from the effect of one step
–  The influence of states on the past is controlled by the

 parameter λ

•  Q-Learning with eligibility traces is denoted by Q(λ)

Eligibility Traces (2)

•  An eligibility trace defines the state-action pair’s responsibility for
 the current error in Q-values and is denoted by e(s, a)

•  e(s, a) is a scalar value and initialized with 0
•  After observing state s and selecting action a, e(s,a) is updated for

 every Q value according to:

•  After each action execution, we update the whole Q-table by
 applying the standard update rule, however with step-size e(s,a)*α
 instead of α

•  Note that this can be implemented mach faster by keeping all states
 visited during an episode in memory and applying the update to
 only those

Eligibility Traces (3)

Normal Q-Learning:
Slow update, after each
step only one Q value
is updated

Learning with eligibility traces:
Updated all Q values of
states that have been visited
within the current episode

r=100

r=-1

Function approximation
Motivation

•  RL infeasible for many real applications due to curse of dimensionality: |S|
 too big.

–  Memory limit
–  Time for learning is limited, i.e. impossible to visit all states

•  FA may provide a way to “lift the curse:”
–  Memory needed to capture regularity in environment may be << |S|
–  No need to sweep thru entire state space: train on N “plausible” samples and then

 generalize to similar samples drawn from the same distribution

•  Commonly used with Reinforcement Learning:
–  Artificial Neuronal Networks (ANNs)
–  Tile Coding

•  FA: Compact representations of S X A -> R, providing a mapping from
 action-state correlations to expected reward

•  Note: RL convergence guarantees are all based on look-up table
 representation, and do not necessarily hold with function approximation!

Function approximation
Example

Table Generalizing Function Approximator

State V State V

s
s
s
.
.
.

s

1

2

3

N

Train
here

Function approximation
Tile Coding

•  Discretizations that
 differ in offset and
 size are overlaid with
 each other

•  The values of each cell
 are weights

•  Q(s,a) = Sum of the
 weights of all tiles
 activated by (s,a)

Look-up table vs. Tile Coding

Goal
Goal

Look-up table

Tiling with 2 discretizations

Tile Coding – Memory reduction

•  Use many tilings with different offset
•  Combine only correlating variables within a single tiling

–  Note variables are taken from the state and action vector
•  Example:

–  12 variables, 20 discretization intervals:
•  2012 values in memory

–  Combining 4 correlating variables, each:
•  3 * 204 values in memory

–  5 discretization intervals, but 24 tilings instead of 3:
•  24 * 54 = 15000 values in memory

Tile Coding vs. ANNs

•  Function approximation with tile coding
–  is linear (good convergence behavior!)
–  Mostly explicit knowledge representation

•  Unlikely to overwrite already learned knowledge
•  Easier to visualize

–  Expert knowledge about correlations needed

•  Function approximation with ANNs
–  Non-linear: convergence can be a problem
–  Implicit knowledge representation

•  Learned knowledge can be “deleted”
•  Unreadable by human beings

–  Automatic learning of correlation

Hierarchical Learning

•  Simultaneous acting and learning on multiple
 layers of the hierarchy

•  Basic idea:
– Sub-tasks are modelled as single MDPs
– Actions on higher layers initiate Sub-MDPs on

 lower layers
•  However, MDP model requires actions to be

 executed within discrete time steps

 Usage of Semi Markov Decision Processes
 (SMDPs)

SMDPs I

•  In SMDPs, actions are allowed to continue for
 more than one time step

•  SMDPs are an extension to MDPs by adding the
 time distribution F
–  F is defined by p(t |s, a), and returns the probability of

 reaching the next SMDP state after time t, when behavior
 a is taken in state s

–  Q-Learning has been extended for learning in SMDPs
–  The method is guaranteed to converge when similar

 conditions as for standard Q-Learning are met

SMDPs II

•  The update rule for SMDP Q-Learning is defined
 by:

•  Where t denotes the sampled time of executing
 the behavior and r its accumulated discounted
 reward received during execution

•  Like the transition model T, the time model F is
 implicitly learned from experience online

Case Study: RL in robot soccer

•  World model generated at 100Hz from extracted position data, e.g.,
ball, player, and opponent position, …

•  Stochastic actions: turn left/right, drive forward/backward, kick
•  RL parameters: γ=1.0 (finite horizon), α=0.1 (small since actions

are very stochastic), ε=0.05 (small since traces are comparably
long), λ=0.8 (typical value)

•  World model serves as basis for the action selection
–  Shoot goal, dribbling, etc.
–  Actions/Behaviors are realized by modules that directly send commands

to the motors

•  Goals:
–  Learning of single behaviors
–  Learning of the action selection

Case Study: RL in robot soccer
Acceleration of learning with a simulator

Learning of behaviours
Example "ApproachBall" I

•  State space: Angle and distance to ball,
current translational velocity

•  Actions: Setting of translational and rotational
velocities

Learning of behaviours
Example "ApproachBall" II

•  Reward function:
– Modelled as MDPs
– +100: termination if the player touches the ball

with reduced velocity of if stops close to and
facing the ball

–  -100: termination if the ball is out of the robot's
field of view or if the player kicks the ball away

–  -1: else

Learning performance

•  x-axis
–  Time (# of episode)

•  y-axis:
–  averaged rewards

per episode
(smoothed)

•  Successful playing after
800 episodes

Learning after some steps

The behaviour after 10, 100, 500, 1000, 5000
and 15000 episodes

Visualization of the value function

•  x-axis: Ball angle
•  y-axis: Ball

 distance
•  for a translational
 velocity of 1 m/s

Transfer on the real robot platform

Total success rate of
88 %.

Comparing look-up table and tile
coding based discretization

•  Tile coding leads to more efficient learning

Comparing look-up table and tile
coding based discretization

The resulting behaviour after learning:
Function approximation leads to smoother
execution

look-up table tile coding

Learning Action Selection

•  With an appropriate set of trained behaviours,
a complete soccer game can be played

•  Trained behaviours:
– SearchBall, ApproachBall, BumpAgainstBall,

DribbleBall, ShootGoal, ShootAway,
FreeFromStall

•  Finally, the right selection of behaviours within
different situations has to be learned

Example:
Playing against a hand-coded CS-Freiburg player (world
champion 98/00/01)

•  State space: Distance and angle to goal, ball,
and opponent

•  Actions: Selection of one of the listed
behaviours

Example:
Playing against a hand-coded CS-Freiburg player (world
champion 98/00/01)

•  Modelled as SMDPs
•  Reward function:

– +100 for each scored goal
–  -100 for each received goal
–  -1 for each passed second

Learning performance

•  Learning on
both layers
– Successful

play after
3500
episodes

One example episode

Blue: Learner, Pink: Hard-coded

Adaption to sudden changes/defects

•  Performance during
continuous learning
–  once with the same

(strong) kicking
device (brown)

–  once with a
replaced (weak)
kicking device
(green)

•  The "weak" kicker
curve increases

Adaption to sudden changes/defects
Selected behaviours during offensive

•  The distribution of
chosen behaviours
changes...
–  The player with the

weak kicker tends
dribble more
frequently

–  The player with the
strong kicker
prefers shooting
behaviours strong kicker weak kicker

Adaption to sudden changes/defects
Behaviour with strong and weak kicker

Strong kicker: better to shoot Weak kicker: better to dribble

Initial situation

Adaption to a different opponent

•  Performance during
continuous learning
–  once with the same

(slow) opponent
(brown)

–  once with a replaced
(faster) opponent
(green)

•  The "faster" opponent
curve increases

Adaption to a different opponent
Selected behaviours during offensive

•  The distribution of
chosen behaviours
changes again...
–  The player selects

more often
"BumpAgainstBall" in
order to win time

Adaption to a different opponent
Behaviours against a slow and a fast opponent

Fast Opponent Slow opponent

Initial situation

Some comments on adaption

•  Re-learning takes automatically place without
–  user input to the system
–  the agent's knows nothing about the different

concepts
–  no "performance gap" during to the re-learning

Hierarchical vs. Flat MDPs

•  In the "flat" MDP we consider a single
behaviour that takes as input all state
variables
–  Learning takes much longer
– Adaption unlikely ...

Transfer on the real robot platform
Achieved score

•  Learner: 0.75 goals/minute
•  CS-Freiburg player: 1.37 goals/minute
•  Good result, but could still be improved...

– Better (more realistic) simulation
–  Learning of additional skills
–  etc ...

Video Result
Player executes learned behaviors and action selection

Multi-agent Learning revised

•  So far we considered a relaxed version of the
 multi-agent learning problem:
–  Other agents were considered as stationary, i.e.

 executing a fixed policy
•  What if other agents are adapting to changes as well?
•  In this case we are facing a much more difficult learning

 problem with a moving target function

–  Furthermore, we did not consider multi-agent
 cooperation

•  Agents were choosing their actions greedily in that they
 maximized their individual reward

•  What if a team of agents shares a joint reward, e.g. scoring
 a goal in soccer together?

Example: Two robots learn playing
 soccer simultaneously

Multi-agent environments are non-
stationary, thus violating the traditional

assumption underlying single-agent
learning approaches

Joint-Action Learners
Cooperation by learning joint-action values

•  Consider the case that we have 2 offenders in
 the soccer game instead of one
–  The optimal policy depends on the joint action
–  For example, if robot A approaches the ball, the

 optimal action of robot B would be to do
 something else, e.g. going to the support
 position

•  Solution: each agent learns a Q-Function of
 the joint action space: Q(s,<a1,a2,…,an>)

•  Observation or communication of actions
 performed by the team mates is required!

The Agent-Environment Interface for
 Joint-Action learners

€

Agent and environment interact at discrete time steps: t = 0,1, 2,…
 Agent observes state at step t : st ∈ S,at

− i ∈

A

 produces action at step t : at ∈ A(st)
 gets resulting reward : rt +1 ∈ ℜ

 and resulting next state : st +1

i
Agent 0

Agent 1

Agent N-1

Agent N

Actions a0, ... ,ai-1, ai+1,..., aN

Joint-Action Learners
Opponent Modeling

•  Maintain an explicit model of the opponents/team-mates for
 each state

•  Q-values are updated for all possible joint actions at a given
 state

•  Also here the key assumption is that the opponent is
 stationary

•  Opponent modeling by counting frequencies of the joint
 actions they executed in the past

•  Probability of joint action a-i:

•  where C(a−i) is the number of times the opponent has played
 action a−i

Joint-Action learners
Opponent Modeling Q learning for agent i

Markov Games

•  Also known as Stochastic Games or MMDPs
•  Each state in a stochastic game can be

 considered as a matrix game* with payoff for
 player i of joint action a in state s determined
 by Ri(s, a)

•  After playing the matrix game and receiving
 the payoffs, the players are transitioned to
 another state (or matrix game) determined by
 their joint action

* See slides from lecture 5: Game Theory

Minimax-Q

•  Extension of traditional Q-Learning to zero-sum
 stochastic games

•  Also here the the Q function is extended to
 maintain the value of joint actions

•  Difference: The Q function is incrementally
 updated from the function Valuei

•  Valuei computes the expected payoff for player i if
 all players play the unique Nash equilibrium

•  Using this computation, the Minimax-Q algorithm
 learns the player's part of the Nash equilibrium
 strategy

Summary

•  Sequential problems in uncertain environments (MDPs) can be solved by calculating
a policy.

•  Value iteration is a process for calculating optimal policies.
•  RL can be used for learning online and model-free MDPs

–  In the past, different tasks, such as playing back gammon or robot soccer, have been solved
surprisingly well

•  However, it also suffers under the "curse of dimensionality", hence, success highly
depends on an adequate representation or hierarchical decomposition

•  Standard RL methods are in general not well suited for MA problems (but sometimes
they work surprisingly well)

•  The approach of Joint-Action learners allows to improve coordination among agents
•  Stochastic games are a straightforward extension of MDPs and Game Theory

–  However, they assume that games are stationary and fully specified, enough computer power
to compute equilibrium is available, and other agents are also game theorists…

–  ... which rarely holds in real applications

Literature

•  Reinforcement Learning
–  R. S. Sutton, A. G. Barto, Reinforcement Learning, MIT Press, 1998Sutton book

•  Hierarchical Q-Learning
–  A. Kleiner, M. Dietl, and B. Nebel. Towards a Life-Long Learning Soccer Agent,

In RoboCup 2002: Robot Soccer World Cup VI, (G. A. Kaminka, P. U. Lima, and R.
Rojas, eds.), 2002, pp. 126-134.

•  Joint-Action learners
–  W. Uther, M. Veloso, Adversarial reinforcement learning, Tech. rep., Carnegie

Mellon University, unpublished (1997).
–  C. Claus, C. Boutilier, The dyanmics of reinforcement learning in co-

operative multiagent systems, in: Proceedings of the Fifteenth National
Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1998.

–  M. Bowling, M. Veloso, Variable learning rate and the convergence of
gradient dynamics, in: Proceedings of the Eighteenth International Con- ference
on Machine Learning, Williams College, 2001, pp. 27–34.

