Computer Supported
Modeling and Reasoning

WS08,/09

Jan-Georg Smaus

=X

CSMR in Time and Space

CSMR in Time and Space 3

Organizational Matters

Instructor: Dr. Jan-Georg Smaus
Lecture: Monday 9:15 — 11:00, HS 02-017, bldg. 052.

Labs: Wednesday 16:15 — 18:00, SR 00-029, bldg. 82 (Linux
pool in Mensa building).

Language: English (questions: German, French . ..).

Credit: 6 credit points. Written or oral exam at the end.
Participation in lecture and exercises required.

Smaus: CSMR; WS08/09

http://www.informatik.uni-freiburg.de/~smaus/

CSMR in Time and Space

History of this Course

In previous years, this course was given by Prof. Dr. David
Basin and Dr. Burkhart Wolff.
In WS01/02 and WS02/03, Jan-Georg Smaus was in charge
of the labs and maintaining the lecture slides.

As of 2003, David Basin moved to ETH Zurich. Some
members of the Software Engineering group have followed
him.

Jan is now in the group of Prof. Dr. Bernhard Nebel and
gave this course in each winter semester from WS03/04.

Smaus: CSMR; WS08/09

http://www.inf.ethz.ch/people/detail?id=19
http://www.inf.ethz.ch/people/detail?id=19
http://www.inf.ethz.ch/people/detail?id=288
http://www.informatik.uni-freiburg.de/~smaus/
http://www.ethz.ch/
http://www.informatik.uni-freiburg.de/~gkiabt/

CSMR in Time and Space 5

Some Former Students of this Course

Karla Alcazar, Micha Altmeyer, Konrad Anton, Rafael
Baumgartner, Pascal Bercher, Sergiy Bogomolov, Jurgen
Christ, Daniel Dietsch, Diana Dragojevi¢, Michael Drescher,
Gidon Ernst, Zeno Gantner, Kerstin Haring, Matthias
Heizmann, Harald Hiss, Jet Hoe Tang, Johannes Horstmann,
Steffen Kemmerer, Paul Hankes Drielsma, Angelika Kimmig,
Vito di Leo, Matthias Luber, Daniel Maier, Fernando Meyer,
Marco Muniz, Julia Peltason, Florian Pigorsch, Silvia
Richter, Alexander Schimpf, Stefan Spinner, Christoph
Sprunk, Hauke Strasdat, Tilman Thiry, Maria Vassileva.

Ask them!

Smaus: CSMR; WS08/09 Mig

http://www.informatik.uni-freiburg.de/~hiss/

CSMR in Time and Space

The Slides

he slides for this course will be made available at
http://www.informatik.uni-freiburg.de/“ki/teaching /ws0708 /csmr/.

You might take notes of things written on the blackboard.

he slides are actually an online course. They are also
available as lecture notes that can be printed out, and as
screen notes.

If you note mistakes or have suggestions, please tell me!

The slides are around 1380, contained in a single file. The
lecture notes are around 650, designed for being printed at a
rate of four pages per sheet side. So please be mindful of
resources when you print!

Smaus: CSMR; WS08/09 Mig

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0708/csmr/

General Introduction

General Introduction

What this Course is about

e Mechanizing and using logic

o program verification:
input: theories, programs, properties
output: correctness guarantees

o Hilbert's program:
input: arithmetic
output: theorems
e [echnically: mechanization and

application

e Generally: making logic come to life and
useful as a general tool.

Smaus: CSMR; WS08/09

General Introduction

Overview: Four Parts

1. Logics (propositional, first-order, higher-order): appr. 6
units

Smaus: CSMR; WS08/09

General Introduction

Overview: Four Parts

1. Logics (propositional, first-order, higher-order): appr. 6
units

2. Metalogics (Isabelle): appr. 2 units

Smaus: CSMR; WS08/09

General Introduction

Overview: Four Parts

1. Logics (propositional, first-order, higher-order): appr. 6
units

2. Metalogics (Isabelle): appr. 2 units

3. Modeling mathematics and computer science
(programming languages) in higher-order logic: appr. 6
units

Smaus: CSMR; WS08/09

General Introduction

Overview: Four Parts

1. Logics (propositional, first-order, higher-order): appr. 6
units

2. Metalogics (Isabelle): appr. 2 units

3. Modeling mathematics and computer science
(programming languages) in higher-order logic: appr. 6
units

4. Some case study in formalizing a theory (functional or
imperative programming, or the specification language Z):
appr. 2 units

Presentation roughly follows this structure.

Smaus: CSMR; WS08/09 Mig

General Introduction 10

Why this Course Matters

Academic motivation: deepen knowledge of logic and for-
mal reasoning

Smaus: CSMR; WS08/09 Mig

http://www.intel.com/
http://www.gemplus.com/

General Introduction 10

Why this Course Matters

Academic motivation: deepen knowledge of logic and for-
mal reasoning

Practical motivation: verification and formal methods

e [he last decade has seen spectacular hardware and
software failures and the birth of a new discipline: the
verification engineer

e Exciting positions at companies like Intel, Gemplus, . ..

Smaus: CSMR; WS08/09 Mig

http://www.intel.com/
http://www.gemplus.com/

General Introduction 11

Why this Course Matters (2)

In general:

e Understanding formal reasoning improves understanding of
how to build correct systems

e Mechanization provides formal guarantees

Want to see some Isabelle/HOL applications?

Smaus: CSMR; WS08/09

General Introduction 12

Relationship to other Courses

Logic: deduction, foundations, and applications
Software engineering: specification, refinement, verification
Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reasoning,
deduction

In general, you will develop a deeper understanding of
mathematical and logical reasoning, which is central to
computer science.

Smaus: CSMR; WS08/09 Mig

General Introduction

13

Requirements

Some knowledge of logic is useful for this course.

Smaus: CSMR; WS08/09

&
0nn

General Introduction 13

Requirements

Some knowledge of logic is useful for this course.

We will try to accommodate different backgrounds, e.g. with
pointers to additional material. Your feedback is essential

You must be willing to participate in the labs and get your
hands dirty using a proof development system:

e further develop course material
e present material on pragmatics of mechanized reasoning

e hands-on experience.

Smaus: CSMR; WS08/09 Mig

General Introduction 13

Requirements

Some knowledge of logic is useful for this course.

We will try to accommodate different backgrounds, e.g. with
pointers to additional material. Your feedback is essential

You must be willing to participate in the labs and get your
hands dirty using a proof development system:

e further develop course material
e present material on pragmatics of mechanized reasoning

e hands-on experience.

Experience shows that it makes no sense to follow just a little
bit. It is hard in the beginning but the rewards are large.

Smaus: CSMR; WS08/09 Mig

General Introduction 14

What’s Happening in Freiburg?

Harald Hiss and Stefan Wolfl work with Isabelle here at

Freiburg:

e There is a trend to use XML (a generalization of HTML)
for database applications. However, this gives rise to
possible inconsistencies. Harald uses Isabelle to prove
formally that such inconsistencies cannot occur.

e [here are various formal theories that allow to reason
about the relationship of objects in space and time. Stefan
uses Isabelle for proving consequences of such theories,
dependencies between theories etc.

Also, David Basin occasionally seeks PhD students. Pl

Smaus: CSMR; WS08/09 Mig

http://www.informatik.uni-freiburg.de/~hiss/
http://www.informatik.uni-freiburg.de/~woelfl/
http://www.inf.ethz.ch/people/detail?id=19

More Detailed Explanations 15
More Detailed Explanations
Smaus: CSMR; WS08/09 MIS

More Detailed Explanations 16

What is Verification?

Verification is the process of formally proving that a program has the
desired properties. To this end, it is necessary to define a specification
language in which the desired properties can be formulated, i.e. specified.
One must define a semantics for this language as well as for the
program. These semantics must be linked in such a way that it is
meaningful to say: “Program X makes formula ® true”.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 17

What is Hilbert’s Program?

In the 1920’s, David Hilbert attempted a single rigorous formalization of
all of mathematics, named Hilbert's program. He was concerned with

the following three questions:

1. Is mathematics complete in the sense that every statement can be
proved or disproved?

2. |Is mathematics consistent in the sense that no statement can be
proved both true and false?

3. Is mathematics decidable in the sense that there exists a definite
method to determine the truth or falsity of any mathematical
statement?

Hilbert believed that the answer to all three questions was 'yes'.
Thanks to the the incompleteness theorem of Godel (1931) and the

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 18

undecidability of first-order logic shown by Church and Turing (1936-37)
we know now that his dream will never be realized completely. This
makes it a never-ending task to find partial answers to Hilbert's
questions.

For more details:
e Panel talk by Moshe Vardi

e Lecture by Michael J. O'Donnell
e Article by Stephen G. Simpson

e Original works Uber das Unendliche and Die Grundlagen der
Mathematik [vH67]

e Some quotations shedding light on Godel's incompleteness theorem

e Eric Weisstein's world of mathematics explaining Godel's
iIncompleteness theorem

Smaus: CSMR; WS08/09

&
0nn

http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

More Detailed Explanations

19

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations

20

Mechanizing Logic

We will learn to make logic run on a computer by using the Isabelle

system.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

http://isabelle.in.tum.de/

More Detailed Explanations 21

What is (a) Logic?
The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact, it is the
science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined language allowing
to write down statements, together with a predefined meaning for some
of the syntactic entities of this language. Propositional logic, first-order
logic, and higher-order logic are three different logics.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations

22

What is a Metalogic?

A metalogic is a logic that allows us to express properties of another

logic.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 23

What is a Theory?

Intuitively, whenever you do computer-supported modeling and
reasoning, you have to formalize a tiny portion of the “world”, the
portion that your problem lives in. For example, rational numbers may or
may not exist in this portion. A theory is such a formalization of a tiny
portion of the “world”. A theory extends a logic by axioms that describe
that portion of the “world".

Theories will be considered in more detail later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 24

What we Neglect

We will introduce different logics and formal systems (so-called calculi)
used to deduce formulas in a logic. We will neglect other aspects that
are usually treated in classes or textbooks on logic, e.g.:

e semantics (interpretations) of logics; and

e correctness and completeness of calculi.

As an introduction we recommend [vD80].

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

Propositional Logic

Propositional Logic: Overview 26

Propositional Logic: Overview

e System for formalizing certain valid patterns of reasoning

e Expressions built by combining “atomic propositions”
using not, if...then..., and, or, etc.

e Validity means: no counterexample. Validity independent
of content. Depends on form of the expressions = can
make patterns explicit by replacing words by symbols

From if A then B and A it follows that B.

Smaus: CSMR; WS08/09 Mig

Propositional Logic: Overview 26

Propositional Logic: Overview

e System for formalizing certain valid patterns of reasoning

e Expressions built by combining “atomic propositions”
using not, if...then..., and, or, etc.

e Validity means: no counterexample. Validity independent
of content. Depends on form of the expressions = can

make patterns explicit by replacing words by symbols
A— B A

B

Smaus: CSMR; WS08/09 Mig

Propositional Logic: Overview 26

Propositional Logic: Overview

e System for formalizing certain valid patterns of reasoning

e Expressions built by combining “atomic propositions”
using not, if...then..., and, or, etc.

e Validity means: no counterexample. Validity independent
of content. Depends on form of the expressions = can

make patterns explicit by replacing words by symbols
A— B A

B

e \\What about
From if A then B and B it follows that A?

Smaus: CSMR; WS08/09 Mig

Propositional Logic: Overview

27

More Examples

1. If it is Sunday, then | don't need to work.
It is Sunday.
Therefore | don't need to work.

2. 1t will rain or snow.
It will not snow.
Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.
The Maid is guilty or the Cook is guilty.
"herefore either the Butler is guilty or the Cook is guilty.

Smaus: CSMR; WS08/09

Propositional Logic: Overview

27

More Examples (Which are Valid?)

1. If it is Sunday, then | don't need to work.
It is Sunday.
Therefore | don't need to work.

2. 1t will rain or snow.
It will not snow.
Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.
The Maid is guilty or the Cook is guilty.
"herefore either the Butler is guilty or the Cook is guilty.

Smaus: CSMR; WS08/09

Propositional Logic: Overview 28

History
e Propositional logic was developed to make this all precise.

e Laws for valid reasoning were known to the Stoic
ohilosophers (about 300 BC).

e The formal system is often attributed to George Boole
(1815-1864).

Further reading: [vD80], [Tho91, chapter 1].

Smaus: CSMR; WS08/09 Mig

Propositional Logic: Overview

29

More Formal Examples

Formalization allows us to “turn the crank’.

Smaus: CSMR; WS08/09

&
0nn

Propositional Logic: Overview

29

More Formal Examples

Formalization allows us to “turn the crank’.

Phrases like “from . . . it follows" or “therefore’ are
formalized as derivation rules, e.g.

A— B A
B

—-E

Smaus: CSMR; WS08/09

&
0nn

Propositional Logic: Overview 29

More Formal Examples

Formalization allows us to “turn the crank’.
Phrases like “from . . . it follows" or “therefore’ are
formalized as derivation rules, e.g.

A— B A
B

—-E

Rules are grafted together to build trees called derivations.
This defines a proof system in the style of natural deduction.

Smaus: CSMR; WS08/09 Mig

Formalizing Propositional Logic

30

Formalizing Propositional Logic

e \We must formalize
(a) Language and semantics

(b) Deductive system

Smaus: CSMR; WS08/09

&
0nn

Formalizing Propositional Logic 30

Formalizing Propositional Logic

e \We must formalize
(a) Language and semantics

(b) Deductive system

e Here we will focus on formalizing the deductive machinery
and say little about metatheorems (soundness and
completeness).

Smaus: CSMR; WS08/09 Mig

Formalizing Propositional Logic 30

Formalizing Propositional Logic

e \We must formalize
(a) Language and semantics

(b) Deductive system

e Here we will focus on formalizing the deductive machinery
and say little about metatheorems (soundness and
completeness).

e For labs we will carry out proofs using the Isabelle System.
Isabelle supports a Natural Deduction deductive system.

Smaus: CSMR; WS08/09 Mig

Propositional Logic: Language and Semantics 31

Propositional Logic: Language and Semantics

Propositions are built from a collection of (propositional)
variables and closed under disjunction, conjunction,
implication, . ..

Smaus: CSMR; WS08/09 Mig

Propositional Logic: Language and Semantics 32

Propositional Logic: Language (2)
More formally: Let a set V' of variables be given. Lp, the
language of propositional logic, is the smallest set where:

e X InLpifXinV.

e | inL,

e (AANB)inLpif Ain Lp and B in Lp.

e (AVB)inLpif Ain Lp and B in Lp.

e (A— B)inLpif Ain Lp and B in Lp.

o (—A)in Lpif Ain Lp.)

The elements of Lp are called (propositional) formulas.

We omit unnecessary brackets.

Smaus: CSMR; WS08/09

Propositional Logic: Language and Semantics 33

Propositional Logic: Semantics

An assignment is a function A:V — {0,1}. We say that A
assigns a truth value to each propositional variable. We
identify 1 with True and 0 with False.

A is lifted (=extended) to formulas in Lp as follows . . .

Smaus: CSMR; WS08/09

Propositional Logic: Language and Semantic

S

34

Propositional Logic: Semantics (2)

A(L) = 0
Ao = {
Awnv) =
Aove) = |
A —v) = {

Ve

S R O = O = O

if A(3) = 0

otherwise

if A(¢) =1 and A(¢) = 1

otherwise

if A(p) =1or A(y) =1

otherwise

if A(¢p) =0or A(v) =1

otherwise

Smaus: CSMR; WS08/09

Propositional Logic: Language and Semantics

35

Propositional Logic: Semantics (3)

If A(6) = 1, we write A

= Q.

Two formulae are equivalent if they yield the same truth
value for any assignment of the propositional variables.

he semantics will be generalised later.

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction 36

Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].
Designed to support ‘natural’ logical arguments:
e we make (temporary) assumptions;

e we derive new formulas by applying rules;

e there is also a mechanism for “getting rid of” assumptions.

Smaus: CSMR; WS08/09 Mig

Deductive System: Natural Deduction

37

Natural Deduction (2)

Derivations are trees

A—-(B—-C) A
B—C —E g
C

where the leaves are called assumptions.

—-E

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction 37

Natural Deduction (2)

Derivations are trees

A—-(B—-C) A
B—C —E g
C

where the leaves are called assumptions.
We write Ay, ..., A, F A if there exists a derivation of A with
assumptions Ay, ..., A,, eg. A— (B—C),A, B+ C.

—-E

Smaus: CSMR; WS08/09 Mig

Deductive System: Natural Deduction 37

Natural Deduction (2)

Derivations are trees

A—-(B—-C) A
B—C —E g
C

where the leaves are called assumptions.

We write Ay, ..., A, F A if there exists a derivation of A with
assumptions Ay, ..., A,, eg. A— (B—C),A, B+ C.

A proof is a derivation where we “got rid" of all
assumptions.

—-E

Smaus: CSMR; WS08/09 Mig

Deductive System: Natural Deduction 38
Natural Deduction: an Abstract Example

e Language L = {V, % & ¢!

Smaus: CSMR; WS08/09 Mig

Deductive System: Natural Deduction

38

Natural Deduction: an Abstract Example
e Language L = {V, % & ¢!

e Deductive system given by rules of proof:

How do you read these rules?

Smaus: CSMR; WS08/09

Mis
MlS

Deductive System: Natural Deduction 38

Natural Deduction: an Abstract Example
e Language L = {V, % & ¢!

e Deductive system given by rules of proof:

]

How about this one?

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction 38

Natural Deduction: an Abstract Example
e Language L = {V, % & ¢!

e Deductive system given by rules of proof:

]

How about this one?
a, 3,7,0 are just names for the rules.

Smaus: CSMR; WS08/09 Mig

Deductive System: Natural Deduction

Proof of ¥

The rules: The proof
g
S Y
o Qﬁ 4 ! V5

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction

39

Proof of ¥
The ru|eS: The prOOf:
O
* A
¢ o6 & & 9V
&b Qﬁ v ! V5

We make an assumption. The assumption is now open.

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction

39

The rules:

We apply «.

Proof of ¥
The proof:
¢
‘ .
g » "
v

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction

39

The rules:

Similarly with 5.

Proof of ¥

The proof:
(P
v 2 a7’
v

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction 39

Proof of ¥
The rules: The proof
¢
‘ . e
SEE TIPS e
& @ v v v
We apply 7.

Smaus: CSMR; WS08/09

Deductive System: Natural Deduction 39

Proof of ¥

The rules:

The proof:
¢
¢ o e
SEE ISP e
&> o v v v
51
>

We apply 0, discharging two occurrences of ¢. We mark the
brackets and the rule with a label so that it is clear which
assumption is discharged in which step. The derivation is now
a proof: it has no open assumptions (all discharged).

Smaus: CSMR; WS08/09

MiS
MlS

Deductive System: Rules of Propositional Logic 40

Deductive System: Rules of Propositional
Logic

We have rules for conjunction, implication, disjunction,
falsity and negation.

Some rules introduce, others eliminate connectives.

Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic

41

Rules of Propositional Logic: Conjunction

e Rules of two kinds: introduce connectives

A B/\
AANB'"

/

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 41

Rules of Propositional Logic: Conjunction

e Rules of two kinds: introduce and eliminate connectives

A B/\I A/\B/\EL A/\B/\
AANB'" A B

-ER

Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic 41

Rules of Propositional Logic: Conjunction

e Rules of two kinds: introduce and eliminate connectives

A B/\I A/\B/\EL A/\B/\
AANB'" A B

-ER

e Rules are schematic.

e Why valid? If all assumptions are true, then so is
conclusion

AEANBiffA=Aand A=EB

Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic

42

Example Derivation with Conjunction
The rules:

A B

AABAJ

ANDB
A

A -EL

ANDB
A

B -ER

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic

Example Derivation with Conjunction
The rules:

A B

AABAJ

AN(BANC
ANB, o ()A_EL

A A

ANDB
A

B -ER

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic

42

Example Derivation with Conjunction

The rules:
A B

AABAJ

ANDB
A

A -EL

ANDB
A

B -ER

AN(BAC)

A

N-EL

AN (BANC)

BAC

N-ER

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 42

Example Derivation with Conjunction

The rules:
A B N
ANB AN (BANC)
ANB AN(BAC) prc ER
| NEL 1 A-EL o NER
AgBAfR

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 42

Example Derivation with Conjunction

The rules:
A B N
ANB AN (BANC)
ANB AN(BAC) prc ER
| NEL 1 A-EL o NER
o ANC A
B N-ER

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 42

Example Derivation with Conjunction

The rules:
A B N
ANB AN (BANC)
ANDB AN(BAC) prc ER
| NEL y A-EL o NER
AN D ANC A
B N-ER

Can we prove anything with just these three rules?

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 43
Rules of Propositional Logic: Implication

e Rules

A

B | A— B A =

—> - — -
A— B B

Smaus: CSMR; WS08/09 MIS

Deductive System: Rules of Propositional Logic 43
Rules of Propositional Logic: Implication

e Rules

A]

b | A—- B A =

—- — -
A— B B

e —-F is also called modus ponens.
Smaus: CSMR; WS08/09 MIS

Deductive System: Rules of Propositional Logic 43

Rules of Propositional Logic: Implication

e Rules
A]
b o A— B A%E
A—B = B i

e —-F is also called modus ponens.

e —-/ formalizes strategy:
To derive A — B, derive B under the additional
assumption A.

Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic 44
A very Simple Proof
The simplest proof we can think of is the proof of P — P.
P
Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic

44

A very Simple Proof
The simplest proof we can think of is the proof of P — P.

P!
PP "

Il

Do you find this strange?

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic

45

Examples with Conjunction and Implication
1. A—-—B— A
2. AN(BANC)— ANC
3.A—-B—-(C)—-(A—-B)—-A—->C

Are these object or metavariables here?

Smaus: CSMR; WS08/09

Mis
MlS

Deductive System: Rules of Propositional Logic

46

Disjunction

e Rules

A B AV B C C

A\/B\/'IL AVBV'IR C

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic

46

Disjunction
e Rules
4] (B
A B AVB C C
AV B V-IL AV B V-IR C V-E

e Formalizes case-split strategy for using AV B.

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic

47

Disjunction: Example

e Rules

A B AV B C

AVBV'/L AVBV'IR C

e Example: formalize and prove

When it rains then | wear my jacket.
When it snows then | wear my jacket.
It Is raining or snowing.

Therefore | wear my jacket.

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 48
Falsity and Negation
o [Falsity
1
—1-E
A
No introduction rule!
Smaus: CSMR; WS08/09 MIS

Deductive System: Rules of Propositional Logic

43

Falsity and Negation
o [Falsity

1
A 1-E

No introduction rule!

e Negation: define =A as A —_1.. Rules for — just special
cases of rules for —. Convenient to have

A A

1A T —lE
B derived by B+t

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 49
Intuitionistic versus Classical Logic
e Peirce's Law: ((A— B) — A) — A.
Is this valid? Provable?
Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic 49

Intuitionistic versus Classical Logic

e Peirce's Law: ((A— B) — A) — A.
s this valid? Provable?

e It Is provable in classical logic, obtained by adding

A oAl
. AA A lassical
AV oA or A ltA4 yclassical

Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic 50

Example of Classical Reasoning

Recall the story of Oedipus from greek mythology:
e lokaste is the mother of Oedipus.

e lokaste and Oedipus are the parents of Polyneikes.

e Polyneikes is the father of Thersandros.
e Oedipus is a patricide.

e [hersandros is not a patricide.

Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic

Example of Classical Reasoning (cont.)

lokaste

s Oedipus (patr.)
'
Polyneikes

v
Thersandros (— patr.)

Does lokaste have a child that is a patricide and that itself
has a child that is not a patricide?

Smaus: CSMR; WS08/09

Deductive System: Rules of Propositional Logic 51

Example of Classical Reasoning (cont.)

lokaste

§ Oedipus (patr.)
!
Polyneikes (patr.)
!
Thersandros (— patr.)

Does lokaste have a child that is a patricide and that itself
has a child that is not a patricide?

Case 1: If Polyneikes is a patricide, then lokaste has a
child (Polyneikes) that is a patricide and that itself has a
child (Thersandros) that is not a patricide.

Smaus: CSMR; WS08/09 Mg

Deductive System: Rules of Propositional Logic 51

Example of Classical Reasoning (cont.)

lokaste

§ Oedipus (patr.)
!
Polyneikes (— patr.)
!
Thersandros (— patr.)

Does lokaste have a child that is a patricide and that itself
has a child that is not a patricide?

Case 2: If Polyneikes is not a patricide, then lokaste has a
child (Oedipus) that is a patricide and that itself has a
child (Polyneikes) that is not a patricide.

Here is another example.

Smaus: CSMR; WS08/09 Mig

Deductive System: Rules of Propositional Logic 52

Overview of Rules

A B ANDB ANDB
A/\B/\-/ P N-EL B N-ER
[A] [B]
A B AVB C C
A\/B\/-/L A\/B\/-/R C V-E
[A]
B

Smaus: CSMR; WS08/09 Mig

Deductive System: Derived Rules

53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

Smaus: CSMR; WS08/09

xz

nn

Deductive System: Derived Rules

53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

RVS =S

R

It looks like this.

Smaus: CSMR; WS08/09

Deductive System: Derived Rules 53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

m)

RVS =S RV S
R R

We build a fragment of a derivation by writing the conclusion
R and the assumptions RV S and —S.

Smaus: CSMR; WS08/09 Mig

Deductive System: Derived Rules 53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

m)

RVS =S RVS R

R R
Since we have assumption RV S, using V-E seems a good
idea. So we should make assumptions R and S. First R. But
that is a derivation of R from R!

V-E

Smaus: CSMR; WS08/09 Mig

Deductive System: Derived Rules

53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

5 O
RVS =S RVS R
R R V-E
So now S.

Smaus: CSMR; WS08/09

Deductive System: Derived Rules

53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

RVS =S RVS R

R R

=S and S allow us to apply —-E.

Smaus: CSMR; WS08/09

Deductive System: Derived Rules

53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-S S
. F

RVS =S RVS R RL_E
R R V-E

To apply V-E in the end, we need to derive R. But that's

easy using | -E!

Smaus: CSMR; WS08/09

Deductive System: Derived Rules 53

Deductive System: Derived Rules

Using the basic rules, we can derive new rules.
Example: Resolution rule.

-5 [S]!
—-E
1

RvS -s RVS [R' RTC
\V-E!

R R
Finally, we can apply V-E. The derivation with open as-
sumptions is a new rule that can be used like any other rule.

Smaus: CSMR; WS08/09 Mig

Deductive System: Derived Rules 54

A Variation of Natural Deduction: Boxes

We have seen just one deductive system.

One variation of natural deduction is the following: A
derivation is not a tree, but a sequence of numbered lines.
Instead of subtrees relying on open assumptions, a
subderivation relying on an assumption is enclosed in a box.

You find this explained in [HRO4].

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 55

Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability
judgement, i.e., reason about I' - A where I' = A;,..., A,
instead of individual formulae.

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation

56

Sequent Rules (for — /A Fragment)

Rules for assumptions and weakening:

I'-B

I'A (where AeT) ATk B weaken

Smaus: CSMR; WS08/09

Alternative Deductive System Using Sequent Notation 56

Sequent Rules (for — /A Fragment)

Rules for assumptions and weakening:

I'-B
I'A (where AeT) AFI_Bweaken
Rules for A and —:
I'-A I'HB I'HFAAB I'HFAAB
r-anp ™ rra NP opRp MER
AT B o, TFA>B TEA
''A—-B = I'-B i

More rules can be derived.

Smaus: CSMR; WS08/09

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with
Metavariables

FAAN(BAC)— ANC

We want to show that AA (BAC) — AAC is a tautology,
l.e., that 1t Is derivable without any assumptions.

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with
Metavariables

AN(BAC)F ANC
- AA(BAC) = AANC

-1

The topmost connective of the formula is —, so the best rule
to choose Is —-I.

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with
Metavariables

AN(BAC)F A AN(BAC)FC
AN(BAC)F ANC
- AA(BAC) = AANC

N-1

-1

The topmost connective of the formula is A, so the best rule
to choose is A-I.

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with
Metavariables

AN(BAC)FANTX
A-EL

AN(BAC)F A AN(BAC)FC
AN(BAC)F ANC
- AA(BAC) = AANC

N-1

-1

Things are becoming less obvious. To know that A-EL is the
best rule for the r.h.s., you need to inspect the assumption

AN(BANC).

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with

Metavariables
ANBANC)FAANTX ANBANC)FE (Y NC)
A-EL A-ER
ANBAC)FE A ANBAC)FC

y
ANBAC)FANC :

- AA(BAC) = AANC

I

Now it's becoming even more difficult. To know that A-ER
is the best rule for the |.h.s., you need to look deep into the
assumption AN (B A C).

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with

Metavariables
ANBNANC)E?2ZANQY NCO) e
AN(BAC)FAN?X o AAN(BAC)F (Y AC) I?R
ANBAC)FA ANBAC)FC /A_
/\ -

AN(BAC)F ANC
- AA(BAC) = AANC

I

Again you need to look at both sides of the - to decide what
to do.

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with

Metavariables
ANBNANC)E?2ZANQY NCO) e
AN(BAC)FAN?X o AAN(BAC)F (Y AC) I?R
ANBAC)FA ANBAC)FC /A_
/\ -

AN(BAC)F ANC
- AA(BAC) = AANC

-1

Solution for 77 = A, 7Y = B and 7X = (B AC).

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 57

Example: Refinement Style with
Metavariables

ANBANC)EFA AN(B NO)
AN(BAC)YFANAN(BACQC) ANBAC)F (B AO) NER

_El -ER
ANBACFA " AN(BAC)FC /A
/_

AN(BAC)F ANC
- AA(BAC) = AANC

-1

Solution for 77 = A, 7Y = B and 7X = (B AC).

Smaus: CSMR; WS08/09 Mig

Alternative Deductive System Using Sequent Notation 58

Comments about Refinement

This crazy way of carrying out proofs is the (standard)
Isabelle-way!

e Refinement style means we work from goals to axioms

e metavariables used to delay commitments
Isabelle allows other refinements/alternatives too (see labs).

Smaus: CSMR; WS08/09

&
0nn

Alternative Deductive System Using Sequent Notation

59

Outlook

e Computer Supported Modeling and Reasoning is about
turning logic into a useful tool and bringing it to life.

e \We will cover:
o deductive aspects of logic (their proof systems)

o metatheoretic aspects (their representation)
o pragmatics (their use), and

o case studies.

e [his is an active, hands-on course
o The labs are as important as (if not more than!) the lectures

o Individual projects are possible. Individual initiative desired! Wl

Smaus: CSMR; WS08/09

X
nn

More Detailed Explanations 60
More Detailed Explanations
Smaus: CSMR; WS08/09 MIS

More Detailed Explanations 61

What is Validity (of a Pattern of Reasoning)?

A and B are symbols whose meaning is not “hard-wired” into
propositional logic.

From if A then B and A it follows that B

Is valid because it is true regardless of what A and B “mean”, and in

particular, regardless of whether A and B stand for true or false
propositions.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations

62

An Invalid Pattern
From if A then B and B it follows that A

Is invalid because there is a counterexample:
Let A be "Kim is a man” and B be "Kim is a person”.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations

63

More Examples

1. If it is Sunday, then | don't need to work.

It is Sunday.
Therefore | don't need to work. VALID

2. 1t will rain or snow.
It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty. NOT VALID

Back to main referring slide

Smaus: CSMR; WS08/09

Ea
0nn

More Detailed Explanations

63

More Examples (Which are Valid?)

1. If it is Sunday, then | don't need to work.

It is Sunday.
Therefore | don't need to work. VALID

2. 1t will rain or snow.
It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty. NOT VALID

Back to main referring slide

Smaus: CSMR; WS08/09

Ea
0nn

More Detailed Explanations 04

Turning the Crank
By formalizing patterns of reasoning, we make it possible for such
reasoning to be checked or even carried out by a computer.

From known patterns of reasoning new patterns of reasoning can be
constructed.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 65

What does Formalization Mean?

At this stage, we are content with a formalization that builds on
geometrical notions like “above” or “to the right of”. In other words,
our formalization consists of geometrical objects like trees.

We study formalization in more detail later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 66

Proof Systems

A proof system or deductive system is characterized by a particular set of
rules plus the general principles of how rules are grafted together to trees
in natural deduction. We will see this shortly, but note that natural
deduction is just one style of proof systems.

We call the rules in that particular set basic rules. Later we will see one
can also derive rules.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 67

Soundness and Completeness

A proof system is sound if only valid propositions can be derived in it.
A proof system is complete if all valid propositions can be derived in it.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 68

What is a Metatheorem?

A metatheorem is a theorem about a proof system, as opposed to a
theorem derived within the proof system. The statement “proof system
XYZ is sound” is a metatheorem.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 69

What is a Language?

By language we mean the language of formulae. We can also say that we
define the (object) logic. Here “logic” is used in the narrower sense.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 70

What does Open Mean?

For example, all assumptions in

A—-(B—-C) A
B —(C —E B
C

are open. For the moment, it suffices to know that when an assumption
Is made, it is initially an open assumption.

—-E

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 71

What is 7

For the moment, the way to understand it is as follows: by writing
A— (B—C(C),A B C, we assert that C' can be derived in this proof

system under the assumptions A — (B — (), A, B.
We will say more about the - notation later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 72

Why is this Example Abstract?

Natural deduction is not just about propositional logic! We explain here
the general principles of natural deduction, not just the application to
propositional logic.

In order to emphasize that applying natural deduction is a completely
mechanical process, we give an example that is void of any intuition.

It Is important that you understand this process. Applying rules
mechanically is one thing. Understanding why this process is
semantically justified is another.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 73

How to Read these Rules

The first rule reads: if at some root of a tree in the forest you have
constructed so far, there is a ¢, then you are allowed to draw a line
underneath that ¢ and write % underneath that line.

The third rule reads: if the forest you have constructed so far contains
two neighboring trees, where the left tree has root # and the right tree
has root #, then you are allowed to draw a line underneath those two
roots and write ¥ underneath that line.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 74

How to Read these Rules (2)

The last rule reads: if at some root of a tree in the forest you have
constructed so far, there is a ¥, then you are allowed to draw a line
underneath that ¥ and write ¢ underneath that line. Moreover you are
allowed to discharge (eliminate, close) 0 or more occurrences of ¢ at the
leaves of the tree.

Discharging is marked by writing [| around the discharged formula.

Note that generally, the tree may contain assumptions other than # at
the leaves. However, these must not be discharged in this rule
application. They will remain open until they might be discharged by
some other rule application later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 75

Making Assumptions
In everyday language, “making an assumption” has a connotation of
“claiming”. This is not the case here. By making an assumption, we are
not claiming anything.
When interpreting a derivation tree, we must always consider the open
assumptions. We must say: under the assumptions . . ., we derived

It is thus unproblematic to “make” assumptions.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 76

Propositional Variables

In mathematics, logic and computer science, there are various notions of
variable. In propositional logic, a variable stands for a proposition, i.e., a
variable can be interpreted as True or Fualse.

This will be different in logics that we will learn about later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 77

What is a Formula?

In logic, the word “formula” has a specific meaning. Formulae are a
syntactic category, namely the expressions that stand for a statement. So
formulas are syntactic expressions that are interpreted (on the semantic
level) as True or Fulse.

We will later learn about another syntactic category, that of terms.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 78

Associativity and Precedences

To save brackets, we use standard associativity and precedences. All
binary connectives are right-associative:

AoBoC=Ao(BoC()

The precedences are — before A before V before —. So for example

A—- BAN-CVD=A— ((BA(=C))V D)

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 79

The Word or

In mathematics and computer science, the word or is almost always
meant to be inclusive. If it is meant to be exclusive (A or B hold but not
both) this is usually mentioned explicitly.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 80

The Language of Propositional Logic

Strictly speaking, the definition of Lp depends on V. A different choice
of variables leads to a different language of propositional logic, and so we
should not speak of the language of propositional logic, but rather of a
language of propositional logic. However, for propositional logic, one
usually does not care much about the names of the variables, or about
the fact that their number could be insufficient to write down a certain
formula of interest. We usually assume that there are countably infinitely
many variables.

Later, we will be more fussy about this point.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 81

Why Smallest Set?

The language of propositional logic is a set of formulae, defined by

induction. Note the following points about the definition, which are
iImportant characteristics of any inductive definition:

e By the second item in the definition, Lp is non-empty (also, one

would usually have that V' is non-empty, since otherwise Lp is not
very interesting);

e Lp is required to be the smallest set meeting the above conditions.

Otherwise, anything (a number, a dog, the pope) could be a
propositional formula.

e All conditions (or rules) defining Lp have the form: if ¢); and . . . and
Y, are in Lp, then some formula built from v, and . . . and %, is In
Lp.

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 82

It is crucial that no negation is involved here. If for example, there was
a rule stating: if Aisin Lp then A is not in Lp, then there could be
no Lp fulfilling such a rule.

More detail on inductive definitions can be found in an article by Aczel
[Acz77].

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 83

Introduction and Elimination

It is typical that the basic rules of a proof system can be classified as
introduction or elimination rules for a particular connective.

This classification provides obvious names for the rules and may guide
the search for proofs.

The rules for conjunction are pronounced and-introduction,
and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are also derived
rules.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 84

Validity Reuvisited

A rule is valid if for any assignment under which the assumptions of the
formula are true, the conclusion is true as well.

This is consistent with the earlier intuitive explanation of validity of a
formula. Details can be found in any textbook on logic [vD80].

Note that while the notation A |= ... will be used again later, there A
will not stand for an assignment, but rather for a construct having an
assignment as one constituent. This is because we will generalize, and in
the new setting we need something more complex than just an
assignment. But in spirit A = ... will still mean the same thing.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 85

Schematic Rules

The letters A and B in the rules are not propositional variables. Instead,
they can stand for arbitrary propositional formulas. One can also say
that A and B are metavariables, i.e., they are variables of the proof
system as opposed to object variables, i.e., variables of the language that
we reason about (here: propositional logic).

When a rule is applied, the metavariables of it must be replaced with
actual formulae. We say that a rule is being instantiated.

We will see more about the use of metavariables later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 86

Can we Prove Anything ... ?
All three rules have a non-empty sequence of assumptions. Thus to build
a tree using these rules, we must first make some assumptions.
None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no open
assumptions.

Consequently, the answer is no. We cannot prove anything with just
these three rules.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 87

Object vs. Meta

In these examples, you may regard A, B, C' as propositional variables. On
the other hand, the proofs are schematic, i.e., they go through for any
formula replacing A, B, and C.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 88

So you Find this Strange!

When we make the assumption P, we obtain a forest consisting of one
tree. In this tree, P is at the same time a leaf and the root. Thus the
tree P is a degenerate example of the schema

A]
B
where both A and B are replaced with P.

Therefore we may apply rule —-/, similarly as in our abstract example.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 89

A—- B — A

The rule(s): The pI’OOf:
Al [A]!
é B— A =
!
A B ! A—-B— A

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 90

(AN(BANC))— (ANC)

The rules:
A B o
ANDB The proof:
AQBA—EL [AA(BAC)PA_ER
[AN(BAO)]! - B/\C/\-ER
A?%B NER 4) C/\—l
ANC)

] (ANBAC)) — (AnC) !

B
A— B e

Back to main referring slide

Smaus: CSMR; WS08/09

More Detailed Explanations

91

(A—-B—-(C)—(A—-B)— A—-C

The rules:
A]
B
A— B =
A %BB A F

The proof:
[MeBHCW[%‘E[MeBW[%‘E
B —C e B = e
—_— -
C B
A—C ,
(A—>B)—>A—>C'_>_l :
/

(A-B—-C)»(A—>B) >A—>C

Back to main referring slide

Smaus: CSMR; WS08/09

More Detailed Explanations

92

Falsity

The symbol L stands for “false”.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 93

No Introduction Rule for L
The symbol L stands for “false”.

It should be intuitively clear that since the purpose of a proof system is
to derive true formulae, there is no introduction rule for falsity. One may
wonder: what is the role of L then? We will see this soon. The main
role is linked to negation. We quote from [And02, p. 152]:

| plays the role of a contradiction in indirect proofs.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 94

Connectives

The connectives are called conjunction (A), disjunction (V), implication
(—) and negation (—).

The connectives A, V,— are binary since they connect two formulas, the
connective — is unary (most of the time, one only uses the word
connective for binary connective).

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 95

Negation

“Officially”, negation does not exist in our language and proof system.
Negation is only used as a shorthand, or syntactic sugar, for reasons of
convenience. In paper-and-pencil proofs, we are allowed to erase any
occurrence of =P and replace it with P — L, or vice versa, at any time.
However, we shall see that when proofs are automated, this process must
be made explicit.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 96

Syntactic Sugar

For any formal language (programming language, logic, etc.), the term
syntactic sugar refers to syntax that is provided for the sake of readability
and brevity, but which does not affect the expressiveness of the language.
It is usually a good idea to consider the language without the syntactic
sugar for any theoretical considerations about the language, since it
makes the language simpler and the considerations less error-prone.
However, the correspondence between the syntactic sugar and the basic
syntax should be stated formally.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 97

The Rules for —

-A A
L

is simply an instance of —-E (since —A is shorthand for A —_1).
Likewise, the rule

The rule

A
1
—-A
Is simply an instance of —-/. Therefore, we will not introduce these as
special rules. But there is a special rule —-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 98

The Rule —-E

For negation, it is common to have a rule

-A A
B

—-E

We have seen how this rule can be derived. The concept of deriving rules
will be explained more systematically later.

This rule is also called ex falso quod libet (from the false whatever you
like).

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations

99

Peirce’s Law Valid?
Yes, simply check the truth table:

A B (A—-B)—A) — A
True | True True
True | False True
False | True True
Fualse | False True

Back to main referring slide

Smaus: CSMR; WS08/09

=

More Detailed Explanations 100

Peirce’s Law Provable?

In the proof system given so far, this is not provable. To prove that it is
not provable requires an analysis of so-called normal forms of proofs.
However, we do not do this here.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 101

Intuitionistic versus Classical Logic

The proof system we have given so far is a proof system for intuitionistic
logic. The main point about intuitionistic logic is that one cannot claim
that every statement is either true or false, but rather, evidence must be
given for every statement.

In classical reasoning, the law of the excluded middle holds.

One also says that proofs in intuitionistic logic are constructive whereas
proofs in classical logic are not necessarily constructive.

We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar classical logic
which allows an effective interpretation and mechanical extraction of
programs from proofs.

The difference between intuitionistic and classical logic has been the

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 102

topic of a fundamental discourse in the literature on logic [PM68]
[Tho91, chapter 3|. Often proofs contain case distinctions, assuming
that for any statement), either 1) or =% holds. This reasoning is
classical; it does not apply In intuitionistic logic.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

103

Axiom of the Excluded Middle

AV —A is called axiom of the excluded middle.

Back to main referring slide

Smaus: CSMR; WS08/09

More Detailed Explanations

104

Reductio ad absurdum

The rule

A

Is called reduction ad absurdum.

: RAA
A

Back to main referring slide

Smaus: CSMR; WS08/09

More Detailed Explanations 105

The classical rule in Isabelle
The rule
4]

A
— classical

A

corresponds to the formulation is Isabelle.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 106

Example of Classical Reasoning

There exist irrational numbers a and b such that a® is rational.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 106

Example of Classical Reasoning

There exist irrational numbers a and b such that a? is rational.
Proof: Let b be v/2 and consider whether or not b° is rational.
Case 1: If rational, let a = b = /2

Case 2: If irrational, let a = \/5\/§ and then

V2
=3 YYD L pt

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 106

Example of Classical Reasoning

There exist irrational numbers a and b such that a? is rational.
Proof: Let b be v/2 and consider whether or not b° is rational.

Case 1: If rational, let a = b = /2

Case 2: If irrational, let a = \/5\/§ and then

b \/5\/5\/5 _ \/5(\/5*\/5)

a =

2
— /9 =9

We still don’'t know how to choose a and b so that a? is rational. Hence
the proof if non-constructive.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 107

Sequent Notation

An object like A — (B — C), A, B+ C'is called a derivability
judgement. We explained it earlier as simply asserting the fact that there
exists a derivation tree with C' at its root and open assumptions

A— (B—C),A B.

However, it is also possible to make such judgements the central objects
of the deductive system, i.e., have rules involving such objects.

The notation I' A is called sequent notation. However, this should not
be confused with the sequent calculus (we will consider it later). The
sequent calculus is based on sequents, which are syntactic entities of the
form Ay,..., A, F By,...,B,,, where the A1,...,A,,B1,...,B,, are
all formulae. You see that this definition is more general than the
derivability judgements we consider here.

What we are about to present is a kind of hybrid between natural

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

108

deduction and the sequent calculus, which we might call natural

deduction using a sequent notation.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 109

Axioms vs. Rules

An axiom is a rule without premises. We call a rule with premises proper.
One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic contain no
axioms. In the sequent style formalization, having the assumption rule
(axiom) is essential for being able to prove anything, but in the natural
deduction style we learned first, we can construct proofs without having
any axioms.

Note also that even a proper rule in the object logic is just an axiom at
the level of Isabelle’'s meta-logic. This will be explained later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 110

Assumptions

The special rule for assumptions takes the role in this sequent style

notation that the process of making and discharging assumptions had in
natural deduction based on trees.

It is not so obvious that the two ways of writing proofs are equivalent,

but we shall become familiar with this in the exercises by doing proofs on
paper as well as in Isabelle.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 111

Weakening

The rule weaken is
I'-B

ATFB

Intuitively, the soundness of rule weaken should be clear: having an
additional assumption in the context cannot hurt since there is no proof
rule that requires the absence of some assumption.

weaken

We will see an application of that rule later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 112

Deriving N-E

As an example, consider

A BTHC TFAAB

r-C SIS
This rule can be derived as follows:
A BTFEC
A,FFB%CH_I I'-AAB =
r-ra—-B—-Cc " 1TrFa " rLang -
I'EB—C — rrp 'V

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 113

Which Rule to Choose?

In general, statements about which rule to choose when building a proof
are heuristics, i.e., they are not guaranteed to work. Building a proof
means searching for a proof. However, there are situations where the
choice is clear. E.g., when the topmost connective of a formula is —,
then —-/ is usually the right rule to apply.

The question will be addressed more systematically later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 114

Goals to Axioms

As you saw in our animation, we worked from the root of the tree to the
leaves.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 115

Working on Assumptions

One aspect you might have noted in the proof is that the steps at the
top, where A-EL and A-ER were used, required non-obvious choices, and
those choices were based on the assumptions in the current derivability
judgement.

In Isabelle, we will apply other rules and proof techniques that allow us
to manipulate assumptions explicitly. These techniques make the process
of finding a proof more deterministic.

But that is just one aspect. We will give a more theoretic account of the

way Isabelle constructs proofs later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

Natural Deduction: Review

Natural Deduction: Review 117

Overview

e Short review: ND Systems and proofs

e First-Order Logic

o Overview
o Syntax
o Semantics

o Deduction, some derived rules, and examples

&
0nn

Smaus: CSMR; WS08/09

Natural Deduction: Review 118

How Are ND Proofs Built?

ND proofs build derivations under (possibly temporary)
assumptions.

Smaus: CSMR; WS08/09 Mig

Natural Deduction: Review 119

ND: Example for — /A Fragment

Rules:
A B ANB
AABA_I A ASEE Proof:
A
; [A A B]! [A N B]!
B - _
AABA_ER N B AN-EL A N-ER
B A— B A-f
BAA)
—-/
A B A ANB —- BAA
Bt

Smaus: CSMR; WS08/09 Mig

Natural Deduction: Review 120

Alternative Formalization Using Sequents

Rules (for — /A fragment). Here, I' is a set of formulae.

I'-A (where A e€T)
I'-A T'FB I'-ANANB I'-AAB

reang M orEa NMEL g NMER
AT FB o '-A— B FI—AHE
'HA—B '+ B i

Two representations equivalent. Sequent notation seems
simpler in practice.

Smaus: CSMR; WS08/09

Natural Deduction: Review 121

Example: Refinement Style with
Metavariables

ANBANCYE?ZANCY ANC)
ANBAC)FANTX ANBAC)E (Y ANC)
AN(BANC)E A AN(BANC)EC
AN(BANC)EANC
FAAN(BAC)— ANC

Solution for 77 = A, 7Y = B and 7X = (B AC).
We went through this example in detail last lecture.

Smaus: CSMR; WS08/09

Natural Deduction: Review 122

Comments about Refinement

This crazy way of carrying out proofs is the (standard)
Isabelle-way!

e Refinement style means we work from goals to axioms
e Metavariables used to delay commitments

Isabelle allows other refinements/alternatives too (see labs).
>

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 123

More Detailed Explanations

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 124

What are ND Systems and Proofs?

ND stands for Natural Deduction. It was explained in the previous
lecture.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 125

What is Sequent Notation ?

The judgement (I' = ¢) means that we can derive ¢ from the
assumptions in I' using certain rules. As explained in the previous
lecture, one can make such judgements the central objects of the
deductive system.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 126

Sequent Notation and Isabelle

In particular, the sequent style notation is more amenable to automation,
and thus it is closer to what happens in Isabelle.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic

First-Order Logic: Overview 128

First-Order Logic: Overview

n propositional logic, formulae are Boolean combinations of
oropositions. This will remain important for modeling simple
patterns of reasoning.

An atomic proposition is just a letter (variable). All one can
say about it is that it is true or false. E.g. it is meaningless
to say “A and B state something similar’. Also, infinity
plays no role.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 129

First-Order Logic: the Essence

In first-order logic, an atom(ic proposition) says that
“things” have certain “properties’. Infinitely many “things”
can be denoted, hence infinitely many atoms generated and
distinguished. Comparisons of atoms become meaningful:
“Tim is a boy” and “Carl is a boy” state something similar.

Example reasoning: “Tim is a boy"; “boys don't cry”’; hence
“Tim doesn't cry".

Further reading: [vD80], [Tho91, chapter 1].

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 130

Variables: Intuition
In first-order logic, we talk about “things’ that have certain
“properties’ .
A variable in first-order logic stands for a “thing".

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 130

Variables: Intuition

In first-order logic, we talk about “things’ that have certain
“properties’ .

A variable in first-order logic stands for a “thing".

This is In contrast to propositional logic where variables
stand for propositions.

It is common to use letters x, y, z for variables.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview

131

Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Smaus: CSMR; WS08/09

First-Order Logic: Overview

131

Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x

Smaus: CSMR; WS08/09

First-Order Logic: Overview 131

Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x

p(z) A (d(y,z) vV d(z,x))

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 131

Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x

p(z) A (d(y,z) vV d(z,x))

e Is a man and y Is a woman and x loves y but not vice
versa

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 131

Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x

p(z) A (d(y,z) vV d(z,x))

e Is a man and y Is a woman and x loves y but not vice
versa

m(x) A w(y) Al(z,y) A =l(y, z)

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 132

Predicates: Intuition (2)

We can represent only “abstractions” of these in
propositional logic, e.g., p A (dy V ds) could be an abstraction
of p(x) A (d(y,x) Vd(z,x)).

Here p stands for “x is a prime’ and d; stands for “y is
divisible by x".

But the sense in which p(z), d(y,z), d(z,x) state something

similar is lost. What it means to be divisible or to be a prime
cannot be expressed.

Smaus: CSMR; WS08/09

First-Order Logic: Overview 133

Functions: Intuition

e A constant stands for a “fixed thing” in a domain.

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic: Overview 133

Functions: Intuition

e A constant stands for a “fixed thing” in a domain.

e More generally, a function of arity n expresses an n-ary
operation over some domain, e.g.
Function arity expresses . . .
0

S
.

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic: Overview 133

Functions: Intuition
e A constant stands for a “fixed thing” in a domain.

e More generally, a function of arity n expresses an n-ary
operation over some domain, e.g.

Function arity expresses . . .
0 nullary
S unary
+ binary

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic: Overview 133

Functions: Intuition
e A constant stands for a “fixed thing” in a domain.

e More generally, a function of arity n expresses an n-ary
operation over some domain, e.g.

Function arity expresses . . .

0 nullary number “0"

S unary successor in N

-+ binary function plus in N

Note special notations: infix, prefix, etc.

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?
Ve.dy.yx2=x

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y—dz.ax<zAz<y

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals

r<y— dz.x < zAz<y true for any dense order
dx.x #0

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order

Jx.x # 0 true for domains with more
than one element

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order

Jx.x # 0 true for domains with more
than one element

(V. p(x,z)) — pla, a)

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Overview 134

Quantifiers: Intuition

e A variable stands for “some thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this domain.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order

Jx.x # 0 true for domains with more
than one element

(Vz.p(x,z)) — pla,a) valid

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 135

First-Order Logic: Syntax

e [wo syntactic categories: terms and formulae

e A first-order language is characterized by giving a finite
collection of function symbols F and predicate symbols P
as well as a set Var of variables.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 135

First-Order Logic: Syntax

e [wo syntactic categories: terms and formulae

e A first-order language is characterized by giving a finite
collection of function symbols F and predicate symbols P
as well as a set Var of variables.

e Sometimes write f* (or p') to indicate that function
symbol f (or predicate symbol p) has arity i € N.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 135

First-Order Logic: Syntax

e [wo syntactic categories: terms and formulae

e A first-order language is characterized by giving a finite
collection of function symbols F and predicate symbols P
as well as a set Var of variables.

e Sometimes write f* (or p') to indicate that function
symbol f (or predicate symbol p) has arity i € N.

e One often calls the pair (F,P) a signature.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 136

Terms in First-Order Logic
Term, the set of terms, is the smallest set where
1. x € Term it x € Var, and

2. fM(t1,...,ty) € Term if f* € F and t; € Term, for all
1<j7<n.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 137

Formulae in First-Order Logic
Form, the set of formulae, is the smallest set where
1. 1€ Form,

2. p"(t1,...,t,) € Form if p* € P and t; € Term, for all
1<7<mn,

3. 79 € Form if ¢ € Form,

4. (p o)) € Form if ¢ € Form and 1) € Form and
o€ {A,V,—1},

5. Qx. ¢ € Form if ¢ € Form and = € Var and Q € {V,3}.

Formulae as in point 2 are called atoms.

Note quantifier scoping.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 138

Variable Occurrences
e All occurrences of a variable in a formula are bound or free
or binding.
A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v or Vz.v).

e Example:

(g(z) vV Ix.Vy.p(f (), 2) Nq(y)) V V. r(z, 2, 9())
Which are bound?

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 138

Variable Occurrences
e All occurrences of a variable in a formula are bound or free
or binding.
A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v or Vz.v).

e Example:

(q(x) V 3z.Vy. p(f(x),2) AN q(y)) V Vx.7(z, 2, 9(T))
Which are bound? Which are free?

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 138

Variable Occurrences
e All occurrences of a variable in a formula are bound or free
or binding.
A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v or Vz.v).

e Example:

(q(z) vV 3. Vy.p(f(2), 2) Aa(y)) vV Va.r(z, 2, g(2))
Which are bound? Which are free? Which are binding?

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Syntax 138

Variable Occurrences
e All occurrences of a variable in a formula are bound or free
or binding.
A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v or Vz.v).

e Example:

(q(z) vV 3. Vy.p(f(2),2) Aa(y)) vV Va.r(z, 2, g(2))
Which are bound? Which are free? Which are binding?

There will be an exercise.

A formula with no free variable occurrences is called closed.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Semantics 139

First-Order Logic: Semantics

A structure is a pair A = (U4, I4) where Uy is an nonempty
set, the universe, and I 4 Is a mapping where

1. I4(f™) is an n-ary (total) function on Uy, for f" € F,
2. I4(p") is an n-ary relation on Uy, for p" € P, and

3. I4(x) is an element of Uy, for each x € Var.
As shorthand, write p” for I4(p"), etc.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Semantics 140

The Value of Terms
Let A be a structure. We define the value of a term ¢ under
A, written A(t), as
1. A(z) = z*, for x € Var, and

2. A(f(t1s-- -5 tn)) = fACA(R), - - - Altn)).

Mis
MlS

Smaus: CSMR; WS08/09

First-Order Logic: Semantics 141

The Value of Formulae

We define the (truth-)value of the formula ¢ under A,
written A(¢), as

Ap(ts, ... tn)) = <\ 0 otherwise
1 ifforall u€ Uy, Ajy() =1
A(Vz. ¢) = <\ 0 otherwise
[1 if for some u € Uy, Az (@) = 1
APz ¢) = < 0 otherwise

\

Rest as for propositional logic.

Smaus: CSMR; WS08/09

First-Order Logic: Semantics 142

Models

o If A(¢) =1, we write A = ¢ and say ¢ is true in A or A
IS a model of ¢.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Semantics 142

Models

o If A(¢) =1, we write A = ¢ and say ¢ is true in A or A
IS a model of ¢.

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Semantics 142

Models

o If A(¢) =1, we write A = ¢ and say ¢ is true in A or A
IS a model of ¢.

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.

e If there is at least one model for ¢, then ¢ is satisfiable.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Semantics

142

Models

o If A(p) =1, we write A

IS a model of ¢.

— ¢ and say ¢ is true in A or A

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.

e If there is at least one model for ¢, then ¢ is satisfiable.

o If there is no model for ¢, then ¢ is contradictory.

Smaus: CSMR; WS08/09

First-Order Logic: Semantics

142

Models

o If A(p) =1, we write A

is a model of ¢.

— ¢ and say ¢ is true in A or A

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.

e If there is at least one model for ¢, then ¢ is satisfiable.

o If there is no model for ¢, then ¢ is contradictory.

There is also more differentiated terminology.

Smaus: CSMR; WS08/09

First-Order Logic: Semantics 143

An Example

Va.p(x, s(x))

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic: Semantics 143

An Example
Vz.p(z, s(x))
A model:
Uy = N
p* = {(m,n) | m<n}

sNz) = z+1

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Semantics 143

An Example

Va.p(x, s(x))

A model: Not a model:

Uy = N Us = {a,b,c}
pA — {(m7 TL) ‘ m < n} pA — {(av b)a (a7 C)}
sMz) = z+1 s* = “the identity function”

Smaus: CSMR; WS08/09 Mig

Towards a Deductive System 144

Towards a Deductive System

In natural language, quantifiers are often implicit: males
don't cry.

Smaus: CSMR; WS08/09 Mig

Towards a Deductive System 144

Towards a Deductive System

In natural language, quantifiers are often implicit: all males
don't cry.

Smaus: CSMR; WS08/09 Mig

Towards a Deductive System 144

Towards a Deductive System

In natural language, quantifiers are often implicit: all males
don't cry.

Some phrases in natural language proofs have the flavor of
introduction rules.

Take “boys are males” and "males don't cry” implies “boys
don't cry’: assume an arbitrary boy x; then x is a male;
hence x doesn't cry; hence “z Is a boy" implies “x doesn't
cry” - since x was arbitrary, we can say this for all x.

Smaus: CSMR; WS08/09 Mig

Towards a Deductive System 144

Towards a Deductive System

In natural language, quantifiers are often implicit: all males
don't cry.

Some phrases in natural language proofs have the flavor of
introduction rules.

Take “boys are males” and "males don't cry” implies “boys
don't cry’: assume an arbitrary boy x; then x is a male;
hence x doesn't cry; hence “z Is a boy" implies “x doesn't
cry” (—-I); since x was arbitrary, we can say this for all x.

(V-1). See later.

Smaus: CSMR; WS08/09 Mig

Towards a Deductive System 144

Towards a Deductive System

In natural language, quantifiers are often implicit: all males
don't cry.

Some phrases in natural language proofs have the flavor of
introduction rules.

Take “boys are males” and "males don't cry” implies “boys
don't cry’: assume an arbitrary boy x; then x is a male;
hence x doesn't cry; hence “z Is a boy" implies “x doesn't
cry” (—-I); since x was arbitrary, we can say this for all x.

(V-1). See later.
Existential statements are proven by giving a witness.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 145

First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic. All
the rules of propositional logic are “inherited”.

But we must introduce rules for the quantifiers.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 146

Universal Quantification (V): Rules

P(x) Va. P(x)
ve.P(z)" P " C

where side condition (also called: proviso or eigenvariable
condition) * means: x must be arbitrary.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 146

Universal Quantification (V): Rules

P(x) Va. P(x)
ve.P(z)" P " C

where side condition (also called: proviso or eigenvariable
condition) * means: x must be arbitrary.

Note that rules are schematic.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

r =10

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

r =0
Ve.x =0

V-1

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
Vr.x =0

r=0—=Ve.z=0

V-1
Il

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z =0]'
Ve.x =0
r=0—Vr.x =0
Ve.(r =0— Vz.z = 0)

V-1
-

V-1

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z = 0] l
Vw.a;:()v_ |
$:OH\V/£E.£U:OH_I
V-1

Ve.(r =0 — Vz.z =0)
0=0—=Vz.z =0

V-E

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z = 0]
Vw.w:()v_l |
$:OH\V/£E.£U:OH_I
Vx.(x:O%Vx.x:O)v_l
0=0—Ve.x=0 "5 og=o"

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z = 0]
Vw.w:()v_l |
$:OH\V/£E.£U:OH_I
Vx.(x:O%Vx.x:O)v_l
0=0—Ve.x=0 "5 og=o"
Vz.z =0 -k

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 147

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “proof”

[z = 0]
Vw.x:()v_l |
:B:OHVx.:U:OH_I
Vx.(x:O%Vx.x:O)v_l
0=0—Ve.x=0 "5 og=o"
Vz.z =0 -k

Formal meaning of side condition: x not free in any open
assumption on which P(x) depends. Violated!

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 148

Another Proof? (1)

Is the following a proof? Is the conclusion valid?

Vz. —Vy.z = y]!

VY. =y
(Ve.-Vy.x =y) — Vy.y =y

V-E

L

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 148

Another Proof? (1)

Is the following a proof? Is the conclusion valid?

Vz. -Vy.z =y

VY.y =Y
(Ve.-Vy.x =y) — Vy.y =y

V-E

L

Conclusion is not valid.
The formula is false when U4 has at least 2 elements.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 148

Another Proof? (1)

Is the following a proof? Is the conclusion valid?

Vz. —Vy.z = y]!

VY. =y
(Ve.-Vy.x =y) — Vy.y =y

V-E

L

Proof is incorrect.

Reason: Substitution must avoid capturing variables. Re-
olacing « with y in V-E is illegal because y i1s bound in
—Vy.y = y. This detail concerns substitution (and renaming
of bound variables), not V-E. Exercise

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 149

Another Proof? (2)

Va. A(x) N B(x)

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 149

Another Proof? (2)

Vr. A(z) A B(x)
A(x) N\ B(x)

V-E

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 149

Another Proof? (2)

Vr. A(z) A B(x)
A(x) N\ B(x)
A(x)

V-E
N-EL

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 149

Another Proof? (2)

V. A(z) A B(x) o E
Alw) A B@) T
A(x) "

Va. A(x)

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 149

Another Proof? (2)

Vr. A(z) A B(x) Vr. A(z) A B(x)
A@nBla) T AwnB@)
Aw) Be)
Ve. A(z) Vz. B(z)

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 149

Another Proof? (2)

Vr. A(z) A B(x) Vr. A(z) A B(x)
A@nBla) T AwnB@)

Aw) Be)

Ve. A(z) Vz. B(z)

N-1

(V. A(z)) A (V. B(x))

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System

149

Another Proof? (2)

Vz. A(x) A B(x)]! Vz. A(x) A B(x)]!

V-E v-E
A(x) A B(o) Alz) A B()
Al ; ;\—EL B(z) } /l\-ER
va. Az) va.B(z)
(V:L’. A($)) A\ (\V/$. B($)) - —-/

(Vx. A(x) A B(z)) — (Vx. A(x)) A (Vx. B(x))

1

Smaus

. CSMR; WS08/09

First-Order Logic: Deductive System 149

Another Proof? (2)

Vz. A(x) A B(x)]! Vz. A(x) A B(x)]!
A@nBla) T AwnB@)

Aw) Be)

Ve. A(z) Vz. B(z)

N-1

(V. A(z)) A (V. B(x))
(Vx. A(x) A B(z)) — (Vx. A(x)) A (Vx. B(x))

H_l

Yes (check side conditions of V-/).

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 150

Boys Don’t Cry
Let ¢ = (Vx.b(z) — m(x)) A (V. m(x) — —c(x)).

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 151

Aside: A — B
Define A« Bas A— BANB — A.

The following rule can be derived (in propositional logic,
actually):

4 (3]
B A
A~ B =l

You could do this as an exercise!

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System

152

Proof?

(Al Vz. A
V. AV_I A v-E

A—Vr. A

-

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 152

Proof?

(Al Vz. A
V. AV_I A v-E

A—Vr. A

-

Yes, but only if z not free in A.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System

152

Proof?

(Al Vz. A
V. AV_I A v-E

A—Vr. A

PN

Yes, but only if z not free in A.
Similar requirement arises in proving

(Vz. A — B(z)) « (A — Vz. B(z)).

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 153

Side Conditions and Proof Boxes

We mentioned previously a style of writing derivations where
subderivations based on temporary assumptions are enclosed
In boxes.

These boxes are also handy for doing derivations in
first-order logic, since one can use the very clear formulation:
a variable occurs inside or outside of a box. See [HR04].

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 154

Existential Quantification
e We could define dx. A as —Vz. —A.

e Equivalence follows from our definition of semantics.

[1 ifAA)=0
AlR4) = <\ 0 otherwise
Az A) = § 1T for all u € Uy, Apjuy(4) = 1
| 0 otherwise
A3z, A) — § 1 ifforsome w e Uy, Apyy(d) =1
0 otherwise

\

Conclude: A(Jx. A) = A(=Vz. —A)

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 155

Where do the Rules for 3 Come from?

e \We can use definition dxz. A = —Vx. = A and the given
rules for V to derive ND proof rules.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 155

Where do the Rules for 3 Come from?

e \We can use definition dxz. A = —Vx. = A and the given
rules for V to derive ND proof rules.

e Alternatively, we can give rules as part of the deduction
system and prove equivalence as a lemma, instead of by

definition.
We will do the first here. The Isabelle formalization follows

the second approach.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 156

-/ as a Derived Rule
The rule:

P(t)
Jdz. P(x)

3-/

Jdz. P(x)

We want to have dx. P(x) as conclusion.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 156

-/ as a Derived Rule
The rule:

P(t)
Jdz. P(x)

3-/

—Vx. -~ P(x)
But by definition that's —Vx. = P(x).

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 156

-/ as a Derived Rule
The rule:

P(t)
Jdz. P(x) + 1
—Vx. -~ P(x)

Va.—P(x)

We aim for applying —-/ in the last step (recall —-definition).

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 156

-/ as a Derived Rule
The rule:

Va.—P(x)
P(t) " ~P(t) vk
Jdz. P(x) 1
—Vx. -~ P(x)
We apply V-E.

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 156

-/ as a Derived Rule
The rule:

Va.—P(x)
P) Pty " F P
Jdz. P(x) L —-E
—Vx. -~ P(x)

Making assumption P(t) allows us to use —-E (recall —-
definition).

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 156

J-/ as a Derived Rule

The rule: V. = P(z)]!
P) Pty " F P
Jdz. P(x) L i'E
—Vx. -~ P(x) =

Finally we can apply —-/. Note that the assumption P(t) is
still open.

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 157

J-E as a Derived Rule

The rule:
P()
Jdz. P(x) R
i J-E

dz. P(x)

We will use Jx. P(z) as one assumption.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 157

J-E as a Derived Rule

The rule:
P()
Jdz. P(x) R
i J-E

—Vx. - P(x)

But by definition that's =Vx. = P(x).

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 157

J-E as a Derived Rule

The rule: P(x)
P() :
Jdz. P(x) R
i J-E

—Vx. - P(x)

We assume a hypothetical derivation.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 157

J-E as a Derived Rule
The rule:
[P{w)]

Jdz. P(x) R 1 —iE
P 3-F

—Vx. - P(x)

We make an additional assumption and apply —-E (recall —-definition)

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System

157

J-E as a Derived Rule

The rule:
P()
Jdz. P(x) R
i J-E

—Vx. - P(x)

Now we can discharge the assumption P(x) made in the hypothetical

derivation.

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 157

J-E as a Derived Rule

The rule:
Pa)?
Pl R R
dz. P(x) R 1 _2>'
P 3-E P(x) —-
—Vz.=P(x) Vx.—-P(x) v

At this step, the side condition from V-/ applies. 3-E will inherit it!

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 157
J-E as a Derived Rule
The rule: 5
[P ()]
) ok
dz. P(x R L e
(%) o L
R ﬂP(ZIZ) o
V. -P(z) Vz.-P(z)
—_— =
We apply —-E.
Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System

157

J-E as a Derived Rule

The rule:
P()
Jdz. P(x) R
i J-E

()]

-R' R
L
ﬂP(ZE)
—Vz.-P(zx) Vz.-P(x)

—-E
P

V-1

L -k
- 1
» RAA

We are done. Note that this proof uses classical reasoning.

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 158

Example Derivation Using J-E

We want to prove (Vz.A(x) — B) — ((dz. A(x)) — B),
where x does not occur free in B.

Smaus: CSMR; WS08/09 Mig

First-Order Logic: Deductive System 158

Example Derivation Using J-E
We want to prove (Vz.A(x) — B) — ((dz. A(x)) — B),
where x does not occur free in B.
V. A(x) — B
V-E
A(x) — B A(x)
dr. A(x) B

—-E

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 158

Example Derivation Using J-E
We want to prove (Vz.A(x) — B) — ((dz. A(x)) — B),
where x does not occur free in B.
V. A(x) — B
V-E ;
A(r) — B A(z)]
dr. A(x) B
B

—-E
3-F°

Smaus: CSMR; WS08/09

First-Order Logic: Deductive System 158

Example Derivation Using J-E
We want to prove (Vz. A(x) — B) — ((dz. A(z)) — B),
where x does not occur free in B.
Vz. A(x) — B}
A@) =B T [A@]
Hz. A(z)]? B
B
(Jz. A(z)) — B~
(Vz. A(z) — B) — ((3z. A(x)) — B)

—-E
3-F°

I2

L

Smaus: CSMR; WS08/09

Conclusion on FOL 159

Conclusion on FOL

e Propositional logic is good for modeling simple patterns of
reasoning like “if .. .then .. . else".

Smaus: CSMR; WS08/09 Mig

Conclusion on FOL 159

Conclusion on FOL

e Propositional logic is good for modeling simple patterns of
reasoning like “if .. .then .. . else".

e In first-order logic, one has “things” and relations on /
properties of “things”. Quantify over “things”. Powerful!

e Some people advocate intuitionistic, relevance, and other
“deviant” logics.

e Limitation: cannot quantify over predicates.

e “A" world or “the” world is modeled in first-order logic
using so-called first-order theories. This will be studied
next lecture. Wl

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 160

More Detailed Explanations

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 161

Boolean Functions

The set (or “type”) bool contains the two truth values True, False. A
propositional formula containing n variables can be viewed as a function
bool" — bool. For each combination of values True, False for the
variables, the whole formula assumes the value True or Fualse.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 162

Relations/Functions, Infinity

In propositional logic, there is no notation for writing “thing x has
property p" or “things x and y are related as follows” or for denoting the
“thing obtained from thing x by applying some operation”.

In particular, no statement about all elements of a possibly infinite
domain can be expressed in propositional logic, since each formula
involves only finitely many different variables, and up to equivalence and
for a set containing n variables, there are only finitely many (to be
precise 2(2")) different propositional formulae.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 163

What is a Domain?

For example, the set of integers, the set of characters, the set of people,
you name it!

Any set of “things’ that we want to reason about.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

164

“Fixed Thing”?

As opposed to a variable which also stands for a “thing".

This distinction will become clear soon.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 165

Function Notation

So a function symbol f denotes an operation that takes n “things” and
returns a “thing”. f(t1,...,%t,) is a “thing” that depends on “things”
1y ..., 1p.

The generic notation for function application is like this: f(t1,...,t5),
but the brackets are omitted for nullary functions (= constants), and
many common function symbols like + are denoted infix, so we write

0 + O instead of +(0,0). Another common notation is prefix notation
without brackets, as in —2. There are also other notations.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 166

“Some Thing”?

Just like a constant, a variable stands for a “thing".

The most important difference between a constant and a variable is that
one can quantify over a variable, so one can make statements such as
“for all z . . . " or “there exists x such that . ..

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 167

What is Satisfiability? Validity?
Intuitively, satisfiable means “can be made true” and valid means

“always true”.
More formally, this will be defined later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 168

Syntactic Categories

We have already learned about the syntactic category of formulae last
lecture.

A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have terms that

stand for “things” and formulae that stand for statements/propositions
about those “things".

But couldn’t a statement also be a “thing”? And couldn’'t a “thing”
depend on a statement?

In first-order logic: no!

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 169

Signatures

There isn't simply the language of first-order logic! Rather, the definition
of a first-order language is parametrised by giving a F and a /P. Each
symbol in F and P must have an associated arity, i.e., the number of
arguments the function or predicate takes. This could be formalized by
saying that the elements of F are pairs of the form f/n, where f is the
symbol itself and n, and likewise for P. All that matters is that it is
specified in some unambiguous way what the arity of each symbol is.

One often calls the pair (F,P) a signature. Generally, a signature
specifies the “fixed symbols” (as opposed to variables) of a particular
logic language.

Strictly speaking, a first-order language is also parametrised by giving a
set of variables Var, but this is inessential. Var is usually assumed to be
a countably infinite set of symbols, and the particular choice of names of

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations

170

these symbols is not relevant.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 171

A Language

Term and Form together make up a first-order language. Note that
strictly speaking, Term and Form depend on the signature, but we
always assume that the signature is clear from the context.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 172

Constants

Note in particular the case n = 0. Then 1 < 3 < 0 means that there
exists no such j, and so t; € Term for all 7 is vacuously true. We then
speak of f as a constant.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 173

The Scope of a Quantifier

We adopt the convention that the scope of a quantifier extends as much
as possible to the right, e.g.

Va.p(z) V q(z)

IS
va.(p(z) V q(z))
and not
(Ve.p(z)) V q(x)
This is a matter of dispute and other conventions are around, but the
one we adopt here corresponds to Isabelle.
Compare this to the precedences and associativity in propositional logic.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 174

Free, Bound, and Binding Occurrences

All occurrences of a variable in a term or formula are bound or free or
binding. These notions are defined by induction on the structure of
terms/formulae. This is why the following definition is along the lines of
our definition of terms and formulae.

1. The (only) occurrence of x in the term x is a free occurrence of = in x;

2. the free occurrences of = in f(t¢1,...,t,) are the free occurrences of x
Int1,...,tn;

3. there are no free occurrences of x in | ;

4. the free occurrences of x in p(ty,...,t,) are the free occurrences of x
In tl,. .. ,tn;

5. the free occurrences of x in ¢ are the free occurrences of x in ¢;

6. the free occurrences of = in 1 o ¢ are the free occurrences of x in ¥

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 175

and the free occurrences of = in ¢ (o € {A,V,—1});

7. the free occurrences of x in Vy. 1, where y # x, are the free
occurrences of x in v; likewise for d;

8. x has no free occurrences in Vx.1; in Vx. 1, the (outermost) V binds
all free occurrences of x in 1; the occurrence of x next to V is a
binding occurrence of z; likewise for 4.

A variable occurrence is bound if it is not free and not binding.

We also define

FV(¢) := {x | x has a free occurrence in ¢}

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 176

Structures

As usual, there isn't just one way of formalizing things, and so we now
explain some other notions that you may have heard in the context of
semantics for first-order logic.

A universe Is sometimes also called domain.

As you saw, a structure gives a meaning to functions, predicates, and
variables.

An alternative formalization is to have three different mappings for this

purpose:

1. an algebra gives a meaning to the function symbols (more precisely,
an algebra is a pair consisting of a domain and a mapping giving a
meaning to the function symbols);

2. in addition, an interpretation gives a meaning also to the predicate

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 177

symbols;
3. a variable assignment, also called valuation, gives a meaning to the
variables.

As before, we assume that the signature is clear from the context.
Strictly speaking, we should say “structure for a particular signature” .

Details can be found in any textbook on logic [vD80].

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 178

The Notation p*

In the notation p**, the superscript has nothing to do with the
superscript we sometimes use to indicate the arity.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 179

The Notation A,/

Ajz /) 1s the structure A’ identical to A, except that A = .

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 180

Models

If you are happy with the definition of a model just given, this is fine.
But if you are confused because you remember a different definition from
your previous studies of logic, then these comments may help.

As explained before, it is common to distinguish an interpretation, which
gives a meaning to the symbols in the signature, from an assignment,
which gives a meaning to the variables. Let us use Z to denote an
interpretation and A to denote an assignment.

Recall that we wrote A(.) for the meaning of a term or formula. In the
alternative terminology, we write Z(A)(.) instead. This makes sense
since in the alternative terminology, 7 and A together contain the same
information as A in the original terminology. We define:

e For a given 7, we say that ¢ is satisfiable in 7 if there exists an A so
that Z(A)(¢) = 1,

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 181

e for a given Z, we write Z |= ¢ and say ¢ is true in Z or Z is a model of
¢, if for all A, we have Z(A)(¢) = 1;

e we say ¢ is satisfiable if there exists an Z so that ¢ is satisfiable in Z;

e we write = ¢ and say ¢ is valid if for every (suitable) Z, we have

7 E ¢.
Note that satisfiable (without “for . .. ") and valid mean the same thing
in both terminologies, whereas true in . . . means slightly different

things, since a structure is not the same thing as an interpretation.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 182

Suitable Structures

A structure is suitable for ¢ if it defines meanings for the signature of ¢,
I.e., for the symbols that occur in ¢. Of course, these meanings must
also respect the arities, so an n-ary function symbols must be interpreted
as an n-ary function. Without explicitly mentioning it, we always assume
that structures are suitable.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

183

N denotes the natural numbers.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 184

Confusion of Syntax and Semantics?

In logic, we insist on the distinction between syntax and semantics. In
particular, we set up the formalism so that the syntax is fixed first and
then the semantics, and so there could be different semantics for the
same syntax.

But the dilemma is that once we want to give a particular semantics, we
can only do so using again some kind of language, hence syntax. This is
usually natural language interspersed with usual mathematical notation
such as <, + etc.

Some people try to mark the distinction between syntax and semantics
somehow, e.g., by saying 0 is a constant that could mean anything,
whereas 0 is the number zero as it exists in the mathematical world.

When we give semantics, the symbols <, 4+, and 1 have their usual
mathematical meanings. The function that maps x to = + 1 is also called

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations

185

successor function. Of course, when we write m < n, we assume that

m,n € N, in this context.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 186

Why is this a Model?

It is true that for all numbers n, n is less than n + 1.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

187

Why is this not a Model?

The identity function maps every object to itself.
It is not true that for every character a € {a, b, c},

(o, @) € {(a,b),(a,c)}. E.g., (a,a) ¢ {(a,b), (a,c)}.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 188

Implicit Quantifiers
In the statement
if £ > 2 then 22 >4
the V-quantifier is implicit. It should be
for all z, if x > 2 then 22 > 4.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 189

Inheriting Rules

First-order logic inherits all the rules of propositional logic. Note however
that the metavariables in the rules now range over first-order formulae.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 190

Schematic Rules

Similarly as in the previous lecture, one should note that P is not a
predicate, but rather P(x) is a schematic expression: P(z) stands for
any formula, possibly containing occurrences of x.

In the context of V-E, P(t) stands for a formula where all occurrences of
x are replaced by t.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 191

Reflexivity
When one has a predicate symbol =, it is usual to have a rule that says
that = is reflexive.

Don't worry about it at this stage, just take it that we have such a rule.
We will look at this later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 192

Side Condition Violated!

The side condition is violated in the proof since in the first V-/ step, x
does occur free in x = 0.

Note that saying “x must not free in any open assumption on which
P(x) depends” means in particular that P(x) itself must not be an
assumption. This is the case we have here!

So whenever V-I, the P(x) above the line will be the root of a derivation
tree constructed so far, and this tree cannot be the trivial tree just
consisting of the assumption P(x).

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 193

Why is (V. -Vy.x = y) — —Vy.y = y False?
Here we assume that the predicate symbol = is interpreted by A as
equality on U 4. Suppose U 4 contains two elements « and 3 and
I4(x) =« and I4(y) = 6. Then A(x = y) = 0, hence
A(Vy.xz =y) =0, hence A(—Vy.z = y) = 1. Now one can see that
Az /) (7Vy.z = y) = 1 for all u € Uy, and hence
A(Vz. =Vy.z = y) = 1. On the other hand, A'(y = y) = 1 for any A’
and hence A(Vy.y = y) = 1 and hence A(—Vy.y = y) = 0. Therefore,
A((Vx. -Vy.x =y) — ~Vy.y =y) = 0.

Back to main referring slide

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 194

Substitutions in FOL

The notation s|x « t| denotes the term obtained by substituting ¢ for x
in s. However, a substitution [z < t| replaces only the free occurrences
of x in the term that it is applied to. A substitution is defined as follows:

1. xlx — t]| =t;
2. ylr «— t] =y if y is a variable other than x;

3. f(t1,...,tn)|x —t] = f(tilx — t],... ty[x < t]) (where f is a
function symbol, n > 0);

4. p(t1,...,to)|x — t] = p(t1lx — t|,...,tnlx «— t]) (where p is a
predicate symbol, possibly L);

A(W)z —t] = ~(lz —1])
(o @)z 1] = (W — f ol — 1)) (where o € {A,V,—1})
(Qu.)[x «— t] = Qu.yp (where Q € {V,3});

~N O O

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 195

8. (Qu.v)|x — t] = Qu.(¢Y|x «— t]) (where Q € {V,d}) if y # x and
y &€ FV(t);

9. (Qu.)[x +— t] = Qz.(¢[y < z][x « t]) (where Q € {V,T}) if y # x
and y € F'V(t) where z is a variable such that z ¢ F'V(t) and
2 & FV ().

Back to main referring slide

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 196

Avoiding Capture of Variables

A substitution (replacement of a variable by a term) must not replace
bound occurrences of variables, and if we replace x with ¢ in an
expression ¢, then this replacement should not turn free occurrences of
variables in ¢ into bound occurrences in ¢. It is possible to avoid this by
renaming variables.

This is part of the standard definition of a substitution. The problem is
not related to V-E in particular.

The definition can be found in any textbook on logic [vD80]. We will
also give a formal definition later, in a different context.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 197

Check Side Conditions

In both cases, x does not occur free in Vx. A(x) A B(x), which is the
open assumption on which A(x), respectively B(x), depends.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 198

Defining <
By defining we mean, use A < B as shorthand for A - BA B — A, in
the same way as we regard negation as a shorthand.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 199

Defining 4
By defining we mean, use dz. A as shorthand for =Vx.—A, in the same
way as we regard negation as a shorthand.
However, we have already introduced d as syntactic entity, and also its
semantics. |f we now want to treat it as being defined in terms of V, for
the purposes of building a deductive system, we must be sure that dx. A
Is semantically equivalent to =Vx.—A, i.e., that

A(@z. A) = A(-Vz. - A).

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 200

Where Do the Rules for 3 Come from?

e We can use definition dz. A = =Vx. —A and the given rules for V to
derive ND proof rules.
In this case, the soundness of the derived rules is guaranteed since

o the rules for V are sound:

o we have proven the equivalence of Jdx. A and —Vz. = A semantically.

e Alternative: give rules as part of the deduction system and prove the
equivalence as a lemma, instead of by definition.
In this case, the soundness must be proven by hand (however, proving
rules sound is an aspect we neglect in this course). But once this is
done, the equivalence of dx. A and —Vx.—A can be proven within the
deductive system, rather than by hand, provided that the deductive
system is complete.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

201

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 202

Hypothetical Derivation

We are constructing here a “schematic fragment” of a derivation tree.
Within this construction, we assume a hypothetical derivation of R from
assumption P(x). When we are done with the construction of this
fragment, we will collapse the fragment by throwing away all the nodes
in the middle and only keep the root and leaves.

Note two points:

e We assume a hypothetical derivation of R from assumption P(x).
Somewhere in the middle of the constructed fragment, we will
discharge the assumption P(x). In the final rule 3-E, this means an

application of 3-E involves discharging P(x). Therefore 3-E has
brackets around the P(x).

e The hypothetical derivation of R may contain other assumptions than
P(x). These are not discharged in the constructed fragment, and so in

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 203

the final rule Jd-E, we must also read the notation

P(a:)
R
as a derivation of R where one of the assumptions is P(x). There may

be other assumptions, but these are not discharged. This is no
different from previous rules involving discharging.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 204

Inheriting a Side Condition

J-E will inherit the side condition from V-I. Hence, the side condition for
3-E is:

x must not be free in R or in hypotheses of the subderivation of R other
than P(x) (occurrences in (P(x) are allowed because the assumption
P(z) was discharged before the application of V-/). Contrast this with

V-1,

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 205

Classical Reasoning

Defining dx. A as —Vx. —A is only sensible in classical reasoning, since
the derivation of the rule J-E requires the RAA rule.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 206

The Power of First-Order Logic

In first-order logic, one has “things” and relations/properties that may or
may not hold for these “things”. Quantifiers are used to speak about “all
things” and “some things".

For example, one can reason:
All men are mortal, Socrates is a man, therefore Socrates is mortal.

The idea underlying first-order logic is so general, abstract, and powerful
that vast portions of human (mathematical) reasoning can be modeled
with it.

In fact, first-order logic is the most prominent logic of all. Many people
know about it: not only mathematicians and computer scientists, but
also linguists, philosophers, psychologists, economists etc. are likely to
learn about first-order logic in their education.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 207

While some applications in the fields mentioned above require other
logics, e.g. modal logics, those can often be reduced to first-order logic,
so that first-order logic remains the point of reference.

On the other hand, logics that are strictly more expressive than
first-order logic are only known to and studied by few specialists within
mathematics and computer science.

This example about Socrates and men is a very well-known one. You
may wonder: what is the history of this example?

In English, the example is commonly given using the word “man”,
although one also finds “human”. Like many languages (e.g., French,
Italian), English often uses “man” for “human being”, although this use

of language may be considered discriminating against women.
E.g. [Tho95a]:

man [. . .| 1 an adult human male, esp. as distinct from a woman

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 208

or boy. 2 a human being; a person (no man is perfect).

While the example does not, strictly speaking, imply that “man” is used
in the meaning of “human being”, this is strongly suggested both by the
content of the example (or should women be immortal?) and the fact
that languages that do have a word for “human being” (e.g. “Mensch” in
German) usually give the example using this word. In fact, the example
is originally in Old Greek, and there the word &vipwnoc (anthropos =
human being), as opposed to dvrp (anér = human male), is used.

The example is a so-called syllogism of the first figure, which the
scholastics called Barbara. It was developed by Aristotle [Ari] in an
abstract form, i.e., without using the concrete name “Socrates”. In his
terminology, dvipwnoc is the middle term that is used as subject in the
first premise and as predicate in the second premise (this is what is called
first figure). Aristotle formulated the syllogism as follows: If A of all B

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 209

and B is said of all C, then A must be said of all C.

And why “Socrates”? It is not exactly clear how it came about that this
particular syllogism is associated with Socrates. In any case, as far it is
known, Socrates did not investigate any questions of logic. However,
Aristotle frequently uses Socrates and Kallias as standard names for
individuals [Ari]. Possibly there were statutes of Socrates and Kallias
standing in the hall where Aristotle gave his lectures, so it was
convenient for him to point to the statutes whenever he was making a
point involving two individuals.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 210

Other Logics

There are still controversies about what the best logic is for reasoning
about “things" and properties/relations, and scope (quantification).
Some argue for intuitionistic, relevance, modal and other “deviant”
logics.

An example where first-order logic is inappropriate might be:

From “a dollar buys a candy bar’ and “a dollar buys an ice cream”

we cannot normally conclude “a dollar buys a candy bar and an ice
cream’ .

However, such analogies should be treated with care. Depending on how
ice-creams, candy bars, dollars and buying are modeled, first-order logic
may very well be appropriate.

Modal logics are logics that have modality operators, usually O and <.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 211

Sometimes these denote temporal aspects, e.g., O¢ means “¢ always

holds”. But many other interpretations are possible, e.g., O 40 could
mean “A knows that ¢ holds” [HC68|.

In relevance logics, it is not true that A — B holds whenever A is false.
Rather, A must somehow be “relevant” for B.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 212

Limitations of First-Order Logic

The idea underlying first-order logic seems so general that it is not so
apparent what its limitations could be. The limitations will become clear
as we study more expressive logics.

For the moment, note the following: in first-order logic, we quantify over
variables (hence, domain elements), not over predicates. The number of
predicates is fixed in a particular first-order language. So for example, it

Is impossible to express the following:

For all unary predicates p, if there exists an x such that p(x) is true,
then there exists a smallest x such that p(x) is true,

since we would be quantifying over p.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

First-Order Logic with Equality

First-Order Logic with Equality 214

Overview

Last lecture: first-order logic.

This lecture:
e first-order logic with equality and first-order theories;

e set-theoretic reasoning.
We extend language and deductive system to formalize and
reason about the (mathematical) world.

Smaus: CSMR; WS08/09

First-Order Logic with Equality 215

FOL with Equality

Equality is a logical symbol rather than a mathematical one.

Speak of first-order logic with equality rather than adding
equality as “just another predicate”.

Smaus: CSMR; WS08/09 Mig

First-Order Logic with Equality 216

Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 =ty € Form if t1,t9 € Term.

Smaus: CSMR; WS08/09 Mig

First-Order Logic with Equality 216

Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 =ty € Form if t1,t9 € Term.

Semantics : recall a structure is a pair A = (Uy, [4) and
I 4(t) is the interpretation of ¢.

[A(S:t) :{ 1 ifIA(S) :]A(t)

0 otherwise
Note the three completely different uses of “=" here!

Smaus: CSMR; WS08/09 Mig

First-Order Logic with Equality 217

Rules
e Equality 1s an equivalence relation
xr =1 r=1Y Y==z

refl sym trans
TP = I Yy=2x r = 2

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic with Equality 217

Rules
e Equality 1s an equivalence relation
xr =1 r=1Y Y==z

refl sym trans
TP = I Yy=2x r = 2

e Equality is also a congruence on terms and all relations

1 =Y~ Tn ="UYn cong;
(X1, xn) = Y1y e -y Yn)

L1 =Y1 ++° Ln = Yn A(xlw"axn)

A(yb oo e 7yn)

cong,

3
0nn

Smaus: CSMR; WS08/09

First-Order Logic with Equality 218

Soundness of Rules

For any U 4, equality in U4 Is an equivalence relation and
functions/predicates/logical-operators are “truth-functional”.

Adding further rules gives us an equational theory,
e.g. groups.

Smaus: CSMR; WS08/09

First-Order Logic with Equality 219

Congruence: Alternative Formulation

One can specialize congruence rules to replace only some
term occurrences.

TL=Y1 e Ty = Yn cong
t[Zl%ZEl,...,Zn%CCn]:t[zl%yla---az”/l(_yn]
TI=1Y1 Tn="UYn A[zu—yh--.,zn%yn]wn&
Alzy «— x1,..., 2, «— T,

One time the z's are replaced with x's and one time with y'’s.

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic with Equality 220

Congruence: Example

How many ways are there to choose some occurrences of x
in 2%+ y* > 12 - 27

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic with Equality 220

Congruence: Example

How many ways are there to choose some occurrences of x

24+ y? > 1227 4, namely:
A=z +9y*>12.2, A
A=z +9y*>12.2 A

N x

24yt > 12z,
24yt >12- 2.

Smaus: CSMR; WS08/09 Mig

First-Order Logic with Equality 220

Congruence: Example

How many ways are there to choose some occurrences of x
2

in 22 +y* > 12 - 27 4, namely:
A=2"+y*>12.2, A=2"4+9y*>12. 7,
A=2"+y*>12.2, A=2"4+9y*>12.2.

We show two ways:

=3 z°+y*>12 -2
P4y >12-x

with A =22+ 9> > 12 -2

r=3 z°+y*>12 -2
2+ y* > 12-3

with A = 2% 4+ 9y*> > 12 2

Smaus: CSMR; WS08/09 Mig

First-Order Logic with Equality 221

Isabelle Rule
The Isabelle FOL rule is simply (using a tree syntax)

subst

or literally

Smaus: CSMR; WS08/09 Mig

First-Order Logic with Equality 222

Proving dx.t =«

refl
-/

U =1

dx.t = x

&
0nn

Smaus: CSMR; WS08/09

First-Order Logic with Equality 222

Proving dx.t =«

refl
-/

U =1

dx.t = x

Al) 3-1
In the rule 3z. A(z) ~ , “A(z)" is metanotation. In the
example, A(x) = (t = x).

Smaus: CSMR; WS08/09 Mig

First-Order Logic with Equality 222

Proving dx.t =«

t:tmgl
Jz.t=x"
A(t) o
In the rule 3z. A(z) ~ , “A(z)" is metanotation. In the

example, A(x) = (t = x).
Notational confusion avoided by a precise metalanguage. Pl

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 223

More Detailed Explanations

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 224

Logical vs. Non-logical Symbols

In logic languages, it is common to distinguish between logical and
non-logical symbols. We explain this for first-order logic.

Recall that there isn't just the language of first-order logic, but rather
defining a particular signature gives us a first-order language. The logical
symbols are those that are part of any first-order language and whose
meaning is “hard-wired” into the formalism of first-order logic, like A or
V. The non-logical symbols are those given by a particular signature, and
whose meaning must be defined “by the user” by giving a structure.

Above we say “mathematical” instead of “non-logical” because we
assume that mathematics is our domain of discourse, so that the
signature contains the symbols of “mathematics”.

Now what status should the equality symbol = have? We will assume
that = is a symbol whose meaning is hard-wired into the formalism. One

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 225

then speaks of first-order logic with equality.

Alternatively, one could regard = as an ordinary (binary infix) predicate.
However, even if one does not give = a special status, anyone reading =
has a certain expectation. Thus it would be very confusing to have a
structure that defines = as a, say, non-reflexive relation.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 226

Three Different Uses of Equality

(1 if LA(s)=14(1)

La(s=t) = <\ 0 otherwise

The first = is a predicate symbol.

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 226

Three Different Uses of Equality

(1 if LA(s)=14(1)

I p— — i
Als=t) i 0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression on the
left-hand side is defined to be equal to the value of the right-hand side.

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 226

Three Different Uses of Equality

(1 if I A(s)=14(1)

I p— p— i
Als=t) i 0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression on the
left-hand side is defined to be equal to the value of the right-hand side.

The third = Is semantic equality, i.e., the identity relation on the domain.

Back to main referring slide

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 227

Why Rules?

Since = is a logical symbol in the formalism of first-order logic with
equality, there should be derivation rules for = to derive which formulas
a = b are true.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 228

What is an Equivalence Relation?

In general mathematical terminology, a relation = is an equivalence
relation if the following three properties hold:

Reflexivity: a = a for all a;
Symmetry: a = b implies b = a;

Transitivity: a = b and b = ¢ implies a = c.

Example: being equal modulo 6.
“a is equal b modulo 6" is often written a = b mod 6.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 229

What is a Congruence?

In general mathematical terminology, a relation = is a congruence w.r.t.
(or: on) f, where f has arity n, if a1 = by,...,a, = b, implies

flar, ... an) = f(b1,...,by).

Example: being equal modulo 6 is congruent w.r.t. multiplication.

14 = 8 mod 6 and 15 = 9 mod 6, hence 14 - 15 =8 - 9 mod 6.

This can be defined in an analogous way for a property (relation) P.
Example: being equal modulo 6 is congruent w.r.t. divisibility by 3.

15 =9 mod 6 and 15 is divisible by 3, hence 9 is divisible by 3.

14 = 8 mod 6 and 14 is not divisible by 3, hence 8 is not divisible by 3.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 230

What Does this Notation Mean?
Why did we use letters ¢ and A here?
Recall the rules for building terms and atoms.
Is t(x1,...,x,) a term, and A(x1,...,x,) and atom, obtained by one

application of such a rule, i.e.: is t a function symbol in F, applied to
x1,...,%Tn, and is A a predicate symbol in P, applied to x1,...,x,7?

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 230

What Does this Notation Mean?

Why did we use letters ¢ and A here?

Recall the rules for building terms and atoms.

Is t(x1,...,x,) a term, and A(x1,...,x,) and atom, obtained by one
application of such a rule, i.e.: is t a function symbol in F, applied to
x1,...,%Tn, and is A a predicate symbol in P, applied to x1,...,x,7?
In general, no! The notations t(x1,...,2,) and A(x1,...,x,) are

metanotations. t(x1,...,x,) stands for any term in which x1, ..., z,
occur, and A(x1,...,x,) stands for any atom in which z1,...,z, occur.

This is why we used letters ¢ (term) and A (atom) here instead of f
(function) and P (predicate).
And in this context, the notation ¢(y1,...,y,) stands for the term

obtained from t(x1,...,x,) by replacing all occurrences of x; with y;
and so forth. In analogy the notation A(y1,...,y») is defined.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 231

Note that in the schematic formulation of the rule, we use letters x and
y to suggest variables, but the rule applies to arbitrary terms.

This description is not very formal, but this is not too problematic since
we will be more formal once we have some useful machinery for this at

hand.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 232

Soundness of Equivalence Rules

On the semantic level, two things are equal if they are identical.
Semantic equality is an equivalence relation. This semantic fact is so
fundamental that we cannot explain it any further.

So one can prove that I 4(s = s) = 1 for all all terms s, because
I 4(s) = L4(s) for all terms, and likewise for symmetry and transitivity.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 233

Soundness of Congruence Rules

If t(z) is a term containing x and (y) is the term obtained from t(x) by
replacing all occurrences of x with y, and moreover I 4(xz = y) = 1, then
I 4(x) = I4(y). One can show by induction on the structure of ¢ that

La(t(x)) = La(t(y)).
So by “truth-functional” we mean that the value I 4(#(x)) depends on
I 4(x), not on x itself.

This can be generalized to n variables as in the rule.
An analogous proof can be done for rule congs.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 234

Replacing Some Occurrences

The notation t|z; « x1,..., 2, < x,] stands for the term obtained from
t by simultaneously replacing each z; (i € {1,...,n}) with x;.

21 < X1,...,2, < X,| is called a substitution.

To have an unambiguous notation for “replacing some occurrences of
x1,...,%Tn, , We start from a term t containing variable occurrences

21y ..., 2n. On the LHS, these are replaced with x4, ..., x,, on the RHS
they are replaced with y1,...,vy,. So on the RHS we have a term
obtained from the one on the LHS by replacing some occurrences of
X1y, Ty WIth y1,...,Yp.

One can say that the 21, ..., 2, are introduced to mark the occurrences
of x1,...,x, that should be replaced by y1, ..., y,.

Note that in the schematic formulation of the rule, we use letters x and
y to suggest variables, but the rule applies to arbitrary terms. The z's

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

235

however are variables (substitutions replace variables, not arbitrary

terms).

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 236

Example: 224+ y> > 12 -2
The atom z? + y? > 12 - x contains two occurrences of z. There are four
ways to choose some occurrences of z in 2 + y* > 12 - .

Each of those ways corresponds to an atom obtained from

r? 4+ y? > 12 - x by replacing some occurrences of = with z. That is,
there are four different A's such that A[z/z] = 2% + y* > 12- 2. Now
the atom above the line in the examples is obtained by substituting = for
2, and the atom below the line is obtained by substituting y for z.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 237

Isabelle Rule
The Isabelle FOL rule is:

In this rule, P is an Isabelle metavariable.

Why doesn't the Isabelle rule contain a z to mark which occurrences
should be replaced?

We cannot understand this yet, but think of P as a formula where some
positions are marked in such a way that once we apply P to t (we write
P(t)), t will be inserted into all those positions. This is why P(x) is a
formula and P(y) is a formula obtained by replacing some occurrences of
x with y.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

238

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

First-Order Theories

First-Order Theories 240

What Is a Theory?

Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols
for which certain “laws” hold.

Depending on the context, these symbols may co-exist with
other symbols.

Technically, the laws are added as rules (in particular,
axioms) to the proof system.

A structure in which these rules are true is then called a
model of the theory.

Smaus: CSMR; WS08/09 Mig

Example 1: Partial Orders

241

Example 1: Partial Orders

e The language of the theory of partial orders: <

Smaus: CSMR; WS08/09

Example 1: Partial Orders

241

Example 1: Partial Orders

e The language of the theory of partial orders: <

e Axioms

Ve,y,z.e <yhNy<z—x <z
Ve,yr<yANy<xz =1y

Smaus: CSMR; WS08/09

Example 1: Partial Orders 241

Example 1: Partial Orders

e The language of the theory of partial orders: <

e Axioms

Ve,y,z.x <yAhy<z—ox <z
Ve,yx <yANy<r<—x=y
e Alternative to axioms is to use rules
TSy Ysz TSY Y=S7T T =1y

trans antisym <-refl
r <z T =1 r <

Such a conversion is possible since implication is the main
connective.

Smaus: CSMR; WS08/09 Mig

Example 1: Partial Orders 242

A Second Transitivity Rule
One may also consider adding the rule
L =1Y
Yy

<-refl2

to the system. This rule can be derived as follows:

i ysym
—’

) <-refl

Yy x

Smaus: CSMR; WS08/09 Mig

Example 1: Partial Orders 243

More on Orders

e A partial order < is a linear or total order when
Ve,yrz<yVy<ux

Note: no “pure” rule formulation of this disjunction.

Smaus: CSMR; WS08/09 Mig

Example 1: Partial Orders 243

More on Orders

e A partial order < is a linear or total order when
Ve,yrz<yVy<ux

Note: no “pure” rule formulation of this disjunction.

e A total order < is dense when, in addition
Ve,y.x <y — Jdz(r <zAz<y)

What does < mean?

Smaus: CSMR; WS08/09 Mig

Example 1: Partial Orders 244

Structures for Orders . ..
Give structures for orders that are . . .
1. not total:

&
0nn

Smaus: CSMR; WS08/09

Example 1: Partial Orders 244

Structures for Orders . ..
Give structures for orders that are . . .
1. not total: C-relation;

2. total but not dense:

Smaus: CSMR; WS08/09 Mig

Example 1: Partial Orders

244

Structures for Orders . ..

Give structures for orders that are . . .
1. not total: C-relation:;
2. total but not dense: integers with <;

3. dense:

Smaus: CSMR; WS08/09

Example 1: Partial Orders

244

Structures for Orders . ..

Give structures for orders that are . . .
1. not total: C-relation:;
2. total but not dense: integers with <;

3. dense: reals with <.

Smaus: CSMR; WS08/09

Example 2: Groups 245

Example 2: Groups

e Language: Function symbols _-_, _ 71 ¢

&
0nn

Smaus: CSMR; WS08/09

Example 2: Groups 245

Example 2: Groups

e Language: Function symbols _-_, _ 71 ¢

e A group is a model of

Ve,y,z.(x-y) -z = x-(y-z) (assoc)
Ve.x-e = x (r-neutr)
Ve.z-x71 = e (r-inv)

It is an example of an equational theory.

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 245

Example 2: Groups

e Language: Function symbols _-_, _ 71 ¢

e A group is a model of

Ve,y,z.(x-y) -z = x-(y-z) (assoc)
Ve.x-e = x (r-neutr)
Ve.z-x71 = e (r-inv)

It is an example of an equational theory.
Two theorems: (1) z ! -z =eand (2) ez ==
We will now prove them.

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
r (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
r (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
x (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Vr,y,z.(x-y)-z2 = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Vr,y,z.(x-y)-z2 = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Vr,y,z.(x-y)-z2 = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Vr,y,z.(x-y)-z2 = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e — r (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e — r (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 246

Theorem 1

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups

247

Theorem 2
Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
Vo.x -z} — e (r-inv)
€T =2x (2)

Smaus: CSMR; WS08/09

Example 2: Groups 247

Theorem 2

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

e-x=(x- -z

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 247

Theorem 2

Vr,y,z.(x-y)-z2 = x-(y-2z) (assoc)
Vr.x-e = x (r-neutr)
e

Vo.x -z} — (r-inv)

e-x=(x-v 1)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 247

Theorem 2

Vr,y,z.(x-y)-z2 = x-(y-2z) (assoc)
x (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

e-r=ux (2)

e-x=(x-z) z=z (z! x)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 247

Theorem 2

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
x (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

e-r==x (2)

ecx=(r -z). z=x-(z'-x2) (Theorem 1)

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 247

Theorem 2

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
x (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

e-r=ux (2)

ex=(x-z) v=z-(z!l-x)=x-¢

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 247

Theorem 2

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
r (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

e-r=ux (2)

ex=(x-z) v=z-(zl-2)=x-¢

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 247

Theorem 2

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
r (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

e-r=ux (2)

ex=(x-z) o=z (!l 2)=x-e=2x

Smaus: CSMR; WS08/09 Mig

Example 2: Groups 247

Theorem 2

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
x (r-neutr)
e (r-inv)

Ve.x - e
1

Voe.x-x~

e-r==x (2)

ex=(x-z) v=z-(z! 2)=x-e=u.

Smaus: CSMR; WS08/09 Mig

Lessons Learned from these Examples 248

Lessons Learned from these Examples

Equational proofs are often tricky!
e Equalities used in different directions, “eureka” terms, etc.

e In some cases (the word problem is) decidable.

Smaus: CSMR; WS08/09 Mig

Lessons Learned from these Examples 249

Equational versus ND Proofs

e Above proofs were of a particular, equational form.

&
0nn

Smaus: CSMR; WS08/09

Lessons Learned from these Examples 249

Equational versus ND Proofs
e Above proofs were of a particular, equational form.

e In Isabelle this is accomplished by term rewriting.

Term rewriting is a process for replacing equals by equals
(see later).

Smaus: CSMR; WS08/09 Mig

Lessons Learned from these Examples 249

Equational versus ND Proofs
e Above proofs were of a particular, equational form.

e In Isabelle this is accomplished by term rewriting.
Term rewriting is a process for replacing equals by equals
(see later).

e Alternative Is natural deduction:
o requires explicit proofs using equality rules;

o tedious in practice. Try it on above examples! pl

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 250

More Detailed Explanations

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations

251

Partial Orders

A partial order is a binary relation that is reflexive, transitive, and
anti-symmetric: a < b and b < a implies a = b.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 252

A Language Consisting of <?
< is (by convention) a binary infix predicate symbol.

The theory of partial orders involves only this symbol, but that does not
mean that there could not be any other symbols in the context.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 253

Antisymmetry and Reflexivity

Note that Vz,y.z <y Ay < x < x = y encodes both antisymmetry
(—) and reflexivity («—). Recall that A «+» B as shorthand for
A— BANB — A.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 254

Transitivity

The axiom Vz,y,z.2 <y Ay < z — x < z encodes transitivity.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 255

Axioms vs. Rules
One can see that using —-/ and —-E, one can always convert a proof
using the axioms to one using the proper rules.

More generally, an axiom of the form Vxq,...,2,. A1 AN...NA,, — B
can be converted to a rule

A . A,
B

Do it in Isabelle!

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 256

Linear and Dense Orders

We define these notions according to usual mathematical terminology.
A partial order < is a linear or total order if for all a, b, either a < b or
b < a.

A partial order < is dense if for all a, b where a < b, there exists a ¢ such
that ¢ < ¢ and ¢ < b.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 257

“Pure” Rule Formulation

The axiom Vz,y.x <y Vy < x cannot be phrased as a proper rule in
the style of, for example, the transitivity axiom.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

258

<

We use s < t as shorthand for s <t A —s = t.
We say that < is the strict part of the partial order <.

Back to main referring slide

Smaus: CSMR; WS08/09

xz

nn

More Detailed Explanations 259

The C-Relation

The C-relation is partial but not total. As an example, consider the
C-relation on the set of subsets of {1,2}.

1,2}

/N

1} 12}

N/

0

Depicting partial orders by a such a graph is quite common. Here, node
a is below node b and connected by an arc if and only if a < b and there
exists no ¢ with a < ¢ < b.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 260

In this example, we have the partial order

{(0,0), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(0,{1}), (0, {1}), {1}, {1, 2}), ({1}, {1,2})}.

Back to main referring slide

Smaus: CSMR; WS08/09

More Detailed Explanations 261

Group Language

_ - _is a binary infix function symbol (in fact, only - is the symbol, but
the notation _ - _ is used to indicate the fact that the symbol stands

between its arguments).

_—!is a unary function symbol written as superscript. Again, the _ is

used to indicate where the argument goes.
e is a nullary function symbol (= constant).

Note that groups are very common in mathematics, and many different

notations, i.e., function names and fixity (infix, prefix. . .) are used for
them.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations

262

Group

In general mathematical terminology, a group consists of three function

symbols _- _, _ 71

, €, obeying the following laws:

Associativity (a-b)-c=a- (b-c) for all a,b,c,

Right neutral a - e = a for all q,

Right inverse a - a™

1

— e for all a.

Back to main referring slide

Smaus: CSMR; WS08/09

3

nn

More Detailed Explanations 263

Equational Theory

An equational theory is a set of equations. Each equation is an axiom.

Sometimes, each equation is surrounded by several V-quantifiers binding
all the free variables in the equation, but often the equation is regarded
as implicitly universally quantified.

More generally, a conditional equational theory consists of proper rules
where the premises are called conditions [Hol90].

Note also that sometimes, one also considers the basic rules of equality
as being part of every equational theory. Whenever one has an
equational theory, one implies that the basic rules are present; whether or
not one assumes that they are formally elements of the equational theory
Is just a technical detail.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 264

A Model a Group?

A model of the group axioms is a structure in which the group axioms
are true.

However, when we say something like, “this model is a group”, then this
Is a slight abuse of terminology, since there may be other function
symbols around that are also interpreted by the structure.

So when we say “this model is a group”, we mean, “this model is a
model of the group axioms for function symbols _- _, _~! and e clear
from the context”.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 265

“Eureka’” terms

By “eureka” terms we mean terms that have to be guessed in order to
find a proof. At least at first sight, it seems like these terms simply fall
from the sky.

The Greek cupexa (heureka) is 1st person singular perfect of suploxety
(heuriskein), “to find”. It was exclaimed by Archimedes upon discovering
how to test the purity of Hiero's crown.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 266

The Word Problem

The word problem w.r.t. an equational theory (here: the group axioms)
Is the problem of deciding whether two terms s and ¢ are equal in the
theory, that is to say, whether the formula s =t is true in any model of
the theory.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 267

Equational Proofs

An equational proof consists simply of a sequence of equations, written
as t1 =to = ... =1,, where each t;, is obtained from ¢; by replacing
some subterm s with a term s’, provided the equality s = s’ holds.
This style of proof can be justified by the rules given for equality, in

particular the congruences. However, it looks very different from the
natural deduction style.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

Theorem 1

r-neutr rl.r=e ecx=x- (')

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

Theorem1 (z-27)-z=a-(z =) ecx=(z-)z

r-neutr rl.r=e ecx=x- (')

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

aSSoC

Theorem 1 (z-z) z=z (7" =) e-x=(rx -z ') x
r-neutr L e = o e-a::a:-(a:_l-a;)
T-e=1m e-rT=x-e€
e T ==z

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

d530¢ e=x-x ° e-r—=e-x
_ -1 —1
Theorem1 (z-z7 ') -z=x-(z" =) e-x=(z-x) x
r-neutr rl.r=e ecx=x- (')
r-e==x e-xr=x-e€
e-r==x

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

sym
assoc e — 3.1 P ———
Theorem 1 (33'55_1)'33:33'(33_1'33) e-m:(aj-a:_l)-a:
r-neutr L e = o e-a::a:-(a:_l-a;)
rT-e=2x e-rT=1x-e
e- T =2z

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

sym
assoc e — 3.1 P ———
Theorem 1 (33'55_1)'33:33'(33_1'33) e-m:(aj-a:_l)-a:
r-neutr L e = o e-a::a:-(a:_l-a;)
rT-e=2x e-rT=1x-e
e- T =2z

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

r-inv
:B-a:_l—e
assocC 15ym
e =x-xr e-r—=e-x
(.—1). — .(—1.) i _(.—1).
Theorem 1 T - x r=x- (x 4 e r=(x-x 95
- — —1
r-neutr 1. —¢ e-a::a:-(a: :13)
r-e —=2x e-r=amx-e
e-r=2=mx

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 268

Proof of Theorem 2 by Natural Deduction

r-inv
:B-a:_l—esm
34
_ refl
ClEEoIS e::c-asl e-r—e-x
(.—1). — .(—1.) i _(.—1).
Theorem 1 T - T r=x- (x 5 e - r=(x-x 5
r-neutr L e = o e-a::a:-(a:_l-a;)
r-e=23x e-r—=2mx-e
e - r ==

Most steps use the congruence rule congs.

Each framed box in the derivation tree stands for a sub-tree consisting of
a group axiom and possibly several applications of V-E.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

Naive Set Theory

Naive Set Theory: Basics 270

Naive Set Theory: Basics

e A set is a collection of objects where order and repetition
are unimportant.

Sets are central in mathematical reasoning [Vel94|. E.g.,
set of prime numbers.

Smaus: CSMR; WS08/09 Mig

Naive Set Theory: Basics 270

Naive Set Theory: Basics

e A set is a collection of objects where order and repetition
are unimportant.
Sets are central in mathematical reasoning [Vel94|. E.g.,
set of prime numbers.

e In what follows we consider a simple, intuitive
formalization: “naive set theory".

We will be somewhat less formal than usual. Our goal is
to understand standard mathematical practice.

Later, in HOL, we will be completely formal.

Smaus: CSMR; WS08/09 Mig

Naive Set Theory: Basics

271

Sets: Language

Assuming any first-order language with equality, we add:

e set-comprehension {x|P(x)} and a binary membership
predicate €.

Smaus: CSMR; WS08/09

Naive Set Theory: Basics 271

Sets: Language

Assuming any first-order language with equality, we add:
e set-comprehension {x|P(x)} and a binary membership
predicate €.

e Term /formula distinction inadequate: need a syntactic
category for sets.

Smaus: CSMR; WS08/09 Mig

Naive Set Theory: Basics 271

Sets: Language

Assuming any first-order language with equality, we add:

e set-comprehension {x|P(x)} and a binary membership
predicate €.

e Term /formula distinction inadequate: need a syntactic
category for sets.

e We will be more formal about syntax later (HOL).

Smaus: CSMR; WS08/09 Mig

Naive Set Theory: Basics 271

Sets: Language

Assuming any first-order language with equality, we add:

e set-comprehension {x|P(x)} and a binary membership
predicate €.

e Term /formula distinction inadequate: need a syntactic
category for sets.

e We will be more formal about syntax later (HOL).

e Comprehension is a binding operator: x bound in

| P(2)}

Smaus: CSMR; WS08/09 Mig

Naive Set Theory: Basics 272

Examples
e Vr.x € {yly mod 6 =0} — (z mod 2 =0Ax mod 3 = 0).

Smaus: CSMR; WS08/09 Mig

Naive Set Theory: Basics 272

Examples
e Vr.x € {yly mod 6 =0} — (z mod 2 =0Ax mod 3 = 0).
e What does the following say?

2 € {w|6 ¢ {x|z is divisible by w}}

Smaus: CSMR; WS08/09 Mig

Naive Set Theory: Basics 272

Examples
e Vr.x € {yly mod 6 =0} — (z mod 2 =0Ax mod 3 = 0).
e \What does the following say?

2 € {w|6 ¢ {x|z is divisible by w}}

Answer: 6 ¢ {x|x divisible by 2} i.e., 6 not divisible by 2.

Smaus: CSMR; WS08/09

Naive Set Theory: Basics 273

Proof Rules for Sets

Introduction, elimination, extensional equality

P(t) t € {z|P(x)}
compr-| compr-E
t € {x|P(x)} P(t)
Ve.re A—x B | A=2B -
A=0B - Yr.xeAeozxeB

The following equivalence is derivable:

Vz. P(z) < = € {y|P(y)}

Smaus: CSMR; WS08/09

Digression: Sorted Reasoning 274

Digression: Sorted Reasoning

e In mathematical arguments we often (implicitly) assume
that variables are restricted to some universe of discourse.

E.g., ° < 9 (universe either R, N, . . .)

e To avoid ambiguity we can include sort information in
formulae:

members x of U where P(x) = {z € U|P(x)}

Formally

{z € U|P(z)} = {z |z € UA P}

Smaus: CSMR; WS08/09 Mig

Digression: Sorted Reasoning 275

Sorted Reasoning in an Unsorted Logic

We may introduce the additional set comprehension syntax
{x € U|P(x)}, but our logic is still unsorted. We have

yeweU|P(x)} —yeir|recUNP(z); < Uy)AP(y)

Smaus: CSMR; WS08/09 Mig

Digression: Sorted Reasoning 276

Sorted Quantification

Ve € U. P(x)
dr € U. P(x)

Ve.x € U — P(x)
dr.x € U A P(x)

Smaus: CSMR; WS08/09

Operations on Sets

277

Operations on Sets

e Functions on sets

ANB = {zxjlr € ANz € B}
AUB = {z|lre AVx e B}
A\ B = {zjr € ANz & B}

e Predicates on sets

ACB=Vz.x e A—-xe B

Smaus: CSMR; WS08/09

Operations on Sets 278

Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

Smaus: CSMR; WS08/09 Mig

Operations on Sets 278

Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

Smaus: CSMR; WS08/09 Mig

Operations on Sets 278

Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

ANB

Smaus: CSMR; WS08/09 Mig

Operations on Sets 278

Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

AUB

Smaus: CSMR; WS08/09 Mig

Operations on Sets 278

Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

A\ B

Smaus: CSMR; WS08/09 Mig

Operations on Sets 279

Correspondence between Set-Theoretic and
Logical Operators

rcEANB < € ANz EB
rcEAUB < € AVxERB
re A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the
set-theoretic operators and Vz. P(x) < x € {y|P(y)}.

Smaus: CSMR; WS08/09 Mig

Operations on Sets 279

Correspondence between Set-Theoretic and
Logical Operators

rcEANB < € ANz EB
rcEAUB < € AVxERB
re A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the
set-theoretic operators and Vz. P(x) < x € {y|P(y)}.

Example: what is the logical form of
re(ANB)U(ANC))?

Smaus: CSMR; WS08/09

Operations on Sets 279

Correspondence between Set-Theoretic and
Logical Operators

rcEANB < € ANz EB
rcEAUB < € AVxERB
re A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the
set-theoretic operators and Vz. P(x) < x € {y|P(y)}.
Example: what is the logical form of
re(ANB)U(ANC))?

(re ANz eB)V(xe ANz e C)

Smaus: CSMR; WS08/09

Operations on Sets 280

Proof of AN(BUC)=(ANB)UANC)

Smaus: CSMR; WS08/09

Operations on Sets 280

Proof of AN (BUC)=(ANB)UANC) (1)

Venn diagram (lIs this a proof?)

Smaus: CSMR; WS08/09

Operations on Sets 281

Proof of AN(BUC)=(ANB)U(ANC) (2)

Natural deduction (natural language)

Smaus: CSMR; WS08/09

Operations on Sets 281

Proof of AN(BUC)=(ANB)U(ANC) (2)

Natural deduction (natural language)
By extensionality, suffices to show

Ve.x e AN (BUC)«—ze€(ANB)U(ANCQC).

Smaus: CSMR; WS08/09

Operations on Sets 281

Proof of AN(BUC)=(ANB)U(ANC) (2)

Natural deduction (natural language)
By extensionality, suffices to show

Ve.x € AN(BUC)—ze(ANB)U(ANC).

For an arbitrary z, this is equivalent to establishing

(xe AN(xreBVvzel)) <
(re ANzeB)V(xe ANz e C)

Smaus: CSMR; WS08/09

Operations on Sets 281

Proof of AN(BUC)=(ANB)U(ANC) (2)

Natural deduction (natural language)
By extensionality, suffices to show

Ve.x € AN(BUC)—ze(ANB)U(ANC).

For an arbitrary z, this is equivalent to establishing

(xe AN(xreBVvzel)) <
(re ANzeB)V(xe ANz e C)

But that Is a propositional tautology.

Smaus: CSMR; WS08/09

Operations on Sets 282

Same in Isabelle

Last proof carries over to Isabelle: extensionality, rewriting,
tautology checking. Do it!

Smaus: CSMR; WS08/09 Mig

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Smaus: CSMR; WS08/09 Mig

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.

Smaus: CSMR; WS08/09 Mig

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.
Let = be element of (AU B) \ B.

Smaus: CSMR; WS08/09

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.
Let = be element of (AU B) \ B.
So(x€e AVx e B)\N—x € B.

Smaus: CSMR; WS08/09

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.
Let = be element of (AU B) \ B.
So(x€e AVx e B)\N—x € B.
Therefore x € A.

Smaus: CSMR; WS08/09

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let = be element of (AU B) \ B.

So(x€e AVx e B)\N—x € B.
Therefore x € A.

Therefore x € (AUB)\ B — z € A.

Smaus: CSMR; WS08/09

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let = be element of (AU B) \ B.

So(x€e AVx e B)\N—x € B.
Therefore x € A.

Therefore x € (AUB)\ B — z € A.
nerefore (AU B) \ B) C A.

Smaus: CSMR; WS08/09

Operations on Sets 283

Prove: for all Sets A and B, (AUB)\B)C A

Let's try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let = be element of (AU B) \ B.

So(x€e AVx e B)\N—x € B.
Therefore x € A.

Therefore x € (AUB)\ B — z € A.
nerefore (AU B) \ B) C A.

Combination of forward reasoning with backward reasoning.
This iIs common In practice and usually easy to unscramble.

Smaus: CSMR; WS08/09

Extending Set Comprehensions 284

Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions 284

Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Now what do you think this is?

(@) P(z);

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions 284

Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Now what do you think this is?

(@) P(z)} = y[3e. P(z) Ny = f(z)}

Smaus: CSMR; WS08/09

Extending Set Comprehensions 284

Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Now what do you think this is?

(@) P(z)} = y[3e. P(z) Ny = f(z)}

Example: ¢t € {z?|z > 5} equivalent to

Smaus: CSMR; WS08/09

Extending Set Comprehensions 284

Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Now what do you think this is?

(@) P(z)} = y[3e. P(z) Ny = f(z)}

Example: t € {z*|x > 5} equivalent to Jz. 2 > 5 At = z*.
True for t € {36,49, ...}

Smaus: CSMR; WS08/09

Extending Set Comprehensions 285

Indexing

Sometimes, it is natural to denote a function f applied to an
argument = as “f indexed by z", so f,, rather than f(x).

&
0nn

Smaus: CSMR; WS08/09

Extending Set Comprehensions 285

Indexing

Sometimes, it is natural to denote a function f applied to an
argument = as “f indexed by z", so f,, rather than f(x).

Example: let S = set of students and let m, stand for “the
mother of s”, for s a student. Call S an index set.

r € {msls e S} « ze&{ylds.s€ SNy =m}
— ds.s € S ANx = mg

— ds e S.x=mg

Uses extended comprehensions, indexing syntax, and sorted
quantification.

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions 286

Logical Forms of the New Notation
Question: what is the logical form of {z;|z € I} C A7

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions 286

Logical Forms of the New Notation
Question: what is the logical form of {z;|z € I} C A7

Ve.x e {x;lt €[} - x €A, ie,
Ve.(hel.x=ux;) —x e A

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions 286

Logical Forms of the New Notation
Question: what is the logical form of {z;|z € I} C A7

Ve.x e {x;lt €[} - x €A, ie,
Ve.(hel.x=ux;) —x e A
Intuition suggests that Vi € I.x; € A is also correct, i.e.,

(Ve (diel.x=z) Dax€A) - (Viel.x, € A).

Proving this would be another exercise on using extended
comprehensions, indexing syntax, and sorted quantification.

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions 287

Powersets
p(A) = {z]z C A},
What is the logical form of:
1. x € p(A)?

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions 287

Powersets
p(A) = {z]z C A},
What is the logical form of:
1. x € p(A)?
rCAie,Vy(yecex—yeA
2. p(A) C p(B)?

Smaus: CSMR; WS08/09 Mig

Extending Set Comprehensions

287

Powersets

p(A) =zl € A},

What is the logical form of:
1. x € p(A)?
rCAie,Vy(yecex—yeA
2. p(A) C p(B)?
Ve.x € p(A) — x € p(B), i.e.,

Smaus: CSMR; WS08/09

Extending Set Comprehensions

287

Powersets

p(A) =zl € A},

What is the logical form of:

1. x € p(A)?
rCAie,Vy(yecex—yeA

2. p(A) C p(B)?
Vo.x € p(A) — x € p(B), i.e.,
V.t CA—-2CB, ie.,

Smaus: CSMR; WS08/09

Extending Set Comprehensions 287

Powersets
o(A) = {zlz C A}

What is the logical form of:
1. x € p(A)?

rCA ie, Yy (yex —yeA
2. p(A) C p(B)?

Ve.x € p(A) — x € p(B), i.e.,

Ve.xr CA—xCBHB,ie.,

Ve.Vy.yex—yeA) - Vyyex—yeB)
Exercise: prove that the last answer is equivalent to A C B,
le., Ve.xr € A — x € B.

Smaus: CSMR; WS08/09

MiS
Ml

Outlook 288

Outlook

Sets can have other sets as elements.

Implicitly assume that universe of discourse is collection of
all sets.

&
0nn

Smaus: CSMR; WS08/09

Outlook 289

Russell’s Paradox

Suppose U :={x | T}. Then U € U.
Quite strange but no contradiction yet.

Smaus: CSMR; WS08/09 Mig

Outlook 289

Russell’s Paradox
Suppose U :={x | T}. Then U € U.
Quite strange but no contradiction yet.
Now split sets into two categories:
1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R :={A|A & A}.

Smaus: CSMR; WS08/09

Outlook 289

Russell’s Paradox
Suppose U :={x | T}. Then U € U.
Quite strange but no contradiction yet.
Now split sets into two categories:
1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R :={A|A & A}.
Assume R € R. By the definition of R, this means

R e {A|A & A}. Using compr-E, this implies R ¢ R.

Now assume R ¢ R. Using compr-I, this implies

R e {A|A & A}. By the definition of R, this means R € R.
What does this tell us about sets?

Smaus: CSMR; WS08/09 Mig

Outlook 290

Where Do We Go from here?

e The A-calculus as basis for a metalanguage to avoid
notational confusion

Smaus: CSMR; WS08/09 Mig

Outlook 290

Where Do We Go from here?

e The A-calculus as basis for a metalanguage to avoid
notational confusion

e Resolution and other deduction techniques: understanding
Isabelle better and achieving a higher level of automation

Smaus: CSMR; WS08/09 Mig

Outlook 290

Where Do We Go from here?

e The A-calculus as basis for a metalanguage to avoid
notational confusion

e Resolution and other deduction techniques: understanding
sabelle better and achieving a higher level of automation

e Higher-order logic: a formalism for (among other things)
non-nalve set theory Pl

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 291
More Detailed Explanations
Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 292

Set Comprehension

Set comprehension is a way of defining sets. {x|P(x)} stands for the set
of elements of the universe for which P(x) (some formula usually
containing x) holds.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 293

Is a Set a Term?

It is more adequate to regard a set as a term than as a formula. A set is
a ‘thing”, not a statement about “things”.

After all, we have the predicate € expecting a set on the RHS (and even
the LHS may be a set!), and predicates take terms as arguments.
However, the syntax used in set comprehensions is not legal syntax for
terms, since P(x) is a formula.

This is why we introduce a special syntactic category for sets.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 294

Extensional Equality

Two things are extensionally equal if they are “equal in their effects”.
Thus two sets are equal if they have the same members, regardless of
what syntactic expressions are used to define those sets.

Note that extensional equality may be undecidable.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 295

Deriving Equivalence for Comprehensions

[P(z)]" , 1z {ylP(y)}]

compr- compr-E

z €{y|P(y)} P(x)
P(z) — ze{ylP(y)}

Va. P(x) « = € {y|P(y)}

1

V-1

Rule V-/ was defined in a previous lecture.

Back to main referring slide

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 296

Universes

We already know what a universe or domain is. To interpret a particular
language, we have a structure interpreting all function symbols as
functions on the universe.

However, it is often adequate to subdivide the universe into several
“sub-universes’ . Those are called sorts. Note that a sort is a set.

For example, in a usual mathematical context, one may distinguish R

(the real numbers) and N (the natural numbers) to say that /x requires
x to be of sort R and z! requires x to be of sort N.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 297

Avoiding Ambiguity
We want to make explicit the sort of the variable in question. So we do
not want the set of all x such that P(x) holds, but only the ones of the
right sort, so the ones for which x € U (U being the sort/universe) holds.
The whole expression {x € U|P(x)} is a special kind of syntax.
Therefore, you must look at it as a whole: it makes no sense to see any

meaning just in, say, the bit x € U in this expression. |t is called set
comprehension, and it is defined by

{reU|P(zx)} ={x|z€UAP(z)}.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 298

Sorted Logic

In sorted logic, sorts are part of the syntax. So the signature contains a
fixed set of sorts. For each constant, it is specified what its sort is. For
each function symbol, it is specified what the sort of each argument is,
and what the sort of the result is. For each predicate symbol, it is
specified what the sort of each argument is.

Terms and formulas that do not respect the sorts are not well-formed,
and so they are not assigned a meaning.

In contrast, our logic is unsorted. The special syntax we provide for
sorted reasoning is just syntactic sugar, i.e., we use it as shorthand and
since it has an intuitive reasoning, but it has no impact on how
expressive our logic is.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 299

Sorted Quantification

So Vx € U. P(x) is simply a shorthand or syntactic sugar for
Vx.x € U — P(x), and analogously for 9x € U. P(x).

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 300

Set Functions

M i1s called intersection.
U 1s called union.
\ is called set difference.

C is called inclusion.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 301

The Logical Form

When we transform an expression containing set operators N, U, \, C into
an expression using A, V, -, —, we call the latter the logical form of the
expression.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 302

Is a Venn Diagram a Proof?

A Venn diagram draws sets as bubbles. Intersecting sets are drawn as

overlapping bubbles, and the overlapping area is meant to depict the
Intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof according to usual
mathematical practice. If it is unknown whether two sets have a
non-empty intersection, how are we supposed to draw them? Trying to
make a case distinctions (drawing several diagrams depending on the
cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they are not
proofs.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

303

Natural Language

We intersperse formal notation with natural language here in order to

give an intuitive and short proof.

We can also do this more formally in Isabelle.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 304

Explanations for each Step

Let A and B be arbitrary sets. (V-)

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 304

Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 304

Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 304

Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
Therefore x € A (P follows from (P V Q) A =Q)

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 304

Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
Therefore x € A (P follows from (P V Q) A =Q)
Therefore t € (AUB)\ B —-xz€ A (—> /)

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 304

Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
Therefore x € A (P follows from (P V Q) A =Q)
Therefore t € (AUB)\ B —-xz€ A (—-/)
Therefore (AUB)\ B)C A (def of C)

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations

304

Explanations for each Step

Let A and B be arbitrary sets. (V-
Let = be an element of (AU B) \ B (temporary assumption
So(re AVxe B)A—-xz € B (equivalent proposition
Therefore x € A (P follows from (P V Q) A
Therefore t € (AUB)\ B —-xz€ A (—>l
Therefore (AUB)\ B)C A (def of C

Concerning forward and backwards reasoning, one may look at it as
follows: we first construct the derivation step at the root of the proof
tree (V-/), and then we jump to a leaf (by making the temporary
assumption) and work downwards from there.

Back to main referring slide

)
)
)
—Q)
)
C)

Smaus: CSMR; WS08/09

3

nn

More Detailed Explanations

305

Definition of C

{x;liel} CA=Ve.xe{x;liecl} -xc A

follows from the definition of C.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 306

Details of Logical Form

We want to show

Ve.xe{xliel} »xcA=Va. (Fielx=x)—xzeA

ZEE{Q%’ZEI}
re{yldi.ie INy =x;}
.1 el Nz = x5

el .x=ux

(def. of notation)
compr-1
(Sorted quantification)

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 307

Intuition for Indexed Sets

It may be helpful to pronounce both forms out loud in natural language
to get an intuitive feeling that they are equivalent.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 308

Proof

Want to prove

Ve (Fdiel.x=x;) D€ A) - (Viclx, €A

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 308

Proof

Want to prove

Ve (Fdiel.x=x;) D€ A) - (Viclx, €A

[—

Let ¢ € I be arbitrary. Now from assumption (for the instance x;) we
have (3j € I.x; = x;) — x; € A. But premise is true for i = j, so
x; € A.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 308

Proof

Want to prove

Ve (Fdiel.x=x;) D€ A) - (Viclx, €A

[—

Let ¢ € I be arbitrary. Now from assumption (for the instance x;) we
have (3j € [.x; = z;) — x; € A. But premise is true for i = j, so
x; € A.

[<

Let x be arbitrary and assume 3¢ € I.x = x;. So for some ¢ € I, we
have t = x;. Now Ve € I.x; € A. Hence x € A.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 309

“—" In more detail: Want to prove

Ve (dielx=x,) mz€A) - (Vieclx, €A

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 309

“—" In more detail: Want to prove
Ve (dielx=x,) mz€A) - (Vieclx, €A

We show Vi € I.x; € A assuming Vx.(di € [.x = x;) — x € A.

So we show that for arbitrary ¢ € I, assuming
Ve (diel.x =x;) > x € A, we have z; € A. So let ¢ € I be arbitrary.

Since we have Vx.(3t € [.x = x;) — x € A, by rule V-E we can
specialize to (3j € I.x; = z;) — x; € A. But premise (35 € [.z; = x,)
iIs true for + = 7, and so x; € A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using
Isabelle.

“«" In more Detail: Want to prove

Ve (diel.x=x,) €A (Viclx;, €A

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 309

“—" In more detail: Want to prove
Ve (dielx=x,) mz€A) - (Vieclx, €A

We show Vi € I.x; € A assuming Vx.(di € [.x = x;) — x € A.

So we show that for arbitrary ¢ € I, assuming
Ve (diel.x =x;) > x € A, we have z; € A. So let ¢ € I be arbitrary.

Since we have Vx.(3t € [.x = x;) — x € A, by rule V-E we can
specialize to (3j € I.x; = z;) — x; € A. But premise (35 € [.z; = x,)
iIs true for + = 7, and so x; € A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using
Isabelle.

“«" In more Detail: Want to prove

Ve (diel.x=x,) €A (Viclx;, €A

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 310

We show Vz.(di € [.x = x;) — x € A, assuming Vi € [.x; € A.

So we show that for arbitrary z, assuming Vi € I.x; € A, we have
(Fiel.x =x;) - x € A. So let x be arbitrary.

Toshow (i€ l.x =x;) > x € A, assume Ji € [.x = ;. So for some
v € I, we have £ = x;. Now by our earlier assumption Vi € I.x; € A,
and so it follows that z € A. thus we have shown x € A under the
assumption (3¢ € I.x = x;), thus we have shown

(diel.x =x;) — x € A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using
Isabelle.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 311

Collections and Sets

We speak of collection of all sets rather than set of all sets in order to
pretend that we are being careful since we are not sure if there is such a
thing as a set of all sets. Therefore we use the “neutral” word collection
whose meaning is obvious. . .

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 311

Collections and Sets

We speak of collection of all sets rather than set of all sets in order to
pretend that we are being careful since we are not sure if there is such a

thing as a set of all sets. Therefore we use the “neutral” word collection
whose meaning is obvious. . .

Is it?

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 311

Collections and Sets

We speak of collection of all sets rather than set of all sets in order to
pretend that we are being careful since we are not sure if there is such a
thing as a set of all sets. Therefore we use the “neutral” word collection
whose meaning is obvious. . .

Is it?

Recall that we have defined set as collection of objects in the first place.

So it is rather futile to suggest now that there should be some difference
between collections and sets.

The fact of the matter is: the approach of allowing arbitrary collections
of “objects” and regarding such collections as “objects” themselves is
naive. We will see this shortly.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 312

What does this Tell us about Sets?

It tells us that there can be no such thing as the set of all sets.

The fundamental flaw of naive set theory is in saying that a set is a
collection of “objects” without worrying what an object is. If we make
no restriction as to what an object is, then a set is obviously also an
object. But then we effectively base the definition of the new concept set
on the existence of sets, so the definition is circular.

The intuition for the solution to this dilemma is not difficult: A set is a
collection of objects of which we are already sure that they exist. In
particular, since we are only just about to define sets, these objects may
not themselves be sets.

Once we have such sets, we can introduce ‘“sets of second order”, that
IS, sets that contain sets of the first kind. This process can be continued
ad infinitum.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

313

The formal details will come later.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 314

True

Assume that T is syntactic sugar for a proposition that is always true,
say | = 1L — L. We have not introduced this, but it is convenient.

So semantically, we have I 4(T) =1 for all I 4.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 315

A Strange Set Comprehension

Recall that a set comprehension has the form {x|P(z)}, where P(x) is a
formula usually containing x.

The set comprehension U := {x | T} is strange since T does not contain
x.

But by the introduction rule for set comprehensions, this means that

x € U for any x. Thus in particular, U € U.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 316

Higher-Order Logic
Higher-order logic is a solution to the dilemma posed by Russell’s

paradox.

It is a surprisingly simple formalism which can be extended
conservatively: this means that it can be ensured that the extensions
cannot compromise the truth or falsity of statements that were already

expressible before the extension.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

The)\-Calculus

The \-Calculus 318

The)\-Calculus: Motivation

A way of writing functions. E.g., Ax.x + 5 is the function
taking any number n to n + 5. Theory underlying functional
programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical)
computer science!

Smaus: CSMR; WS08/09 Mig

The \-Calculus 318

The)\-Calculus: Motivation

A way of writing functions. E.g., Ax.x + 5 is the function

taking any number n to n 4+ 5. Theory underlying functional
programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical)
computer science!

Why is it interesting for us? The A-calculus is used for
representing object logics in Isabelle. It is the core of
Isabelle’s metalogic!

Further reading: [Tho91, chapter 2], [HS90, chapter 1].

Smaus: CSMR; WS08/09

The \-Calculus 319

Outline of this Lecture

e [he untyped A-calculus

e The simply typed A-calculus (A7)
e An extension of the typed A-calculus

e Higher-order unification

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 320

Untyped \-Calculus

From functional programming , you may be familiar with
function definitions such as

fr=x4+5

"he A-calculus is a formalism for writing nameless functions.
"he function Ax.x + 5 corresponds to f.

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 320

Untyped)\-Calculus

From functional programming , you may be familiar with
function definitions such as

fr=x4+5

ne A-calculus is a formalism for writing nameless functions.
ne function Ax.x + 5 corresponds to f.

ne application to say, 3, is written (Azx.x + 5)(3). Its result
Is computed by substituting 3 for z, yielding 3 4+ 5, which in
usual arithmetic evaluates to 8.

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 321

Syntax
(z € Var, c € Const)

e :=x | c| (ee) | (A\x.e)

The objects generated by this grammar are called \-terms or
simply terms.
Conventions: iterated)\ & left-associated application

(Az. (Ay. (Az. ((22)(y2))))) = (Azyz. ((22)(yz)))
Axyz. xz(yz)

Is A\z.x + 5 a A-term?

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 322

Substitution

e Reduction based on substitutions
(Ax.gx3)(5) = (gx3)|xr < 5 =¢g53
e Must respect free and bound variables,

(Az. x(Az.zy))(e) = ((x(Az. 2y)) [z «— €] = e(Ax. zy)

e Same problems as with quantifiers

V. (P(x) A dz. Q(x,y)) Vr. (P(x) A Jy. Q(x,y))
P)AZ2.Qey) T Py)A3Qyz)

Smaus: CSMR; WS08/09

Untyped A-Calculus 323

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same thing here:

M-calculus FOL
FV(x) :=

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 323

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same thing here:

A-calculus FOL
FV(z) :={z} = FV(x)
FVi(c) :=

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 323

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same thing here:

A-calculus FOL
FV(z) :={z} = FV(x)
FV(c):=10 = FV(c)

FV(MN) :=

Smaus: CSMR; WS08/09

Untyped A-Calculus 323

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same thing here:

>\ calculus FOL
FV(2) = {2} — FV(a)
FV(c):=10 = FV(c)
FV(MN):=FV(M)UFV(N) =FV(MAN)
FV(Ax. M) :=

Smaus: CSMR; WS08/09

Untyped A-Calculus 323

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences of
variables in a term. Same thing here:

A-calculus FOL
FV(z) :={z} = FV(x)
(c) := = F'V(c)
FV(MN) := FV(M)U FV(N) = FV(M A N)
V. M) = FV(M)\{x} =FV{Nx.M)

Example: FV (ry(Ayz.2yz)) = {z,y}
A term with no free variable occurrences is called closed.

Smaus: CSMR; WS08/09

Untyped A-Calculus 324

Definition of Substitution
x «+— N| means substitute N for x in M

.xaj<—N —
a

r — N| =
(PQ)lx — N| =

. (Az. P)lx +— N| =
- (Ay. P)z — N| =

Smaus: CSMR; WS08/09

Untyped A-Calculus 324

Definition of Substitution

M|z < N| means substitute N for x in M
l. zlx — N]| =N

2. alx + N| = a if a is a constant or variable other than x
3. (PQ)lx — N] = (Plz — N]Q[z — N])

4. (A\x.P)lx «— N| = Xx. P
5. (A\y. P)|x «— N| = \y. Plx «— N] if y # x and
y & FV(N)
6. (\y. P)|lx «— N| = Az. Ply < z|]|lx — N] if y # = and

y € FV(N), and z is fresh: 2 ¢ FV(N)U FV(P)

Smaus: CSMR; WS08/09

Untyped A-Calculus 324

Definition of Substitution

M|z < N| means substitute N for x in M
l. zlx — N]| =N

2. alx + N| = a if a is a constant or variable other than x
3. (PQ)lx — N] = (Plz — N]Q[z — N])

4. (A\x.P)lx «— N| = Xx. P
5. (A\y. P)|x «— N| = \y. Plx «— N] if y # x and
y & FV(N)
6. (\y. P)|lx «— N| = Az. Ply < z|]|lx — N] if y # = and

y € FV(N), and z is fresh: 2 ¢ FV(N)U FV(P)
Cases similar to those for quantifiers: A\ binding is ‘generic’.

Smaus: CSMR; WS08/09

Untyped A-Calculus 325

Substitution: Example

(x(Ax. 2y))|T — A2. 2]

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 325

Substitution: Example

(x(Ax. 2y))|T — A2. 2] = x|lx — Az. z|(Ax. xy)|x — Az. 2]

= (Az. 2)\x. xy

p—

Smaus: CSMR; WS08/09

Untyped A-Calculus 325

Substitution: Example

(x(Ax. 2y))|T — A2. 2] = x|lx — Az. z|(Ax. xy)|x — Az. 2]

= (Az. 2)\x. xy

p—

(Az. zy)|y « =]

Smaus: CSMR; WS08/09

Untyped A-Calculus 325

Substitution: Example

(x(Ax. 2y))|T — A2. 2] 2 x|lx — Az. z|(Ax. xy)|x — Az. 2]

= (Az. 2)\x. xy

p—

Az.zy)ly — 2] = Az ((zy)[z — 2]y « z])

20 Az (zyly — a))

1
32.1
= \z.2X

In the last example, clause 6 avoids capture, i.e., A\x. zx.

Smaus: CSMR; WS08/09

Untyped A-Calculus 326

Reduction: Intuition

Reduction is the notion of “computing”, or “evaluation”, in
the A-calculus.

fr=xz4+95 ~ f=Ax.x+5
f3=345 ~ (Az.x2+5)(3) =g (x+5)[x—3]=3+5

(-reduction replaces a parameter by an argument.
This should propagate into contexts, e.g.

Az.(Az.x 4+ 5)(3)) —5 Az.(3+ 5).

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 327

Reduction: Definition
o Axiom for 3-reduction: (Az.M)N —s M|x «— N]|

e Rules for 3-reduction of redices in contexts:
M—>5M/ MﬁﬁM/ MﬁﬁM/
X
NM —z NM' MN —3 M'N Az M —g Az. M’

e Reduction is reflexive-transitive closure
M —3 N M HE N N HZ P
M %2 N M —>2 M M %E P

e A term without redices is in 3-normal form.

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 328

Reduction: Examples

(Az. A\y. gz y)ab —4

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 328

Reduction: Examples

(Az. Ay. gz y)ab —p5 (Ay. (gay))b —p

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 328

Reduction: Examples

(Az. A\y. gz y)ab —35 (A\y.(gay))b —pgab

So (Az. A\y.gxy)ab—j5gab
Shows Currying

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 328

Reduction: Examples

(Az. A\y. gz y)ab —35 (A\y.(gay))b —pgab

So (Az. A\y.gxy)ab—j5gab
Shows Currying

(Az.zz)(A\ 20) — 53

Smaus: CSMR; WS08/09

Untyped A-Calculus 328

Reduction: Examples

(Az. A\y. gz y)ab —35 (A\y.(gay))b —pgab

So (Az. A\y.gxy)ab—j5gab
Shows Currying

(Az.z2)(A\2. 20) — 3 (AT 220) (AT 2) —08 . . .

Shows divergence

Smaus: CSMR; WS08/09

Untyped A-Calculus 328

Reduction: Examples

(Az. A\y. gz y)ab —35 (A\y.(gay))b —pgab

So (Az. A\y.gxy)ab—j5gab
Shows Currying

(Az.z2)(A\2. 20) — 3 (AT 220) (AT 2) —08 . . .

Shows divergence

But (Azy.y)((A\z. zx)(Ax.22)) =5 A\Yy. ¥

Smaus: CSMR; WS08/09

Untyped A-Calculus 329

Conversion

e (J-conversion: “symmetric closure” of 3-reduction

MH;N M =4 N
M =3 N N =g M

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 329

Conversion

e (J-conversion: “symmetric closure” of 3-reduction

M—5N M=4N
M=sN N=3M

e o-conversion: bound variable renaming (usually implicit)

Ae. M =, \z.M|x < z| where z & F'V (M)

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 329

Conversion

e (J-conversion: “symmetric closure” of 3-reduction

M—5N M=4N
M=sN N=3M

e o-conversion: bound variable renaming (usually implicit)
Ae. M =, \z.M|x < z| where z & F'V (M)
e 7)-conversion: for normal-form analysis

M=, x. Mz) ifz¢g FV(M)

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus 330

A-Calculus Meta-Properties

Confluence (equivalently, Church-Rosser): reduction is
order-independent.
For all M, Ny, No, if M —>; Ny and M —>2§ N, then there
exists a P where Vy ﬁ; P and N, ﬁz P.
M
/X
N

*

P

S
/

Smaus: CSMR; WS08/09 Mig

Untyped A-Calculus

331

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:

It M —>; Ny and M —>;§ No where N7 and Ny in normal
form, then

Smaus: CSMR; WS08/09

Untyped A-Calculus

331

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:

It M —>}; Ny and M —>;§ No where N7 and Ny in normal
form, then N; =, INs.

Smaus: CSMR; WS08/09

Untyped A-Calculus 331

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:

It M —>}; Ny and M —>;§ No where N7 and Ny in normal
form, then N; =, INs.

Example:

(Azy. y)(Az. zx)a) —5 (Azy.y)(aa) —p Ay.y

(Azy. y)((Az. xx)a) —5 Ay. y

Smaus: CSMR; WS08/09

Untyped A-Calculus 332

Turing Completeness

The A-calculus can represent all computable functions.

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 333

Simple Type Theory A\

Motivation: Suppose you have constants 1, 2 with usual
meaning. Is it sensible to write 1 2 (1 applied to 2)?

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 333

Simple Type Theory A\

Motivation: Suppose you have constants 1, 2 with usual
meaning. Is it sensible to write 1 2 (1 applied to 2)?

A~ (simply typed A-calculus, simple type theory) restricts
syntax to “meaningful expressions’ .
In untyped A-calculus, we have syntactic objects called

terms.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 333

Simple Type Theory A\

Motivation: Suppose you have constants 1, 2 with usual
meaning. Is it sensible to write 1 2 (1 applied to 2)?

A~ (simply typed A-calculus, simple type theory) restricts
syntax to “meaningful expressions’ .

In untyped A-calculus, we have syntactic objects called
terms.

We now Introduce syntactic objects called types.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 333

Simple Type Theory A\

Motivation: Suppose you have constants 1, 2 with usual
meaning. Is it sensible to write 1 2 (1 applied to 2)?

A~ (simply typed A-calculus, simple type theory) restricts
syntax to “meaningful expressions’ .

In untyped A-calculus, we have syntactic objects called
terms.

We now Introduce syntactic objects called types.

We will say “a term has a type’ or “a term is of a type".

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 334

Two Syntaxes
e Syntax for types (B a set of base types, T' € B)

To=T | 7—7

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 334

Two Syntaxes
e Syntax for types (B a set of base types, T' € B)

To=T | 7> 7T

Examples: NN N— N, (N—N) >N, N— N — N

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 334

Two Syntaxes
e Syntax for types (B a set of base types, T' € B)

To=T | 7> 7T

Examples: NN N— N, (N—N) >N, N— N — N

e Syntax for (raw) terms: A-calculus augmented with types
e :==x | c | (ee) | (A\x".¢€)

(z € Var, c € Const)

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 335

Signatures and Contexts

Generally (in various logic-related formalisms) a signature
defines the “fixed” symbols of a language, and a context
defines the “variable” symbols of a language.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 335

Signatures and Contexts

Generally (in various logic-related formalisms) a signature
defines the “fixed” symbols of a language, and a context
defines the “variable”™ symbols of a language. In A7,

e a signature X is a sequence (¢ € Const)
Yu=() | X,e:T

e a context I' is a sequence (x € Var)
o= | a7

What's the difference to signatures you have seen so far?

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 336

Type Assignment Calculus

We now define type judgements: “a term has a type” or “a
term is of a type”. Generally this depends on a signature X
and a context I'. For example

I'Fycx:o

where X =c:7—ocand I =2 : 7.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 336

Type Assignment Calculus

We now define type judgements: “a term has a type” or “a
term is of a type”. Generally this depends on a signature X
and a context I'. For example

I'Fycx:o

where X =c: 7 —ocand '=x: 7.
We usually leave > implicit and write = instead of .
If I' is empty it is omitted.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 337

Type Assignment Calculus: Rules

C:Tezassum Do em Ao ;
R T T, r:7T hyp
I'e:0—717 T'kFe:o I'N'z:oFe:T

app
I'Fee:T FI—)\a?U.e:JﬁTabS

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 337

Type Assignment Calculus: Rules

C:T E),
assum : .
e I'N'e:7,AFx:7 hyp
. /. IN'z:0Fe€:
I’I—e.a—w', Fl—e.aapp r.or€e:.T T be
I'Fee : 7 I'Xxl.e :0—T

Note that rule abs is deterministic when applied bottom-up.
Also note the analogy to minimal logic over —.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 338

(-Reduction in A™

[B-reduction defined as before, has subject reduction property
and is strongly normalizing.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A~ 339

Example 1

= A’ Ay

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A~ 339

Example 1

FXx? Ny x 0 — (T — o)

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 339

Example 1

FAx? ANy o0 — (T — O)abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 339

Example 1

r:obFEANy.x:T >0

FAx? ANy o0 — (T — O)abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 339

Example 1

x:al—)\yT.x:T—wfabs

FAx? ANy o0 — (T — O)abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 339

Example 1

x:0,Yy:THx:0

x:al—)\yT.x:T—wfabs

FAx? ANy o0 — (T — O)abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 339

Example 1

R ~hyp
x:0,Y:THxT:0

$ZO'|_)\yT.$:T—>O'abS

FAx? ANy o0 — (T — O)abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 339

Example 1

hyp

x:0,Y:THxT:0
abs

r:obFEANy.x:T >0

FXx? .o — (T — O)abs

Note the use of schematic types!

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 339

Example 1

x.o,Y:THx:0o

b
ZI?ZO'|_)\yT.$IT—>O'a >

abs
FXx? Ny x 0 — (T — o)
Note the use of schematic types!

For simplicity, applications of hyp are usually not explicitly
marked in proof.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

AT frx

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

FAfOTOTT A fex (0 —0—>T) >0 —T

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

b
I_)\fa_m_w.)\a?a.faixi(O’HO'%T)HO'%Ta ’

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

fio—so0—-TEFEXN. frxx.:0—T

FAfOTOTT A fex (0 —0—>T) >0 —T

abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

f:0—>0—>7'|—)\a:'“.fxa::0—>7'abs

FAfOTOTT A fex (0 —0—>T) >0 —T

abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

I'Efxx:7
fio—so0—-TEFEXN. frxx.:0—T

FAfOTOTT A fex (0 —0—>T) >0 —T

abs

abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

app

I'Efxx:7
abs

fio—so0—-TEFEXN. frxx.:0—T

FAfOTOTT A fex (0 —0—>T) >0 —T

abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—0—>T1,2:0

I'-fax:0—71 I'Fx:0
I'Efxx:7
fio—so0—-TEFEXN. frxx.:0—T

FAfOTOTT A fex (0 —0—>T) >0 —T

app

abs

abs

&
0nn

Smaus: CSMR; WS08/09

Simple Type Theory A\ 340

Example 2

I'=f:0—>0—T1T,2:0

app
I'Ffx:0—7 Fl—afzaapp
I'Efxx:7 .,
f:a—>a—>7-|—)\a:'“.fxa::a—>7-as
abs

FAfOTOTT A fex (0 —0—>T) >0 —T

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 340

Example 2

I'=f:0—>0—T1T,2:0

I'-f:0—0—r7 FI—:U:Oapp
I'Ffx:0—7 I'Fx:0

I'Efxx:7
fio—so0—-TEFEXN. frxx.:0—T

FAfOTOTT A fex (0 —0—>T) >0 —T

app

abs

abs

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\

341

= ™

Example 3

= firo—=0—T

L .0

I'-faxx:7

Smaus: CSMR; WS08/09

&
0nn

Simple Type Theory A\ 341

Example 3

Y = firo—=0—T1T
I' = z:0
fio—0c—-TEY
assum
I'-f:0—>0—7 I'Fx:o
app
I'-fx:0—T1 Fl—x:aapp
I'-faxx:7

Note that this time, f is a constant.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 341

Example 3
> = f:0—o0—>T
I' = z:0
I'-f:0—>0—7 I'Fx:o
app
I'-fx:0—T1 Fl—x:aapp
I'Efxx:7

Note that this time, f is a constant.
We will often suppress applications of assum.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 342

Type Assignment and a(3n-Conversion

Type construction:
e [ype construction is decidable.

Smaus: CSMR; WS08/09 Mig

Simple Type Theory A\ 342

Type Assignment and a(3n-Conversion
Type construction:

e [ype construction is decidable.

e There is a practically useful implementation for
type-construction (Hindley-Milner algorithm W
[Mil78, NN99]).

Term congruence (e =.3, €'7) is decidable.

Smaus: CSMR; WS08/09

Polymorphism and Type Classes 343

Polymorphism and Type Classes

We will now look at the typed A-calculus extended by
polymorphism and type classes.

As we will see later, this is the universal representation for
object logics in Isabelle.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 344

Polymorphism: Intuition

In functional programming, the function append for
concatenating two lists works the same way on integer lists
and on character lists: append is polymorphic.

Type language must be generalized to include type variables
(denoted by «, 5...) and type constructors.

Example: append has type « list — o list — « list, and by
type instantiation, it can also have type, say,

int list — int list — int list.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 345

Polymorphism: Two Syntaxes

e Syntax for polymorphic types (B a set of type constructors
including —), T' € B, « is a type variable)

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 345

Polymorphism: Two Syntaxes

e Syntax for polymorphic types (B a set of type constructors
including —), T' € B, a is a type variable)

Examples: N, N — N, « list, Nlist, (N, bool) pair.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 345

Polymorphism: Two Syntaxes

e Syntax for polymorphic types (B a set of type constructors
including —), T' € B, a is a type variable)

Examples: N, N — N, « list, Nlist, (N, bool) pair.

e Syntax for (raw) terms as before:
e :==x | c| (ee) | (\x".¢€)

(z € Var, c € Const)

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 346

Polymorphic Type Assignment Calculus

Type substitutions (denoted ©) defined in analogy to
substitutions in FOL. Apart from application of © in rule
assum, type assignment is as for \7:

cC:T € X)
T o. @ 255Um I''e:7,AFx:7 hyp
Fl—e:0—>7/F|—e’:aapp Ix:obe:r be
I'Fee :T I'EXx%.e :o—T

*: O is any type substitution.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 347

Type Classes: Intuition

Type classes are a way of “making ad-hoc polymorphism
less ad-hoc” [HHPW96, WB89].

Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are
defined.

We only sketch the formalization here, and refer to
[HHPW96, Nip93, NP93| for details.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 348

Type Classes in Isabelle

e Syntactic classes (similarly as in Haskell): E.g., declare
that there exists a class ord which is a subclass of class
term, and that for any 7 :: ord, the constant < is defined
and has type 7 — 7 — bool. lsabelle has syntax for this.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 348

Type Classes in Isabelle

e Syntactic classes (similarly as in Haskell): E.g., declare
that there exists a class ord which is a subclass of class
term, and that for any 7 :: ord, the constant < is defined
and has type 7 — 7 — bool. lsabelle has syntax for this.

e Axiomatic classes: Declare (axiomatize) that certain
theorems should hold for a 7 :: kK where k is a type class.
E.g., axiomatize that < is reflexive by an (Isabelle)
theorem "x < z". Isabelle has syntax for this.

To use a class, we can declare members of it, e.g., N is a
member of ord.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 349

Syntax: Classes, Types, and Terms

Based on
e a set of type classes, say KL = {ord, order, lattice, ...},

e a set of type constructors, say
B = {bool,_ — _,ind, _ list, _ set ...},

e a set of constants Const and a set of variables Var,

we define
e Polymorphic types: 7 1= a | az:k | (7,...,7) T
e Raw terms (as before): e == = | ¢ | (ee) | (A\x".e)

(v is type variable, T' € B, k € K, x € Var, ¢ € Const)

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 350

Type Assignment Calculus with Type Classes
Assume some syntax for declaring 7 :: kK and kK < k. In
addition introduce the rule

Tk K=K

T K

subclass

ype assignment rules as before, but type substitution © in

must respect class constraints: for each « :: K occurring in T
where a® = o, judgement o :: kK must hold.

Smaus: CSMR; WS08/09 Mig

Polymorphism and Type Classes 351

Example
Suppose that by virtue of declarations, we have N :: order,
order < ord, and <: « :: ord — o — bool € >.. Derive

N :: order order < ord
N :: ord

subclass

and then (O = |a + NJ)

(<: (a::ord) — a— bool) € X
- <:N— N — bool

assum

which respects the class constraint since the judgement
N :: ord was derived above.

Smaus: CSMR; WS08/09 Mig

Higher-Order Unification 352

Higher-Order Unification

The A-calculus is “the” metalogic. Hence we now
(sometimes) call its variables “metavariables” for emphasis
and we precede them with “7". E.g. they can stand for
object-level formulae. More details later.

Smaus: CSMR; WS08/09 Mig

Higher-Order Unification 352

Higher-Order Unification

The A-calculus is “the” metalogic. Hence we now
(sometimes) call its variables “metavariables” for emphasis
and we precede them with “7". E.g. they can stand for
object-level formulae. More details later.

Two Issues concerning metavariables are:
e suitable renamings of metavariables;

e unification before rule application.

Smaus: CSMR; WS08/09 Mig

Higher-Order Unification 353

What Is Higher-Order Unification?

Unification of terms e, e’: find substitution 6 for
metavariables such that ef =3, €'0.

Examples:
X G- 10 =g 9 A @
"P(x) =apn © + @
f(?Xz) =ap, Ya
PP(2G) =ap f(9(@))

Smaus: CSMR; WS08/09 Mig

Higher-Order Unification 353

What Is Higher-Order Unification?

Unification of terms e, e’: find substitution 6 for
metavariables such that ef =3, €'0.

Examples:
X G- 10 =g 9 A @
"P(x) =apy T+ T
f(?Xz) =ap, Ya
PE(2G) = [lg(2))
Why higher-order? Metavariables may be instantiated to
functions, e.g. [7P «— Ay.y + vy|.

Smaus: CSMR; WS08/09 Mig

Higher-Order Unification 354

Higher-Order Unification: Facts

e Unification modulo a3 (HO-unification) is semi-decidable
(in Isabelle: incomplete).

e Unification modulo a7 is undecidable (in Isabelle:
incomplete).

Smaus: CSMR; WS08/09 Mig

Higher-Order Unification 354

Higher-Order Unification: Facts

e Unification modulo a3 (HO-unification) is semi-decidable
(in Isabelle: incomplete).

e Unification modulo a7 is undecidable (in Isabelle:
incomplete).

e HO-unification is well-behaved for most practical cases.

e Important fragments (like HO-patterns) are decidable.

e HO-unification has possibly infinitely many solutions.

We will look at some of these issues again later.

Smaus: CSMR; WS08/09 Mig

Summary on A-Calculus 355

Summary on A-Calculus

A-calculus is a formalism for writing functions.
B-reduction is the notion of “computing” in A-calculus.
A-calculus is Turing-complete.

A~ restricts syntax to “meaningful” A-terms.

Extension of typed A-calculus used to represent syntax of
object logics. A-terms stand for object terms/formulae,
possibly containing “distinguished occurrences” of (object)
variables. This will be explained thoroughly next lecture.

HO-unification important in constructing proofs. Pl

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 356

More Detailed Explanations

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 357

3+ 5 =87
As you might guess, the formalism of the A-calculus is not directly
related to usual arithmetic and so it is not built into this formalism that
3 + 5 should evaluate to 8. However, it may be a reasonable choice,

depending on the context, to extend the A-calculus in this way, but this
IS not our concern at the moment.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 358

Var and Const

Similarly as for first-order logic, a language of the untyped A-calculus is
characterized by giving a set of variables and a set of constants.

One can think of Const as a signature.
Note that Const could be empty.

Note also that the word constant has a different meaning in the
A-calculus from that of first-order logic. In both formalisms, constants
are just symbols.

In first-order logic, a constant is a special case of a function symbol,
namely a function symbol of arity O.

In the A-calculus, one does not speak of function symbols. In the
untyped A-calculus, any A-term (including a constant) can be applied to
another term, and so any A-term can be called a “unary function”. A
constant being applied to a term is something which would contradict the

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations

359

Intuition about constants in first-order logic. So for the A-calculus, think
of constant as opposed to a variable, an application, or an abstraction.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations

360

How do We Call those Terms?

A A-term can either be
e a variable (case z), or

e a constant (case c¢), or

e an application of a A-term to another \-term (case (ee)), or

e an abstraction over a variable x (case (A\x.e)).

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 361

Backus-Naur Form

A notation like

e :=x | c| (ee) | (A\z.e)
To=T | 71— 71

e == ux | ¢ | (ee) | (A\z7.¢)
P:=x| -P| P\P| P—>P...

for specifying syntax is called Backus-Naur form (BNF) for expressing
grammars. For example, the first BNF-clause reads: a A-term can be

a variable, or

a constant, or

a A\-term applied to a A-term, or

a \-abstraction, which is a \-term of the form Ax. e, where e is a A\-term.

The BNF is a very common formalism for specifying syntax, e.g., of

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

362

programming languages. See here or here.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

More Detailed Explanations 363

(A-)Terms

So just like first-order logic, the A-calculus has a syntactic category called
terms. Bit the word “term” has a different meaning for the A-calculus
than for first-order logic, and so one can say A-term for emphasis.

Note that at this stage, we have no syntactic category called “formula”
for the A-calculus.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 364

A-Calculus: Notational Conventions
We write \x1x5...x,.€ instead of Az1.(Axa.(...€)...).
e1 es...€e, is equivalent to (... (e; e3)...e,)..., not (e1(ea...€,)...).

Note that this is in contrast to the associativity of logical operators.
There are some good reasons for these conventions.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 365

Infix Notation

Strictly speaking, Ax. x + 5 does not adhere to the definition of syntax of
A-terms, at least if we parse it in the usual way: + is an infix constant
applied to arguments x and 5.

If we parse z + 5 as ((x+)5), i.e., = applied to (the constant) +, and the
resulting term applied to (the constant) 5, then A\z.x + 5 would indeed
adhere to the definition of syntax of A-terms, but of course, this is
pathological and not intended here.

It is convenient to allow for extensions of the syntax of A-terms, allowing
for:

e application to several arguments rather than just one;

e infix notation.

Such an extension is inessential for the expressive power of the

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 366

A-calculus. Instead of having a binary infix constant 4+ and writing
Ax.x + 5, we could have a constant plus according to the original syntax
and write Ax. ((plus x)5) (i.e., write 4+ in a Curryed way).

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 367

Reduction

Reduction is the notion of “computing”, or “evaluation”, in the
A-calculus.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 368

Notations for Substitutions

Here we use the notation e|x < t| for the term obtained from e by
replacing x with ¢t. There is also the notation e[t/z], and confusingly,
also e|z/t]. We will attempt to be consistent within this course, but be
aware that you may find such different notations in the literature.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 369

A Binding Is ‘Generic’
Recall the definition of substitution for first-order logic.
We observe that binding and substitution are some very general
concepts. So far, we have seen four binding operators: 4, V and A, and
set comprehensions. The)\ operator is the most generic of those
operators, in that it does not have a fixed meaning hard-wired into it in

the way that the quantifiers do. In fact, it is possible to have it as the
only operator on the level of the metalogic. We will see this later.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 370

Avoiding Capture

If it wasn't for clause 6, i.e., if we applied clause 5 ignoring the
requirement on freeness, then (Az. zy)|y < x| would be \x. xz.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 371

Parameters and Arguments

In the A-term (Ax.M)N, we say that N is an argument (and the
function Axz.M is applied to this argument), and every occurrence of x in
M is a parameter (we say this because x is bound by the \).

This terminology may be familiar to you if you have experience in
functional programming, but actually, it is also used in the context of
function and procedure declarations in imperative programming.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 372

Propagation into Contexts

In

Ax.((Az. x4+ 5)(3)),

the underlined part is a subterm occurring in a context. J-reduction
should be applicable to this subterm.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 373

Like a Proof System

As you see, B-reduction is defined using rules (two of them being axioms,
the rest proper rules) in the same way that we have defined proof
systems for logic before. Note that we wrote the first axiom defining
[-reduction without a horizontal bar.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

374

Redex

In a A-term, a subterm of the form (Ax. M)N is called a redex (plural
redices). It is a subterm to which S-reduction can be applied.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 375

Abstraction

The rule for propagating — g to an abstraction, let us call it A-abstr,

M —>5 M’
)\Z.M —>5)\Z.M’

M\-abstr

actually has a vacuous side condition:

z is not free in any open assumption on which M —3 M’ depends.

The side condition is just like for V.

The side condition is vacuous because in the derivation system for — g
(or —7%) we present here, there is no rule involving discharging open
assumptions, and thus there is no point in making assumptions. The
root of a derivation tree for — g Is always an application of the axiom for

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 376

[-reduction. When we consider —75, we may in addition have
applications of the reflexivity axiom.

However, we will have exercises on — g using an Isabelle theory called
RED, and in this theory, the above rule is called epsi and looks as follows:

"[|!'!'x. M(x) -—=> N(x)|] ==> (Qlam x. M(x)) --> (lam x. N(x))"

Observe that there is a meta-level universal quantifier in this rule. From
the exercises, you know that the meta-level universal quantifier
corresponds to a side condition in paper-and-pencil proofs.

Moreover, when we later look at the meta-logic, there will be a rule

a=>b

(Az.a) = (Az.b)

=-abstr

looking very similar to the \-abstr rule and having a side condition.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 377

To illustrate why the side condition is needed in general, consider a
derivation system where in addition to the rules for —3 and —73, we also
allow applications of the rule for rules for — (implication) and V of
first-order logic.

For the example we give, suppose that we have an encoding of the
number 0 and the + function in the untyped A-calculus, and that these
behave as expected (in fact we will have an exercise showing this; in the
following we use “0" and “+" just for simplicity and clarity; + is written
infix).

Under these assumptions, we will now derive Azy.y +x —3g Azy. y.
Before looking at the derivation tree, think about what this says
intuitively: it says that + is a function that takes two arguments, ignores
the first argument and returns the second argument. Clearly, this does
not correspond to the usual definition of +! The trick in the following

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 378

derivation is to smuggle in an instantiation of x, namely to force x to be
0. The derivation looks as follows:

y+z —py
AY.Y+T —3 AY. Y

M\-abstr
M\-abstr

ATY. Y + T —g ATY. Y)

-1
(y+2x—py) = Ary.y+z —p3)\a:y.y_;l
Ve.(y+ 2z —gy) — Azy.y +x —g Azy. yV_E (routine)
(y+0%5y)—>)\xy.y+x—>5)\:cy.y) y+0—35y

-E
ATY. Y + T —g ATY. Y -

In the above derivation, the side condition for A-abstr is violated.

In Isabelle, such a “smuggling in” of an instantiation can be achieved
using instantiate_tac, see RED_wrongepsi.thy and wrongepsi.ML.

&
0nn

Smaus: CSMR; WS08/09

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy
file:wrongepsi.ML

More Detailed Explanations

379

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 380

Currying
You may be familiar with functions taking several arguments, or
equivalently, a tuple of arguments, rather than just one argument.

In the A-calculus, but also in functional programming, it is common not
to have tuples and instead use a technique called Currying (Schonfinkeln
in German). So instead of writing g(a,b), we write g a b, which is read as
follows: g is a function which takes an argument a and returns a
function which then takes an argument b.

Recall that application associates to the left, so gab is read (ga)b.

Currying will become even clearer once we introduce the typed
A-calculus.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

381

Divergence
We say that a (B-reduction sequence diverges if it is infinite.

Note that for (Azy. y)((Ax.xx)(Ax.xx)), there is a finite S-reduction
sequence

(Azy. y)(A\z. zz)(Az 22)) —5 AY. Y
but there is also a diverging sequence

(Azy.y)((A\z.z2)(A2 22)) — 5 (A2y. y)(Az. 2x)(A\x. 22)) —058 . ..

Back to main referring slide

Smaus: CSMR; WS08/09

More Detailed Explanations 382

a-Conversion

a-conversion is usually applied implicitly, i.e., without making it an
explicit step. So for example, one would simply write:

A2.2 =3 A\T. X

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 383

n-Conversion

n-conversion is defined as
M=, x.(Mz) ifzx¢g FV(M)
It is needed for reasoning about normal forms.
gr =p Ay.gzy reflects gxb=p(A\y.gxy)b

More specifically: if we did not have the n-conversion rule, then g x and
Ay. g xy would not be “equivalent” up to conversion. But that seems
unreasonable, because they behave the same way when applied to b.
Applied to b, both terms can be converted to gz b. This is why 1t is
reasonable to introduce a rule such that gz and A\y.gz y are
“equivalent” up to conversion.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 384

One also says that the n-conversion expresses the idea of extensionality
[HS90, chapter 7].

Note that with the help of -reduction and transitivity, n-conversion can
be generalized to more than one variable,

le. M =gy Axy...2p. M xy...2,. E.g. we can derive
Axyz. Mxyz =g, M:

M Mzyz =, Mxy
ANz Mzxzyz =gy Ay Mzy Ny Mzy=, Mz

ANyz. Mzxzyz =g, Mz
Axyz. Mzxyz =gy Ax. M x A Mx =, M
Aeyz. Mxyz =gy M

For any n, we call Ay ...2,. M 1 ...x, an n-expansion of M.

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations

385

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 386

Confluence and Church-Rosser

A reduction — is called confluent if

for all M, Ny, Ny, if M —* Ny and M —* N5, then there exists a P
where Ny —* P and Ny —* P.

A reduction is called Church-Rosser if

for all Ny, Ns, if Ny & No. then there exists a P where N; —* P
and N2 —* P.

Here, «—:= (—)~1! is the inverse of —, and ++:=« U — is the
symmetric closure of —, and <:= (+)* is the reflexive transitive
symmetric closure of —.

So for example, if we have

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 387

My — Mg — Mz — My «— Ms «— Mg — M7 «— Mg < My

then we would write M; < M.
Confluence is equivalent to the Church-Rosser property [BN98, page 10].

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 388

A-Calculus Metaproperties

By metaproperties, we mean properties about reduction and conversion
sequences In general.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 389

Turing Completeness

The untyped A-calculus is Turing complete. This is usually shown not by
mimicking a Turing machine in the A-calculus, but rather by exploiting
the fact that the Turing computable functions are the same class as the
p-recursive functions [HS90, chapter 4]. In a lecture on theory of
computation, you have probably learned that the p-recursive functions
are obtained from the primitive recursive functions by so-called
unbounded minimalization, while the primitive recursive functions are
built from the 0-place zero function, projection functions and the
successor function using composition and primitive recursion [LP81].

The proof that the untyped A-calculus can compute all p-recursive
functions is thus based on showing that each of the mentioned
Ingredients can be encoded in the untyped A-calculus. While we are not
going to study this, one crucial point is that it should be possible to

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

390

encode the natural numbers and the arithmetic operations in the

untyped A-calculus.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 391

Term Language

We also say that we have defined a term language. A particular language
Is given by a signature, although for the untyped A-calculus this is simply
the set of constants Const.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 392

Type Language
We can say that we define a type language, i.e., a language consisting of

types. A particular type language is characterized by giving a set of base
types B. One might also call 5 a type signature.

A typical example of a set of base types would be {N, bool}, where N
represents the natural numbers and bool the Boolean values | and T.

All that matters is that B is some fixed set “defined by the user”.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 393

Types: Intuition

The type N — N is the type of a function that takes a natural number
and returns a natural number.

The type (N — N) — N is the type of a function that takes a function,
which takes a natural number and returns a natural number, and returns
a natural number.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 394

Types Are Right-Associative
To save parentheses, we use the following convention: types associate to
the right, so N — N — N stands for N — (N — N).

Recall that application associates to the left. This may seem confusing
at first, but actually, it turns out that the two conventions concerning
associativity fit together very neatly.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 395

Raw Terms

In the context of typed versions of the A-calculus, raw terms are terms
built ignoring any typing conditions. So raw terms are simply terms as
defined for the untyped A-calculus, possibly augmented with type

superscripts.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 396

Augmenting with Types
So far, this is just syntax!
The notation (Ax".e) simply specifies that binding occurrences of
variables in simple type theory are tagged with a superscript, where the

use of the letter 7 makes it clear (in this particular context) that the
superscript must be some type, defined by the grammar we just gave.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

397

Var and Const

Var and Const are the sets of variables and constants, respectively, as

for the untyped A-calculus.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 398

Sequences

A sequence is a collection of objects which differs from sets in that a

sequence contains the objects in a certain order, and there can be
multiple occurrences of an object.

We write a sequence containing the objects o1,...,0, as (01,...,0y,), Of
sometimes simply o1, ..., 0.

If €2 is the sequence o4, ..., 0,, then we write €2, o for the sequence
(01,...,0n,0) and o,) for the sequence (0,01, ...,0n).

An empty sequence is denoted by ().

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 399

Type Binding
We call an expression of the form x : 7 or ¢ : 7 a type binding.

The use of the letter 7 makes it clear (in this particular context) that the
superscript must be some type, defined by the grammar we just gave.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 400

Signatures in Various Formalisms

For propositional logic, we did not use the notion of signature, although
we mentioned that strictly speaking, there is not just the language of
propositional logic, but rather a language of propositional logic which
depends on the choice of the variables.

In first-order logic, a signature was a pair (F,P) defining the function
and predicate symbols, although strictly speaking, the signature should
also specify the arities of the symbols in some way. Recall that we did not
bother to fix a precise technical way of specifying those arities. \We were
content with saying that they are specified in “some unambiguous way" .
In sorted logic, the signature must also specify the sorts of all symbols.
But we did not study sorted logic in any detail.

In the untyped A-calculus, the signature is simply the set of constants.

Summarizing, we have not been very precise about the notion of a

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 401

signature so far.

For A7, the rules for “legal” terms become more tricky, and it is
iImportant to be formal about signatures.

In A7, a signature associates a type with each constant symbol by
writing c : 7.

Usually, we will assume that Const is clear from the context, and that X
contains an expression of the form c : 7 for each ¢ € Const, and in fact,
that X is clear from the context as well. Since X contains an expression
of the form c : 7 for each ¢ € Const, it is redundant to give Const
explicitly. It is sufficient to give X..

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

402

Type Judgement

The expression
I'Fyscx:0o

Is called a type judgement. It says that given the signature
Y =c: T — o and the context I' = x : 7, the term

c x has type o or

c x i1s of type o or

c x Is assigned type o.

Recall that you have seen other judgements before.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 403

c for Sequences?

Recall that X is a sequence. By abuse of notation, we sometimes identify
this sequence with a set and allow ourselves to write c : 7 € ..

We may also write > C ¥’ meaning that ¢: 7 € X implies c: 7 € Y/,

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 404

System of Rules

Type assignment is defined as a system of rules for deriving type
judgements, in the same way that we have defined derivability
judgements for logics, and (-reduction for the untyped A-calculus.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 405

An Alternative Formulation of abs
Signatures and contexts are sequences, and intuitively, the order in which
the type bindings occur in these sequences does not matter.

Now, the way we have set up the type assignment calculus, it would
seem that the order does matter, namely since in rule abs, the binding
x : o above the horizontal line must be the last binding in the context.
An alternative formulation would be

I'N'e:0,AFe:T
I''AFXxC.e :o0—T

abs

However, the original formulation is more straightforward in light of the
fact that type derivations are usually constructed bottom-up. The
bottom-up application of the original abs is deterministic, whereas the
alternative formulation would confront us with the choice of how to split

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 406

up the context.

For example, we could start a derivationof y : p,z:whH Ax%.¢c 10 — 7

in three ways:
T:o,Y:p,zZiwhHEe: T

y:p,z:wl—)\x".c:UHTabs
or
Y:p,T:0,2:whkce:T
- abs
y:p,z:wkEAXx’.c:0—T
or
Y:p,Ziw,x:0kFc:T
abs

y:p,z:wkEAXx.c:0—T

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 407

Minimal Logic over —

Recall the sequent rules of the “— /A" fragment of propositional logic.
Consider now only the “—" fragment. We call this fragment minimal
logic over —.

If you take the rule

I'N'e:7,AFx:7 hyp

of A™ and throw away the terms (so you keep only the types), you
obtain essentially the rule for assumptions

I'-A (where AeTl)

of propositional logic.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

408

Likewise, if you do the same with the rule

I'Fe:0c0—>7 TI'Feée:o

app
I'Fee:T
of A7, you obtain essentially the rule
'-A—B T'HA F
'+ B)
of propositional logic.
Finally, if you do the same with the rule
x:okFe:T
abs

I'FXxC.e :0—T

Smaus: CSMR; WS08/09

3

nn

More Detailed Explanations 409

of A", you obtain essentially the rule

ATFB
TFA—B

/

of propositional logic.
Note that in this setting, there is no analogous propositional logic rule for

cC:T E X
IF'Eec: 7

assum

So for the moment, we can observe a close analogy between A7, for X
being empty, and the — fragment of propositional logic, which is also
called minimal logic over —.

Such an analogy between a type theory (of which A~ is an example) and
a logic is referred to in the literature as Curry-Howard isomorphism

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 410

[Tho91]. One also speaks of propositions as types [GLT89]. The
iIsomorphism is so fundamental that it is common to characterize type
theories by the logic they represent, so for example, one might say:

A7 is the type theory of minimal logic over —.

Note that for this analogy, it is quite crucial that we have no constants
(X is empty). Namely, this condition implies that for some types, we
cannot give a closed term that has this type. For example, we can give a
closed term of type 7 — o — 7, namely Azy. x, while we cannot give a
closed term of type (7 — 7) — 7. We say that 7 — o — 7 is inhabited
while (7 — 7) — 7 is not inhabited.

The inhabited types correspond exactly to the formulas that are derivable
in minimal logic over —, and the inhabiting term is regarded as a proof.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

411

Subject Reduction

Subject reduction is the following property: reduction does not change
the type of a term, so if k= M : 7 and M —g N, then Fx N : 7.

Back to main referring slide

Smaus: CSMR; WS08/09

xz

nn

More Detailed Explanations 412

(Strongly) Normalizing (5-Reduction

The simply-typed A-calculus, unlike the untyped A-calculus, is
normalizing, that is to say, every term has a normal form. Even more, it

Is strongly normalizing, that is, this normal form is reached regardless of
the reduction order.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations

413

An Alternative for hyp

One could also formulate hyp as follows:

r:T7el

I'Fx:T

hyp

That would be in close analogy to LF, a system not treated here.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 414

Schematic Types

In this example, you may regard o and 7 as base types (this would
require that o, 7 € B), but in fact, it is more natural to regard them as
metavariables standing for arbitrary types. Whatever types you substitute
for o and 7, you obtain a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that X is irrelevant for the example and hence arbitrary.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 415

Constants vs. Variables

In Example 3, we have f : 0 — 0 — 7 € XJ, and so f is a constant.

In Example 2, we have f : 0 — 0 — 7 €T, and so f is a variable.
Looking at the different derivations of the type judgement I' - fxx : 7
in Examples 2 and 3, you may find that they are very similar, and you
may wonder: What is the point? Why do we distinguish between
constants and variables?

In fact, one could simulate constants by variables. When setting up a
type theory or programming language, there are choices to be made
about whether there should be a distinction between variables and
constants, and what it should look like. There is a famous epigram by
Alan Perlis:

One man’s constant is another man’s variable.

&
0nn

Smaus: CSMR; WS08/09

http://en.wikiquote.org/wiki/Alan_Perlis
http://en.wikiquote.org/wiki/Alan_Perlis

More Detailed Explanations 416

For our purposes, it is much clearer conceptually to make the distinction.
For example, if we want to introduce the natural numbers in our A™
language, then it is intuitive that there should be constants 1,2, ...
denoting the numbers. If 1,2, ... were variables, then we could write
strange expressions like A2"~N. ¢, so we could use 2 as a variable of type

N — N.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 417

Type Construction

Type construction is the problem of given a X, I' and ¢, finding a 7 such
that X, ' Fe:T.

Sometimes one also considers the problem where I' is unknown and must
also be constructed.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

418

Term Congruence

aBn-conversion is defined as for A™. Given two (extended) A-terms e

and €', it is decidable whether e =,3, €

/

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 419

(Parametric) Polymorphism

In functional programming, you will come across functions that operate
uniformly on many different types. For example, a function append for
concatenating two lists works the same way on integer lists and on
character lists. Such functions are called polymorphic.

More precisely, this kind of polymorphism, where a function does exactly
the same thing regardless of the type instance, is called parametric
polymorphism, as opposed to ad-hoc polymorphism.

In a type system with polymorphism, the notion of base type (which is
just a type constant, i.e., one symbol) is generalized to a type
constructor with an arity > 0. A type constructor of arity n applied to n
types is then a type. For example, there might be a type constructor [list
of arity 1, and int of arity 0. Then, int list is a type.

Note that application of a type constructor to a type is written in postfix

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 420

notation, unlike any notation for function application we have seen.
However, other conventions exist, even within Isabelle.

A type constructor of arity > 0 is called type operator by some authors
[GM93, page 196], but we do not follow this terminology. Also, those
authors say type constant for what we call “type constructor” (i.e., of
arity 0 as well as > 0), but again, we do not follow this terminology: for
us a type constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic type systems
of functional programming languages.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 421

Ad-hoc Polymorphism

Ad-hoc polymorphism, also called overloading, refers to functions that do
different (although usually similar) things on different types. For
example, a function < may be defined as 'a’ < 'b’... on characters and
1 < 2...on integers. In this case, the symbol < must be declared and
defined separately for each type.

This is In contrast to parametric pomorphism, but also somewhat
different from type classes.

Type classes are a way of “making ad-hoc polymorphism less
ad-hoc” [HHPW96, WB389].

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 422

Type Classes

Type classes are a way of “making ad-hoc polymorphism less
ad-hoc” [HHPW96, WB389].

Type classes are used to group together types with certain properties, in
particular, types for which certain symbols are defined.

For example, for some types, a symbol < (which is a binary infix
predicate) may exist and for some it may not, and we could have a type
class ord containing all types for which it exists.

Suppose you want to sort a list of elements (smaller elements should
come before bigger elements). This is only defined for elements of a type
for which the symbol < exists.

Note that while a symbol such as < may have a similar meaning for
different types (for example, integers and reals), one cannot say that it
means exactly the same thing regardless of the type of the argument to

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 423

which it is applied. In fact, < has to be defined separately for each type
in ord.

This is Iin contrast to parametric poymorphism, but also somewhat
different from ad-hoc polymorphism: The types of the symbols must not
be declared separately. E.g., one has to declare only once that < is of
type (a :: ord, a).

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 424

Polymorphic Type Language

As before, we define a type language, i.e., a language consisting of types,
and a particular type language is characterized by giving a certain set of
symbols 5. But unlike before, 15 is now a set of type constructors. Each
type constructor has an arity associated with it just like a function in
first-order logic. The intention is that a type constructor may be applied
to types.

Following the conventions of ML [Pau96], we write types in postfix
notation, something we have not seen before. |l.e., the type constructor
comes after the arguments it is applied to.

It makes perfect sense to view the function construction arrow — as type
constructor, however written infix rather than postfix.

So the B is some fixed set “defined by the user”’, but it should definitely
always include —.

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

425

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 426

Type Substitutions

A type substitution replaces a type variable by a type, just like in
first-order logic, a substitution replaces a variable by a term.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 427

Syntactic Classes

A syntactic class is a class of types for which certain symbols are declared
to exist. Isabelle has a syntax for such declarations. E.g., the declaration

sort ord < term
const <= : [’a::ord, ’al => bool

may form part of an Isabelle theory file. It declares a type class ord
which is a subclass (that's what the < means; in mathematical notation
it will be written <) of a class term, meaning that any type in ord is
also in term. We will write the “class judgement” ord < term. The
class term must be defined elsewhere.

The second line declares a symbol <=. Such a declaration is preceded by
the keyword const. The notation « :: ord stands for a type variable
constrained to be in class ord. So <= is declared to be of type

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 428

la 2 ord, a] = bool, meaning that it takes two arguments of a type in
the class ord and returns a term of type bool. The symbol =(=>) is the
function type arrow in Isabelle. Note that the second occurrence of « is

written without :: ord. This Is because it is enough to state the class
constraint once.

Note also that [« :: ord, a] => bool is in fact just another way of writing
« :: ord => a => bool, similarly as for goals.

Haskell [HHPW96] has type classes but ML [Pau96] hasn't.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 429

Axiomatic Classes

In addition to declaring the syntax of a type class, one can axiomatize
the semantics of the symbols. Again, Isabelle has a syntax for such
declarations. E.g., the declaration

axclass order < ord
order_refl: ’’x <= x 7’
order_trans: ’’[| x <=y; y <=2z |] => x <= 2z’

may form part of an Isabelle theory file. It declares an axiomatic type
class order which is a subclass of ord defined above.

The next two lines are the axioms. Here, order_refl and order_trans
are the names of the axioms. Recall that = is the implication symbol
in Isabelle (that is to say, the metalevel implication).

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 430

Whenever an Isabelle theory declares that a type is a member of such a
class, it must prove those axioms.

The rationale of having axiomatic classes is that it allows for proofs that
hold in different but similar mathematical structures to be done only
once. So for example, all theorems that hold for dense orders can be
proven for all dense orders with one single proof.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 431

Members of a Type Class

One also speaks of a type being an instance of a type class, but this is
slightly confusing, since we also say that a type can be an instance of
another type, e.g., N — N is an instance of «, since

aja +— (N — N)] =N — N. So it is better to speak of a member of a
type class.

Isabelle provides a syntax for declaring that a type is a member of a type
class, e.g.

instance nat :: ord
declares that type nat is a member of class ord.

If the class k is a syntactic class, such a declaration must come with a
definition of the symbols that are declared to exist for k.

In addition, if kK is an axiomatic class, such a declaration must come with
a proof of the axioms.

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations

432

If a type 7 is (by declaration) a member of class x, we write the “class

judgement” T :: K.

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 433

Renaming

Whenever a rule is applied, the metavariables occurring in it must be

renamed to fresh variables to ensure that no metavariable in the rule has
been used in the proof before.

The notion fresh is often casually used in logic, and it means: this

variable has never been used before. To be more precise, one should say:
never been used before in the relevant context.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 434

Unification
The mechanism to instantiate metavariables as needed is called

(higher-order) unification. Unification is the process of finding a
substitution that makes two terms equal.

We will now see more formally what it is and later also where it is used.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 435

Type Class Syntax
The set IC we gave is incomplete and just exemplary.

So the set of type classes involved in an Isabelle theory is a finite set of
names (written lower-case), typically including ord, order, and lattice.

We have seen some Isabelle syntax for declaring the type classes
previously.

In grammars and elsewhere, k is the letter we use for “type class”.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 436

Type Constructor Syntax

As before, the set B we gave is is incomplete (there are “...") and just
exemplary. We might call B a type signature.

Note also that an _ is used to denote the arity of a type constructor.
e _ [ist means that [ist Is unary type constructor;

e _ — _ means that — is a binary infix type constructor.

The notation using _ is slightly abusive since the _ is not actually part of
the type constructor. _ [ist is not a type constructor; [ist Is a type
constructor.

So the set of type constructors involved in an Isabelle theory is a finite
set of names (written lower-case) with each having an arity associated,
typically including bool, —, and list. Note however that bool is
fundamental (since object level predicates are modeled as functions

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations

437

taking terms to a Boolean), and so is —, the constructor of the function

space between two types.

In grammars and elsewhere, 1" is the letter we use for “type constructor” .

Back to main referring slide

Smaus: CSMR; WS08/09

xx

nn

More Detailed Explanations 438

— as Type Constructor

In A\, types were built from base types using a “special symbol” —.
When we generalize A™ to a A-calculus with polymorphism, this “special
symbol” becomes a type constructor. However, the syntax is still special,
and it is interpreted in a particular way.

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 439

Polymorphic Types Syntax

To=ao |l ak | (1,...,7)T (v is type variable)

is a grammar defining what polymorphic types are (syntactically). As
before, 7 is the non-terminal we use for (now: polymorphic) types.

This grammar is not exemplary but generic, and it deserves a closer look.

A type variable is a variable that stands for a type, as opposed to a term.
We have not given a grammar for type variables, but assume that there
Is a countable set of type variables disjoint from the set of term
variables. We use « as the non-terminal for a type variable (abusing
notation, we often also use o to denote an actual type variable).

First, note that a type variable may be followed by a class constraint :: &
(recall that x is the non-terminal for type classes). However, a type

&
0nn

Smaus: CSMR; WS08/09

More Detailed Explanations 440

variable is not necessarily followed by such a constraint, for example if

the type variable already occurs elsewhere and is constrained in that
place. We have already seen this.

Moreover, a polymorphic type is obtained by preceding a type

constructor with a tuple of types. The arity of the tuple must be equal
to the declared arity of the type constructor.

It is not shown here that for some special type constructors, such as —,
the argument may also be written infix.

Back to main referring slide

Smaus: CSMR; WS08/09

&
0nn

More Detailed Explanations 441

Solutions for Unification Problems
A solution for 7 X +7Y =,3, © + x is [7X «— 2,7Y «— z].
A solution for ?P(x) =apy, + z is 7P — (A\y.y + y)].
A solution for f(?Xz) =ap,?Y z is [?7X — (A2.2),7Y « f].
Three solutions for 7F (G x) =43, f(g(x)) are

TF — f, 7G <« ¢,
TF — (Ax.f(gx)), 7G «+— (Ax.x)],
TF — (A\z.x), 7G +— (Mx.f(gx))l,

Back to main referring slide

Smaus: CSMR; WS08/09 Mig

More Detailed Explanations 442

Unification Modulo
Unification of terms e, ¢’ modulo a8 means finding a substitution 6 for
metavariables such that 0(e) =,3 0(¢’).

Likewise, unification of terms e, ¢’ modulo a1 means finding a
substitution o for metavariables such that o(e) =43, o(€’).

Back to main referring slide

&
0nn

Smaus: CSMR; WS08/09

Encoding Syntax

Encoding Syntax 444

Metatheory: Motivation

Previously, we have seen the (polymorphically) typed
A-calculus (with type classes).

Now, we will see how the typed A-calculus can be used as a
metalanguage for representing the syntax of an object logic,
e.g. first-order logic.

Smaus: CSMR; WS08/09 Mig

Encoding Syntax 444

Metatheory: Motivation

Previously, we have seen the (polymorphically) typed
A-calculus (with type classes).

Now, we will see how the typed A-calculus can be used as a
metalanguage for representing the syntax of an object logic,
e.g. first-order logic.

ldea: An object-level proposition is a meta-level term.
Metalogic type o for propositions.

The terms of type o encode object level propositions:
® € Prop iff "¢ : 0.

Smaus: CSMR; WS08/09 Mig

Encoding Syntax 444

Metatheory: Motivation
Previously, we have seen the (polymorphically) typed
A-calculus (with type classes).
Now, we will see how the typed A-calculus can be used as a
metalanguage for representing the syntax of an object logic,
e.g. first-order logic.
ldea: An object-level proposition is a meta-level term.
Metalogic type o for propositions.
The terms of type o encode object level propositions:
® € Prop iff "¢ : 0.
Later: How do we represent the proofs/provability?

Smaus: CSMR; WS08/09 Mig

Encoding Syntax 445

Why Have a Metalogic?

Why should we have a meta- or framework logic rather than
implementing provers for each object logic individually?

+ Implement ‘core’ only once
+ Shared support for automation

+ Conceptual framework for exploring what a logic is
But

+/— Metalayer between user and logic

— Makes assumptions about structure of logic

Smaus: CSMR; WS08/09 Mig

A" : Review 446

A Review

A~ is sufficient for presentation here (no polymorphism, type
classes).

e Syntax for types (B a set of base types, T' € B)
To=T | 7T—>T

Examples: NN N— N, (N—N) >N, N— N — N

e Syntax for terms: A-calculus augmented with types
e :=x | c| (ee) | (A\x".¢€)

(z € Var, c € Const)

Smaus: CSMR; WS08/09 Mig

A7 Review 447

Type Assignment
e Signature X :=() | X,c:T.
e ContextI' :=() | I',x : 7.

e Type assignment rules

C:Tezassum Do em Ao ;
TP T T, r:T hyp
'e:c—7 T'Feé:o I'Nz:okFe:T

a
'Fee:T PP FI—)\JJU.e:U—>TabS

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 448

Representing Syntax of Propositional Logic

Let Prop be our object logic:

P:=zx|-P| P\P| P—P

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 443

Representing Syntax of Propositional Logic

Let Prop be our object logic:
P:=zx|-P| P\P| P—P

Let A~ be our metalogic. Declare
e B={o0}.

e Signature assigns types to constants:

Y, = (not : cand : 1M)

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 443

Representing Syntax of Propositional Logic

Let Prop be our object logic:
P:=zx|-P| P\P| P—P

Let A~ be our metalogic. Declare
e B={o0}.

e Signature assigns types to constants:
¥ =(not:0—o,and:0— 0— 0,imp : 0 — 0 — 0)

e Context assigns types to variables.
This approach is called first-order syntax (see later).

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 449

Digression: Programming Languages
A~ Is the theory underlying typed functional programming.
Our declaration of B and X on the previous slide corresponds

to the declaration of an algebraic datatype in a functional
programming language [Pau96]:

datatype Prop =
VarInject of Variable | mnot of Prop
| and of Prop x Prop | imp of Prop x Prop

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 450

Example of First-Order Syntax

a:ol imp (nota)a:o

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 450

Example of First-Order Syntax

a:ol imp (nota)a:o

a:oFnot:o—o0 a:oFa:o

a:oFtmp:0—o0—o a:oFnota:o

a:ob imp(nota):o0— o a:oFa:o

a:ob imp(nota)a: o

Applications of hyp and assum suppressed. Otherwise always
rule app.

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic

451

Non-example of First-Order Syntax

a:ol not (impa)a:o

Smaus: CSMR; WS08/09

&
0nn

Representing Syntax of Propositional Logic 451

Non-example of First-Order Syntax

a:ol not (impa)a:o

a:oFmmp:o—o0—0 a:0kFa:o

a:o0Fnot:o0—o a:oFimpa:o— o
777

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 451

Non-example of First-Order Syntax

a:ol not (impa)a:o

a:oFmmp:o—o0—0 a:0kFa:o

a:o0Fnot:o0—o a:oFimpa:o— o
777

No proof possible! (Requires analysis of normal forms.)

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 452

Bijection between Prop and o
We desire bijection ™7 : Prop — o that is

e adequate: each proposition in Prop can be represented by
a A -term of type o:

If P € Prop thenI'-"P7:0

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 452

Bijection between Prop and o
We desire bijection ™7 : Prop — o that is

e adequate: each proposition in Prop can be represented by
a A -term of type o:

If P € Prop thenI'-"P7:0

e faithful: each A7 term of type o represents a proposition
In Prop:
If T Ft:othen "t € Prop

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 453

Adequacy of Bijection
Example: (—a) — b € Prop therefore imp (not a) b : o

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 453

Adequacy of Bijection
Example: (—a) — b € Prop therefore imp (not a) b : o
Formalize mapping ™™

rel = g for x a variable
—P7 = not™P7
rP A Q—I — CLTLd I—P—I I_Q_I

P Q—I — Z'mp P I_Q—I

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 453

Adequacy of Bijection
Example: (—a) — b € Prop therefore imp (not a) b: o
Formalize mapping ™™

rel = g for x a variable
—P7 = not™P7
rP A Q—l — CLTLCZ I—P—I I_Q_I

P Q—I — Z'mp P I_Q—I

Formal statement accounts for variables:

If P € Prop, and if for each propositional variable z in P,
we have z ;o€ 1, then ' "P7: o.

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 453

Adequacy of Bijection
Example: (—a) — b € Prop therefore imp (not a) b: o
Formalize mapping ™™

rel = g for x a variable
—P7 = not™P7
rP A Q—l — CLTLCZ I—P—I I_Q_I

P Q—I — Z'mp P I_Q—I

Formal statement accounts for variables:

If P € Prop, and if for each propositional variable z in P,
we have x : 0 € I', then I' = "P7: 0. Proof by induction.

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 454

Faithfulness of Bijection
Define 71

7l = g for z a variable
not P! = —rp-l
and P Q7! = rP AT
“imp P Q—I_l — rp-1l I_Q_I_l

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 454

Faithfulness of Bijection
Define 71

1

= for x a variable
not P! = —rp-l
and P Q7! = rP AT
“imp P Q—l—l — rp-1l I—Q_I_l

For bijection, should have "mP7 ! = P and ¢t 17 = ¢
Former is trivial, but what about latter?

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 455

¢! Is not Total
Example: For t = not ((Az°.x)a), we have a:oF t: o0

a:0,r:0Fx:0

abs
a:oF M x°.x:0— o0 a:oFa:o

app

a:okFnot:o—o a:oF (Ax°.x)a:o

app
a:obF not((Az°.x)a):o

But "t ! is undefined!

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 456

Normal Forms

If ¢ : 0, then there exists a ' such that ¢t =g, t/, where t' : 0
and t" is in canonical (6n-long) normal form, e.g.

not ((Ax°.x)a) =3, nota
not =gy AZ°.notw
imp (not (A\z°.x)a)) =p, Az°.imp (nota)zx

Smaus: CSMR; WS08/09 Mig

Representing Syntax of Propositional Logic 457

Bijection Theorem

The encoding ™7 is a bijection between propositional

formulae with variables in I and canonical terms ¢/, where
'~t:o.

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 457

Bijection Theorem

The encoding ™7 is a bijection between propositional
formulae with variables in I and canonical terms ¢/, where
't o.

Proof: Based on normalization

r:okFe:T
- abs ,
~A\x’.e 0 — T —e o

app
= (Ax.e)e i T = Felr—¢€]:7

&
0nn

Smaus: CSMR; WS08/09

Representing Syntax of Propositional Logic 457

Bijection Theorem

The encoding ™7 is a bijection between propositional
formulae with variables in I and canonical terms ¢/, where

I'=t:o.
Proof: Based on normalization

r:okFe:T
- abs ,
~A\x’.e 0 — T —e o

app
= (Ax.e)e i T = Felr—¢€]:7

Corollary: If ¢ : o then t =g, t' and "t'"~! € Prop for some
canonical t’.

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 458

Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae
(propositions), represented in A~ by the type o.

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 458

Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae
(propositions), represented in A~ by the type o.

In first-order logic, we also have the syntactic category of
terms. For representation in A", we now Introduce type 7, so

B = {i,o0}.

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 458

Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae
(propositions), represented in A~ by the type o.

In first-order logic, we also have the syntactic category of
terms. For representation in A", we now Introduce type 7, so
B = {i,o0}.

Just like I' = a : 0 means that a represents a proposition,

I' =t :2 means that ¢ represents a term.

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 459

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language:

Terms T ::
Formulae F' ::

x| 0| sT | T+T | TxT
T=T|-F | FANF | F—>F

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 459

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language:

Terms T = o | 0| sT | T+T | TxT
Formulae F = T =T | -F | FANF | F— F
In A~ (on metalevel), define signature X = Xz U Xp U X

Yr = (zero:i, succ:i — i, plus:i— 1 — i,
times : 1 — 1 — 1)

(eq : 1 — i — 0)

(not:0— o0, and:0— 0— 0, imp : 0 — 0 — 0)

]
>
|

]
S
|

Example: Tz + 507 =

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 459

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object level language:

Terms T = o | 0| sT | T+T | TxT
Formulae F = T =T | -F | FANF | F— F
In A~ (on metalevel), define signature X = Xz U Xp U X

Yr = (zero:i, succ:i — i, plus:i— 1 — i,
times : 1 — 1 — 1)

(eq : 1 — i — 0)

(not:0— o0, and:0— 0— 0, imp : 0 — 0 — 0)

]
>
|

]
S
|

Example: "z + s07 = plus x (succ zero).

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 460

Encoding FOL in General

In general, to encode some first-order language, we must
define X+ and Xp so that for each n-ary f € F, pe P

fencziﬁ-\;ﬁz_)i < Z]-_a
n times

Dene -4 — ... =1, —>0 € Xp,

n times

and then " f(t1,...t,)" = fene "t17...7t, " and
Dt .. tn) = Pene Tt .. TE,T
Abusing notation, we might skip the subscript enc.

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic

461

Quantifiers in First-Order Syntax

Along the same lines, one might suggest
all : var — o — o, so "Vx.P"=uall x TP

But this approach has some problems:

Smaus: CSMR; WS08/09

Representing Syntax of First-Order Logic 461

Quantifiers in First-Order Syntax

Along the same lines, one might suggest
all : var — o — o, so "Vx.P"=uall x TP

But this approach has some problems:
e Variables are also terms, so “var C 7" 7?7 No subtyping!

Smaus: CSMR; WS08/09 Mig

Representing Syntax of First-Order Logic 461

Quantifiers in First-Order Syntax
Along the same lines, one might suggest

all : var — o — o, so "Vx.P"=uall x TP

But this approach has some problems:
e Variables are also terms, so “var C 7" 7?7 No subtyping!

e all I1s not a binding operator in A™". E.g.,

(p(x) AVx.q(x))|r < a] cannot be modeled as
(and (p z)(all z (q x)))[z < al.

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 462

Higher-Order Abstract Syntax (HOAS)

Example, full FOA: F = ...Vz. A | dx. A
Z:E]:UZPUZCUZQZ

Yo = (all : (i — 0) — o, exists : (i — 0) — 0)

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 462

Higher-Order Abstract Syntax (HOAS)

Example, full FOA: F = ...Vz. A | dx. A
Z:Z]:UEPUZCUZQZ

Yo = (all : (i — 0) — o, exists : (i — 0) — 0)

Extend the definition of ™.™:

Y. P
Ty, P

all (A\x'.mP")
exists (Ax'.TP")

Adequacy and faithfulness as before.

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 463

Examples

all(\x'. eqx x)

Vr.x ="
Vr.dy.-(z+z=y)" =
all(M\x'. exists(Ay'. not (eq (plusx x)y)))

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 463

Examples

Vr.x ="
Vr.dy.-(z+z=y)" =
all(M\x'. exists(Ay'. not (eq (plusx x)y)))

all(\x'. eqx x)

Example derivation (all but one steps use rule app):

r:iFeg:1—1—0 xT:1Hx:1

r:ithkeqxr:1— o0 R el A
r:ithFeqxx:o
. : . abs
Fall: (1 —0) — o0 FAx'.eqrx:ii— 0

= all(Ax*.eqrx) : 0

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 464

Order

Order of a type: For type 7 written 74 — ... — 7, right
associated, 7, € B:

e Ord(t)=0ifT € B, ie., ifn=1,
e Ord(t) =14 max(Ord(r)),

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 464

Order

Order of a type: For type 7 written 74 — ... — 7, right
associated, 7, € B:

e Ord(t)=0ifT € B, ie., ifn=1,

e Ord(t) =1+ max(Ord(r;)),

Intuition: “functions as arguments” .

A type of order 1 is first-order, of order 2 second-order etc.
A type of order > 1 is called higher order.

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 465

Why “Higher Order”?

Constants representing propositional operators (logical
symbols) or non-logical symbols are first-order (hence
first-order syntax):

and :o0— o0 — o

&
0nn

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 465

Why “Higher Order”?

Constants representing propositional operators (logical
symbols) or non-logical symbols are first-order (hence

first-order syntax):

and :o0— o0 — o

Variable binding operators are higher-order (hence
higher-order syntax):

all : (i — o) — o

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 466

Exercise: Summation Operator
What is the order of the summation operator) 7

&
0nn

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 466

Exercise: Summation Operator
What is the order of the summation operator) 7

sum:i—1— (1L —1) — 1

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 466

Exercise: Summation Operator
What is the order of the summation operator) 7

sum:i—1— (1 —1) — 1

'_Z(QZ + 2)7 = sum zeron (A\z'. plus x (succ succ zero))
=0

So the order is 2.

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 467

Why “Abstract”?

HOAS looks quite different from the concrete object level
syntax and hence “abstracts’ from this object level syntax.
More specifically, different object level binding operators are
represented by a combination of a constant (all, exists) and
the generic \-operator.

Thanks to this technique, standard operations on syntax
need no special encoding, but are supported implicitly by A™.

We will now see this.

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 468

Binding
Binding on the object level and metalevel coincide.

So in Vz. P, all occurrences of x in P are bound, and
likewise, in all(Ax'."P7), all occurrences of x in "P™ are

bound.
This provides support for substitution.

&
0nn

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 469

Substitution
Recall rules for V:
Vx. P(x)
P(t)

V-E

&
0nn

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 469

Substitution
Recall rules for V:
Vz. P(x) all P
-E _E
Pty " = p(r) "

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 469

Substitution
Recall rules for V:
v517-P(37) all P
_E _
Py "5 pwy T

Ve.x =z

V-E

r = x|r « 0

Now apply substitution. . .

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 469

Substitution
Recall rules for V:
Vo. P(x) all P
-E -E
Py T 7 P
Ve.x = x
-E

0=0 v

Now apply substitution. . .

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS) 469

Substitution
Recall rules for V:
Vz. P(x) all P
-E -E
Py "5 P
_ all (\z'.eq x x

Ve.x = x V-E () =
0=0 (Ax'.eq x x) zero

Now apply substitution. . .
Now apply B-reduction. . .

Smaus: CSMR; WS08/09

Higher-Order Abstract Syntax (HOAS)

469

Substitution
Recall rules for V:
V. P(x
()V—E 3 CLHPV—E

P(t) P(t)

_ all (\z'.eq x x
Ve.x = x V-E () V_E
0=0 eq ZEro zZero

Now apply substitution. . .
Now apply B-reduction. . .

We now understand “marked positions in a formula™.

Smaus: CSMR; WS08/09

MiS
Ml

Higher-Order Abstract Syntax (HOAS) 470

Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming
of bound variables:

(Vx. P < Yy. Plx «— y])

Smaus: CSMR; WS08/09 Mig

Higher-Order Abstract Syntax (HOAS) 470

Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming
of bound variables:

(V. P < Vy. Plx «— y])

Likewise, on the metalevel, formulae obtained by bound
variable renaming are a-equivalent:

all(A\z'. P) =, all(\y". Plz < g])

Smaus: CSMR; WS08/09 Mig

Summary of Encoding Syntax

471

Summary of Encoding Syntax
Object Language Metalanguage

Syntactic category
Term, Prop

Smaus: CSMR; WS08/09

Summary of Encoding Syntax

471

Summary of Encoding Syntax

Object Language

Metalanguage

Syntactic category
Term, Prop
Variable x

Type declaration B = {i, 0}

Smaus: CSMR; WS08/09

Summary of Encoding Syntax 471

Summary of Encoding Syntax
Object Language Metalanguage

Syntactic category Type declaration B = {i, 0}
Term, Prop

Variable x Variable z

Non-logical symb. +

Smaus: CSMR; WS08/09 Mig

Summary of Encoding Syntax 471

Summary of Encoding Syntax
Object Language Metalanguage

Syntactic category Type declaration B = {i, 0}

Term, Prop
Variable x Variable x

Non-logical symb. 4+ 1st-order constant plus: 1 — 1 —1¢
Logical symbol A

Smaus: CSMR; WS08/09

Summary of Encoding Syntax

471

Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category Type declaration B = {i, 0}

Term, Prop

Variable x Variab
Non-logical symb. 4+ 1st-orc
Logical symbol A 1st-orc

Binding operator V

e x
er constant plus : 1 — 1 — 1
er constant and : 0 — 0 — 0

Smaus: CSMR; WS08/09

Summary of Encoding Syntax 471

Summary of Encoding Syntax
Object Language Metalanguage

Syntactic category Type declaration B = {i, 0}

Term, Prop

Variable x Variable z

Non-logical symb. 4+ 1st-order constant plus: 1 — 1 —1¢
Logical symbol A 1st-order constant and : 0 — 0 — 0

Binding operator V' 2nd-order const. all : (1 — 0) — o
Meaningful expr.
a N\b e Prop

Smaus: CSMR; WS08/09 Mig

Summary of Encoding Syntax 471

Summary of Encoding Syntax
Object Language Metalanguage

Syntactic category Type declaration B = {i, 0}

Term, Prop

Variable x Variable z

Non-logical symb. 4+ 1st-order constant plus: 1 — 1 —1¢
Logical symbol A 1st-order constant and : 0 — 0 — 0
Binding operator V