
Computer Supported
Modeling and Reasoning

Jan-Georg Smaus

WS08/09



CSMR in Time and Space



CSMR in Time and Space 3

Organizational Matters

Instructor: Dr. Jan-Georg Smaus

Lecture: Monday 9:15 – 11:00, HS 02-017, bldg. 052.

Labs: Wednesday 16:15 – 18:00, SR 00-029, bldg. 82 (Linux

pool in Mensa building).

Language: English (questions: German, French . . . ).

Credit: 6 credit points. Written or oral exam at the end.

Participation in lecture and exercises required.

Smaus: CSMR; WS08/09

http://www.informatik.uni-freiburg.de/~smaus/
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History of this Course
In previous years, this course was given by Prof. Dr. David

Basin and Dr. Burkhart Wolff.

In WS01/02 and WS02/03, Jan-Georg Smaus was in charge

of the labs and maintaining the lecture slides.

As of 2003, David Basin moved to ETH Zürich. Some

members of the Software Engineering group have followed

him.

Jan is now in the group of Prof. Dr. Bernhard Nebel and

gave this course in each winter semester from WS03/04.

Smaus: CSMR; WS08/09

http://www.inf.ethz.ch/people/detail?id=19
http://www.inf.ethz.ch/people/detail?id=19
http://www.inf.ethz.ch/people/detail?id=288
http://www.informatik.uni-freiburg.de/~smaus/
http://www.ethz.ch/
http://www.informatik.uni-freiburg.de/~gkiabt/
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Some Former Students of this Course
Karla Alcazar, Micha Altmeyer, Konrad Anton, Rafael

Baumgartner, Pascal Bercher, Sergiy Bogomolov, Jürgen

Christ, Daniel Dietsch, Diana Dragojević, Michael Drescher,

Gidon Ernst, Zeno Gantner, Kerstin Haring, Matthias

Heizmann, Harald Hiss, Jet Hoe Tang, Johannes Horstmann,

Steffen Kemmerer, Paul Hankes Drielsma, Angelika Kimmig,

Vito di Leo, Matthias Luber, Daniel Maier, Fernando Meyer,

Marco Muniz, Julia Peltason, Florian Pigorsch, Silvia

Richter, Alexander Schimpf, Stefan Spinner, Christoph

Sprunk, Hauke Strasdat, Tilman Thiry, Maria Vassileva.

Ask them!

Smaus: CSMR; WS08/09

http://www.informatik.uni-freiburg.de/~hiss/
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The Slides
The slides for this course will be made available at

http://www.informatik.uni-freiburg.de/˜ki/teaching/ws0708/csmr/.

You might take notes of things written on the blackboard.

The slides are actually an online course. They are also

available as lecture notes that can be printed out, and as

screen notes.

If you note mistakes or have suggestions, please tell me!

The slides are around 1380, contained in a single file. The

lecture notes are around 650, designed for being printed at a

rate of four pages per sheet side. So please be mindful of

resources when you print!

Smaus: CSMR; WS08/09

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0708/csmr/
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What this Course is about
• Mechanizing and using logic
◦ program verification:

input: theories, programs, properties

output: correctness guarantees

◦ Hilbert’s program:

input: arithmetic

output: theorems

• Technically: mechanization and

application

• Generally: making logic come to life and

useful as a general tool.

high level

requirem
ents

(sem
i) form

al

m
odels

code
code

code

Smaus: CSMR; WS08/09
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Overview: Four Parts
1. Logics (propositional, first-order, higher-order): appr. 6

units

Smaus: CSMR; WS08/09
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Overview: Four Parts
1. Logics (propositional, first-order, higher-order): appr. 6

units

2. Metalogics (Isabelle): appr. 2 units

Smaus: CSMR; WS08/09
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Overview: Four Parts
1. Logics (propositional, first-order, higher-order): appr. 6

units

2. Metalogics (Isabelle): appr. 2 units

3. Modeling mathematics and computer science

(programming languages) in higher-order logic: appr. 6

units
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Overview: Four Parts
1. Logics (propositional, first-order, higher-order): appr. 6

units

2. Metalogics (Isabelle): appr. 2 units

3. Modeling mathematics and computer science

(programming languages) in higher-order logic: appr. 6

units

4. Some case study in formalizing a theory (functional or

imperative programming, or the specification language Z):

appr. 2 units

Presentation roughly follows this structure.

Smaus: CSMR; WS08/09
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Why this Course Matters

Academic motivation: deepen knowledge of logic and for-

mal reasoning

Smaus: CSMR; WS08/09

http://www.intel.com/
http://www.gemplus.com/
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Why this Course Matters

Academic motivation: deepen knowledge of logic and for-

mal reasoning

Practical motivation: verification and formal methods

• The last decade has seen spectacular hardware and

software failures and the birth of a new discipline: the

verification engineer

• Exciting positions at companies like Intel, Gemplus, . . .

Smaus: CSMR; WS08/09

http://www.intel.com/
http://www.gemplus.com/
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Why this Course Matters (2)
In general:

• Understanding formal reasoning improves understanding of

how to build correct systems

• Mechanization provides formal guarantees

Want to see some Isabelle/HOL applications?

Smaus: CSMR; WS08/09
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Relationship to other Courses

Logic: deduction, foundations, and applications

Software engineering: specification, refinement, verification

Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reasoning,

deduction

In general, you will develop a deeper understanding of

mathematical and logical reasoning, which is central to

computer science.

Smaus: CSMR; WS08/09
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Requirements
Some knowledge of logic is useful for this course.

Smaus: CSMR; WS08/09
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Requirements
Some knowledge of logic is useful for this course.

We will try to accommodate different backgrounds, e.g. with

pointers to additional material. Your feedback is essential!

You must be willing to participate in the labs and get your

hands dirty using a proof development system:

• further develop course material

• present material on pragmatics of mechanized reasoning

• hands-on experience.

Smaus: CSMR; WS08/09
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Requirements
Some knowledge of logic is useful for this course.

We will try to accommodate different backgrounds, e.g. with

pointers to additional material. Your feedback is essential!

You must be willing to participate in the labs and get your

hands dirty using a proof development system:

• further develop course material

• present material on pragmatics of mechanized reasoning

• hands-on experience.

Experience shows that it makes no sense to follow just a little

bit. It is hard in the beginning but the rewards are large.

Smaus: CSMR; WS08/09
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What’s Happening in Freiburg?
Harald Hiss and Stefan Wölfl work with Isabelle here at

Freiburg:

• There is a trend to use XML (a generalization of HTML)

for database applications. However, this gives rise to

possible inconsistencies. Harald uses Isabelle to prove

formally that such inconsistencies cannot occur.

• There are various formal theories that allow to reason

about the relationship of objects in space and time. Stefan

uses Isabelle for proving consequences of such theories,

dependencies between theories etc.

Also, David Basin occasionally seeks PhD students. ¸

Smaus: CSMR; WS08/09

http://www.informatik.uni-freiburg.de/~hiss/
http://www.informatik.uni-freiburg.de/~woelfl/
http://www.inf.ethz.ch/people/detail?id=19
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More Detailed Explanations

Smaus: CSMR; WS08/09
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What is Verification?
Verification is the process of formally proving that a program has the

desired properties. To this end, it is necessary to define a specification

language in which the desired properties can be formulated, i.e. specified.

One must define a semantics for this language as well as for the

program. These semantics must be linked in such a way that it is

meaningful to say: “Program X makes formula Φ true”.

Back to main referring slide

Smaus: CSMR; WS08/09
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What is Hilbert’s Program?
In the 1920’s, David Hilbert attempted a single rigorous formalization of

all of mathematics, named Hilbert’s program. He was concerned with

the following three questions:

1. Is mathematics complete in the sense that every statement can be

proved or disproved?

2. Is mathematics consistent in the sense that no statement can be

proved both true and false?

3. Is mathematics decidable in the sense that there exists a definite

method to determine the truth or falsity of any mathematical

statement?

Hilbert believed that the answer to all three questions was ’yes’.

Thanks to the the incompleteness theorem of Gödel (1931) and the

Smaus: CSMR; WS08/09



More Detailed Explanations 18

undecidability of first-order logic shown by Church and Turing (1936–37)

we know now that his dream will never be realized completely. This

makes it a never-ending task to find partial answers to Hilbert’s

questions.

For more details:

• Panel talk by Moshe Vardi

• Lecture by Michael J. O’Donnell

• Article by Stephen G. Simpson

• Original works Über das Unendliche and Die Grundlagen der

Mathematik [vH67]

• Some quotations shedding light on Gödel’s incompleteness theorem

• Eric Weisstein’s world of mathematics explaining Gödel’s

incompleteness theorem

Smaus: CSMR; WS08/09

http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html
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Back to main referring slide

Smaus: CSMR; WS08/09
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Mechanizing Logic
We will learn to make logic run on a computer by using the Isabelle

system.

Back to main referring slide

Smaus: CSMR; WS08/09

http://isabelle.in.tum.de/
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What is (a) Logic?
The word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact, it is the

science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined language allowing

to write down statements, together with a predefined meaning for some

of the syntactic entities of this language. Propositional logic, first-order

logic, and higher-order logic are three different logics.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 22

What is a Metalogic?
A metalogic is a logic that allows us to express properties of another

logic.

Back to main referring slide

Smaus: CSMR; WS08/09
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What is a Theory?
Intuitively, whenever you do computer-supported modeling and

reasoning, you have to formalize a tiny portion of the “world”, the

portion that your problem lives in. For example, rational numbers may or

may not exist in this portion. A theory is such a formalization of a tiny

portion of the “world”. A theory extends a logic by axioms that describe

that portion of the “world”.

Theories will be considered in more detail later.

Back to main referring slide

Smaus: CSMR; WS08/09
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What we Neglect
We will introduce different logics and formal systems (so-called calculi)

used to deduce formulas in a logic. We will neglect other aspects that

are usually treated in classes or textbooks on logic, e.g.:

• semantics (interpretations) of logics; and

• correctness and completeness of calculi.

As an introduction we recommend [vD80].

Back to main referring slide

Smaus: CSMR; WS08/09
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Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions”

using not, if...then..., and, or, etc.

• Validity means: no counterexample. Validity independent

of content. Depends on form of the expressions ⇒ can

make patterns explicit by replacing words by symbols

From if A then B and A it follows that B.

Smaus: CSMR; WS08/09
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Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions”

using not, if...then..., and, or, etc.

• Validity means: no counterexample. Validity independent

of content. Depends on form of the expressions ⇒ can

make patterns explicit by replacing words by symbols
A→ B A

B
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Propositional Logic: Overview

• System for formalizing certain valid patterns of reasoning

• Expressions built by combining “atomic propositions”

using not, if...then..., and, or, etc.

• Validity means: no counterexample. Validity independent

of content. Depends on form of the expressions ⇒ can

make patterns explicit by replacing words by symbols
A→ B A

B

• What about

From if A then B and B it follows that A?

Smaus: CSMR; WS08/09
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More Examples
1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work.

2. It will rain or snow.

It will not snow.

Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

Smaus: CSMR; WS08/09
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More Examples (Which are Valid?)
1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work.

2. It will rain or snow.

It will not snow.

Therefore it will rain.

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty.

Smaus: CSMR; WS08/09
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History
• Propositional logic was developed to make this all precise.

• Laws for valid reasoning were known to the Stoic

philosophers (about 300 BC).

• The formal system is often attributed to George Boole

(1815-1864).

Further reading: [vD80], [Tho91, chapter 1].

Smaus: CSMR; WS08/09
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More Formal Examples
Formalization allows us to “turn the crank”.

Smaus: CSMR; WS08/09
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More Formal Examples
Formalization allows us to “turn the crank”.

Phrases like “from . . . it follows” or “therefore” are

formalized as derivation rules, e.g.

A→ B A
B

→-E

Smaus: CSMR; WS08/09
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More Formal Examples
Formalization allows us to “turn the crank”.

Phrases like “from . . . it follows” or “therefore” are

formalized as derivation rules, e.g.

A→ B A
B

→-E

Rules are grafted together to build trees called derivations.

This defines a proof system in the style of natural deduction.

Smaus: CSMR; WS08/09
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Formalizing Propositional Logic

• We must formalize
(a) Language and semantics

(b) Deductive system

Smaus: CSMR; WS08/09
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Formalizing Propositional Logic

• We must formalize
(a) Language and semantics

(b) Deductive system

• Here we will focus on formalizing the deductive machinery

and say little about metatheorems (soundness and

completeness).

Smaus: CSMR; WS08/09
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Formalizing Propositional Logic

• We must formalize
(a) Language and semantics

(b) Deductive system

• Here we will focus on formalizing the deductive machinery

and say little about metatheorems (soundness and

completeness).

• For labs we will carry out proofs using the Isabelle System.

Isabelle supports a Natural Deduction deductive system.

Smaus: CSMR; WS08/09
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Propositional Logic: Language and Semantics

Propositions are built from a collection of (propositional)

variables and closed under disjunction, conjunction,

implication, . . .

Smaus: CSMR; WS08/09
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Propositional Logic: Language (2)
More formally: Let a set V of variables be given. LP , the

language of propositional logic, is the smallest set where:

• X in LP if X in V .

• ⊥ in Lp.

• (A ∧B) in LP if A in LP and B in LP .

• (A ∨B) in LP if A in LP and B in LP .

• (A→ B) in LP if A in LP and B in LP .

• ((¬A) in LP if A in LP .)

The elements of LP are called (propositional) formulas.

We omit unnecessary brackets.

Smaus: CSMR; WS08/09
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Propositional Logic: Semantics
An assignment is a function A : V → {0, 1}. We say that A
assigns a truth value to each propositional variable. We

identify 1 with True and 0 with False.

A is lifted (=extended) to formulas in LP as follows . . .

Smaus: CSMR; WS08/09
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Propositional Logic: Semantics (2)

A(⊥) = 0

A(¬φ) =
{

1 if A(φ) = 0
0 otherwise

A(φ ∧ ψ) =
{

1 if A(φ) = 1 and A(ψ) = 1
0 otherwise

A(φ ∨ ψ) =
{

1 if A(φ) = 1 or A(ψ) = 1
0 otherwise

A(φ→ ψ) =
{

1 if A(φ) = 0 or A(ψ) = 1
0 otherwise

Smaus: CSMR; WS08/09
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Propositional Logic: Semantics (3)
If A(φ) = 1, we write A |= φ.

Two formulae are equivalent if they yield the same truth

value for any assignment of the propositional variables.

The semantics will be generalised later.

Smaus: CSMR; WS08/09
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Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].

Designed to support ‘natural’ logical arguments:

• we make (temporary) assumptions;

• we derive new formulas by applying rules;

• there is also a mechanism for “getting rid of” assumptions.

Smaus: CSMR; WS08/09
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Natural Deduction (2)
Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

Smaus: CSMR; WS08/09
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Natural Deduction (2)
Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

We write A1, ..., An ` A if there exists a derivation of A with

assumptions A1, ..., An, e.g. A→ (B → C), A,B ` C.

Smaus: CSMR; WS08/09
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Natural Deduction (2)
Derivations are trees

A→ (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

We write A1, ..., An ` A if there exists a derivation of A with

assumptions A1, ..., An, e.g. A→ (B → C), A,B ` C.

A proof is a derivation where we “got rid” of all

assumptions.

Smaus: CSMR; WS08/09
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Natural Deduction: an Abstract Example
• Language L = {ª,¨,«,©}.

Smaus: CSMR; WS08/09
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Natural Deduction: an Abstract Example
• Language L = {ª,¨,«,©}.
• Deductive system given by rules of proof:

©

¨
α

©

«
β

¨ «

ª
γ

How do you read these rules?

Smaus: CSMR; WS08/09
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Natural Deduction: an Abstract Example
• Language L = {ª,¨,«,©}.
• Deductive system given by rules of proof:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

How about this one?
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Natural Deduction: an Abstract Example
• Language L = {ª,¨,«,©}.
• Deductive system given by rules of proof:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

How about this one?

α, β, γ, δ are just names for the rules.

Smaus: CSMR; WS08/09
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

Smaus: CSMR; WS08/09
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

We make an assumption. The assumption is now open.

Smaus: CSMR; WS08/09
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

¨
α

We apply α.
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

¨
α

©

«
β

Similarly with β.
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

©

¨
α

©

«
β

ª
γ

We apply γ.
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Proof of ª
The rules:

©

¨
α

©

«
β

¨ «

ª
γ

[©]
....
ª

ª
δ

The proof:

[©]1

¨
α

[©]1

«
β

ª
γ

ª
δ1

We apply δ, discharging two occurrences of ©. We mark the

brackets and the rule with a label so that it is clear which

assumption is discharged in which step. The derivation is now

a proof: it has no open assumptions (all discharged).

Smaus: CSMR; WS08/09
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Deductive System: Rules of Propositional
Logic

We have rules for conjunction, implication, disjunction,

falsity and negation.

Some rules introduce, others eliminate connectives.

Smaus: CSMR; WS08/09
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Rules of Propositional Logic: Conjunction
• Rules of two kinds: introduce connectives

A B
A ∧B ∧-I

Smaus: CSMR; WS08/09
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Rules of Propositional Logic: Conjunction
• Rules of two kinds: introduce and eliminate connectives

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

Smaus: CSMR; WS08/09
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Rules of Propositional Logic: Conjunction
• Rules of two kinds: introduce and eliminate connectives

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

• Rules are schematic.

• Why valid? If all assumptions are true, then so is

conclusion

A |= A ∧B iff A |= A and A |= B

Smaus: CSMR; WS08/09
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

Smaus: CSMR; WS08/09
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

A ∧ (B ∧ C)
A

∧-EL

Smaus: CSMR; WS08/09
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

A ∧ (B ∧ C)
A

∧-EL

A ∧ (B ∧ C)
B ∧ C ∧-ER
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

A ∧ (B ∧ C)
A

∧-EL

A ∧ (B ∧ C)
B ∧ C ∧-ER

C
∧-ER
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

A ∧ (B ∧ C)
A

∧-EL

A ∧ (B ∧ C)
B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I
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Example Derivation with Conjunction
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

A ∧ (B ∧ C)
A

∧-EL

A ∧ (B ∧ C)
B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

Can we prove anything with just these three rules?

Smaus: CSMR; WS08/09
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Rules of Propositional Logic: Implication
• Rules

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

Smaus: CSMR; WS08/09
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Rules of Propositional Logic: Implication
• Rules

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

• →-E is also called modus ponens.

Smaus: CSMR; WS08/09
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Rules of Propositional Logic: Implication
• Rules

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

• →-E is also called modus ponens.

• →-I formalizes strategy:

To derive A→ B, derive B under the additional

assumption A.

Smaus: CSMR; WS08/09
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A very Simple Proof
The simplest proof we can think of is the proof of P → P .

P
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A very Simple Proof
The simplest proof we can think of is the proof of P → P .

[P ]1

P → P
→-I1

Do you find this strange?
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Examples with Conjunction and Implication
1. A→ B → A

2. A ∧ (B ∧ C)→ A ∧ C
3. (A→ B → C)→ (A→ B)→ A→ C

Are these object or metavariables here?
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Disjunction
• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E
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Disjunction
• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Formalizes case-split strategy for using A ∨B.
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Disjunction: Example
• Rules

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Example: formalize and prove

When it rains then I wear my jacket.

When it snows then I wear my jacket.

It is raining or snowing.

Therefore I wear my jacket.
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Falsity and Negation
• Falsity

⊥
A
⊥-E

No introduction rule!
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Falsity and Negation
• Falsity

⊥
A
⊥-E

No introduction rule!

• Negation: define ¬A as A→⊥. Rules for ¬ just special

cases of rules for →. Convenient to have

¬A A
B

¬-E
derived by

¬A A
⊥ →-E

B
⊥-E
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Intuitionistic versus Classical Logic
• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid? Provable?
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Intuitionistic versus Classical Logic
• Peirce’s Law: ((A→ B)→ A)→ A.

Is this valid? Provable?

• It is provable in classical logic, obtained by adding

A ∨ ¬A or

[¬A]
....
⊥
A
RAA

or

[¬A]
....
A

A
classical

.
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Example of Classical Reasoning
Recall the story of Oedipus from greek mythology:

• Iokaste is the mother of Oedipus.

• Iokaste and Oedipus are the parents of Polyneikes.

• Polyneikes is the father of Thersandros.

• Oedipus is a patricide.

• Thersandros is not a patricide.

Smaus: CSMR; WS08/09



Deductive System: Rules of Propositional Logic 51

Example of Classical Reasoning (cont.)
Iokaste

XXXXXXXXXXXz

HH
HHHHH

HHHHH
HHj

Oedipus (patr.)
?

Polyneikes
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?
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Example of Classical Reasoning (cont.)
Iokaste

XXXXXXXXXXXz

HH
HHHHH

HHHHH
HHj

Oedipus (patr.)
?

Polyneikes ( patr.)
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

Case 1: If Polyneikes is a patricide, then Iokaste has a

child (Polyneikes) that is a patricide and that itself has a

child (Thersandros) that is not a patricide.
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Example of Classical Reasoning (cont.)
Iokaste

XXXXXXXXXXXz

HH
HHHHH

HHHHH
HHj

Oedipus (patr.)
?

Polyneikes (¬ patr.)
?

Thersandros (¬ patr.)

Does Iokaste have a child that is a patricide and that itself

has a child that is not a patricide?

Case 2: If Polyneikes is not a patricide, then Iokaste has a

child (Oedipus) that is a patricide and that itself has a

child (Polyneikes) that is not a patricide.

Here is another example.
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Overview of Rules

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

A
A ∨B ∨-IL

B
A ∨B ∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

[A]
....
B

A→ B
→-I

A→ B A
B

→-E
⊥
A
⊥-E
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

It looks like this.
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S

¬S

R

We build a fragment of a derivation by writing the conclusion

R and the assumptions R ∨ S and ¬S.
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S

R ∨-E

Since we have assumption R ∨ S, using ∨-E seems a good

idea. So we should make assumptions R and S. First R. But

that is a derivation of R from R!
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

R ∨-E

So now S.
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R ∨-E

¬S and S allow us to apply →-E.
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S R

¬S S

⊥ →-E

R
⊥-E

R ∨-E

To apply ∨-E in the end, we need to derive R. But that’s

easy using ⊥-E!
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S [R]1

¬S [S]1

⊥ →-E

R
⊥-E

R ∨-E1

Finally, we can apply ∨-E. The derivation with open as-

sumptions is a new rule that can be used like any other rule.
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A Variation of Natural Deduction: Boxes
We have seen just one deductive system.

One variation of natural deduction is the following: A

derivation is not a tree, but a sequence of numbered lines.

Instead of subtrees relying on open assumptions, a

subderivation relying on an assumption is enclosed in a box.

You find this explained in [HR04].
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Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability

judgement, i.e., reason about Γ ` A where Γ ≡ A1, . . . , An

instead of individual formulae.
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Sequent Rules (for → /∧ Fragment)
Rules for assumptions and weakening:

Γ ` A (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken
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Sequent Rules (for → /∧ Fragment)
Rules for assumptions and weakening:

Γ ` A (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Rules for ∧ and →:

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

More rules can be derived.
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Example: Refinement Style with
Metavariables

` A ∧ (B ∧ C)→ A ∧ C

We want to show that A ∧ (B ∧ C)→ A ∧ C is a tautology,

i.e., that it is derivable without any assumptions.
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C→-I

The topmost connective of the formula is →, so the best rule

to choose is →-I.
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A A ∧ (B ∧ C) ` C
A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C→-I

The topmost connective of the formula is ∧, so the best rule

to choose is ∧-I.
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL
A ∧ (B ∧ C) ` C

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C→-I

Things are becoming less obvious. To know that ∧-EL is the

best rule for the r.h.s., you need to inspect the assumption

A ∧ (B ∧ C).
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL
A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C→-I

Now it’s becoming even more difficult. To know that ∧-ER

is the best rule for the l.h.s., you need to look deep into the

assumption A ∧ (B ∧ C).
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C→-I

Again you need to look at both sides of the ` to decide what

to do.
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C→-I

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ (B ∧ C)

A ∧ (B ∧ C) ` A ∧-EL

A ∧ (B ∧ C) ` A ∧ (B ∧ C)

A ∧ (B ∧ C) ` (B ∧ C)
∧-ER

A ∧ (B ∧ C) ` C ∧-ER

A ∧ (B ∧ C) ` A ∧ C ∧-I

` A ∧ (B ∧ C)→ A ∧ C→-I

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).
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Comments about Refinement
This crazy way of carrying out proofs is the (standard)

Isabelle-way!

• Refinement style means we work from goals to axioms

• metavariables used to delay commitments

Isabelle allows other refinements/alternatives too (see labs).
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Outlook
• Computer Supported Modeling and Reasoning is about

turning logic into a useful tool and bringing it to life.

• We will cover:
◦ deductive aspects of logic (their proof systems)

◦ metatheoretic aspects (their representation)

◦ pragmatics (their use), and

◦ case studies.

• This is an active, hands-on course
◦ The labs are as important as (if not more than!) the lectures

◦ Individual projects are possible. Individual initiative desired! ¸
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More Detailed Explanations
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What is Validity (of a Pattern of Reasoning)?
A and B are symbols whose meaning is not “hard-wired” into

propositional logic.

From if A then B and A it follows that B

is valid because it is true regardless of what A and B “mean”, and in

particular, regardless of whether A and B stand for true or false

propositions.

Back to main referring slide
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An Invalid Pattern
From if A then B and B it follows that A

is invalid because there is a counterexample:

Let A be “Kim is a man” and B be “Kim is a person”.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 63

More Examples
1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work. VALID

2. It will rain or snow.

It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty. NOT VALID

Back to main referring slide
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More Examples (Which are Valid?)
1. If it is Sunday, then I don’t need to work.

It is Sunday.

Therefore I don’t need to work. VALID

2. It will rain or snow.

It is too warm for snow.

Therefore it will rain. VALID

3. The Butler is guilty or the Maid is guilty.

The Maid is guilty or the Cook is guilty.

Therefore either the Butler is guilty or the Cook is guilty. NOT VALID

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 64

Turning the Crank
By formalizing patterns of reasoning, we make it possible for such

reasoning to be checked or even carried out by a computer.

From known patterns of reasoning new patterns of reasoning can be

constructed.

Back to main referring slide
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What does Formalization Mean?
At this stage, we are content with a formalization that builds on

geometrical notions like “above” or “to the right of”. In other words,

our formalization consists of geometrical objects like trees.

We study formalization in more detail later.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 66

Proof Systems
A proof system or deductive system is characterized by a particular set of

rules plus the general principles of how rules are grafted together to trees

in natural deduction. We will see this shortly, but note that natural

deduction is just one style of proof systems.

We call the rules in that particular set basic rules. Later we will see one

can also derive rules.

Back to main referring slide
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Soundness and Completeness
A proof system is sound if only valid propositions can be derived in it.

A proof system is complete if all valid propositions can be derived in it.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 68

What is a Metatheorem?
A metatheorem is a theorem about a proof system, as opposed to a

theorem derived within the proof system. The statement “proof system

XYZ is sound” is a metatheorem.

Back to main referring slide
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What is a Language?
By language we mean the language of formulae. We can also say that we

define the (object) logic. Here “logic” is used in the narrower sense.

Back to main referring slide
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What does Open Mean?
For example, all assumptions in
A→ (B → C) A

B → C
→-E

B

C
→-E

are open. For the moment, it suffices to know that when an assumption

is made, it is initially an open assumption.

Back to main referring slide
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What is `?
For the moment, the way to understand it is as follows: by writing

A→ (B → C), A,B ` C, we assert that C can be derived in this proof

system under the assumptions A→ (B → C), A,B.

We will say more about the ` notation later.

Back to main referring slide
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Why is this Example Abstract?
Natural deduction is not just about propositional logic! We explain here

the general principles of natural deduction, not just the application to

propositional logic.

In order to emphasize that applying natural deduction is a completely

mechanical process, we give an example that is void of any intuition.

It is important that you understand this process. Applying rules

mechanically is one thing. Understanding why this process is

semantically justified is another.

Back to main referring slide
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How to Read these Rules
The first rule reads: if at some root of a tree in the forest you have

constructed so far, there is a ©, then you are allowed to draw a line

underneath that © and write ¨ underneath that line.

The third rule reads: if the forest you have constructed so far contains

two neighboring trees, where the left tree has root ¨ and the right tree

has root «, then you are allowed to draw a line underneath those two

roots and write ª underneath that line.

Back to main referring slide
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How to Read these Rules (2)
The last rule reads: if at some root of a tree in the forest you have

constructed so far, there is a ª, then you are allowed to draw a line

underneath that ª and write © underneath that line. Moreover you are

allowed to discharge (eliminate, close) 0 or more occurrences of © at the

leaves of the tree.

Discharging is marked by writing [] around the discharged formula.

Note that generally, the tree may contain assumptions other than © at

the leaves. However, these must not be discharged in this rule

application. They will remain open until they might be discharged by

some other rule application later.

Back to main referring slide
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Making Assumptions
In everyday language, “making an assumption” has a connotation of

“claiming”. This is not the case here. By making an assumption, we are

not claiming anything.

When interpreting a derivation tree, we must always consider the open

assumptions. We must say: under the assumptions . . . , we derived . . . .

It is thus unproblematic to “make” assumptions.

Back to main referring slide
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Propositional Variables
In mathematics, logic and computer science, there are various notions of

variable. In propositional logic, a variable stands for a proposition, i.e., a

variable can be interpreted as True or False.

This will be different in logics that we will learn about later.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 77

What is a Formula?
In logic, the word “formula” has a specific meaning. Formulae are a

syntactic category, namely the expressions that stand for a statement. So

formulas are syntactic expressions that are interpreted (on the semantic

level) as True or False.

We will later learn about another syntactic category, that of terms.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 78

Associativity and Precedences
To save brackets, we use standard associativity and precedences. All

binary connectives are right-associative:

A ◦B ◦ C ≡ A ◦ (B ◦ C)

The precedences are ¬ before ∧ before ∨ before →. So for example

A→ B ∧ ¬C ∨D ≡ A→ ((B ∧ (¬C)) ∨D)

Back to main referring slide
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The Word or
In mathematics and computer science, the word or is almost always

meant to be inclusive. If it is meant to be exclusive (A or B hold but not

both) this is usually mentioned explicitly.

Back to main referring slide
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The Language of Propositional Logic
Strictly speaking, the definition of LP depends on V . A different choice

of variables leads to a different language of propositional logic, and so we

should not speak of the language of propositional logic, but rather of a

language of propositional logic. However, for propositional logic, one

usually does not care much about the names of the variables, or about

the fact that their number could be insufficient to write down a certain

formula of interest. We usually assume that there are countably infinitely

many variables.

Later, we will be more fussy about this point.

Back to main referring slide
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Why Smallest Set?

The language of propositional logic is a set of formulae, defined by

induction. Note the following points about the definition, which are

important characteristics of any inductive definition:

• By the second item in the definition, LP is non-empty (also, one

would usually have that V is non-empty, since otherwise LP is not

very interesting);

• LP is required to be the smallest set meeting the above conditions.

Otherwise, anything (a number, a dog, the pope) could be a

propositional formula.

• All conditions (or rules) defining LP have the form: if ψ1 and . . . and

ψn are in LP , then some formula built from ψ1 and . . . and ψn is in

LP .
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It is crucial that no negation is involved here. If for example, there was

a rule stating: if A is in LP then A is not in LP , then there could be

no LP fulfilling such a rule.

More detail on inductive definitions can be found in an article by Aczel

[Acz77].

Back to main referring slide
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Introduction and Elimination
It is typical that the basic rules of a proof system can be classified as

introduction or elimination rules for a particular connective.

This classification provides obvious names for the rules and may guide

the search for proofs.

The rules for conjunction are pronounced and-introduction,

and-elimination-left, and and-elimination-right.

Apart from the basic rules, we will later see that there are also derived

rules.

Back to main referring slide
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Validity Revisited
A rule is valid if for any assignment under which the assumptions of the

formula are true, the conclusion is true as well.

This is consistent with the earlier intuitive explanation of validity of a

formula. Details can be found in any textbook on logic [vD80].

Note that while the notation A |= . . . will be used again later, there A
will not stand for an assignment, but rather for a construct having an

assignment as one constituent. This is because we will generalize, and in

the new setting we need something more complex than just an

assignment. But in spirit A |= . . . will still mean the same thing.

Back to main referring slide
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Schematic Rules
The letters A and B in the rules are not propositional variables. Instead,

they can stand for arbitrary propositional formulas. One can also say

that A and B are metavariables, i.e., they are variables of the proof

system as opposed to object variables, i.e., variables of the language that

we reason about (here: propositional logic).

When a rule is applied, the metavariables of it must be replaced with

actual formulae. We say that a rule is being instantiated.

We will see more about the use of metavariables later.

Back to main referring slide
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Can we Prove Anything . . . ?
All three rules have a non-empty sequence of assumptions. Thus to build

a tree using these rules, we must first make some assumptions.

None of the rules involves discharging an assumption.

We have said earlier that a proof is a derivation with no open

assumptions.

Consequently, the answer is no. We cannot prove anything with just

these three rules.

Back to main referring slide
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Object vs. Meta
In these examples, you may regard A,B,C as propositional variables. On

the other hand, the proofs are schematic, i.e., they go through for any

formula replacing A,B, and C.

Back to main referring slide
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So you Find this Strange!
When we make the assumption P , we obtain a forest consisting of one

tree. In this tree, P is at the same time a leaf and the root. Thus the

tree P is a degenerate example of the schema
[A]....
B

where both A and B are replaced with P .

Therefore we may apply rule →-I, similarly as in our abstract example.

Back to main referring slide
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A→ B → A
The rule(s):

[A]
....
B

A→ B
→-I

The proof:

[A]1

B → A
→-I

A→ B → A
→-I1

Back to main referring slide
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(A ∧ (B ∧ C))→ (A ∧ C)
The rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

[A]
....
B

A→ B
→-I

The proof:

[A ∧ (B ∧ C)]1

A
∧-EL

[A ∧ (B ∧ C)]1

B ∧ C ∧-ER

C
∧-ER

A ∧ C ∧-I

(A ∧ (B ∧ C))→ (A ∧ C)→-I1

Back to main referring slide
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(A→ B → C)→ (A→ B)→ A→ C

The rules:

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

The proof:

[(A→ B → C)]1 [A]3

B → C
→-E

[(A→ B)]2 [A]3

B
→-E

C
→-E

A→ C
→-I3

(A→ B)→ A→ C
→-I2

(A→ B → C)→ (A→ B)→ A→ C
→-I1

Back to main referring slide
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Falsity
The symbol ⊥ stands for “false”.

Back to main referring slide
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No Introduction Rule for ⊥
The symbol ⊥ stands for “false”.

It should be intuitively clear that since the purpose of a proof system is

to derive true formulae, there is no introduction rule for falsity. One may

wonder: what is the role of ⊥ then? We will see this soon. The main

role is linked to negation. We quote from [And02, p. 152]:

⊥ plays the role of a contradiction in indirect proofs.

Back to main referring slide
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Connectives
The connectives are called conjunction (∧), disjunction (∨), implication

(→) and negation (¬).

The connectives ∧,∨,→ are binary since they connect two formulas, the

connective ¬ is unary (most of the time, one only uses the word

connective for binary connective).

Back to main referring slide
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Negation
“Officially”, negation does not exist in our language and proof system.

Negation is only used as a shorthand, or syntactic sugar, for reasons of

convenience. In paper-and-pencil proofs, we are allowed to erase any

occurrence of ¬P and replace it with P → ⊥, or vice versa, at any time.

However, we shall see that when proofs are automated, this process must

be made explicit.
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Syntactic Sugar
For any formal language (programming language, logic, etc.), the term

syntactic sugar refers to syntax that is provided for the sake of readability

and brevity, but which does not affect the expressiveness of the language.

It is usually a good idea to consider the language without the syntactic

sugar for any theoretical considerations about the language, since it

makes the language simpler and the considerations less error-prone.

However, the correspondence between the syntactic sugar and the basic

syntax should be stated formally.

Back to main referring slide
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The Rules for ¬
The rule

¬A A
⊥

is simply an instance of →-E (since ¬A is shorthand for A→⊥).

Likewise, the rule
[A]
....
⊥
¬A

is simply an instance of →-I. Therefore, we will not introduce these as

special rules. But there is a special rule ¬-E.

Back to main referring slide
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The Rule ¬-E
For negation, it is common to have a rule

¬A A
B

¬-E

We have seen how this rule can be derived. The concept of deriving rules

will be explained more systematically later.

This rule is also called ex falso quod libet (from the false whatever you

like).

Back to main referring slide
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Peirce’s Law Valid?
Yes, simply check the truth table:

A B ((A→ B)→ A)→ A

True True True
True False True
False True True
False False True

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 100

Peirce’s Law Provable?
In the proof system given so far, this is not provable. To prove that it is

not provable requires an analysis of so-called normal forms of proofs.

However, we do not do this here.

Back to main referring slide
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Intuitionistic versus Classical Logic
The proof system we have given so far is a proof system for intuitionistic

logic. The main point about intuitionistic logic is that one cannot claim

that every statement is either true or false, but rather, evidence must be

given for every statement.

In classical reasoning, the law of the excluded middle holds.

One also says that proofs in intuitionistic logic are constructive whereas

proofs in classical logic are not necessarily constructive.

We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar classical logic

which allows an effective interpretation and mechanical extraction of

programs from proofs.

The difference between intuitionistic and classical logic has been the
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topic of a fundamental discourse in the literature on logic [PM68]

[Tho91, chapter 3]. Often proofs contain case distinctions, assuming

that for any statement ψ, either ψ or ¬ψ holds. This reasoning is

classical; it does not apply in intuitionistic logic.

Back to main referring slide
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Axiom of the Excluded Middle
A ∨ ¬A is called axiom of the excluded middle.

Back to main referring slide
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Reductio ad absurdum
The rule

[¬A]
....
⊥
A
RAA

is called reduction ad absurdum.

Back to main referring slide
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The classical rule in Isabelle
The rule

[¬A]
....
A

A
classical

corresponds to the formulation is Isabelle.

Back to main referring slide
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Example of Classical Reasoning
There exist irrational numbers a and b such that ab is rational.
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Example of Classical Reasoning
There exist irrational numbers a and b such that ab is rational.

Proof: Let b be
√

2 and consider whether or not bb is rational.

Case 1: If rational, let a = b =
√

2
Case 2: If irrational, let a =

√
2
√

2
, and then

ab =
√

2
√

2

√
2

=
√

2
(
√

2∗
√

2)
=
√

2
2

= 2
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Example of Classical Reasoning
There exist irrational numbers a and b such that ab is rational.

Proof: Let b be
√

2 and consider whether or not bb is rational.

Case 1: If rational, let a = b =
√

2
Case 2: If irrational, let a =

√
2
√

2
, and then

ab =
√

2
√

2

√
2

=
√

2
(
√

2∗
√

2)
=
√

2
2

= 2

We still don’t know how to choose a and b so that ab is rational. Hence

the proof if non-constructive.
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Sequent Notation
An object like A→ (B → C), A,B ` C is called a derivability

judgement. We explained it earlier as simply asserting the fact that there

exists a derivation tree with C at its root and open assumptions

A→ (B → C), A,B.

However, it is also possible to make such judgements the central objects

of the deductive system, i.e., have rules involving such objects.

The notation Γ ` A is called sequent notation. However, this should not

be confused with the sequent calculus (we will consider it later). The

sequent calculus is based on sequents, which are syntactic entities of the

form A1, . . . , An ` B1, . . . , Bm, where the A1, . . . , An, B1, . . . , Bm are

all formulae. You see that this definition is more general than the

derivability judgements we consider here.

What we are about to present is a kind of hybrid between natural

Smaus: CSMR; WS08/09



More Detailed Explanations 108

deduction and the sequent calculus, which we might call natural

deduction using a sequent notation.
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Axioms vs. Rules
An axiom is a rule without premises. We call a rule with premises proper.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules for propositional logic contain no

axioms. In the sequent style formalization, having the assumption rule

(axiom) is essential for being able to prove anything, but in the natural

deduction style we learned first, we can construct proofs without having

any axioms.

Note also that even a proper rule in the object logic is just an axiom at

the level of Isabelle’s meta-logic. This will be explained later.

Back to main referring slide
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Assumptions
The special rule for assumptions takes the role in this sequent style

notation that the process of making and discharging assumptions had in

natural deduction based on trees.

It is not so obvious that the two ways of writing proofs are equivalent,

but we shall become familiar with this in the exercises by doing proofs on

paper as well as in Isabelle.

Back to main referring slide
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Weakening
The rule weaken is

Γ ` B
A,Γ ` B weaken

Intuitively, the soundness of rule weaken should be clear: having an

additional assumption in the context cannot hurt since there is no proof

rule that requires the absence of some assumption.

We will see an application of that rule later.
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Deriving ∧-E
As an example, consider

A,B,Γ ` C Γ ` A ∧B
Γ ` C ∧-E

This rule can be derived as follows:

A,B,Γ ` C
A,Γ ` B → C

→-I

Γ ` A→ B → C
→-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` B → C
→-E

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` C →-E

Back to main referring slide
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Which Rule to Choose?
In general, statements about which rule to choose when building a proof

are heuristics, i.e., they are not guaranteed to work. Building a proof

means searching for a proof. However, there are situations where the

choice is clear. E.g., when the topmost connective of a formula is →,

then →-I is usually the right rule to apply.

The question will be addressed more systematically later.
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Goals to Axioms
As you saw in our animation, we worked from the root of the tree to the

leaves.
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Working on Assumptions
One aspect you might have noted in the proof is that the steps at the

top, where ∧-EL and ∧-ER were used, required non-obvious choices, and

those choices were based on the assumptions in the current derivability

judgement.

In Isabelle, we will apply other rules and proof techniques that allow us

to manipulate assumptions explicitly. These techniques make the process

of finding a proof more deterministic.

But that is just one aspect. We will give a more theoretic account of the

way Isabelle constructs proofs later.

Back to main referring slide
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Overview

• Short review: ND Systems and proofs

• First-Order Logic
◦ Overview

◦ Syntax

◦ Semantics

◦ Deduction, some derived rules, and examples
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How Are ND Proofs Built?
ND proofs build derivations under (possibly temporary)

assumptions.
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ND: Example for → /∧ Fragment
Rules:

A B
A ∧B ∧-I

A ∧B
A
∧-EL

A ∧B
B
∧-ER

[A]
....
B

A→ B
→-I

A→ B A
B

→-E

Proof:

[A ∧B]1

B
∧-EL

[A ∧B]1

A
∧-ER

B ∧A ∧-I

A ∧B → B ∧A→-I1
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Alternative Formalization Using Sequents
Rules (for → /∧ fragment). Here, Γ is a set of formulae.

Γ ` A (where A ∈ Γ)

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

Two representations equivalent. Sequent notation seems

simpler in practice.
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C
A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).
We went through this example in detail last lecture.
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Comments about Refinement
This crazy way of carrying out proofs is the (standard)

Isabelle-way!

• Refinement style means we work from goals to axioms

• Metavariables used to delay commitments

Isabelle allows other refinements/alternatives too (see labs).

¸
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More Detailed Explanations
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What are ND Systems and Proofs?
ND stands for Natural Deduction. It was explained in the previous

lecture.
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What is Sequent Notation ?
The judgement (Γ ` φ) means that we can derive φ from the

assumptions in Γ using certain rules. As explained in the previous

lecture, one can make such judgements the central objects of the

deductive system.
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Sequent Notation and Isabelle
In particular, the sequent style notation is more amenable to automation,

and thus it is closer to what happens in Isabelle.

Back to main referring slide
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First-Order Logic: Overview

In propositional logic, formulae are Boolean combinations of

propositions. This will remain important for modeling simple

patterns of reasoning.

An atomic proposition is just a letter (variable). All one can

say about it is that it is true or false. E.g. it is meaningless

to say “A and B state something similar”. Also, infinity

plays no role.

Smaus: CSMR; WS08/09



First-Order Logic: Overview 129

First-Order Logic: the Essence
In first-order logic, an atom(ic proposition) says that

“things” have certain “properties”. Infinitely many “things”

can be denoted, hence infinitely many atoms generated and

distinguished. Comparisons of atoms become meaningful:

“Tim is a boy” and “Carl is a boy” state something similar.

Example reasoning: “Tim is a boy”; “boys don’t cry”; hence

“Tim doesn’t cry”.

Further reading: [vD80], [Tho91, chapter 1].
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Variables: Intuition
In first-order logic, we talk about “things” that have certain

“properties”.

A variable in first-order logic stands for a “thing”.
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Variables: Intuition
In first-order logic, we talk about “things” that have certain

“properties”.

A variable in first-order logic stands for a “thing”.

This is in contrast to propositional logic where variables

stand for propositions.

It is common to use letters x, y, z for variables.
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Predicates: Intuition
A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y
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Predicates: Intuition
A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x
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Predicates: Intuition
A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))
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Predicates: Intuition
A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

• x is a man and y is a woman and x loves y but not vice

versa
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Predicates: Intuition
A predicate denotes a property/relation.

p(x) ≡ x is a prime number d(x, y) ≡ x is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

p(x) ∧ (d(y, x) ∨ d(z, x))

• x is a man and y is a woman and x loves y but not vice

versa

m(x) ∧ w(y) ∧ l(x, y) ∧ ¬l(y, x)
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Predicates: Intuition (2)
We can represent only “abstractions” of these in

propositional logic, e.g., p∧ (d1 ∨ d2) could be an abstraction

of p(x) ∧ (d(y, x) ∨ d(z, x)).
Here p stands for “x is a prime” and d1 stands for “y is

divisible by x”.

But the sense in which p(x), d(y, x), d(z, x) state something

similar is lost. What it means to be divisible or to be a prime

cannot be expressed.
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Functions: Intuition
• A constant stands for a “fixed thing” in a domain.
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Functions: Intuition
• A constant stands for a “fixed thing” in a domain.

• More generally, a function of arity n expresses an n-ary

operation over some domain, e.g.
Function arity expresses . . .

0

s

+
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Functions: Intuition
• A constant stands for a “fixed thing” in a domain.

• More generally, a function of arity n expresses an n-ary

operation over some domain, e.g.
Function arity expresses . . .

0 nullary

s unary

+ binary
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Functions: Intuition
• A constant stands for a “fixed thing” in a domain.

• More generally, a function of arity n expresses an n-ary

operation over some domain, e.g.
Function arity expresses . . .

0 nullary number “0”

s unary successor in N
+ binary function plus in N

Note special notations: infix, prefix, etc.
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x true for rationals
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0 true for domains with more

than one element
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0 true for domains with more

than one element

(∀x. p(x, x))→ p(a, a)
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Quantifiers: Intuition
• A variable stands for “some thing” in a domain of

discourse. Quantifiers ∀,∃ are used to speak about all or

some members of this domain.

• Examples: Are they satisfiable? valid?

∀x.∃y. y ∗ 2 = x true for rationals

x < y → ∃z. x < z ∧ z < y true for any dense order

∃x. x 6= 0 true for domains with more

than one element

(∀x. p(x, x))→ p(a, a) valid
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First-Order Logic: Syntax

• Two syntactic categories: terms and formulae

• A first-order language is characterized by giving a finite

collection of function symbols F and predicate symbols P
as well as a set Var of variables.
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First-Order Logic: Syntax

• Two syntactic categories: terms and formulae

• A first-order language is characterized by giving a finite

collection of function symbols F and predicate symbols P
as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function

symbol f (or predicate symbol p) has arity i ∈ N.
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First-Order Logic: Syntax

• Two syntactic categories: terms and formulae

• A first-order language is characterized by giving a finite

collection of function symbols F and predicate symbols P
as well as a set Var of variables.

• Sometimes write f i (or pi) to indicate that function

symbol f (or predicate symbol p) has arity i ∈ N.

• One often calls the pair 〈F ,P〉 a signature.
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Terms in First-Order Logic
Term, the set of terms, is the smallest set where

1. x ∈ Term if x ∈ Var , and

2. fn(t1, . . . , tn) ∈ Term if fn ∈ F and tj ∈ Term, for all

1 ≤ j ≤ n.
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Formulae in First-Order Logic
Form, the set of formulae, is the smallest set where

1. ⊥∈ Form,

2. pn(t1, . . . , tn) ∈ Form if pn ∈ P and tj ∈ Term, for all

1 ≤ j ≤ n,

3. ¬φ ∈ Form if φ ∈ Form,

4. (φ ◦ ψ) ∈ Form if φ ∈ Form and ψ ∈ Form and

◦ ∈ {∧,∨,→},
5. Qx. φ ∈ Form if φ ∈ Form and x ∈ Var and Q ∈ {∀,∃}.
Formulae as in point 2 are called atoms.

Note quantifier scoping.
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Variable Occurrences
• All occurrences of a variable in a formula are bound or free

or binding.

A variable x in a formula φ is bound if x occurs within a

subformula of φ of the form ∃x.ψ or ∀x.ψ.

• Example:

(q(x) ∨ ∃x.∀y. p(f(x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))
Which are bound?
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Variable Occurrences
• All occurrences of a variable in a formula are bound or free

or binding.

A variable x in a formula φ is bound if x occurs within a

subformula of φ of the form ∃x.ψ or ∀x.ψ.

• Example:

(q(x) ∨ ∃x.∀y. p(f(x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))
Which are bound? Which are free?
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Variable Occurrences
• All occurrences of a variable in a formula are bound or free

or binding.

A variable x in a formula φ is bound if x occurs within a

subformula of φ of the form ∃x.ψ or ∀x.ψ.

• Example:

(q(x) ∨ ∃x.∀y. p(f(x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))
Which are bound? Which are free? Which are binding?
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Variable Occurrences
• All occurrences of a variable in a formula are bound or free

or binding.

A variable x in a formula φ is bound if x occurs within a

subformula of φ of the form ∃x.ψ or ∀x.ψ.

• Example:

(q(x) ∨ ∃x.∀y. p(f(x), z) ∧ q(y)) ∨ ∀x. r(x, z, g(x))
Which are bound? Which are free? Which are binding?

There will be an exercise.

A formula with no free variable occurrences is called closed.

Smaus: CSMR; WS08/09



First-Order Logic: Semantics 139

First-Order Logic: Semantics

A structure is a pair A = 〈UA, IA〉 where UA is an nonempty

set, the universe, and IA is a mapping where

1. IA(fn) is an n-ary (total) function on UA, for fn ∈ F ,

2. IA(pn) is an n-ary relation on UA, for pn ∈ P, and

3. IA(x) is an element of UA, for each x ∈ Var .

As shorthand, write pA for IA(pn), etc.
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The Value of Terms
Let A be a structure. We define the value of a term t under

A, written A(t), as

1. A(x) = xA, for x ∈ Var , and

2. A(f(t1, . . . , tn)) = fA(A(t1), . . . ,A(tn)).
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The Value of Formulae
We define the (truth-)value of the formula φ under A,

written A(φ), as

A(p(t1, . . . , tn)) =
{

1 if (A(t1), . . . ,A(tn)) ∈ pA
0 otherwise

A(∀x. φ) =
{

1 if for all u ∈ UA,A[x/u](φ) = 1
0 otherwise

A(∃x. φ) =
{

1 if for some u ∈ UA,A[x/u](φ) = 1
0 otherwise

Rest as for propositional logic.
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Models
• If A(φ) = 1, we write A |= φ and say φ is true in A or A

is a model of φ.
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Models
• If A(φ) = 1, we write A |= φ and say φ is true in A or A

is a model of φ.

• If every suitable structure is a model, we write |= φ and

say φ is valid or φ is a tautology.
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Models
• If A(φ) = 1, we write A |= φ and say φ is true in A or A

is a model of φ.

• If every suitable structure is a model, we write |= φ and

say φ is valid or φ is a tautology.

• If there is at least one model for φ, then φ is satisfiable.
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Models
• If A(φ) = 1, we write A |= φ and say φ is true in A or A

is a model of φ.

• If every suitable structure is a model, we write |= φ and

say φ is valid or φ is a tautology.

• If there is at least one model for φ, then φ is satisfiable.

• If there is no model for φ, then φ is contradictory.
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Models
• If A(φ) = 1, we write A |= φ and say φ is true in A or A

is a model of φ.

• If every suitable structure is a model, we write |= φ and

say φ is valid or φ is a tautology.

• If there is at least one model for φ, then φ is satisfiable.

• If there is no model for φ, then φ is contradictory.

There is also more differentiated terminology.
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An Example

∀x. p(x, s(x))
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An Example

∀x. p(x, s(x))

A model:

UA = N

pA = {(m,n) | m < n}
sA(x) = x+ 1
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An Example

∀x. p(x, s(x))

A model:

UA = N

pA = {(m,n) | m < n}
sA(x) = x+ 1

Not a model:

UA = {a, b, c}
pA = {(a, b), (a, c)}
sA = “the identity function”
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Towards a Deductive System

In natural language, quantifiers are often implicit: males

don’t cry.
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In natural language, quantifiers are often implicit: all males
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Towards a Deductive System

In natural language, quantifiers are often implicit: all males

don’t cry.

Some phrases in natural language proofs have the flavor of

introduction rules.

Take “boys are males” and “males don’t cry” implies “boys

don’t cry”: assume an arbitrary boy x; then x is a male;

hence x doesn’t cry; hence “x is a boy” implies “x doesn’t

cry” ; since x was arbitrary, we can say this for all x.
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Towards a Deductive System

In natural language, quantifiers are often implicit: all males

don’t cry.

Some phrases in natural language proofs have the flavor of

introduction rules.

Take “boys are males” and “males don’t cry” implies “boys

don’t cry”: assume an arbitrary boy x; then x is a male;

hence x doesn’t cry; hence “x is a boy” implies “x doesn’t

cry” (→-I); since x was arbitrary, we can say this for all x.

(∀-I). See later.
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Towards a Deductive System

In natural language, quantifiers are often implicit: all males

don’t cry.

Some phrases in natural language proofs have the flavor of

introduction rules.

Take “boys are males” and “males don’t cry” implies “boys

don’t cry”: assume an arbitrary boy x; then x is a male;

hence x doesn’t cry; hence “x is a boy” implies “x doesn’t

cry” (→-I); since x was arbitrary, we can say this for all x.

(∀-I). See later.

Existential statements are proven by giving a witness.
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First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic. All

the rules of propositional logic are “inherited”.

But we must introduce rules for the quantifiers.
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Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable

condition) ∗ means: x must be arbitrary.
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Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

where side condition (also called: proviso or eigenvariable

condition) ∗ means: x must be arbitrary.

Note that rules are schematic.
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

x = 0
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

x = 0
∀x. x = 0

∀-I
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0→-I1
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0 refl
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0 refl

∀x. x = 0
→-E
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0 refl

∀x. x = 0
→-E

Formal meaning of side condition: x not free in any open

assumption on which P (x) depends. Violated!
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Another Proof? (1)
Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1
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Another Proof? (1)
Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Conclusion is not valid.

The formula is false when UA has at least 2 elements.
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Another Proof? (1)
Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Proof is incorrect.

Reason: Substitution must avoid capturing variables. Re-

placing x with y in ∀-E is illegal because y is bound in

¬∀y. y = y. This detail concerns substitution (and renaming

of bound variables), not ∀-E. Exercise
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Another Proof? (2)

∀x.A(x) ∧B(x)
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I
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Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))→-I1
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Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))→-I1

Yes (check side conditions of ∀-I).
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Boys Don’t Cry
Let φ ≡ (∀x. b(x)→ m(x)) ∧ (∀x.m(x)→ ¬c(x)).

[φ]1

∀x.m(x)→ ¬c(x) ∧-ER

m(x)→ ¬c(x) ∀-E

[φ]1

∀x. b(x)→ m(x)
∧-EL

b(x)→ m(x)
∀-E

[b(x)]2

m(x)
→-E

¬c(x) →-E

b(x)→ ¬c(x)→-I2

∀x. b(x)→ ¬c(x) ∀-I

φ→ (∀x. b(x)→ ¬c(x))→-I1
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Aside: A↔ B
Define A↔ B as A→ B ∧B → A.

The following rule can be derived (in propositional logic,

actually):

[A]
....
B

[B]
....
A

A↔ B
↔-I

You could do this as an exercise!
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Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1
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Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

Yes, but only if x not free in A.
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Proof?

[A]1

∀x.A ∀-I
[∀x.A]1

A
∀-E

A↔ ∀x.A ↔-I1

Yes, but only if x not free in A.

Similar requirement arises in proving

(∀x.A→ B(x))↔ (A→ ∀x.B(x)).
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Side Conditions and Proof Boxes
We mentioned previously a style of writing derivations where

subderivations based on temporary assumptions are enclosed

in boxes.

These boxes are also handy for doing derivations in

first-order logic, since one can use the very clear formulation:

a variable occurs inside or outside of a box. See [HR04].
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Existential Quantification
• We could define ∃x.A as ¬∀x.¬A.

• Equivalence follows from our definition of semantics.

A(¬A) =
{

1 if A(A) = 0
0 otherwise

A(∀x.A) =
{

1 if for all u ∈ UA,A[x/u](A) = 1
0 otherwise

A(∃x.A) =
{

1 if for some u ∈ UA,A[x/u](A) = 1
0 otherwise

Conclude: A(∃x.A) = A(¬∀x.¬A)
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Where do the Rules for ∃ Come from?
• We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.
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Where do the Rules for ∃ Come from?
• We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

• Alternatively, we can give rules as part of the deduction

system and prove equivalence as a lemma, instead of by

definition.

We will do the first here. The Isabelle formalization follows

the second approach.
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∃-I as a Derived Rule
The rule:

P (t)

∃x. P (x)
∃-I

∃x. P (x)

We want to have ∃x. P (x) as conclusion.
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∃-I as a Derived Rule
The rule:

P (t)

∃x. P (x)
∃-I

¬∀x.¬P (x)

But by definition that’s ¬∀x.¬P (x).
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∃-I as a Derived Rule
The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

⊥
¬∀x.¬P (x)

We aim for applying →-I in the last step (recall ¬-definition).
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∃-I as a Derived Rule
The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

¬P (t)
∀-E

⊥
¬∀x.¬P (x)

We apply ∀-E.
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∃-I as a Derived Rule
The rule:

P (t)

∃x. P (x)
∃-I

∀x.¬P (x)

¬P (t)
∀-E

P (t)
⊥ →-E

¬∀x.¬P (x)
Making assumption P (t) allows us to use →-E (recall ¬-

definition).
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∃-I as a Derived Rule
The rule:

P (t)

∃x. P (x)
∃-I

[∀x.¬P (x)]1

¬P (t)
∀-E

P (t)
⊥ →-E

¬∀x.¬P (x)→-I1

Finally we can apply →-I. Note that the assumption P (t) is

still open.

Smaus: CSMR; WS08/09



First-Order Logic: Deductive System 157

∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

∃x. P (x)

We will use ∃x. P (x) as one assumption.
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∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

But by definition that’s ¬∀x.¬P (x).
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∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

P (x)
....
R

We assume a hypothetical derivation.
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∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

P (x)
....
R

⊥ →-E

We make an additional assumption and apply →-E (recall ¬-definition)
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∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)→-I2

Now we can discharge the assumption P (x) made in the hypothetical

derivation.
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∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)→-I2

∀x.¬P (x)
∀-I

At this step, the side condition from ∀-I applies. ∃-E will inherit it!
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∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

¬R

[P (x)]2
....
R

⊥ →-E

¬P (x)→-I2

∀x.¬P (x)
∀-I

⊥ →-E

We apply →-E.
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∃-E as a Derived Rule
The rule:

∃x. P (x)

[P (x)]
....
R

R
∃-E

¬∀x.¬P (x)

[¬R]1

[P (x)]2
....
R

⊥ →-E

¬P (x)→-I2

∀x.¬P (x)
∀-I

⊥ →-E

R
RAA1

We are done. Note that this proof uses classical reasoning.
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Example Derivation Using ∃-E
We want to prove (∀x.A(x)→ B)→ ((∃x. A(x))→ B),
where x does not occur free in B.
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Example Derivation Using ∃-E
We want to prove (∀x.A(x)→ B)→ ((∃x. A(x))→ B),
where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

A(x)
B

→-E
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Example Derivation Using ∃-E
We want to prove (∀x.A(x)→ B)→ ((∃x. A(x))→ B),
where x does not occur free in B.

∃x. A(x)

∀x.A(x)→ B

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3
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Example Derivation Using ∃-E
We want to prove (∀x.A(x)→ B)→ ((∃x. A(x))→ B),
where x does not occur free in B.

[∃x. A(x)]2

[∀x.A(x)→ B]1

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

(∃x. A(x))→ B
→-I2

(∀x.A(x)→ B)→ ((∃x. A(x))→ B)→-I1
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Conclusion on FOL

• Propositional logic is good for modeling simple patterns of

reasoning like “if . . . then . . . else”.
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Conclusion on FOL

• Propositional logic is good for modeling simple patterns of

reasoning like “if . . . then . . . else”.

• In first-order logic, one has “things” and relations on /

properties of “things”. Quantify over “things”. Powerful!

• Some people advocate intuitionistic, relevance, and other

“deviant” logics.

• Limitation: cannot quantify over predicates.

• “A” world or “the” world is modeled in first-order logic

using so-called first-order theories. This will be studied

next lecture. ¸
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More Detailed Explanations
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Boolean Functions
The set (or “type”) bool contains the two truth values True,False. A

propositional formula containing n variables can be viewed as a function

booln→ bool . For each combination of values True,False for the

variables, the whole formula assumes the value True or False.

Back to main referring slide
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Relations/Functions, Infinity
In propositional logic, there is no notation for writing “thing x has

property p” or “things x and y are related as follows” or for denoting the

“thing obtained from thing x by applying some operation”.

In particular, no statement about all elements of a possibly infinite

domain can be expressed in propositional logic, since each formula

involves only finitely many different variables, and up to equivalence and

for a set containing n variables, there are only finitely many (to be

precise 2(2n)) different propositional formulae.

Back to main referring slide
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What is a Domain?
For example, the set of integers, the set of characters, the set of people,

you name it!

Any set of “things” that we want to reason about.

Back to main referring slide
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“Fixed Thing”?
As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon.

Back to main referring slide
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Function Notation
So a function symbol f denotes an operation that takes n “things” and

returns a “thing”. f(t1, . . . , tn) is a “thing” that depends on “things”

t1, . . . , tn.

The generic notation for function application is like this: f(t1, . . . , tn),
but the brackets are omitted for nullary functions (= constants), and

many common function symbols like + are denoted infix, so we write

0 + 0 instead of +(0, 0). Another common notation is prefix notation

without brackets, as in −2. There are also other notations.

Back to main referring slide
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“Some Thing”?
Just like a constant, a variable stands for a “thing”.

The most important difference between a constant and a variable is that

one can quantify over a variable, so one can make statements such as

“for all x . . . ” or “there exists x such that . . . ”.

Back to main referring slide
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What is Satisfiability? Validity?
Intuitively, satisfiable means “can be made true” and valid means

“always true”.

More formally, this will be defined later.

Back to main referring slide
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Syntactic Categories
We have already learned about the syntactic category of formulae last

lecture.

A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have terms that

stand for “things” and formulae that stand for statements/propositions

about those “things”.

But couldn’t a statement also be a “thing”? And couldn’t a “thing”

depend on a statement?

In first-order logic: no!

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 169

Signatures

There isn’t simply the language of first-order logic! Rather, the definition

of a first-order language is parametrised by giving a F and a P. Each

symbol in F and P must have an associated arity, i.e., the number of

arguments the function or predicate takes. This could be formalized by

saying that the elements of F are pairs of the form f/n, where f is the

symbol itself and n, and likewise for P. All that matters is that it is

specified in some unambiguous way what the arity of each symbol is.

One often calls the pair 〈F ,P〉 a signature. Generally, a signature

specifies the “fixed symbols” (as opposed to variables) of a particular

logic language.

Strictly speaking, a first-order language is also parametrised by giving a

set of variables Var , but this is inessential. Var is usually assumed to be

a countably infinite set of symbols, and the particular choice of names of
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these symbols is not relevant.

Back to main referring slide
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A Language
Term and Form together make up a first-order language. Note that

strictly speaking, Term and Form depend on the signature, but we

always assume that the signature is clear from the context.

Back to main referring slide
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Constants
Note in particular the case n = 0. Then 1 ≤ j ≤ 0 means that there

exists no such j, and so tj ∈ Term for all j is vacuously true. We then

speak of f as a constant.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 173

The Scope of a Quantifier
We adopt the convention that the scope of a quantifier extends as much

as possible to the right, e.g.

∀x.p(x) ∨ q(x)

is

∀x.(p(x) ∨ q(x))
and not

(∀x.p(x)) ∨ q(x)
This is a matter of dispute and other conventions are around, but the

one we adopt here corresponds to Isabelle.

Compare this to the precedences and associativity in propositional logic.
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Free, Bound, and Binding Occurrences
All occurrences of a variable in a term or formula are bound or free or

binding. These notions are defined by induction on the structure of

terms/formulae. This is why the following definition is along the lines of

our definition of terms and formulae.

1. The (only) occurrence of x in the term x is a free occurrence of x in x;

2. the free occurrences of x in f(t1, . . . , tn) are the free occurrences of x

in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free occurrences of x

in t1, . . . , tn;

5. the free occurrences of x in ¬φ are the free occurrences of x in φ;

6. the free occurrences of x in ψ ◦ φ are the free occurrences of x in ψ
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and the free occurrences of x in φ (◦ ∈ {∧,∨,→});
7. the free occurrences of x in ∀y. ψ, where y 6= x, are the free

occurrences of x in ψ; likewise for ∃;
8. x has no free occurrences in ∀x. ψ; in ∀x. ψ, the (outermost) ∀ binds

all free occurrences of x in ψ; the occurrence of x next to ∀ is a

binding occurrence of x; likewise for ∃.
A variable occurrence is bound if it is not free and not binding.

We also define

FV (φ) := {x | x has a free occurrence in φ}

Back to main referring slide
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Structures

As usual, there isn’t just one way of formalizing things, and so we now

explain some other notions that you may have heard in the context of

semantics for first-order logic.

A universe is sometimes also called domain.

As you saw, a structure gives a meaning to functions, predicates, and

variables.

An alternative formalization is to have three different mappings for this

purpose:

1. an algebra gives a meaning to the function symbols (more precisely,

an algebra is a pair consisting of a domain and a mapping giving a

meaning to the function symbols);

2. in addition, an interpretation gives a meaning also to the predicate
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symbols;

3. a variable assignment, also called valuation, gives a meaning to the

variables.

As before, we assume that the signature is clear from the context.

Strictly speaking, we should say “structure for a particular signature”.

Details can be found in any textbook on logic [vD80].
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The Notation pA

In the notation pA, the superscript has nothing to do with the

superscript we sometimes use to indicate the arity.
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The Notation A[x/u]
A[x/u] is the structure A′ identical to A, except that xA

′
= u.

Back to main referring slide
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Models
If you are happy with the definition of a model just given, this is fine.

But if you are confused because you remember a different definition from

your previous studies of logic, then these comments may help.

As explained before, it is common to distinguish an interpretation, which

gives a meaning to the symbols in the signature, from an assignment,

which gives a meaning to the variables. Let us use I to denote an

interpretation and A to denote an assignment.

Recall that we wrote A(.) for the meaning of a term or formula. In the

alternative terminology, we write I(A)(.) instead. This makes sense

since in the alternative terminology, I and A together contain the same

information as A in the original terminology. We define:

• For a given I, we say that φ is satisfiable in I if there exists an A so

that I(A)(φ) = 1;
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• for a given I, we write I |= φ and say φ is true in I or I is a model of

φ, if for all A, we have I(A)(φ) = 1;

• we say φ is satisfiable if there exists an I so that φ is satisfiable in I;
• we write |= φ and say φ is valid if for every (suitable) I, we have

I |= φ.

Note that satisfiable (without “for . . . ”) and valid mean the same thing

in both terminologies, whereas true in . . . means slightly different

things, since a structure is not the same thing as an interpretation.
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Suitable Structures
A structure is suitable for φ if it defines meanings for the signature of φ,

i.e., for the symbols that occur in φ. Of course, these meanings must

also respect the arities, so an n-ary function symbols must be interpreted

as an n-ary function. Without explicitly mentioning it, we always assume

that structures are suitable.
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N
N denotes the natural numbers.
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Confusion of Syntax and Semantics?
In logic, we insist on the distinction between syntax and semantics. In

particular, we set up the formalism so that the syntax is fixed first and

then the semantics, and so there could be different semantics for the

same syntax.

But the dilemma is that once we want to give a particular semantics, we

can only do so using again some kind of language, hence syntax. This is

usually natural language interspersed with usual mathematical notation

such as <, + etc.

Some people try to mark the distinction between syntax and semantics

somehow, e.g., by saying 0 is a constant that could mean anything,

whereas 0 is the number zero as it exists in the mathematical world.

When we give semantics, the symbols <, +, and 1 have their usual

mathematical meanings. The function that maps x to x+ 1 is also called
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successor function. Of course, when we write m < n, we assume that

m,n ∈ N, in this context.
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Why is this a Model?
It is true that for all numbers n, n is less than n+ 1.
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Why is this not a Model?
The identity function maps every object to itself.

It is not true that for every character α ∈ {a, b, c},
(α, α) ∈ {(a, b), (a, c)}. E.g., (a, a) /∈ {(a, b), (a, c)}.
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Implicit Quantifiers
In the statement

if x > 2 then x2 > 4
the ∀-quantifier is implicit. It should be

for all x, if x > 2 then x2 > 4.
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Inheriting Rules
First-order logic inherits all the rules of propositional logic. Note however

that the metavariables in the rules now range over first-order formulae.
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Schematic Rules
Similarly as in the previous lecture, one should note that P is not a

predicate, but rather P (x) is a schematic expression: P (x) stands for

any formula, possibly containing occurrences of x.

In the context of ∀-E, P (t) stands for a formula where all occurrences of

x are replaced by t.
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Reflexivity
When one has a predicate symbol =, it is usual to have a rule that says

that = is reflexive.

Don’t worry about it at this stage, just take it that we have such a rule.

We will look at this later.
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Side Condition Violated!
The side condition is violated in the proof since in the first ∀-I step, x

does occur free in x = 0.

Note that saying “x must not free in any open assumption on which

P (x) depends” means in particular that P (x) itself must not be an

assumption. This is the case we have here!

So whenever ∀-I, the P (x) above the line will be the root of a derivation

tree constructed so far, and this tree cannot be the trivial tree just

consisting of the assumption P (x).
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Why is (∀x.¬∀y. x = y)→ ¬∀y. y = y False?
Here we assume that the predicate symbol = is interpreted by A as

equality on UA. Suppose UA contains two elements α and β and

IA(x) = α and IA(y) = β. Then A(x = y) = 0, hence

A(∀y. x = y) = 0, hence A(¬∀y. x = y) = 1. Now one can see that

A[x/u](¬∀y. x = y) = 1 for all u ∈ UA, and hence

A(∀x.¬∀y. x = y) = 1. On the other hand, A′(y = y) = 1 for any A′
and hence A(∀y. y = y) = 1 and hence A(¬∀y. y = y) = 0. Therefore,

A((∀x.¬∀y. x = y)→ ¬∀y. y = y) = 0.
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Substitutions in FOL
The notation s[x← t] denotes the term obtained by substituting t for x

in s. However, a substitution [x← t] replaces only the free occurrences

of x in the term that it is applied to. A substitution is defined as follows:

1. x[x← t] = t;

2. y[x← t] = y if y is a variable other than x;

3. f(t1, . . . , tn)[x← t] = f(t1[x← t], . . . , tn[x← t]) (where f is a

function symbol, n ≥ 0);

4. p(t1, . . . , tn)[x← t] = p(t1[x← t], . . . , tn[x← t]) (where p is a

predicate symbol, possibly ⊥);

5. (¬ψ)[x← t] = ¬(ψ[x← t])

6. (ψ ◦ φ)[x← t] = (ψ[x← t] ◦ φ[x← t]) (where ◦ ∈ {∧,∨,→});
7. (Qx.ψ)[x← t] = Qx.ψ (where Q ∈ {∀,∃});
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8. (Qy.ψ)[x← t] = Qy.(ψ[x← t]) (where Q ∈ {∀,∃}) if y 6= x and

y 6∈ FV (t);

9. (Qy.ψ)[x← t] = Qz.(ψ[y ← z][x← t]) (where Q ∈ {∀,∃}) if y 6= x

and y ∈ FV (t) where z is a variable such that z 6∈ FV (t) and

z 6∈ FV (ψ).
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Avoiding Capture of Variables
A substitution (replacement of a variable by a term) must not replace

bound occurrences of variables, and if we replace x with t in an

expression φ, then this replacement should not turn free occurrences of

variables in t into bound occurrences in φ. It is possible to avoid this by

renaming variables.

This is part of the standard definition of a substitution. The problem is

not related to ∀-E in particular.

The definition can be found in any textbook on logic [vD80]. We will

also give a formal definition later, in a different context.
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Check Side Conditions
In both cases, x does not occur free in ∀x.A(x) ∧B(x), which is the

open assumption on which A(x), respectively B(x), depends.
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Defining ↔
By defining we mean, use A↔ B as shorthand for A→ B ∧B → A, in

the same way as we regard negation as a shorthand.
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Defining ∃
By defining we mean, use ∃x.A as shorthand for ¬∀x.¬A, in the same

way as we regard negation as a shorthand.

However, we have already introduced ∃ as syntactic entity, and also its

semantics. If we now want to treat it as being defined in terms of ∀, for

the purposes of building a deductive system, we must be sure that ∃x.A
is semantically equivalent to ¬∀x.¬A, i.e., that

A(∃x.A) = A(¬∀x.¬A).
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Where Do the Rules for ∃ Come from?

• We can use definition ∃x.A ≡ ¬∀x.¬A and the given rules for ∀ to

derive ND proof rules.

In this case, the soundness of the derived rules is guaranteed since

◦ the rules for ∀ are sound;

◦ we have proven the equivalence of ∃x.A and ¬∀x.¬A semantically.

• Alternative: give rules as part of the deduction system and prove the

equivalence as a lemma, instead of by definition.

In this case, the soundness must be proven by hand (however, proving

rules sound is an aspect we neglect in this course). But once this is

done, the equivalence of ∃x.A and ¬∀x.¬A can be proven within the

deductive system, rather than by hand, provided that the deductive

system is complete.

Smaus: CSMR; WS08/09



More Detailed Explanations 201

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 202

Hypothetical Derivation
We are constructing here a “schematic fragment” of a derivation tree.

Within this construction, we assume a hypothetical derivation of R from

assumption P (x). When we are done with the construction of this

fragment, we will collapse the fragment by throwing away all the nodes

in the middle and only keep the root and leaves.

Note two points:

• We assume a hypothetical derivation of R from assumption P (x).
Somewhere in the middle of the constructed fragment, we will

discharge the assumption P (x). In the final rule ∃-E, this means an

application of ∃-E involves discharging P (x). Therefore ∃-E has

brackets around the P (x).

• The hypothetical derivation of R may contain other assumptions than

P (x). These are not discharged in the constructed fragment, and so in
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the final rule ∃-E, we must also read the notation

P (x)....
R

as a derivation of R where one of the assumptions is P (x). There may

be other assumptions, but these are not discharged. This is no

different from previous rules involving discharging.
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Inheriting a Side Condition
∃-E will inherit the side condition from ∀-I. Hence, the side condition for

∃-E is:

x must not be free in R or in hypotheses of the subderivation of R other

than P (x) (occurrences in (P (x) are allowed because the assumption

P (x) was discharged before the application of ∀-I). Contrast this with

∀-I.
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Classical Reasoning
Defining ∃x.A as ¬∀x.¬A is only sensible in classical reasoning, since

the derivation of the rule ∃-E requires the RAA rule.
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The Power of First-Order Logic
In first-order logic, one has “things” and relations/properties that may or

may not hold for these “things”. Quantifiers are used to speak about “all

things” and “some things”.

For example, one can reason:

All men are mortal, Socrates is a man, therefore Socrates is mortal.

The idea underlying first-order logic is so general, abstract, and powerful

that vast portions of human (mathematical) reasoning can be modeled

with it.

In fact, first-order logic is the most prominent logic of all. Many people

know about it: not only mathematicians and computer scientists, but

also linguists, philosophers, psychologists, economists etc. are likely to

learn about first-order logic in their education.
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While some applications in the fields mentioned above require other

logics, e.g. modal logics, those can often be reduced to first-order logic,

so that first-order logic remains the point of reference.

On the other hand, logics that are strictly more expressive than

first-order logic are only known to and studied by few specialists within

mathematics and computer science.

This example about Socrates and men is a very well-known one. You

may wonder: what is the history of this example?

In English, the example is commonly given using the word “man”,

although one also finds “human”. Like many languages (e.g., French,

Italian), English often uses “man” for “human being”, although this use

of language may be considered discriminating against women.

E.g. [Tho95a]:

man [. . . ] 1 an adult human male, esp. as distinct from a woman
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or boy. 2 a human being; a person (no man is perfect).

While the example does not, strictly speaking, imply that “man” is used

in the meaning of “human being”, this is strongly suggested both by the

content of the example (or should women be immortal?) and the fact

that languages that do have a word for “human being” (e.g. “Mensch” in

German) usually give the example using this word. In fact, the example

is originally in Old Greek, and there the word �njrwpoc (anthropos =

human being), as opposed to �n r (anér = human male), is used.

The example is a so-called syllogism of the first figure, which the

scholastics called Barbara. It was developed by Aristotle [Ari] in an

abstract form, i.e., without using the concrete name “Socrates”. In his

terminology, �njrwpoc is the middle term that is used as subject in the

first premise and as predicate in the second premise (this is what is called

first figure). Aristotle formulated the syllogism as follows: If A of all B
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and B is said of all C, then A must be said of all C.

And why “Socrates”? It is not exactly clear how it came about that this

particular syllogism is associated with Socrates. In any case, as far it is

known, Socrates did not investigate any questions of logic. However,

Aristotle frequently uses Socrates and Kallias as standard names for

individuals [Ari]. Possibly there were statutes of Socrates and Kallias

standing in the hall where Aristotle gave his lectures, so it was

convenient for him to point to the statutes whenever he was making a

point involving two individuals.
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Other Logics
There are still controversies about what the best logic is for reasoning

about “things” and properties/relations, and scope (quantification).

Some argue for intuitionistic, relevance, modal and other “deviant”

logics.

An example where first-order logic is inappropriate might be:

From “a dollar buys a candy bar” and “a dollar buys an ice cream”

we cannot normally conclude “a dollar buys a candy bar and an ice

cream”.

However, such analogies should be treated with care. Depending on how

ice-creams, candy bars, dollars and buying are modeled, first-order logic

may very well be appropriate.

Modal logics are logics that have modality operators, usually 2 and 3.
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Sometimes these denote temporal aspects, e.g., 2φ means “φ always

holds”. But many other interpretations are possible, e.g., 2Aφ could

mean “A knows that φ holds” [HC68].

In relevance logics, it is not true that A→ B holds whenever A is false.

Rather, A must somehow be “relevant” for B.
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Limitations of First-Order Logic
The idea underlying first-order logic seems so general that it is not so

apparent what its limitations could be. The limitations will become clear

as we study more expressive logics.

For the moment, note the following: in first-order logic, we quantify over

variables (hence, domain elements), not over predicates. The number of

predicates is fixed in a particular first-order language. So for example, it

is impossible to express the following:

For all unary predicates p, if there exists an x such that p(x) is true,

then there exists a smallest x such that p(x) is true,

since we would be quantifying over p.

Back to main referring slide
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Overview

Last lecture: first-order logic.

This lecture:

• first-order logic with equality and first-order theories;

• set-theoretic reasoning.

We extend language and deductive system to formalize and

reason about the (mathematical) world.
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FOL with Equality
Equality is a logical symbol rather than a mathematical one.

Speak of first-order logic with equality rather than adding

equality as “just another predicate”.
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Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.
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Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Semantics : recall a structure is a pair A = 〈UA, IA〉 and

IA(t) is the interpretation of t.

IA(s = t) =
{

1 if IA(s) = IA(t)
0 otherwise

Note the three completely different uses of “=” here!
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Rules
• Equality is an equivalence relation

x = x
refl

x = y

y = x
sym

x = y y = z

x = z
trans
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Rules
• Equality is an equivalence relation

x = x
refl

x = y

y = x
sym

x = y y = z

x = z
trans

• Equality is also a congruence on terms and all relations

x1 = y1 · · · xn = yn

t(x1, . . . , xn) = t(y1, . . . , yn)
cong1

x1 = y1 · · · xn = yn A(x1, . . . , xn)

A(y1, . . . , yn)
cong2
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Soundness of Rules
For any UA, equality in UA is an equivalence relation and

functions/predicates/logical-operators are “truth-functional”.

Adding further rules gives us an equational theory,

e.g. groups.
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Congruence: Alternative Formulation
One can specialize congruence rules to replace only some

term occurrences.

x1 = y1 · · · xn = yn

t[z1← x1, . . . , zn← xn] = t[z1← y1, . . . , zn← yn]
cong1

x1 = y1 · · · xn = yn A[z1← y1, . . . , zn← yn]

A[z1← x1, . . . , zn← xn]
cong2

One time the z’s are replaced with x’s and one time with y’s.
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Congruence: Example
How many ways are there to choose some occurrences of x

in x2 + y2 > 12 · x?
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Congruence: Example
How many ways are there to choose some occurrences of x

in x2 + y2 > 12 · x? 4, namely:
A = x2 + y2 > 12 · x, A = z2 + y2 > 12 · x,
A = x2 + y2 > 12 · z, A = z2 + y2 > 12 · z.
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Congruence: Example
How many ways are there to choose some occurrences of x

in x2 + y2 > 12 · x? 4, namely:
A = x2 + y2 > 12 · x, A = z2 + y2 > 12 · x,
A = x2 + y2 > 12 · z, A = z2 + y2 > 12 · z.

We show two ways:

x = 3 x2 + y2 > 12 · x
32 + y2 > 12 · x

with A = z2 + y2 > 12 · x

x = 3 x2 + y2 > 12 · x
x2 + y2 > 12 · 3

with A = x2 + y2 > 12 · z
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Isabelle Rule
The Isabelle FOL rule is simply (using a tree syntax)

x = y P (x)

P (y)
subst

or literally

Ja = b;P (a)K =⇒ P (b)
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Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I
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Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

A(t)

∃x.A(x)
∃-I

, “A(x)” is metanotation. In the

example, A(x) = (t = x).
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Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

A(t)

∃x.A(x)
∃-I

, “A(x)” is metanotation. In the

example, A(x) = (t = x).
Notational confusion avoided by a precise metalanguage. ¸
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More Detailed Explanations
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Logical vs. Non-logical Symbols
In logic languages, it is common to distinguish between logical and

non-logical symbols. We explain this for first-order logic.

Recall that there isn’t just the language of first-order logic, but rather

defining a particular signature gives us a first-order language. The logical

symbols are those that are part of any first-order language and whose

meaning is “hard-wired” into the formalism of first-order logic, like ∧ or

∀. The non-logical symbols are those given by a particular signature, and

whose meaning must be defined “by the user” by giving a structure.

Above we say “mathematical” instead of “non-logical” because we

assume that mathematics is our domain of discourse, so that the

signature contains the symbols of “mathematics”.

Now what status should the equality symbol = have? We will assume

that = is a symbol whose meaning is hard-wired into the formalism. One
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then speaks of first-order logic with equality.

Alternatively, one could regard = as an ordinary (binary infix) predicate.

However, even if one does not give = a special status, anyone reading =
has a certain expectation. Thus it would be very confusing to have a

structure that defines = as a, say, non-reflexive relation.

Back to main referring slide
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Three Different Uses of Equality

IA(s=t) =

{
1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.
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Three Different Uses of Equality

IA(s=t) ==
{

1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression on the

left-hand side is defined to be equal to the value of the right-hand side.
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Three Different Uses of Equality

IA(s=t) =

{
1 if IA(s)=IA(t)
0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression on the

left-hand side is defined to be equal to the value of the right-hand side.

The third = is semantic equality, i.e., the identity relation on the domain.

Back to main referring slide
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Why Rules?
Since = is a logical symbol in the formalism of first-order logic with

equality, there should be derivation rules for = to derive which formulas

a = b are true.

Back to main referring slide
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What is an Equivalence Relation?
In general mathematical terminology, a relation ≡ is an equivalence

relation if the following three properties hold:

Reflexivity: a ≡ a for all a;

Symmetry: a ≡ b implies b ≡ a;

Transitivity: a ≡ b and b ≡ c implies a ≡ c.

Example: being equal modulo 6.

“a is equal b modulo 6” is often written a ≡ b mod 6.

Back to main referring slide
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What is a Congruence?
In general mathematical terminology, a relation ∼= is a congruence w.r.t.

(or: on) f , where f has arity n, if a1
∼= b1, . . . , an

∼= bn implies

f(a1, . . . , an) ∼= f(b1, . . . , bn).
Example: being equal modulo 6 is congruent w.r.t. multiplication.

14 ≡ 8 mod 6 and 15 ≡ 9 mod 6, hence 14 · 15 ≡ 8 · 9 mod 6.

This can be defined in an analogous way for a property (relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisibility by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not divisible by 3.

Back to main referring slide
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What Does this Notation Mean?
Why did we use letters t and A here?

Recall the rules for building terms and atoms.

Is t(x1, . . . , xn) a term, and A(x1, . . . , xn) and atom, obtained by one

application of such a rule, i.e.: is t a function symbol in F , applied to

x1, . . . , xn, and is A a predicate symbol in P, applied to x1, . . . , xn?
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What Does this Notation Mean?
Why did we use letters t and A here?

Recall the rules for building terms and atoms.

Is t(x1, . . . , xn) a term, and A(x1, . . . , xn) and atom, obtained by one

application of such a rule, i.e.: is t a function symbol in F , applied to

x1, . . . , xn, and is A a predicate symbol in P, applied to x1, . . . , xn?

In general, no! The notations t(x1, . . . , xn) and A(x1, . . . , xn) are

metanotations. t(x1, . . . , xn) stands for any term in which x1, . . . , xn

occur, and A(x1, . . . , xn) stands for any atom in which x1, . . . , xn occur.

This is why we used letters t (term) and A (atom) here instead of f

(function) and P (predicate).

And in this context, the notation t(y1, . . . , yn) stands for the term

obtained from t(x1, . . . , xn) by replacing all occurrences of x1 with y1
and so forth. In analogy the notation A(y1, . . . , yn) is defined.
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Note that in the schematic formulation of the rule, we use letters x and

y to suggest variables, but the rule applies to arbitrary terms.

This description is not very formal, but this is not too problematic since

we will be more formal once we have some useful machinery for this at

hand.

Back to main referring slide
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Soundness of Equivalence Rules
On the semantic level, two things are equal if they are identical.

Semantic equality is an equivalence relation. This semantic fact is so

fundamental that we cannot explain it any further.

So one can prove that IA(s = s) = 1 for all all terms s, because

IA(s) = IA(s) for all terms, and likewise for symmetry and transitivity.

Back to main referring slide
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Soundness of Congruence Rules
If t(x) is a term containing x and t(y) is the term obtained from t(x) by

replacing all occurrences of x with y, and moreover IA(x = y) = 1, then

IA(x) = IA(y). One can show by induction on the structure of t that

IA(t(x)) = IA(t(y)).
So by “truth-functional” we mean that the value IA(t(x)) depends on

IA(x), not on x itself.

This can be generalized to n variables as in the rule.

An analogous proof can be done for rule cong2.

Back to main referring slide
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Replacing Some Occurrences
The notation t[z1← x1, . . . , zn← xn] stands for the term obtained from

t by simultaneously replacing each zi (i ∈ {1, . . . , n}) with xi.

[z1← x1, . . . , zn← xn] is called a substitution.

To have an unambiguous notation for “replacing some occurrences of

x1, . . . , xn”, we start from a term t containing variable occurrences

z1, . . . , zn. On the LHS, these are replaced with x1, . . . , xn, on the RHS

they are replaced with y1, . . . , yn. So on the RHS we have a term

obtained from the one on the LHS by replacing some occurrences of

x1, . . . , xn with y1, . . . , yn.

One can say that the z1, . . . , zn are introduced to mark the occurrences

of x1, . . . , xn that should be replaced by y1, . . . , yn.

Note that in the schematic formulation of the rule, we use letters x and

y to suggest variables, but the rule applies to arbitrary terms. The z’s
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however are variables (substitutions replace variables, not arbitrary

terms).

Back to main referring slide
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Example: x2 + y2 > 12 · x
The atom x2 + y2 > 12 · x contains two occurrences of x. There are four

ways to choose some occurrences of x in x2 + y2 > 12 · x.
Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with z. That is,

there are four different A’s such that A[x/z] = x2 + y2 > 12 · x. Now

the atom above the line in the examples is obtained by substituting x for

z, and the atom below the line is obtained by substituting y for z.

Back to main referring slide
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Isabelle Rule
The Isabelle FOL rule is:

x = y P (x)

P (y)
subst

In this rule, P is an Isabelle metavariable.

Why doesn’t the Isabelle rule contain a z to mark which occurrences

should be replaced?

We cannot understand this yet, but think of P as a formula where some

positions are marked in such a way that once we apply P to t (we write

P (t)), t will be inserted into all those positions. This is why P (x) is a

formula and P (y) is a formula obtained by replacing some occurrences of

x with y.
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What Is a Theory?
Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols

for which certain “laws” hold.

Depending on the context, these symbols may co-exist with

other symbols.

Technically, the laws are added as rules (in particular,

axioms) to the proof system.

A structure in which these rules are true is then called a

model of the theory.
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Example 1: Partial Orders

• The language of the theory of partial orders: ≤
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Example 1: Partial Orders

• The language of the theory of partial orders: ≤
• Axioms

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z
∀x, y. x ≤ y ∧ y ≤ x↔ x = y
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Example 1: Partial Orders

• The language of the theory of partial orders: ≤
• Axioms

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z
∀x, y. x ≤ y ∧ y ≤ x↔ x = y

• Alternative to axioms is to use rules

x ≤ y y ≤ z
x ≤ z trans

x ≤ y y ≤ x
x = y

antisym
x = y

x ≤ y≤-refl

Such a conversion is possible since implication is the main

connective.
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A Second Transitivity Rule
One may also consider adding the rule

x = y

y ≤ x≤-refl2

to the system. This rule can be derived as follows:

x = y

y = x
sym

y ≤ x≤-refl
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More on Orders
• A partial order ≤ is a linear or total order when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation of this disjunction.

Smaus: CSMR; WS08/09



Example 1: Partial Orders 243

More on Orders
• A partial order ≤ is a linear or total order when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation of this disjunction.

• A total order ≤ is dense when, in addition

∀x, y. x < y → ∃z.(x < z ∧ z < y)

What does < mean?
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Structures for Orders . . .
Give structures for orders that are . . .

1. not total:
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Structures for Orders . . .
Give structures for orders that are . . .

1. not total: ⊆-relation;

2. total but not dense:
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Structures for Orders . . .
Give structures for orders that are . . .

1. not total: ⊆-relation;

2. total but not dense: integers with ≤;

3. dense:
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Structures for Orders . . .
Give structures for orders that are . . .

1. not total: ⊆-relation;

2. total but not dense: integers with ≤;

3. dense: reals with ≤.
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Example 2: Groups

• Language: Function symbols · , −1, e
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Example 2: Groups

• Language: Function symbols · , −1, e

• A group is a model of

∀x, y, z. (x · y) · z = x · (y · z) (assoc)
∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

It is an example of an equational theory.
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Example 2: Groups

• Language: Function symbols · , −1, e

• A group is a model of

∀x, y, z. (x · y) · z = x · (y · z) (assoc)
∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

It is an example of an equational theory.

Two theorems: (1) x−1 · x = e and (2) e · x = x

We will now prove them.
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x =
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x = x−1 · (x · e)
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x = x−1 · (x · e)
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1))
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1)) =
x−1 · ((x · x−1) · x−1−1)
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1)) =
x−1 · ((x · x−1) · x−1−1) = x−1 · (e · x−1−1) =
(x−1 · e) · x−1−1
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

x−1 · x = e (1)

x−1 · x = x−1 · (x · e) = x−1 · (x · (x−1 · x−1−1)) =
x−1 · ((x · x−1) · x−1−1) = x−1 · (e · x−1−1) =
(x−1 · e) · x−1−1 = x−1 · x−1−1 = e.
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Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x
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Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x = (x · x−1) · x
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Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x = (x · x−1) · x = x · (x−1 · x)
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Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x = (x · x−1) · x = x · (x−1 · x) (Theorem 1)

Smaus: CSMR; WS08/09



Example 2: Groups 247

Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e

Smaus: CSMR; WS08/09



Example 2: Groups 247

Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e

Smaus: CSMR; WS08/09



Example 2: Groups 247

Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e = x

Smaus: CSMR; WS08/09



Example 2: Groups 247

Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)

∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

e · x = x (2)

e · x = (x · x−1) · x = x · (x−1 · x) = x · e = x.

Smaus: CSMR; WS08/09



Lessons Learned from these Examples 248

Lessons Learned from these Examples

Equational proofs are often tricky!

• Equalities used in different directions, “eureka” terms, etc.

• In some cases (the word problem is) decidable.
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Equational versus ND Proofs
• Above proofs were of a particular, equational form.
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Equational versus ND Proofs
• Above proofs were of a particular, equational form.

• In Isabelle this is accomplished by term rewriting.

Term rewriting is a process for replacing equals by equals

(see later).
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Equational versus ND Proofs
• Above proofs were of a particular, equational form.

• In Isabelle this is accomplished by term rewriting.

Term rewriting is a process for replacing equals by equals

(see later).

• Alternative is natural deduction:
◦ requires explicit proofs using equality rules;

◦ tedious in practice. Try it on above examples! ¸
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More Detailed Explanations
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Partial Orders
A partial order is a binary relation that is reflexive, transitive, and

anti-symmetric: a ≤ b and b ≤ a implies a = b.

Back to main referring slide
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A Language Consisting of ≤?
≤ is (by convention) a binary infix predicate symbol.

The theory of partial orders involves only this symbol, but that does not

mean that there could not be any other symbols in the context.

Back to main referring slide
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Antisymmetry and Reflexivity
Note that ∀x, y. x ≤ y ∧ y ≤ x↔ x = y encodes both antisymmetry

(→) and reflexivity (←). Recall that A↔ B as shorthand for

A→ B ∧B → A.

Back to main referring slide
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Transitivity
The axiom ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z encodes transitivity.

Back to main referring slide
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Axioms vs. Rules
One can see that using →-I and →-E, one can always convert a proof

using the axioms to one using the proper rules.

More generally, an axiom of the form ∀x1, . . . , xn. A1 ∧ . . . ∧An→ B

can be converted to a rule

A1 . . . An

B .

Do it in Isabelle!

Back to main referring slide
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Linear and Dense Orders
We define these notions according to usual mathematical terminology.

A partial order ≤ is a linear or total order if for all a, b, either a ≤ b or

b ≤ a.
A partial order ≤ is dense if for all a, b where a < b, there exists a c such

that a < c and c < b.

Back to main referring slide
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“Pure” Rule Formulation
The axiom ∀x, y. x ≤ y ∨ y ≤ x cannot be phrased as a proper rule in

the style of, for example, the transitivity axiom.

Back to main referring slide
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<
We use s < t as shorthand for s ≤ t ∧ ¬s = t.

We say that < is the strict part of the partial order ≤.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 259

The ⊆-Relation

The ⊆-relation is partial but not total. As an example, consider the

⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J

J
J

JJ





























J
J

J
J

JJ

Depicting partial orders by a such a graph is quite common. Here, node

a is below node b and connected by an arc if and only if a < b and there

exists no c with a < c < b.
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In this example, we have the partial order

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.

Back to main referring slide
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Group Language
· is a binary infix function symbol (in fact, only · is the symbol, but

the notation · is used to indicate the fact that the symbol stands

between its arguments).
−1 is a unary function symbol written as superscript. Again, the is

used to indicate where the argument goes.

e is a nullary function symbol (= constant).

Note that groups are very common in mathematics, and many different

notations, i.e., function names and fixity (infix, prefix. . . ) are used for

them.

Back to main referring slide
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Group
In general mathematical terminology, a group consists of three function

symbols · , −1, e, obeying the following laws:

Associativity (a · b) · c = a · (b · c) for all a, b, c,

Right neutral a · e = a for all a,

Right inverse a · a−1 = e for all a.

Back to main referring slide
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Equational Theory
An equational theory is a set of equations. Each equation is an axiom.

Sometimes, each equation is surrounded by several ∀-quantifiers binding

all the free variables in the equation, but often the equation is regarded

as implicitly universally quantified.

More generally, a conditional equational theory consists of proper rules

where the premises are called conditions [Höl90].

Note also that sometimes, one also considers the basic rules of equality

as being part of every equational theory. Whenever one has an

equational theory, one implies that the basic rules are present; whether or

not one assumes that they are formally elements of the equational theory

is just a technical detail.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 264

A Model a Group?
A model of the group axioms is a structure in which the group axioms

are true.

However, when we say something like, “this model is a group”, then this

is a slight abuse of terminology, since there may be other function

symbols around that are also interpreted by the structure.

So when we say “this model is a group”, we mean, “this model is a

model of the group axioms for function symbols · , −1,and e clear

from the context”.

Back to main referring slide
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“Eureka” terms
By “eureka” terms we mean terms that have to be guessed in order to

find a proof. At least at first sight, it seems like these terms simply fall

from the sky.

The Greek eureka (heureka) is 1st person singular perfect of euriskein

(heuriskein), “to find”. It was exclaimed by Archimedes upon discovering

how to test the purity of Hiero’s crown.

Back to main referring slide
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The Word Problem
The word problem w.r.t. an equational theory (here: the group axioms)

is the problem of deciding whether two terms s and t are equal in the

theory, that is to say, whether the formula s = t is true in any model of

the theory.

Back to main referring slide
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Equational Proofs
An equational proof consists simply of a sequence of equations, written

as t1 = t2 = . . . = tn, where each ti+1 is obtained from ti by replacing

some subterm s with a term s′, provided the equality s = s′ holds.

This style of proof can be justified by the rules given for equality, in

particular the congruences. However, it looks very different from the

natural deduction style.

Back to main referring slide
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Proof of Theorem 2 by Natural Deduction

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.

Back to main referring slide
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Proof of Theorem 2 by Natural Deduction

e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

x · e = x e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

x−1 · x = e e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e

(x · x−1) · x = x · (x−1 · x) e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x) e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

e = x · x−1 e · x = e · x
e · x = (x · x−1) · x

e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

e = x · x−1
sym

e · x = e · x
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e · x = x · (x−1 · x)

e · x = x · e
e · x = x
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

r-inv

x · x−1 = e

e = x · x−1
sym

e · x = e · x
e · x = (x · x−1) · x

e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

r-inv

x · x−1 = e

e = x · x−1
sym

e · x = e · x refl

e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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Näıve Set Theory: Basics

• A set is a collection of objects where order and repetition

are unimportant.

Sets are central in mathematical reasoning [Vel94]. E.g.,

set of prime numbers.
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Näıve Set Theory: Basics

• A set is a collection of objects where order and repetition

are unimportant.

Sets are central in mathematical reasoning [Vel94]. E.g.,

set of prime numbers.

• In what follows we consider a simple, intuitive

formalization: “näıve set theory”.

We will be somewhat less formal than usual. Our goal is

to understand standard mathematical practice.

Later, in HOL, we will be completely formal.
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Sets: Language
Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)} and a binary membership

predicate ∈.
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Sets: Language
Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)} and a binary membership

predicate ∈.

• Term/formula distinction inadequate: need a syntactic

category for sets.
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Sets: Language
Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)} and a binary membership

predicate ∈.

• Term/formula distinction inadequate: need a syntactic

category for sets.

• We will be more formal about syntax later (HOL).
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Sets: Language
Assuming any first-order language with equality, we add:

• set-comprehension {x|P (x)} and a binary membership

predicate ∈.

• Term/formula distinction inadequate: need a syntactic

category for sets.

• We will be more formal about syntax later (HOL).

• Comprehension is a binding operator: x bound in

{x|P (x)}.
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Examples
• ∀x. x ∈ {y|y mod 6 = 0} → (x mod 2 = 0∧x mod 3 = 0).
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Examples
• ∀x. x ∈ {y|y mod 6 = 0} → (x mod 2 = 0∧x mod 3 = 0).
• What does the following say?

2 ∈ {w|6 /∈ {x|x is divisible by w}}
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Näıve Set Theory: Basics 272

Examples
• ∀x. x ∈ {y|y mod 6 = 0} → (x mod 2 = 0∧x mod 3 = 0).
• What does the following say?

2 ∈ {w|6 /∈ {x|x is divisible by w}}

Answer: 6 /∈ {x|x divisible by 2} i.e., 6 not divisible by 2.
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Proof Rules for Sets
Introduction, elimination, extensional equality

P (t)

t ∈ {x|P (x)}
compr-I

t ∈ {x|P (x)}
P (t)

compr-E

∀x. x ∈ A↔ x ∈ B
A = B

=-I
A = B

∀x. x ∈ A↔ x ∈ B=-E

The following equivalence is derivable:

∀x. P (x)↔ x ∈ {y|P (y)}
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Digression: Sorted Reasoning

• In mathematical arguments we often (implicitly) assume

that variables are restricted to some universe of discourse.

E.g., x2 < 9 (universe either R, N, . . . )

• To avoid ambiguity we can include sort information in

formulae:

members x of U where P (x) ≡ {x ∈ U |P (x)}

Formally

{x ∈ U |P (x)} ≡ {x | x ∈ U ∧ P (x)}.
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Sorted Reasoning in an Unsorted Logic
We may introduce the additional set comprehension syntax

{x ∈ U |P (x)}, but our logic is still unsorted. We have

y ∈ {x ∈ U |P (x)} ↔ y ∈ {x | x ∈ U∧P (x)} ↔ U(y)∧P (y)
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Sorted Quantification

∀x ∈ U.P (x) ≡ ∀x. x ∈ U → P (x)

∃x ∈ U.P (x) ≡ ∃x. x ∈ U ∧ P (x)
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Operations on Sets

• Functions on sets

A ∩B ≡ {x|x ∈ A ∧ x ∈ B}
A ∪B ≡ {x|x ∈ A ∨ x ∈ B}
A \B ≡ {x|x ∈ A ∧ x 6∈ B}

• Predicates on sets

A ⊆ B ≡ ∀x. x ∈ A→ x ∈ B
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Examples of Operations on Sets
One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B
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Examples of Operations on Sets
One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B
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Examples of Operations on Sets
One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B

................................................................................................................................................................................................................................................................................................................................
...........................
.........................
..

........................
...
.......................
....
.......................
...
.......................
....
........................
...
.........................
..
........................... .......................... ......................... .......................... ........................... ........................... ........................... ........................... .......................... ........................... ........................... ........................... ........................... . ........................... ........................... ........................... ........................... .......................... ........................... ........................... ...........................

...........................
..........................
.........................
..........................
...........................
...........................
...........................
...........................
..........................
...........................
...........................
...........................

...........................
..........................

.........................
..........................

...........................
........................................................................................................................................................................................................................................................................................................................................................................

........................
.
........................
.
.......................
.
.......................
.
........................
.
........................
.
......................... ......................... ........................ ....................... ....................... ........................ . ........................

.......................
.......................
........................
.........................
.........................
.........................
.........................
........................
........................
.........................
.........................
.........................
.........................

........................
.......................

.......................
........................

A ∪B

Smaus: CSMR; WS08/09



Operations on Sets 278

Examples of Operations on Sets
One often depicts sets as circles or bubbles.

What are A ∩B, A ∪B, A \B?

A B
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Correspondence between Set-Theoretic and
Logical Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the

set-theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.
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Correspondence between Set-Theoretic and
Logical Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the

set-theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.
Example: what is the logical form of

x ∈ ((A ∩B) ∪ (A ∩ C))?

Smaus: CSMR; WS08/09



Operations on Sets 279

Correspondence between Set-Theoretic and
Logical Operators

x ∈ A ∩B ↔ x ∈ A ∧ x ∈ B
x ∈ A ∪B ↔ x ∈ A ∨ x ∈ B
x ∈ A \B ↔ x ∈ A ∧ x 6∈ B

These correspondences follow from the definitions of the

set-theoretic operators and ∀x. P (x)↔ x ∈ {y|P (y)}.
Example: what is the logical form of

x ∈ ((A ∩B) ∪ (A ∩ C))?
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (1)
Venn diagram (Is this a proof?)
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)
Natural deduction (natural language)
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)
Natural deduction (natural language)

By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)
Natural deduction (natural language)

By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

For an arbitrary x, this is equivalent to establishing

(x ∈ A ∧ (x ∈ B ∨ x ∈ C))↔
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)
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Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (2)
Natural deduction (natural language)

By extensionality, suffices to show

∀x. x ∈ A ∩ (B ∪ C)↔ x ∈ (A ∩B) ∪ (A ∩ C).

For an arbitrary x, this is equivalent to establishing

(x ∈ A ∧ (x ∈ B ∨ x ∈ C))↔
(x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

But that is a propositional tautology.
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Same in Isabelle
Last proof carries over to Isabelle: extensionality, rewriting,

tautology checking. Do it!
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

Therefore ((A ∪B) \B) ⊆ A.
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Prove: for all Sets A and B, ((A∪B) \B) ⊆ A
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let x be element of (A ∪B) \B.

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B.

Therefore x ∈ A.

Therefore x ∈ (A ∪B) \B → x ∈ A.

Therefore ((A ∪B) \B) ⊆ A.

Combination of forward reasoning with backward reasoning.

This is common in practice and usually easy to unscramble.
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Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
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Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f(x)|P (x)}
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Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f(x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f(x)}
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Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f(x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f(x)}

Example: t ∈ {x2|x > 5} equivalent to
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Extending Set Comprehensions

Recall set comprehensions {x|P (x)}.
Now what do you think this is?

{f(x)|P (x)} ≡ {y|∃x. P (x) ∧ y = f(x)}

Example: t ∈ {x2|x > 5} equivalent to ∃x. x > 5 ∧ t = x2.

True for t ∈ {36, 49, . . .}
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Indexing
Sometimes, it is natural to denote a function f applied to an

argument x as “f indexed by x”, so fx, rather than f(x).
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Indexing
Sometimes, it is natural to denote a function f applied to an

argument x as “f indexed by x”, so fx, rather than f(x).
Example: let S = set of students and let ms stand for “the

mother of s”, for s a student. Call S an index set.

x ∈ {ms|s ∈ S} ↔ x ∈ {y|∃s. s ∈ S ∧ y = ms}
↔ ∃s. s ∈ S ∧ x = ms

↔ ∃s ∈ S. x = ms

Uses extended comprehensions, indexing syntax, and sorted

quantification.
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Logical Forms of the New Notation
Question: what is the logical form of {xi|i ∈ I} ⊆ A ?
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Logical Forms of the New Notation
Question: what is the logical form of {xi|i ∈ I} ⊆ A ?

∀x. x ∈ {xi|i ∈ I} → x ∈ A, i.e.,

∀x. (∃i ∈ I. x = xi)→ x ∈ A.
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Logical Forms of the New Notation
Question: what is the logical form of {xi|i ∈ I} ⊆ A ?

∀x. x ∈ {xi|i ∈ I} → x ∈ A, i.e.,

∀x. (∃i ∈ I. x = xi)→ x ∈ A.
Intuition suggests that ∀i ∈ I. xi ∈ A is also correct, i.e.,

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A).

Proving this would be another exercise on using extended

comprehensions, indexing syntax, and sorted quantification.
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Powersets
℘(A) = {x|x ⊆ A}.

What is the logical form of:

1. x ∈ ℘(A)?

Smaus: CSMR; WS08/09



Extending Set Comprehensions 287

Powersets
℘(A) = {x|x ⊆ A}.

What is the logical form of:

1. x ∈ ℘(A)?
x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?
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Powersets
℘(A) = {x|x ⊆ A}.

What is the logical form of:

1. x ∈ ℘(A)?
x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?
∀x. x ∈ ℘(A)→ x ∈ ℘(B), i.e.,
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Powersets
℘(A) = {x|x ⊆ A}.

What is the logical form of:

1. x ∈ ℘(A)?
x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?
∀x. x ∈ ℘(A)→ x ∈ ℘(B), i.e.,

∀x. x ⊆ A→ x ⊆ B, i.e.,
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Powersets
℘(A) = {x|x ⊆ A}.

What is the logical form of:

1. x ∈ ℘(A)?
x ⊆ A, i.e., ∀y. (y ∈ x→ y ∈ A)

2. ℘(A) ⊆ ℘(B)?
∀x. x ∈ ℘(A)→ x ∈ ℘(B), i.e.,

∀x. x ⊆ A→ x ⊆ B, i.e.,

∀x. (∀y. y ∈ x→ y ∈ A)→ (∀y. y ∈ x→ y ∈ B)
Exercise: prove that the last answer is equivalent to A ⊆ B,

i.e., ∀x. x ∈ A→ x ∈ B.

Smaus: CSMR; WS08/09



Outlook 288

Outlook

Sets can have other sets as elements.

Implicitly assume that universe of discourse is collection of

all sets.
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Russell’s Paradox
Suppose U := {x | >}. Then U ∈ U .

Quite strange but no contradiction yet.
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Russell’s Paradox
Suppose U := {x | >}. Then U ∈ U .

Quite strange but no contradiction yet.

Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R := {A|A 6∈ A}.
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Russell’s Paradox
Suppose U := {x | >}. Then U ∈ U .

Quite strange but no contradiction yet.

Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R := {A|A 6∈ A}.
Assume R ∈ R. By the definition of R, this means

R ∈ {A|A 6∈ A}. Using compr-E, this implies R /∈ R.

Now assume R /∈ R. Using compr-I, this implies

R ∈ {A|A 6∈ A}. By the definition of R, this means R ∈ R.

What does this tell us about sets?
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Where Do We Go from here?
• The λ-calculus as basis for a metalanguage to avoid

notational confusion

Smaus: CSMR; WS08/09



Outlook 290

Where Do We Go from here?
• The λ-calculus as basis for a metalanguage to avoid

notational confusion

• Resolution and other deduction techniques: understanding

Isabelle better and achieving a higher level of automation
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Outlook 290

Where Do We Go from here?
• The λ-calculus as basis for a metalanguage to avoid

notational confusion

• Resolution and other deduction techniques: understanding

Isabelle better and achieving a higher level of automation

• Higher-order logic: a formalism for (among other things)

non-näıve set theory ¸
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More Detailed Explanations
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Set Comprehension
Set comprehension is a way of defining sets. {x|P (x)} stands for the set

of elements of the universe for which P (x) (some formula usually

containing x) holds.

Back to main referring slide
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Is a Set a Term?
It is more adequate to regard a set as a term than as a formula. A set is

a “thing”, not a statement about “things”.

After all, we have the predicate ∈ expecting a set on the RHS (and even

the LHS may be a set!), and predicates take terms as arguments.

However, the syntax used in set comprehensions is not legal syntax for

terms, since P (x) is a formula.

This is why we introduce a special syntactic category for sets.

Back to main referring slide
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Extensional Equality
Two things are extensionally equal if they are “equal in their effects”.

Thus two sets are equal if they have the same members, regardless of

what syntactic expressions are used to define those sets.

Note that extensional equality may be undecidable.

Back to main referring slide
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Deriving Equivalence for Comprehensions

[P (x)]1

x ∈ {y|P (y)}
compr-I

[x ∈ {y|P (y)}]1

P (x)
compr-E

P (x)↔ x ∈ {y|P (y)} ↔-I1

∀x. P (x)↔ x ∈ {y|P (y)} ∀-I

Rule ∀-I was defined in a previous lecture.

Back to main referring slide
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Universes
We already know what a universe or domain is. To interpret a particular

language, we have a structure interpreting all function symbols as

functions on the universe.

However, it is often adequate to subdivide the universe into several

“sub-universes”. Those are called sorts. Note that a sort is a set.

For example, in a usual mathematical context, one may distinguish R
(the real numbers) and N (the natural numbers) to say that

√
x requires

x to be of sort R and x! requires x to be of sort N.

Back to main referring slide
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Avoiding Ambiguity
We want to make explicit the sort of the variable in question. So we do

not want the set of all x such that P (x) holds, but only the ones of the

right sort, so the ones for which x ∈ U (U being the sort/universe) holds.

The whole expression {x ∈ U |P (x)} is a special kind of syntax.

Therefore, you must look at it as a whole: it makes no sense to see any

meaning just in, say, the bit x ∈ U in this expression. It is called set

comprehension, and it is defined by

{x ∈ U |P (x)} ≡ {x | x ∈ U ∧ P (x)}.

Back to main referring slide
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Sorted Logic
In sorted logic, sorts are part of the syntax. So the signature contains a

fixed set of sorts. For each constant, it is specified what its sort is. For

each function symbol, it is specified what the sort of each argument is,

and what the sort of the result is. For each predicate symbol, it is

specified what the sort of each argument is.

Terms and formulas that do not respect the sorts are not well-formed,

and so they are not assigned a meaning.

In contrast, our logic is unsorted. The special syntax we provide for

sorted reasoning is just syntactic sugar, i.e., we use it as shorthand and

since it has an intuitive reasoning, but it has no impact on how

expressive our logic is.

Back to main referring slide
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Sorted Quantification
So ∀x ∈ U.P (x) is simply a shorthand or syntactic sugar for

∀x. x ∈ U → P (x), and analogously for ∃x ∈ U.P (x).

Back to main referring slide
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Set Functions
∩ is called intersection.

∪ is called union.

\ is called set difference.

⊆ is called inclusion.

Back to main referring slide
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The Logical Form
When we transform an expression containing set operators ∩,∪, \,⊆ into

an expression using ∧,∨,¬,→, we call the latter the logical form of the

expression.

Back to main referring slide
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Is a Venn Diagram a Proof?
A Venn diagram draws sets as bubbles. Intersecting sets are drawn as

overlapping bubbles, and the overlapping area is meant to depict the

intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof according to usual

mathematical practice. If it is unknown whether two sets have a

non-empty intersection, how are we supposed to draw them? Trying to

make a case distinctions (drawing several diagrams depending on the

cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they are not

proofs.

Back to main referring slide
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Natural Language
We intersperse formal notation with natural language here in order to

give an intuitive and short proof.

We can also do this more formally in Isabelle.

Back to main referring slide
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Explanations for each Step

Let A and B be arbitrary sets. (∀-I)

Smaus: CSMR; WS08/09



More Detailed Explanations 304

Explanations for each Step

Let A and B be arbitrary sets. (∀-I)
Let x be an element of (A ∪B) \B (temporary assumption)
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Explanations for each Step

Let A and B be arbitrary sets. (∀-I)
Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)
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Explanations for each Step

Let A and B be arbitrary sets. (∀-I)
Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)
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Explanations for each Step

Let A and B be arbitrary sets. (∀-I)
Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)
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Explanations for each Step

Let A and B be arbitrary sets. (∀-I)
Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)

Therefore ((A ∪B) \B) ⊆ A (def of ⊆)
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Explanations for each Step

Let A and B be arbitrary sets. (∀-I)
Let x be an element of (A ∪B) \B (temporary assumption)

So (x ∈ A ∨ x ∈ B) ∧ ¬x ∈ B (equivalent proposition)

Therefore x ∈ A (P follows from (P ∨Q) ∧ ¬Q)

Therefore x ∈ (A ∪B) \B → x ∈ A (→-I)

Therefore ((A ∪B) \B) ⊆ A (def of ⊆)

Concerning forward and backwards reasoning, one may look at it as

follows: we first construct the derivation step at the root of the proof

tree (∀-I), and then we jump to a leaf (by making the temporary

assumption) and work downwards from there.

Back to main referring slide
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Definition of ⊆

{xi|i ∈ I} ⊆ A ≡ ∀x. x ∈ {xi|i ∈ I} → x ∈ A

follows from the definition of ⊆.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 306

Details of Logical Form
We want to show

∀x. x ∈ {xi|i ∈ I} → x ∈ A ≡ ∀x. (∃i ∈ I. x = xi)→ x ∈ A

x ∈ {xi|i ∈ I} ≡ (def. of notation)

x ∈ {y|∃i. i ∈ I ∧ y = xi} ≡ compr-I

∃i. i ∈ I ∧ x = xi ≡ (Sorted quantification)

∃i ∈ I. x = xi

Back to main referring slide
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Intuition for Indexed Sets
It may be helpful to pronounce both forms out loud in natural language

to get an intuitive feeling that they are equivalent.

Back to main referring slide
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Proof
Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

Smaus: CSMR; WS08/09



More Detailed Explanations 308

Proof
Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the instance xi) we

have (∃j ∈ I. xi = xj)→ xi ∈ A. But premise is true for i = j, so

xi ∈ A.
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Proof
Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

• “→”

Let i ∈ I be arbitrary. Now from assumption (for the instance xi) we

have (∃j ∈ I. xi = xj)→ xi ∈ A. But premise is true for i = j, so

xi ∈ A.

• “←”

Let x be arbitrary and assume ∃i ∈ I. x = xi. So for some i ∈ I, we

have x = xi. Now ∀i ∈ I. xi ∈ A. Hence x ∈ A.
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“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)
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“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀i ∈ I. xi ∈ A assuming ∀x.(∃i ∈ I. x = xi)→ x ∈ A.

So we show that for arbitrary i ∈ I, assuming

∀x.(∃i ∈ I. x = xi)→ x ∈ A, we have xi ∈ A. So let i ∈ I be arbitrary.

Since we have ∀x.(∃i ∈ I. x = xi)→ x ∈ A, by rule ∀-E we can

specialize to (∃j ∈ I. xi = xj)→ xi ∈ A. But premise (∃j ∈ I. xi = xj)
is true for i = j, and so xi ∈ A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using

Isabelle.

“←” in more Detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)
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“→” in more detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)

We show ∀i ∈ I. xi ∈ A assuming ∀x.(∃i ∈ I. x = xi)→ x ∈ A.

So we show that for arbitrary i ∈ I, assuming

∀x.(∃i ∈ I. x = xi)→ x ∈ A, we have xi ∈ A. So let i ∈ I be arbitrary.

Since we have ∀x.(∃i ∈ I. x = xi)→ x ∈ A, by rule ∀-E we can

specialize to (∃j ∈ I. xi = xj)→ xi ∈ A. But premise (∃j ∈ I. xi = xj)
is true for i = j, and so xi ∈ A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using

Isabelle.

“←” in more Detail: Want to prove

(∀x.(∃i ∈ I. x = xi)→ x ∈ A)↔ (∀i ∈ I. xi ∈ A)
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We show ∀x.(∃i ∈ I. x = xi)→ x ∈ A, assuming ∀i ∈ I. xi ∈ A.

So we show that for arbitrary x, assuming ∀i ∈ I. xi ∈ A, we have

(∃i ∈ I. x = xi)→ x ∈ A. So let x be arbitrary.

To show (∃i ∈ I. x = xi)→ x ∈ A, assume ∃i ∈ I. x = xi. So for some

i ∈ I, we have x = xi. Now by our earlier assumption ∀i ∈ I. xi ∈ A,

and so it follows that x ∈ A. thus we have shown x ∈ A under the

assumption (∃i ∈ I. x = xi), thus we have shown

(∃i ∈ I. x = xi)→ x ∈ A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using

Isabelle.

Back to main referring slide
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Collections and Sets
We speak of collection of all sets rather than set of all sets in order to

pretend that we are being careful since we are not sure if there is such a

thing as a set of all sets. Therefore we use the “neutral” word collection

whose meaning is obvious. . .
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Collections and Sets
We speak of collection of all sets rather than set of all sets in order to

pretend that we are being careful since we are not sure if there is such a

thing as a set of all sets. Therefore we use the “neutral” word collection

whose meaning is obvious. . .

Is it?
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Collections and Sets
We speak of collection of all sets rather than set of all sets in order to

pretend that we are being careful since we are not sure if there is such a

thing as a set of all sets. Therefore we use the “neutral” word collection

whose meaning is obvious. . .

Is it?

Recall that we have defined set as collection of objects in the first place.

So it is rather futile to suggest now that there should be some difference

between collections and sets.

The fact of the matter is: the approach of allowing arbitrary collections

of “objects” and regarding such collections as “objects” themselves is

näıve. We will see this shortly.

Back to main referring slide
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What does this Tell us about Sets?

It tells us that there can be no such thing as the set of all sets.

The fundamental flaw of näıve set theory is in saying that a set is a

collection of “objects” without worrying what an object is. If we make

no restriction as to what an object is, then a set is obviously also an

object. But then we effectively base the definition of the new concept set

on the existence of sets, so the definition is circular.

The intuition for the solution to this dilemma is not difficult: A set is a

collection of objects of which we are already sure that they exist. In

particular, since we are only just about to define sets, these objects may

not themselves be sets.

Once we have such sets, we can introduce “sets of second order”, that

is, sets that contain sets of the first kind. This process can be continued

ad infinitum.
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The formal details will come later.

Back to main referring slide
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True
Assume that > is syntactic sugar for a proposition that is always true,

say > ≡ ⊥ → ⊥. We have not introduced this, but it is convenient.

So semantically, we have IA(>) = 1 for all IA.

Back to main referring slide
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A Strange Set Comprehension
Recall that a set comprehension has the form {x|P (x)}, where P (x) is a

formula usually containing x.

The set comprehension U := {x | >} is strange since > does not contain

x.

But by the introduction rule for set comprehensions, this means that

x ∈ U for any x. Thus in particular, U ∈ U .

Back to main referring slide
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Higher-Order Logic
Higher-order logic is a solution to the dilemma posed by Russell’s

paradox.

It is a surprisingly simple formalism which can be extended

conservatively: this means that it can be ensured that the extensions

cannot compromise the truth or falsity of statements that were already

expressible before the extension.

Back to main referring slide
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The λ-Calculus: Motivation
A way of writing functions. E.g., λx. x+ 5 is the function

taking any number n to n+ 5. Theory underlying functional

programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical)

computer science!
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The λ-Calculus: Motivation
A way of writing functions. E.g., λx. x+ 5 is the function

taking any number n to n+ 5. Theory underlying functional

programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical)

computer science!

Why is it interesting for us? The λ-calculus is used for

representing object logics in Isabelle. It is the core of

Isabelle’s metalogic!

Further reading: [Tho91, chapter 2], [HS90, chapter 1].

Smaus: CSMR; WS08/09



The λ-Calculus 319

Outline of this Lecture
• The untyped λ-calculus

• The simply typed λ-calculus (λ→)

• An extension of the typed λ-calculus

• Higher-order unification
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Untyped λ-Calculus

From functional programming , you may be familiar with

function definitions such as

f x = x+ 5

The λ-calculus is a formalism for writing nameless functions.

The function λx. x+ 5 corresponds to f .
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Untyped λ-Calculus

From functional programming , you may be familiar with

function definitions such as

f x = x+ 5

The λ-calculus is a formalism for writing nameless functions.

The function λx. x+ 5 corresponds to f .

The application to say, 3, is written (λx. x+ 5)(3). Its result

is computed by substituting 3 for x, yielding 3 + 5, which in

usual arithmetic evaluates to 8.
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Syntax
(x ∈ Var , c ∈ Const)

e ::= x | c | (ee) | (λx. e)

The objects generated by this grammar are called λ-terms or

simply terms.

Conventions: iterated λ & left-associated application

(λx. (λy. (λz. ((xz)(yz))))) ≡ (λxyz. ((xz)(yz)))

≡ λxyz. xz(yz)

Is λx. x+ 5 a λ-term?
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Substitution
• Reduction based on substitutions

(λx. g x 3)(5) = (g x 3)[x← 5] = g 5 3

• Must respect free and bound variables,

(λx. x(λx. xy))(e) = ((x(λx. xy))[x← e] = e(λx. xy)

• Same problems as with quantifiers

∀x. (P (x) ∧ ∃x.Q(x, y))

P (e) ∧ ∃x.Q(x, y)
∀-E

∀x. (P (x) ∧ ∃y.Q(x, y))

P (y) ∧ ∃z.Q(y, z)
∀-E
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) :=
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) :=
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) := ∅ = FV (c)
FV (MN) :=
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) := ∅ = FV (c)
FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)
FV (λx.M) :=
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) := ∅ = FV (c)
FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)
FV (λx.M) := FV (M) \ {x} = FV (∀x.M)

Example: FV (xy(λyz. xyz)) = {x, y}
A term with no free variable occurrences is called closed.
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Definition of Substitution
M [x← N ] means substitute N for x in M

1. x[x← N ] =
2. a[x← N ] =
3. (PQ)[x← N ] =
4. (λx. P )[x← N ] =
5. (λy. P )[x← N ] =

6. (λy. P )[x← N ] =
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Definition of Substitution
M [x← N ] means substitute N for x in M

1. x[x← N ] = N

2. a[x← N ] = a if a is a constant or variable other than x

3. (PQ)[x← N ] = (P [x← N ]Q[x← N ])
4. (λx. P )[x← N ] = λx. P

5. (λy. P )[x← N ] = λy. P [x← N ] if y 6= x and

y /∈ FV (N)
6. (λy. P )[x← N ] = λz. P [y ← z][x← N ] if y 6= x and

y ∈ FV (N), and z is fresh: z /∈ FV (N) ∪ FV (P )
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Definition of Substitution
M [x← N ] means substitute N for x in M

1. x[x← N ] = N

2. a[x← N ] = a if a is a constant or variable other than x

3. (PQ)[x← N ] = (P [x← N ]Q[x← N ])
4. (λx. P )[x← N ] = λx. P

5. (λy. P )[x← N ] = λy. P [x← N ] if y 6= x and

y /∈ FV (N)
6. (λy. P )[x← N ] = λz. P [y ← z][x← N ] if y 6= x and

y ∈ FV (N), and z is fresh: z /∈ FV (N) ∪ FV (P )
Cases similar to those for quantifiers: λ binding is ‘generic’.
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Substitution: Example

(x(λx. xy))[x← λz. z]
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Substitution: Example

(x(λx. xy))[x← λz. z] 3= x[x← λz. z](λx. xy)[x← λz. z]
1,4
= (λz. z)λx. xy
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Untyped λ-Calculus 325

Substitution: Example

(x(λx. xy))[x← λz. z] 3= x[x← λz. z](λx. xy)[x← λz. z]
1,4
= (λz. z)λx. xy

(λx. xy)[y ← x]
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Substitution: Example

(x(λx. xy))[x← λz. z] 3= x[x← λz. z](λx. xy)[x← λz. z]
1,4
= (λz. z)λx. xy

(λx. xy)[y ← x] 6= λz. ((xy)[x← z][y ← x])
3,1,2
= λz. (zy[y ← x])

3,2,1
= λz. zx

In the last example, clause 6 avoids capture, i.e., λx. xx.
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Reduction: Intuition
Reduction is the notion of “computing”, or “evaluation”, in

the λ-calculus.

f x = x+ 5  f = λx. x+ 5
f 3 = 3 + 5  (λx. x+ 5)(3)→β (x+ 5)[x← 3] = 3 + 5

β-reduction replaces a parameter by an argument.

This should propagate into contexts, e.g.

λx.((λx. x+ 5)(3))→β λx.(3 + 5).
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Reduction: Definition
• Axiom for β-reduction: (λx.M)N →β M [x← N ]
• Rules for β-reduction of redices in contexts:

M →β M
′

NM →β NM
′

M →β M
′

MN →β M
′N

M →β M
′

λz.M →β λz.M
′ ∗

• Reduction is reflexive-transitive closure

M →β N

M →∗β N M →∗β M
M →∗β N N →∗β P

M →∗β P

• A term without redices is in β-normal form.
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Reduction: Examples

(λx. λy. g x y)a b→β
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b
Shows Currying
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b
Shows Currying

(λx. xx)(λx. xx)→β
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b
Shows Currying

(λx. xx)(λx. xx)→β (λx. xx)(λx. xx)→β . . .

Shows divergence
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b
Shows Currying

(λx. xx)(λx. xx)→β (λx. xx)(λx. xx)→β . . .

Shows divergence

But (λxy. y)((λx. xx)(λx. xx))→β λy. y
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Conversion
• β-conversion: “symmetric closure” of β-reduction

M →∗β N
M =β N

M =β N

N =β M
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Conversion
• β-conversion: “symmetric closure” of β-reduction

M →∗β N
M =β N

M =β N

N =β M

• α-conversion: bound variable renaming (usually implicit)

λx.M =α λz.M [x← z] where z 6∈ FV (M)
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Conversion
• β-conversion: “symmetric closure” of β-reduction

M →∗β N
M =β N

M =β N

N =β M

• α-conversion: bound variable renaming (usually implicit)

λx.M =α λz.M [x← z] where z 6∈ FV (M)

• η-conversion: for normal-form analysis

M =η λx. (Mx) if x 6∈ FV (M)
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λ-Calculus Meta-Properties
Confluence (equivalently, Church-Rosser): reduction is

order-independent.

For all M,N1, N2, if M →∗β N1 and M →∗β N2, then there

exists a P where N1→∗β P and N2→∗β P .

P

N1 N2

M

J
J

J
J

J
J

JĴ


















�


















�

J
J

J
J

J
J

JĴ

∗ ∗

∗ ∗
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Uniqueness of Normal Forms
Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then
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Uniqueness of Normal Forms
Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then N1 =α N2.
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Uniqueness of Normal Forms
Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then N1 =α N2.

Example:

(λxy. y)((λx. xx)a)→β (λxy. y)(aa)→β λy. y

(λxy. y)((λx. xx)a)→β λy. y
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Turing Completeness
The λ-calculus can represent all computable functions.
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Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?
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Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped λ-calculus, we have syntactic objects called

terms.
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Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped λ-calculus, we have syntactic objects called

terms.

We now introduce syntactic objects called types.
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Simple Type Theory λ→

Motivation: Suppose you have constants 1, 2 with usual

meaning. Is it sensible to write 1 2 (1 applied to 2)?

λ→ (simply typed λ-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped λ-calculus, we have syntactic objects called

terms.

We now introduce syntactic objects called types.

We will say “a term has a type” or “a term is of a type”.
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Two Syntaxes
• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ
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Two Syntaxes
• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N→ N, (N→ N)→ N, N→ N→ N
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Simple Type Theory λ→ 334

Two Syntaxes
• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N→ N, (N→ N)→ N, N→ N→ N

• Syntax for (raw) terms: λ-calculus augmented with types

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const)
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Signatures and Contexts
Generally (in various logic-related formalisms) a signature

defines the “fixed” symbols of a language, and a context

defines the “variable” symbols of a language.
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Signatures and Contexts
Generally (in various logic-related formalisms) a signature

defines the “fixed” symbols of a language, and a context

defines the “variable” symbols of a language. In λ→,

• a signature Σ is a sequence (c ∈ Const)

Σ ::= 〈 〉 | Σ, c : τ

• a context Γ is a sequence (x ∈ Var)

Γ ::= 〈 〉 | Γ, x : τ

What’s the difference to signatures you have seen so far?
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Type Assignment Calculus
We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ
and a context Γ. For example

Γ `Σ c x : σ

where Σ = c : τ → σ and Γ = x : τ .
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Simple Type Theory λ→ 336

Type Assignment Calculus
We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ
and a context Γ. For example

Γ `Σ c x : σ

where Σ = c : τ → σ and Γ = x : τ .
We usually leave Σ implicit and write ` instead of `Σ.

If Γ is empty it is omitted.
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Type Assignment Calculus: Rules

c : τ ∈ Σ
Γ ` c : τ

assum Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ
Γ ` ee′ : τ

app
Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs
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Type Assignment Calculus: Rules

c : τ ∈ Σ
Γ ` c : τ

assum Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ
Γ ` ee′ : τ

app
Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

Note that rule abs is deterministic when applied bottom-up.

Also note the analogy to minimal logic over →.
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β-Reduction in λ→

β-reduction defined as before, has subject reduction property

and is strongly normalizing.
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Example 1

` λxσ. λyτ . x :
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Example 1

` λxσ. λyτ . x : σ → (τ → σ)
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Example 1

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Example 1

x : σ ` λyτ . x : τ → σ

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Example 1

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Simple Type Theory λ→ 339

Example 1

x : σ, y : τ ` x : σ
x : σ ` λyτ . x : τ → σ

abs

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Simple Type Theory λ→ 339

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Simple Type Theory λ→ 339

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Note the use of schematic types!
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Example 1

x : σ, y : τ ` x : σ
x : σ ` λyτ . x : τ → σ

abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Note the use of schematic types!

For simplicity, applications of hyp are usually not explicitly

marked in proof.

Smaus: CSMR; WS08/09



Simple Type Theory λ→ 340

Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x :
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Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
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Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Simple Type Theory λ→ 340

Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Simple Type Theory λ→ 340

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ
f : σ → σ → τ ` λxσ. f x x : σ → τ

abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Simple Type Theory λ→ 340

Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ Γ ` x : σ
Γ ` f x x : τ

app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ
Γ ` f x x : τ

app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f : σ → σ → τ Γ ` x : σ
Γ ` f x : σ → τ

app
Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f x x : τ
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Example 3

Σ = f : σ → σ → τ

Γ = x : σ

f : σ → σ → τ ∈ Σ
Γ ` f : σ → σ → τ

assum
Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ
Γ ` f x x : τ

app

Note that this time, f is a constant.
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Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f : σ → σ → τ Γ ` x : σ
Γ ` f x : σ → τ

app
Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant.

We will often suppress applications of assum.
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Type Assignment and αβη-Conversion
Type construction:

• Type construction is decidable.
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Type Assignment and αβη-Conversion
Type construction:

• Type construction is decidable.

• There is a practically useful implementation for

type-construction (Hindley-Milner algorithm W
[Mil78, NN99]).

Term congruence (e =αβη e
′?) is decidable.
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Polymorphism and Type Classes

We will now look at the typed λ-calculus extended by

polymorphism and type classes.

As we will see later, this is the universal representation for

object logics in Isabelle.
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Polymorphism: Intuition
In functional programming, the function append for

concatenating two lists works the same way on integer lists

and on character lists: append is polymorphic.

Type language must be generalized to include type variables

(denoted by α, β . . .) and type constructors.

Example: append has type α list → α list → α list , and by

type instantiation, it can also have type, say,

int list → int list → int list .
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Polymorphism: Two Syntaxes
• Syntax for polymorphic types (B a set of type constructors

including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T
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Polymorphism: Two Syntaxes
• Syntax for polymorphic types (B a set of type constructors

including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

Examples: N, N→ N, α list , N list , (N, bool) pair .
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Polymorphism: Two Syntaxes
• Syntax for polymorphic types (B a set of type constructors

including →), T ∈ B, α is a type variable)

τ ::= α | (τ, . . . , τ) T

Examples: N, N→ N, α list , N list , (N, bool) pair .

• Syntax for (raw) terms as before:

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const)
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Polymorphic Type Assignment Calculus
Type substitutions (denoted Θ) defined in analogy to

substitutions in FOL. Apart from application of Θ in rule

assum, type assignment is as for λ→:

c : τ ∈ Σ
Γ ` c : τΘ

assum∗ Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ
Γ ` ee′ : τ

app
Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

∗: Θ is any type substitution.
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Type Classes: Intuition
Type classes are a way of “making ad-hoc polymorphism

less ad-hoc”[HHPW96, WB89].

Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are

defined.

We only sketch the formalization here, and refer to

[HHPW96, Nip93, NP93] for details.
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Type Classes in Isabelle
• Syntactic classes (similarly as in Haskell): E.g., declare

that there exists a class ord which is a subclass of class

term, and that for any τ :: ord , the constant ≤ is defined

and has type τ → τ → bool . Isabelle has syntax for this.
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Type Classes in Isabelle
• Syntactic classes (similarly as in Haskell): E.g., declare

that there exists a class ord which is a subclass of class

term, and that for any τ :: ord , the constant ≤ is defined

and has type τ → τ → bool . Isabelle has syntax for this.

• Axiomatic classes: Declare (axiomatize) that certain

theorems should hold for a τ :: κ where κ is a type class.

E.g., axiomatize that ≤ is reflexive by an (Isabelle)

theorem ”x ≤ x”. Isabelle has syntax for this.

To use a class, we can declare members of it, e.g., N is a

member of ord.
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Syntax: Classes, Types, and Terms
Based on

• a set of type classes, say K = {ord , order , lattice, . . .},
• a set of type constructors, say

B = {bool , → , ind , list , set . . .},
• a set of constants Const and a set of variables Var ,

we define

• Polymorphic types: τ ::= α | α:: κ | (τ, . . . , τ) T
• Raw terms (as before): e ::= x | c | (ee) | (λxτ . e)
(α is type variable, T ∈ B, κ ∈ K, x ∈ Var , c ∈ Const)
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Type Assignment Calculus with Type Classes
Assume some syntax for declaring τ :: κ and κ ≺ κ′. In

addition introduce the rule

τ :: κ κ ≺ κ′
τ :: κ′

subclass

Type assignment rules as before, but type substitution Θ in

c : τ ∈ Σ
Γ ` c : τΘ

assum

must respect class constraints: for each α :: κ occurring in τ

where αΘ = σ, judgement σ :: κ must hold.

Smaus: CSMR; WS08/09



Polymorphism and Type Classes 351

Example
Suppose that by virtue of declarations, we have N :: order,
order ≺ ord, and ≤: α :: ord→ α→ bool ∈ Σ. Derive

N :: order order ≺ ord
N :: ord

subclass

and then (Θ = [α← N])

(≤: (α :: ord)→ α→ bool) ∈ Σ
` ≤: N→ N→ bool

assum

which respects the class constraint since the judgement

N :: ord was derived above.
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Higher-Order Unification

The λ-calculus is “the” metalogic. Hence we now

(sometimes) call its variables “metavariables” for emphasis

and we precede them with “?”. E.g. they can stand for

object-level formulae. More details later.
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Higher-Order Unification

The λ-calculus is “the” metalogic. Hence we now

(sometimes) call its variables “metavariables” for emphasis

and we precede them with “?”. E.g. they can stand for

object-level formulae. More details later.

Two issues concerning metavariables are:

• suitable renamings of metavariables;

• unification before rule application.
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What Is Higher-Order Unification?
Unification of terms e, e′: find substitution θ for

metavariables such that eθ =αβη e
′θ.

Examples:
?X +?Y =αβη x + x

?P (x) =αβη x + x

f(?X x) =αβη ?Y x
?F (?Gx) =αβη f(g(x))
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What Is Higher-Order Unification?
Unification of terms e, e′: find substitution θ for

metavariables such that eθ =αβη e
′θ.

Examples:
?X +?Y =αβη x + x

?P (x) =αβη x + x

f(?X x) =αβη ?Y x
?F (?Gx) =αβη f(g(x))

Why higher-order? Metavariables may be instantiated to

functions, e.g. [?P ← λy.y + y].
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Higher-Order Unification: Facts
• Unification modulo αβ (HO-unification) is semi-decidable

(in Isabelle: incomplete).

• Unification modulo αβη is undecidable (in Isabelle:

incomplete).
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Higher-Order Unification: Facts
• Unification modulo αβ (HO-unification) is semi-decidable

(in Isabelle: incomplete).

• Unification modulo αβη is undecidable (in Isabelle:

incomplete).

• HO-unification is well-behaved for most practical cases.

• Important fragments (like HO-patterns) are decidable.

• HO-unification has possibly infinitely many solutions.

We will look at some of these issues again later.
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Summary on λ-Calculus

λ-calculus is a formalism for writing functions.

β-reduction is the notion of “computing” in λ-calculus.

λ-calculus is Turing-complete.

λ→ restricts syntax to “meaningful” λ-terms.

Extension of typed λ-calculus used to represent syntax of

object logics. λ-terms stand for object terms/formulae,

possibly containing “distinguished occurrences” of (object)

variables. This will be explained thoroughly next lecture.

HO-unification important in constructing proofs. ¸
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More Detailed Explanations
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3 + 5 = 8?
As you might guess, the formalism of the λ-calculus is not directly

related to usual arithmetic and so it is not built into this formalism that

3 + 5 should evaluate to 8. However, it may be a reasonable choice,

depending on the context, to extend the λ-calculus in this way, but this

is not our concern at the moment.

Back to main referring slide
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Var and Const
Similarly as for first-order logic, a language of the untyped λ-calculus is

characterized by giving a set of variables and a set of constants.

One can think of Const as a signature.

Note that Const could be empty.

Note also that the word constant has a different meaning in the

λ-calculus from that of first-order logic. In both formalisms, constants

are just symbols.

In first-order logic, a constant is a special case of a function symbol,

namely a function symbol of arity 0.

In the λ-calculus, one does not speak of function symbols. In the

untyped λ-calculus, any λ-term (including a constant) can be applied to

another term, and so any λ-term can be called a “unary function”. A

constant being applied to a term is something which would contradict the
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intuition about constants in first-order logic. So for the λ-calculus, think

of constant as opposed to a variable, an application, or an abstraction.

Back to main referring slide
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How do We Call those Terms?
A λ-term can either be

• a variable (case x), or

• a constant (case c), or

• an application of a λ-term to another λ-term (case (ee)), or

• an abstraction over a variable x (case (λx. e)).

Back to main referring slide
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Backus-Naur Form
A notation like

e ::= x | c | (ee) | (λx. e)
τ ::= T | τ → τ

e ::= x | c | (ee) | (λxτ . e)
P ::= x | ¬P | P ∧ P | P → P . . .

for specifying syntax is called Backus-Naur form (BNF) for expressing

grammars. For example, the first BNF-clause reads: a λ-term can be

a variable, or

a constant, or

a λ-term applied to a λ-term, or

a λ-abstraction, which is a λ-term of the form λx. e, where e is a λ-term.

The BNF is a very common formalism for specifying syntax, e.g., of
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programming languages. See here or here.

Back to main referring slide
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(λ-)Terms
So just like first-order logic, the λ-calculus has a syntactic category called

terms. Bit the word “term” has a different meaning for the λ-calculus

than for first-order logic, and so one can say λ-term for emphasis.

Note that at this stage, we have no syntactic category called “formula”

for the λ-calculus.

Back to main referring slide
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λ-Calculus: Notational Conventions
We write λx1x2 . . . xn.e instead of λx1.(λx2.(. . . e) . . .).
e1 e2 . . . en is equivalent to (. . . (e1 e2) . . . en) . . ., not (e1(e2 . . . en) . . .).
Note that this is in contrast to the associativity of logical operators.

There are some good reasons for these conventions.

Back to main referring slide
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Infix Notation

Strictly speaking, λx. x+ 5 does not adhere to the definition of syntax of

λ-terms, at least if we parse it in the usual way: + is an infix constant

applied to arguments x and 5.

If we parse x+ 5 as ((x+)5), i.e., x applied to (the constant) +, and the

resulting term applied to (the constant) 5, then λx. x+ 5 would indeed

adhere to the definition of syntax of λ-terms, but of course, this is

pathological and not intended here.

It is convenient to allow for extensions of the syntax of λ-terms, allowing

for:

• application to several arguments rather than just one;

• infix notation.

Such an extension is inessential for the expressive power of the
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λ-calculus. Instead of having a binary infix constant + and writing

λx. x+ 5, we could have a constant plus according to the original syntax

and write λx. ((plus x) 5) (i.e., write + in a Curryed way).

Back to main referring slide
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Reduction
Reduction is the notion of “computing”, or “evaluation”, in the

λ-calculus.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 368

Notations for Substitutions
Here we use the notation e[x← t] for the term obtained from e by

replacing x with t. There is also the notation e[t/x], and confusingly,

also e[x/t]. We will attempt to be consistent within this course, but be

aware that you may find such different notations in the literature.

Back to main referring slide
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λ Binding Is ‘Generic’
Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very general

concepts. So far, we have seen four binding operators: ∃, ∀ and λ, and

set comprehensions. The λ operator is the most generic of those

operators, in that it does not have a fixed meaning hard-wired into it in

the way that the quantifiers do. In fact, it is possible to have it as the

only operator on the level of the metalogic. We will see this later.

Back to main referring slide
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Avoiding Capture
If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring the

requirement on freeness, then (λx. xy)[y ← x] would be λx. xx.

Back to main referring slide
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Parameters and Arguments
In the λ-term (λx.M)N , we say that N is an argument (and the

function λx.M is applied to this argument), and every occurrence of x in

M is a parameter (we say this because x is bound by the λ).

This terminology may be familiar to you if you have experience in

functional programming, but actually, it is also used in the context of

function and procedure declarations in imperative programming.

Back to main referring slide
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Propagation into Contexts
In

λx.((λx. x+ 5)(3)),

the underlined part is a subterm occurring in a context. β-reduction

should be applicable to this subterm.

Back to main referring slide
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Like a Proof System
As you see, β-reduction is defined using rules (two of them being axioms,

the rest proper rules) in the same way that we have defined proof

systems for logic before. Note that we wrote the first axiom defining

β-reduction without a horizontal bar.

Back to main referring slide
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Redex
In a λ-term, a subterm of the form (λx.M)N is called a redex (plural

redices). It is a subterm to which β-reduction can be applied.

Back to main referring slide
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Abstraction
The rule for propagating →β to an abstraction, let us call it λ-abstr,

M →β M
′

λz.M →β λz.M
′ λ-abstr

actually has a vacuous side condition:

z is not free in any open assumption on which M →β M
′ depends.

The side condition is just like for ∀.
The side condition is vacuous because in the derivation system for →β

(or →∗β) we present here, there is no rule involving discharging open

assumptions, and thus there is no point in making assumptions. The

root of a derivation tree for →β is always an application of the axiom for
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β-reduction. When we consider →∗β, we may in addition have

applications of the reflexivity axiom.

However, we will have exercises on →β using an Isabelle theory called

RED, and in this theory, the above rule is called epsi and looks as follows:

"[|!!x. M(x) --> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x))"

Observe that there is a meta-level universal quantifier in this rule. From

the exercises, you know that the meta-level universal quantifier

corresponds to a side condition in paper-and-pencil proofs.

Moreover, when we later look at the meta-logic, there will be a rule

a ≡ b
(λx.a) ≡ (λx.b)

≡-abstr∗

looking very similar to the λ-abstr rule and having a side condition.
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To illustrate why the side condition is needed in general, consider a

derivation system where in addition to the rules for →β and →∗β, we also

allow applications of the rule for rules for → (implication) and ∀ of

first-order logic.

For the example we give, suppose that we have an encoding of the

number 0 and the + function in the untyped λ-calculus, and that these

behave as expected (in fact we will have an exercise showing this; in the

following we use “0” and “+” just for simplicity and clarity; + is written

infix).

Under these assumptions, we will now derive λxy. y + x→β λxy. y.

Before looking at the derivation tree, think about what this says

intuitively: it says that + is a function that takes two arguments, ignores

the first argument and returns the second argument. Clearly, this does

not correspond to the usual definition of +! The trick in the following
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derivation is to smuggle in an instantiation of x, namely to force x to be

0. The derivation looks as follows:

[y + x→β y]1

λy. y + x→β λy. y
λ-abstr

λxy. y + x→β λxy. y
λ-abstr

(y + x→β y)→ λxy. y + x→β λxy. y
→-I1

∀x.(y + x→β y)→ λxy. y + x→β λxy. y
∀-I

(y + 0→β y)→ λxy. y + x→β λxy. y
∀-E

(routine)

y + 0→β y

λxy. y + x→β λxy. y
→-E

In the above derivation, the side condition for λ-abstr is violated.

In Isabelle, such a “smuggling in” of an instantiation can be achieved

using instantiate tac, see RED wrongepsi.thy and wrongepsi.ML.
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Back to main referring slide
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Currying
You may be familiar with functions taking several arguments, or

equivalently, a tuple of arguments, rather than just one argument.

In the λ-calculus, but also in functional programming, it is common not

to have tuples and instead use a technique called Currying (Schönfinkeln

in German). So instead of writing g(a, b), we write g a b, which is read as

follows: g is a function which takes an argument a and returns a

function which then takes an argument b.

Recall that application associates to the left, so g a b is read (g a) b.
Currying will become even clearer once we introduce the typed

λ-calculus.

Back to main referring slide
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Divergence
We say that a β-reduction sequence diverges if it is infinite.

Note that for (λxy. y)((λx. xx)(λx. xx)), there is a finite β-reduction

sequence

(λxy. y)((λx. xx)(λx. xx))→β λy. y

but there is also a diverging sequence

(λxy. y)((λx. xx)(λx. xx))→β (λxy. y)((λx. xx)(λx. xx))→β . . .
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α-Conversion
α-conversion is usually applied implicitly, i.e., without making it an

explicit step. So for example, one would simply write:

λz. z =β λx. x
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η-Conversion
η-conversion is defined as

M =η λx. (Mx) if x 6∈ FV (M)

It is needed for reasoning about normal forms.

g x =η λy. g x y reflects g x b =β (λy. g x y)b

More specifically: if we did not have the η-conversion rule, then g x and

λy. g x y would not be “equivalent” up to conversion. But that seems

unreasonable, because they behave the same way when applied to b.

Applied to b, both terms can be converted to g x b. This is why it is

reasonable to introduce a rule such that g x and λy. g x y are

“equivalent” up to conversion.
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One also says that the η-conversion expresses the idea of extensionality

[HS90, chapter 7].

Note that with the help of β-reduction and transitivity, η-conversion can

be generalized to more than one variable,

i.e. M =βη λx1 . . . xn.M x1 . . . xn. E.g. we can derive

λxyz.M xy z =βη M :

λz.M xy z =η M xy

λyz.M xy z =βη λy.M xy λy.M xy =η M x

λyz.M xy z =βη M x

λxyz.M xy z =βη λx.M x λx.M x =η M

λxyz.M xy z =βη M

For any n, we call λx1 . . . xn.M x1 . . . xn an η-expansion of M .
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Confluence and Church-Rosser
A reduction → is called confluent if

for all M,N1, N2, if M →∗ N1 and M →∗ N2, then there exists a P

where N1→∗ P and N2→∗ P .

A reduction is called Church-Rosser if

for all N1, N2, if N1
∗↔ N2, then there exists a P where N1 →∗ P

and N2→∗ P .

Here, ←:= (→)−1 is the inverse of →, and ↔:=← ∪ → is the

symmetric closure of →, and
∗↔:= (↔)∗ is the reflexive transitive

symmetric closure of →.

So for example, if we have
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M1→M2→M3→M4←M5←M6→M7←M8←M9

then we would write M1
∗↔M9.

Confluence is equivalent to the Church-Rosser property [BN98, page 10].
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λ-Calculus Metaproperties
By metaproperties, we mean properties about reduction and conversion

sequences in general.
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Turing Completeness

The untyped λ-calculus is Turing complete. This is usually shown not by

mimicking a Turing machine in the λ-calculus, but rather by exploiting

the fact that the Turing computable functions are the same class as the

µ-recursive functions [HS90, chapter 4]. In a lecture on theory of

computation, you have probably learned that the µ-recursive functions

are obtained from the primitive recursive functions by so-called

unbounded minimalization, while the primitive recursive functions are

built from the 0-place zero function, projection functions and the

successor function using composition and primitive recursion [LP81].

The proof that the untyped λ-calculus can compute all µ-recursive

functions is thus based on showing that each of the mentioned

ingredients can be encoded in the untyped λ-calculus. While we are not

going to study this, one crucial point is that it should be possible to
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encode the natural numbers and the arithmetic operations in the

untyped λ-calculus.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 391

Term Language
We also say that we have defined a term language. A particular language

is given by a signature, although for the untyped λ-calculus this is simply

the set of constants Const .
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Type Language
We can say that we define a type language, i.e., a language consisting of

types. A particular type language is characterized by giving a set of base

types B. One might also call B a type signature.

A typical example of a set of base types would be {N, bool}, where N
represents the natural numbers and bool the Boolean values ⊥ and >.

All that matters is that B is some fixed set “defined by the user”.
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Types: Intuition
The type N→ N is the type of a function that takes a natural number

and returns a natural number.

The type (N→ N)→ N is the type of a function that takes a function,

which takes a natural number and returns a natural number, and returns

a natural number.
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Types Are Right-Associative
To save parentheses, we use the following convention: types associate to

the right, so N→ N→ N stands for N→ (N→ N).
Recall that application associates to the left. This may seem confusing

at first, but actually, it turns out that the two conventions concerning

associativity fit together very neatly.
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Raw Terms
In the context of typed versions of the λ-calculus, raw terms are terms

built ignoring any typing conditions. So raw terms are simply terms as

defined for the untyped λ-calculus, possibly augmented with type

superscripts.
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Augmenting with Types
So far, this is just syntax!

The notation (λxτ . e) simply specifies that binding occurrences of

variables in simple type theory are tagged with a superscript, where the

use of the letter τ makes it clear (in this particular context) that the

superscript must be some type, defined by the grammar we just gave.
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Var and Const
Var and Const are the sets of variables and constants, respectively, as

for the untyped λ-calculus.
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Sequences
A sequence is a collection of objects which differs from sets in that a

sequence contains the objects in a certain order, and there can be

multiple occurrences of an object.

We write a sequence containing the objects o1, . . . , on as 〈o1, . . . , on〉, or

sometimes simply o1, . . . , on.

If Ω is the sequence o1, . . . , on, then we write Ω, o for the sequence

〈o1, . . . , on, o〉 and o,Ω for the sequence 〈o, o1, . . . , on〉.
An empty sequence is denoted by 〈 〉.
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Type Binding
We call an expression of the form x : τ or c : τ a type binding.

The use of the letter τ makes it clear (in this particular context) that the

superscript must be some type, defined by the grammar we just gave.
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Signatures in Various Formalisms
For propositional logic, we did not use the notion of signature, although

we mentioned that strictly speaking, there is not just the language of

propositional logic, but rather a language of propositional logic which

depends on the choice of the variables.

In first-order logic, a signature was a pair (F ,P) defining the function

and predicate symbols, although strictly speaking, the signature should

also specify the arities of the symbols in some way. Recall that we did not

bother to fix a precise technical way of specifying those arities. We were

content with saying that they are specified in “some unambiguous way”.

In sorted logic, the signature must also specify the sorts of all symbols.

But we did not study sorted logic in any detail.

In the untyped λ-calculus, the signature is simply the set of constants.

Summarizing, we have not been very precise about the notion of a
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signature so far.

For λ→, the rules for “legal” terms become more tricky, and it is

important to be formal about signatures.

In λ→, a signature associates a type with each constant symbol by

writing c : τ .
Usually, we will assume that Const is clear from the context, and that Σ
contains an expression of the form c : τ for each c ∈ Const , and in fact,

that Σ is clear from the context as well. Since Σ contains an expression

of the form c : τ for each c ∈ Const , it is redundant to give Const
explicitly. It is sufficient to give Σ.
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Type Judgement
The expression

Γ `Σ c x : σ

is called a type judgement. It says that given the signature

Σ = c : τ → σ and the context Γ = x : τ , the term

c x has type σ or

c x is of type σ or

c x is assigned type σ.

Recall that you have seen other judgements before.
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∈ for Sequences?
Recall that Σ is a sequence. By abuse of notation, we sometimes identify

this sequence with a set and allow ourselves to write c : τ ∈ Σ.

We may also write Σ ⊆ Σ′ meaning that c : τ ∈ Σ implies c : τ ∈ Σ′.
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System of Rules
Type assignment is defined as a system of rules for deriving type

judgements, in the same way that we have defined derivability

judgements for logics, and β-reduction for the untyped λ-calculus.
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An Alternative Formulation of abs
Signatures and contexts are sequences, and intuitively, the order in which

the type bindings occur in these sequences does not matter.

Now, the way we have set up the type assignment calculus, it would

seem that the order does matter, namely since in rule abs, the binding

x : σ above the horizontal line must be the last binding in the context.

An alternative formulation would be

Γ, x : σ,∆ ` e : τ
Γ,∆ ` λxσ. e : σ → τ

abs

However, the original formulation is more straightforward in light of the

fact that type derivations are usually constructed bottom-up. The

bottom-up application of the original abs is deterministic, whereas the

alternative formulation would confront us with the choice of how to split
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up the context.

For example, we could start a derivation of y : ρ, z : ω ` λxσ. c : σ → τ

in three ways:
x : σ, y : ρ, z : ω ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

or
y : ρ, x : σ, z : ω ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs

or
y : ρ, z : ω, x : σ ` c : τ

y : ρ, z : ω ` λxσ. c : σ → τ
abs
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Minimal Logic over →
Recall the sequent rules of the “→ /∧” fragment of propositional logic.

Consider now only the “→” fragment. We call this fragment minimal

logic over →.

If you take the rule

Γ, x : τ,∆ ` x : τ hyp

of λ→ and throw away the terms (so you keep only the types), you

obtain essentially the rule for assumptions

Γ ` A (where A ∈ Γ)

of propositional logic.
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Likewise, if you do the same with the rule

Γ ` e : σ → τ Γ ` e′ : σ
Γ ` ee′ : τ

app

of λ→, you obtain essentially the rule

Γ ` A→ B Γ ` A
Γ ` B →-E

of propositional logic.

Finally, if you do the same with the rule

Γ, x : σ ` e : τ
Γ ` λxσ. e : σ → τ

abs
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of λ→, you obtain essentially the rule

A,Γ ` B
Γ ` A→ B

→-I

of propositional logic.

Note that in this setting, there is no analogous propositional logic rule for

c : τ ∈ Σ
Γ ` c : τ

assum

So for the moment, we can observe a close analogy between λ→, for Σ
being empty, and the → fragment of propositional logic, which is also

called minimal logic over →.

Such an analogy between a type theory (of which λ→ is an example) and

a logic is referred to in the literature as Curry-Howard isomorphism
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[Tho91]. One also speaks of propositions as types [GLT89]. The

isomorphism is so fundamental that it is common to characterize type

theories by the logic they represent, so for example, one might say:

λ→ is the type theory of minimal logic over →.

Note that for this analogy, it is quite crucial that we have no constants

(Σ is empty). Namely, this condition implies that for some types, we

cannot give a closed term that has this type. For example, we can give a

closed term of type τ → σ → τ , namely λxy. x, while we cannot give a

closed term of type (τ → τ)→ τ . We say that τ → σ → τ is inhabited

while (τ → τ)→ τ is not inhabited.

The inhabited types correspond exactly to the formulas that are derivable

in minimal logic over →, and the inhabiting term is regarded as a proof.
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Subject Reduction
Subject reduction is the following property: reduction does not change

the type of a term, so if `Σ M : τ and M →β N , then `Σ N : τ .
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(Strongly) Normalizing β-Reduction
The simply-typed λ-calculus, unlike the untyped λ-calculus, is

normalizing, that is to say, every term has a normal form. Even more, it

is strongly normalizing, that is, this normal form is reached regardless of

the reduction order.
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An Alternative for hyp
One could also formulate hyp as follows:

x : τ ∈ Γ
Γ ` x : τ

hyp

That would be in close analogy to LF, a system not treated here.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 414

Schematic Types
In this example, you may regard σ and τ as base types (this would

require that σ, τ ∈ B), but in fact, it is more natural to regard them as

metavariables standing for arbitrary types. Whatever types you substitute

for σ and τ , you obtain a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence arbitrary.
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Constants vs. Variables
In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a variable.

Looking at the different derivations of the type judgement Γ ` f x x : τ
in Examples 2 and 3, you may find that they are very similar, and you

may wonder: What is the point? Why do we distinguish between

constants and variables?

In fact, one could simulate constants by variables. When setting up a

type theory or programming language, there are choices to be made

about whether there should be a distinction between variables and

constants, and what it should look like. There is a famous epigram by

Alan Perlis:

One man’s constant is another man’s variable.
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For our purposes, it is much clearer conceptually to make the distinction.

For example, if we want to introduce the natural numbers in our λ→

language, then it is intuitive that there should be constants 1, 2, . . .
denoting the numbers. If 1, 2, . . . were variables, then we could write

strange expressions like λ2N→N. y, so we could use 2 as a variable of type

N→ N.
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Type Construction
Type construction is the problem of given a Σ, Γ and e, finding a τ such

that Σ , Γ ` e : τ .
Sometimes one also considers the problem where Γ is unknown and must

also be constructed.
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Term Congruence
αβη-conversion is defined as for λ→. Given two (extended) λ-terms e

and e′, it is decidable whether e =αβη e
′.
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(Parametric) Polymorphism
In functional programming, you will come across functions that operate

uniformly on many different types. For example, a function append for

concatenating two lists works the same way on integer lists and on

character lists. Such functions are called polymorphic.

More precisely, this kind of polymorphism, where a function does exactly

the same thing regardless of the type instance, is called parametric

polymorphism, as opposed to ad-hoc polymorphism.

In a type system with polymorphism, the notion of base type (which is

just a type constant, i.e., one symbol) is generalized to a type

constructor with an arity ≥ 0. A type constructor of arity n applied to n

types is then a type. For example, there might be a type constructor list
of arity 1, and int of arity 0. Then, int list is a type.

Note that application of a type constructor to a type is written in postfix
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notation, unlike any notation for function application we have seen.

However, other conventions exist, even within Isabelle.

A type constructor of arity > 0 is called type operator by some authors

[GM93, page 196], but we do not follow this terminology. Also, those

authors say type constant for what we call “type constructor” (i.e., of

arity 0 as well as > 0), but again, we do not follow this terminology: for

us a type constant has arity 0.

See [Pau96, Tho95b, Tho99] for details on the polymorphic type systems

of functional programming languages.
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Ad-hoc Polymorphism
Ad-hoc polymorphism, also called overloading, refers to functions that do

different (although usually similar) things on different types. For

example, a function ≤ may be defined as ’a’ ≤ ’b’ . . . on characters and

1 ≤ 2 . . . on integers. In this case, the symbol ≤ must be declared and

defined separately for each type.

This is in contrast to parametric pomorphism, but also somewhat

different from type classes.

Type classes are a way of “making ad-hoc polymorphism less

ad-hoc”[HHPW96, WB89].
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Type Classes
Type classes are a way of “making ad-hoc polymorphism less

ad-hoc”[HHPW96, WB89].

Type classes are used to group together types with certain properties, in

particular, types for which certain symbols are defined.

For example, for some types, a symbol ≤ (which is a binary infix

predicate) may exist and for some it may not, and we could have a type

class ord containing all types for which it exists.

Suppose you want to sort a list of elements (smaller elements should

come before bigger elements). This is only defined for elements of a type

for which the symbol ≤ exists.

Note that while a symbol such as ≤ may have a similar meaning for

different types (for example, integers and reals), one cannot say that it

means exactly the same thing regardless of the type of the argument to
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which it is applied. In fact, ≤ has to be defined separately for each type

in ord .

This is in contrast to parametric poymorphism, but also somewhat

different from ad-hoc polymorphism: The types of the symbols must not

be declared separately. E.g., one has to declare only once that ≤ is of

type (a :: ord , α).
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Polymorphic Type Language
As before, we define a type language, i.e., a language consisting of types,

and a particular type language is characterized by giving a certain set of

symbols B. But unlike before, B is now a set of type constructors. Each

type constructor has an arity associated with it just like a function in

first-order logic. The intention is that a type constructor may be applied

to types.

Following the conventions of ML [Pau96], we write types in postfix

notation, something we have not seen before. I.e., the type constructor

comes after the arguments it is applied to.

It makes perfect sense to view the function construction arrow → as type

constructor, however written infix rather than postfix.

So the B is some fixed set “defined by the user”, but it should definitely

always include →.
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Type Substitutions
A type substitution replaces a type variable by a type, just like in

first-order logic, a substitution replaces a variable by a term.
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Syntactic Classes
A syntactic class is a class of types for which certain symbols are declared

to exist. Isabelle has a syntax for such declarations. E.g., the declaration

sort ord < term
const <= : [’a::ord, ’a] => bool

may form part of an Isabelle theory file. It declares a type class ord
which is a subclass (that’s what the < means; in mathematical notation

it will be written ≺) of a class term, meaning that any type in ord is

also in term. We will write the “class judgement” ord ≺ term. The

class term must be defined elsewhere.

The second line declares a symbol <=. Such a declaration is preceded by

the keyword const. The notation α :: ord stands for a type variable

constrained to be in class ord . So <= is declared to be of type
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[α :: ord , α]⇒ bool , meaning that it takes two arguments of a type in

the class ord and returns a term of type bool . The symbol ⇒(=>) is the

function type arrow in Isabelle. Note that the second occurrence of α is

written without :: ord . This is because it is enough to state the class

constraint once.

Note also that [α :: ord , α] => bool is in fact just another way of writing

α :: ord => α => bool , similarly as for goals.

Haskell [HHPW96] has type classes but ML [Pau96] hasn’t.
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Axiomatic Classes
In addition to declaring the syntax of a type class, one can axiomatize

the semantics of the symbols. Again, Isabelle has a syntax for such

declarations. E.g., the declaration

axclass order < ord
order refl: ’’x <= x ’’
order trans: ’’[| x <= y; y <= z |] ==> x <= z’’
...

may form part of an Isabelle theory file. It declares an axiomatic type

class order which is a subclass of ord defined above.

The next two lines are the axioms. Here, order refl and order trans
are the names of the axioms. Recall that =⇒ is the implication symbol

in Isabelle (that is to say, the metalevel implication).

Smaus: CSMR; WS08/09



More Detailed Explanations 430

Whenever an Isabelle theory declares that a type is a member of such a

class, it must prove those axioms.

The rationale of having axiomatic classes is that it allows for proofs that

hold in different but similar mathematical structures to be done only

once. So for example, all theorems that hold for dense orders can be

proven for all dense orders with one single proof.
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Members of a Type Class
One also speaks of a type being an instance of a type class, but this is

slightly confusing, since we also say that a type can be an instance of

another type, e.g., N→ N is an instance of α, since

α[α← (N→ N)] = N→ N. So it is better to speak of a member of a

type class.

Isabelle provides a syntax for declaring that a type is a member of a type

class, e.g.

instance nat :: ord

declares that type nat is a member of class ord.

If the class κ is a syntactic class, such a declaration must come with a

definition of the symbols that are declared to exist for κ.

In addition, if κ is an axiomatic class, such a declaration must come with

a proof of the axioms.
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If a type τ is (by declaration) a member of class κ, we write the “class

judgement” τ :: κ.
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Renaming
Whenever a rule is applied, the metavariables occurring in it must be

renamed to fresh variables to ensure that no metavariable in the rule has

been used in the proof before.

The notion fresh is often casually used in logic, and it means: this

variable has never been used before. To be more precise, one should say:

never been used before in the relevant context.
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Unification
The mechanism to instantiate metavariables as needed is called

(higher-order) unification. Unification is the process of finding a

substitution that makes two terms equal.

We will now see more formally what it is and later also where it is used.
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Type Class Syntax
The set K we gave is incomplete and just exemplary.

So the set of type classes involved in an Isabelle theory is a finite set of

names (written lower-case), typically including ord , order , and lattice.

We have seen some Isabelle syntax for declaring the type classes

previously.

In grammars and elsewhere, κ is the letter we use for “type class”.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 436

Type Constructor Syntax

As before, the set B we gave is is incomplete (there are “. . .”) and just

exemplary. We might call B a type signature.

Note also that an is used to denote the arity of a type constructor.

• list means that list is unary type constructor;

• → means that → is a binary infix type constructor.

The notation using is slightly abusive since the is not actually part of

the type constructor. list is not a type constructor; list is a type

constructor.

So the set of type constructors involved in an Isabelle theory is a finite

set of names (written lower-case) with each having an arity associated,

typically including bool , →, and list . Note however that bool is

fundamental (since object level predicates are modeled as functions
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taking terms to a Boolean), and so is →, the constructor of the function

space between two types.

In grammars and elsewhere, T is the letter we use for “type constructor”.
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→ as Type Constructor
In λ→, types were built from base types using a “special symbol” →.

When we generalize λ→ to a λ-calculus with polymorphism, this “special

symbol” becomes a type constructor. However, the syntax is still special,

and it is interpreted in a particular way.
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Polymorphic Types Syntax

τ ::= α | α:: κ | (τ, . . . , τ) T (α is type variable)

is a grammar defining what polymorphic types are (syntactically). As

before, τ is the non-terminal we use for (now: polymorphic) types.

This grammar is not exemplary but generic, and it deserves a closer look.

A type variable is a variable that stands for a type, as opposed to a term.

We have not given a grammar for type variables, but assume that there

is a countable set of type variables disjoint from the set of term

variables. We use α as the non-terminal for a type variable (abusing

notation, we often also use α to denote an actual type variable).

First, note that a type variable may be followed by a class constraint :: κ
(recall that κ is the non-terminal for type classes). However, a type
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variable is not necessarily followed by such a constraint, for example if

the type variable already occurs elsewhere and is constrained in that

place. We have already seen this.

Moreover, a polymorphic type is obtained by preceding a type

constructor with a tuple of types. The arity of the tuple must be equal

to the declared arity of the type constructor.

It is not shown here that for some special type constructors, such as →,

the argument may also be written infix.

Back to main referring slide
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Solutions for Unification Problems
A solution for ?X +?Y =αβη x + x is [?X ← x, ?Y ← x].
A solution for ?P (x) =αβη x + x is [?P ← (λy.y + y)].
A solution for f(?Xx) =αβη?Y x is [?X ← (λz.z), ?Y ← f ].
Three solutions for ?F (?Gx) =αβη f(g(x)) are

[?F ← f, ?G← g],
[?F ← (λx.f(g x)), ?G← (λx.x)],
[?F ← (λx.x), ?G← (λx.f(g x))],

Back to main referring slide
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Unification Modulo
Unification of terms e, e′ modulo αβ means finding a substitution θ for

metavariables such that θ(e) =αβ θ(e′).
Likewise, unification of terms e, e′ modulo αβη means finding a

substitution σ for metavariables such that σ(e) =αβη σ(e′).

Back to main referring slide
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Metatheory: Motivation
Previously, we have seen the (polymorphically) typed

λ-calculus (with type classes).

Now, we will see how the typed λ-calculus can be used as a

metalanguage for representing the syntax of an object logic,

e.g. first-order logic.
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Metatheory: Motivation
Previously, we have seen the (polymorphically) typed

λ-calculus (with type classes).

Now, we will see how the typed λ-calculus can be used as a

metalanguage for representing the syntax of an object logic,

e.g. first-order logic.

Idea: An object-level proposition is a meta-level term.

Metalogic type o for propositions.

The terms of type o encode object level propositions:

φ ∈ Prop iff pφq : o.
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Metatheory: Motivation
Previously, we have seen the (polymorphically) typed

λ-calculus (with type classes).

Now, we will see how the typed λ-calculus can be used as a

metalanguage for representing the syntax of an object logic,

e.g. first-order logic.

Idea: An object-level proposition is a meta-level term.

Metalogic type o for propositions.

The terms of type o encode object level propositions:

φ ∈ Prop iff pφq : o.
Later: How do we represent the proofs/provability?
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Why Have a Metalogic?
Why should we have a meta- or framework logic rather than

implementing provers for each object logic individually?

+ Implement ‘core’ only once

+ Shared support for automation

+ Conceptual framework for exploring what a logic is

But

+/− Metalayer between user and logic

− Makes assumptions about structure of logic
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λ→: Review

λ→ is sufficient for presentation here (no polymorphism, type

classes).

• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N, N→ N, (N→ N)→ N, N→ N→ N

• Syntax for terms: λ-calculus augmented with types

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const)
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Type Assignment
• Signature Σ ::= 〈 〉 | Σ, c : τ .
• Context Γ ::= 〈 〉 | Γ, x : τ .
• Type assignment rules

c : τ ∈ Σ
Γ ` c : τ

assum Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ
Γ ` ee′ : τ

app
Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs
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Representing Syntax of Propositional Logic

Let Prop be our object logic:

P ::= x | ¬P | P ∧ P | P → P
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Representing Syntax of Propositional Logic

Let Prop be our object logic:

P ::= x | ¬P | P ∧ P | P → P

Let λ→ be our metalogic. Declare

• B = {o}.
• Signature assigns types to constants:

Σ = 〈not : , and : , imp : 〉
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Representing Syntax of Propositional Logic

Let Prop be our object logic:

P ::= x | ¬P | P ∧ P | P → P

Let λ→ be our metalogic. Declare

• B = {o}.
• Signature assigns types to constants:

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉

• Context assigns types to variables.

This approach is called first-order syntax (see later).
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Digression: Programming Languages
λ→ is the theory underlying typed functional programming.

Our declaration of B and Σ on the previous slide corresponds

to the declaration of an algebraic datatype in a functional

programming language [Pau96]:

datatype Prop =
VarInject of Variable | not of Prop

| and of Prop ∗ Prop | imp of Prop ∗ Prop
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Example of First-Order Syntax
a : o ` imp (not a) a : o
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Example of First-Order Syntax
a : o ` imp (not a) a : o

a : o ` imp : o→ o→ o
a : o ` not : o→ o a : o ` a : o

a : o ` not a : o
a : o ` imp (not a) : o→ o a : o ` a : o

a : o ` imp (not a) a : o

Applications of hyp and assum suppressed. Otherwise always

rule app.
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Non-example of First-Order Syntax
a : o ` not (imp a) a : o
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Non-example of First-Order Syntax
a : o ` not (imp a) a : o

a : o ` not : o→ o

a : o ` imp : o→ o→ o a : o ` a : o
a : o ` imp a : o→ o

???
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Non-example of First-Order Syntax
a : o ` not (imp a) a : o

a : o ` not : o→ o

a : o ` imp : o→ o→ o a : o ` a : o
a : o ` imp a : o→ o

???

No proof possible! (Requires analysis of normal forms.)
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Bijection between Prop and o
We desire bijection p·q : Prop → o that is

• adequate: each proposition in Prop can be represented by

a λ→-term of type o:

If P ∈ Prop then Γ ` pP q : o
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Bijection between Prop and o
We desire bijection p·q : Prop → o that is

• adequate: each proposition in Prop can be represented by

a λ→-term of type o:

If P ∈ Prop then Γ ` pP q : o

• faithful: each λ→ term of type o represents a proposition

in Prop:

If Γ ` t : o then ptq−1 ∈ Prop
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Adequacy of Bijection
Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o
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Adequacy of Bijection
Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o
Formalize mapping p·q:

pxq = x for x a variable

p¬P q = not pP q

pP ∧Qq = and pP q pQq

pP → Qq = imp pP q pQq

Smaus: CSMR; WS08/09



Representing Syntax of Propositional Logic 453

Adequacy of Bijection
Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o
Formalize mapping p·q:

pxq = x for x a variable

p¬P q = not pP q

pP ∧Qq = and pP q pQq

pP → Qq = imp pP q pQq

Formal statement accounts for variables:

If P ∈ Prop, and if for each propositional variable x in P ,

we have x : o ∈ Γ, then Γ ` pP q : o.
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Adequacy of Bijection
Example: (¬a)→ b ∈ Prop therefore imp (not a) b : o
Formalize mapping p·q:

pxq = x for x a variable

p¬P q = not pP q

pP ∧Qq = and pP q pQq

pP → Qq = imp pP q pQq

Formal statement accounts for variables:

If P ∈ Prop, and if for each propositional variable x in P ,

we have x : o ∈ Γ, then Γ ` pP q : o. Proof by induction.
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Faithfulness of Bijection
Define p·q−1

pxq−1 = x for x a variable

pnot P q−1 = ¬pP q−1

pand P Qq−1 = pP q−1 ∧ pQq−1

pimp P Qq−1 = pP q−1→ pQq−1
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Faithfulness of Bijection
Define p·q−1

pxq−1 = x for x a variable

pnot P q−1 = ¬pP q−1

pand P Qq−1 = pP q−1 ∧ pQq−1

pimp P Qq−1 = pP q−1→ pQq−1

For bijection, should have ppP qq−1 = P and pptq−1q = t.

Former is trivial, but what about latter?
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ptq−1 Is not Total
Example: For t = not ((λxo. x)a), we have a : o ` t : o

a : o ` not : o→ o

a : o, x : o ` x : o
a : o ` λxo. x : o→ o

abs
a : o ` a : o

a : o ` (λxo. x) a : o
app

a : o ` not ((λxo. x) a) : o
app

But ptq−1 is undefined!
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Normal Forms
If t : o, then there exists a t′ such that t =βη t

′, where t′ : o
and t′ is in canonical (βη-long) normal form, e.g.

not ((λxo. x) a) =βη not a

not =βη λxo. not x

imp (not ((λxo. x) a)) =βη λxo. imp (not a)x
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Bijection Theorem
The encoding p·q is a bijection between propositional

formulae with variables in Γ and canonical terms t′, where

Γ ` t′ : o.
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Bijection Theorem
The encoding p·q is a bijection between propositional

formulae with variables in Γ and canonical terms t′, where

Γ ` t′ : o.
Proof: Based on normalization

x : σ ` e : τ
` λxσ. e : σ → τ

abs ` e′ : σ
` (λxσ. e)e′ : τ

app
⇒ ` e[x← e′] : τ
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Bijection Theorem
The encoding p·q is a bijection between propositional

formulae with variables in Γ and canonical terms t′, where

Γ ` t′ : o.
Proof: Based on normalization

x : σ ` e : τ
` λxσ. e : σ → τ

abs ` e′ : σ
` (λxσ. e)e′ : τ

app
⇒ ` e[x← e′] : τ

Corollary: If t : o then t =βη t
′ and pt′q−1 ∈ Prop for some

canonical t′.
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Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae

(propositions), represented in λ→ by the type o.
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Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae

(propositions), represented in λ→ by the type o.

In first-order logic, we also have the syntactic category of

terms. For representation in λ→, we now introduce type i, so

B = {i, o}.
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Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category of formulae

(propositions), represented in λ→ by the type o.

In first-order logic, we also have the syntactic category of

terms. For representation in λ→, we now introduce type i, so

B = {i, o}.
Just like Γ ` a : o means that a represents a proposition,

Γ ` t : i means that t represents a term.
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Example: First-Order Arithmetic (FOA)
Following fragment of FOA is our object level language:

Terms T ::= x | 0 | s T | T + T | T × T
Formulae F ::= T = T | ¬F | F ∧ F | F → F
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Example: First-Order Arithmetic (FOA)
Following fragment of FOA is our object level language:

Terms T ::= x | 0 | s T | T + T | T × T
Formulae F ::= T = T | ¬F | F ∧ F | F → F

In λ→ (on metalevel), define signature Σ = ΣF ∪ ΣP ∪ ΣC:

ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i,

times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉
ΣC = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉

Example: px+ s 0q =
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Example: First-Order Arithmetic (FOA)
Following fragment of FOA is our object level language:

Terms T ::= x | 0 | s T | T + T | T × T
Formulae F ::= T = T | ¬F | F ∧ F | F → F

In λ→ (on metalevel), define signature Σ = ΣF ∪ ΣP ∪ ΣC:

ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i,

times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉
ΣC = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉

Example: px+ s 0q = plus x (succ zero).
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Encoding FOL in General
In general, to encode some first-order language, we must

define ΣF and ΣP so that for each n-ary f ∈ F , p ∈ P

fenc : i→ . . .→ i︸ ︷︷ ︸
n times

→ i ∈ ΣF ,

penc : i→ . . .→ i︸ ︷︷ ︸
n times

→ o ∈ ΣP,

and then pf(t1, . . . tn)q = fenc pt1q . . . ptnq and

pp(t1, . . . tn)q = penc pt1q . . . ptnq.

Abusing notation, we might skip the subscript enc.
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Quantifiers in First-Order Syntax
Along the same lines, one might suggest

all : var → o→ o, so p∀x. P q = all x pP q

But this approach has some problems:
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Quantifiers in First-Order Syntax
Along the same lines, one might suggest

all : var → o→ o, so p∀x. P q = all x pP q

But this approach has some problems:

• Variables are also terms, so “var ⊆ i”? No subtyping!
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Quantifiers in First-Order Syntax
Along the same lines, one might suggest

all : var → o→ o, so p∀x. P q = all x pP q

But this approach has some problems:

• Variables are also terms, so “var ⊆ i”? No subtyping!

• all is not a binding operator in λ→. E.g.,

(p(x) ∧ ∀x. q(x))[x← a] cannot be modeled as

(and (p x)(all x (q x)))[x← a].
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Higher-Order Abstract Syntax (HOAS)

Example, full FOA: F ::= . . .∀x.A | ∃x.A
Σ = ΣF ∪ ΣP ∪ ΣC ∪ ΣQ:

ΣQ = 〈all : (i→ o)→ o, exists : (i→ o)→ o〉
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Higher-Order Abstract Syntax (HOAS)

Example, full FOA: F ::= . . .∀x.A | ∃x.A
Σ = ΣF ∪ ΣP ∪ ΣC ∪ ΣQ:

ΣQ = 〈all : (i→ o)→ o, exists : (i→ o)→ o〉

Extend the definition of p.q:

p∀x. P q = all (λxi. pP q)
p∃x. P q = exists (λxi. pP q)

Adequacy and faithfulness as before.
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Examples

p∀x. x = xq = all(λxi. eq x x)
p∀x.∃y.¬(x+ x = y)q =

all(λxi. exists(λyi. not (eq (plus x x) y)))
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Examples

p∀x. x = xq = all(λxi. eq x x)
p∀x.∃y.¬(x+ x = y)q =

all(λxi. exists(λyi. not (eq (plus x x) y)))

Example derivation (all but one steps use rule app):

` all : (i→ o)→ o

x : i ` eq : i→ i→ o x : i ` x : i
x : i ` eq x : i→ o x : i ` x : i

x : i ` eq x x : o

` λxi. eq x x : i→ o
abs

` all(λxi. eq x x) : o
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Order
Order of a type: For type τ written τ1→ . . .→ τn, right

associated, τn ∈ B:

• Ord(τ) = 0 if τ ∈ B, i.e., if n = 1;

• Ord(τ) = 1 +max(Ord(τi)),
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Order
Order of a type: For type τ written τ1→ . . .→ τn, right

associated, τn ∈ B:

• Ord(τ) = 0 if τ ∈ B, i.e., if n = 1;

• Ord(τ) = 1 +max(Ord(τi)),
Intuition: “functions as arguments”.

A type of order 1 is first-order, of order 2 second-order etc.

A type of order > 1 is called higher order.
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Why “Higher Order”?
Constants representing propositional operators (logical

symbols) or non-logical symbols are first-order (hence

first-order syntax):

and : o→ o→ o
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Why “Higher Order”?
Constants representing propositional operators (logical

symbols) or non-logical symbols are first-order (hence

first-order syntax):

and : o→ o→ o

Variable binding operators are higher-order (hence

higher-order syntax):

all : (i→ o)→ o
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Exercise: Summation Operator
What is the order of the summation operator

∑
?
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Exercise: Summation Operator
What is the order of the summation operator

∑
?

sum : i→ i→ (i→ i)→ i

p

n∑
x=0

(x+ 2)q =
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Exercise: Summation Operator
What is the order of the summation operator

∑
?

sum : i→ i→ (i→ i)→ i

p

n∑
x=0

(x+ 2)q = sum zero n (λxi. plus x (succ succ zero))

So the order is 2.
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Why “Abstract”?
HOAS looks quite different from the concrete object level

syntax and hence “abstracts” from this object level syntax.

More specifically, different object level binding operators are

represented by a combination of a constant (all, exists) and

the generic λ-operator.

Thanks to this technique, standard operations on syntax

need no special encoding, but are supported implicitly by λ→.

We will now see this.
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Binding
Binding on the object level and metalevel coincide.

So in ∀x. P , all occurrences of x in P are bound, and

likewise, in all(λxi. pP q), all occurrences of x in pP q are

bound.

This provides support for substitution.
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Substitution
Recall rules for ∀:

∀x. P (x)

P (t)
∀-E
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Substitution
Recall rules for ∀:

∀x. P (x)

P (t)
∀-E  

all P

P (t)
∀-E
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Substitution
Recall rules for ∀:

∀x. P (x)

P (t)
∀-E  

all P

P (t)
∀-E

∀x. x = x

x = x[x← 0]
∀-E

Now apply substitution. . .
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Substitution
Recall rules for ∀:

∀x. P (x)

P (t)
∀-E  

all P

P (t)
∀-E

∀x. x = x

0 = 0
∀-E

Now apply substitution. . .
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Substitution
Recall rules for ∀:

∀x. P (x)

P (t)
∀-E  

all P

P (t)
∀-E

∀x. x = x

0 = 0
∀-E  

all (λxi. eq x x)

(λxi. eq x x) zero
∀-E

Now apply substitution. . .

Now apply β-reduction. . .
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Substitution
Recall rules for ∀:

∀x. P (x)

P (t)
∀-E  

all P

P (t)
∀-E

∀x. x = x

0 = 0
∀-E  

all (λxi. eq x x)

eq zero zero
∀-E

Now apply substitution. . .

Now apply β-reduction. . .

We now understand “marked positions in a formula”.
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Equivalence under Bound Variable Renaming
On the object level, formulae are equivalent under renaming

of bound variables:

(∀x. P ↔ ∀y. P [x← y])
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Equivalence under Bound Variable Renaming
On the object level, formulae are equivalent under renaming

of bound variables:

(∀x. P ↔ ∀y. P [x← y])

Likewise, on the metalevel, formulae obtained by bound

variable renaming are α-equivalent:

all(λxi. P ) =α all(λyi. P [x← y])
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Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop
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Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop
Type declaration B = {i, o}

Variable x
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Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop
Type declaration B = {i, o}

Variable x Variable x

Non-logical symb. +
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Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop
Type declaration B = {i, o}

Variable x Variable x

Non-logical symb. + 1st-order constant plus : i→ i→ i

Logical symbol ∧
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Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category
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Non-logical symb. + 1st-order constant plus : i→ i→ i
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Summary of Encoding Syntax

Object Language Metalanguage

Syntactic category

Term, Prop
Type declaration B = {i, o}

Variable x Variable x

Non-logical symb. + 1st-order constant plus : i→ i→ i

Logical symbol ∧ 1st-order constant and : o→ o→ o

Binding operator ∀ 2nd-order const. all : (i→ o)→ o

Meaningful expr.

a ∧ b ∈ Prop
Member of type (and a b) : o

¸
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Representing Syntax and Semantics
In the following, we will distinguish between the object logic and the

metalogic. We have already seen this kind of distinction before.

The object logic, or user-defined theory if you like, has a syntax and has

a notion of proof. Both must be represented in the metalogic. This is

what this lecture and a later lecture are about.

Back to main referring slide
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Core
By the core we mean the syntax and proof rules of the metalogic. These

should be simple, so that one can be reasonably confident that the

implementation is correct.

Back to main referring slide
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Shared Support for Automation
There are some general techniques involved in automating the search for

a proof that work for various object logics. It is therefore useful to

implement these techniques on a higher level, rather than considering

each object logic individually.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 476

Conceptual Framework
By implementing various object logics within the same metalogic, we can

compare the object logics in a more formal way.
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Metalayer
Having a logic and a metalogic can be very mind-boggling. We already

experienced that when working with Isabelle, it is sometimes confusing to

know whether we are at the level of a particular theory, or at the level of

general Isabelle syntax, or at the level of ML, the programming language

that Isabelle is implemented in.
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Assumptions
Designing a metalogic is a bold endeavor.

How are we supposed to know that the metalogic is expressive enough to

encode any object logic someone might invent?

There is probably no general satisfactory answer to this question.

In fact, we make assumptions that object logics are of a certain kind.

This is related to the nature of implication. Roughly speaking, we

assume logics and proof systems for which the deduction theorem holds,

i.e., for which A ` B (B is derivable under assumption A) holds if and

only if ` A→ B (A→ B is derivable without any assumption).

There are logics (modal, relevance logics) for which the theorem does

not hold [BM00].
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Syntax Encoding
φ ∈ Prop iff pφq ∈ o means: The object level formula φ is a well-formed

(according to the syntactic rules of the object logic) proposition if and

only if its encoding in the metalogic, written pφq, has type o.

Back to main referring slide
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Which Fragment?
We consider here the fragment of propositional logic containing the

logical symbols ¬,∧,→, and we call it Prop. We chose this small

fragment because it is sufficient for our purposes, namely to demonstrate

how encoding syntax in λ→ works. It would be trivial to adapt

everything in the sequel to include ∨ or ⊥.

Back to main referring slide
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Metalevel Constants
Now the object/meta distinction starts becoming mind-boggling!

We declare

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉,

and so on the level of our metalogic λ→, not, and, and imp are

constants. However, these constants represent the logical symbols of the

object logic.

Note the types of the constants:

not has type o→ o, so it takes a proposition and returns a proposition.

and and imp have type o→ o→ o, so each takes two propositions and

returns a proposition.

Back to main referring slide
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Metalevel Variables
We identify metalevel variables and object level propositional variables.

Hence Γ should contain expressions of the form a : o, where a is a λ→

variable, representing a propositional variable. Note that under this

agreement, Γ should not contain expressions like, e.g., a : o→ o.

Back to main referring slide
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Intuition for a : o ` imp (not a) a : o
a : o ` imp (not a) a : o is a judgement in λ→, which may or may not be

provable.

If we set up everything correctly and if a : o ` imp (not a) a : o is

provable, then the judgement represents the fact ¬a→ a is a proposition.

In this sense, we could then say that derivability in λ→ captures the

syntax of Prop, i.e., it can distinguish a legal proposition from a

“non-proposition”.

Note that this has nothing to do with the question of whether it is a true

proposition! So far, we are only talking about the representation of

syntax.
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Intuition for a : o ` not (imp a) a : o
a : o ` not (imp a) a : o is a judgement in λ→ which may or may not be

provable.

If we set up everything correctly and if a : o ` not (imp a) a : o is

provable, then the judgement represents the fact that (→ a)¬a is a

proposition.

However, you may observe that (→ a)¬a is gibberish. In fact, there is no

formal sense whatsoever in saying that not (imp a) a corresponds to

(→ a)¬a.
We will see that a : o ` not (imp a) a : o isn’t provable, and this reflects

the fact that there is no proposition represented by not (imp a) a.
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Non-existence of Proofs
Generally, it is difficult to prove that a proof of a given judgement within

a given proof system does not exist, since there are infinitely many

possible proofs and it is not obvious to predict how big an existing proof

might be.

However, under certain conditions, there are techniques for simplifying

proofs. In fact, there may be normal form proofs, i.e., proofs simplified as

much as possible. One can then argue: if a proof of a certain judgement

exists, it must be no bigger than a certain size. By searching through all

proofs smaller than this size, one can prove that no proof exists.

In this lecture, we do not go into the details of this topic [GLT89, Pra65].
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Bijection
In general mathematical terminology, a bijection between A and B is a

mapping f : A→ B such that for all a, a′ ∈ A, where a 6= a′, we have

f(a) 6= f(a′), and for each b ∈ B, there exists an a ∈ A such that

f(a) = b.

For a bijection f , the inverse f−1 is always defined, and we have

f(f−1(b)) = b for all b ∈ B and f−1(f(a)) = a for all a ∈ A.

Back to main referring slide
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Proof of Adequacy
If P ∈ Prop, and if for each propositional variable x in P , we have

x : o ∈ Γ, then Γ ` pPq : o.
Proof: By structural induction on Prop.

Base case: P is a propositional variable.

Then pPq = P , and so if P : o ∈ Γ, then we have Γ ` pPq : o by rule

hyp.

Induction step: Suppose the claim holds for P ∈ Prop and Q ∈ Prop.

Consider the propositional formula ¬P . We have p¬Pq = not pPq.
Assume that for each propositional variable x in P , we have x : o ∈ Γ.

By the induction hypothesis, Γ ` pPq : o. Moreover Γ ` not : o→ o by

rule assum, and so Γ ` not pPq : o by rule app.

Now consider the propositional formula P ∧Q. We have

pP ∧Qq = and pPq pQq. Assume that for each propositional variable x

Smaus: CSMR; WS08/09



More Detailed Explanations 488

in P or Q, we have x : o ∈ Γ. By the induction hypothesis, Γ ` pPq : o
and Γ ` pQq : o. Moreover Γ ` and : o→ o→ o by rule assum, and so

Γ ` and pPq pQq : o by two applications of rule app.

The case P → Q is completely analogous.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 489

Why ppP qq−1 = P?
By the definition of Prop and the definition of p·q, it is clear that pPq is

defined for all P ∈ Prop. It is very easy to show by induction on Prop
that ppPqq−1 = P .

Here is an example of a proof by induction on Prop.

Obviously, everything we say here depends on the particular fragment of

propositional logic, but in an inessential way. It would be trivial to adapt

to other fragments.
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Canonical βη-Long Normal Form

A canonical βη-long normal form of a λ-term is obtained by applying

first β-reduction as long as possible, and then computing the maximal

η-expansion.

You may wonder: Why is there such a thing as a maximal η-expansion?

Can’t I expand a λ-term to λx1 . . . xn.M x1 . . . xn for arbitrary n? In the

untyped λ-calculus, this is indeed the case. But in the typed λ-calculus,

the answer is no! Consider this example:

not can be expanded to λx. not x since not is of function type: it has

type o→ o. Therefore, not x can be assigned a type, which is an

intermediate step in typing λx. not x:
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Γ, x : o ` not : o→ o Γ, x : o ` x : o
Γ, x : o ` not x : o

app

Γ ` λx. not x : o→ o
abs

But we cannot, say, expand not to λxy. not x y since it is impossible to

assign a type to not x y.

Effectively, when a term of type τ1→ τn→ τ is η-expanded, it will have

the form λx1x2 . . . xn.e.

Normal forms are unique.
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Variables in Γ
Saying that a propositional formula has variables in Γ is an abuse of

terminology, i.e., it isn’t exactly true, but it is trusted that the reader can

guess the exact formulation.

What we mean is: a propositional formula such that for each

propositional variable x occurring in the formula, we have x : o ∈ Γ.
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Simplifying Proofs
What this picture says is that if the left hand side is a fragment from a

proof tree, deriving the judgement ` (λxσ. e)e′ : τ , then there exists a

proof of the judgement ` e[x← e′] : τ .
Be aware however that our argument here is very sketchy. We do not go

into the details in this course.
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t : o
Simply writing t : o is again a bit sloppy. We should write: Γ ` t : o for

some Γ containing only expressions of the form x : o, where x is a

propositional variable in Prop.
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Two Times First-Order!
In the previous section, we have seen how we can use first-order syntax

(of λ→) to represent the syntax of an object logic, then Prop. We

haven’t really understood yet why we speak of first-order syntax, but

note that the notion “first-order” refers to λ→, i.e., the metalevel.

We will now consider first-order logic as object language. So we will now

attempt to represent the syntax of first-order logic (the object language)

using first-order λ→ syntax (the metalanguage). To avoid confusion, it is

best to imagine that it is a mere coincidence that both the object and

the metalanguage are described as “first-order”. Of course there are

reasons why both languages are called like that, but it is best to

understand this separately for both levels. We will come back to this.
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Specifying a First-Order Language
With this grammar, we specify a certain language of a fragment (since

quantifiers, ∨, and ⊥ are missing) of first-order logic.

Alternatively, we could say that F = {0, s,+,×} and P = {=}.
However, the way we defined first-order logic, the language thus obtained

would also include quantifiers, ∨, and ⊥. For the moment we want to

restrict ourselves to the fragment given by the grammar for FOA.
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s
s is a unary prefix function, so s applied to T is written s T .

Back to main referring slide
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Some Intuition for FOA
We have defined

ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i, times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉
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Some Intuition for FOA
We have defined

ΣF = 〈zero : i, succ : i→ i, plus : i→ i→ i, times : i→ i→ i〉
ΣP = 〈eq : i→ i→ o〉

zero : i means: viewed on the object level, 0 is a term.

plus : i→ i→ i means: viewed on the object level, plus is a function

that takes two terms and returns a term. eq : i→ i→ o means: viewed

on the object level, = is a predicate that takes two terms and returns a

proposition.

On the metalevel (level of λ→), zero, plus and eq are constants. Note

that we could also formalize them as variables.

Recall that we encoded the non-logical symbols of an object logic as

constants. It would however be possible to set up the encoding in such a
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way that the non-logical symbols are encoded as variables, so we would

have a context ΓF ∪ ΓP and instead of our ΣF ∪ΣP. This is in line with

Perlis’ epigram. We will sometimes take this approach in the exercises as

the encoding of λ→ in Isabelle makes it more straightforward to play

around with different Γ’s than with different Σ’s.
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Definition of p.q
We extend the definition of p·q as follows:

pxq = x

p0q = zero

ps tq = succ ptq

pr + tq = plus prq ptq

pr × tq = times prq ptq

Note that here, on the object level, x is a first-order variable (a variable

is a term), and hence on the metalevel, it has type i.
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Subtypes?
In first-order logic, variables are not a syntactic category of their own,

but rather they are a “sub-category” of terms. Therefore one should

expect that var should be a “subtype” of i, that is to say, every term of

type var is automatically also of type i. However, there is no such

notion in λ→.
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(and (p x)(all x (q x)))[x← a]
There is a notion of substitution in λ→, hence on the metalevel. But all

is just a constant like any other on the level of λ→, and hence

(and (p x)(all x (q x)))[x← a] = (and (p a)(all a (q a))), and not

(and (p a)(all x (q x))) as one should expect.

That is to say, the standard operation of substitution, which exists on

the metalevel, is of no use for implementing substitution on the object

level. Instead, substitution on the object level must be “programmed

explicitly”.

Note that the following question arises: on the λ→ level, should the

terms of type var be variables or constants?

One could imagine that they are variables. This means that the signature

Σ would not contain any constants of type var or . . .→ var. The only

terms of type var would be variables. In this case, a λ→ term like
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(and (p x)(all x (q x))) could only be typed in a context Γ containing

x : var.
Alternatively, one could imagine that they are constants. The signature

signature Σ would contain expressions of the form x : var, where x

would be a λ→ constant. One thing that isn’t nice about this approach

is that Σ cannot be an infinite sequence, and so we would have to fix a

finite set of variables that can be represented in λ→.

In either case, the operation of substitution on the metalevel is of no use

for implementing substitution on the object level.
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all(λxi. eq x x : i→ o)
Some intuition: a proposition is represented by a term of type o. Now a

term of type i→ o represents a proposition where some positions are

marked in a special way. For example, in λxi. eq x x, the positions where

x occurs are marked in a special way, by virtue of the fact that the λ in

front of the expression binds the x. This “marking” allows us to “insert”

other terms in place of x. We will see this soon.

all is a constant which can be applied to a term of type i→ o.
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Faithfulness and Adequacy
Terms and formulae are represented by (canonical) members of i and o.

The principle is similar as for Prop.
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Intuition for Order
A term of first-order type is a function taking (an arbitrary number of)

arguments all of which must be of base type.

A term of second-order type is a function taking (an arbitrary number of)

arguments some of which may be functions (of first order type).

A term of third-order type is a function taking (an arbitrary number of)

arguments some of which may be functions, which again take functions

(of first order type) as arguments.

. . .

Obviously, it would be wrong to think of the order as “number of arrows

in a type”. Instead, one can think of order as the “nesting depth of

arrows in a type”.

Sometimes, the notion “second-order” is used in the context of type

theories for quite a different concept, but we will avoid that other use
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here.
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Propositional vs. First-Order Variables
Although propositional variables and first-order variables are quite

different concepts, the representation in λ→ uses λ→-variables for both.

Technically however, there is a difference between the representations of

propositional variables and first-order variables. In particular,

propositional variables are represented as λ→-variables of type o, and

first-order variables are represented as λ→-variables of type i.

Back to main referring slide
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Three Sections on Deduction Techniques

After encoding syntax, the next topic in the theory is

encoding proofs.

But before, we look at some more practical issues:

• Resolution

• Proof search

• Term rewriting

We will explain many techniques relevant for Isabelle, but

not in extreme detail and rigor. We want to understand

better how Isabelle works, but not provide a formal proof

that she works correctly, or be able to rebuild her.
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Resolution
Resolution is the basic mechanism for transforming proof

states in Isabelle in order to construct a proof.

It involves unifying a certain part of the current goal (state)

with a certain part of a rule, and replacing that part of the

current goal.

We have already explained this in the labs and you have

been working with it all the time, but now we want to

understand it more thoroughly (in the next lecture, we will

look at it more abstractly).

We look at several variants of resolution.
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Resolution (rtac, as in Prolog)

ψ

φ1 . . . φi . . . φn

φ1, . . . , φn are current sub-

goals and ψ is original goal.

Isabelle displays

Level . . . (n subgoals)
ψ

1. φ1
...

n. φn
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Resolution (rtac, as in Prolog)

ψ

φ1 . . . φi . . . φn

β

α1 . . .αm

φ1, . . . , φn are current sub-

goals and ψ is original goal.

Isabelle displays

Level . . . (n subgoals)
ψ

1. φ1
...

n. φn

Jα1; . . . ;αmK =⇒ β is rule.

Smaus: CSMR; WS08/09



Resolution 512

Resolution (rtac, as in Prolog)

ψ

φ1 . . . φi . . . φn

β

α1 . . .αm

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

�

1

....................
.......... .............
................ ................... ..................... ........................ ........................... .............................. ................................. ................................... ...................................... ......................................... ............................................ ............................................... .................................................. ....................................................

Simple scenario where φi
has no premises. Now β

must be unifiable with se-

lected subgoal φi.
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Resolution (rtac, as in Prolog)

ψ′

φ′1 . . . φ′i . . . φ′n

β′

α′1 . . .α
′
m

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

�

1

....................
.......... .............
................ ................... ..................... ........................ ........................... .............................. ................................. ................................... ...................................... ......................................... ............................................ ............................................... .................................................. ....................................................

Simple scenario where φi
has no premises. Now β

must be unifiable with se-

lected subgoal φi.

We apply the unifier (′)
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Resolution (rtac, as in Prolog)

ψ′

φ′1 . . . α
′
1
. . .α′m . . . φ

′
n

Simple scenario where φi
has no premises. Now β

must be unifiable with se-

lected subgoal φi.

We apply the unifier (′)

We replace φ′i by the premises

of the rule.
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Resolution (with Lifting over Parameters)

ψ

φ1 . . .
∧
x.φi . . . φn

Now suppose the i’th (selected) subgoal is preceded by
∧

(metalevel universal quantifier).
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Resolution (with Lifting over Parameters)

ψ

φ1 . . .
∧
x.φi . . . φn

β

α1 . . . αm

Rule
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Resolution (with Lifting over Parameters)

ψ

φ1 . . .
∧
x.φi . . . φn

∧
x.β[x]

∧
x.α1[x] . . .

∧
x.αm[x]

Rule is lifted over x: Apply [?X ←?X(x)].
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Resolution (with Lifting over Parameters)

ψ

φ1 . . .
∧
x.φi . . . φn

∧
x.β[x]

∧
x.α1[x] . . .

∧
x.αm[x]

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

9

*



Rule is lifted over x: Apply [?X ←?X(x)].
As before, β must be unifiable with φi;

Smaus: CSMR; WS08/09



Resolution 513

Resolution (with Lifting over Parameters)

ψ′

φ′1 . . .
∧
x.φ′i . . . φ′n

∧
x.β′[x]

∧
x.α′1[x] . . .

∧
x.α′m[x]

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

9

*



Rule is lifted over x: Apply [?X ←?X(x)].
As before, β must be unifiable with φi; apply the unifier.
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Resolution (with Lifting over Parameters)

ψ′

φ′1 . . .
∧
x.α′1[x]. . .

∧
x.α′m[x]. . . φ′n

Rule is lifted over x: Apply [?X ←?X(x)].
As before, β must be unifiable with φi; apply the unifier.

We replace φ′i by the premises of the rule. α′1, . . . , α
′
m are

preceded by
∧
x.
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Resolution (with Lifting over Assumptions)

ψ

φ1 . . . φi . . . φn

...

[φi1. . .φiki
]

Now, suppose the i’th (selected) subgoal has assumptions

φi1, . . . , φiki
.
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Resolution (with Lifting over Assumptions)

ψ

φ1 . . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

β

As before, we have a rule. Here, β is (hopefully) unifiable

with φi, but β is not unifiable with the entire i’th subgoal.
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Resolution (with Lifting over Assumptions)

ψ

φ1 . . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
. . . ...

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

Rule must be lifted over assumptions. No unification so far!
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Resolution (with Lifting over Assumptions)

ψ

φ1 . . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
. . . ...

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

.
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........................
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.........................

........................................................................................................................................................................................................................................................................................................................................
.........................
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9

z



Now, subgoal and rule conclusion (below the bar) are unifiable.
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Resolution (with Lifting over Assumptions)

ψ

φ1 . . . φi . . . φn

...

[φi1. . .φiki
]

α1 . . . αm

...

[φi1 . . .φiki
]
. . . ...

[φi1 . . .φiki
]

β

...

[φi1 . . .φiki
]

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

)

R

. ..............................................................
.............................................................

............................................................
..........................................................

......................................................... ........................................................ ....................................................... ..................................................... ..................................................... ...................................................... ...................................................... ....................................................... ........................................................ ........................................................ ......................................................... ..........................................................
.....................................................

.....
................................................

...........

Now, subgoal and rule conclusion (below the bar) are unifiable.

Non-trivially, β must be unifiable with φi.
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Resolution (with Lifting over Assumptions)

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1. . .φ
′
iki

]
α′1 . . . α′m

...

[φ′i1 . . .φ
′
iki

]
. . . ...

[φ′i1 . . .φ
′
iki

]

β′
...

[φ′i1 . . .φ
′
iki

]
.
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..........................
..........................
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........................
........................
.........................
..........................
..........................
.........................
.........................

We apply the unifier.
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Resolution (with Lifting over Assumptions)

ψ′

φ′1 . . .φ
′
i−1 α

′
1

. . . α′m φ′i+1 . . . φ
′
n

...

[φ′i1 . . .φ
′
iki

]
. . . ...

[φ′i1 . . .φ
′
iki

]

We replace the subgoal.
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Rule Premises Containing =⇒

ψ′

φ′1 . . . α′j . . . φ′n

...

[φ′i1 . . . φ
′
iki

]

What if some α′j has the form Jγ1; . . . ; γlK =⇒ δ?
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Rule Premises Containing =⇒

ψ′

φ′1 . . . Jγ1; . . . ; γlK =⇒ δ . . . φ′n

...

[φ′i1 . . . φ
′
iki

]

What if some α′j has the form Jγ1; . . . ; γlK =⇒ δ?

Is this what we get?
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Rule Premises Containing =⇒

ψ′

φ′1 . . . δ′ . . . φ′n

...

[φ′i1 . . . φ
′
iki

; γ′1 . . . γ
′
l]

What if some α′j has the form Jγ1; . . . ; γlK =⇒ δ?

Is this what we get?

Well, we write ... for =⇒, and use

A =⇒ B =⇒ C ≡ JA;BK =⇒ C.
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Elimination-Resolution

ψ

φ1 . . . φi . . . φn

...

[φi1 . . . φil . . .φiki
]

β

α1 . . .αm

Same scenario as before
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Elimination-Resolution

ψ

φ1 . . . φi . . . φn

...

[φi1 . . . φil . . .φiki
]

β

α1 . . .αm

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............
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..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

)

:
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.......................................................................................
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.............................................................................................

................................................................................................
...................................................................................................

.....................................................................................................
........................................................................................................

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

)

:



Same scenario as before, but now β must be unifiable with

φi, and α1 must be unifiable with φil, for some l.
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Elimination-Resolution

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i,1 . . . φ′il . . .φ′iki
]

β′

α′1 . . .α
′
m

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

)

:

. .........................................................................
............................................................................

...............................................................................
..................................................................................

.....................................................................................
.......................................................................................

..........................................................................................
.............................................................................................

................................................................................................
...................................................................................................

.....................................................................................................
........................................................................................................
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..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

.............
..........................

.................................................................................................................................................................................................................... ............ ............. ............. ............ ............ ............. ............. ............ ............
..........................
............

)

:



Same scenario as before, but now β must be unifiable with

φi, and α1 must be unifiable with φil, for some l.

Apply the unifier.
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Elimination-Resolution

ψ′

φ′1 . . . φ
′
i−1 α

′
2

. . . α′m φ′i+1 . . . φ
′
n

... ...

[φ′i1 . . . φ
′
i,l−1, φ

′
i,l+1 . . .φ

′
iki

] [φ′i1 . . . φ
′
i,l−1, φ

′
i,l+1 . . .φ

′
iki

]

Same scenario as before, but now β must be unifiable with

φi, and α1 must be unifiable with φil, for some l.

Apply the unifier.

We replace φ′i by the premises of the rule except the first.

α′2, . . . , α
′
m inherit the assumptions of φ′i, except φ′il.
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Destruct-Resolution

ψ

φ1 . . . φi . . . φn

...

[φi1 . . . φil . . . φiki
]

β

α

Simple rule
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Destruct-Resolution

ψ

φ1 . . . φi . . . φn

...

[φi1 . . . φil . . . φiki
]

β

α

..............
.............
..........................

................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. .............
.............
.............
.............

..............
.............
..........................

................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. .............
.............
.............
.............

+

:

. ................................ ................................... ...................................... ........................................ ........................................... .............................................. ................................................. .................................................... ....................................................... ..........................................................

Simple rule, and α must be unifiable with φil, for some l.
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Destruct-Resolution

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1 . . . φ
′
il
. . . φ′iki

]
β′

α′

..............
.............
..........................

................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. .............
.............
.............
.............

..............
.............
..........................

................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. .............
.............
.............
.............

+

:

. ................................ ................................... ...................................... ........................................ ........................................... .............................................. ................................................. .................................................... ....................................................... ..........................................................

Simple rule, and α must be unifiable with φil, for some l.

We apply the unifier.
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Destruct-Resolution

ψ′

φ′1 . . . φ′i . . . φ′n

...

[φ′i1 . . . β′ . . . φ
′
iki

]

Simple rule, and α must be unifiable with φil, for some l.

We apply the unifier.

We replace premise φ′il with the conclusion of the rule.
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Summary on Resolution

• Build proof resembling sequent style notation;

• technically: replace goals with rule premises, or goal

premises with rule conclusions;

• metavariables and unification to obtain appropriate

instance of rule, delay commitments;

• lifting over parameters and assumptions;

• various techniques to manipulate premises or conclusions,

as convenient: rtac, etac, dtac.

¸
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More Detailed Explanations
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Prolog
Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a current goal

(corresponding to our φ1, . . . , φn) with a Horn clause (corresponding to

our Jα1; . . . ;αmK =⇒ β).

Back to main referring slide
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Simple φi
φi is the selected subgoal. In Isabelle, the number i of the selected

subgoal is always one of the arguments of a tactic. One writes:

by (tactic rule i);

We assume here that φi is a formula, i.e., it contains no =⇒ (metalevel

implication). The form of the other subgoals φ1, . . . , φi−1, φi+1, . . . , φn

is arbitrary.

Back to main referring slide
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Prime (′)
In all illustrations that follow, we use ′ to suggest the application of the

appropriate unifier.

Back to main referring slide
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Metalevel Universal Quantification∧
is the metalevel universal quantification (also written !!). If a goal is

preceded by
∧
x, this means that Isabelle must be able to prove the

subgoal in a way which is independent from x, i.e., without instantiating

x.

Back to main referring slide
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Lifting over Parameters
The metavariables of the rule are made dependent on x. That is to say,

each metavariable ?X is replaced by a ?X(x). You may also say that ?X
is now a Skolem function of x.

This process is called lifting the rule over the parameter x.

We denote by ρ[x] the result of lifting ρ over x.

Back to main referring slide
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Non-unifiability
The selected subgoal is Jφi1, . . . , φiki

K =⇒ φi where φi1, . . . , φiki
, φi are

object-level formulae. So the selected subgoal is not an object-level

formula, but it has =⇒ as “top-level constructor” and is hence a formula

in the metalogic.

Moreover, β is a formula. It is clear that an object-level formula cannot

be unifiable with a formula in the metalogic having =⇒ as“top-level

constructor’.

Back to main referring slide
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Lifting over Assumptions

Each premise of the rule, as well as the conclusion of the rule, are

preceded by the assumptions Jφi1, . . . , φiki
K of the current subgoals.

Actually, the rule

α1 . . . αm

...

[φi1 . . . φiki
]
. . . ...

[φi1 . . . φiki
]

β

...

[φi1 . . . φiki
]

may look different from any rules you have seen so far, but it can be

formally derived from the rule:
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α1 . . . αm

β

The derived rule should be read as: If for all j ∈ {1, . . . ,m}, we can

derive αj from φi1, . . . , φiki
, then we can derive β from φi1, . . . , φiki

.

Back to main referring slide
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Unifiability
Still assuming that φi and β are unifiable.

Back to main referring slide
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A Trivial Unification
Both the subgoal and the conclusion of the lifted rule are preceded by

assumptions φi1, . . . , φiki
. Hence the assumption list of the subgoal and

the assumption list of the rule are trivially unifiable since they are

identical.

Back to main referring slide
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Folding Assumptions
Generally, Isabelle makes no distinction between

Jψ1; . . . ;ψnK =⇒ Jµ1; . . . ;µkK =⇒ φ

and

Jψ1; . . . ;ψn;µ1; . . . ;µkK =⇒ φ

and displays the second form. Semantically, this corresponds to the

equivalence of A1 ∧ . . . ∧An→ B and A1→ . . .→ An→ B.

We have seen this in the exercises.

Back to main referring slide
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Same as Resolution
So the scenario looks as for resolution with lifting over assumptions.

However, this time we do not show the lifting over assumptions in our

animation.

Back to main referring slide
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The Rationale of Elimination-Resolution
Elimination-resolution is used to eliminate a connective in the premises.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is

P ∧Q

[P ;Q]
....
R

R
∧-E
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then the result of elimination resolution is

[A;B]
....
B

A ∧B → B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any information

away”. Before we had the assumption A ∧B. This was replaced by the

components A and B as separate assumptions.

Back to main referring slide
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The Rationale of Destruct-Resolution
Destruct-resolution is used to eliminate a connective in the premises.

The difference compared to elimination-resolution can be seen in the

following example. Unlike elimination-resolution, destruct-resolution

“throws information away”.

For example, if the current goal is

[A ∧B]
....
B

A ∧B → B

and the rule is
P ∧Q
Q

conjunct2
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then the result of destruct-resolution is

[B]
....
B

A ∧B → B

If we had instead used rule

P ∧Q
P

conjunct2

the result would have been

[A]
....
B

A ∧B → B
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and we would be stuck. We accidentally “threw away” the assumption

B.

Back to main referring slide
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Automation by Proof Search 538

Outline of this Part
• Proof search and backtracking

• Classifying rules

• Proof procedures
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Proof Search and Backtracking

• Need for more automation

• Some aspects in proof construction are highly

non-deterministic:
◦ unification: which unifier to choose?

◦ resolution: where to apply a rule (which ’subgoal’)?

◦ which rule to apply?

• How to organize proof-search technically?
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Organizing Proof Search Conceptually
Organize proof search as a tree of theorems (thm’s).

s1
��

������

HH
HHHHHj

s2 s3 . . .
�

�
��	

@
@

@@R ?

s4 s5 s6

? ?

s7 s8
...

? ?

&%
'$√
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Organizing Proof Search Conceptually
Organize proof search as a tree of theorems (thm’s).

s1
��

������

HH
HHHHHj

s2 s3 . . .
�

�
��	

@
@

@@R ?

s4 s5 s6

? ?

s7 s8
...

? ?

&%
'$√

s1
��

������

s2
�

�
��	

s4

?

s7
?

• Tactic applications move us along

leftmost path.
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Organizing Proof Search Conceptually
Organize proof search as a tree of theorems (thm’s).

s1
��

������

HH
HHHHHj

s2 s3 . . .
�

�
��	

@
@

@@R ?

s4 s5 s6

? ?

s7 s8
...

? ?

&%
'$√

s1
��

������

s2
�

�
��	

s4

• Tactic applications move us along

leftmost path.

• Using undo(); moves us upwards

(previous proof state).
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Organizing Proof Search Conceptually
Organize proof search as a tree of theorems (thm’s).

s1
��

������

HH
HHHHHj

s2 s3 . . .
�

�
��	

@
@

@@R ?

s4 s5 s6

? ?

s7 s8
...

? ?

&%
'$√

s1
��

������

s2
@

@
@@R

s5

• Tactic applications move us along

leftmost path.

• Using undo(); moves us upwards

(previous proof state).

• Using back(); moves us (up and)

right (alternative successors due

to different unifiers).

Smaus: CSMR; WS08/09



Proof Search and Backtracking 540

Organizing Proof Search Conceptually
Organize proof search as a tree of theorems (thm’s).

s1
��

������

HH
HHHHHj

s2 s3 . . .
�

�
��	

@
@

@@R ?

s4 s5 s6

? ?

s7 s8
...

? ?

&%
'$√

s1
��

������

s2
@

@
@@R

s5

?

s8
?

&%
'$√

• Tactic applications move us along

leftmost path.

• Using undo(); moves us upwards

(previous proof state).

• Using back(); moves us (up and)

right (alternative successors due

to different unifiers).
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Organizing Proof Search Conceptually
Organize proof search as a tree of theorems (thm’s).

s1
��

������

HH
HHHHHj

s2 s3 . . .
�

�
��	

@
@

@@R ?

s4 s5 s6

? ?

s7 s8
...

? ?

&%
'$√

• Tactic applications move us along

leftmost path.

• Using undo(); moves us upwards

(previous proof state).

• Using back(); moves us (up and)

right (alternative successors due

to different unifiers).

• This can be understood as tableau

proving [Pau97a].
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Problems
The search space of proof search can be thought of as such

a tree, but it cannot be implemented like this straightaway:

• Branching of the tree infinite in general (HO-unification).

• Explicit tree representation expensive in time and space.

As an aside, it is also possible to understand proof search

more abstractly. But we are interested in the operational

aspects.
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Organizing Proof Search Operationally
Organize proof search as a function on theorems (thm’s)

type tactic = thm→ thm seq

where seq is the type constructor for infinite lists.

This allows us to have tacticals:

• THEN
• ORELSE
• REPEAT
• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .
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Classifying Rules

How to organize Proof Rules?

Observation: Some rules can always be applied blindly in

backward reasoning, e.g. →-I or ∧-I. Others are problematic,

e.g. ∧-EL or ∧-ER (you do not know which to apply to get

rid of a ∧ in the premises).
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Classifying Rules

How to organize Proof Rules?

Observation: Some rules can always be applied blindly in

backward reasoning, e.g. →-I or ∧-I. Others are problematic,

e.g. ∧-EL or ∧-ER (you do not know which to apply to get

rid of a ∧ in the premises).

But proof rules can be tailored to be applied blindly.

In the following we will explain this using sequent style

notation.
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Review: Sequent Notation

Γ ` A (where A ∈ Γ)
Γ ` B
A,Γ ` B weaken

Γ ` A Γ ` B
Γ ` A ∧B ∧-I

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` A ∧B
Γ ` B ∧-ER

A,Γ ` B
Γ ` A→ B

→-I
Γ ` A→ B Γ ` A

Γ ` B →-E

Γ ` A
Γ ` A ∨B ∨-IL

Γ ` B
Γ ` A ∨B ∨-IR

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C ∨-E
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Example: ∧-E′

In the sequent calculus, one writes ∧-E as:

A,B,Γ ` C
A ∧B,Γ ` C ∧-E′

This mimics the effect of using ∧-E (conjE of Isabelle) in

combination with etac. The rule ∧-E′ can be formally

derived.
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A Proof by Blind Rule Application

` (ρ ∧ φ)→ ψ → φ

The topmost connective is →, which asks for →-I.
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A Proof by Blind Rule Application

ρ ∧ φ ` ψ → φ

` (ρ ∧ φ)→ ψ → φ
→-I

The topmost connective is →, which asks for →-I.

Again →-I.
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A Proof by Blind Rule Application

ρ ∧ φ, ψ ` φ
ρ ∧ φ ` ψ → φ

→-I

` (ρ ∧ φ)→ ψ → φ
→-I

The topmost connective is →, which asks for →-I.

Again →-I.

To decompose the assumption ρ ∧ φ, use ∧-E′.
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A Proof by Blind Rule Application

ρ, φ, ψ ` φ
ρ ∧ φ, ψ ` φ∧-E′

ρ ∧ φ ` ψ → φ
→-I

` (ρ ∧ φ)→ ψ → φ
→-I

The topmost connective is →, which asks for →-I.

Again →-I.

To decompose the assumption ρ ∧ φ, use ∧-E′.

The proof can now be completed by the assumption rule.
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Safe and Unsafe Rules
Combined tactics rely on classification of rules, maintained

in Isabelle data structure claset, and accessed by functions

of type claset ∗ thm list→ claset.

Class: To add use function:

Safe introduction rules addSIs
Safe elimination rules addSEs
Unsafe introduction rules addIs
Unsafe elimination rules addEs
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Adapting Rules for Automated Proof Search
As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

` (α→ β) ∨ (β → α)
∨-swap

Neither ∨-IL nor ∨-IR would work here. Uses classical logic.
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Adapting Rules for Automated Proof Search
As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
∨-swap
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Adapting Rules for Automated Proof Search
As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

¬(α→ β), β ` α
→-swapE

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
∨-swap
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Adapting Rules for Automated Proof Search
As seen for ∧-E, rules must be suitably adapted in order to

be useful in automated proof search. Another example:

¬α, α, β ` β
¬(α→ β), β ` α

→-swapE

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
∨-swap

Principle: Emulate sequent calculus with derived rules.
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Handling Quantifiers
Can derive ∀-E′ (≡ allE) using ∀-E (≡ spec):

∀x.A(x)

[A(x) ]
....
B

B
∀-E′

What is the difference to ∃-E?
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Handling Quantifiers
Can derive ∀-E′ (≡ allE) using ∀-E (≡ spec):

∀x.A(x)

[A(x) ]
....
B

B
∀-E′

What is the difference to ∃-E?

Problem: ∀x.A(x) may still be needed.
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Handling Quantifiers
Can derive ∀-E′ (≡ allE) using ∀-E (≡ spec):

∀x.A(x)

[A(x),∀x.A(x)]
....
B

B
∀-dupE

What is the difference to ∃-E?

Problem: ∀x.A(x) may still be needed.

Principle: Introduce duplicating rules. Turns search infinite!

Check out allE and all dupE in IFOL lemmas.ML!
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Proof Procedures (Simplified)

Tactics in Isabelle are performed in order:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules)
2. canonize: propagate “x = t” throughout subgoal

3. rtac unsafe I rules ORELSE etac unsafe E rules
4. atac

Smaus: CSMR; WS08/09



Proof Procedures (Simplified) 551

Combined Proof Search Tactics
• step tac : claset→ int→ tactic

(just safe steps)

• fast tac : claset→ int→ tactic
(safe and unsafe steps in depth-first stategy)

• best tac : claset→ int→ tactic
(safe and unsafe steps in breadth-first stategy)

• slow tac : claset→ int→ tactic
(like fast tac, but with backtracking atac’s)

• blast tac : claset→ int→ tactic
(like fast tac, but often more powerful)

Smaus: CSMR; WS08/09



Summary on Automated Proof Search 552

Summary on Automated Proof Search

• Proof search can be organized as a tree of theorems.

• Calculi can be set up to facilitate proof search (although

this must be done by specialists).

• Combined with search strategies, powerful automatic

procedures arise. Can prove well-known hard problems

such as ((∃y.∀x.J(y, x) ∨ ¬J(x, x))→
¬(∀x.∃y.∀z.J(z, y) ∨ ¬J(z, x))
• Unfortunately, failure is difficult to interpret. ¸
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More Detailed Explanations
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Sequent Calculus/Tableau
Tableau proving is a derivation system [Fit96].

It turns out that the language of tableaux is equivalent to the sequent

calculus (recall our use of sequent style notation) [Pau97a]. The

techniques Isabelle uses for automating proofs can thereby be understood

as tableau proving [Pau97a].

Back to main referring slide
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Need for Automation
We have seen in the exercises that doing a proof step by step is very

tedious and often involves difficult guessing or alternatively,

backtracking. We cannot hope to prove anything about realistic systems

if proving simple theorems is so tedious.

Efficiency considerations are important for automation. The

non-determinacy in proof search obviously leads to inefficiencies as many

possibilities have to be explored.

Back to main referring slide
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Which Subgoal?
We have seen in the exercises (and also in the lecture) that one can

choose the subgoal to which one wants to apply a rule.

Back to main referring slide
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Technical Organiztion
We have seen in the previous lecture that resolution transforms a proof

state into a new proof state. But how does one organize all those

potential proof states in order to find proofs?

Back to main referring slide
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A Tree of Theorems
We have seen in the previous lecture that resolution transforms a proof

state into a new proof state. Since in general, a proof state has several

successor states (states that can be obtained by one resolution step),

conceptually one obtains a tree where the children of a state are the

successors.

Back to main referring slide
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Isabelle
For more details on Isabelle technicalities, you should consult the

reference manual [Pau05].

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 560

Alternative Successors
Note that when there are no more successors (you cannot go right)

anymore, back(); will go to the previous proof state, i.e., go up one level

(just like undo();), and then try alternative successors.

Back to main referring slide
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Isabelle Theorems
Technically, a proof state is an Isabelle theorem, (thm), i.e. something

which Isabelle regards as true.

Back to main referring slide
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Explicit Tree Representation Expensive
Obviously, an infinite tree cannot be represented explicitly. But even if

the tree is finite, it is generally expensive to represent it explicitly. In

particular, the tree may contain many failing branches and only few

successful ones, which begs the question if representing the unsuccessful

branches cannot be avoided somehow.

Back to main referring slide
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Explicit Tree Representation not Abstract
The explicit tree representation is not very abstract in that each node

has a defined order of the children (first successor, second successor,

. . . ). This order is an artefact of the order in which unifiers are

enumerated by the unification algorithm used. It is inessential for the

proofs that are contained in the tree.

As a more abstract understanding of proof search, one can organize

proof search as a relation on theorems (thm’s)

prooftrees = P(thm× thm)

More precisely, one can look at a fragment of a tree of theorems as

before.

One could say that each tactic application (with a particular rule) gives

rise to a relations on theorems. That is to say, s and s′ are in the
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relation if s′ is a successor proof state of s.

This is abstract in that there is no order among the successors of a proof

state.

Also, one does not represent a tree explicitly.

Advantage: we have an abstract algebra.

• PT1 ◦ PT2: sequential composition (“then”).

Given two relations between thm’s, PT1 and PT2, we define

composition PT1 ◦ PT2 as the relation

{(s, s′) | there is s′′ such that (s, s′′) ∈ PT1 and (s′′, s′) ∈ PT2}

• PT1 ∪ PT2: alternative of proof attempts (“or”)

The union of two relations is defined as usual for sets. If PT1 and PT2

each model the application of a particular tactic, then PT1 ∪ PT2
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models the application of “first tactic or second tactic”.

• PT ∗ : reflexive transitive closure (“repeat ”)

PT ∗ is inductively defined as the smallest set where

◦ (s, s) ∈ PT ∗ for all s;

◦ if (s, s′) ∈ PT and (s, s′′) ∈ PT ∗ then (s′′, s′) ∈ PT ∗.
So if PT models the application of a particular tactic, then PT ∗

models the application of that tactic arbitrarily many times.

• (φ⇒ φ, φ) ∈ PT ∗ ≡ “there is a proof for φ”

Note that the initial proof state is φ =⇒ φ.

Isabelle will display this as

Level 1 : (1 subgoal)
φ

1. φ
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It might contradict your intuition and experience with Isabelle to think

that the initial proof state is φ =⇒ φ. Shouldn’t it be just φ?

However, this seeming contradiction can be resolved.

The way Isabelle displays the proof state focuses on what has to be

proven, the subgoals. The proof state should be read as: if I have

proven φ (the φ occurring after the 1.), I am done.

Technically, the proof state is an Isabelle theorem (thm),
i.e. something which Isabelle regards as true. Now of course, she

cannot initially regard φ as true, as φ is what is to be proven. But she

can regard φ =⇒ φ as true. The aim of a proof search is to transform

φ =⇒ φ (φ can be shown if I assume φ) into φ (φ can be shown if I

assume nothing).

However, this also has some disadvantages:

• Union ∪ is difficult to implement (needs comparison with all previous
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results since one wants to avoid duplicates).

• More operational, strategic interpretations of union ∪ are desirable

(try this — then that, interleave attempts in PT1 with attempts in

PT2, and so forth).

Back to main referring slide
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A Function on Theorems
This way of understanding and origanizing proof search is not so

abstract, but rather operational. Instead of saying that φ and φ′ are in a

relation, one says that φ′ is in the sequence returned by the tactic

applied to φ. There is an order among the successors of a proof state.

One still does not represent a tree explicitly, although conceptually, proof

search is about exploring this tree.

Back to main referring slide
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Infinite Lists
For any type τ , the type τ seq (recall the notation) is the type of

(possibly) infinite lists of elements of type τ . This is of course an

abstract datatype. There should be functions to return the head and the

tail of such an infinite list.

An abstract datatype is a type whose terms cannot be represented

explicitly and accessed directly, but only via certain functions for that

type.

Back to main referring slide
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Tacticals
• THEN
• ORELSE
• REPEAT
• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .

are called tacticals.

Tacticals are operations on tactics. They play an important role in

automating proofs in Isabelle. The most basic tacticals are THEN and

ORELSE. Both of those tacticals are of type tactic ∗ tactic→ tactic
and are written infix: tac1 THEN tac2 applies tac1 and then tac2, while

tac1 ORELSE tac2 applies tac1 if possible and otherwise applies tac2

[Pau05, Ch. 4].

Back to main referring slide
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Mimicking Isabelle
That is to say, ∧-E′ behaves for the sequent notation as conjE+etac
behaves for Isabelle.

Back to main referring slide
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Deriving ∧-E′ from ∧-E
Let us first derive the rule ∧-E (conjE of Isabelle), here written in

sequent style notation:

Γ ` A ∧B A,B,Γ ` C
Γ ` C ∧-E

The derivation looks as follows:

A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

Γ ` A ∧B
Γ ` B ∧-ER

Γ ` A→ C
→-E

Γ ` A ∧B
Γ ` A ∧-EL

Γ ` C →-E
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Now based on ∧-E, the derivation of ∧-E′ is:

Γ ` A ∧B A,B, Γ ` C
Γ ` C ∧-E
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Now based on ∧-E, the derivation of ∧-E′ is:

A ∧B,Γ ` A ∧B A,B,A ∧B,Γ ` C
A ∧B,Γ ` C ∧-E

If we replace Γ with A ∧B,Γ (just instantiation),
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Now based on ∧-E, the derivation of ∧-E′ is:

A,B,A ∧B,Γ ` C
A ∧B,Γ ` C ∧-E

If we replace Γ with A ∧B,Γ (just instantiation), then one part holds by

the assumption rule,
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Now based on ∧-E, the derivation of ∧-E′ is:

A,B,Γ ` C
A,B,A ∧B,Γ ` C weaken

A ∧B,Γ ` C ∧-E

If we replace Γ with A ∧B,Γ (just instantiation), then one part holds by

the assumption rule, and we can apply weakening.
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Now based on ∧-E, the derivation of ∧-E′ is:

A,B,Γ ` C

A ∧B,Γ ` C ∧-E′
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Now based on ∧-E, the derivation of ∧-E′ is:
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Alternatively, we can derive ∧-E′ directly:

A,B,Γ ` C
B,Γ ` A→ C

→-I

Γ ` B → A→ C
→-I

A ∧B,Γ ` B → A→ C
weaken

A ∧B,Γ ` A ∧B
A ∧B,Γ ` B ∧-ER

A ∧B,Γ ` A→ C
→-E

A ∧B,Γ ` A ∧B
A ∧B,Γ ` A ∧-EL

A ∧B,Γ ` C →-E

Back to main referring slide
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∧-E
In Isabelle notation, it looks as follows:

JP&Q; JP ; QK =⇒ RK =⇒ R

(see IFOL lemmas.ML).

Back to main referring slide
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Blind Application of ∧-E′

See now that we first derived the rule ∧-E′, which is a rule that can be

used blindly to decompose a conjunction in the assumptions. This was

not something ad-hoc to prove this particular formula. The rule ∧-E′

should be used generally instead of ∧-EL or ∧-EL, because it has the

advantage that it can be applied blindly.

The essential point about being able to apply a rule blindly is that the

application does not throw any information away. This is indeed the case

for ∧-E′. We remove the assumption φ ∧ ψ, but we get the two

conjuncts φ and ψ as assumptions instead.

The rule ∧-E′ mimics the effect of using ∧-E in combination with etac,
which you can see by looking again at the exercises on etac.

Back to main referring slide
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claset
claset is an abstract datatype. Overloading notation, claset is also an

ML unit function which will return a term of that datatype when applied

to (), namely, the current classifier set.

A classifier set determines which rules are safe and unsafe introduction,

respectively elimination rules. The current classifier set is a classifier set

used by default in certain tactics.

The current classifier set can be accessed via special functions for that

purpose.

Back to main referring slide
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Accessing the claset
The functions addSIs, addSEs, addIs, addEs are all of type

claset ∗ thm list→ claset. They add rules to the current classifier

set. For example, addSIs adds a rule as safe introduction rule.

Back to main referring slide
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Emulating the Sequent Calculus
The sequent calculus works with expressions of the form

A1, . . . , An ` B1, . . . , Bm which should be interpreted as: under the

assumptions A1, . . . , An, at least one of B1, . . . , Bm can be proven. So

as a formula, this would be A1 ∧ . . . ∧An→ B1 ∨ . . . ∨Bm.

In Isabelle (and the proof trees we have seen, e.g,. in this lecture), we

only have sequents with one formula to the right of the `. We have said

that we use sequent notation.

The important point to note here is that in the sequent calculus, one can

shift a formula from left to right or vice versa, but one has to negate it,

or more precisely, turn A into ¬A and ¬A into A. This is called

swapping and is an important technique for combined tactics.

The sequent calculus inherently relies on classical reasoning [Pau05,

Ch. 11].
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Back to main referring slide
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Deriving allE
You should do it in Isabelle. The rule is:

JALL x. P (x); P (x) =⇒ RK =⇒ R

Back to main referring slide
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Name Confusion

As you may have noticed earlier, there is a confusion between the names

of proof rules as we present them for the theory and the names used in

Isabelle. For example, rule →-E is called mp in Isabelle. This confusion

concerns elimination rules.

There is however a good reason for these choices. In traditional

presentations of logic, one sets up the simplest possible elimination rules

for the connectives which naturally arise from the meaning of those

connectives. This is what we have done as well. However, as we see in

this lecture, these rules cannot be applied blindly and are thus not very

suitable for automation. Therefore, combined tactics in Isabelle use

derived rules such as ∧-E (called conjE in Isabelle).

Since this is of such central importance for Isabelle, one prefers to have

the obvious names conjE, allE etc. for the rules that are actually used
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in “advanced” applications of Isabelle.

Back to main referring slide
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∃-E
The rule

∃x.A(x)

[A(x)]
....
B

B
∃-E

was derived previously (but in Isabelle, it is a basic rule in IFOL.ML). It is

JALL x. P (x); !!x. P (x) =⇒ RK =⇒ R

Note that the rule allE (∀-E′) is

JALL x. P (x); P (x) =⇒ RK =⇒ R

The difference is that the former rule contains a metalevel universal

quantifier. In terms of paper-and-pencil proofs, ∃-E has the side
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condition that x must not occur free in any assumption on which B (see

tree!) depends. There is no such side condition for ∀-E′.

Back to main referring slide
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Difference between ∀-E′ and ∃-E
The difference between

∃x.A(x)

[A(x)]
....
B

B
∃-E

and

∀x.A(x)

[A(x)]
....
B

B
∀-E′

is that the first rule has a side condition: x must not occur free in any

assumption on which B depends. See also what this means in terms of

Isabelle.
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Back to main referring slide
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The Rule ∨-swap
The rule ∨-swap is

¬A,Γ ` B
Γ ` A ∨B

∨-swap

To derive it you need classical reasoning, as the rule exploits the

equivalence of A→ B and ¬A ∨B.

This is a derived rule which is explicitly contained in the Isabelle classifier

set as the clasical introduction rule for ∨. It is called disjCI (check out

FOL lemmas1.ML)!

Back to main referring slide
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The Rule →-swapE
The rule →-swapE is

A,¬C,Γ ` B
¬(A→ B),Γ ` C

→-swapE

To derive it you need classical reasoning, as the rule exploits the

equivalence of ¬(A→ B) and A ∧ ¬B.

This is a standard technique in Isabelle, based on swapping. For dealing

with negated formulas in the premises of the current subgoal,

introduction rules are combined with swap using etac.

Generally, we have a formula ¬(A ◦B) in the premises, where ◦ is some

binary connective. Swapping will put (A ◦B) in the conclusion and put

the old conclusion into the premises after negating it. Afterwards, an

introduction rule for ◦ will be used [Pau05, Section 11.2].
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Back to main referring slide
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Duplicating Rules
You should recall that elimination rules are used in combination with

etac. Using allE will eliminate the quantifier.

You should try a proof of the formula (∀x.P (x))→ (P (a) ∧ P (b)) in

Isabelle to convince yourself that this is a problem since the quantified

formula ∀x.P (x) is needed twice as an assumption, with two different

instantiations of x.

The duplicating rule ∀-dupE has the effect that the universally quantified

formula will still remain as an assumption.

Back to main referring slide
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Infinite Proof Search
Given only the rules so far (in combination with the appropriate tactics,

rtac and etac, and swapping), excluding ∀-dupE, the proof search

would be finite.

The rule ∀-dupE is responsible for making the proof search infinite. This

can be no surprise however, as first-order logic is undecidable [And02],

and so there can be no automatic procedure for proving all true

first-order formulas.

Back to main referring slide
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Isabelle Files
These files should be contained in your Isabelle distribution. Or, if you

only have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Proof Procedures

Tactics in Isabelle are performed in order:

1. REPEAT (rtac safe I rules ORELSE etac safe E rules);

2. canonize: propagate “x = t” . . . throughout subgoal;

3. rtac unsafe I rules ORELSE etac unsafe E rules;

4. atac.

One elementary proof step consists of trying a safe introduction rule with

rtac, or, if that is not possible, a safe elimination rule with etac. This

will be repeated as long as possible.

Then in the current subgoal, any assumption of the form x = t (where x

is a metavariable) will be propagated throughout the subgoal, i.e., all

occurrences of x wil be replaced by t.

Then Isabelle will try one application of an unsafe introduction rule with
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rtac, or, if that is not possible, an unsafe elimination rule with etac.

Finally, she will use atac. Note that atac is unsafe. In general, there are

several premises in a subgoal and atac may unify the conclusion of the

subgoal with the wrong premise.

Back to main referring slide
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Failure in Classical Reasoning
fast tac, blast tac just tell you that the tactic failed, but not why.

And it would be difficult to do that, since backtracking means that all

attempts failed. This can have several reasons: a rule is missing, a rule

has been classified wrongly, the search strategy was not adequate for the

problem, enumeration of unifiers in a bad order. Or a combination

thereof. Or it might be that too many unsafe steps are needed, since

fast tac limits their number.

Back to main referring slide
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Higher-Order Rewriting
Motivation:

• Simplification is a very important part of deduction, e.g.:

0 + (x+ 0) = x

[a, b, d] @ [a, b] = [a, b, d, a, b]

• Based on rewrite rules as in functional programming:

x+ 0 = x, 0 + x = x

[] @X = X, (x :: X) @ Y = x :: (X @ Y )
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What Kind of Terms?
In our context, a term is a λ-term, since we use the

λ-calculus to encode object logics.
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Term Rewriting: Foundation
• Recall: An equational theory consists of rules

x = x
refl

x = y

y = x
sym

x = y y = z

x = z
trans

x = y P (x)

P (y)
subst

• plus additional (possibly conditional) rules of the form

φ1 = ψ1, . . . , φn = ψn⇒ φ = ψ.

The additional rules can be interpreted as rewrite rules,

i.e. they are applied from left to right.
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:
(a) pick a subterm t in e(t)
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:
(a) pick a subterm t in e(t)

(b) for a rewrite rule φ = ψ, match (unify)

φ against t , i.e., find θ such that φθ = t
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:
(a) pick a subterm t in e(t)

(b) for a rewrite rule φ = ψ, match (unify)

φ against t , i.e., find θ such that φθ = t

(d) replace e(t) by e(ψθ)
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:
(a) pick a subterm t in e(t)

(b) for a rewrite rule φ = ψ, match (unify)

φ against t , i.e., find θ such that φθ = t

(d) replace e(t) by e(ψθ)

3. goto 1
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:
(a) pick a subterm t in e(t) (resp. e′(t))

(b) for a rewrite rule φ = ψ, match (unify)

φ against t , i.e., find θ such that φθ = t

(d) replace e(t) by e(ψθ) (resp. e′(t) by e′(ψθ))

3. goto 1
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:
(a) pick a subterm t in e(t) (resp. e′(t))

(b) for a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ, match (unify)

φ against t , i.e., find θ such that φθ = t

(c) solve (φ1 = ψ1, . . . , φn = ψn)θ

(d) replace e(t) by e(ψθ) (resp. e′(t) by e′(ψθ))

3. goto 1
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Incomplete Decision Procedure for Goal e = e′

To decide if e = e′ in an equational theory:

1. stop if the goal is solved, i.e., e ≡ e′ (syntactical equality)

2. make a rewrite step:
(a) pick a subterm t in e(t) (resp. e′(t))

(b) for a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ, match (unify)

φ against t , i.e., find θ such that φθ = t

(c) solve (φ1 = ψ1, . . . , φn = ψn)θ

(d) replace e(t) by e(ψθ) (resp. e′(t) by e′(ψθ))

3. goto 1

This procedure + the rules define a term rewriting system.
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Term Rewriting is Non-Trivial
• There are two major problems: this decision procedure

may fail because:
◦ it diverges (the rules are not terminating), e.g. x+ y = y + x or

x = y =⇒ x = y;
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Term Rewriting is Non-Trivial
• There are two major problems: this decision procedure

may fail because:
◦ it diverges (the rules are not terminating), e.g. x+ y = y + x or

x = y =⇒ x = y;

◦ rewriting does not yield a unique normal form (the rules are not

confluent), e.g. rules a = b, a = c.
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Term Rewriting is Non-Trivial
• There are two major problems: this decision procedure

may fail because:
◦ it diverges (the rules are not terminating), e.g. x+ y = y + x or

x = y =⇒ x = y;

◦ rewriting does not yield a unique normal form (the rules are not

confluent), e.g. rules a = b, a = c.

• Providing criteria for terminating and confluent rule sets is

an active research area (see [BN98, Klo93], RTA, . . . ).
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Extensions of Rewriting

• Symmetric rules are problematic, e.g. ACI:

(x+ y) + z = x+ (y + z) (A)

x+ y = y + x (C)

x+ x = x (I)
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Extensions of Rewriting

• Symmetric rules are problematic, e.g. ACI:

(x+ y) + z = x+ (y + z) (A)

x+ y = y + x (C)

x+ x = x (I)

• Idea: apply only if replaced term gets smaller w.r.t. some

term ordering. In example, if (y + x)θ is smaller than

(x+ y)θ.
• Ordered rewriting solves rewriting modulo ACI, using

derived rules (exercise).
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Extension: HO-Pattern Rewriting
Rules such as F (Gc) = . . . lead to highly ambiguous

matching and hence inefficiency.

Solution is to restrict to higher-order pattern rules:
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Extension: HO-Pattern Rewriting
Rules such as F (Gc) = . . . lead to highly ambiguous

matching and hence inefficiency.

Solution is to restrict to higher-order pattern rules:

A term t is a HO-pattern if

• it is in β-normal form; and

• any free F in t occurs in a subterm F x1 . . . xn where the

xi are η-equivalent to distinct bound variables.
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Extension: HO-Pattern Rewriting
Rules such as F (Gc) = . . . lead to highly ambiguous

matching and hence inefficiency.

Solution is to restrict to higher-order pattern rules:

A term t is a HO-pattern if

• it is in β-normal form; and

• any free F in t occurs in a subterm F x1 . . . xn where the

xi are η-equivalent to distinct bound variables.

Matching (unification) is decidable, unitary (’unique’) and

efficient algorithms exist.
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HO-Pattern Rewriting (Cont.)
A rule . . .⇒ φ = ψ is a HO-pattern rule if:

• φ is a HO-pattern;

• all free variables in ψ occur also in φ; and

• φ is constant-head, i.e. of the form λx1..xm.c p1 . . . pn
(where c is a constant, m ≥ 0, n ≥ 0).
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HO-Pattern Rewriting (Cont.)
A rule . . .⇒ φ = ψ is a HO-pattern rule if:

• φ is a HO-pattern;

• all free variables in ψ occur also in φ; and

• φ is constant-head, i.e. of the form λx1..xm.c p1 . . . pn
(where c is a constant, m ≥ 0, n ≥ 0).

Example: (∀x.Px ∧Qx) = (∀x.Px) ∧ (∀x.Qx)
Result: HO-pattern rules allow for very effective quantifier

reasoning.
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Extensions Related to if− then− else
The if-then-else construct will play an important role

later. It asks for special rewrite rules.
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Extension: Congruence Rewriting
Problem :

ifA thenP elseQ = ifA thenP ′ elseQ
where P = P ′ under condition A

is not a rule.

Solution in Isabelle: explicitely admit this extra class of rules

(congruence rewriting)

JA =⇒ P = P ′K =⇒
ifA thenP elseQ = ifA thenP ′ elseQ
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Extension: Splitting Rewriting
Problem:

P (ifA thenx else y) = ifA then (P x) else (P y)

is not a HO-pattern rule (since it is not constant-head).

Solution in Isabelle: explicitely admit this extra class of rules

(case splitting).
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Organizing Simplification Rules

• Standard (HO-pattern conditional ordered rewrite) rules;

• congruence rules;

• splitting rules.

Isabelle data structure: simpset. Some operations:

• addsimps : simpset ∗ thm list→ simpset

• delsimps : simpset ∗ thm list→ simpset

• addcongs : simpset ∗ thm list→ simpset

• addsplits : simpset ∗ thm list→ simpset

Commutativity can be added without losing termination.
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How to Apply the Simplifier?
Several versions of the simplifier:

• simp tac : simpset→ int→ tactic

• asm simp tac : simpset→ int→ tactic
(includes assumptions into simpset)

• asm full simp tac : simpset→ int→ tactic
(rewrites assumptions, and includes them into simpset)

Using global simplifier sets: Simp tac, Asm simp tac,
Asm full simp tac.
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Summary on Term Rewriting

Simplifier is a powerful proof tool for

• conditional equational formulas

• ACI-rewriting

• quantifier reasoning

• congruence rewriting

• automatic proofs by case splitting

Fortunately, failure is quite easy to interpret.
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Summary on Last Three Sections

• Although Isabelle is an interactive theorem prover, it is a

flexible environment with powerful automated proof

procedures.

• For classical logic and set theory, tableau-like procedures

like blast tac and fast tac decide many tautologies.

• For equational theories (datatypes, evaluating functional

programs, but also higher-order logic) simp tac decides

many tautologies (and is fairly easy to control). ¸
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More Detailed Explanations
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0 + (x+ 0) = x
Simplifying 0 + (x+ 0) to x is something you have learned in school. It

is justified by the usual semantics of arithmetic expressions. Here,

however, we want to see more formally how such simplification works,

rather than why it is justified.

Back to main referring slide
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Lists
Lists are a common datatype in functional programming. [a, b, d, a, b] is

a list. Actually, this notation is syntactic sugar for

a :: (b :: (d :: (a :: (b :: [])))). Here, [] is the empty list and :: is a term

constructor taking an alement and a list and returning a list. @ stands

for list concatenation.

Intuitively, it is clear that [a, b, d] concatenated with [a, b] yields

[a, b, d, a, b].
Term constructor is usual terminology in functional programming. In

first-order logic, we would speak of a function symbol. In the λ-calculus,

we would speak of a (special kind of) constant (this will become clear

later).

Back to main referring slide
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Functional Programming
For example, the lines

[] @X = X

(x :: X) @ Y = x :: (X @ Y )

define the list concatenation function @.

Back to main referring slide
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Rewrite Rules
An equational theory is a formalism based on equational rules of the

form φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ.

A term rewriting system (to be defined shortly) is another formalism,

based of rewrite rules. They also have the form

φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ, but they have a different flavor in

that = must be interpreted as a directed symbol. One could also write

; instead of = to emphasize this.

Back to main referring slide
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Matching
Given two terms s and t, a unifier is a substitution θ such that sθ = tθ.

A match is a substitution which only instantiates one of s or t, so sθ = t

or s = tθ (one should usually clarify in the given context which of the

terms is instantiated).

Back to main referring slide
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Solve (φ1 = ψ1, . . . , φn = ψn)θ
This means that the procedure is called recusively for the conditions of

the rewrite rule.

Back to main referring slide
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Term Rewriting System
The procedure defines a term rewriting system [BN98, Klo93].

Equational theories, term rewriting systems, propositional logic,

first-order logic, different versions of the λ-calculus — with all those

different formalisms playing a role here, we must agree on some

terminology. In particular, the words term, function, predicate, constant

and variable are used somewhat differently in the different formalisms.

Our point of reference for the terminology is the λ-calculus as it is built

into Isabelle for representing object logics. In particular:

• A term is a λ-term; object-level formulae (including equations) as well

as object-level terms are all represented as λ-terms, and so for

example, when we rewrite an equation, we rewrite a term.

• One could say that a function is any λ-term of functional type, i.e., of

type containing at least one →. Apart from that, there may be
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function symbols in some object logic. On the metalevel (and hence

also for the purpose of term rewriting), these would be constants.

• There may be predicate symbols in some object logic. On the

metalevel (and hence also for the purpose of term rewriting), these

would be constants.

• A constant is a λ-term consisting of just one symbol from a set

Const . Constants of the λ-calculus may be used to represent

connectives, quantifiers, functions, predicates or any other symbols

that an object logic may contain.

• The notion of variable is that of the metalevel, and so we usually

mean “variables including metavariables”.

Nevertheless, some confusion may arise wherever we use the terminology

from the point of view of an object logic.

See the following example:

Smaus: CSMR; WS08/09



More Detailed Explanations 622

The following is an example rewrite sequence, using the rules for lists.

The picked subterm which is being replaced is underlined in each step:

(a :: (b :: (d :: []))) @ (a :: (b :: [])) = [a, b, d, a, b] ;

a :: ((b :: (d :: [])) @ (a :: (b :: []))) = [a, b, d, a, b] ;

a :: (b :: ((d :: []) @ (a :: (b :: [])))) = [a, b, d, a, b] ;

a :: (b :: (d :: ([] @ (a :: (b :: []))))) = [a, b, d, a, b] ;

a :: (b :: (d :: (a :: (b :: [])))) = [a, b, d, a, b] ;

Note the we are done now, as the right-hand side is identical to the

left-hand side, modulo the use of syntactic sugar.

Note that generally, a term rewriting sequence rewrites arbitrary terms.

Here we only rewrite equations. From the point of view of term

rewriting, an equation is just a special case of a term.

One could also imagine that object-level function and predicate symbols
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are represented as variables, as is done in LF. Recall Perlis’ epigram.

Back to main referring slide
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a = b, a = c
For a rewriting system consisting of rules a = b, a = c, one cannot

rewrite b = c to prove the equality, although it holds:

a = b
b = a

sym
a = c

b = c
trans

Back to main referring slide
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Term Ordering
The biggest problem for term rewriting is (non-)termination. For some

crucial rules, this problem is solved by ordered term rewriting. A term

ordering is any partial order between ground (i.e., not containing free

variables) terms.

One can define a term ordering by giving some function, called norm,

from ground terms to natural numbers. Then a term is smaller than

another term if the number assigned to the first term is smaller that the

number assigned to the second term.

Back to main referring slide
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ACI
ACI stands for associative, commutative and idempotent. In

(x+ y) + z = x+ (y + z) (A)

x+ y = y + x (C)

x+ x = x (I)

the constant + is written infix.

Back to main referring slide
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How Ordered Rewriting Solves ACI
Consider an equational theory consisting only of those rules (apart from

refl, sym, trans, subst). Apart from that, the language may contain

arbitrary other constant symbols. For such a language, it is possible to

give a term ordering that will assign more weight to the same term on

the left-hand-side of a + than on the right-hand side. We can base such

a term ordering on a norm. For example, the inductive definition of a

norm | | might include the line:

|s+ t| := 2|s|+ |t|

This means that if |s| > |t|, then |s+ t| = 2|s|+ |t| > 2|t|+ |s| = |t+ s|.
This has two effects:

• Applications of (A) or (I) always decrease the weight of a term
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(provided the weight of s is > 0):

|(s+ t) + r| = 2|s+ t|+ |r| = 4|s|+ 2|t|+ |r| >

2|s|+ 2|t|+ |r| = 2|s|+ |t+ r| = |s+ (t+ r)|.

• Applications of (C) are only possible if the left-hand side is heavier

than the right-hand side.

We haven’t worked out here how the norm should be defined for the

other symbols of the language. This would have to depend on that

language.

The notation | | (the argument is between the bars) is used in standard

mathematics for the absolute value of a number and is standard for

norms as well.

Back to main referring slide
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Ambiguous Matching
For higher-order rewriting, it is very problematic to have rules containing

terms of the form F (Gc) on the left-hand side, where F and G are free

variables and c is a constant or bound variable. The reason can be seen

in an example: Suppose you want to rewrite the term f(g(h(i c))) where

f , g, h, i are all constants. There are four unifiers of F (Gc) and

f(g(h(i c))):

[F ← f, G← (λx.g(h(i x)))],
[F ← (λx.f(g x)), G← (λx.h(i x))],
[(F ← λx.f(g(hx))), G← (λx.i x)],
[(F ← λx.f(g(h(i x)))), G← (λx.x)].

This ambiguity makes such TRSs very inefficient.

Back to main referring slide
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∀,∃ is a Constant

Further examples:

• (∃x.Px ∨Qx) = (∃x.Px) ∨ (∃x.Qx)
• (∃x.P → Qx) = P → (∃x.Qx)
• (∃x.Px→ Q) = (∀x.Px)→ Q

In these examples, you may assume that first-order logic is our object

logic.

On the metalevel, and hence also for the sake of term rewriting, ∀,∃ are

constants.

In the notation (∀x.Px ∧Qx), the symbols P and Q are metavariables

(as far as term rewriting is concerned, simply think: variables).

Actually, (∀x.Px ∧Qx) mixes object and metalevel syntax in a way

which is typical for Isabelle: (∀x.Px ∧Qx) is a “pretty-printed” version
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of ALL (P & Q).
You may want to look at a theory file (say, IFOL.thy) to get a flavor of

this. The principle was explained thoroughly before.

Back to main referring slide
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Nested =⇒
Rewrite rules have the form φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ (several

equations imply one equation). It is not possible that any of the

equations φ1 = ψ1, . . . , φn = ψn again depend on some condition, as in

ifA thenP elseQ = ifA thenP ′ elseQ
where P = P ′ under condition A

Back to main referring slide
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simpset
The simpset is an abstract datatype and at the same time an ML unit

function for returning the current simplifier set. This is in analogy to the

classifier set.

Back to main referring slide
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Accessing the simpset
These function manipulate the simplifier set, in analogy to the classifier

set.

Back to main referring slide
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Global simpset
Simp tac, Asm simp tac, Asm full simp tac work like their

lower-case counterparts but use the current (global) simplifier set and

hence do not take a simplifier set as first argument (e.g., Simp tac has

type int→ tactic)

There are analogous capitalized versions for the tactics of the classical

reasoner.

Back to main referring slide
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Failure in Simplifier
When you use simp tac, usually you can just look at the term that you

get to understand which simplification has not worked although you

think that it should have worked.

Back to main referring slide
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Isabelle’s Metalogic 638

Representing Syntax and Proofs
• Previously, we have seen how the (polymorphically) typed

λ-calculus can be used to represent the syntax of an object

logic.
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Representing Syntax and Proofs
• Previously, we have seen how the (polymorphically) typed

λ-calculus can be used to represent the syntax of an object

logic.

• Today, we will extend the λ-calculus to a logic (with

formulae and inference rules): Isabelle’s metalogic, which

goes under the names ofM, Pure, HOL.

This lecture is based on Paulson’s work [Pau89]. It is maybe

the most challenging lecture of this course.
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What Is Formality anyway?
• Ultimately, logic and formal reasoning have to resort to

natural language. Proofs of, say, the soundness of a

derivation system employ the usual mathematical rigor, but

that’s all. Imagine this for the situation that we just want

to do reasoning in propositional logic and nothing else.

• We will now introduce a logic M. Its proof system is

small!
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Proof Techniques = Meta-Theorems
• When constructing proofs, there are
◦ aspects that are specific to certain logics and its logical symbols: the

proof rules;

◦ aspects that reflect general principles of proof building: making and

discharging assumptions, substitution, side conditions, resolution.

It seems that the latter must be justified by complicated

(and thus error-prone) explanations in natural language.
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Proof Techniques = Meta-Theorems
• When constructing proofs, there are
◦ aspects that are specific to certain logics and its logical symbols: the

proof rules;

◦ aspects that reflect general principles of proof building: making and

discharging assumptions, substitution, side conditions, resolution.

It seems that the latter must be justified by complicated

(and thus error-prone) explanations in natural language.

• Using a metalogic such as M has two benefits:
◦ Shared implementational support for the “general principles”;

◦ to a wide extent, the “general principles” are formally derived inM.

This gives a high degree of confidence.
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The Logic M
We first introduce M just like any other logic, without

considering its special role as metalogic. Nonetheless, we use

the qualification “meta” to avoid confusion later.

Some variations are possible (mainly: polymorphism/type

classes or not), but those are not so important for us.
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The Logic M
We first introduce M just like any other logic, without

considering its special role as metalogic. Nonetheless, we use

the qualification “meta” to avoid confusion later.

Some variations are possible (mainly: polymorphism/type

classes or not), but those are not so important for us.

M will be based on λ→. Would you call λ→ a logic?
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The LogicM 641

The Logic M
We first introduce M just like any other logic, without

considering its special role as metalogic. Nonetheless, we use

the qualification “meta” to avoid confusion later.

Some variations are possible (mainly: polymorphism/type

classes or not), but those are not so important for us.

M will be based on λ→. Would you call λ→ a logic?

So far, λ→ is not a logic (no connectives, no formulae). We

will now extend it to a logic.
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Logic Based on λ→

Assume some B where bool ∈ B, and some signature Σ
where

• ⇒: bool → bool → bool ∈ Σ,

• ≡σ: σ → σ → bool ∈ Σ for all types σ, and

•
∧
σ : (σ → bool)→ bool ∈ Σ for all types σ.

We usually omit type subscripts and write ≡,
∧

.

⇒, ≡, and
∧

are the logical symbols ofM. ⇒ and ≡ are

written infix.

Terms of type bool are called
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The LogicM 642

Logic Based on λ→

Assume some B where bool ∈ B, and some signature Σ
where

• ⇒: bool → bool → bool ∈ Σ,

• ≡σ: σ → σ → bool ∈ Σ for all types σ, and

•
∧
σ : (σ → bool)→ bool ∈ Σ for all types σ.

We usually omit type subscripts and write ≡,
∧

.

⇒, ≡, and
∧

are the logical symbols ofM. ⇒ and ≡ are

written infix.

Terms of type bool are called (meta-)formulae: types

generalize syntactic categories.
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Folding Assumptions
Lists of (meta-)formulae are denoted by Φ,Ψ,Ω. If Φ is the

list [φ1, . . . , φn], then

[φ1, . . . , φn]⇒ ψ, i.e.

Φ⇒ ψ

abbreviates the meta-formula φ1⇒ . . .⇒ φn⇒ ψ.

You have seen this in the exercises.

Note that [φ1, . . . , φn] on its own is not a term inM!

Smaus: CSMR; WS08/09



The LogicM 644

Proof System for M
The proof system will be presented in the style of natural

deduction.

This is as formal as we get (for the metalogic): derivation

trees in natural deduction style are authoritative.

The judgements, just like for natural deduction proofs in

propositional logic or first-order logic, are formulae, i.e.,

terms of type bool . This is in contrast to derivability

judgements or type judgements.
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Rules for ⇒
[φ]
....
ψ

φ⇒ ψ
⇒-I

φ⇒ ψ φ

ψ
⇒-E

Just like rules for →!
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The LogicM 645

Rules for ⇒
[φ]
....
ψ

φ⇒ ψ
⇒-I

φ⇒ ψ φ

ψ
⇒-E

Just like rules for →!

For layout reasons we sometimes swap left and right:

φ φ⇒ ψ

ψ
⇒-E
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Rules for
∧

Meta-universal-quantification is formalized in the style of

higher-order abstract syntax (
∧
σ : (σ → bool)→ bool); may

write
∧
x.φ as syntactic sugar for

∧
(λx.φ).

Note: quantification over terms of arbitrary type!
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The LogicM 646

Rules for
∧

Meta-universal-quantification is formalized in the style of

higher-order abstract syntax (
∧
σ : (σ → bool)→ bool); may

write
∧
x.φ as syntactic sugar for

∧
(λx.φ).

Note: quantification over terms of arbitrary type!

Rules:
φ∧
x.φ

∧
-I∗

∧
x.φ

φ[x← b]
∧

-E

Side (eigenvariable) condition ∗: x is not free in any

assumption on which φ depends.

Just like rules for ∀.
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Rules for ≡: Equivalence Relation

a ≡ a≡-refl
a ≡ b
b ≡ a

≡-symm

a ≡ b b ≡ c
a ≡ c ≡-trans

Just like rules for =.
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Rules for ≡: λ (i.e., α, β, η) Conversions

(λx.a) ≡ (λy.a[x← y])
α∗

(λx.a)b ≡ (a[x← b])
β

(λx.f x) ≡ f
η∗∗

Side condition ∗: y is not free in a.

Side condition ∗∗: x is not free in f .

Just like rules for =α,β,η.

η is equivalent to extensionality.
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Rules for ≡: Abstraction, Combination

a ≡ b
(λx.a) ≡ (λx.b)

≡-abstr∗
f ≡ g a ≡ b
f a ≡ g b ≡-comb

Side (eigenvariable) condition ∗: x is not free in any

assumption on which a ≡ b depends. Compare with

β-reduction.

As defined for →β before, ≡ is propagated into contexts.

Conversion is built into the proof system!

Recall that e ≡ e′ is decidable in λ→ (≡-rules so far).

However, e ≡ e′ is not decidable inM (see next slide).
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Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ ≡-I
φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here?

Smaus: CSMR; WS08/09



The LogicM 650

Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ ≡-I
φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here? φ and ψ are formulae,

hence bool .
What object-level connective does ≡ correspond to?
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The LogicM 650

Rules for ≡: Introduction and Elimination

[φ]
....
ψ

[ψ]
....
φ

φ ≡ ψ ≡-I
φ ≡ ψ φ

ψ
≡-E

What is the type of φ and ψ here? φ and ψ are formulae,

hence bool .
What object-level connective does ≡ correspond to? ↔.
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Encoding Syntax and Provability 651

Encoding Syntax and Provability

We use FOL and its subset propositional logic (which we call

here Prop) as exemplary object logic.

We already know how to encode syntax.
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Encoding Syntax and Provability 651

Encoding Syntax and Provability

We use FOL and its subset propositional logic (which we call

here Prop) as exemplary object logic.

We already know how to encode syntax.

We will now see how to encode proof rules and mimic proofs

of the object logic.

To encode a particular object logic L, we have to extendM
by extending the type language, the term language (the

signature) and the proof rules. The thus extended logic will

be called ML.
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Encoding Syntax: Review
As before, i, o ∈ B. Previously:

Σ ⊇ 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o,

all : (i→ o)→ o, exists : (i→ o)→ o〉
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Encoding Syntax and Provability 652

Encoding Syntax: Review
As before, i, o ∈ B. Previously:

Σ ⊇ 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o,

all : (i→ o)→ o, exists : (i→ o)→ o〉

Two types for truth values: o and bool .
We now need a more concise (sweeter) syntax or things will

become hopelessly unreadable.

But this is also quite demanding: you should always be able

to “unsugar” the syntax.
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Encoding Syntax Readably

Σ ⊇ 〈⊥ : o,
∧,∨,→: o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉.
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Encoding Syntax Readably

Σ ⊇ 〈⊥ : o,
∧,∨,→: o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉.
• → is both a constant declared in Σ and the function type

arrow.

• ∧,∨,→ will be written infix, and we may write ∀x.φ for

∀(λx.φ), and likewise for ∃.
• true A is usually written [[A]].
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Encoding the Rules
The rules of the object logic are encoded as axioms of the

metalogic. These axioms are added to the proof system of

M (to obtainML).

To avoid confusion, we will use distinctive terminology:

• There is a meta-rule called ⇒-E.

• There is a similar object rule that we call the →-E rule.

• It is encoded as a meta-axiom that we call the →-E axiom.
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Encoding of the Rules of Propositional Logic∧
AB.[[A]]⇒ ([[B]]⇒ [[A ∧B]]) (∧-I)∧
AB.[[A ∧B]]⇒ [[A]] (∧-EL)∧
AB.[[A ∧B]]⇒ [[B]] (∧-ER)∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL)∧
AB.[[B]]⇒ [[A ∨B]] (∨-IR)∧
ABC.[[A ∨B]]⇒

([[A]]⇒ [[C]])⇒ ([[B]]⇒ [[C]])⇒ [[C]]
(∨-E)∧

AB.([[A]]⇒ [[B]])⇒ [[A→ B]] (→-I)∧
AB.[[A→ B]]⇒ [[A]]⇒ [[B]] (→-E)∧
A.[[⊥]]⇒ [[A]] (⊥-E)
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Faithful Metalogics
For any object logic L, we define:

• ML is sound for L if, for every proof of [[B]] from

assumptions [[A1]], . . . , [[Am]] inML, there is a proof of B

from assumptions A1, . . . , Am in L.

• ML is complete for L if, for every proof of B from

assumptions A1, . . . , Am in L, there is a proof of [[B]] from

assumptions [[A1]], . . . , [[Am]] inML.

• ML is faithful for L ifML is sound and complete for L.

Using concepts of Prawitz [Pra65, Pra71], one can show by

structural induction that MProp is faithful for Prop.
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An Example Proof

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL
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Encoding Syntax and Provability 657

An Example Proof

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E
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Encoding Syntax and Provability 657

An Example Proof

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E

[[P ∧Q]]⇒ [[P ]]
∧

-E
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Encoding Syntax and Provability 657

An Example Proof

[[P ∧Q]]

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E

[[P ∧Q]]⇒ [[P ]]
∧

-E

[[P ]]
⇒-E
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Encoding Syntax and Provability 657

An Example Proof

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E

[[P ∧Q]]⇒ [[P ]]
∧

-E

[[P ]]
⇒-E

[[P ∧Q]]⇒ [[P ]]⇒-I1
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Encoding Syntax and Provability 657

An Example Proof

∧
AB.([[A]]⇒ [[B]])

⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P ]])
⇒ [[P ∧Q→ P ]]

∧
-E

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E

[[P ∧Q]]⇒ [[P ]]
∧

-E

[[P ]]
⇒-E

[[P ∧Q]]⇒ [[P ]]⇒-I1
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Encoding Syntax and Provability 657

An Example Proof

∧
AB.([[A]]⇒ [[B]])

⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P ]])
⇒ [[P ∧Q→ P ]]

∧
-E

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E

[[P ∧Q]]⇒ [[P ]]
∧

-E

[[P ]]
⇒-E

[[P ∧Q]]⇒ [[P ]]⇒-I1

[[P ∧Q→ P ]]
⇒-E
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An Example Proof

∧
AB.([[A]]⇒ [[B]])

⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P ]])
⇒ [[P ∧Q→ P ]]

∧
-E

[[[P ∧Q]]]1

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E

[[P ∧Q]]⇒ [[P ]]
∧

-E

[[P ]]
⇒-E

[[P ∧Q]]⇒ [[P ]]⇒-I1

[[P ∧Q→ P ]]
⇒-E
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Example Proof Simplified

∧
AB.([[A]]⇒ [[B]])

⇒ [[A→ B]]

→-I

∧
B.([[P ∧Q]]⇒ [[B]])
⇒ [[P ∧Q→ B]]

∧
-E

([[P ∧Q]]⇒ [[P ]])
⇒ [[P ∧Q→ P ]]

∧
-E

∧
AB.[[A ∧B]]

⇒ [[A]]

∧-EL

∧
B.[[P ∧B]]
⇒ [[P ]]

∧
-E

[[P ∧Q]]⇒ [[P ]]
∧

-E

[[P ∧Q→ P ]]
⇒-E
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Remarks about Example Proof
• ∧-EL and →-E are not object rules but meta-axioms!

• The first, more complicated proof corresponds to the

construction one would use to show that MProp is

complete for Prop.

• Proof fragments of the form

φ⇒ ψ [φ]
ψ

⇒-E

φ⇒ ψ
⇒-I

can be collapsed into φ⇒ ψ: proof normalization.
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Reasoning with Resolution

In Isabelle, we mainly use backwards reasoning: we construct

a proof tree starting from the root working to the leaves.
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Reasoning with Resolution 660

Reasoning with Resolution

In Isabelle, we mainly use backwards reasoning: we construct

a proof tree starting from the root working to the leaves.

On the meta-level, this proof is in fact a forwards proof:

working from the leaves to the root.

This is achieved by starting the proof of ψ with the trivial

meta-theorem ψ ⇒ ψ and using a technique called

resolution.
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Reasoning with Resolution 661

The Resolution Rule
For any formulae ψ1, . . . , ψn, ψ, φ1, . . . , φm, φ where

FV (φ1, . . . , φm, φ) ⊆ {x1, . . . , xk}, and φθ ≡ ψi for some

i ∈ {1, . . . , n}, resolution is the following rule:∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

Intuition:
∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ is a meta-axiom such

as ∧-EL, [ψ1, . . . , ψn]⇒ ψ is the current goal (proof state).

Compare to phrasing using ∨!

We will now derive the rule.
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Resolution as Derived Meta-Rule
∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ
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Reasoning with Resolution 662

Resolution as Derived Meta-Rule
∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E
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Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E
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Reasoning with Resolution 662

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E
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Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

[ψ1, . . . , ψn]
⇒ ψ
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Reasoning with Resolution 662

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ
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Reasoning with Resolution 662

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E
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Reasoning with Resolution 662

Resolution as Derived Meta-Rule

φ1θ . . . φmθ

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

[ψi+1, . . . , ψn]⇒ ψ
⇒-E
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Resolution as Derived Meta-Rule

[φ1θ]2 . . . [φmθ]2

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

ψ1 . . . ψi−1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

[ψi+1, . . . , ψn]⇒ ψ
⇒-E

[φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I2
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Resolution as Derived Meta-Rule

[φ1θ]2 . . . [φmθ]2

∧
x1 . . . xk.

[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

φθ
⇒-E

[ψ1]1 . . . [ψi−1]1
[ψ1, . . . , ψn]

⇒ ψ

[ψi, . . . , ψn]⇒ ψ
⇒-E

[ψi+1, . . . , ψn]⇒ ψ
⇒-E

[φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I2

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
⇒-I1
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Deriving Resolution: Remarks
• We collapsed iterated applications of rules (denoted by

double horizontal line).
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Reasoning with Resolution 663

Deriving Resolution: Remarks
• We collapsed iterated applications of rules (denoted by

double horizontal line).

• This is not just a matter of simplicity. The derivation is

schematic not just in the sense that the Greek letters could

stand for arbitrary formulae; we don’t even know how

many formulae are involved (k,m, n, i could be any

natural numbers).

• But for any concrete ψ1, . . . , ψn, ψ, φ1, . . . , φm, φ, you

could do the formal derivation in M.
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Dropping Outer Quantifiers
We adopt the convention that outer quantifiers in

meta-formulae are dropped. E.g. [[A]]⇒ [[B]]⇒ [[A ∧B]]
instead of

∧
AB.[[A]]⇒ [[B]]⇒ [[A ∧B]].

In addition: use renaming for freshness.

Then we can write the resolution rule as follows:

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

where φθ ≡ ψi.
We will now work with this schematic form.

Smaus: CSMR; WS08/09



Reasoning with Resolution 665

Proof of A ∧B → C → A ∧ C (1)
Let’s prove A ∧B → (C → A ∧ C) by resolution. We start

by resolution with →-I:

([[A1]]⇒ [[B1]])
⇒ [[A1→ B1]]

[[A ∧B → (C → A ∧ C)]]
⇒ [[A ∧B → (C → A ∧ C)]]

([[A ∧B]]⇒ [[C → A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]

res

What to do next?
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Reasoning with Resolution 665

Proof of A ∧B → C → A ∧ C (1)
Let’s prove A ∧B → (C → A ∧ C) by resolution. We start

by resolution with →-I:

([[A1]]⇒ [[B1]])
⇒ [[A1→ B1]]

[[A ∧B → (C → A ∧ C)]]
⇒ [[A ∧B → (C → A ∧ C)]]

([[A ∧B]]⇒ [[C → A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]

res

What to do next? Again resolution with →-I.

Problem: the conclusion of →-I is not unifiable with

[[A ∧B]]⇒ [[C → A ∧ C]].
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Lifting over Assumptions
The rule for lifting an object rule (meta-axiom)

[φ1, . . . , φm]⇒ φ over a list of assumptions Ψ is

[φ1, . . . , φm]⇒ φ

[Ψ⇒ φ1, . . . ,Ψ⇒ φm]⇒ (Ψ⇒ φ)
a-lift

We will now derive it for one assumption, so Ψ = [ψ].
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Reasoning with Resolution 667

Deriving Assumption Lifting for one
Assumption

[φ1, . . . , φm]⇒ φ

ψ ⇒ φ1 ψ

φ1
⇒-E · · ·

ψ ⇒ φm ψ

φm
⇒-E

Smaus: CSMR; WS08/09



Reasoning with Resolution 667

Deriving Assumption Lifting for one
Assumption

[φ1, . . . , φm]⇒ φ

ψ ⇒ φ1 ψ

φ1
⇒-E · · ·

ψ ⇒ φm ψ

φm
⇒-E

φ
⇒-E
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Reasoning with Resolution 667

Deriving Assumption Lifting for one
Assumption

[φ1, . . . , φm]⇒ φ

ψ ⇒ φ1 [ψ]2

φ1
⇒-E · · ·

ψ ⇒ φm [ψ]2

φm
⇒-E

φ
⇒-E

ψ ⇒ φ
⇒-I2
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Reasoning with Resolution 667

Deriving Assumption Lifting for one
Assumption

[φ1, . . . , φm]⇒ φ

[ψ ⇒ φ1]1 [ψ]2

φ1
⇒-E · · ·

[ψ ⇒ φm]1 [ψ]2

φm
⇒-E

φ
⇒-E

ψ ⇒ φ
⇒-I2

[ψ ⇒ φ1, . . . , ψ ⇒ φm]⇒ (ψ ⇒ φ)⇒-I1

This process can be repeated for any number of assumptions

to get the general rule.
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Reasoning with Resolution 668

Proof of A ∧B → (C → A ∧ C) (2)
We do resolution using the →-I axiom lifted over [[A ∧B]]:

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))
⇒ ([[A ∧B]]⇒ [[A2→ B2]])

...

([[A ∧B]]⇒ [[C → A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]

([[A ∧B]]⇒ [[C]]⇒ [[A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]

res
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Reasoning with Resolution 668

Proof of A ∧B → (C → A ∧ C) (2)
We do resolution using the →-I axiom lifted over [[A ∧B]]:

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))
⇒ ([[A ∧B]]⇒ [[A2→ B2]])

...

([[A ∧B]]⇒ [[C → A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]

([[A ∧B]]⇒ [[C]]⇒ [[A ∧ C]])
⇒ [[A ∧B → (C → A ∧ C)]]

res

Before we proceed, we introduce the abbreviations

ω = [[A ∧B → (C → A ∧ C)]], Ω = [[[A ∧B]], [[C]]]
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Reasoning with Resolution 668

Proof of A ∧B → (C → A ∧ C) (2)
We do resolution using the →-I axiom lifted over [[A ∧B]]:

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))
⇒ ([[A ∧B]]⇒ [[A2→ B2]])

...

([[A ∧B]]⇒ [[C → A ∧ C]])
⇒ ω

( Ω ⇒ [[A ∧ C]])
⇒ ω

res

Before we proceed, we introduce the abbreviations

ω = [[A ∧B → (C → A ∧ C)]], Ω = [[[A ∧B]], [[C]]]
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Proof of A ∧B → (C → A ∧ C) (3)
We do resolution using the ∧-I axiom lifted over Ω:

(Ω⇒ [[A3]])⇒ (Ω⇒ [[B3]])
⇒ (Ω⇒ [[A3 ∧B3]])

...

(Ω⇒ [[A ∧ C]])⇒ ω

(Ω⇒ [[A]])⇒ (Ω⇒ [[C]])⇒ ω
res

At this point, Isabelle would display Ω⇒ [[A]] and Ω⇒ [[C]]
as two subgoals.

The next step is to solve Ω⇒ [[C]] by assumption, but this

must be formalized.
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The Assumption Axiom
The assumption axiom is: for any i ∈ {1, . . . ,m}

[φ1, . . . , φm]⇒ φi
assum

It has a simple (schematic) derivation:

[φi]1

[φi+1, . . . , φm]⇒ φi
⇒-I

[φi, . . . , φm]⇒ φi
⇒-I1

[φ1, . . . , φm]⇒ φi
⇒-I
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Proof of A ∧B → (C → A ∧ C) (4)
We do resolution using the assumption axiom:

Ω⇒ [[C]]

...

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res

We used the correct instance of the assumption axiom.

Alternatively, we could have use the more generic

[A4, B4]⇒ B4.

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].)
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Reasoning with Resolution 671

Proof of A ∧B → (C → A ∧ C) (4)
We do resolution using the assumption axiom:

Ω⇒ [[C]]

...

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res

We used the correct instance of the assumption axiom.

Alternatively, we could have use the more generic

[A4, B4]⇒ B4.

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].)
Resolution with ∧-EL.
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Proof of A ∧B → (C → A ∧ C) (5)
Magically, we guess the right instance of ∧-EL and lift it

over Ω:

(Ω⇒ [[A ∧B]])⇒ (Ω⇒ [[A]])

...

(Ω⇒ [[A]])⇒ ω

(Ω⇒ [[A ∧B]])⇒ ω
res

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].)
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Reasoning with Resolution 672

Proof of A ∧B → (C → A ∧ C) (5)
Magically, we guess the right instance of ∧-EL and lift it

over Ω:

(Ω⇒ [[A ∧B]])⇒ (Ω⇒ [[A]])

...

(Ω⇒ [[A]])⇒ ω

(Ω⇒ [[A ∧B]])⇒ ω
res

What to do next? (Recall that Ω = [[[A ∧B]], [[C]]].) Prove

the subgoal by assumption.
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Proof of A ∧B → (C → A ∧ C) (6)
We do resolution using the assumption axiom:

Ω⇒ [[A ∧B]]

...

(Ω⇒ [[A ∧B]])⇒ ω

ω
res

Recall that ω = [[A ∧B → (C → A ∧ C)]]. Done!
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Getting Rid of the Magic
In one step, we had to guess the right instance of ∧-EL.

This is not practical.

Solutions:

• Generalize the resolution rule to allow for instantiation of

the current proof state and not just of meta-axioms.

• Derive∧
ABC.[[[A ∧B]], ([[[A]], [[B]]]⇒ [[C]])]⇒ [[C]]

which encodes the ∧-E object rule.
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The Whole Proof at a Glance
Compare proof in MProp with corresponding proof in Prop:

a.

∧-EL

a.

∧-I

→-I
→-I ω ⇒ ω
. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

ω

[A ∧B]1

A
∧-EL [C]2

A ∧ C ∧-I

C → A ∧ C→-I2

A ∧B → (C → A ∧ C)→-I1
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Reasoning with Resolution 675

The Whole Proof at a Glance
Compare proof in MProp with corresponding proof in Prop:

a.

∧-EL

a.

∧-I

→-I
→-I ω ⇒ ω
. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

. . .⇒ ω

ω

[A ∧B]1

A
∧-EL [C]2

A ∧ C ∧-I

C → A ∧ C→-I2

A ∧B → (C → A ∧ C)→-I1

“The meta-level proof is the object level proof upside-down.”
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Direction of the Implication
Is the direction of the implication reversed just because we

go from the object to the meta-level?
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Reasoning with Resolution 676

Direction of the Implication
Is the direction of the implication reversed just because we

go from the object to the meta-level?

No! The direction is reversed because we start from the

trivial meta-theorem ω ⇒ ω, and the resolution steps modify

the left-hand side of this meta-theorem.
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Reasoning with Resolution 677

How Can One Turn a Tree Upside-Down?
A proper tree has nodes where it branches. Also, in Isabelle

proofs, we frequently have to prove several subgoals. So how

is this branching reflected in the meta-proof?
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Reasoning with Resolution 677

How Can One Turn a Tree Upside-Down?
A proper tree has nodes where it branches. Also, in Isabelle

proofs, we frequently have to prove several subgoals. So how

is this branching reflected in the meta-proof?

A meta-formula of the form ψ1⇒ . . .⇒ ψn⇒ ψ

corresponds to a branching point in the object level proof. It

means that there are subgoals ψ1, . . . , ψn. But in the

derivation tree in MProp, there is no branching.
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Reasoning with Resolution 677

How Can One Turn a Tree Upside-Down?
A proper tree has nodes where it branches. Also, in Isabelle

proofs, we frequently have to prove several subgoals. So how

is this branching reflected in the meta-proof?

A meta-formula of the form ψ1⇒ . . .⇒ ψn⇒ ψ

corresponds to a branching point in the object level proof. It

means that there are subgoals ψ1, . . . , ψn. But in the

derivation tree in MProp, there is no branching.

In the construction of a meta-proof (just like in Isabelle),

one is always free to choose which subgoal to solve next.

Interleaving is possible.
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Quantification 678

Quantification

We add the following meta-axioms to obtain MFOL:∧
F.(

∧
x.[[F x]])⇒ [[∀x.F x]] (∀-I)∧

Fy.[[∀x.F x]]⇒ [[F y]] (∀-E)∧
Fy.[[F y]]⇒ [[∃x.F x]] (∃-I)∧
FB.[[∃x.F x]]⇒ (

∧
x.[[F x]]⇒ [[B]])⇒ [[B]] (∃-E)

Similarly as for Prop, one can show thatMFOL is faithful

for FOL.

Side condition checking is shifted to the meta-level.

We now consider resolution proofs for FOL.
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Proof of (∀z.G z)→ (∀z.G z ∨H z) (1)

([[A1]]⇒ [[B1]])
⇒ [[A1→ B1]]

[[(∀z.G z)→ (∀z.G z ∨H z)]]
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next?
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Quantification 679

Proof of (∀z.G z)→ (∀z.G z ∨H z) (1)

([[A1]]⇒ [[B1]])
⇒ [[A1→ B1]]

[[(∀z.G z)→ (∀z.G z ∨H z)]]
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next? Resolution with ∀-I lifted over

assumption [[∀z.G z]].
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Quantification 680

Proof of (∀z.G z)→ (∀z.G z ∨H z) (2)

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [F1← λw.Gw ∨H w].
We suppress conversion, assuming terms are in normal form.

What to do next?

Smaus: CSMR; WS08/09



Quantification 680

Proof of (∀z.G z)→ (∀z.G z ∨H z) (2)

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [F1← λw.Gw ∨H w].
We suppress conversion, assuming terms are in normal form.

What to do next? Resolution with ∨-IL after lifting over

assumption. Problem: the conclusion of ∨-IL is not unifiable

with
∧
z.[[Gz ∨H z]]).
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Lifting over Parameters
Lifting over parameters seems easier to explain if outer

∧
’s

are not dropped. The rule for lifting a meta-axiom∧
y1 . . . yk.[φ1, . . . , φm]⇒ φ over a parameter z is∧

y1 . . . yk.[φ1, . . . , φm]⇒ φ∧
f1 . . . fk.[

∧
z.φ′1, . . . ,

∧
z.φ′m]⇒ (

∧
z.φ′)

p-lift

where ′ stands for application of the substitution

[y1← f1 z, . . . , yk ← fk z].
We will now derive it.
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Deriving Parameter Lifting for one Parameter
′ stands for application of [y1← f1(z), . . . , yk ← fk(z)].∧

y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

∧
z.φ′1

φ′1

∧
-E
· · ·

∧
z.φ′m

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I
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Quantification 682

Deriving Parameter Lifting for one Parameter
′ stands for application of [y1← f1(z), . . . , yk ← fk(z)].∧

y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

[
∧
z.φ′1]

1

φ′1

∧
-E
· · ·

[
∧
z.φ′m]1

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′
⇒-I1
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Quantification 682

Deriving Parameter Lifting for one Parameter
′ stands for application of [y1← f1(z), . . . , yk ← fk(z)].∧

y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

[
∧
z.φ′1]

1

φ′1

∧
-E
· · ·

[
∧
z.φ′m]1

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′
⇒-I1∧

f1 . . . fk.[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′

∧
-I
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Quantification 682

Deriving Parameter Lifting for one Parameter
′ stands for application of [y1← f1(z), . . . , yk ← fk(z)].∧

y1 . . . yk.[φ1, . . . , φm]⇒ φ

[φ′1, . . . , φ
′
m]⇒ φ′

∧
-E

[
∧
z.φ′1]

1

φ′1

∧
-E
· · ·

[
∧
z.φ′m]1

φ′m

∧
-E

φ′
⇒-E∧

z.φ′
∧

-I

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′
⇒-I1

[
∧
z.φ′1, . . . ,

∧
z.φ′m]⇒

∧
z.φ′

∧
-I

After parameter lifting, we drop outer quantifiers again.
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Lifting ∨-IL
Lifting

∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL) over z gives∧
G2H2.(

∧
z.[[G2 z]])⇒ (

∧
z.[[G2 z ∨H2 z]]).
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Lifting ∨-IL
Lifting

∧
AB.[[A]]⇒ [[A ∨B]] (∨-IL) over z gives

(
∧
z.[[G2 z]])⇒ (

∧
z.[[G2 z ∨H2 z]]).

We drop outer quantifiers and lift over assumption [[∀z.G z]]
to obtain

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

This rule will be applied in the next step.
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Proof of (∀z.G z)→ (∀z.G z ∨H z) (3)

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next?
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Quantification 684

Proof of (∀z.G z)→ (∀z.G z ∨H z) (3)

([[∀z.G z]]⇒
∧
z.[[G2 z]])⇒

([[∀z.G z]]⇒
∧
z.[[G2 z ∨H2 z]])

...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

What to do next? Resolution with ∀-E lifted over z.

However, this cannot be guessed from looking at
∧
z.[[Gz]],

but rather from looking at premise [[∀z.G z]].
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Lifting of ∀-E over z
Lifting

∧
Fy.[[∀x.F x]]⇒ [[F y]] (∀-E) over parameter z gives∧
G3f3.(

∧
z.[[∀x.(G3 z)x]])⇒ (

∧
z.[[G3 z(f3 z)]]).

We drop outer quantifiers and lift over assumption [[∀z.G z]]
to obtain

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

This rule will be applied in the next step.
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Proof of (∀z.G z)→ (∀z.G z ∨H z) (4)

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

...

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [f3← λw.w, G3← λvw.Gw].
We suppress conversion, assuming terms are in normal form.

What to do next?
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Proof of (∀z.G z)→ (∀z.G z ∨H z) (4)

([[∀z.G z]]⇒
∧
z.[[∀x.(G3 z)x]])⇒

([[∀z.G z]]⇒
∧
z.[[G3 z(f3 z)]])

...

([[∀z.G z]]⇒
∧
z.[[Gz]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The substitution θ is [f3← λw.w, G3← λvw.Gw].
We suppress conversion, assuming terms are in normal form.

What to do next? Since z /∈ FV (∀x.Gx), we can use a

modified assumption axiom.
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Modified Assumption Axiom

[φ1, . . . , φm]⇒
∧
z.φi

assum
where z /∈ FV (φi).

It has the following derivation:

[φi]1∧
z.φi

∧
-I

[φi+1, . . . , φm]⇒
∧
z.φi
⇒-I

[φi, . . . , φm]⇒
∧
z.φi

⇒-I1

[φ1, . . . , φm]⇒
∧
z.φi
⇒-I
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Instance of Modified Assumption Axiom
In the next step, we will use the instance

[[∀z.G z]]⇒
∧
z.[[∀x.Gx]]

of

[φ1, . . . , φm]⇒
∧
z.φi.

We identified ∀z.G z and ∀x.Gx by conversion.
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Proof of (∀z.G z)→ (∀z.G z ∨H z) (5)

...

[[∀z.G z]]⇒∧
z.[[∀x.Gx]]

...

([[∀z.G z]]⇒
∧
z.[[∀x.Gx]])⇒

[[(∀z.G z)→ (∀z.G z ∨H z)]]

[[(∀z.G z)→ (∀z.G z ∨H z)]]
res

Done!
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Remark on Step 2
Recall Step 2:

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

One could have obtained
∧
z.([[∀z.G z]]⇒ ([[Gz ∨H z]]))

instead of ([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]])) by lifting ∀-I in a

different way. This will be an exercise.
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Checking Side Conditions
To demonstrate how side conditions are checked, we show a

proof attempt that fails due to a side condition.

Take ∃u.∀w. w = u in FOL with equality, so assume we have

a meta-axiom for reflexivity:∧
z. [[z = z]] (refl)

Smaus: CSMR; WS08/09



Quantification 692

Failed Proof Attempt of ∃u.∀w.w = u

(
∧
x.[[F2 x]])

⇒ [[∀x.F2 x]]

[[F1 y1]]⇒
[[∃x.F1 x]]

[[∃u.∀w.w = u]]⇒
[[∃u.∀w.w = u]]

[[∀w.w = y1]]⇒ [[∃u.∀w.w = u]]
res

(
∧
x.[[x = y1]])⇒ [[∃y.∀x. x = y]]

res

Substitution? [F1← , F2← ].
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Failed Proof Attempt of ∃u.∀w.w = u

(
∧
x.[[F2 x]])

⇒ [[∀x.F2 x]]

[[F1 y1]]⇒
[[∃x.F1 x]]

[[∃u.∀w.w = u]]⇒
[[∃u.∀w.w = u]]

[[∀w.w = y1]]⇒ [[∃u.∀w.w = u]]
res

(
∧
x.[[x = y1]])⇒ [[∃y.∀x. x = y]]

res

Substitution? [F1← λv.∀w.w = v, F2← λv. v = y1].
What to do next?
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Failed Proof Attempt of ∃u.∀w.w = u

(
∧
x.[[F2 x]])

⇒ [[∀x.F2 x]]

[[F1 y1]]⇒
[[∃x.F1 x]]

[[∃u.∀w.w = u]]⇒
[[∃u.∀w.w = u]]

[[∀w.w = y1]]⇒ [[∃u.∀w.w = u]]
res

(
∧
x.[[x = y1]])⇒ [[∃y.∀x. x = y]]

res

Substitution? [F1← λv.∀w.w = v, F2← λv. v = y1].
What to do next? Resolution with refl lifted over parameter

x:
∧
x.[[g3 x = g3 x]]. But

∧
x.[[x = y1]] and

∧
x.[[g3 x = g3 x]]

are not unifiable. Proof fails!
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Free Variables in Goals

The resolution rule can be generalized to allow for

instantiation of variables in goals:

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

([ψ1, . . . , ψi−1, φ1, . . . , φm, ψi+1, . . . , ψn]⇒ ψ)θ
res

where φθ ≡ ψiθ.
But then we must distinguish the status of the free variables.

Denote the universal closure of ψ by
∧

.ψ. Then . . .
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Instantiation of the Initial Goal
Previously, when we proved ψ we in fact proved

∧
.ψ.

...

ψ ⇒ ψ
...

ψ
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Instantiation of the Initial Goal
Previously, when we proved ψ we in fact proved

∧
.ψ.

...

∧
.ψ ⇒ ψ

ψ ⇒ ψ

∧
-E

...

ψ∧
.ψ

∧
-I
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Instantiation of the Initial Goal
Previously, when we proved ψ we in fact proved

∧
.ψ.

Now, allowing for instantiation of ψ, we in fact prove
∧

.ψθ.

...

∧
.ψ ⇒ ψ

ψ ⇒ ψ

∧
-E

...

ψθ∧
.ψθ

∧
-I
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Instantiation of the Initial Goal
Previously, when we proved ψ we in fact proved

∧
.ψ.

Now, allowing for instantiation of ψ, we in fact prove
∧

.ψθ.

...

∧
.ψ ⇒ ψ

ψ ⇒ ψ

∧
-E

...

ψθ∧
.ψθ

∧
-I

This may not be what we want.

Problem: more unifiers, hence bigger search space.
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Two Kinds of Free Variables
In Isabelle, control over instantiation is given by having two

kinds of free variables:

• ordinary variables must not become instatiated;

• metavariables (unknowns, schematic variables) may

become instantiated.

In goals we can have both kinds, in rules we have

metavariables. Try it out in Isabelle!

Once a theorem is proven, any free variables will be made

metavariables, and the reading is as for rules: The theorem

is implicitly universally quantified over the free variables.
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Conclusion on Isabelle’s Metalogic

The logic M and its proof system are small.

What makes M powerful enough to encode a large variety

of object logics?

• The λ-calculus is very powerful for expressing syntax and

syntactic manipulations (→ substitution). M must be

extended by appropriate signature for an object logic.

• Rules of the object logic can be encoded and added to M
as axioms.
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Conclusion (2)
General principles of proof building (e.g. resolution, proving

by assumption, side condition checking) are not something

that must be justified by complicated (and thus error-prone)

explanations in natural language — they are formal

derivations in the metalogic.

This has two big advantages: shared support and high

degree of confidence. ¸
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More Detailed Explanations
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The Names of the Metalogic

In Isabelle jargon, the metalogic is called Pure.

In this course, we will avoid calling the Isabelle metalogic HOL, although

you may find such uses in the literature.

In the literature and in Isabelle formalizations, we find various definitions

of higher-order logic (HOL) that differ more or less substantially.

But the important point to remember here is this: The Isabelle

metalogic M we study here is not identical to the logic we will study

during the entire second half of this course. And the most important

difference betweenM and HOL is not in the logics themselves, but in

the way we use them:

M is a (the) metalogic!

HOL is an object logic!
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Back to main referring slide
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Formalising Propositional Logic
We would formalize the language and the proof system as we did in the

first lecture. Any proofs of soundness and completeness or other

meta-properties should be rigorous, but they still resort to natural

language.

Back to main referring slide
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Σ Contains these Symbols
Σ contains ⇒, ≡ and

∧
, but in addition, Σ may specify other symbols.

Back to main referring slide
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Alternative: Polymorphism
Alternatively, we could define that

• ≡α: α→ α→ bool ∈ Σ, and

•
∧

α : (α→ bool)→ bool ∈ Σ,

where α is a type variable.

Back to main referring slide
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The names of ⇒, ≡, and
∧

⇒ is called meta-implication, ≡ is called meta-equality, and
∧

is called

meta-universal-quantification.

Back to main referring slide
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The Judgements
We define our proof system forM using natural deduction.

The judgements are formulae, i.e., term of type bool . This means that a

node φ in a derivation tree, as in

. . .
φ
. . .

must be a term of type bool . It cannot be a derivability judgement or

type judgement or a term of type, say bool → bool .

Back to main referring slide
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Extensionality
Extensionality is the rule

f x ≡ g x
f ≡ g

where the side condition is that x must not be free in f or g or any

assumption on which the proof of f x ≡ g x depends. It is equivalent to

the η-axiom [HS90, pages 72-74].

Recall that we have used the notion of extensionality before, for sets.

The idea is the same here.

Back to main referring slide
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Shorthand for Writing Signatures
We write

〈⊥ : o,
∧,∨,→: o→ o→ o,

∀,∃ : (i→ o)→ o,

true : o→ bool〉

as shorthand for

〈⊥ : o,
∧ : o→ o→ o,

∨ : o→ o→ o,

→: o→ o→ o,

∀ : (i→ o)→ o,

∃ : (i→ o)→ o

true : o→ bool〉
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Back to main referring slide
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Two Types for Truth Values
So we have truth values in the metalogic (type bool) and in the object

logic (type o). To distinguish them clearly there are two different types

for them.

Back to main referring slide
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The constant true
So we have truth values in the metalogic (type bool) and in the object

logic (type o).

Paulson [Pau89] says: “the meta-formula [[A]] abbreviates true A and

means that A is true”. More precisely, we can say that [[A]] is a

meta-formula that may or may not be derivable in ML, and that this

should reflect derivability of A in L.

In the file IFOL.thy in your Isabelle distribution, you find

Trueprop :: "o => prop"

Trueprop corresponds to true.

Back to main referring slide
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ψ ⇒ ψ
We have seen this before as a proof in propositional logic.

[ψ]1

ψ → ψ
⇒-I1

Back to main referring slide
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Resolution Using ∨
You may have seen the following formulation of the resolution rule:

A1 ∨ . . . ∨An B1 ∨ . . . ∨Bm

(A1 ∨ . . . ∨Ai−1, Ai+1 ∨ . . . ∨An ∨B1 ∨ . . . ∨Bj−i, Bj+1 ∨ . . . ∨Bm)θ

where either Aiθ = ¬Bjθ or ¬Aiθ = Bjθ.

You can see the correspondence to the rule given here by recalling that

in first-order logic, φ1→ . . .→ φm→ φ is equivalent to

φ1 ∧ . . . ∧ φm→ φ, which is in turn equivalent to ¬φ1 ∨ . . . ∨ ¬φm ∨ φ.

You may still be wondering though why in the rule res, we only allow

instantiation of [φ1, . . . , φm]⇒ φ. This restriction will in fact be lifted

later.

Back to main referring slide
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Why Is ⇒-E Applicable?
Recall that φθ ≡ ψi.

Back to main referring slide
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Schematic Resolution Rule
The schematic form of the resolution rule is:

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψn]⇒ ψ

[ψ1, . . . , ψi−1, φ1θ, . . . , φmθ, ψi+1, . . . , ψn]⇒ ψ
res

where φθ ≡ ψ.

We will work with this schematic form, but remember: if necessary, you

could construct an actual derivation inM.

In this schematic form, it is always assumed that the free variables in

[φ1, . . . , φm]⇒ φ are fresh,

i.e. FV ([φ1, . . . , φm]⇒ φ) ∩ FV ([ψ1, . . . , ψn]⇒ ψ) = ∅.
This assumption may be justified considering the formal derivation of the

resolution rule. Suppose that the free variables in [φ1, . . . , φm]⇒ φ are

not all fresh, and consider
∧
x′1 . . . x

′
k.[φ

′
1, . . . , φ

′
m]⇒ φ′, obtained from
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x1 . . . xk.[φ1, . . . , φm]⇒ φ by replacing each xi with x′i, where the x′i

are fresh.

It is easy to see that in the formal derivation of the resolution rule, one

can replace ∧
x1 . . . xk.[φ1, . . . , φm]⇒ φ

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

with ∧
x′1 . . . x

′
k.[φ

′
1, . . . , φ

′
m]⇒ φ′

[φ1θ, . . . , φmθ]⇒ φθ

∧
-E

Therefore we can assume without loss of generality that the free

variables in [φ1, . . . , φm]⇒ φ are fresh.

The next question is: why do we want fresh variables? Maybe this is

clear intuitively: A rule is always meant to be schematic and the choice

of variables names in a rule should be irrelevant. More concretely, one
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may say that if one does not rename the variables in a rule and hence

there is some variable, say A, that occurs in the current subgoal, then

resolution may lead to a subgoal containing occurrences of A originating

from the goal and others originating from the rule, and these are

inadvertently identified, leading to a proof state that is more instantiated

than it should be.

Back to main referring slide
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A Hint
On the one hand, we want to resolve

([[A ∧B]]⇒ [[C → A ∧ C]])⇒ [[A ∧B → (C → A ∧ C)]],

i.e., we have to match ([[A ∧B]]⇒ [[C → A ∧ C]]) against the conclusion

of some meta-axiom.

On the other hand, think what Isabelle would display in this situation.

The (only) subgoal would be

1. A ∧B ⇒ C → A ∧ C,

so we have to show C → A ∧ C (using assumption A ∧B). So you

should look at C → A ∧ C to guess which meta-axiom should be used

now.
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Back to main referring slide
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Resolution not Applicable
In our current situation, Isabelle would display:

Level 1(1 subgoal)
A ∧B → (C → A ∧ C)
1. A ∧B =⇒ C → A ∧ C

From your experience with Isabelle, it is clear that since the top-level

symbol in C → A ∧ C is →, you would use →-I.

But look at the resolution rule again. We would take a fresh instance of

→-I, say ([[A2]]⇒ [[B2]])⇒ [[A2→ B2]]. The problem is that [[A2→ B2]]
is not unifiable with [[A ∧B]]⇒ [[C → A ∧ C]], and so res is not

applicable.

Back to main referring slide
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The Lifted →-I

([[A ∧B]]⇒ ([[A2]]⇒ [[B2]]))⇒ ([[A ∧B]]⇒ [[A2→ B2]])

is the →-I-rule (meta-axiom) lifted over the assumption A ∧B.

Back to main referring slide
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The Lifted ∧-I

(Ω⇒ [[A3]])⇒ (Ω⇒ [[B3]])⇒ (Ω⇒ [[A3 ∧B3]])

is the ∧-I-rule (meta-axiom) lifted over the assumption list Ω. Recall

that Ω was an abbreviation for [[[A ∧B]], [[C]]], but this is obviously

irrelevant for the process of lifting.

Back to main referring slide
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Why Is the Assumption Axiom Schematic?
The assumption axiom

[φ1, . . . , φm]⇒ φi

assum

is schematic in two senses:

• the Greek letters could stand for arbitrary formulae;

• just like for resolution rule, we don’t even know how many formulae

are involved (m, i could be any natural numbers).

However, one could also write the axiom as

[A1, . . . , Am]⇒ Ai

assum

where the A’s are variables (of type bool) and instantiate it later when it

is used in some resolution step.
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Discharging Is Optional
Recall here that the rule ⇒-I, just like →-I, allows you to discharge zero

or more assumptions. In the present derivation, we discharge the

assumption φi at some point but we do not discharge any other

assumptions.

Back to main referring slide
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Using the more Generic Assumption Axiom
As explained previously, we could use a more generic variant of the

assumption axiom, in that we have variables in it that may become

instantiated upon resolution. As in previous proof steps we assume that

these variables are suitably renamed; for this purpose we index them by 4.

Note however that the variant is still specific in the sense that m = 2.

Like in meta-axioms used before, we use letters from the beginning of

the alphabet, so the variant of the assumption axiom that we use is

[A4, B4]⇒ B4. The proof fragment would then look as follows:

[A4, B4]⇒ B4

...

[Ω⇒ [[A]],Ω⇒ [[C]]]⇒ ω

(Ω⇒ [[A]])⇒ ω
res

where θ = {A4← [[A ∧B]], B4← [[C]]}.
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Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 727

Turning Trees Upside-Down?
Intuitively, as far as the order in which the object rules,

resp. meta-axioms, are applied, the proof inMProp is the proof in Prop
turned upside-down.

However, this may seem suspicious for two reasons:

• In derivation trees, the direction of implication (forgetting about

whether it is meta- or object implication) is “downwards”: whatever is

above implies whatever is below. So it seems strange that this order

should be reversed just because we go from the object to the

meta-level.

• In general, a derivation tree in the object level is a proper tree, i.e.,

there are nodes where it branches. So what sense does it make to

“turn it upside-down”? The result would not be any tree at all.

These points will now be addressed.
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Interleaving Proofs

If one pictures the object level proof and how it is modeled in MProp,

one intutive way of thinking of it is as follows: Each rule application in

the object level proof must also be performed at the meta-level. Now,

starting at the root of the object level proof, we may do any rule

application that is the child of a rule application we have done previously.

Take for example the following object level proof:

[A ∧ (B ∧ C)]1

A
∧-EL3

[A ∧ (B ∧ C)]1

B ∧ C ∧-ER5

C
∧-ER4

A ∧ C ∧-I2

A ∧ (B ∧ C)→ A ∧ C→-I1
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Then in the meta-proof, the meta-axioms might be applied in the

following orders:

→-I1, ∧-I2, ∧-ER4, ∧-ER5, ∧-EL3, or

→-I1, ∧-I2, ∧-EL3, ∧-ER4, ∧-ER5, or

→-I1, ∧-I2, ∧-ER4, ∧-EL3, ∧-ER5.
But this is not new to you: In Isabelle, you are always free to choose the

subgoal that you want to work on next, and so you can interleave the

proofs of the different subgoals.

Back to main referring slide
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Suppressing Conversion
This means, we do not show any applications of the conversion rules

explicitly. Otherwise, we would have to show subderivations such as

([[∀z.G z]]⇒ (
∧
x.[[(λw.Gw ∨H w)x]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]
...

([[∀z.G z]]⇒ (
∧
z.[[Gz ∨H z]]))

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

which would be using those conversion rules. Note that this suppressing

is the reason why you find the ≡-symbol so rarely in this part of this

chapter.

Back to main referring slide
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A Different Way of Lifting ∀-I
In our proof, we lifted ∀-I over assumption [[∀z.G z]] as follows:

([[∀z.G z]]⇒ (
∧
x.[[F1 x]]))⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

It would have been possible to derive (formally, inM) the following rule

instead:

(
∧
x.[[∀z.G z]]⇒ [[F1 x]])⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

This is essentially so since z /∈ FV [[∀z.G z]]. If we had done it like that,

Smaus: CSMR; WS08/09



More Detailed Explanations 733

step 2 would have looked as follows

(
∧
x.[[∀z.G z]]⇒ [[F1 x]])

⇒ ([[∀z.G z]]⇒ [[∀x.F1 x]])

...

([[∀z.G z]]⇒ [[∀z.G z ∨H z]])
⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

(
∧
z.[[∀z.G z]]⇒ [[Gz ∨H z]])

⇒ [[(∀z.G z)→ (∀z.G z ∨H z)]]

res

The rest of the proof would then have looked slightly differently due to

the different scope of the
∧

. For example, it would have been necessary

to lift ∨-IL over assumptions before lifting it over parameters.

In fact, if we denote a vector of variables by overlining, then we can

Smaus: CSMR; WS08/09



More Detailed Explanations 734

derive the following rule for lifting over assumptions:

[(
∧
x̄1.φ1), . . . , (

∧
x̄m.φm)]⇒ φ

[(
∧
x̄1.Ψ⇒ φ1), . . . , (

∧
x̄1.Ψ⇒ φm)]⇒ (Ψ⇒ φ)

where x̄1, . . . x̄m /∈ FV (Ψ). Compare this to rule a-lift. Using the more

complicated rule, where the assumption list Ψ is pulled into the scope of∧
’s surrounding each rule premise φi, would probably have made the

presentation here somewhat more complicated. On the other hand, this

is indeed what happens in Isabelle (try to do the proof of

(∀z.G z)→ (∀z.G z ∨H z) in Isabelle).

Back to main referring slide
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Lifting refl
Note that lifting refl ∧

z.[[z = z]]

over x gives ∧
g3.

∧
x.[[g3 x = g3 x]].

Here the variable z in refl was replaced by the variable g3 that depends

on x. However, we drop the outer quantification
∧
g3. In this particular

case,
∧
x is also an outer quantification, but we keep it, since obtaining

this quantification was the very purpose of lifting (recall that lifting is

done to achieve unifiability).

Back to main referring slide
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Unifying
∧
x.[[x = y1]] and

∧
x.[[g3 x = g3 x]]

Recall that
∧
x.φ is syntactic sugar for

∧
x.(λx.φ).

So we have to unify λx.[[x = y1]] and λx.[[g3 x = g3 x]].
It turns out that this task can be decomposed into having to unify λx.x

and λx.g3 x on the one hand, and λx.y1 and λx.g3 x on the other hand.

Unification of λx.x and λx.g3 x forces g3 to be λx.x, so we are left with

having to unify λx.y1 and λx.x. But these terms are not unifiable!

This was just a semi-formal argument that
∧
x.[[x = y1]] and∧

x.[[g3 x = g3 x]] are not unifiable, but it gives you the idea.

Back to main referring slide
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The Universal Closure
The universal closure of a meta-formula ψ is the formula

∧
x1 . . . xn.ψ

where FV (ψ) = {x1 . . . xn}.
As might be expected, the same concept is also used for FOL formulae

where it is defined in analogy using ∀ instead of
∧

.

Back to main referring slide
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Proving what We Want
Suppose we want to prove ((A→ B)→ A)→ A. If we allow for

instantiation of the free variables A and B, we could easily end up

proving ((A→ A)→ A)→ A. This is probably not what we want. In

fact the proof has little to do with the proof of ((A→ B)→ A)→ A

that is schematic in A and B.

In terms ofMProp, we want to prove
∧
AB.[[((A→ B)→ A)→ A]]

Recall that ((A→ B)→ A)→ A is Peirce’s law.

Back to main referring slide
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Too many Unifiers
The more free variables in the goal we allow Isabelle to instantiate, the

more unifiers there are. This may increase the search space to the extent

of making it impossible to find a proof.

Back to main referring slide
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Test the Difference
To understand the difference, try proving A ∧B → P and A ∧B →?P
in Isabelle. The first won’t succeed while the second may succeed in

various ways.

Back to main referring slide
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See how Variables Are Turned into
Metavariables

Prove A ∧B →?P in Isabelle and save (qed) it as a theorem and then

have a look at the theorem.

Back to main referring slide
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The Inference Rules of M Are not Enough
In some course on propositional logic, you may have learned that the

connective → is not really necessary since A→ B is equivalent to

¬A ∨B. Likewise, we considered ¬A as syntactic sugar for A→ ⊥.

Therefore, when we introduce a logic M that is so extremely simple as

far as the number of logical symbols is concerned (just ⇒, ≡,
∧

), one

might think that the idea is that all the other logical symbols one usually

needs are just syntactic sugar. This is not the case!

To encode propositional logic or FOL inM, we must add their rules as

axioms.

Later, we will be working with a logic just slightly richer thanM but still

quite simple, and there the idea is indeed that all the other logical

symbols one usually needs are just syntactic sugar.

Back to main referring slide
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Overview

HOL is expressive foundation for

• Mathematics: analysis, algebra, . . .

• Computer science: program correctness, hardware

verification, . . .
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Overview

HOL is expressive foundation for

• Mathematics: analysis, algebra, . . .

• Computer science: program correctness, hardware

verification, . . .

HOL is very similar to M, but it “is” an object logic!

• HOL is classical.

• Still important: modeling of problems/domains (now

within HOL).

• Still important: deriving relevant reasoning principles.

Smaus: CSMR; WS08/09



Overview 745

Isabelle/HOL vs. Alternatives
We will use Isabelle/HOL.

• Could forgo the use of a metalogic and employ

alternatives, e.g., HOL system or PVS, or constructive

provers such as Coq or Nuprl.

• Choice depends on culture and application.

Smaus: CSMR; WS08/09
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Safety through Strength
Safety via conservative (definitional) extensions:

• Small kernel of constants and rules;

• extend theory with new constants and types defined using

existing ones;

• derive properties/theorems.

Contrast with:

• Weak logics (e.g., propositional logic): can’t define much;

• axiomatic extensions: can lead to inconsistency.

Bertrand Russel once likened the advantages of postulation

over definition to the advantages of theft over honest toil!
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Set Theory as Alternative?
Set theory is the logician’s choice as basis for modern

mathematics.

• ZFC [Zer07, Frä22]: has been implemented in Isabelle,

with impressive applications!

• Neumann-Bernays-Gödel [Ber91]: equivalent to ZFC, but

finitely axiomatizable.

Set theories (both) distinguish between sets and classes.

• Consistency maintained as some collections are “too big”

to be sets, e.g., class of all sets V is not a set.

• A class cannot belong to another class (let alone a set)!
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Finally: We Choose HOL!
HOL developed by [Chu40, Hen50] and rediscovered by

[And02, GM93].

• Rationale: one usually works with typed entities.

• Reasoning is then easier with support for types.

HOL is classical logic based on λ→.

• Isabelle/HOL also supports “mod cons” like

polymorphism and type classes!

HOL is weaker than ZF set theory, but for most applica-

tions this does not matter. If you prefer ML to Lisp, you

will probably prefer HOL to ZF. (Paulson)
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What Does Higher-Order Mean?
“Type” order Logic order

Example

Just o 0? A ∧B → B ∧A
1 1 ∀x, y.R(x, y)→ R(y, x)
+ quantification 2 False ≡ ∀P. P

P ∧Q ≡ ∀R. (P → Q→ R)
2 3

+ quantification 4 ∀X. (X(R,S)↔ (∀x.R(x)→ S(x)))
→ X(R′, S ′) (≡ subrel(R′, S ′))

... ... ...
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HOL = Union of All Finite Orders
ω-order logic, also called finite-type theory or higher-order

logic (HOL), includes logics of all finite orders.
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Syntax

Syntactically, HOL is a polymorphic (although not

necessarily) variant of λ→ with certain default types and

constants.

Default constants can be called logical symbols.
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Types (Review)
Given a set of type constructors, say

B = {bool , → , ind , × , list , set , . . .}, polymorphic

types are defined by τ ::= α | (τ, .., τ) T , where α is a

type variable.

• bool is also called o in literature [Chu40, And02].

Confusingly, the truth value type in Isabelle/HOL (i.e.,

object-level) is called bool .
• bool and → always present in HOL; ind will also play a

special role; other type constructors may be defined.

• Note polymorphism!
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Terms
Reminder: e ::= x | c | (ee) | (λxτ . e)
Typing rules as in polymorphic λ-calculus, with Σ defining

and typing constants.

Terms of type bool are called
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Terms
Reminder: e ::= x | c | (ee) | (λxτ . e)
Typing rules as in polymorphic λ-calculus, with Σ defining

and typing constants.

Terms of type bool are called (well-formed) formulae.

In HOL, Σ always includes:

True,False : bool
= : α→ α→ bool (polymorphic, or set)

→ : bool → bool → bool
ε : (α→ bool)→ α (in Isabelle: Eps or SOME)
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Semantics

Intuitively: many-sorted semantics + functions

• FOL: structure is domain and functions/relations.

A = 〈D , IA〉
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Semantics

Intuitively: many-sorted semantics + functions

• FOL: structure is domain and functions/relations.

Many-sorted FOL: domains are sort-indexed

A = 〈D1, . . . ,Dn, IA〉
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Semantics

Intuitively: many-sorted semantics + functions

• FOL: structure is domain and functions/relations.

Many-sorted FOL: domains are sort-indexed

A = 〈D1, . . . ,Dn, IA〉

• HOL extends idea: D indexed by (infinitely many) types.

• Complications due to polymorphism [GM93].

• We only give a monomorphic variant of semantics here!
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Model Based on Universe of Sets U
U is a collection of sets (domains), fulfilling closure

conditions:

Inhab: Each X ∈ U is a nonempty set

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U

Prod: If X,Y ∈ U then X × Y ∈ U .

Pow: If X ∈ U then ℘(X) = {Y | Y ⊆ X} ∈ U

Infty: U contains a distinguished infinite set I

Choice: There is a function ch ∈ ΠX∈U .X.

Smaus: CSMR; WS08/09



Semantics 756

Prod: Encoding X × Y
X × Y is the Cartesian product, i.e., the set of pairs (x, y)
such that x ∈ X and y ∈ Y .

One can actually “encode” a tuple (x, y) without explicitly

postulating the “existence of tuples”. E.g.:

(x, y) ≡ {{x}, {x, y}}.
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Choice: Picking a Member
The function ch takes a set X ∈ U as argument and returns

a member of X.

We hence write ch ∈ ΠX∈U .X, i.e., ch is of dependent type.

Essentially, the constant ε will be interpreted as ch, but you

will see the technical details later.
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Function Space in U
Define set X → Y as (graphs of) functions from X to Y .

• For nonempty X and Y , this set is nonempty and is a

subset of ℘(X × Y ).
• From closure conditions: X,Y ∈ U then X → Y ∈ U .
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Distinguished Sets
From

Infty: U contains a distinguished infinite set I

Sub: If X ∈ U and Y ⊆ X and Y 6= ∅, then Y ∈ U

it follows that the following sets exist in U :

Unit: A distinguished 1-element set {1}

Bool: A distinguished 2-element set {T, F}.
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Frames
For semantics, we neglect polymorphism. τ and σ range over

types.

A frame is a collection {Dτ}τ of non-empty sets (domains)

Dτ ∈ U , one for each type τ , where:

• Dbool = {T, F};
• Dτ→σ ⊆ Dτ → Dσ, i.e., some collection of functions from

Dτ to Dσ.
• Dind = I.

Note: for fundamental reasons discussed later, one cannot

simply define Dτ→σ=Dτ → Dσ at this stage.
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Interpretations
An interpretation M = 〈{Dτ}τ ,J 〉 is a frame {Dτ}τ and a

denotation function J mapping each constant of type τ to

an element of Dτ where:

• J (True) = T and J (False) = F ;

• J (=τ→τ→bool) is equality on Dτ ;
• J (→) is implication function over Dbool . For

b, b′ ∈ {T, F},

J (→)(b, b′) =
{
F if b = T and b′ = F

T otherwise
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Interpretations (Cont.)
• J (ε(τ→bool)→τ) is defined by (for f ∈ (Dτ → Dbool)):

J (ε(τ→bool)→τ)(f) =
{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

Note: If a frame {Dτ}τ does not contain all of the functions

used above, then {Dτ}τ cannot belong to any interpretation.
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A Terminological Note
The terminology is slightly different from FOL:

In FOL, “〈{Dτ}τ ,J 〉” is called structure and “J ” is called

interpretation.

In HOL, 〈{Dτ}τ ,J 〉 is called interpretation and J is called

denotation function.

Smaus: CSMR; WS08/09



Semantics 764

The Value of Terms (Naive)
In analogy to FOL, given an interpretation M = 〈{Dτ}τ ,J 〉
and a type-indexed collection of assignments A = {Aτ}τ ,
define VM

A such that VM
A (tρ) ∈ Dρ for all t, as follows:

1. VM
A (xτ) = A(xτ);

2. VM
A (c) = J (c) for c a constant;

3. VM
A (sτ→σtτ) = (VM

A (s))(VM
A (t)), i.e., the value of the

function VM
A (s) at the argument VM

A (t);
4. VM

A (λxτ . tσ) = the function from Dτ into Dσ whose value

for each e ∈ Dτ is VM
A[x←e](t).

What is the problem?
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The Value of Terms (Naive)
In analogy to FOL, given an interpretation M = 〈{Dτ}τ ,J 〉
and a type-indexed collection of assignments A = {Aτ}τ ,
define VM

A such that VM
A (tρ) ∈ Dρ for all t, as follows:

1. VM
A (xτ) = A(xτ);

2. VM
A (c) = J (c) for c a constant;

3. VM
A (sτ→σtτ) = (VM

A (s))(VM
A (t)), i.e., the value of the

function VM
A (s) at the argument VM

A (t);
4. VM

A (λxτ . tσ) = the function from Dτ into Dσ whose value

for each e ∈ Dτ is VM
A[x←e](t).

What is the problem? Condition 4!
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Condition 4 Is Critical
For VM

A to be well-defined, the function from Dτ into Dσ in

condition 4 must live

• in some domain of U (since it is required that

VM
A (tρ) ∈ Dρ for all t, and Dρ ∈ U): this is guaranteed by

closure conditions on U ;
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Condition 4 Is Critical
For VM

A to be well-defined, the function from Dτ into Dσ in

condition 4 must live

• in some domain of U (since it is required that

VM
A (tρ) ∈ Dρ for all t, and Dρ ∈ U): this is guaranteed by

closure conditions on U ;

• in a certain domain of U , namely Dτ→σ; for this, Dτ→σ
must be big enough.

If VM
A is well-defined, we call M = 〈Dτ ,J 〉 a (general)

model.
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Models
Hence: Not all interpretations are general models, but we

restrict our attention to the general models.

If Dτ→σ is the set of all functions from Dτ to Dσ, then it is

certainly “big enough”. In this case, we speak of a standard

model. Important for completeness.

If M is a general model and A an assignment, then VM
A is

uniquely determined.

VM
A (t) is value of t in M wrt. A.

Note that in contrast to first-order logic, “model” does not

mean “an interpretation that makes a formula true”.
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Satisfiability and Validity
A formula (term of type bool) φ is satisfiable wrt. a model M

if there exists an assignment A such that VM
A (φ) = T .

A formula φ is valid wrt. a model M if for all assignments A,

we have VM
A (φ) = T .

A formula φ is valid in the general sense if it is valid in every

general model.

A formula φ is valid in the standard sense if it is valid in

every standard model.
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Existence of Values
Closure conditions for general models guarantee every

well-formed term has a value under every assignment, and

this means that certain values must exist, e.g.,

• Closure under functions: since VM
A (λxτ . x) is defined, the

identity function from Dτ to Dτ must always belong to

Dτ→τ .
• Closure under application: if DN is natural numbers, and

DN→N→N contains addition function p where p x y = x+ y,

then DN→N must contain k where k x = 2x+ 5, since

k = VM
A (λxN. f(f x x) y) where A(f) = p and A(y) = 5.
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Basic Rules

We now give the core calculus of HOL. Its rules can be

stated using only the constants =, →, and ε. However, there

will be one rule, tof (“true or false”), which would be hard

to read if we did that.

So we allow ourselves to “cheat” and also use constants

True, False, ∨ to write rule tof.

Later we will define those constants, i.e., regard them as

syntactic sugar.
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Basic Rules in Sequent Notation

Γ ` φ = φ
refl

Γ ` φ = η Γ ` P (φ)

Γ ` P (η)
subst

Γ ` φx = η x

Γ ` φ = η
ext∗

Γ, φ ` η
Γ ` φ→ η

impI

Γ ` φ→ η Γ ` φ
Γ ` η

mp

Γ ` (φ→ η)→ (η → φ)→ (φ = η)
iff

φ = True ∨ φ = False
tof

Γ ` φx
Γ ` φ(εx.φx)

selectI
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Axiom of Infinity
There is one additional rule (axiom) that will give us the

existence of infinite sets:

∃f (ind→ind).injective f ∧ ¬surjective f
infty

Has special role. Interesting to look at HOL with or without

infinity. Won’t consider infinity today.

Note “cheating” (use of ∃).
These eight (nine) rules are the entire basis!
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Soundness and Completeness
Soundness is straightforward [And02, p. 240].
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Soundness and Completeness
Completeness only follows w.r.t. general models, as opposed

to standard models. Recall that a standard model is one

where Dτ→σ is always the set of all functions from Dτ to Dσ.
There are formulas that are valid in all standard models, but

not in all general models, and which cannot be proven in our

calculus. Our calculus can prove the formulas that are true

in all general models including non-standard ones (Henkin

models [Hen50]). This reconciles HOL with Gödel’s

incompleteness theorem [Hen50, Mil92].

If we consider a version of HOL without infinity, then every

model is a standard model and so completeness holds.
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Isabelle/HOL

We now look at a particular instance of HOL (given by

defining certain types and constants) which essentially

corresponds to the HOL theory of Isabelle.

We present language and rules using “mathematical” syntax,

but also comparing with Isabelle (concrete/HOAS) syntax.

We take polymorphism back on board.
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(Central Parts of the) Language
Σ0 =

{ True, False : bool ,
¬ : bool → bool ,
∧ , ∨ , → : bool → bool → bool ,
∀ , ∃ : (α→ bool)→ bool ,
ε : (α→ bool)→ α,

if then else : bool → α→ α→ α,

= : α→ α→ bool}
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Basic Rules in Isabelle Notation
refl: "t = t"
subst: "[| s = t; P(s) |] ==> P(t)"
ext: "(!!x. (f x) = g x) ==>

(%x. f x) = (%x. g x)"
impI: "(P ==> Q) ==> P-->Q"
mp: "[| P-->Q; P |] ==> Q"
iff: "(P-->Q) --> (Q-->P) --> (P=Q)"
True_or_False: "(P=True) | (P=False)"
selectI: "P (x) ==> P (@x. P x)"

See HOL.thy.
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Basic Rules in Mixed Notation

φ = φ
refl

φ = η P (φ)

P (η)
subst

φx = η x

φ = η
ext∗

φ =⇒ η

φ→ η
impI

φ→ η φ

η
mp

(φ→ η)→ (η → φ)→ (φ = η)
iff

φ = True ∨ φ = False
tof

φx

φ(εx.φx)
selectI
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No more “Cheating”: The Definitions

True = (λxbool .x = λx.x)
∀ = λφα→bool .(φ = λx.True)

False = ∀φbool .φ

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ

¬ = λφ.(φ→ False)
∃ = (λφ.φ(εx.φx))
If = λφboolxy.εz.(φ = True → z = x)∧

(φ = False → z = y)
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Note: Different Syntaxes
Mathematical vs. Isabelle, e.g.

¬φ Not Phi
λxbool .P %x :: bool. P

HOAS vs. concrete, e.g.

∀ (λxτ .(∧p(x) q(x))) ∀xτ .p(x) ∧ q(x)
ε (P ) εx.P (x)

We use all those forms as convenient. For displaying Isabelle

files, we will sometimes use a style where some ASCII words

(e.g. %) are replaced with mathematical symbols (e.g. λ).
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Conclusions on HOL

• HOL generalizes semantics of FOL:
◦ bool serves as type of propositions;

◦ Syntax/semantics allows for higher-order functions.

• Logic is rather minimal: 8 or 9 rules, based on 3 constants,

soundness straightforward.

• Logic complete (w.r.t. general models, but not standard

models).

• Next lecture we will see how all well-known inference rules

can be derived. ¸
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More Detailed Explanations
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HOL Applications
Theorem proving in higher-order logic is an active research area with

some impressive applications.

Back to main referring slide
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HOL “Is” an Object Logic
The differences between M and HOL are subtle and the matter is

further complicated by the fact that there are some variations in the way

in which the Isabelle metalogic M on the one hand and the object logic

HOL on the other hand are presented.

But what matters for us here is that HOL is an object logic, i.e., it is one

of the object logic that can be represented byM, just like propositional

logic or first-order logic. That is to say, we use HOL as object logic.

Back to main referring slide
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Modeling of Problems/Domains in HOL
We have previously looked at metatheory, i.e., how can one logic be

represented/modeled in a metalogic.

In particular, we have seen how general reasoning principles can be

derived in the metalogic.

We now set aside the issue of metalogics, but there is still an issue of

modeling one system within another: how do we model

problems/domains within HOL? How do we derive reasoning principles?

Back to main referring slide
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Classical Reasoning
Recall the distinction between classical and intuitionistic logics. There is

a particular rule in HOL from which the rule of the excluded middle can

be derived. This is in contrast to constructive (intuitionistic) logics.

Back to main referring slide
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Not just HOL, but Isabelle/HOL
We use Isabelle/HOL, and this means that HOL is an object logic

represented by the metalogic M.

Back to main referring slide
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Forgoing Metalogic
There are theorem proving systems that have no metalogic, but rather

have a particular logic hard-wired into them, e.g. a HOL system or PVS.

Back to main referring slide
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Constructive Provers
Constructive provers are based on intuitionistic logic. The rationale is

that one has to give evidence for any statement. Coq and Nuprl are

examples of such systems.

Back to main referring slide
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Safety
The principle is simple: the smaller a system is, the easier it is to check

that it is correct, and the more confident one can be about it.

We have seen this before when we argued for the use of metalogics.

However, in that context, we still had to add further axioms to M. Here

this is not the case.

Safety through strength means: HOL is strong enough to model

interesting systems without having to add further axioms – that’s what

makes it safe.

Back to main referring slide
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No Axiomatic Extensions
What we attempt to do here has similarities to the process of

representing an object logic in a metalogic. But an important difference

must be noted.

We will see many extensions of the HOL kernel by constants (and types).

The definitions of those constants and types involve axioms that must be

added according to a strict discipline. Other than that, we will not add

any axioms!

Back to main referring slide
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ZFC
ZFC stands for Zermelo-Fränkel set theory with choice [Dev93, Ebb94].

Back to main referring slide
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Finitely Axiomatizable
Strictly speaking, an axiom within the object language in question. In

this sense, the axiom of the excluded middle from propositional logic,

A ∨ ¬A (for example) is not an axiom, because A is a meta-variable

which could stand for an arbitrary formula, and thus A ∨ ¬A is not

within the object language of propositional logic. One says that A ∨ ¬A
is an axiom schema that represents infinitely many axioms.

So far we have not made this distinction explicit in most places, although

we have raised this issue very early on.

Now a theory is finitely axiomatizable if it only uses axioms, but no

axiom schemata.

Back to main referring slide
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Mod Cons
“Mod cons” stands for “modern conveniences”.

Back to main referring slide
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Type Order
Recall the definition of an order on types and assume here, as we did in

the lecture on representing syntax, that there is a type i of individuals

and a type o for truth values.

In the sequel, we follow [And02, §50], who uses a definition of order

slightly different from ours. I will phrase his definition using the concept

of predicate type:

• i is a type of order 0.

• every type of the form

i→ . . . i→︸ ︷︷ ︸
n times

o,

where n ≥ 0, is a predicate type of order 1.

• If τ1, . . . , τn are predicate types, then τ1→ . . .→ τn→ o is a predicate

type whose order is 1+ the maximum of the orders of τ1, . . . , τn.
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Note that this means that there are no function symbols, since we did

not consider types of the form . . .→ i. However it is better to say that

we simply disregard them in the subsequent explanations, for simplicity.

In the table, we classify logics by the order of the non-logical symbols

(e.g., for first-order logic: variables, predicate symbols).

A hierarchy of logics is obtained by the following alternation:

• admit an additional order for the non-logical symbols in the logic;

• admit quantification over symbols of that order.

We start this hierarchy with first-order logic.

It has symbols of first-order type (predicate symbols), but quantification

is allowed only over individuals, which are of order 0.

Now, if one admits quantification over symbols of first-order type, i.e.,

over symbols of type o or i→ . . .→ i→ o, one obtains second-order

logic.
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Now, if one admits symbols of second-order type (symbols taking

predicate symbols as arguments), one obtains third-order logic.

Now, if one admits quantification over symbols of second-order type, one

obtains fourth-order logic.

Hence quantification over nth-order variables corresponds to

(2n)th-order logic.

In the end, one will never bother to discuss, say, 7th-order logic, since

higher-order logic is the union of all logics of finite order, and this is

what we will be working with.

Andrews has said that propositional logic might be regarded as zeroth

order logic, but unfortunately, propositional logic cannot be found in this

hierarchy in a straightforward way. According to the hierarchy, below

first-order logic there should be a logic where the symbols are of order 0
and quantification over such symbols is allowed. But in fact, in
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propositional logic the symbols are of type o, which is of order 1 but is

not the only type of order 1, and no quantification is allowed at all.

However, once you take higher-order logic as your point of reference and

not propositional or first-order logic, which can just be viewed as special

cases, you will probably not find this bothering anymore.
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subrel
Consider the binary predicate subrel which takes two unary relations as

arguments. subrel(R,S) is defined as true whenever R is a subrelation

of S, i.e. when ∀x.R(x)→ S(x).
Now instead of defining such a predicate and writing, say, a formula

subrel(R′, S′), one could abstract from that name and write

∀X. (X(R,S)↔ (∀x.R(x)→ S(x)))→ X(R′, S′)

The subformula X(R,S)↔ (∀x.R(x)→ S(x)) is true if and only if X

is indeed the predicate subrel and so the entire formula is true if R′ is

indeed a subrelation of S′.
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The Type signature of HOL
As before, we use the letter B to denote a particular set of type

constructors.

Note that this set is not hard-wired into HOL, but can be specified as

part of a particular HOL language. One can therefore speak of B as a

type signature.

B is some fixed set “defined by the user”. In Isabelle, there is a syntax

provided for this purpose.

However, some type constructors are always present.
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ind
ind (“indefinite”) is a type constructor which stands for a type with

infinitely many members, a concept which is central in HOL, as we will

see later.
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Pair Type
For any two types τ and σ, we write τ × σ for the type of pairs where

the first component is of type τ and the second component is of type σ.

The infix syntax is in analogy to →.

The pair type is not in the core of HOL, but it can be defined in it.
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Variable Augmented with Type?
Strictly speaking, a variable should be augmented with a type in the

term λx. e. The type τ in λxτ . e is often omitted if it is clear from the

context. Here, “clear from the context” does not only refer to a human

reader, but also to the formal Isabelle syntax. It is possible to give an

explicit type to a variable and also specify the class of that type (one can

impose type and class constraints), but often, Isabelle can infer the type

of a variable.
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Generalizing λ→ to Polymorphism
We have seen the generalization of λ→ to polymorphism.

Note that in order to simplify the presentation, we neglect polymorphism

in the section on semantics. In that section, τ and σ will be

metavariables (used in the description of the formalism) ranging over

types, rather than type variables of a polymorphic type system.
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The Type of =
The type of = can either be declared to be polymorphic (then α would

be a type variable), or one can, conceptually, assume that there is an

infinite set containing a constant =τ for each type τ .
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Intuition for the Constants
We will give the formal semantics later, but now some intuition!

True, False, = and → have the meanings you would expect although =
is more general than in first-order logic since for any type τ , there is the

= symbols for terms of type τ . This is just like inM.

True and False are intuitive but not strictly necessary.

The constant ε (also called Hilbert operator) denotes a function which

takes a set and picks a member from that set. We give a more detailed

intuitive explanation later.

Note that the derivation rules can be formulated without using True and

False.
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Isabelle Syntax for ε
The Hilbert operator is written Eps in Isabelle.

Now similarly as for quantifiers ∀,∃, Isabelle provides a syntax SOME x.P
that stands for Eps(λx.P ).
In older versions of Isabelle, SOME was written ’@’.
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Prod: Encoding X × Y
According to usual mathematical practice, one would argue that if two

sets A and B are well-defined, then the set A×B of pairs (tuples) (a, b)
where a ∈ A and b ∈ B is also well-defined.

That is, we assume that if one understands what a and b are, then one

also understands what the pair (a, b) is. A pair is a “semantic object”.

Ultimately, semantics can only be understood using one’s intuition, and

only be explained using natural language. (One can only “hope” [GM93,

page 193] that no confusion arises.) One should try to base the

semantics on a very small number of fundamental concepts.

Therefore, one might want to avoid having a concept “pair” (“tuple”)

explicitly, or put differently, one might want to reduce “pairs” to

something even more fundamental. That’s what is intended by the

encoding {{x}, {x, y}}.
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Note that this reduction step somehow makes the type discipline

invisible, because x and y might be semantic objects “of different type”.
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Inhabitation

It is crucial in the semantics that any type is inhabited, i.e., has an

element. The reason for this is that otherwise, there would be terms for

which we cannot give a semantics:

Suppose ρ was an empty (non-inhabited) type. Then we cannot give any

semantics to the term xρ. Moreover, if the signature includes a constant

cρ, then we cannot give a semantics to cρ. Even if we only consider

closed terms (i.e., terms without free variables), and we explicitly forbid

the existence of a constant cρ for an empty type ρ, there will be terms

for which we cannot give a semantics. The simplest example is the term

λxρ.x.

We know that λ-terms denote functions, as in λxρ.x, and so it is natural

to expect that all functions we can write in the λ-calculus actually exist

in the semantics. Generally, the function space X → Y is empty if X or
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Y is empty. This means that Dτ→σ would necessarily be empty if τ is

empty.

One way of understanding why it would be bad if some λ-terms denoting

functions had no semantics is by looking at β-reduction: for any types

τ ,σ and a constant c of type σ, we expect (λxτ .c)x = c. But this

wouldn’t hold if we cannot give a semantics to (λxτ .c) since Dτ→σ is

empty.

Therefore: inhabitation.

One specific point where inhabitation is crucial is related to the

ε-operator, as we will see later.

In the book [GM93] that is one of the sources for this lecture,

inhabitation is mentioned, but it is not explained why it is crucial.

Here we speak of semantic inhabitation, i.e., our semantic universe must

be big enough so that all terms (of type τ) can be given a meaning (in
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Dτ). This is a different question from whether there might be types that

are not inhabited (syntactically) in the first place, i.e., types for which

there exists no term of this type (compare this to the Curry-Howard

isomorphism). Thus we are concerned with making sure that every term

has a meaning, not that every meaning has a term. However, it turns

out that that in HOL, each type τ is also syntactically inhabited, namely

e.g. by the term ε(τ→bool)→τ(λxτ .True).

Back to main referring slide
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Dependent Type
When we write ch ∈ ΠX∈U .X, i.e., ch is of dependent type, then this is

a statement on the semantic level. The expression ΠX∈U .X is not part

of the formal syntax of HOL (unlike in LF, a system we have not treated

here), and its meaning is only described in plain English, by saying that

ch takes a set X ∈ U as argument and returns a member of X.
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What Are Functions?
In any basic math course on algebra, we learn that a binary relation

between X and Y is set of a pairs of tuples of the form (x, y) where

x ∈ X and y ∈ Y . One also calls such a set a graph since one can view

pairs (x, y) as edges.

We also learn that a relation R is called a function from X to Y if for

each x ∈ X, there exists exactly one y ∈ Y such that (x, y) ∈ R.

Provided that Y is nonempty, a function from X to Y always exists.

Thus the set of functions from X to Y , denoted X → Y , is a nonempty

subset of the set of relations on X and Y , i.e., ℘(X × Y ). Since X → Y

is nonempty, by Prod we have that X → Y ∈ U .
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Why {1} and {T, F}?
Of course, the conditions on U do not per se enforce the existence of

sets containing the elements 1 or T or F . Just as well, one could say

that they enforce the existence of sets containing elements K or ® or o.

It is only because the name of a semantic element is ultimately irrelevant

that we claim, without loss of generality, that there is a 1-element set

{1} and a 2-element set {T, F}. We say that these sets are distinguished

because they play a special role in the setup of the semantics.
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Standard and General Models
General models must be distinguished from standard models, as we will

see later.

We sometimes omit the word “general” in general model.
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Type Subscript
For = and ε, we give type subscripts in the presentation of the semantics

since we assume, conceptually, that there are infinitely many copies of

those constants, one for each type. We do this to avoid explicit

polymorphism in this presentation.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 817

Intuition for ε and ch
We have

J (ε(τ→bool)→τ)(f) =
{
ch(f−1({T})) if f−1({T}) 6= ∅
ch(Dτ) otherwise

ch is a (semantic) function which takes a nonempty set and returns an

element from that set. f is a semantic function from Dτ to Dbool .

However, f can be interpreted as set. This is done in all formality here:

we write f−1({T}). One says that f is the characteristic function of the

set f−1({T}).
Now the type of ε is (τ → bool)→ τ (for any τ), so ε expects a function

as argument, which can be interpreted as a set as just stated. This set

can be empty or nonempty. In case it is nonempty, an element is picked

from the set non-deterministically. If the set is empty, an element from
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the type τ (which must be nonempty since each type is interpreted as

nonempty set). Note the importance of inhabitation.
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Type-Indexed Assignments
An assignment (previously called valuation) maps variables to elements

of a domain.

A type-indexed collection of assignments is an assignment that respects

the types: a variable of type τ will be assigned to a member of

Dτ [GM93]. Note that a variable has a type by virtue of a context Γ,

which is suppressed in our presentation of models.
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Type Subscript
In the presentation of models, we give type subscripts for the cases

VM
A (sτ→σtτ) and VM

A (λxτ . tσ) to indicate the types of s and t in those

definitions. Note that a term has a type in a certain context Γ, which is

suppressed in our presentation of models. The semantics is only defined

for well-formed terms, in particular, applications and abstractions having

types of the indicated forms.
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A[x← e]
A[x← e] denotes the assignment that is identical to A except that

A(x) = e.
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Condition 4 Violated
In condition 4, the semantics of λxτ . tσ is defined unambiguously as a

certain function. But in general, there is no guarantee that this function

is actually in Dτ→σ, and in this case, M = 〈{Dτ}τ ,J 〉 would not be a

model.
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Completeness
This is a standard trick when faced with the problem that a deductive

system is not complete. One can either enlarge the set of axioms, or one

can weaken the models by permitting more models. If we allow more

models, then fewer theorems will be valid (i.e., hold in all models), and

so fewer theorems will have to be provable in the derivation system.

Here, completeness is based on general models, and not standard

models. This resolves the apparent contradiction with Gödel’s

incompleteness theorem: HOL with infinity contains I, hence the natural

numbers, hence arithmetic . . . . By Gödel’s incompleteness theorem,

there cannot be a consistent derivation system that can prove all valid

theorems in the natural numbers.

A readable account on this problem can be found in [And02, ch. 7].
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Finite Domains
We might consider a version of HOL without infinity, i.e., one where

each domain is finite (note that U is still infinite, since there are infinitely

many types, e.g., bool , bool → bool , bool → bool → bool , . . . )).

One can see that every function in such a finite domain is representable

as a λ-term, and so for any σ and τ , we must have Dτ→σ=Dτ → Dσ.

For details consult [And02, §54].
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Syntaxes for Rules
We will mix natural deduction (with discharging assumptions), natural

deduction written in sequent style, and Isabelle syntax.

For a thorough account of this, consult [SH84].

Some general remarks about the correspondence: A rule

ψ

φ

in ND notation corresponds to an Isabelle rule ψ =⇒ φ.

A rule
[ρ]
....
ψ

φ
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is written as
ρ,Γ ` ψ
Γ ` φ

in sequent style or
ρ =⇒ ψ

φ

using the Isabelle meta-implication =⇒.

A rule
ψ

φ(x)

with side condition that x must not occur free in any undischarged

assumption on which ψ depends is written as

Γ ` ψ
Γ ` φ(x)
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in sequent style, where the side condition reads: x must not occur free in

Γ. Using the Isabelle meta-universal quantification, the rule is written∧
x.ψ

φ(x)

We will switch between the various ways of writing the rules! This means

in particular that we will use =⇒ and
∧

from Isabelle’s metalogic.
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Readability of Rule tof
Rule tof can be written as follows:

(λψ. (φ = (λx.x = λx.x)→ ψ)→
(φ = ((λη.η) = λx.(λx.x = λx.x))→ ψ)→ ψ) =

(λx.(λx.x = λx.x))

tof

Our notation for rule tof is thus based on the following definitions:

True = (λxbool .x = λx.x)
False = ∀φbool .φ

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ
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Intuition for True

True = (λxbool .x = λx.x)

The term λxbool .x = λx.x evaluates to T , and so it is a suitable

definition for the constant True.

Note that we give the type for x once. The right-hand side λx.x will

thereby also be forced to be of type bool → bool .
This is necessary for reasons that will become clear later.

Note that (λxbool .x = λx.x) is closed. Definitions must always be closed.
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Intuition for ∀

∀ = λφ.(φ = λx.True)

Note the use of HOAS here. ∀ should be a function that expects an

argument φ of type α→ bool (generalizing the technique we used for

encoding first-order ∀). So φ is such that when you pass it an argument

x of type α, it will return a proposition (something of type bool).
The expected semantics of ∀φ wrt. a model M and an assignment A is:

VM
A (∀φ) = T iff VMA[x←e](φx) = T for any e (from the domain of x’s

type).

Now when does φx hold for all x? This is the case exactly when φx

evaluates to T for all x, which is the same (applying some HOL rules) as

saying that φ is the function λx.True.
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Here α could be arbitrarily instantiated to some type.
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Intuition for ∨

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

First, observe the similarity of this definition with the ∨-E rule of

propositional logic.

Secondly, just go through the cases:

• If φ is true, then:

◦ If ψ is false, then φ→ ψ is false and so (φ→ ψ)→ (η → ψ)→ ψ is

true;

◦ If ψ is true, then (η → ψ)→ ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ is true.

• Otherwise, if η is true, then:

Smaus: CSMR; WS08/09



More Detailed Explanations 833

◦ If ψ is false, then η → ψ is false and so (η → ψ)→ ψ is true and so

(φ→ ψ)→ (η → ψ)→ ψ is true.

◦ If ψ is true, then (η → ψ)→ ψ is true and hence

(φ→ ψ)→ (η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ ψ)→ (η → ψ)→ ψ is true.

• Otherwise (if both φ and η are false), then for all ψ, both φ→ ψ and

η → ψ are true, and so there exists a ψ, say ψ ≡ False, such that

(φ→ ψ)→ (η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ ψ)→ (η → ψ)→ ψ is

true.

So the definition of ∨ behaves exactly as it should.
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Intuition for ∧

∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ

Similarly as for ∨, we can go through the cases:

• If η is false, then there exists a ψ, namely ψ ≡ False, such that η → ψ

is true, hence φ→ η → ψ is true, hence (φ→ η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ is true.

• Otherwise, if φ is false, then φ→ η → ψ is true, and there exists a ψ,

namely ψ ≡ False, such that (φ→ η → ψ)→ ψ is false.

Thus it is not the case that for all ψ, (φ→ η → ψ)→ ψ is true.

• Otherwise (if φ and η are true), then:

◦ If ψ is false, then η → ψ is false, hence φ→ η → ψ is false, hence

(φ→ η → ψ)→ ψ is true.
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◦ If ψ is true, then (φ→ η → ψ)→ ψ is true.

Thus for all ψ, we have that (φ→ η → ψ)→ ψ is true.

So the definition of ∧ behaves exactly as it should.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 836

Intuition for ¬

¬ = λφ.(φ→ False)

We know that one already from propositional logic.
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Intuition for ∃

∃ = (λφ.φ(εx.φx))

Using the abstract syntax for ε, one could also write

∃ = (λφ.φ(εφ))

Recall first the definition of ∀ to understand the type of ∃.
The expected semantics of ∃φ wrt. a model M and an assignment A is:

VM
A (∀φ) = T iff VMA[x←e](φx) = T for some e (from the domain of x’s

type).

The semantics of ε is such that φ(εφ) is true, if and only if a term t

exists for which φ(t) is true.

So this is exactly the expected semantics of ∃φ.
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Intuition for If

If = λφxy.εz.(φ = True → z = x) ∧ (φ = False → z = y)

The constant If stands for the if-then-else construct. Note first that

εz.(φ = True → z = x) ∧ (φ = False → z = y) is η-equivalent to

εz.(λz.(φ = True → z = x) ∧ (φ = False → z = y)) z, which is written

ε(λz.(φ = True → z = x) ∧ (φ = False → z = y)) in the “real” HOL

syntax, which uses the concept of HOAS.

The expression ε(λz.(φ = True → z = x) ∧ (φ = False → z = y)) picks

a term from the set of terms z such that

(φ = True → z = x) ∧ (φ = False → z = y) holds. But this means that

z = x if φ = True, or z = y if φ = False.

Since If should be a function which takes φ, x and y as arguments, we
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must abstract over those variables, giving

λφxy.εz.(φ = True → z = x) ∧ (φ = False → z = y).
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Definitions by = or ≡?
It is a design choice if we want to add these definitions at the level of the

object logic (HOL) or at the level of the M. In the first case, we would

use = and have axioms such as

True = (λxbool .x = λx.x)

In the second case, we would have meta-axioms

True ≡ (λxbool .x = λx.x)

This would mean that we would regard True merely as syntactic sugar.

The second way corresponds to what is done in Isabelle, see HOL.thy. It

is technically more convenient since rewriting is based on meta-level

equalities.
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Logically, it is not a big difference which way one chooses. We will have

an exercise on this.
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Intuition for False

False = ∀φ.φ

The essence of False is that anything can be derived from it. But this is

exactly what ∀φ.φ says.
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Concrete Syntax for ∀
The HOL constant ∀ is defined first in the style of HOAS. But we also

use concrete syntax, so we write ∀x.ψ instead of ∀(λx.ψ). In the

concrete syntax, one may also annotate the variable with a type.
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Type Annotation for Variables
In HOL, the quantifiers, which one expects to be variable binders, are

realized using λ in the style of HOAS.

We have said binding occurrences of variables in a λ-term should, strictly

speaking, be annotated with a type, but that this type can often be

omitted.

Now whenever we use concrete quantifier syntax for convenience, so we

write ∀x.ψ instead of ∀(λx.ψ) (and likewise for ∃), we may annotate the

variable in the obvious way: ∀xτ .ψ is concrete syntax for ∀(λxτ .ψ).
Sometimes we will annotate variables for clarity, sometimes we trust that

the type is clear from the context.
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Side Condition of ext
The rule

Γ ` φx = η x

Γ ` φ = η
ext

has the side condition that x /∈ FV (Γ).
Phrased like

φx = η x

φ = η
ext

the rule has the side condition that x must not occur freely in the

derivation of φx = η x.

Back to main referring slide
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Why no selectE?
You may wonder why there is no rule for eliminating ε. We will later see

a rule derivation where an ε is effectively eliminated, and we will also see

that this is done without requiring a rule explicitly for this purpose.

Apart from that, the ε-operator is used in HOL as basis for defining ∃
and the if-then-else constructs. Once we have derived the appropriate

rules for those, we will not explicitly encounter ε anymore.

Back to main referring slide
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Concrete Syntax for ε, ∀, ∃
For readability, we will frequently use a syntax that one is more used to

than higher-order abstract syntax:

εx.φx stands for ε(φ).
∀x.φ(x) stands for ∀(φ), and likewise for ∃.
We have done the same previously forM.

Back to main referring slide
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Infinity in HOL
The infinity axiom

∃f (ind→ind).injective f ∧ ¬surjective f
infty

says that there is a function from I to I (the postulated infinite set in U)

which is injective (any two different elements e, e′ of I have different

images under f) but not surjective (there exists an element of I which is

not the image of any element).

Such a function can only exist if I is infinite, and in fact the axiom

expresses the very essence of infinity, as we will see later.

Think of the natural numbers and the successor function as an example:

for any two different natural numbers, the successors are different, and

the number 0 is not the successor of any number.
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Back to main referring slide
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Injective – Surjective
A function is injective (also called one-to-one) if any two different

elements e, e′ have different images under f .

A function is surjective (also called onto) if for any e (in the function’s

range type, i.e. the type τ where σ → τ is the type of the function),

there exists an e′ whose image under the function is e.

Formally, the definitions are

injective = λf.∀xy.f x = f y → x = y

surjective = λf.∀y.∃x.f x = y

Back to main referring slide
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Just One Lambda!
Note that the λ-binder of the object logic HOL is not distinguished from

the λ-binder of Isabelle’s metalogic M. One could introduce an object

level constant lambda, but one quickly sees that it would be an

unnecessary overhead.

Back to main referring slide
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Optional Type Superscript
As we have learned previously, λ-abstracted variables should have a type

superscript, although this superscript is often omitted since the type can

be inferred.

Since ∀x.p(x) ∧ q(x) is the “concrete syntax” version of

∀ (λx.(∧p(x) q(x))), it makes sense that we allow an optional superscript

also for ∀-bound (and likewise for ∃-bound) variables.

In Isabelle the optional type annotation is written using :: instead of a

superscript.

Back to main referring slide
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Gather Constants with Same Type
For convenience (and to save space, we write . . . a : τ, b : τ . . . as

. . . a, b : τ . . . in a signature. This is of course syntactic sugar.

Back to main referring slide
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Notation Using
We use a notation with to indicate the arity and fixity of constants, as

this has been done for type constructors before.

The whole matter of arity of fixity is one of notational convenience. For

example, as the type of ∧ indicates, we should write (∧φ)ψ (Curryed

notation), but we write φ ∧ ψ since it is more what we are used to.

Back to main referring slide
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HOL.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

There you will also find all the derivations of the rules presented in this

lecture.

However, the presentation of this lecture is partly based on HOL.thy of

Isabelle 98, which in turn is based on a standard book [GM93]. E.g., the

definition of Ex def is now different from the one presented here.

Note also that here in the slides, we use a style of displaying Isabelle files

which uses some symbols beyond the usual ASCII set.

Back to main referring slide
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Outline

Last lecture: Introduction to HOL

• Basic syntax and semantics

• Basic eight (or nine) rules

• Definitions of True, False, ∧, ∨, ∀ . . .

Today:

• Deriving rules for the defined constants

• Outlook on the rest of this course
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Reminder: Different Syntaxes
Mathematical vs. Isabelle, e.g.

¬φ Not Phi
λxbool .P %x :: bool. P

HOAS vs. concrete, e.g.

∀ (λxτ .(∧p(x) q(x))) ∀xτ .p(x) ∧ q(x)
ε (P ) εx.P (x)

We use all those forms as convenient. For displaying Isabelle

files, we will sometimes use a style where some ASCII words

(e.g. %) are replaced with mathematical symbols (e.g. λ).
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Reminder: Definitions

True = (λxbool .x = λx.x)
∀ = λφα→bool .(φ = λx.True)
False = ∀φbool .φ

∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ

∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ

¬ = λφ.(φ→ False)
∃ = (λφ.φ(εx.φx))
If = λφxy.εz.(φ = True → z = x)∧

(φ = False → z = y)
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Derived Rules
The definitions can be understood either semantically

(checking if each definition captures the usual meaning of

that constant) or by their properties (= derived rules).

We now look at the constants in turn and derive rules for

them. We will present derivations in natural deduction style.

We usually proceed as follows: first show a rule involving a

constant, then replace the constant with its definition (if

applicable), then show the derivation.
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Equality

• Rule sym

s = t

t = s
sym
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Equality

• Rule sym and ND derivation

s = t s = s
refl

t = s
subst

• Isabelle rule s=t ==> t=s. Proof script:

Goal "s=t ==> t=s";
by (etac subst 1); (* P is %x.x=s *)
by (rtac refl 1); (* s=s *)
qed "sym";
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Equality: Transitivity and Congruences
• Rule trans

r = s
s = t

r = t
trans

Smaus: CSMR; WS08/09



Equality 863

Equality: Transitivity and Congruences
• Rule trans and ND derivation

r = s
s = r

sym
s = t

r = t
subst

Isabelle rule [| r=s; s=t |] ==> r=t
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Equality: Transitivity and Congruences
• Rule trans and ND derivation

r = s
s = r

sym
s = t

r = t
subst

Isabelle rule [| r=s; s=t |] ==> r=t

• Congruences (only Isabelle forms):

(f::’a=>’b) = g ==> f(x)=g(x) (fun cong)

x=y ==> f(x)=f(y) (arg cong)
Isabelle proofs using subst and refl.
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Equality of Booleans (iffI)
Rule iffI

[P ]
....
Q [Q]

....
P

P = Q
iffI

Smaus: CSMR; WS08/09



Equality 864

Equality of Booleans (iffI)
Rule iffI and ND derivation

(P → Q)→ (Q→ P )→ (P = Q)
iff

[P ]
....
Q

P → Q
impI

(Q→ P )→ (P = Q)
mp

[Q]
....
P

Q→ P
impI

P = Q
mp

Isabelle rule [| P ==> Q; Q ==> P |] ==> P=Q.
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Equality of Booleans (iffD2)
Rule iffD2

P = Q

Q

P
iffD2
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Equality of Booleans (iffD2)
Rule iffD2 and ND derivation

P = Q

Q = P
sym

Q

P
subst

Isabelle rule [| P=Q; Q |] ==> P.
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True

True = ((λxbool.x) = (λx.x))
• Rule TrueI

True
TrueI
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True

True = ((λxbool.x) = (λx.x))
• Rule TrueI

(λx.x) = (λx.x)
TrueI
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True

True = ((λxbool.x) = (λx.x))
• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl
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True

True = ((λxbool.x) = (λx.x))
• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl

• Rule eqTrueE

P = True
P

eqTrueE
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True

True = ((λxbool.x) = (λx.x))
• Rule TrueI and ND derivation

(λx.x) = (λx.x)
refl

• Rule eqTrueE and ND derivation

P = True True TrueI

P
iffD2

Isabelle rule P=True ==> P.
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True (Cont.)
• Rule eqTrueI

P

P = True
eqTrueI
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True (Cont.)
• Rule eqTrueI and ND derivation

True TrueI
P

P = True
iffI

Note that 0 assumptions were discharged.

Isabelle rule P ==> P=True.
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Universal Quantification

∀P = (P = (λx.True))
• Rule allI

P (x)

∀P allI
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Universal Quantification

∀P = (P = (λx.True))
• Rule allI

P (x)

P = λx.True
allI
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Universal Quantification

∀P = (P = (λx.True))
• Rule allI and ND derivation

P (x)

P (x) = True
eqTrueI

P = λx.True
ext

Inherits the side condition of ext: x must not occur freely

in the derivation of P (x).
Isabelle rule (!!x. P(x)) ==> ALL x. P(x).
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Example Illustrating Side Condition

[r(x)]1

r(x)→ r(x)→-I1

∀x. r(x)→ r(x)
allI

Why is this correct?

Smaus: CSMR; WS08/09



Universal Quantification 869

Example Illustrating Side Condition

[r(x)]1

r(x)→ r(x)→-I1

∀x. r(x)→ r(x)
allI

Why is this correct? Let’s do it without using allI explicitly:

[r(x)]2

r(x)→ r(x)→-I2

(r(x)→ r(x)) = True
eqTrueI

λx. (r(x)→ r(x)) = λx.True
ext

The side condition is respected.
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Universal Quantification (Cont.)
• Rule spec (recall ∀P means ∀x.Px)

∀P

P (t)
spec
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Universal Quantification (Cont.)
• Rule spec (recall ∀P means ∀x.Px)

P = λx.True

P (t)
spec
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Universal Quantification (Cont.)
• Rule spec (recall ∀P means ∀x.Px) and ND derivation

P = λx.True
P (t) = True

fun cong

P (t)
eqTrueE

Isabelle rule ALL x::’a. P(x) ==> P(x).

Note: Need universal quantification to reason about False
(since False = (∀P.P )).
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False

False = (∀P.P ) (= ∀(λP.P ))
• FalseI:
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False 871

False

False = (∀P.P ) (= ∀(λP.P ))
• FalseI: No rule!

• Rule FalseE

False
P

FalseE
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False 871

False

False = (∀P.P ) (= ∀(λP.P ))
• FalseI: No rule!

• Rule FalseE

∀P. P
P

FalseE
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False

False = (∀P.P ) (= ∀(λP.P ))
• FalseI: No rule!

• Rule FalseE and ND derivation

∀P. P
P

spec

Isabelle rule False ==> P.
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False (Cont.)
• Rule False neq True

False = True

P
False neq True
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False (Cont.)
• Rule False neq True and ND derivation

False = True
False

eqTrueE

P
FalseE

Isabelle rule False=True ==> P.

• Similar:
True = False

P
True neq False
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Negation

¬P = P → False
• Rule notI

[P ]
....

False
¬P

notI
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Negation

¬P = P → False
• Rule notI

[P ]
....

False
P → False

notI
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Negation

¬P = P → False
• Rule notI and ND derivation

[P ]
....

False
P → False

impI

Isabelle rule (P ==> False) ==> ∼P.
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Negation (2)
• Rule notE

¬P P

R
notE
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Negation (2)
• Rule notE

P → False P

R
notE
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Negation (2)
• Rule notE and ND derivation

P → False P
False

mp

R
FalseE

Isabelle rule [| ∼P; P |] ==> R.
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Negation (3)
• Rule True Not False

¬(True = False) True Not False
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Negation (3)
• Rule True Not False

(True = False)→ False True Not False
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Negation (3)
• Rule True Not False and ND derivation

[True = False]1

False
True neq False

(True = False)→ False notI1

Isabelle rule True ∼= False.
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Existential Quantification

∃P = P (εx.P (x))
• Rule existsI

P (x)

∃P existsI
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Existential Quantification

∃P = P (εx.P (x))
• Rule existsI

P (x)

P (εx.P (x))
existsI
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Existential Quantification

∃P = P (εx.P (x))
• Rule existsI and ND derivation

P (x)

P (εx.P (x))
selectI

Isabelle rule P(x) ==> EX x::’a.P(x).
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Existential Quantification (Cont.)
• Rule existsE

∃P

P (x)
....
Q

Q
existsE
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Existential Quantification 877

Existential Quantification (Cont.)
• Rule existsE

P (εx.P (x))

P (x)
....
Q

Q
existsE
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Existential Quantification (Cont.)
• Rule existsE and ND derivation

P (εx.P (x))

[P (x)]1
....
Q

P (x)→ Q
impI1

∀x.(P (x)→ Q)
allI

P (εx.P (x))→ Q
spec

Q
mp

Inherits side condition from allI (just like in FOL). On the

meta-level, this derivation is extremely simple.

Isabelle rule [| EX x.P(x); !!x.P(x) ==> Q |] ==>
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Q.

Smaus: CSMR; WS08/09



Conjunction 879

Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI

P

Q

P ∧Q
conjI
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Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI

P

Q

∀R.(P → Q→ R)→ R
conjI
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Conjunction

P ∧Q = ∀R.(P → Q→ R)→ R

• Rule conjI and ND derivation

[P → Q→ R]1 P

Q→ R
mp

Q

R
mp

(P → Q→ R)→ R
impI1

∀R.(P → Q→ R)→ R
allI

Isabelle rule [| P; Q |] ==> P & Q.
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Conjunction (Cont.)
• Rule conjEL

P ∧Q

P
conjEL
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Conjunction (Cont.)
• Rule conjEL

∀R.(P → Q→ R)→ R

P
conjEL
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Conjunction (Cont.)
• Rule conjEL and ND derivation

∀R.(P → Q→ R)→ R

(P → Q→ P )→ P
spec

[P ]1

Q→ P
impI

P → Q→ P
impI1

P
mp

Isabelle rule P & Q ==> P.
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Conjunction (Cont.)
• P ∧Q =⇒ Q (conjER)

• JP ∧Q; JP ;QK =⇒ RK =⇒ R (conjE) (rule analogous

to disjE)
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Disjunction

P ∨Q = ∀R.(P → R)→ (Q→ R)→ R

• Rule disjIL

P

P ∨Q
disjIL
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Disjunction 882

Disjunction

P ∨Q = ∀R.(P → R)→ (Q→ R)→ R

• Rule disjIL

P

∀R.(P → R)→ (Q→ R)→ R
disjIL
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Disjunction

P ∨Q = ∀R.(P → R)→ (Q→ R)→ R

• Rule disjIL and ND derivation

[P → R]1 P

R
mp

(Q→ R)→ R
impI

(P → R)→ (Q→ R)→ R
impI1

∀R.(P → R)→ (Q→ R)→ R
allI

Isabelle rule P ==> P|Q.
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Disjunction (Cont.)
• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE

P ∨Q

[P ]
....
R [Q]

....
R

R
disjE
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Disjunction (Cont.)
• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE

∀R.(P → R)→ (Q→ R)→ R

[P ]
....
R [Q]

....
R

R
disjE
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Disjunction (Cont.)
• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE and ND derivation

∀R.(P → R)→ (Q→ R)→ R

(P → R)→ (Q→ R)→ R
spec

[P ]
....
R

P → R
impI

(Q→ R)→ R
mp

[Q]
....
R

Q→ R
impI

R
mp

Isabelle rule [| P | Q; P ==> R; Q ==> R |] ==> R.
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Disjunction (Cont.)
• Q =⇒ P ∨Q (disjIR) similar

• Rule disjE and ND derivation

∀R.(P → R)→ (Q→ R)→ R

(P → R)→ (Q→ R)→ R
spec

[P ]
....
R

P → R
impI

(Q→ R)→ R
mp

[Q]
....
R

Q→ R
impI

R
mp

Isabelle rule [| P | Q; P ==> R; Q ==> R |] ==> R.

• P ∨ ¬P (excl midd). Follows using tof.
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Miscellaneous Definitions

See HOL.thy!

Typical example (if-then-else):

If = λφboolxy.εz. (φ = True → z = x)
∧ (φ = False → z = y)

The way rules are derived should now be clear. E.g.,

P = True
(If P x y) = x

P = False
(If P x y) = y
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Summary on Deriving Rules

HOL is very powerful in terms of what we can

represent/derive:

• All well-known inference rules can be derived.

• Other “logical” syntax (e.g. if-then-else) can be defined.

• Rich theories can be obtained by a method we see next

lecture.
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Mathematics and Software Engineering in
HOL

In coming weeks, we will see how Isabelle/HOL can be used

as foundation for mathematics and software engineering.

Outline:

• The central method for making HOL scale up:

conservative extensions (< 1 week)

• How the different parts of mathematics are encoded in the

Isabelle/HOL library (several weeks)

• How software systems are embedded in Isabelle/HOL

(several weeks)
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Outlook on Mathematics
After some historical background, we will look at how central

parts of mathematics are encoded as Isabelle/HOL theories:

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Outlook on Software Engineering
Some weeks from now, we will look at case studies of how

HOL can be applied in software engineering, i.e. how

software systems can be embedded in Isabelle/HOL:

• Foundations, functional languages and denotational

semantics

• Imperative languages, Hoare logic

• Z and data-refinement, CSP and process-refinement

• Object-oriented languages (Java-Light . . . )

Of the last three items, we want to treat only one in depth,

depending on the audience’s preferences.
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Conservative Extensions: Motivation
But first, conservative extensions.

Stage of our course before studying HOL:

• fairly small theories,

• “intuitive” models, (e.g. näıve set theory),

• but inconsistent (due to foundational problems).

How can we use HOL to

• reason about a reasonably large part of mathematics and

software engineering;

• prevent inconsistencies?
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What Is Needed for Scaling up?
Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.
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Mathematics and Software Engineering in HOL 890

What Is Needed for Scaling up?
Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

• Reuse: Isabelle supports libraries and retrieval utilities.
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Mathematics and Software Engineering in HOL 890

What Is Needed for Scaling up?
Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

• Reuse: Isabelle supports libraries and retrieval utilities.

• Safe, well-understood integration mechanisms: Isabelle

supports conservative theory extensions.
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Mathematics and Software Engineering in HOL 890

What Is Needed for Scaling up?
Well-known structuring mechanisms:

• Modularization: Isabelle supports (class) polymorphism

and theories.

• Reuse: Isabelle supports libraries and retrieval utilities.

• Safe, well-understood integration mechanisms: Isabelle

supports conservative theory extensions.

Topic of next lecture. ¸
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More Detailed Explanations
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Natural Deduction Derivation
We present most of those proofs by giving a derivation tree for it, but

sometimes, we also give an Isabelle proof script.

Note also the mix of syntaxes.

Back to main referring slide
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mp Reversed
Note that left and right are swapped in mp here for convenience of the

derivation. It would be a minor modification to make this correct.

Back to main referring slide
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Deriving existsE on the Meta-Level
One can write the derivation of existsE as follows:

P (εx.P (x))

∧
x. P (x) =⇒ Q

Q
existsE

This is an attempt to capture in an ad-hoc tree notation how this

derivation can be done in Isabelle. In particular, existsE inherits a side

condition from the meta-level universal quantification. However, while

this may help to understand how this derivation works in Isabelle, it is

not very rigorous and you could not be expected to believe that the side

condition checking is correct.

For a thorough account of side conditions in ND proofs, consult [SH84].

You might also justify existsE in plain English words, i.e., completely on
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More Detailed Explanations 894

Deriving existsE on the Meta-Level
One can write the derivation of existsE as follows:

P (εx.P (x))

∧
x. P (x) =⇒ Q

P (εx.P (x)) =⇒ Q

∧
−E

Q
=⇒-E

This is an attempt to capture in an ad-hoc tree notation how this

derivation can be done in Isabelle. In particular, existsE inherits a side

condition from the meta-level universal quantification. However, while

this may help to understand how this derivation works in Isabelle, it is

not very rigorous and you could not be expected to believe that the side

condition checking is correct.

For a thorough account of side conditions in ND proofs, consult [SH84].

You might also justify existsE in plain English words, i.e., completely on
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the meta-level: If I have a derivation of Q from P (x) not making any

assumptions about x, and in addition I have a derivation of P (εx.P (x)),
then I can combine these two derivations: modify the first one by

instantiating x with εx.P (x). This justifies having existsE.

What happens in our rather complicated derivation is that we are turning

a meta-level reasoning into an object-level one, which is more

trustworthy for an ND derivation.

Back to main referring slide
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Z, CSP
Z and CSP are specification languages. CSP stands for communicating

sequential processes.

Back to main referring slide
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Conservative Theory Extensions 898

Outline
In the previous lecture, we have derived all well-known

inference rules. There is now the need to scale up. Today we

look at conservative theory extensions, an important method

for this purpose.
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Conservative Theory Extensions 898

Outline
In the previous lecture, we have derived all well-known

inference rules. There is now the need to scale up. Today we

look at conservative theory extensions, an important method

for this purpose.

In the weeks to come, we will look at how mathematics is

encoded in the Isabelle/HOL library.
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Conservative Theory Extensions: Basics

Some definitions [GM93, Hué]

Definition 1 (theory):

A (syntactic) theory T is a triple (B,Σ, A), where B is a

type signature, Σ a signature and A a set of axioms.

Definition 2 (theory extension):

A theory T ′ = (B′,Σ′, A′) is an extension of a theory

T = (B,Σ, A) iff B ⊆ B′ and Σ ⊆ Σ′ and A ⊆ A′.
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Definitions (Cont.)
Definition 3 (conservative extension):

A theory extension T ′ = (B′,Σ′, A′) of a theory

T = (B,Σ, A) is conservative iff for the set of derivable

formulas Th we have

Th(T ) = Th(T ′) |Σ,

where |Σ filters away all formulas not belonging to Σ.
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Conservative Theory Extensions: Basics 900

Definitions (Cont.)
Definition 3 (conservative extension):

A theory extension T ′ = (B′,Σ′, A′) of a theory

T = (B,Σ, A) is conservative iff for the set of derivable

formulas Th we have

Th(T ) = Th(T ′) |Σ,

where |Σ filters away all formulas not belonging to Σ.

Counterexample:

∀fα→α. Y f = f (Y f)
fix
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Consistency Preserved
Corollary 1 (consistency):

If T ′ is a conservative extension of T , then

False /∈ Th(T )⇒ False /∈ Th(T ′).
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Syntactic Schemata for Conservative
Extensions

• Constant definition

• Type definition

• Constant specification

• Type specification

Will look at first two schemata now.

For the other two see [GM93].
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Constant Definition

Definition 4 (constant definition):

A theory extension T ′ = (B′,Σ′, A′) of a theory

T = (B,Σ, A) is a constant definition, iff

• B′ = B and Σ′ = Σ ∪ {c : τ}, where c /∈ dom(Σ);
• A′ = A ∪ {c = E};
• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that

is not contained in the type of c.
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Constant Definitions Are Conservative
Lemma 1 (constant definitions):

Constant definitions are conservative [GM93, page 223].

Proof Sketch:

• Th(T ) ⊆ Th(T ′) |Σ : trivial.

• Th(T ) ⊇ Th(T ′) |Σ : let π′ be a proof for φ ∈ Th(T ′) |Σ.

We unfold any subterm in π′ that contains c via c = E

into π. Then π must be a proof in T , implying φ ∈ Th(T ).
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The Need for the Side Conditions
Here is a counterexample concerning closedness of E: Define

c : bool by the axiom c = x.

c = x
axiom

∀x.c = x
allI

c = False
spec

c = x
axiom

∀x.c = x
allI

c = True
spec

False = True
subst

False
False neq True

Intuition: when you define c as the variable x, then c just

isn’t a constant! Usually taken for granted.
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The Need for the Side Conditions (2)
Now type-closedness: Let E ≡ ∃xαyα. x 6= y and suppose σ

is a type inhabited by only one term, and τ is a type

inhabited by at least two terms. Then we would have:

c = c holds by refl

=⇒ (∃xσyσ. x 6= y) = (∃xτyτ . x 6= y)
=⇒ False = True
=⇒ False

This explains definition of True. Other (standard) example

later.
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Constant Definition: Examples
Definitions of True, False, ∧, ∨, ∀ . . .

Here the original Isabelle syntax (Ex def changed). Note

the use of ! and meta-level equality.

True_def: "True == ((%x::bool. x) = (%x. x))"
All_def: "All(P) == (P = (%x. True))"
Ex_def: "Ex(P) == P (SOME x. P x)"
False_def: "False == (!P. P)"
not_def: "~ P == P-->False"
and_def: "P & Q == !R. (P-->Q-->R) --> R"
or_def: "P | Q == !R. (P-->R) --> (Q-->R)

--> R"
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More Constant Definitions in Isabelle
Function application (Let), if-then-else, unique existence:

consts
Let :: [’a, ’a => ’b] => ’b
If :: [bool, ’a, ’a] => ’a
defs
Let_def "Let s f == f(s)"
if_def "If P x y == @z::’a.(P=True-->z=x) &

(P=False-->z=y)"
Ex1_def "Ex1(P) == ?x. P(x) & (!y. P(y) --> y=x)"

Note use of ?.

Recall: => is function type arrow; also recall [] syntax.
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Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;
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Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

• a predicate S : ρ→ bool , defining a non-empty “subset” of

ρ;
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Type Definitions

Type definitions, explained intuitively: we have

• an existing type ρ;

• a predicate S : ρ→ bool , defining a non-empty “subset” of

ρ;

• axioms stating an isomorphism between S and the new

type τ .
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Type Definition: Definition
Definition 5 (type definition):

Assume a theory T = (B,Σ, A) and a type ρ and a term S

such that Σ ` S : ρ→ bool .
A theory extension T ′ = (B′,Σ′, A′) of T is a type definition

for type τ (where τ fresh), iff

B′ = B ] {τ},
Σ′ = Σ ∪ {Absτ : ρ→ τ,Repτ : τ → ρ}
A′ = A ∪ {∀x.Absτ(Repτ x) = x,

∀x.S x→ Repτ(Absτ x) = x}
Proof obligation ∃x. S x can be proven inside HOL!
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Type Definitions Are Conservative
Lemma 2 (type definitions):

Type definitions are conservative.

Proof see [GM93, pp.230].
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HOL Is Rich Enough!
This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale

applications?
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HOL Is Rich Enough!
This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale

applications?

But in fact, due to ind and →, the types in HOL are already

very rich.
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HOL Is Rich Enough!
This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale

applications?

But in fact, due to ind and →, the types in HOL are already

very rich.

We now give three examples to convince you.
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Example: Typed Sets
General scheme,

B′ = B ] {τ },
Σ′ = Σ ∪ {Absτ : ρ → τ ,

Repτ : τ → ρ }
A′ = A ∪ {∀x.Absτ (Repτ x) = x,

∀x.S x → Repτ (Absτ x) = x}
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Example: Typed Sets
General scheme, substituting ρ ≡ α→ bool (α is any type

variable),

B′ = B ] {τ },
Σ′ = Σ ∪ {Absτ : (α→ bool)→ τ ,

Repτ : τ → (α→ bool)}
A′ = A ∪ {∀x.Absτ (Repτ x) = x,

∀x.S x → Repτ (Absτ x) = x}
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Example: Typed Sets
General scheme, substituting ρ ≡ α→ bool (α is any type

variable), τ ≡ α set (or set),

B′ = B ] {set},
Σ′ = Σ ∪ {Absset : (α→ bool)→ α set ,

Repset : α set → (α→ bool)}
A′ = A ∪ {∀x.Absset(Repset x) = x,

∀x.S x → Repset(Absset x) = x}
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Example: Typed Sets
General scheme, substituting ρ ≡ α→ bool (α is any type

variable), τ ≡ α set (or set), S ≡ λxα→bool .True

B′ = B ] {set},
Σ′ = Σ ∪ {Absset : (α→ bool)→ α set ,

Repset : α set → (α→ bool)}
A′ = A ∪ {∀x.Absset(Repset x) = x,

∀x.True → Repset(Absset x) = x}
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Example: Typed Sets
General scheme, substituting ρ ≡ α→ bool (α is any type

variable), τ ≡ α set (or set), S ≡ λxα→bool .True

B′ = B ] {set},
Σ′ = Σ ∪ {Absset : (α→ bool)→ α set ,

Repset : α set → (α→ bool)}
A′ = A ∪ {∀x.Absset(Repset x) = x,

∀x. Repset(Absset x) = x}

Simplification since S ≡ λx.True. Proof obligation: (∃x.Sx)
trivial since (∃x.True) = True. Inhabitation propagates!
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Sets: Remarks
Any function r : α→ bool can be interpreted as a set of α; r

is called characteristic function. That’s what Absset r does;

Absset is a wrapper saying “interpret r as set”.
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Sets: Remarks
Any function r : α→ bool can be interpreted as a set of α; r

is called characteristic function. That’s what Absset r does;

Absset is a wrapper saying “interpret r as set”.

S ≡ λx.True and so S is trivial in this case.
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More Constants for Sets
For convenient use of sets, we define more constants:

{x | f x} = Collect f = Absset f

x ∈ A = (Repset A) x
A ∪B = {x | x ∈ A ∨ x ∈ B}

...
Consistent set theory adequate for most of mathematics and

computer science.

In Isabelle/HOL however, sets are a special case.

Here, sets are just an example to demonstrate type

definitions. Later we study them for their own sake.
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Example: Pairs
Consider type α→ β → bool . We can regard a term

f : α→ β → bool as a representation of the pair (a, b),
where a : α and b : β, iff f x y is true exactly for x = a and

y = b. Observe:

• For given a and b, there is exactly one such f (namely,

λxαyβ. x = a ∧ y = b).

• Some functions of type α→ β → bool represent pairs and

others don’t (e.g., the function λxy.True does not

represent a pair). The ones that do are exactly the ones

that have the form λxαyβ. x = a∧ y = b, for some a and b.
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Type Definition for Pairs
This gives rise to a type definition where S is non-trivial:

ρ ≡ α→ β → bool
S ≡ λfα→β→bool .∃ab.f = λxαyβ.x = a ∧ y = b

τ ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be

confused with Rep×) as λaαbβ.λxαyβ. x = a ∧ y = b. Then

Pair Rep a b = λxαyβ. x = a ∧ y = b.
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Now in Isabelle
Isabelle has a special set-based syntax for type definitions:

typedef (T )
〈typevars〉 ”T ′” 〈fixity〉
= ”{x.φ}”
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Now in Isabelle
Isabelle has a special set-based syntax for type definitions:

typedef (T )
〈typevars〉 ”T ′” 〈fixity〉
= ”{x.φ}”

How is this linked to our scheme:

• the new type is called T ′;

• ρ is the type of x (inferred);

• S is λx.φ;

• constants Abs T and Rep T are automatically generated.
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Isabelle Syntax for Pair Example
constdefs
Pair_Rep :: [’a, ’b] => [’a, ’b] => bool
"Pair_Rep == (%a b. %x y. x=a & y=b)"
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Isabelle Syntax for Pair Example
constdefs
Pair_Rep :: [’a, ’b] => [’a, ’b] => bool
"Pair_Rep == (%a b. %x y. x=a & y=b)"

typedef (Prod)
(’a, ’b) "*" (infixr 20) =
"{f.?a b. f=Pair_Rep(a::’a)(b::’b)}"

The keyword constdefs introduces a constant definition.

The definition and use of Pair Rep is for convenience.

There are “two names” ∗ and Prod.

See Product Type.thy.
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Example: Sums
An element of (α, β) sum is either Inl a where a : α or Inr b
where b : β.

So think of Inl a and Inr b as syntactic objects that we

want to represent.

Consider type α→ β → bool → bool . We can regard

f : α→ β → bool → bool as a
representation of . . . iff f x y i is true for . . .

Inl a x = a, y arbitrary, and i = True
Inr b x arbitrary, y = b, and i = False.

Similar to pairs.
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Isabelle Syntax for Sum Example
constdefs
Inl_Rep :: [’a, ’a, ’b, bool] => bool
"Inl_Rep == (%a. %x y p. x=a & p)"
Inr_Rep :: [’b, ’a, ’b, bool] => bool
"Inr_Rep == (%b. %x y p. y=b & ~p)"
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Isabelle Syntax for Sum Example
constdefs
Inl_Rep :: [’a, ’a, ’b, bool] => bool
"Inl_Rep == (%a. %x y p. x=a & p)"
Inr_Rep :: [’b, ’a, ’b, bool] => bool
"Inr_Rep == (%b. %x y p. y=b & ~p)"

typedef (Sum)
(’a,’b)"+" =
"{f. (?a. f = Inl_Rep(a::’a)) |

(?b. f = Inr_Rep(b::’b))}"

See Sum Type.thy.

How would you define a type even based on nat?
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Summary on Conservative Extensions

We have seen two schemata:

• Constant definition: new constant must be defined using

old constants. No recursion! Subtle side condition

concerning types.

• Type definition: new type must be isomorphic to a

“subset” S of an existing type ρ. Not possible to define

any type that is “structurally” richer than the types one

already has. But HOL is rich enough. ¸
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More Detailed Explanations
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Axioms or Rules
The definition of theory extension requires that A consists of axioms, not

proper rules. However, we have seen that any rule one might wish to

postulate can also be phrased as an axiom (using → rather than ⇒).

Back to main referring slide
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Derivable Formulas
The derivable formulas are terms of type bool derivable using the

inference rules of HOL. We write Th(T ) for the derivable formulas of a

theory T .

Back to main referring slide
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No Recursion!
If E did contain c then we would speak of a recursive definition, but at

this stage, recursion is forbidden.

Back to main referring slide
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Closed Terms
A term is closed or ground if it does not contain any free variables.

Back to main referring slide
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Definition of True Is Type-Closed
True is defined as λxbool .x = λx.x and not λxα.x = λx.x. The

definition must be type-closed.

Back to main referring slide
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Exclamation and Question Marks
“!” is just another Isabelle notation for ALL, and “?” is just another

Isabelle notation for EX. See HOL.thy in the section “syntax (HOL)”

(this is Isabelle 2005).

Back to main referring slide
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∃!
We have never used unique existential quantification (∃!) before.

∃!x1, . . . , xn.φ(x1, . . . , xn) is defined as

∃x1, . . . , xn.φ(x1, . . . , xn) ∧ (∀y1, . . . , yn.φ(y1, . . . , yn)→ x1 =
y1 ∧ . . . ∧ xn = yn).
Note that in general ∃!x.(∃!y.φ) is not the same as ∃!xy.φ).

Back to main referring slide
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Fixpoint Combinator
Given a function f : α→ α, a fixpoint of f is a term t such that f t = t.

Now Y is supposed to be a fixpoint combinator, i.e., for any function f ,

the term Y f should be a fixpoint of f . This is what the rule

∀fα→α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom allows us to infer

Y (¬) = ¬(Y (¬)), and it is easy to derive False from this. This axiom is

a standard example of a non-conservative extension of a theory.

It is not surprising that this goes wrong: Not every function has a

fixpoint, so there cannot be a combinator returning a fixpoint of any

function.

Nevertheless, fixpoints are important and must be realized in some way,
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as we will see later.

Back to main referring slide
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Side Conditions
By side conditions we mean

• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that is not

contained in the type of c;

in the definition.

The second condition also has a name: one says that the definition must

be type-closed.

The notion of having a type is defined by the type assignment calculus.

Since E is required to be closed, all variables occurring in E must be

λ-bound, and so the type of those variables is given by the type

superscripts.

Back to main referring slide
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Domains of Σ, Γ
The domain of Σ, denoted dom(Σ), is {c | c : A ∈ Σ for some A}.
Likewise, the domain of Γ, denoted dom(Γ), is

{x | x : A ∈ Γ for some A}.
Note the abuse of notation.

Back to main referring slide
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constdefs
In Isabelle theory files, consts is the keyword preceding a sequence of

constant declarations (i.e., this is where the Σ is defined), and defs is

the keyword preceding the axioms that define these constants (i.e., this is

where the A is defined).

constdefs combines the two, i.e. it allows for a sequence of both

constant declarations and definitions. When the constdefs syntax is

used to define a constant c, then the identifier c def is generated

automatically. E.g.
constdefs
id :: "’a => ’a"
"id == %x. x"

will bind id def to id ≡ λx.x.
Back to main referring slide
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A Predicate a Set?
Although a set is formally a different object than a predicate, it is

standard to interpret a predicate a set: the set of terms for which the

predicate returns true. We have done this before.

Back to main referring slide
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S
Here, S is any “predicate”, i.e., term of type ρ→ bool , not necessarily a

constant.

Back to main referring slide
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Fresh τ
The type constructor τ must not occur in B.

Back to main referring slide
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What Is τ?
A type definition is supposed to define a type constructor (where the

arity and fixity are indicated in some way). We abuse notation here: we

use τ to denote a type constructor, but also the type obtained by

applying the type constructor to a vector of different type variables (as

many as the type constructor requires).

So think of τ as either being a type constructor or a “generic” type (just

a type constructor being applied to type variables).

We do the same in examples.

Back to main referring slide
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]
The symbol ] denotes disjoint union, so the expression A ]B is

well-formed only when A and B have no elements in common. One thus

uses this notation to indicate this fact.

Back to main referring slide
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What Are Absτ and Repτ?
Of course we are giving a schematic definition here, so any letters we use

are metanotation.

Notice that Absτ and Repτ stand for new constants. For any new type τ

to be defined, two such constants must be added to the signature to

provide a generic way of obtaining terms of the new type. Since the new

type is isomorphic to the “subset” S, whose members are of type ρ, one

can say that Absτ and Repτ provide a type conversion between (the

subset S of) ρ and τ .

So we have a new type τ , and we can obtain members of the new type

by applying Absτ to a term t of type ρ for which S t holds.

Back to main referring slide
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Isomorphism
The formulas

∀x.Absτ(Repτ x) = x

∀x.S x→ Repτ(Absτ x) = x

state that the “set” S and the new type τ are isomorphic. Note that

Absτ should not be applied to a term not in “set” S. Therefore we have

the premise S x in the above equation.

Note also that S could be the “trivial filter” λx.True. In this case, Absτ

and Repτ would provide an isomorphism between the entire type ρ and

the new type τ .

Back to main referring slide
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Proof Obligation
We have said previously that S should be a non-empty “subset” of τ .

Therefore it must be proven that ∃x. S x. This is related to the

semantics.

Whenever a type definition is introduced in Isabelle, the proof obligation

must be shown inside Isabelle/HOL. Isabelle provides the typedef
syntax for type definitions, as we will see later. Using this syntax, the

“author” of a type definition can either explicitly provide a proof (see

Product Type.thy), or the proof is so easy that Isabelle can do it

automatically (see Sum Type.thy).

Back to main referring slide
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Propagation of Inhabitation in the set
Example

We have S ≡ λxα→bool .True, and so in (∃x.Sx), the variable x has type

α→ bool . The proposition (∃x.Sx) is true since the type α→ bool is

inhabited, e.g. by the term λxα.True or λxα.False.

Beware of a confusion: This does not mean that the new type α set,

defined by this construction, is the type of non-empty sets. There is a

term for the empty set: The empty set is the term Absset (λx.False).
So we see that inhabitation of types propagates in the following sense:

since each type τ is inhabited, the type τ set is inhabited as well.

Back to main referring slide
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Trivial S
We said that in the general formalism for defining a new type, there is a

term S of type ρ→ bool that defines a “subset” of a type ρ. In other

words, it filters some terms from type ρ. Thus the idea that a predicate

can be interpreted as a set is present in the general formalism for

defining a new type.

Now we are talking about a particular example, the type α set. Having

the idea “predicates are sets” in mind, one is tempted to think that in

the particular example, S will take the role of defining particular sets,

i.e., terms of type α set. This is not the case!

Rather, S is λx.True and hence trivial in this example. Moreover, in the

example, ρ is α→ bool , and any term r of type ρ defines a set whose

elements are of type α; Absset r is that set.

Back to main referring slide
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Collect
We have seen Collect before in the theory file NSet.thy (näıve set

theory).

Collect f is the set whose characteristic function is f . There is also a

concrete (i.e., according to mathematical practice) syntax {x | f x}. It is

called set comprehension. The correspondence between the HOAS

Collect f and the concrete syntax {x | f x} also makes it clear that set

comprehension is a binding operator, as we learned some time ago.

Note also that Collect is the same as Absset here.

The file Set.thy should be contained in your Isabelle distribution. Or, if

you only have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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The ∈-Sign
We define

x ∈ A = (Repset A) x

Since Repset has type α set→ (α→ bool), this means that x is of type

α and A is of type (α→ bool). Therefore ∈ is of type

α→ (α set)→ bool (but written infix).

In the Isabelle theory file Set.thy, you will indeed find that the constant

: (Isabelle syntax for ∈) has type α→ (α set)→ bool .
However, you will not find anything directly corresponding to Repset.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 948

Consistent Set Theory
Typed set theory is a conservative extension of HOL and hence

consistent.

Recall the problems with untyped set theory.

Back to main referring slide
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Sets in Isabelle/HOL
We earlier presented a definition of α set according to the scheme of

type definitions. However, in Isabelle/HOL (Set.thy), it is not done

exactly like that. The reason lies in the special set-based syntax used for

type definitions.

The type α set is defined in Isabelle/HOL in a way which essentially

corresponds to the type definition scheme, but is different in the

technical details. In particular, there are no constants Absset and Repset.

Instead, we have Collect and the ∈-sign. We will now explain how.

Concerning Absset, there is no worry, since it corresponds exactly to

Collect .
Repset is related to the ∈-sign via

x ∈ A = (Repset A) x
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Let us see that this setup is equivalent to the scheme of type definitions.

There are two axioms in Set.thy:

axioms
mem Collect eq [iff]: "(a : {x. P(x)}) = P(a)"
Collect mem eq [simp]: "{x. x:A} = A"

We translate these axioms using the definitions:

a ∈ {x | P x} = P a ;

a ∈ (Collect P ) = P a ;

a ∈ (AbssetP ) = P a ;

Repset(AbssetP ) a = P a ;

Repset(AbssetP ) = P

The last step uses extensionality.
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Now the second one:

{x | x ∈ A} = A ;

{x | (RepsetA)x} = A ;

Collect(RepsetA) = A

Ignoring some universal quantifications (these are implicit in Isabelle),

these are the isomorphy axioms for set.

Back to main referring slide
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“Exactly one” Term
When we say that there is “exactly one” f , this is meant modulo

equality in HOL. This means that e.g. λxαyβ.y = b ∧ x = a is also such

a term since (λxαyβ.x = a ∧ y = b) = (λxαyβ.y = b ∧ x = a) is

derivable in HOL.

Back to main referring slide
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Rep×
Rep× would be the generic name for one of the two

isomorphism-defining functions.

Since Rep× looks funny, the definition scheme for type definitions in

Isabelle is such that it provides two names for a type, one if the type is

used as such, and one for the purpose of generating the names of the

isomorphism-defining functions.

Back to main referring slide
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Funny Iteration of λ’s
We write λaαbβ.λxαyβ.x = a ∧ y = b rather than

λaαbβxαyβ.x = a ∧ y = b to emphasize the idea that one first applies

Pair Rep to a and b, and the result is a function representing a pair,

wich can then be applied to x and y.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 955

typedef Is Based on set
The syntax ”{x.φ}” does not just look like a set comprehension, it is

one!

So, since the typedef syntax is based on sets, sets themselves could not

have been defined using that syntax. This is the reason why in

Isabelle/HOL, sets are a special case of a type definition.

See Typedef.thy, which should be contained in your Isabelle

distribution. Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Product Type.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Sum Types
Idea of sum or union type: t is in the sum of τ and σ if t is either in τ or

in σ. To do this formally in our type system, and also in the type system

of functional programming languages like ML, t must be wrapped to

signal if it is of type τ or of type σ.

For example, in ML one could define

datatype (α, β) sum = Inl α | Inr β

So an element of (α, β) sum is either Inl a where a : α or Inr b where

b : β.

Back to main referring slide
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Sum Type.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Defining even
Suppose we have a type nat and a constant + with the expected

meaning. We want to define a type even of even numbers. What is an

even number?
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Defining even
Suppose we have a type nat and a constant + with the expected

meaning. We want to define a type even of even numbers. What is an

even number?

The following choice of S is adequate:

S ≡ λx.∃n.x = n+ n

Using the Isabelle scheme, this would be

typedef (Even)
even = "{x. ?y. x=y+y}"

We could then go on by defining an operation PLUS on even, say as
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follows:

constdefs
PLUS::[even,even] => even (infixl 56)
PLUS def "PLUS ==

%xy. Abs Even (Rep Even(x)+Rep Even(x))"

Note that we chose to use names even and Even, but we could have

used the same name twice as well.

Back to main referring slide
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Isabelle/HOL at Work
We have seen how the mechanism of conservative extensions

works in principle.

For several lectures, we will now look at theories of the

Isabelle/HOL library, all built by conservative extensions and

modelling significant portions of mathematics.
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Sets: The Basis of Principia Mathematica
Sets are ubiquitious in mathematics:

• 17th century: geometry can be reduced to numbers

[Des16, vL16].

• 19th century: numbers can be reduced to sets

[Can18, Pea18, Fre93, Fre03].

• 20th century: sets can be represented in logics

[Zer07, Frä22, WR25, Göd31, Ber91, Chu40].

We call this the Principia Mathematica Structure [WR25].

The libraries of theorem provers follow this Principia

Mathematica Structure — in reverse order!
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The Roadmap
• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes ¸
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Why in Reverse Order?
It is not surprising that the logical built-up of theorem prover is reversed

w.r.t. to the historical development of mathematics and logics. Research

usually starts from applications and the intuition and works its way back

to the foundations.

Back to main referring slide

Smaus: CSMR; WS08/09



Orders



Orders 968

The Roadmap
We are looking at how the different parts of mathematics are

encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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The Roadmap
We are looking at how the different parts of mathematics are

encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Three Order Classes
We first define a syntactic class ord. It is the class of types

for which symbols < and <= exist.

Smaus: CSMR; WS08/09



Orders 969

Three Order Classes
We first define a syntactic class ord. It is the class of types

for which symbols < and <= exist.

We then define two axiomatic classes order and linorder
for which < and <= are required to have certain properties,

that of being a partial order, or a linear order, resp.
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Orders (in HOL.thy)
axclass
ord < type
consts
"op <" :: [’a::ord, ’a] => bool
"op <=" :: [’a::ord, ’a] => bool
constdefs
min :: "[’a::ord, ’a] => ’a"
"min a b == (if a <= b then a else b)"
max :: "[’a::ord, ’a] => ’a"
"max a b == (if a <= b then b else a)"

Recall constdefs syntax and note two uses of <.
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Orders in HOL.thy (Cont.)
axclass order < ord
order_refl "x <= x"
order_trans "[|x <= y; y <= z|] ==> x <= z"
order_antisym "[|x <= y; y <= x|] ==> x = y"
order_less_le "x < y = (x <= y & x ~= y)"
%
axclass linorder < order
linorder_linear "x <= y | y <= x"
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Least Elements
In Ord.thy, least elements used to be defined as:

Least :: "(’a::ord => bool) => ’a"
Least_def "Least P == @x. P(x) &

(ALL y. P(y) ==> x <= y)"

Now it is done without using the Hilbert operator.
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Monotonicity
In Ord.thy, monotonicity used to be defined as:

mono :: [’a::ord => ’b::ord] => bool
mono_def "mono(f) ==

(!A B. A <= B --> f(A) <= f(B))

Now it is done using a completely different syntax, but one

can still use monotonicity as before.
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Some Theorems about Orders

monoI (
∧
AB.A ≤ B =⇒ f A ≤ f B)

=⇒ mono f

monoD Jmono f ;A ≤ BK =⇒ f A ≤ f B
order eq refl x = y =⇒ x ≤ y
order less irrefl ¬x < x

order le less (x ≤ y) = (x < y ∨ x = y)
linorder less linear x < y ∨ x = y ∨ y < x

linorder neq iff (x 6= y) = (x < y ∨ y < x)
min same minxx = x

le min iff conj (z ≤ min x y) = (z ≤ x ∧ z ≤ y)
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Summary on Orders

Type classes are a structuring mechanism in Isabelle:

• Syntactic classes (e.g. t :: α :: ord as in Haskell

[HHPW96]): merely a mechanism to structure visibility of

operations.
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Summary on Orders

Type classes are a structuring mechanism in Isabelle:

• Syntactic classes (e.g. t :: α :: ord as in Haskell

[HHPW96]): merely a mechanism to structure visibility of

operations.

• Axiomatic classes (e.g. t :: α :: order): a mechanism for

structuring semantic knowledge in types (foundation to be

discussed later). ¸
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Where Are Orders Defined?
In previous versions of Isabelle, there used to be a theory file Ord.thy.
Nowadays orders are defined in HOL.thy.

Back to main referring slide
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Different uses of <
The line

axclass order < ord

in the theory file states that order is a subclass of ord.

The line

"op <" :: [’a::ord, ’a] => bool ("( < )" [50, 51] 50)

in the theory file declares a constant < with a certain type.

type is the class containing all types. In previous versions of Isabelle, it

used to be called term.

Back to main referring slide
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Theorems of what?
In the rest of the course, we will mostly be dealing with Isabelle HOL,

and so when we speak of a theorem, we ususally mean an Isabelle

theorem, i.e., a theorem in Isabelle’s metalogic, what we also call a thm.
Such theorems may contain the meta-level implication =⇒ and universal

quantifier
∧

.

So they are not theorems within HOL. Logically, this is not a big deal as

one switches between object and meta-level by the introduction and

elimination rules for → and ∀. But technically (for the proof

procedures), it makes a difference.

To see a theorem displayed in Isabelle, simply type the name of the

theorem followed by “;”.

Back to main referring slide
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Semantic Classes for Semantic Knowledge
The Isabelle type system records for any type variable what class

constraints there are for this type variable. These class constraints may

arise from the types of the constants used in an expression, or they may

be given explicitly by the user in a goal. E.g. one might type

Goal "(x::’a::order)<y ==> x<=y";

to specify that x must be of a type in the type class order.

The axioms of an axiomatic class can only be applied if any constant

declared in the axiomatic class (or a syntactic superclass) is applied to

arguments of a type in the axiomatic class. E.g. order refl can only be

used to prove y <= y if the type of y is in the type class order.

In this sense the type information (y is of type in class order) is

semantic knowledge (y <= y holds).
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Set.thy
theory Set = HOL:
typedecl ’a set
instance set :: (type) ord ..
consts
"{}" :: ’a set ("{}")
UNIV :: ’a set
insert :: [’a, ’a set] => ’a set
Collect :: (’a => bool) => ’a set
"op :" :: "’a => ’a set => bool"

Note that Collect and “:” correspond to Absset and Repset.
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Sets Are a Special Case
Recall that the typedef syntax is based on set

comprehension. Therefore, sets are a special case of type

definitions.

In deviation from our conservative approach, sets are

axiomatized as follows:

axioms
mem Collect eq [iff]: "(a : {x. P(x)}) = P(a)"
Collect mem eq [simp]: "{x. x:A} = A"

One can see though that this is equivalent to the type

definition scheme.
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Set.thy: More Constant Declarations
Un, Int :: [’a set, ’a set] => ’a set
Ball, Bex :: [’a set, ’a => bool] => bool
UNION, INTER:: [’a set, ’a => ’b set] => ’b set
Union, Inter:: ((’a set) set) => ’a set
Pow :: ’a set => ’a set set
"image" :: [’a => ’b, ’a set] => (’b set)

We use old syntax here but only since it is more concise.

In what follows, recall that

{x | f x} = Collect f = Absset f

Smaus: CSMR; WS08/09



Sets 987

Set.thy: Constant Definitions
empty_def: "{} == {x. False}"
UNIV_def: "UNIV == {x. True}"
Un_def: "A Un B == {x. x:A | x:B}"
Int_def: "A Int B == {x. x:A & x:B}"
insert_def: "insert a B == {x. x=a} Un B"
Ball_def: "Ball A P == ALL x. x:A --> P(x)"
Bex_def: "Bex A P == EX x. x:A & P(x)"

Nice syntax:
{x, y, z} for insert x (insert y (insert z {}))
ALL x : A.Sx for Ball A S

EX x : A.Sx for Bex A S
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Set.thy: Constant Definitions (2)
subset_def: "A <= B == ALL x:A. x:B"
Compl_def: "- A == {x. ~x:A}"
set_diff_def: "A - B == {x. x:A & ~x:B}"
UNION_def: "UNION A B == {y. EX x:A. y: B(x)}"
INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}"

Note use of <= instead of ⊆!

Nice syntax:
UN x : A.S x or

⋃
x∈A . S x for UNION A S

INT x : A.S x or
⋂
x∈A . S x for INTER A S
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Set.thy: Constant Definitions (3)
Union_def: "Union S == (UN x:S. x)"
Inter_def: "Inter S == (INT x:S. x)"
Pow_def: "Pow A == {B. B <= A}"
image_def: "f‘A == {y. EX x:A. y = f(x)}"

Nice syntax:⋃
S for Union S⋂
S for Inter S
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Some Theorems in Set.thy
CollectI P a =⇒ a ∈ {x.P x}
CollectD a ∈ {x.P x} =⇒ P a

set ext (
∧
x.(x ∈ A) = (x ∈ B)) =⇒ A = B

subsetI (
∧
x.x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

eqset imp iff A = B =⇒ (x ∈ A) = (x ∈ B)
UNIV I x ∈ UNIV
subset UNIV A ⊆ UNIV
empty subsetI {} ⊆ A
Pow iff (A ∈ PowB) = (A ⊆ B)
IntI Jc ∈ A; c ∈ BK =⇒ c ∈ A ∩B
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More Theorems in Set.thy
insert iff (a ∈ insert b A) = (a = b ∨ a ∈ A)
image Un f ‘(A ∪B) = f ‘A ∪ f ‘B
Inter lower B ∈ A =⇒

⋂
A ⊆ B

Inter greatest (
∧
X.X ∈ A =⇒ C ⊆ X) =⇒ C ⊆

⋂
A
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Summary on Sets

Rich and powerful set theory available in HOL:

• No problems with consistency

• Weaker than ZFC (since typed set-theory:) there is no

“union of sets”; but: complement-closed

• Good mechanical support for many set tautologies

(Fast tac, fast tac set cs, fast tac eq cs,
. . . simp tac set ss . . . )

• Powerful basis for many problems in modeling ¸
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[iff] and [simp] Flags
Theorems marked with [iff] and [simp] flags are automatically added

to the simplifier. Additionally [iff] marked theorems are added to the

classical reasoner.

Back to main referring slide
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<= instead of ⊆
Sets are an instance of the type class ord, where the generic constant

<= is the subset relation in this particular case.

In fact, the subset relation is reflexive, transitive and anti-symmetric, and

so sets are an instance of the axiomatic class order. This is non-obvious

and must be proven, which is done not in Set.thy itself but in Fun.thy,
later. This is a technicality of Isabelle.

Back to main referring slide
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Union of Arbitrary Sets?
In typed set theory (what we have here in HOL), it is not possible to

form the union of two sets of different type. This is in contrast to ZFC.

Back to main referring slide
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Typed Sets Are Complement-Closed
The complement of a typed set A, i.e.

{x | x /∈ A}

is again a set, whose type is the same as the type of A. In ZFC, the

complement construction is not generally allowed since it opens the door

to Russell’s Paradox.

Back to main referring slide
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Fun.thy
The theory Fun.thy defines some important notions on

functions, such as concatenation, the identity function, the

image of a function, etc.

We look at it briefly.
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Two Extracts from Fun.thy
Composition and the identity function:

constdefs
id :: "’a => ’a"
"id == %x. x"

comp :: "[’b => ’c, ’a => ’b, ’a] => ’c"
"f o g == %x. f(g(x))"

Recall constdefs syntax.
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Instantiating an Axiomatic Class
Sets are partial orders: set is an instance of the axiomatic

class order.

For some reason, this is proven in Fun.thy.

instance set :: (type) order
by (intro_classes,

(assumption | rule subset_refl
subset_trans subset_antisym psubset_eq)+)

• Axiomatic classes result in proof obligations.

• These are discharged whenever instance is stated.

• Type-checking has access to the established properties.
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Conclusion of Orders, Sets, Functions

• Theory says: conservative extensions can be used to build

consistent libraries.

• Sets as one important package of Isabelle/HOL library:
◦ Set theory is typed, but very rich and powerfully supported.

◦ Sets are instance of ord and order type class, demonstrates type

classes as structuring mechanism in Isabelle.
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Conclusion of Orders, Sets, Functions

• Theory says: conservative extensions can be used to build

consistent libraries.

• Sets as one important package of Isabelle/HOL library:
◦ Set theory is typed, but very rich and powerfully supported.

◦ Sets are instance of ord and order type class, demonstrates type

classes as structuring mechanism in Isabelle.

• Will see more examples: Isabelle/HOL contains some

10000 thm’s. ¸
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More Detailed Explanations
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Fun.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Fun.thy builds on Set.thy, and it is here that it is proven and used

that sets are an instance of the type class order.

Back to main referring slide
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Proof Obligations
To claim that a type is an instance of an axiomatic class, it has to be

proven that the axioms (in the case of order: order refl,
order trans, order antisym, and order less le) are indeed fulfilled

by that type.

Back to main referring slide
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Discharge Obligations
The Isabelle mechanism is such that the line

instance set :: (type) order
by (intro classes,

(assumption | rule
subset refl subset trans subset antisym psubset eq)+)

instructs Isabelle to prove the axioms using the previously proven

theorems subset refl, subset trans, subset antisym, and

psubset eq.

Back to main referring slide
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Recursion Based on Set Theory
Current stage of our course:

• On the basis of conservative extensions, set theory can be

built safely.

• But: our mathematical world is still quite small and quite

remote from computer science: we have no means of

introducing recursive definitions (recursive programs,

recursive set equations, . . . ).

How can we benefit from set theory to introduce recursion?
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Recursion and General Fixpoints
Näıve Approach: One could axiomatize fixpoint combinator

Y as

Y = λF.F (Y F )
fix

This axiom is not a constant definition.

Then we could easily derive

∀F α→α.Y F = F (Y F ).
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Background: Recursion, Induction, and Fixpoints 1011

Recursion and General Fixpoints
Näıve Approach: One could axiomatize fixpoint combinator

Y as

Y = λF.F (Y F )
fix

This axiom is not a constant definition.

Then we could easily derive

∀F α→α.Y F = F (Y F ).

• Why are we interested in Y ?

• What is the problem with such a definition?
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Why Are We Interested in Y ?
First, why are we interested in recursion (solutions to

recursive equations)?
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Why Are We Interested in Y ?
First, why are we interested in recursion (solutions to

recursive equations)?

• Recursively defined functions are solutions of such

equations (example: fac).

• Inductively defined sets are solutions of such equations

(example: Fin A, all finite subsets of A).

Smaus: CSMR; WS08/09



Background: Recursion, Induction, and Fixpoints 1012

Why Are We Interested in Y ?
First, why are we interested in recursion (solutions to

recursive equations)?

• Recursively defined functions are solutions of such

equations (example: fac).

• Inductively defined sets are solutions of such equations

(example: Fin A, all finite subsets of A).

We are interested in Y because it is the mother of all

recursions. With Y , recursive axioms can be converted into

constant definitions.
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What’s the Problem with such an Axiom?
Such a definition would lead to inconsistency.

This is not surprising because not all functions have a

fixpoint.

Therefore we only consider special forms of fixpoint

combinators.

We consider two approaches: Least fixpoints (Tarski) and

well-founded orderings. ¸
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More Detailed Explanations
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Axiom Is not a Definition
The axiom

Y = λF.F (Y F )

is not a constant definition, since Y occurs again on the right-hand side.

Back to main referring slide
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∀F α→α.Y F = F (Y F )
In words, this says that Y F is a fixpoint of F .

Back to main referring slide
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Recursive Equation
By a recursive equation, we mean an equation of the form

f = e

where f occurs in e. A fortiori, such an equation does not qualify as

constant definition.

Back to main referring slide
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Converting Recursive Axioms
Any recursive function can be defined by an expression (functional)

which is not itself recursive, but instead relies on the recursive equation

defining Y .

Consider fac or Fin A as an example.

Back to main referring slide
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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First Approach: Least Fixpoints (Tarski)

• Recall: We would like to define Y = λF.F (Y F ), where F

is of arbitrary type α→ α, but we must not.
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First Approach: Least Fixpoints (Tarski)

• Recall: We would like to define Y = λF.F (Y F ), where F

is of arbitrary type α→ α, but we must not.

• Restriction: F is of set type (α set → α set).
• Instead of Y define lfp by an equation which is not

recursive.

• lfp is fixpoint combinator, but only under additional

condition that F is monotone, and: this is not obvious

(requires non-trivial proof)!

This leads us towards recursion and induction.
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Lfp.thy
Lfp = Product_Type +
constdefs
lfp :: [’a set => ’a set] => ’a set
"lfp(f) == Inter({u. f(u) <= u})"

• => is function type arrow.

• <= (“⊆”) is a partial order.

• Inter (“
⋂

”) gives a “minimum”: ∀A ∈ S.(
⋂
S) ⊆ A.

Note that
◦

⋂
∅ = UNIV, i.e., if {u|f(u) ⊆ u} = ∅, then lfp(f) = UNIV;

◦ If f has a fixpoint a, then f(a) = a and hence a fortiori f(a) ⊆ a,
and so {u|f(u) ⊆ u} 6= ∅.
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Is it a Fixpoint?
We have

lfp(f) :=
⋂
{u|f(u) ⊆ u}

Definition of lfp is conservative. That’s fine. But is it a

fixpoint combinator?

Smaus: CSMR; WS08/09
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Tarski’s Fixpoint Theorem

Theorem 1 (Tarski):

If f is monotone, then lfp f = f (lfp f).
In Isabelle, the theorem is shown in Lfp.ML and called

lfp unfold.

We show the theorem using mathematical notation and a

graphical illustration to help intuition.

The proof has four steps.

Smaus: CSMR; WS08/09
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Tarski’s Fixpoint Theorem

Theorem 1 (Tarski):

If f is monotone, then lfp f = f (lfp f).
In Isabelle, the theorem is shown in Lfp.ML and called

lfp unfold.

We show the theorem using mathematical notation and a

graphical illustration to help intuition.

The proof has four steps.

Side remark: if f is monotone, then clearly f has some

fixpoint, since f UNIV = UNIV and thus UNIV is always a

fixpoint.
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Tarski’s Fixpoint Theorem (1)
Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.
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Tarski’s Fixpoint Theorem (1)
Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

The box denotes “the set” α. The

three circles denote the sets A for

which f A ⊆ A.
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Tarski’s Fixpoint Theorem (1)
Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

The box denotes “the set” α. The

three circles denote the sets A for

which f A ⊆ A.

By definition, lfp f is the intersec-

tion. .
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Tarski’s Fixpoint Theorem (1)
Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

The box denotes “the set” α. The

three circles denote the sets A for

which f A ⊆ A.

By definition, lfp f is the intersec-

tion.

Pick an A for which f A ⊆ A.

Clearly, lfp f ⊆ A.
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Or as proof tree.
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Tarski’s Fixpoint Theorem (2)
Claim 2 (“lfp greatest”): For all A, if

for all U , f U ⊆ U implies A ⊆ U , then A ⊆ lfp f .
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Tarski’s Fixpoint Theorem (2)
Claim 2 (“lfp greatest”): For all A, if

for all U , f U ⊆ U implies A ⊆ U , then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .
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Tarski’s Fixpoint Theorem (2)
Claim 2 (“lfp greatest”): For all A, if

for all U , f U ⊆ U implies A ⊆ U , then A ⊆ lfp f .

The three circles denote the sets U

for which f U ⊆ U .

By hypothesis, A ⊆ U for each U
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Or as proof tree.
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Tarski’s Fixpoint Theorem 1027

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .
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Tarski’s Fixpoint Theorem 1027

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f(lfp f) ⊆ U .
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Tarski’s Fixpoint Theorem 1027

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f(lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .
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Tarski’s Fixpoint Theorem 1027

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f(lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).
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Tarski’s Fixpoint Theorem 1027

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f(lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).

f(lfp f) ⊆ f U (monotonicity).
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Tarski’s Fixpoint Theorem 1027

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f(lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).

f(lfp f) ⊆ f U (monotonicity).

f(lfp f) ⊆ U (transitivity of ⊆).

Claim 3∗ shown.
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Tarski’s Fixpoint Theorem 1027

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .

First show Claim 3∗: f U ⊆ U implies f(lfp f) ⊆ U .

Let the circle be such a U . By Claim

1, lfp f ⊆ U .

f U ⊆ U (hypothesis).

f(lfp f) ⊆ f U (monotonicity).

f(lfp f) ⊆ U (transitivity of ⊆).

Claim 3∗ shown.

By Claim 2 (letting A := f(lfp f)),
f(lfp f) ⊆ lfp f .
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Tarski’s Fixpoint Theorem 1028

Tarski’s Fixpoint Theorem (4)
Claim 4: If f is monotone then lfp f ⊆ f(lfp f).
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Tarski’s Fixpoint Theorem 1028

Tarski’s Fixpoint Theorem (4)
Claim 4: If f is monotone then lfp f ⊆ f(lfp f).

By Claim 3, f(lfp f) ⊆ lfp f .
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Tarski’s Fixpoint Theorem 1028

Tarski’s Fixpoint Theorem (4)
Claim 4: If f is monotone then lfp f ⊆ f(lfp f).

By Claim 3, f(lfp f) ⊆ lfp f .

By monotonicity, f(f(lfp f)) ⊆
f(lfp f).
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Tarski’s Fixpoint Theorem 1028

Tarski’s Fixpoint Theorem (4)
Claim 4: If f is monotone then lfp f ⊆ f(lfp f).

By Claim 3, f(lfp f) ⊆ lfp f .

By monotonicity, f(f(lfp f)) ⊆
f(lfp f).
By Claim 1 (letting A := f(lfp f)),
lfp f ⊆ f(lfp f).
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Tarski’s Fixpoint Theorem 1028

Tarski’s Fixpoint Theorem (4)
Claim 4: If f is monotone then lfp f ⊆ f(lfp f).

By Claim 3, f(lfp f) ⊆ lfp f .

By monotonicity, f(f(lfp f)) ⊆
f(lfp f).
By Claim 1 (letting A := f(lfp f)),
lfp f ⊆ f(lfp f).
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Or as proof tree.
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Tarski’s Fixpoint Theorem 1029

Tarski’s Fixpoint Theorem: QED
Claim 3 (lfp f ⊆ f(lfp f)) and Claim 4 (f(lfp f) ⊆ lfp f)

together give the result:

If f is monotone, then lfp f = f (lfp f).

So under appropriate conditions, lfp is a fixpoint combinator.

We will later reuse Claim 1.
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Tarski’s Fixpoint Theorem 1030

Alternative: A Natural-Deduction Style Proof
The proof can also be presented in natural deduction style.
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Tarski’s Fixpoint Theorem 1031

Tarski’s Fixpoint Theorem (1)
Claim 1 (“lfp lower bound”): If f A ⊆ A then lfp f ⊆ A.

[f A ⊆ A]1

A ∈ {u.fu ⊆ u}CollectI⋂
{u.fu ⊆ u} ⊆ A Inter lower

lfp f ⊆ A
Def. lfp

f A ⊆ A→ lfp f ⊆ A→-I1
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Tarski’s Fixpoint Theorem 1032

Tarski’s Fixpoint Theorem (2)
Claim 2 (“lfp greatest”): For all A, if for all U , f U ⊆ U
implies A ⊆ U , then A ⊆ lfp f .

[∀x.fx ⊆ x→ A ⊆ x]1

∀x.x ∈ {u.fu ⊆ u} → A ⊆ x
subst,CollectI

A ⊆ ∩{u.fu ⊆ u}
Inter greatest

A ⊆ lfpf
Def. lfp

(∀x.fx ⊆ x→ A ⊆ x)→ A ⊆ lfpf→-I1
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Tarski’s Fixpoint Theorem 1033

Tarski’s Fixpoint Theorem (3)
Claim 3: If f is monotone then f(lfp f) ⊆ lfp f .

[mono f ]1
[fx ⊆ x]2

lfp f ⊆ x
f(lfp f) ⊆ f x [fx ⊆ x]2

f(lfp f) ⊆ x order trans

∀x.fx ⊆ x→ f(lfp f) ⊆ x ∀-I,→-I2

f(lfp f) ⊆ lfp f
lfp greatest, →-E

mono f → f(lfp f) ⊆ lfp f→-I1
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Tarski’s Fixpoint Theorem 1034

Tarski’s Fixpoint Theorem (4)
Claim 4: If f is monotone then lfp f ⊆ f(lfp f).

[mono f ]1
[mono f ]1

f(lfp f) ⊆ lfp f
Claim 3,→-E

f(f(lfp f)) ⊆ f(lfp f)
monoD

lfp f ⊆ f(lfp f)
lfp lowerbound, →-E

mono f → lfp f ⊆ f(lfp f)→-I1
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Tarski’s Fixpoint Theorem 1035

Completing Proof Tree

[mono f ]1

lfp f ⊆ f(lfp f)
Claim 4

[mono f ]1

f(lfp f) ⊆ lfp f
Claim 3

lfp f = f(lfp f)
equalityI

mono f → lfp f = f(lfp f)→-I1
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Induction Based on Lfp.thy 1036

Induction Based on Lfp.thy

Theorem 2 (lfp induction):

If

• f is monotone, and

• f(lfp f ∩ {x | P x}) ⊆ {x | P x},
then lfp f ⊆ {x | P x}.
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Induction Based on Lfp.thy 1036

Induction Based on Lfp.thy

Theorem 2 (lfp induction):

If

• f is monotone, and

• f(lfp f ∩ {x | P x}) ⊆ {x | P x},
then lfp f ⊆ {x | P x}.
In Isabelle, it is called lfp induct:

Ja ∈ lfp f ;mono f ;
∧
x.x ∈ f(lfp f ∩ {x.P x}) =⇒ P xK

=⇒ P a

We now show the theorem similarly as Tarski’s Theorem.
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Induction Based on Lfp.thy 1037

Showing lfp induct
Circles denote lfp f and {x | P x}.
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Induction Based on Lfp.thy 1037

Showing lfp induct
Circles denote lfp f and {x | P x}.
By monotonicity, f(lfp f ∩ {x | P x}) ⊆
f(lfp f). By Tarski, lfp f = f(lfp f).
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Induction Based on Lfp.thy 1037

Showing lfp induct
Circles denote lfp f and {x | P x}.
By monotonicity, f(lfp f ∩ {x | P x}) ⊆
f(lfp f). By Tarski, lfp f = f(lfp f). Hence

f(lfp f ∩ {x | P x}) ⊆ lfp f . .
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Showing lfp induct
Circles denote lfp f and {x | P x}.
By monotonicity, f(lfp f ∩ {x | P x}) ⊆
f(lfp f). By Tarski, lfp f = f(lfp f). Hence

f(lfp f ∩ {x | P x}) ⊆ lfp f .

By hypothesis, f(lfp f ∩ {x | P x}) ⊆
{x | P x}, and so we must adjust picture:

f(lfp f ∩ {x | P x}) ⊆ lfp f ∩ {x | P x}.
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Showing lfp induct
Circles denote lfp f and {x | P x}.
By monotonicity, f(lfp f ∩ {x | P x}) ⊆
f(lfp f). By Tarski, lfp f = f(lfp f). Hence

f(lfp f ∩ {x | P x}) ⊆ lfp f .

By hypothesis, f(lfp f ∩ {x | P x}) ⊆
{x | P x}, and so we must adjust picture:

f(lfp f ∩ {x | P x}) ⊆ lfp f ∩ {x | P x}.
By Claim 1, lfp f ⊆ lfp f ∩ {x | P x} and

so lfp f = lfp f ∩ {x | P x}.
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Showing lfp induct
Circles denote lfp f and {x | P x}.
By monotonicity, f(lfp f ∩ {x | P x}) ⊆
f(lfp f). By Tarski, lfp f = f(lfp f). Hence

f(lfp f ∩ {x | P x}) ⊆ lfp f .

By hypothesis, f(lfp f ∩ {x | P x}) ⊆
{x | P x}, and so we must adjust picture:

f(lfp f ∩ {x | P x}) ⊆ lfp f ∩ {x | P x}.
By Claim 1, lfp f ⊆ lfp f ∩ {x | P x} and

so lfp f = lfp f ∩ {x | P x}.
Conclusion: lfp f ⊆ {x | P x}.
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Approximating Fixpoints
Looking ahead: Suppose we have the set N of natural

numbers (the type is formally introduced later). The

theorem approx

(∀S. f(
⋃
S) =

⋃
(f ‘ S)) =⇒

⋃
n∈N

(fn{})) = lfp f

shows a way of approximating lfp, which is important for

algorithmic solutions (e.g. in program analysis).

There will be an exercise on this.
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Where Are We Going? Induction and
Recursion

Let’s step back: What is an inductive definition of a set S?
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Where Are We Going? Induction and
Recursion

Let’s step back: What is an inductive definition of a set S?

It has the form: S is the smallest set such that:

• ∅ ⊆ S (just mentioned for emphasis);

• if S ′ ⊆ S then F (S ′) ⊆ S (for some appropriate F ).
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Where Are We Going? Induction and
Recursion

Let’s step back: What is an inductive definition of a set S?

It has the form: S is the smallest set such that:

• ∅ ⊆ S (just mentioned for emphasis);

• if S ′ ⊆ S then F (S ′) ⊆ S (for some appropriate F ).

At the same time, S is the smallest solution of the recursive

equation S = F (S).
Induction and recursion are two faces of the same coin.
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Lfp.thy for Inductive Definitions
Least fixpoints are for building inductive definitions of sets in

a definitional way: S := lfp F .

This is obviously well-defined, so why this fuss about

monotonicity and Tarski?
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Lfp.thy for Inductive Definitions
Least fixpoints are for building inductive definitions of sets in

a definitional way: S := lfp F .

This is obviously well-defined, so why this fuss about

monotonicity and Tarski?

Tarski allows us to exploit the equation lfp f = f(lfp f) in

proofs about S! That’s what lfp is all about.
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Example (from Motivation)
The set of all finite subsets of a set A:

Fin A = lfp F

where F = λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X).
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Example (from Motivation)
The set of all finite subsets of a set A:

Fin A = lfp F

where F = λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X).

Thus we can do using lfp what we would have wanted to do

using Y .

To show: F is monotone!

In the Isabelle library, this is done a bit differently.

There will be an exercise on this.
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The Package for Inductive Sets

Since monotonicity proofs can be automated, Isabelle has

special proof support for inductive definitions. Example:

consts Fin :: ’a set => ’a set set
inductive "Fin(A)"
intrs
emptyI "{} : Fin(A)"
insertI "[| a: A; b: Fin(A) |] ==>

insert a b : Fin(A)"

Translated into expression using lfp.

Package relies on proven lemma lfp unfold.
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Technical Support for Inductive Definitions
Support important in practice since many constructions are

based on inductively defined sets (datatypes, . . . ). Support

provided for:

• Automatic proof of monotonicity

• Automatic proof of induction rule, for example:

Jxa ∈ Fin A;P {};
∧
a b.Ja ∈ A; b ∈ Fin A;P bK =⇒

P (insert a b)K =⇒ P xa

This works also for mutually recursive definitions,

co-inductive definitions, . . .
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Summary on Least Fixpoints

We are interested in recursion because inductively defined

sets and recursively defined functions are solutions to

recursive equations.

We cannot have general fixpoint operator Y , but we have,

by conservative extension, least fixpoints for defining sets.

There is an induction scheme (lfp induction) for proving

theorems about an inductively defined set.

Restriction of F to set type (α set → α set) means that

least fixpoints are not generally suitable for defining

functions . . . ¸
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More Detailed Explanations
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Defining fac
In the following explanations, any constants like 1 or + or if-then-else
are intended to have their usual meaning.

A fixpoint combinator is a function Y that returns a fixpoint of a

function F , i.e., Y must fulfill the equation Y F = F (Y F ). Doing

λ-abstraction over F on both sides and η-conversion (backwards) on the

left-hand side, we have

Y = λF.F (Y F )

This is a recursive equation. We will now demonstrate how a definition of

a function fac (factorial) using a recursive equation can be transformed

to a definition that uses Y instead of using recursion directly.

In a functional programming language we might define

fac n = (if n = 0 then 1 else n ∗ fac (n− 1)).
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We now massage this equation a bit. Doing λ-abstraction on both sides

we get

λn. fac n = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which is the η-conversion of

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

which in turn is a β-reduction of

fac = ((λf. λn. if n = 0 then 1 else n ∗ f(n− 1)) fac) (3)

We are looking for a solution to (3). We abbreviate the underlined

expression by Fac. We claim fac = Y Fac, i.e., it is a solution to (3).
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Simply replacing fac with Y Fac in (3) we get

Y Fac = Fac (Y Fac)

which holds by the definition of Y .

Thus we see that a recursive definition of a function can be transformed

so that the function is the fixpoint of an appropriate functional (a

function taking a function as argument).

Back to main referring slide
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Defining Fin A
We want to define a function Fin such that Fin A is the set of all finite

subsets of A.

How do you construct the set of all finite subsets of A? The following

pseudo-code suggests what you have to do:

S := {{}};
forever do

foreach a ∈ A do
foreach B ∈ S do

add ({a} ∪B) to S
od od od

This means that you have to add new sets forever (however, when you

actually do this construction for a finite set A, it will indeed reach a
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fixpoint, i.e., adding new sets won’t change anything).

Generally (even if A is infinite), Fin A is a set such that adding new sets

as suggested by the pseudo-code won’t change anything. Written as

recursive equation:

Fin A = {{}} ∪
⋃
x ∈ A.((insertx) ‘ (Fin A))

Recall that ‘ is nice syntax for image, defined in Set.thy.

The above is a β-reduction of

Fin A = (λX. {{}} ∪
⋃
x ∈ A.((insertx) ‘X)) (Fin A) (4)

We are looking for a solution to (4). We abbreviate the underlined

expression by FA. We claim

Fin A = Y FA,
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i.e., it is a solution to (4). Simply replacing Fin A with Y FA in (4) we

get

Y FA = FA(Y FA),

which holds by the definition of Y .

You should compare this to what we said about fac. Note that in this

example, there is no such thing as a recursive call to a “smaller”

argument as in fac example.

Back to main referring slide
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Lfp.thy and Lfp.ML
These files should be contained in your Isabelle distribution. Or, if you

only have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Algorithmic Version of lfp
The theorem

(∀S. f(
⋃
S) =

⋃
(f ‘ S)) =⇒

⋃
n∈N

(fn{})) = lfp f

says that under a certain condition, lfp f can be computed by applying f

to the empty set over and over again:

• although the expression uses the union over all natural numbers, which

is an infinite set, this can sometimes effectively be computed. Under

certain conditions, there exists a k such that fk {} = fk+1{}.
• Even if

⋃
n ∈ N.fn {} cannot be effectively computed, it can still be

approximated: for any k, we know that⋃
i ≤ k.f i {} ⊆

⋃
n ∈ N.fn {}.

Back to main referring slide
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Monotone Functions
A function f is monotone w.r.t. a partial order ≤ if the following holds:

A ≤ B implies f(A) ≤ f(B).
In particular, we consider the order given by the subset relation.

Back to main referring slide
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“The Set” α
α is not a set but a type (variable). But we can consider the set of all

terms of that type (UNIV of type α).

The polymorphic constant UNIV was defined in Set.thy. UNIV of type

τ set is the set containing all terms of type τ .

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1056

Three Circles?
In general, needless to say, there could be any number of such sets, but

the picture is to be understood in the sense that the three circles are all

the sets A with the property f A ⊆ A.

Back to main referring slide
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Different Phrasings
The theorem is phrased a bit differently in the “mathematical” version

we give here and in the Isabelle version (see Lfp.ML). This is convenient

for the graphical illustration of the proof.

The “mathematical phrasing” corresponding closely to the Isabelle

version would be the following:

Theorem 3 (Induct (alternative)):

If

• a ∈ lfp f , and

• f is monotone, and

• for all x, x ∈ f(lfp f ∩ {x | P x}) implies P x

then P a holds.

Other phrasings, which may help to get some intuition about the
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theorem:

Theorem 4 (Induct (alternative)):

If

• a ∈ lfp f , and

• f is monotone, and

• f(lfp f ∩ {x | P x}) ⊆ {x | P x}
then P a holds.

Theorem 5 (Induct (alternative)):

If

• f is monotone, and

• f(lfp f ∩ {x | P x}) ⊆ {x | P x}
then for all x in lfp f , we have P x.

Back to main referring slide
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Detail on Monotonicity
lfp f ∩ {x | P x} ⊆ lfp f , so by monotonicity,

f(lfp f ∩ {x | P x}) ⊆ f(lfp f).

Back to main referring slide
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Use of Claim 1
We have just seen f(lfp f ∩ {x | P x}) ⊆ lfp f ∩ {x | P x}.
By Claim 1

If f A ⊆ A then lfp f ⊆ A
(setting A := lfp f ∩ {x | P x}), this implies lfp(f) ⊆ lfp f ∩ {x | P x}.

Back to main referring slide
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Antisymmetry of ⊆
We have lfp f ∩ {x | P x} ⊆ lfp(f) and lfp(f) ⊆ lfp f ∩ {x | P x}, and

so lfp(f) = lfp f ∩ {x | P x} by the antisymmetry of ⊆.

Back to main referring slide
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Recursion in a Definitional Way
Recall why we were interested in fixpoints.

The problem with Y is that it leads to inconsistency (and of course, the

definition of Y is not a constant definition/conservative extension.).

The definition of lfp is conservative.

And in appropriate situations, it can be used to define recursive functions.

Compared to Y , the type of lfp is restricted.

This restriction means that there is no obvious way to use lfp for

defining recursive numeric functions such as fac.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1063

Finite Sets in Isabelle

Above, we defined the set of finite subsets of a set A. Alternatively, one

could define “the set of all finite sets whose elements have type τ”. In

this case, no fixed set A is involved, and it is closer to what actually

happens in Isabelle. In Finite Set.thy a constant Finites is defined.

It has polymorphic type α set set . We have A ∈ Finites if and only if A

is a finite set. However, it would be wrong to think of Finites as one

single set that contains all finite sets. Instead, for each τ , there is a

polymorphic instance of Finites of type τ set set containing all finite sets

of element type τ .

In Finite Set.thy we find the lines
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inductive "Finites"
intros

emptyI [simp, intro!]: "{} : Finites"
insertI [simp, intro!]: "A : Finites ==>

insert a A : Finites"

The Isabelle mechanism of interpreting the keyword inductive
translates this into the following definition: Finites = lfp G where

G ≡ λS. {x | x = {} ∨ (∃A a. x = insert a A ∧A ∈ S)}

You can see this by typing in your proof script:

open Finites;
defs;
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Talking (ML-)technically, Finites is a structure (module), and defs is

a value (component) of this structure.

As a sanity-check, consider the type of this expression. The expression

insert aA forces A to be of type τ set for some τ and a to be of type τ .

Next, insert aA is of type τ set , and hence x is also of type τ set .
Moreover, the expression A ∈ S forces S to be of type τ set set . The

expression {x | x = {} ∨ (∃Aa. x = insert aA ∧A ∈ S)} is of type

τ set set . Next, G is of type τ set set → τ set set , and so finally, Finites
is of type τ set set . But actually, since τ is arbitrary, we can replace it by

a type variable α.

Note that there is a convenient syntactic translation

translations "finite A" == "A : Finites"

When does Isabelle generate ML-structures, and what are the names of
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those structures?

This question is highly Isabelle-technical, related to different formats

used for writing theory files, which is in turn partly due to mere historic

reasons.

It used to be the case that for a theory file called F .thy, a structure F
would be generated. Certain keywords in F .thy such as inductive,
recursive, and datatype, would trigger the creation of substructures,

so for example inductive I would call for the creation of a substructure

I.

For a newer format of theory files, this is no longer the case.

The treatment of the keyword constdefs, followed by the declaration

and definition of a constant C, also depends on the format used for

writing theory files.

• Sometimes (when an older format is used), it will automatically
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generate a thm called C def which is the definition of C.

• Sometimes (when a newer format is used), it will insert the definition

of C into a database which can be accessed by a function called thm
taking a string as argument. In this case, not C def would be the

definition of C, but rather

thm ”C def”

You should be aware of such problems, but we do not treat them in this

course.

Back to main referring slide
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Finite Set.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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F is monotone
This proof is of course done in Isabelle.

Back to main referring slide
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Induction for Finite Sets
The theorem

Jxa ∈ Fin A;P {};
∧
ab.Ja ∈ A; b ∈ Fin A;P bK =⇒ P (insert a b)K

=⇒ P xa

is an instance of the general induction scheme. That is to say, if we take

the general induction scheme lfp induct

Ja ∈ lfp f ;mono f ;
∧
x.x ∈ f(lfp f ∩ {x.P x}) =⇒ P xK =⇒ P a

and instantiate f to λX.{{}} ∪
⋃
x ∈ A.((insertx) ‘X) then some

massaging using the definitions will give us the first theorem.

Note here that monotonicity has disappeared from the assumptions. This

is because the monotonicity of F is shown by Isabelle once and for all.
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More Detailed Explanations 1071

This is one aspect of what we mean by special proof support for

inductive definitions.

The least fixpoint of the functional is Fin A (the set of finite subsets of

A) in this case.

Back to main referring slide
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More Detailed Explanations 1072

Mutually Recursive Definitions
Two functions f and g are mutually recursive if f is defined in terms of g

and vice versa.

Back to main referring slide
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More Detailed Explanations 1073

Co-induction
Co-induction is a construction analogous to induction but using greatest

fixpoints.

Back to main referring slide
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Well-Founded Recursion 1075

The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Well-Founded Recursion 1075

The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Well-Founded Recursion
After least fixpoints, well-founded recursion is our second

concept of recursion (and fixpoint combinator).

Idea: Modeling “terminating” recursive functions,

i.e. recursive definitions that use “smaller” arguments for the

recursive call.
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Prerequisite: Relations 1077

Prerequisite: Relations

We need some standard operations on binary relations (sets

of pairs), such as converse, composition, image of a set and

a relation, the identity relation, . . .

These are provided by Relation.thy.
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Prerequisite: Relations 1078

Relation.thy (Fragment)
constdefs
converse :: "(’a * ’b) set => (’b * ’a) set"
"r^-1 == {(y, x). (x, y):r}"
rel_comp :: "[(’b * ’c) set, (’a * ’b) set] =>

(’a * ’c) set"
"r O s == {(x,z). EX y. (x, y):s & (y, z):r}"
Image :: "[(’a * ’b) set, ’a set] => ’b set"
"r ‘‘ s == {y. EX x:s. (x,y):r}"
Id :: "(’a * ’a) set"
"Id == {p. EX x. p = (x,x)}"

Somewhat similar to Fun.thy.
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Prerequisite: Closures 1079

Prerequisite: Closures

We need the transitive, as well as the reflexive transitive

closure of a relation.

These are provided by Transitive Closure.thy.

How would you define those inductively, ad-hoc?
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Prerequisite: Closures 1080

Transitive Closure.thy (Fragment)
consts
rtrancl :: "(’a * ’a) set => (’a * ’a) set"

("(_^*)" [1000] 999)
inductive "r^*"
intros
rtrancl_refl [...]: "(a, a) : r^*"
rtrancl_into_rtrancl [...]: "(a, b) : r^* ==>

(b, c) : r ==> (a, c) : r^*"
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Prerequisite: Closures 1081

Transitive Closure.thy (Fragment Cont.)
consts
trancl :: "(’a * ’a) set => (’a * ’a) set"

("(_^+)" [1000] 999)
inductive "r^+"
intros
r_into_trancl [...]: "(a, b) : r ==>

(a, b) : r^+"
trancl_into_trancl [...]: "(a, b) : r^+ ==>

(b, c) : r ==> (a,c) : r^+"
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Well-Founded Orderings 1082

Well-Founded Orderings

Defined in Wellfounded Recursion.thy.

Wellfounded_Recursion = Transitive_Closure +
constdefs
wf :: "(’a * ’a) set => bool"
"wf(r) ==
(!P. (!x. (!y. (y,x):r --> P(y)) --> P(x))

--> (!x. P(x)))"

What does this mean?
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Well-Founded Orderings 1082

Well-Founded Orderings

Defined in Wellfounded Recursion.thy.

Wellfounded_Recursion = Transitive_Closure +
constdefs
wf :: "(’a * ’a) set => bool"
"wf(r) ==
(!P. (!x. (!y. (y,x):r --> P(y)) --> P(x))

--> (!x. P(x)))"

What does this mean? r is well-founded if well-founded

(Noetherian) induction based on r is a valid proof scheme.

Example: Is ∅ well-founded? < on the integers?
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric:
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• - •

6

•

?
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles:
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?

•
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•
•
•
•
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•
•
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?

• r has minimal element:
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?
Note: Trivial for r = ∅.
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Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?
Note: Trivial for r = ∅. •

•
•
•
•
•
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?
Note: Trivial for r = ∅.
• Any subrelation must have minimal element:
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?
Note: Trivial for r = ∅.
• Any subrelation must have minimal element:

∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p?
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Well-Founded Orderings 1083

Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: Cannot express infinity; must look for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?
• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?
Note: Trivial for r = ∅.
• Any subrelation must have minimal element:

∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p? “Minimal

element” badly formalized (already in previous

point).

•
•
•
•
•
•
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Well-Founded Orderings 1084

The Characterization
All these attempts are just necessary but not sufficient

conditions for well-foundedness.

Here is a characterization:

(∀Qx. x ∈ Q→ (∃z ∈ Q.∀y.(y, z) ∈ r → y /∈ Q))

Here is an alternative characterization (exercise):

(∀r.r 6= {} ∧ r ⊆ p→ (∃x ∈ Domain r.∀y.(y, x) /∈ r))

Let’s see some theorems to confirm our intuition, including

the statements just shown.
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Well-Founded Orderings 1085

A Theorem on the Empty Set
wf empty wf {}

Proof sketch:

wf empty: substitute r into definition, simplify.
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Well-Founded Orderings 1086

A Theorem for Induction
By massage of the definition of well-foundedness

∀P.(∀x.(∀y.(y, x) ∈ r → P y)→ P x)→ (∀x.P x)

one obtains the theorem wf induct

Jwf r;
∧
x.∀y.(y, x) ∈ r → P y =⇒ P xK =⇒ P a.

This is a form suitable for doing induction proofs in Isabelle.
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Well-Founded Orderings 1087

Induction Theorem as Proof Rule
The Isabelle theorem wf induct

Jwf r;
∧
x.∀y.(y, x) ∈ r → P y =⇒ P xK =⇒ P a.

as proof rule:

wf r

[∀y.(y, x) ∈ r → P y]
....
P x

P a
wf induct
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Well-Founded Orderings 1088

A Theorem on Antisymmetry
wf not sym Jwf r; (a, x) ∈ rK =⇒ (x, a) /∈ r

Proof sketch:

wf r

[∀y.(y, x) ∈ r → (∀z.(y, z) ∈ r → (z, y) /∈ r)]
....

∀z.(x, z) ∈ r → (z, x) /∈ r
∀z.(a, z) ∈ r → (z, a) /∈ r

wf induct

The induction part needs classical reasoning.

We will first give an intuitive proof.
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Well-Founded Orderings 1089

The Induction Part Intuitively
Notation: Write a < b instead of (a, b) ∈ r.
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Well-Founded Orderings 1089

The Induction Part Intuitively
Notation: Write a < b instead of (a, b) ∈ r.
Hypothesis: for every y < x have ∀z . y < z → z 6< y.

To show: It holds that ∀z. x < z → z 6< x.
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The Induction Part Intuitively
Notation: Write a < b instead of (a, b) ∈ r.
Hypothesis: for every y < x have ∀w. y < w → w 6< y.

To show: It holds that ∀z. x < z → z 6< x. Renaming.
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Well-Founded Orderings 1089

The Induction Part Intuitively
Notation: Write a < b instead of (a, b) ∈ r.
Hypothesis: for every y < x have ∀w. y < w → w 6< y.

To show: It holds that ∀z. x < z → z 6< x. Renaming.

We make a case distinction on z.

Case 1: z 6< x. Then trivially x < z → z 6< x.
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Well-Founded Orderings 1089

The Induction Part Intuitively
Notation: Write a < b instead of (a, b) ∈ r.
Hypothesis: for every y < x have ∀w. y < w → w 6< y.

To show: It holds that ∀z. x < z → z 6< x. Renaming.

We make a case distinction on z.

Case 1: z 6< x. Then trivially x < z → z 6< x.

Case 2: z < x. Then setting y := z and w := x in the

hypothesis, we get z < x→ x 6< z, which is equivalent to

x < z → z 6< x.

In both cases x < z → z 6< x holds, and thus

∀z. x < z → z 6< x.
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Well-Founded Orderings 1090

The Induction Part Formally
We will now give the induction part at a level of detail that

shows the essential reasoning but hides all the swapping

involved in the Isabelle proof.

A variation will be done as exercise.
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The Induction Part in More Detail
∀y.(y, x) ∈ r → (∀z.(y, z) ∈ r → (z, y) /∈ r)
(w, x) ∈ r → (∀z.(w, z) ∈ r → (z, w) /∈ r) ∀-E

(w, x) /∈ r ∨ (∀z.(w, z) ∈ r → (z, w) /∈ r) ≡ φ
(c)

“(c)” stands for classical reasoning steps.

φ

[(w, x) /∈ r]1

(x,w) ∈ r → (w, x) /∈ r impI2

[∀z.(w, z) ∈ r → (z, w) /∈ r]1

∀z.(z, w) ∈ r → (w, z) /∈ r
(c)

(x,w) ∈ r → (w, x) /∈ r ∀-E

(x,w) ∈ r → (w, x) /∈ r disjE1

∀z.(x, z) ∈ r → (z, x) /∈ r ∀-I
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Well-Founded Orderings 1092

Theorems on Absence of Cycles
wf not refl wf r =⇒ (a, a) /∈ r
wf trancl wf r =⇒ wf (r+)
wf acyclic wf r =⇒ acyclic r

(acyclic r ≡ ∀x.(x, x) /∈ r+)

Proof sketch:
wf not refl: Corollary of wf not sym.
wf trancl: Uses induction.

wf acyclic: Apply wf not refl and wf trancl

Ergo: Definition of wf really meets our intuition of “no

cycles”.
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Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

φ wf minimal

This is what we must construct.

Smaus: CSMR; WS08/09



Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)

∀w.(w, v)
∈ r+ → φ

φ

φ wf induct

Note “special case”: w and v do not occur in φ!
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Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

∀w.(w, v)
∈ r+ → φ

φ

φ wf induct

This is wf trancl.
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Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
• φ ∨ ¬φ φ

¬φ
¬φ ∀w.(w, v)

∈ r+ → φ

φ

φ disjE

φ wf induct

We now try a proof by case distinction on φ.
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Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
• φ ∨ ¬φ

•
φ

¬φ
¬φ ∀w.(w, v)

∈ r+ → φ

φ

φ disjE

φ wf induct

Classical reasoning.
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Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
• φ ∨ ¬φ

•
φ

¬φ
∀x.∃y.(y, x) ∈ r+

. . .

¬φ ∀w.(w, v)
∈ r+ → φ

φ

φ disjE

φ wf induct

Using some elementary equivalences.
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Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
• φ ∨ ¬φ

•
φ

¬φ
∀x.∃y.(y, x) ∈ r+

. . .

¬φ ∀w.(w, v)
∈ r+ → φ

¬∃w.(w, v) ∈ r+
•

φ

φ disjE

φ wf induct

This subproof works for any φ. Think semantically or check

(5 rule applications)!

Smaus: CSMR; WS08/09



Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
• φ ∨ ¬φ

•
φ

¬φ
∀x.∃y.(y, x) ∈ r+

. . .

¬φ ∀w.(w, v)
∈ r+ → φ

¬∃w.(w, v) ∈ r+
•

False
. . .

φ
FalseE

φ disjE

φ wf induct

It is routine to derive False.
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Well-Founded Orderings 1093

Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
• φ ∨ ¬φ

•
[φ]2

[¬φ]2

∀x.∃y.(y, x) ∈ r+
. . .

[¬φ]2
∀w.(w, v)
∈ r+ → φ

¬∃w.(w, v) ∈ r+
•

False
. . .

φ
FalseE

φ disjE2

φ wf induct

This completes the proof by case distinction . . .
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Another Theorem (“Exists Minimal Element”)
wf minimal wf r =⇒ ∃x.∀y.(y, x) /∈ r+

Proof sketch, writing φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
• φ ∨ ¬φ

•
[φ]2

[¬φ]2

∀x.∃y.(y, x) ∈ r+
. . .

[¬φ]2 [
∀w.(w, v)
∈ r+ → φ

]1

¬∃w.(w, v) ∈ r+
•

False
. . .

φ
FalseE

φ disjE2

φ wf induct1

. . . and the proof by induction.
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Well-Founded Orderings 1094

Remarks on the Proof
We used an instance of wf induct, where we instantiated x

by v, y by w, and P by λw.(∃x.∀y.(y, x) /∈ r+). I.e., φ does

not contain the “induction variables” w and v.

Still this is a “proper” induction proof: Although φ does not

contain the “induction variables”, the proof does depend on

the actual form of φ! (Try doing it without induction . . . )

Scoping of quantifiers (e.g., in general

(∀w.(w, v) ∈ r+→ φ) 6≡ (∀w.(w, v) ∈ r+)→ φ) and side

conditions are very subtle in this proof. Underlines the

importance of machine-checked proofs.
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Well-Founded Orderings 1095

Remarks on wf minimal

Ergo: Definition of wf fulfills the condition cor-

responding to our first attempt of characterizing

well-foundedness using minimal elements.

However, this formalization had a problem: there

could be local minima, and

•
•
•
•
•
•
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Well-Founded Orderings 1095

Remarks on wf minimal

Ergo: Definition of wf fulfills the condition cor-

responding to our first attempt of characterizing

well-foundedness using minimal elements.

However, this formalization had a problem: there

could be local minima, and isolated points are

also always minima. In particular, if r is empty,

then any element is trivially a minimum.

•
•
•
•
•
•
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Well-Founded Orderings 1096

A Characterization
The theorem wf eq minimal is a characterization of

well-foundedness.:

wf r = (∀Q . x ∈ Q→ (∃z ∈ Q.∀y.(y, z) ∈ r → y /∈ Q))

Proof uses split =, wf def, rest routine.

Ergo: Definition of wf meets textbook definitions “every

non-empty set Q has a minimal element in r”.
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A Theorem on Subsets
wf subset Jwf r; p ⊆ rK =⇒ wf p

Proof sketch: wf subset: simplification tactic using

wf eq minimal.
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A Theorem on Subrelations
wf subrel

wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p+

Proof sketch:

Combine wf minimal and wf subset.

This implies wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(x, y) /∈ p.
Ergo: Definition of wf fulfills the condition corresponding to

our second attempt of characterizing well-foundedness using

minimal elements.
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A Theorem on Subrelations
wf subrel

wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p+

Proof sketch:

Combine wf minimal and wf subset.

This implies wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(x, y) /∈ p.
Ergo: Definition of wf fulfills the condition corresponding to

our second attempt of characterizing well-foundedness using

minimal elements.

However, this formalization still had a problem: The

minimum could be an isolated element, unrelated to the

subrelation.
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Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive

equation f = e, e.g.

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Define F = λf.e, e.g.

Fac = (λfac. λn. if n = 0 then 1 else n ∗ fac(n− 1))

Smaus: CSMR; WS08/09



Defining Recursive Functions 1099

Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive

equation f = e, e.g.

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Define F = λf.e, e.g. (α-conversion of what you have seen)

Fac = (λf . λn. if n = 0 then 1 else n ∗ f (n− 1))

We say: F is the functional defining f .

Recall that Y F would solve f = e, but we don’t have Y , so

what can we do?
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Coherent Functionals
A functional F is coherent w.r.t. < if all recursive calls are

with arguments “smaller” than the original argument. This

means that if F has the form

λf.λn.e′

then for any (f m) occurring in e′, we have m < n.

Here < could be any relation (although the idea is that it

should be a well-founded ordering).

(Simplification, assumes that recursion is on the first

argument of f .)
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Using Bad f ’s
Let f |<a be a function that is like f on all values < a, and

arbitrary elsewhere. f |<a is an approximation, a “bad” f .

If F is coherent, then we would expect that for any a,

f a = (F f) a = (F f |<a) a. (5)

It’s not that we are ultimately interested in constructing

such a “bad” f , but our formalization of well-founded

recursion defines coherence by the fact that one could use

such a “bad” f , i.e., via (5).
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“Bad” f ’s: Example
Consider fac. On the right-hand side, we show one

possibility for fac|<4):

- -

6 6

•••

•

•

fac

•••

•

fac|<4

••••••••••••••••••••
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cut (in Wellfounded Recursion.thy)
constdefs
cut :: "(’a => ’b) => (’a * ’a) set =>

’a => ’a => ’b"
"cut f r x ==
(%y. if (y,x):r then f y else arbitrary)"

cut f r x is what we denoted by f |<x (taking < for r).

arbitrary is defined in HOL.thy.
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cut (in Wellfounded Recursion.thy)
constdefs
cut :: "(’a => ’b) => (’a * ’a) set =>

’a => ’a => ’b"
"cut f r x ==
(%y. if (y,x):r then f y else arbitrary)"

cut f r x is what we denoted by f |<x (taking < for r).

arbitrary is defined in HOL.thy.

The function cut f r x is unspecified for arguments y where

(y, x) /∈ r, but for each such argument, (cut f r x) y must

be the same (in any particular model).
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Theorems Involving cut

cuts eq
(cut f r x = cut g r x) =
(∀y.(y, x) ∈ r → f y = g y)

cut apply (x, a) ∈ r =⇒ cut f r a x = f x

Or, using the more intuitive notation:

cuts eq (f |<x = g|<x) = (∀y.y < x→ f y = g y)
cut apply x < a =⇒ f |<a x = f x
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wfrec rel (in Wellfounded Recursion.thy)
Auxiliary construction: “approximate” f by a relation

wfrec rel RF .

wfrec_rel :: "(’a * ’a) set =>
((’a => ’b) => ’a => ’b) => (’a * ’b) set"

inductive "wfrec_rel R F"
intrs
wfrecI
"ALL z. (z, x) : R -->

(z, g z) : wfrec_rel R F
==> (x, F g x) : wfrec_rel R F"
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wfrec rel Explained

∀z.(z, x) ∈ R→ (z, g z) ∈ wfrec rel RF =⇒
(x, F g x) ∈ wfrec rel RF

• For R and F arbitrary, wfrec rel RF is defined but we

wouldn’t want to know what it is.

• But if R is well-founded and F is coherent, wfrec rel RF
defines a recursive “function”.

Show that (4, 24) ∈ (wfrec rel ‘< ’Fac)!
Now let us really turn wfrec rel RF into a function . . .
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wfrec (in Wellfounded Recursion.thy)
wfrec :: "(’a * ’a) set =>

((’a => ’b) => ’a => ’b) => ’a => ’b"
"wfrec R F == %x. THE y.
(x, y) : wfrec_rel R (%f x. F (cut f R x) x)"

THEx.P x picks the unique a such that P a holds, if it exists.

We don’t care what it does otherwise (see HOL.thy).
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wfrec Explained

wfrecRF ≡
λx.THE y.(x, y) ∈ wfrec rel R (λfx.F (cut f Rx)x)

We don’t care what this means for arbitrary R and F .

But if R is well-founded and F is coherent, then

F (cut f Rx)x = F f x (by (5)), and so

λfx.F (cut f Rx)x = F , and so

λx.THE y.(x, y) ∈ wfrec rel R (λfx.F (cut f Rx)x) is the

function defined by wfrec rel RF in the obvious way.

wfrecRF is the recursive function defined by functional F .
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The “Fixpoint” Theorem
wfrec wf r =⇒ wfrec r H a = H(cut(wfrec r H) r a) a

Note that wfrec is used here both as a name of a constant

(defined above) and a theorem.

So if r is well-founded and H is coherent, we have (by (5))

wfrec r H a = H(wfrec r H) a

Theorem states that wfrec is like a fixpoint combinator

(disregarding the additional argument r).

Thus we can do using wfrec what we would have liked to do

using Y .
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Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for

defining recursive functions. We illustrate this using nat, the

type of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional to

define a function.
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Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for

defining recursive functions. We illustrate this using nat, the

type of natural numbers (pretending we have it).

wfrec is applied to a well-founded order and a functional to

define a function.

First, define predecessor relation:

constdefs
pred_nat :: "(nat * nat) set"
pred_nat_def "pred_nat == {(m,n). n = Suc m}"
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Defining Addition and Subtraction

add :: [nat, nat] => nat (infixl 70)
"m add n == wfrec (pred nat^+)
(%f j. if j=0 then n else Suc (f (pred j))) m"

Recursive in first argument.

subtract :: [nat, nat] => nat (infixl 70)
"m subtract n == wfrec (pred nat^+)
(%f j. if j=0 then m else pred (f (pred j))) n"

Recursive in second argument.
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Defining Division and Modulus
div :: [’a::div, ’a] => ’a (infixl 70)
"m div n == wfrec (pred_nat^+)
(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"

mod :: [’a::div, ’a] => ’a (infixl 70)
"m mod n == wfrec (pred_nat^+)
(%f j. if j<n | n=0 then j else f (j-n)) m"

Here, div is a syntactic class for which division is defined

(don’t worry about it). We know how to define −.

The functions are recursive in one argument (just like add).
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Theorems of the Example
wf pred nat wf pred nat

mod if
mmod n =
(if m < n thenm else (m− n)mod n)

div if
0 < n =⇒ m div n =
(if m < n then 0 else Suc((m− n) div n))
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Theorems of the Example
wf pred nat wf pred nat

mod if
mmod n =
(if m < n thenm else (m− n)mod n)

div if
0 < n =⇒ m div n =
(if m < n then 0 else Suc((m− n) div n))

This is very similar to functional programming code and

hence lends itself to real computations (rewriting), as

opposed to only doing proofs.
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Conclusion on Well-founded Recursion

Well-founded recursion allows us to define recursive

functions in HOL and thus reason about computations.

We can derive recursive theorems that can be used for

rewriting just like in a functional programming language.
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Isabelle Package for Primitive Recursion
For primitive recursion, finding a well-founded ordering is

simple enough for automation!
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Isabelle Package for Primitive Recursion
For primitive recursion, finding a well-founded ordering is

simple enough for automation!

Examples (use nat and case-syntax): . . .
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Recursion and Arithmetic
primrec
add_0: "0 + n = n"
add_Suc: "Suc m + n = Suc (m + n)"

primrec
diff_0: "m - 0 = m"
diff_Suc: "m - Suc n =
(case m - n of 0 => 0 | Suc k => k)"

primrec
mult_0: "0 * n = 0"
mult_Suc: "Suc m * n = n + (m * n)"
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Conclusion on Recursion and Induction

We are interested in recursion because inductively defined

sets and recursively defined functions are solutions to

recursive equations.

We cannot have general fixpoint operator Y , but we have,

by conservative extension:

• Least fixpoints for defining sets;

• well-founded orders for defining functions.

Both concepts come with induction schemes (lfp induction

and definition of well-foundedness) for proving properties of

the defined objects.
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Summary: Proof Support
The methodological overhead can be faced by powerful

mechanical support in Isabelle, since many proof-tasks are

routine. ¸
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More Detailed Explanations
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Packages Rely on Lemmas
If you look around in the ML-files of the Isabelle/HOL library, you might

not find any uses of lfp unfold, so you may wonder: why is it

important then? But you must bear in mind that the package for

inductive sets relies on these lemmas.

This is a general insight about proven results in the library: Even though

you might not find them being used in other ML-files, special packages of

Isabelle/HOL might use those results.

Back to main referring slide
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Relation.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Wellfounded Recursion.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

In older versions the file used to be called WF.thy.

Back to main referring slide
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Transitive Closure.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Defining r∗ and r+

r∗ is the smallest set such that:

• Id ⊆ r∗;
• if r′ ⊆ r∗ then r′ ∪ r ◦ r′ ⊆ r′.
Or, in line with the schema for inductive definitions:

• ∅ ⊆ r∗;
• if r′ ⊆ r∗ then (λs.Id ∪ (r ◦ s))r′ ⊆ r∗.
The latter form corresponds to the definition in

Transitive Closure.thy.

The definition of r+ is similar.

Back to main referring slide
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One Way of Understanding wf
For a moment, forget everything you have ever heard about proofs using

induction! The definition of wf has the form

wf (r) ≡ ∀P.φ(r, P )→ ∀x.P (x)

That is, it says: a relation r is well-founded if a certain scheme φ can be

used to show a property P that holds for all x.

By the fact that this is a constant definition (conservative extension), it

is immediately clear that this gives us a correct method of proving

∀x.P (x). To prove ∀x.P (x) for some given P , find some r such that

∀P.φ(r, P )→ ∀x.P (x) holds, and show φ(r, P ).
Once again, this method is correct regardless of what φ is. Forget about

induction!
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But how is that possible? How is it ensured that only true statements

can be proven, if the method is correct for any old φ?

The point is this: The method is correct in principle, but it will typically

not work unless φ is something sensible, e.g. an induction scheme as in

the actual definition of wf . It will not work simply because we will fail to

show either ∀P.φ(r, P )→ ∀x.P (x) or φ(r, P ).

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

wf (r) ≡ (∀P.(∀x.(∀y.(y, x) ∈ r → P (y))→ P (x))→ (∀x.P (x)))

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ (∀P.(∀x.(∀y.(y, x) ∈ ∅ → P (y))→ P (x))→ (∀x.P (x)))

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ (∀P.(∀x.(∀y.False → P (y))→ P (x))→ (∀x.P (x)))

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ (∀P.(∀x.(∀y.True )→ P (x))→ (∀x.P (x)))

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ (∀P.(∀x. True → P (x))→ (∀x.P (x)))

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ (∀P.(∀x. P (x))→ (∀x.P (x)))

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ (∀P.True )

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ True

So the empty set is well-founded.

Back to main referring slide
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Is ∅ Well-founded?
The definition of wf is:

Let’s instantiate r to ∅.

wf (∅) ≡ (∀x. P (x))→ (∀x.P (x))

So the empty set is well-founded.

Let’s go back 2 steps. Note that the well-foundedness of ∅ is useless for

proving any P , because the induction step degenerates to the proof

obligation ∀x.P (x).

Back to main referring slide
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Is < on the Integers Well-founded?
Let us check (in an intuitive way) whether < on the integers is

well-founded. So we must check whether

(∀P.(∀x.(∀y.y < x→ P (y))→ P (x))→ (∀x.P (x)))

holds. Instantiating P to λx.False we obtain

(∀x.(∀y.y < x→ False)→ False)→ (False)

Now since for every x there exists a y with y < x, it follows that

(∀y.y < x→ False) is equivalent to False and hence we obtain

(∀x.False → False)→ (False)
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and thus

False

Thus, assuming that < on the integers is well-founded, we derived a

contradiction. You might think of (∀y.y < x→ False) as being a

conjunction containing infinitely many Falses, and such a non-empty

conjunction is False.

What is different when we assume < on the natural numbers? The

difference is that it is not the case that for all x, we have that

(∀y.y < x→ False) is equivalent to False. Namely, for x = 0, we have

(∀y.y < 0→ False) is equivalent to True because y < 0 is always False.

Compared to the previous case, we have a conjunction consisting of only

Trues.

It turns out that when we do a proof using well-founded recursion on the

natural numbers, for 0 there will be a non-trivial proof obligation, i.e., we
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will have to show P (0).

Back to main referring slide
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Expressing Absence of Infinite Chains
We will now try some ideas, work out their formalization as a formula,

and then illustrate why the condition is either too weak or too strong,

using an example. Finally, we will give the correct condition.

Back to main referring slide
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Bad Formalization of “Minimal Element”
In this attempt, we formalized the “minimal element in p” as an x such

that there is no y with (x, y) ∈ p. But this is a bad formalization since

an isolated element, i.e., one that is completely unrelated to p, or even

to r, would meet the definition.

In fact, this problem was already present for the previous attempt where

we just required ∃x.∀y.(y, x) /∈ r (i.e., r has a minimal element).

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1133

No Infinite Descending Chains
The final condition

(∀Q . x ∈ Q→ (∃z ∈ Q.∀y.(y, z) ∈ r → y /∈ Q))

expresses the absence of infinite descending chains without explicitly

using the concept of infinity.

It is a characterization of well-foundedness. One could say that the

above formula expresses what well-foundedness is, while the “official”

definition is somewhat indirect since it defines well-foundedness by what

one can do with it.

Back to main referring slide
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Theorems of Wellfounded Recursion.ML
The theorems we present here are proven in

Wellfounded Recursion.ML.

This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

but in older versions the file used to be called WF.ML

Back to main referring slide
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induct wf
As far as the induction principle is concerned, induct wf states the

same as the very definition of wf. All that happens is that some explicit

universal object-level quantifiers are removed and the according variables

are (implicitly) universally quantified on the meta-level, and some shifting

from object-level implications to meta-level implications using mp. This is

why we dare say “logical massage”. See Wellfounded Recursion.ML.

Back to main referring slide
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Classical Reasoning in Antisymmetry Proof
In classical logic, We have the theorem A→ B ≡ ¬A ∨B.

Back to main referring slide
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Classical Reasoning in Antisymmetry Proof
(2)

In classical logic, We have the theorem A→ ¬B ≡ B → ¬A.

Back to main referring slide
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Elementary Equivalences
For example ¬∀x.φ = ∃x.¬φ or ¬¬φ = φ, which hold because our

reasoning is classical.

Back to main referring slide
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¬∃w.(w, v) ∈ r+ in Detail

In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+→ φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold no matter

what φ is (unlike the entire proof)
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In detail, the sub-proof looks as follows:

∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

Back to main referring slide
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In detail, the sub-proof looks as follows:

(w, v) ∈ r+
∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

Back to main referring slide
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In detail, the sub-proof looks as follows:

(w, v) ∈ r+
∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

φ
mp

Back to main referring slide
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In detail, the sub-proof looks as follows:

∃w.(w, v) ∈ r+
(w, v) ∈ r+

∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

φ
mp

Back to main referring slide
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In detail, the sub-proof looks as follows:

∃w.(w, v) ∈ r+
[(w, v) ∈ r+]2

∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

φ
mp

φ
existsE2

Back to main referring slide
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In detail, the sub-proof looks as follows:

¬φ
∃w.(w, v) ∈ r+

[(w, v) ∈ r+]2
∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

φ
mp

φ
existsE2

Back to main referring slide
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In detail, the sub-proof looks as follows:

¬φ
∃w.(w, v) ∈ r+

[(w, v) ∈ r+]2
∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

φ
mp

φ
existsE2

False
notE

Back to main referring slide
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In detail, the sub-proof looks as follows:

¬φ
[∃w.(w, v) ∈ r+]1

[(w, v) ∈ r+]2
∀w.(w, v) ∈ r+→ φ

(w, v) ∈ r+→ φ
spec

φ
mp

φ
existsE2

False
notE

¬∃w.(w, v) ∈ r+ notI1

Back to main referring slide
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Splitting =
By this we simply mean to split a proof of φ = ψ into two proofs

φ =⇒ ψ and ψ =⇒ φ.

Back to main referring slide
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What Is Arbitrary?
For the construction we have in mind, it would be fine that f |<a be a

function that is like f on all values < a, and arbitrary elsewhere. E.g.,

fac|<4 could be

- -

6 6

•••

•

•

fac

•••

•

fac|<4

•

•

••

•

••

•

However, such a fac|<4 could not be in a model for HOL (with the

extensions we consider here). The way that arbitrary elements are
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formalized in HOL.thy, it turns out that in any model and for each type,

there must be one specific domain element for the constant arbitrary
(you don’t have to understand why this is so). That is, in different

models we could have different ones, but within each model the element

must be a specific one. Since the value of fac|<4 is “arbitrary” for all

arguments ≥ 4, this means that in each model, this value must be the

same for all arguments ≥ 4, ruling out the function above.

Of course, these are considerations taking place only in our heads. In the

actual deduction machinery, one never constructs these “arbitrary” terms.

Back to main referring slide
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Relation Is Function
When we say that a binary relation r : τ × σ is in fact a function, we

mean that for t : τ , there is exactly one s : σ such that (t, s) ∈ r.

Back to main referring slide
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THE
The operator THE is similar to the Hilbert operator, but it returns the

unique element having a certain property rather than an arbitrary one.

The Isabelle formalization of HOL nowadays heavily relies on THE rather

than the Hilbert operator.

Back to main referring slide
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Define Addition and Subtraction

add :: [nat, nat] => nat (infixl 70)
"m add n == wfrec (pred nat^+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Here we suppose that we have a predecessor function pred. The

implementation in Isabelle is different, but conceptually, the above is a

definition of the add function.

Note that add is a function of type nat → nat → nat (written infix),

but it is only recursive in one argument, namely the first one.

You may be confused about this and wonder: how do I know that it is

the first? Is this some Isabelle mechanism saying that it is always the

first? The answer is: no. You must look at the two sides in isolation. On
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the right-hand side, we have

wfrec (pred nat^+)
(%f j. if j=0 then n else Suc (f (pred j)))

By the definitions (of wfrec most importantly), this expression is a

function of type nat → nat , namely the function that adds n (which is

not known looking at this expression alone; it occurs on the left-hand

side) to its argument. The function is recursive in its argument (and

hence not in n). Now, this function is applied to m. Therefore we say

that the final function add is recursive in m but not in n.

Now look at subtraction:

subtract :: [nat, nat] => nat (infixl 70)
"m subtract n == wfrec (pred nat^+)

(%f j. if j=0 then m else pred (f (pred j))) n"
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Note that subtract is recursive in its second argument, simply because

the right-hand side of the defining equation was constructed in a

different way than for add.

Similar considerations apply for other binary functions defined by

recursion in one argument.

Back to main referring slide
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Primitive Recursion
A function is primitive recursive if the recursion is based on the

immediate predecessor w.r.t. the well-founded order used (e.g., the

predecessor on the natural numbers, as opposed to any arbitrary smaller

numbers).

This is not the same concept as used in the context of computation

theory, where primitive recursive is in contrast to µ-recursive [LP81].

Back to main referring slide
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Automating Recursion
The primrec syntax provides a convenient front-end for defining

primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for functions on

the natural numbers, it will use the usual < ordering.

Back to main referring slide
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Arithmetic 1152

The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Current Stage of our Course
• On the basis of conservative embeddings, set theory can

be built safely.

• Inductive sets can be defined using least fixpoints and

suitably supported by Isabelle.

• Well-founded orderings can be defined without referring to

infinity. Recursive functions can be based on these. Needs

inductive sets though. Support by Isabelle provided.
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Current Stage of our Course
• On the basis of conservative embeddings, set theory can

be built safely.

• Inductive sets can be defined using least fixpoints and

suitably supported by Isabelle.

• Well-founded orderings can be defined without referring to

infinity. Recursive functions can be based on these. Needs

inductive sets though. Support by Isabelle provided.

Next important topic: arithmetic.
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Which Approach to Take?
• Purely definitional?
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Which Approach to Take?
• Purely definitional?

Not possible with eight basic rules (cannot enforce infinity

of HOL model)!

• Heavily axiomatic? I.e., we state natural numbers by

Peano axioms and claim analogous axioms for any other

number type?

Danger of inconsistency!

• Minimally axiomatic? We construct an infinite set, and

define numbers etc. as inductive subset?

Yes. Finally use infinity axiom.
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What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms.
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What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open,
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What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.
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What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward,
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Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward, the new guest walks towards

the first room,
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What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward, the new guest walks towards

the first room, they turn around,
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What is Infinity? Cantor’s Hotel 1155

What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward, the new guest walks towards

the first room, they turn around, enter their new rooms.
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What is Infinity? Cantor’s Hotel 1155

What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many rooms. New guest arrives.

The doors open, and all guests come out of their rooms.

They move one room forward, the new guest walks towards

the first room, they turn around, enter their new rooms. The

doors close, all guests are accomodated.
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Axiom of Infinity
The axiomatic core of datatypes (and hence, numbers):

∃f :: (ind→ ind). injective f ∧ ¬surjective f
infty

where

injective f = ∀xy. f x = f y → x = y

surjective f = ∀y.∃x. y = f x

Forces ind to be “infinite type” (called “I” in [Chu40]).

We will see soon how this is done in Isabelle.

Smaus: CSMR; WS08/09



Type-Closed Conservative Extensions 1157

Type-Closed Conservative Extensions

Why must conservative extensions be type-closed [GM93,

page 221]?

Consider H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f
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Type-Closed Conservative Extensions

Why must conservative extensions be type-closed [GM93,

page 221]?

Consider H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f
Then the type of H is bool , but H contains a subterm of

type α⇒ α (H is not type-closed).

Then we could reason as follows . . .
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Type-Closed Conservative Extensions (2)
(H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f)
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Type-Closed Conservative Extensions (2)
(H ≡ ∃f :: α⇒ α.injective f ∧ ¬surjective f)

H = H holds by refl

⇒ ∃f :: bool ⇒ bool .inj f ∧ ¬sur f =
∃f :: ind ⇒ ind .inj f ∧ ¬sur f

⇒ False = True
⇒ False

(unfolding H using two different type instantiations, and

then using axiom of infinity and the fact that there are only

finitely many functions on bool).

Smaus: CSMR; WS08/09



Type-Closed Conservative Extensions 1159

Types Affect the Semantics
Type instantiations may change semantic values, and hence

cause inconsistency!

This example was somewhat more concrete than our

previous simpler example.
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Natural Numbers: Nat.thy

consts
Zero_Rep :: ind
Suc_Rep :: "ind => ind"

axioms
inj_Suc_Rep: "inj Suc_Rep"
Suc_Rep_not_Zero_Rep: "Suc_Rep x ~= Zero_Rep"

So the axiom of infinity is formulated by defining a constant

Suc Rep having the two required properties.

inj is defined in Fun.thy.

Think of Zero Rep, Suc Rep as provisional 0, successor.
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Defining the Set Nat
Want to define new type nat. How?
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Natural Numbers: Nat.thy 1161

Defining the Set Nat
Want to define new type nat. How?

Must define a set isomorphic to the natural numbers. How?

By induction using the inductive syntax:

inductive Nat
intros
Zero_RepI: "Zero_Rep : Nat"
Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"

Translated by Isabelle to:

Nat = lfp (λX.{Zero Rep} ∪ (Suc Rep ‘X))
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Defining the Type nat
Now we have the set Nat . What next?
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Defining the Type nat
Now we have the set Nat . What next?

Define the type nat , isomorphic to Nat , using the typedef
syntax:

typedef (open Nat)
nat = "Nat" by (rule exI, rule Nat.Zero_RepI)

After these two steps we have the type nat .
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Constants in nat
Moreover, define:

consts
Suc :: "nat => nat"
pred_nat :: "(nat * nat) set"

defs
Zero_nat_def: "0 == Abs_Nat Zero_Rep"
Suc_def: "Suc ==

(%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
pred_nat_def: "pred_nat == {(m, n). n = Suc m}"
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Some Theorems in Nat.thy

nat induct JP 0;
∧
n.P n =⇒ P (Suc n)K =⇒ P n

diff induct
J
∧
x.P x 0;

∧
y.P 0 (Suc y);∧

xy.P x y =⇒ P (Suc x) (Suc y)K
=⇒ P mn

We can now exploit that nat is defined based on a set

defined using least fixpoints. In particular, nat induct
follows (but not “automatically”!) from the induct theorem

of Lfp.
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Nat and Well-Founded Orders
Examples of theorems involving well-founded orders:

wf pred nat wf pred nat
less linear m < n ∨m = n ∨ n < m

Suc less SucD Sucm < Suc n =⇒ m < n
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Using Primitive Recursion
Nat.thy defines rich theory on nat . Uses primrec syntax
for defining recursive functions, and case construct.
primrec

add_0 "0 + n = n"
add_Suc "Suc m + n = Suc(m + n)"

primrec
diff_0 "m - 0 = m"
diff_Suc "m - Suc n =

(case m - n of 0 => 0 | Suc k => k)"
primrec

mult_0 "0 * n = 0"
mult_Suc "Suc m * n = n + (m * n)"
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Some Theorems in Nat
add 0 right m+ 0 = m

add ac m+ n+ k = m+ (n+ k)
m+ n = n+m

x+ (y + z) = y + (x+ z)
mult ac m ∗ n ∗ k = m ∗ (n ∗ k)

m ∗ n = n ∗m
x ∗ (y ∗ z) = y ∗ (x ∗ z)

Note third part of add ac, mult ac, respectively.

Technically, add ac and mult ac are lists of thm’s.

Smaus: CSMR; WS08/09



Natural Numbers: Nat.thy 1168

Proof of add 0 right

m+ 0 = m
add 0 right

Smaus: CSMR; WS08/09



Natural Numbers: Nat.thy 1168

Proof of add 0 right

add 0
0 + 0 = 0

n+ 0 = n

Suc n+ 0 = Suc n
m+ 0 = m

nat induct
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Proof of add 0 right

add 0
0 + 0 = 0

add Suc

Suc n+ 0 = Suc(n+ 0)

Suc(n+ 0) = Suc n+ 0
sym

n+ 0 = n

Suc(n+ 0) = Suc n
arg cong

Suc n+ 0 = Suc n subst

m+ 0 = m
nat induct

Note that Suc n+ 0 = Suc(n+ 0) is an instance of

Sucm+ n = Suc(m+ n).
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Proof of add 0 right

add 0
0 + 0 = 0

add Suc

Suc n+ 0 = Suc(n+ 0)

Suc(n+ 0) = Suc n+ 0
sym

[n+ 0 = n]1

Suc(n+ 0) = Suc n
arg cong

Suc n+ 0 = Suc n subst

m+ 0 = m
nat induct1

Note that Suc n+ 0 = Suc(n+ 0) is an instance of

Sucm+ n = Suc(m+ n).
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Integers

The integers are implemented as equivalence classes over

nat × nat .
IntDef = Equiv + NatArith +
constdefs
intrel :: "((nat * nat) * (nat * nat)) set"
"intrel == {p. EX x1 y1 x2 y2.
p=((x1::nat,y1),(x2,y2)) & x1+y2 = x2+y1}"

typedef (Integ)
int = "UNIV//intrel" (quotient_def)
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Some Theorems in IntArith
zminus zadd distrib −(z + w) = −z +−w
zminus zminus −(−z) = z

zadd ac z1 + z2 + z3 = z1 + (z2 + z3)
z + w = w + z

x+ (y + z) = y + (x+ z)
zmult ac z1 ∗ z2 ∗ z3 = z1 ∗ (z2 ∗ z3)

z ∗ w = w ∗ z
z1 ∗ (z2 ∗ z3) = z2 ∗ (z1 ∗ z3)

Compare to nat theorems.
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Further Number Theories

• Binary Integers (Integ/Bin.thy, for fast computation)

• Rational Numbers (Real/PRat.thy)

• Reals (Real/PReal.thy: based on Dedekind-cuts of

rationals [Fle00])

• Hyperreals (Real/RealDef.thy for non-standard analysis)

• Machine numbers (floats); see work for Intel’s PentiumIV;

built in HOL-light [Har98, Har00]
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Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

• the naturals (as type definition based on ind), and

• higher number theories (via equivalence construction).
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Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

• the naturals (as type definition based on ind), and

• higher number theories (via equivalence construction).

Potential for

• analysis of processor arithmetic units, and

• function analysis in HOL (combination with computer

algebra systems such as Mathematica).

Future: analysis of hybrid systems.

The methodological overhead can be tackled by powerful

mechanical support, since many proof-tasks are routine. ¸
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More Detailed Explanations
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Enforcing Infinity
Our intuition/knowledge about arithmetics clearly requires that there are

infinite sets, e.g., the set of infinite numbers. Technically, the HOL

model of the set of natural numbers must be an infinite set, otherwise

we would not be willing to say that have “modeled” arithmetic.

Back to main referring slide
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The Peano Axioms
The Peano axioms are

• 0 ∈ nat

• ∀x.x ∈ nat → Suc(x) ∈ nat

• ∀x.Suc(x) 6= 0

• ∀x y.Suc(x) = Suc(y)→ x = y

• ∀P.(P (0) ∧ ∀n.(P (n)→ P (Suc(n))))→ ∀n.P (n).
However, there are various ways of phrasing the Peano axioms.

Back to main referring slide
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Successors on Rooms
This means, there must be a successor function on rooms. To each

room, it assigns the “next” room.

Back to main referring slide
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injective and surjective
These constants (actually called inj and sur) are defined in Fun.thy.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1178

Is it Necessary to Add an Axiom?
Note that theoretically, it is not needed to add the infinity axiom (or

some equivalent formulation) to HOL. Instead one could add the infinity

axiom as premise to each arithmetic theorem that one wants to prove.

However this would not be a viable approach since the resulting formulas

would be very, very complicated.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1179

Numbers as Datatype
The natural numbers can be built as an algebraic datatype by having a

constant 0 and a term constructor Suc (for successor).

Back to main referring slide
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inj and sur
We use inj and sur as abbreviations for injective and surjective.

Back to main referring slide
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A Type Definition Based on an Inductive Set

Note the two ingredients for defining the type nat:

• An inductively defined set Nat, i.e., a set defined as fixpoint of a

monotone function. In Isabelle (Nat.thy), the inductive syntax is

used for this purpose. This automatically generates an induction rule

for the set.

• A type definition based on this set, defined using the typedef syntax.

Recall that this process automatically generates the two constants

Abs Nat and Rep Nat.

But note: the induction theorem is not inherited automatically. More

precisely, the typedef syntax does not cause the type nat to inherit the

inductive theorem of the set Nat. The theorem nat induct is explicitly

proven in Nat.thy.
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Back to main referring slide
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Constructor Abstraction
Based on the generic constants Abs Nat and Rep Nat, we define all the

constants that we need to work conveniently with nat, most importantly,

0 and Suc.

Back to main referring slide
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Nat.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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The case Statement for nat
The case statement for nat is a function of type

nat ⇒ (nat ⇒ nat)⇒ nat ⇒ nat . case z f n is defined as follows

(using a common mathematical notation):

case z f n =
{
z if n = 0
f k if n = Suc k

The syntax

diff Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"

used on the slide is a paraphrasing (“concrete syntax”) of the original

(“abstract”) syntax. In the original syntax it would read

case 0 (λx.x) (n−m).
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Back to main referring slide
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Left Commutation
The theorems x+ (y + z) = y + (x+ z) and x ∗ (y ∗ z) = y ∗ (x ∗ z) are

called left-commutation laws and are crucial for (ordered) rewriting.

Suppose we have the term shown below.
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Left Commutation
The theorems x+ (y + z) = y + (x+ z) and x ∗ (y ∗ z) = y ∗ (x ∗ z) are

called left-commutation laws and are crucial for (ordered) rewriting.

Suppose we have the term shown below. Using associativity

(m+ n+ k = m+ (n+ k)) this will be rewritten to the second term.
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Left Commutation
The theorems x+ (y + z) = y + (x+ z) and x ∗ (y ∗ z) = y ∗ (x ∗ z) are

called left-commutation laws and are crucial for (ordered) rewriting.

Suppose we have the term shown below. Using associativity

(m+ n+ k = m+ (n+ k)) this will be rewritten to the second term.

Using left-commutation, this will be rewritten to the third term. This is

a so-called AC-normal form, for an appropriately chosen term ordering.
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Back to main referring slide
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IntDef.thy
The file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide

Smaus: CSMR; WS08/09

http://isabelle.in.tum.de/library/


More Detailed Explanations 1189

Equivalence Classes
Recall the general concept of an equivalence relation. Generally, for a set

S and an equivalence relation R defined on the set, one can define

S//R, the quotient of S w.r.t. R.

S//R = {A | A ⊆ S ∧ ∀x, y ∈ A.(x, y) ∈ R}

That is, one partitions the set S into subsets such that each subset

collects equivalent elements. This is a standard mathematical concept.

We do not go into the Isabelle details here, but we explain how this

works for the integers. One can view a pair (n,m) of natural numbers as

representation of the integer n−m. But then (n,m) and (n′,m′)
represent the same integer if and only if n−m = n′ −m′, or

equivalently, n+m′ = n′ +m. In this case (n,m) and (n′,m′) are said

to be equivalent. The construction of the integer type is based on this
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equivalence relation, called intrel. More precisely, the definition of the

integers will be based on the set of all pairs of naturals (which

corresponds to the UNIV constant on the type nat × nat) modulo the

equivalence intrel. In other words, it will be based on the quotient of

the set of pairs of naturals w.r.t. intrel.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1191

Integ/Bin.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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PRat.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Reals According to Dedekind
The reals have been axiomatized by Dedekind by stating that a set R is

partitioned into two sets A and B such that R = A∪B and for all a ∈ A
and b ∈ B, we have a < b. Now there is a number s such that a ≤ s ≤ b
for all a ∈ A and b ∈ B. The irrational numbers are characterised by the

fact that there exists exactly one such s. This axiomatization has been

used as a basis for formalizing real numbers in Isabelle/HOL.

Back to main referring slide
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PReal.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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RealDef.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Hyperreals
In non-standard analysis, one works with sequences that are not

necessarily converging. This is a relatively new field in mathematics and

Isabelle/HOL has been successfully applied in it [FP98]. We just mention

this here to say that Isabelle/HOL is used for “cutting-edge”

mathematics and not just toy examples.

Back to main referring slide
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Hybrid Systems
Hybrid systems is a field in software engineering concerned with using

finite automata for controlling physical systems such as ABS in cars etc.

Back to main referring slide
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Datatypes 1199

The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Datatypes 1199

The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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What Are Datatypes?
We have seen types, but what are datatypes?
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What Are Datatypes?
We have seen types, but what are datatypes?

• Order 0 (no → in type).

• Terms defined by finite set of term constructors.

• Typically inductive definition.

• Term constructed by syntactic rule is unique.

Counterexample: α set .
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Datatypes: Motivation
We will now construct “datatypes” (as in ML [Pau96]). This

construction is based on so-called S-expressions [Pau97b].

Caveat: We will only sketch the construction and we will

simplify, meaning that the technical details will not be

strictly correct! See Datatype Universe.thy and [Wen99].
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S-Expressions as Basis
In the end we want to have datatypes such as lists and trees.

It turns out that LISP-like S-expressions are a datatype that

is so rich that other datatypes can nicely be embedded in it.

Since we do not have the concept of datatype yet, we must

first represent S-expressions using constructs we already

have.

Smaus: CSMR; WS08/09



S-Expressions 1203

S-Expressions

LISP-like S-expressions are a kind of of binary trees. We call

the type α dtree. This uses α+ nat .
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S-Expressions

LISP-like S-expressions are a kind of of binary trees. We call

the type α dtree. This uses α+ nat .
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a b

c

This is encoded as a set of “nodes” (defined by their path

from the root and a value in the leaves), e.g.:

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}

The type definition of α dtree uses such an encoding.
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Building Trees
• Atom(n)

n

• Scons X Y





�

J
JĴ
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Tagging Trees
We want to tag an S-expression by either 0 or 1. This can

be done by “Scons”-ing it with an S-expression consisting of

an administration label. By convention, the tag is to the left.

• In0 def In0 (X) ≡ Scons Atom(Inr(0))X
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• In1 def In1 (X) ≡ Scons Atom(Inr(1))X
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Products and Sums on Sets of S-Expressions
Product of two sets A and B of S-expressions: All

Scons-trees where left subtree from A, right subtree from B.

uprod def uprod AB ≡
⋃
x∈A

⋃
y∈B

{(Scons x y)}
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Products and Sums on Sets of S-Expressions
Product of two sets A and B of S-expressions: All

Scons-trees where left subtree from A, right subtree from B.

uprod def uprod AB ≡
⋃
x∈A

⋃
y∈B

{(Scons x y)}

Sum of two sets A and B of S-expressions: union of A and

B after S-expressions in A have been tagged 0 and

S-expressions in B have been tagged 1, so that one can tell

where they come from.

usum def usum AB ≡ In0 ‘A ∪ In1 ‘B
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Some Properties of Trees and Tree Sets
• Atom, In0 , In1 , Scons are injective.

• Atom and Scons are pairwise distinct. In0 are In1
pairwise distinct.
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Some Properties of Trees and Tree Sets
• Atom, In0 , In1 , Scons are injective.

• Atom and Scons are pairwise distinct. In0 are In1
pairwise distinct.

• Tree sets represent a universe that is closed under products

and sums: usum, uprod have type

[(α dtree) set , (α dtree) set ]⇒ (α dtree) set .
• uprod and usum are monotone.
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Some Properties of Trees and Tree Sets
• Atom, In0 , In1 , Scons are injective.

• Atom and Scons are pairwise distinct. In0 are In1
pairwise distinct.

• Tree sets represent a universe that is closed under products

and sums: usum, uprod have type

[(α dtree) set , (α dtree) set ]⇒ (α dtree) set .
• uprod and usum are monotone.

• Tree sets represent a universe that is closed under products

and sums combined with arbitrary applications of lfp.

Reminder: we simplified!
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Lists in Isabelle

Similar to the construction of nat , we first construct a set of

S-expressions having the “structure of lists”. We start by

defining “provisional” list constructors:

constdefs
NIL :: ’a dtree
"NIL == In0(Atom(Inr(0)))"
CONS :: [’a dtree, ’a dtree] => ’a dtree
"CONS M N == In1(Scons M N)"

What type do you expect Cons to have, and how does

CONS compare?
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Lists in Isabelle

Similar to the construction of nat , we first construct a set of

S-expressions having the “structure of lists”. We start by

defining “provisional” list constructors:

constdefs
NIL :: ’a dtree
"NIL == In0(Atom(Inr(0)))"
CONS :: [’a dtree, ’a dtree] => ’a dtree
"CONS M N == In1(Scons M N)"

What type do you expect Cons to have, and how does

CONS compare? Must wrap list elements by Atom ◦ Inl .
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Lists as S-Expressions: Intuition
Examples of how lists would be represented as S-expressions:

Nil []

Cons(7,Nil) [7]

Cons(5,Cons(7,Nil)) [5, 7]
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Lists in Isabelle 1209

Lists as S-Expressions: Intuition
Examples of how lists would be represented as S-expressions:

Nil []
In0 (Atom(Inr 0 ))

Cons(7,Nil) [7]

Cons(5,Cons(7,Nil)) [5, 7]
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Lists as S-Expressions: Intuition
Examples of how lists would be represented as S-expressions:

Nil []
In0 (Atom(Inr 0 ))

Cons(7,Nil) [7]
CONS (Atom(Inl 7)) In0 (Atom(Inr 0 ))

Cons(5,Cons(7,Nil)) [5, 7]
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Lists as S-Expressions: Intuition
Examples of how lists would be represented as S-expressions:

Nil []
In0 (Atom(Inr 0 ))

Cons(7,Nil) [7]
CONS (Atom(Inl 7)) In0 (Atom(Inr 0 ))

Cons(5,Cons(7,Nil)) [5, 7]
CONS (Atom(Inl 5))

(CONS (Atom(Inl 7)) In0 (Atom(Inr 0 )))

Now let’s construct the S-expressions having this form.
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Lists as S-Expressions: Inductive Construction
Idea: let A :: (α dtree) set be the set of all “wrapped”

elements, e.g. for α = nat , the set {(Atom Inl 0),
(Atom Inl 1), . . .}. Then define list(A), the set of

S-expressions that represent lists of element type α:

list :: "’a dtree set => ’a dtree set"
inductive "list(A)"
intrs
NIL_I "NIL : list(A)"
CONS_I "[|a : A; M : list(A) |] ==>

CONS a M : list(A)"

See SList.thy for how it’s really done!
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Defining the “Real” List Type
We now apply the type definition mechanism using the

typedef syntax. How do we define A formally?
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Defining the “Real” List Type
We now apply the type definition mechanism using the

typedef syntax. How do we define A formally?

typedef (List)
’a list =
"list(range (Atom o Inl)) :: ’a dtree set"
by ...

Choosing A as range (Atom ◦ Inl) together with the explicit

type declaration forces A to be the set containing all

Atom (Inl t), for each t :: α.

Example of a definition of a polymorphic type.
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List Constructors
We define the real constructor names for lists:

Nil_def "Nil::’a list == Abs_list(NIL)"
Cons_def "x#(xs::’a list) ==
Abs_list(CONS (Atom(Inl(x))) (Rep_list xs))"

We then forget about NIL and CONS .
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Isabelle’s Datatype Package
Similar to the typedef syntax, Isabelle provides the

datatype syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.
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Isabelle’s Datatype Package
Similar to the typedef syntax, Isabelle provides the

datatype syntax to support the construction of a datatype:

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.

The package also works for mutually and indirectly recursive

datatype definitions.

Question: Why didn’t we use this package to define nat? ¸
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More Detailed Explanations
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What Is a Datatype?

We have seen types, but what are datatypes?

First of all, a datatype must be of order 0, so it must be a non-functional

type. Note that if we do not have polymorphism, this means that a

datatype must be a in B. But if we have polymorphism, it just means

that the type must not contain →. E.g., α list could be a datatype.

However, when one describes a datatype, one would usually speak about

generic instances such as α list , and not about, say, nat list .
Secondly, the terms that inhabit a datatype τ must be defined using a

finite set of term constructors that have τ as result type. At least one

term constructor should just have type τ . E.g., Nil : α list and

Cons : α→ (α list)→ α list are the term constructors that define the

list datatype. One also finds a syntax where Nil is written [] and Cons is

written ::. Intuitively, we could say: the terms of a datatype are exactly
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the terms that can be constructed by some finite syntactic construction

rule.

Whenever we have a term constructor that has τ as argument as well as

result, the construction rule is inductive. E.g., we have

• Nil is a list;

• if t is a list h is of type α, then Cons(h, t) is a list.

This is an inductive construction of lists. Usually, when one speaks about

datatypes, one has inductively defined ones in mind. Examples are lists,

natural numbers, trees. One could say that e.g. bool is also a datatype

defined by the constants True and False, but it is not particularly

interesting in this context.

At the same time, each term constructed by such a syntactic rule is

unique. So if we say: lists are defined by the above inductive

construction, then we imply that Cons(1,Nil) must not be equal to
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Cons(1,Cons(1,Nil)).

Back to main referring slide
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Sets Are not a Datatype

To understand better the distinction of a datatype from another type,

consider the following counterexample: α set . Sets are not a datatype:

1. While the type α set does not contain an →, it is isomorphic to

α→ bool which does contain an →.

2. The most basic way of defining “what a set is” is: if f is of type

τ → bool , then Absset f (alternatively: Collect f) is a set. This is not

an inductive syntactic construction rule.

3. One could define sets similarly to lists by an inductive rule saying: {}
is a set; if S is a set and h is some term of type α, then Insert(h, S)
is a set. But then Insert(1, {}) would be different from

Insert(1, Insert(1, {})), which is not what we want! Moreover, we

could not define infinite sets this way.
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4. In point 2 we say: the definition of the terms called “sets” is not an

inductive definition. This is not in contradiction to the inductive

definition of particular sets. These inductive definitions have the form:

If foo is in the set then bar is in the set, e.g., if n is in the set then

Suc n is in the set. This is in contrast to what is suggested in point 3,

where we say: If foo is a set then bar is a set.

Back to main referring slide
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Datatype Universe.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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S-Expressions Explained
The datastructure we have in mind here consists of binary trees where

the inner nodes are not labeled, and the leaves are labeled

• either with a term of arbitrary type, in which case the leaf would be an

actual “piece of content” in the datastructure,

• or with a natural number, in which case the leaf serves special

purposes for organizing our datastructure, as we will see later.

I.e., such binary trees have a type parametrized by a type variable α, the

type of the latter kind of leaves. Let us call the type of such trees

α dtree.

As always with parametric polymorphism, when we consider how the

datastructure as such works, we are not interested in what the values in

the former kind of leaves are. This is just like the type and values of list

elements are irrelevant for concatenating two lists. Of course, α could,
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by coincidence, be instantiated to type nat .
Think of a label of the first kind as content label and a label of the

second kind as administration label.

Technically, if something is either of this type or of that type, we are

talking about a sum type. So a leaf label has type α+ nat (written

(α,nat) sum before), and it has the form either Inl(a) for some a :: α,

or Inr(n) for some n :: nat .

Back to main referring slide
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Path Sets Explained

The set

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}

represents the tree

The path 〈0, 0〉 means: from the root take left subtree, then again left

subtree. The path 〈1〉 means: take right subtree.

How can a path 〈p0, . . . , pn〉 be represented? One idea is to use the
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function f :: nat ⇒ nat defined by

f i =
{
pi if i ≤ n
2 otherwise

as representation of 〈p0, . . . , pn〉.

Back to main referring slide
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Atom
Atom takes a leaf label and turns it into a (simplest possible)

S-expression (tree).

So it has type α+ nat ⇒ α dtree.

Back to main referring slide
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Scons
Scons takes two S-expressions and creates a new S-expression as

illustrated below:

=
So it has type [α dtree, α dtree]⇒ α dtree.

Back to main referring slide
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In0 ‘ . . ., In1 ‘ . . .
Recall that ‘ denotes the image of a function applied to a set.

Back to main referring slide
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Injective and Pairwise Distinct Functions
This means that any of Atom, In0 , In1 , Scons applied to different

S-expressions will return different S-expressions.

Moreover, a term with root Scons is definitely different from a term with

root Atom, and a term with root In0 is definitely different from a term

with root In1 .

Why is this important? It is an inherent characteristic of a datatype. A

datatype consists of terms constructed using term constructors and is

uniquely defined by what it is syntactically (one also says that terms are

generated freely using the constructors). For example, injectivity of Suc
and pairwise-distinctness of 0 and Suc mean for any two numbers m and

n, the terms Suc(. . .Suc︸ ︷︷ ︸
m times

(0) . . .) and Suc(. . .Suc︸ ︷︷ ︸
n times

(0) . . .) are different.

Back to main referring slide
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Computing the Closure

Given a set T of trees (S-expressions), the closure of T under Atom,

In0 , In1 , Scons, usum, uprod is the smallest set T ′ such that T ⊆ T ′
and given any tree (or two trees, as applicable) from T ′, any tree

constructable using Atom, In0 , In1 , Scons, usum, uprod is also

contained in T ′.

Remembering the construction of inductively defined sets, the closure is

the least fixpoint of a monotone function adding trees to a tree set. This

function must be constructed using Atom, In0 , In1 , Scons, usum,

uprod . We do not go into the details, but note that it is crucial that

uprod and usum are monotone, and note as well that slight

complications arise from the fact that usum and uprod have type

[(α dtree) set , (α dtree) set ]⇒ (α dtree) set rather than

(α dtree) set ⇒ (α dtree) set .
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Back to main referring slide
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The Expected Type of Cons
Cons should have the polymorphic type [α, α list ]⇒ α list . The

important point is: the first argument is of different type than the second

argument. If the first is of type τ , then the second must be of type τ list .
In contrast, CONS is of type [(α dtree), (α dtree)]⇒ α dtree.

In order to apply CONS to a “list” (in fact an S-expression) and a “list

element”, we must first wrap the list element by Atom ◦ Inl , so that it

becomes an S-expression.

Back to main referring slide
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List Syntaxes
Nil , Cons(7,Nil), Cons(5,Cons(7,Nil)) are lists written according to

what some programming languages introduce as the first, “official”

syntax for lists.

For convenience, programming languages typically allow for the same

lists to be written as [], [7], [5, 7].

Back to main referring slide
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SList.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Why Didn’t We Use the Datatype Package to
Define nat?

The datatype syntax is very convenient since the complex construction

we have seen today is transparent to the normal user.

In particular, proofs of the induction theorem are automated. This is in

contrast to the construction of nat where this theorem was not

generated automatically.

So why didn’t we use the datatype syntax to define nat , since it is so

much more convenient?

The reason is that we needed nat to define S-expressions, so the type

nat must exist before there can be a datatype package, and so the

datatype package cannot be used to define nat .

Back to main referring slide
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Summary
In the previous weeks, we looked at how the different parts

of mathematics are encoded in the Isabelle/HOL library:

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• Datatypes
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Summary (Cont.)
We conclude: HOL is a logical framework for theoretical

computer science. Its features are:

• a clean methodology, which can be supported

automatically to a surprising extent;

• a powerful set theory and proof support;

• adequate theories for arithmetics (proof-support: not quite

satisfactory so far);

• a package for induction;

• a package for recursion;

• a package for datatypes.
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Outline
We will now look at how various formalisms (specification

and programming languages) can be embedded in HOL:

• Z and data-refinement

• Imperative languages

• Denotational semantics and functional languages

• Object-oriented languages (Java-Light . . . )
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IMP: Introduction

IMP is a small imperative programming language. We study

how its syntax and semantics are represented in HOL.
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IMP: Introduction

IMP is a small imperative programming language. We study

how its syntax and semantics are represented in HOL.

Semantics come in different flavors:

• operational,

• denotational,

• axiomatic (Hoare-logic).
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Imperative Languages in the Isabelle/HOL
Library

There are several embeddings of imperative languages in

Isabelle/HOL [Nip02]:

• Hoare

• IMP

• IMPP

• MicroJava
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Imperative Languages in the Isabelle/HOL
Library

There are several embeddings of imperative languages in

Isabelle/HOL [Nip02]:

• Hoare: shallowish, good examples

• IMP: deepish, good theory

• IMPP: extends IMP with procedures

• MicroJava: complex, powerful, state-of-the-art
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Imperative Languages in the Isabelle/HOL
Library

There are several embeddings of imperative languages in

Isabelle/HOL [Nip02]:

• Hoare: shallowish, good examples

• IMPIMP: deepish, good theory

• IMPP: extends IMP with procedures

• MicroJava: complex, powerful, state-of-the-art

We choose IMP to learn a bit about “good ole imperative

languages”.
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Semantics Provided for IMP
IMP offers:

• operational semantics;
◦ natural semantics;

◦ transition semantics;

• denotational semantics;

• axiomatic semantics (Hoare logic);
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IMP: Introduction 1242

Semantics Provided for IMP
IMP offers:

• operational semantics;
◦ natural semantics;

◦ transition semantics;

• denotational semantics;

• axiomatic semantics (Hoare logic);

• equivalence proofs;

• weakest preconditions and verification condition generator.

It closely follows the standard textbook [Win96].
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An Imperative Language Embedding
We will now define the syntax and various semantics of IMP,

but in fact, we define those as Isabelle theories. We say that

we embed IMP in Isabelle/HOL.

You will see that such an embedding is more abstract and

less detailed than if we were really going to define IMP for

use as a programming language, i.e., if we were going to

define a compiler for it.
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The Command Language (Syntax)
The (abstract) syntax is defined in Com.thy.

Com = Main +
types
loc
val = nat (*e.g.*)
state = loc => val
aexp = state => val
bexp = state => bool

datatype com =
SKIP
| ":==" loc aexp (infixl 60)
| Semi com com ("_ ; _" [60, 60] 10)
| Cond bexp com com

("IF _ THEN _ ELSE _" 60)
| While bexp com ("WHILE _ DO _" 60)

The type loc stands for locations.

Note the abstractness of aexp and bexp.
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IMP: Introduction 1244

The Command Language (Syntax)
The (abstract) syntax is defined in Com.thy.

Com = Main +
types
loc
val = nat (*e.g.*)
state = loc => val
aexp = state => val
bexp = state => bool

datatype com =
SKIP
| ":==" loc aexp (infixl 60)
| Semi com com ("_ ; _" [60, 60] 10)
| Cond bexp com com

("IF _ THEN _ ELSE _" 60)
| While bexp com ("WHILE _ DO _" 60)

The type loc stands for locations.

Note the abstractness of aexp and bexp.

The datatype com stands for command( sequence)s.
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Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states):

state -
a :== b

state ′ ������������������:

WHILE . . .
XXXXXXXXXXXXXXXXXXz

SKIP
state ′′

state ′′′
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Operational Semantics: Two Kinds 1245

Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states):

state -
a :== b

state ′ ������������������:

WHILE . . .
XXXXXXXXXXXXXXXXXXz

SKIP
state ′′

state ′′′

evalc :: (com ∗ state ∗ state) set
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Operational Semantics: Two Kinds 1245

Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states):

state -
a :== b

state ′ ������������������:

WHILE . . .
XXXXXXXXXXXXXXXXXXz

SKIP
state ′′

state ′′′

evalc :: (com ∗ state ∗ state) set
Transition semantics (idea: sequence of “configurations”):

a :== b;X, state - X, state ′ ����������������:

XXXXXXXXXXXXXXXXz X ′′′, state ′′′

X ′′, state ′′
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Operational Semantics: Two Kinds 1245

Operational Semantics: Two Kinds

Natural semantics [Plo81] (idea: a program relates states):

state -
a :== b

state ′ ������������������:

WHILE . . .
XXXXXXXXXXXXXXXXXXz

SKIP
state ′′

state ′′′

evalc :: (com ∗ state ∗ state) set
Transition semantics (idea: sequence of “configurations”):

a :== b;X, state - X, state ′ ����������������:

XXXXXXXXXXXXXXXXz X ′′′, state ′′′

X ′′, state ′′

evalc1 :: ((com ∗ state) ∗ (com ∗ state)) set
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Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:
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Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:

consts evalc :: ”(com ∗ state ∗ state) set”
translations ”〈c, s0〉

c−→ s1” ≡ ”(c, s0, s1) ∈ evalc”

Note that
c−→ (in ASCII: -c->) is one fixed arrow symbol.
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Embedding of the Natural Semantics 1246

Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:

consts evalc :: ”(com ∗ state ∗ state) set”
translations ”〈c, s0〉

c−→ s1” ≡ ”(c, s0, s1) ∈ evalc”

Note that
c−→ (in ASCII: -c->) is one fixed arrow symbol.

We now start giving the actual inductive definition. It

defines the
c−→ transitions (implicit: these are the only

c−→
transitions) . . .
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Inductive Definition: Skip and Assignment

inductive evalc
intrs

Skip: 〈SKIP, s〉 c−→ s

Assign: 〈x :== a, s〉 c−→ s[x ::= (a s)]
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Inductive Definition: Skip and Assignment

inductive evalc
intrs

Skip: 〈SKIP, s〉 c−→ s

Assign: 〈x :== a, s〉 c−→ s[x ::= (a s)]

Skip and Assign are just names for the clauses of the

inductive definition.

s[x ::= v] is short for update s x v, where

update s x v ≡ λy. if y = x then v else (s y)

Note that a is of type aexp or bexp.
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Inductive Definition: Semicolon

Semi : J〈c0, s〉
c−→ s1; 〈c1, s1〉

c−→ s2K

=⇒ 〈c0; c1, s〉
c−→ s2
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Embedding of the Natural Semantics 1248

Inductive Definition: Semicolon

Semi : J〈c0, s〉
c−→ s1; 〈c1, s1〉

c−→ s2K

=⇒ 〈c0; c1, s〉
c−→ s2

The rationale of natural semantics: To figure out the

meaning of a program consisting of a “first instruction” c0
and a “rest” c1, starting from state s, you have to show two

subgoals: c0 starting from state s goes to some state s1, and

c1 starting in state s1 goes to some state s2.

Note that by the definition of Semi, c0 does not have to be

“atomic” (whatever this means).
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Inductive Definition: Control

IfTrue: Jb s; 〈c0, s〉
c−→ s1K

=⇒ 〈IF b THEN c0 ELSE c1, s〉
c−→ s1

IfFalse: J¬b s; 〈c1, s〉
c−→ s1K

=⇒ 〈IF b THEN c0 ELSE c1, s〉
c−→ s1

WhileFalse: J¬b sK =⇒ 〈WHILE b DO c, s〉 c−→ s

WhileTrue: Jb s; 〈c, s〉 c−→ s1; 〈WHILE b DO c, s1〉
c−→ s2K

=⇒ 〈WHILE b DO c, s〉 c−→ s2

Note the termination problem in WhileTrue! Simplest

example: b ≡ λx.True. Then, no proof is possible and no s2

can effectively be computed.
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Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also given by

an inductive definition. We first declare its type and define a

paraphrasing, as before:
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Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also given by

an inductive definition. We first declare its type and define a

paraphrasing, as before:

consts evalc1 :: ”((com ∗ state) ∗ (com ∗ state)) set”
translations ”cs0

1−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1”

Note that
1−→ is one fixed arrow symbol.
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Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also given by

an inductive definition. We first declare its type and define a

paraphrasing, as before:

consts evalc1 :: ”((com ∗ state) ∗ (com ∗ state)) set”
translations ”cs0

1−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1”

Note that
1−→ is one fixed arrow symbol.

We now start giving the actual inductive definition . . .
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Inductive Definition

inductive evalc1
intrs

Assign: ”(x :== a, s) 1−→ (SKIP, s[x ::= (a s)])”
Semi1: ”(SKIP; c, s) 1−→ (c, s)”
Semi2: ”(c0, s)

1−→ (c′0, s
′) =⇒ (c0; c1, s)

1−→ (c′0; c1, s
′)”
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Embedding of the Transition Semantics 1251

Inductive Definition

inductive evalc1
intrs

Assign: ”(x :== a, s) 1−→ (SKIP, s[x ::= (a s)])”
Semi1: ”(SKIP; c, s) 1−→ (c, s)”
Semi2: ”(c0, s)

1−→ (c′0, s
′) =⇒ (c0; c1, s)

1−→ (c′0; c1, s
′)”

So far, we see that the component of com type in the

configuration corresponds to a program stack (built by ”;”),

which represents a program counter.
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Inductive Definition: Control

IfTrue: ”b s =⇒ (IF b THEN c1 ELSE c2, s)
1−→ (c1, s)”

IfFalse: ”¬b s =⇒ (IF b THEN c1 ELSE c2, s)
1−→ (c2, s)”

WhileFalse: ”¬b s =⇒ (WHILE b DO c, s) 1−→ (SKIP, s)”
WhileTrue: ”b s =⇒ (WHILE b DO c, s) 1−→ (c; WHILE b DO c, s)”

Termination problem as before, but somehow less disturbing:

we cannot be shocked about the fact that some

computations are infinite, and at least, the transition

semantics assigns a meaning to any finite prefix of an infinite

computation.
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Generalizations to more than one Step
n-step semantics:

”cs0
n−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 n”

Unlike
c−→ and

1−→,
n−→ is not a fixed arrow symbol, but

meta-notation: for any number n, there is the paraphrasing
n−→ defined as above. Here, evalc1 n (ASCII: ^n) is defined

in Relation Power.thy.

multistep-semantics:

”cs0
∗−→ cs1” ≡ ”(cs0, cs1) ∈ evalc1 ∗”

∗−→ is a fixed arrow symbol.
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Equivalence of Semantics
Natural semantics vs. transition semantics.

Theorem 6 (evalc1 eq evalc):

(c, s) ∗−→ (SKIP, t) = (〈c, s〉 c−→ t)

The proof is by induction on the structure of programs.

Smaus: CSMR; WS08/09



Embedding of the Denotational Semantics 1255

Embedding of the Denotational Semantics

Domain: A semantics relates states (similar to natural

semantics)

com den = (state ∗ state) set

Semantic function: assigns semantics to a program

consts C :: com⇒ com den

Before, semantics were relations.

Smaus: CSMR; WS08/09



Embedding of the Denotational Semantics 1256

Characteristics of Denotational Semantics
A denotational semantics is a function (here: C) assigning a

meaning to a program. More precisely, the meaning of a

program is some “mathematical” function of the meanings

of its components.

This is in contrast to the operational view where

computation order (“first do this, then that. . . ”) and

logical reasoning using proof rules (“if (. . . ) computes

(. . . ) then (. . . ) computes (. . . )”) are focused.

The “mathematics” uses the lfp operator.
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The Recursive Definition
The semantics C is defined recursively:

primrec
C skip ”C(SKIP) = Id”
C assign ”C(x :== a) = {(s, t) | t = s[x ::= (a s)]}”
C comp ”C(c0; c1) = C(c1) ◦ C(c0)”
C if ”C(IF b THEN c1 ELSE c2) =

{(s, t) | (s, t) ∈ C(c1) ∧ b(s)}∪
{(s, t) | (s, t) ∈ C(c2) ∧ ¬b(s)}”

C while ”C(WHILE b DO c) = lfp(Γ b (C c))”

where ”Γ b cd ≡ (λφ.{(s, t) | (s, t) ∈ (φ ◦ cd) ∧ b(s)}∪
{(s, t) | s = t ∧ ¬b(s)})”
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Equivalence of Programs
We have seen an equivalence result relating different

semantics.
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Equivalence of Programs
We have seen an equivalence result relating different

semantics.

The following is an equivalence relating program fragments.

Theorem 7 (C While If):

C(WHILE b DO c) =
C(IF b THEN (c; WHILE b DO c) ELSE SKIP)
Such a result is important because it justifies a program

transformation (the two fragments have the same semantics

and so they are interchangeable).
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Equivalence of Semantics
We have already suggested that the natural semantics is a

hybrid between operational and denotational semantics. In

fact, there is a simple equivalence relationship between the

two:

Theorem 8 (denotational is natural):

((s, t) ∈ C c) = (〈c, s〉 c−→ t)
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Axiomatic (Hoare) Semantics

Idea: we relate “legal states” before and after a program

execution. A set of legal states is modeled as “assertion”:

types assn = state⇒ bool
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Axiomatic (Hoare) Semantics

Idea: we relate “legal states” before and after a program

execution. A set of legal states is modeled as “assertion”:

types assn = state⇒ bool

So rather than reasoning about single states, we reason

about properties or sets of states. This is what we really

need for verification of programs.

Semantics called axiomatic for historic reasons. It is also

called Hoare semantics.
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Embedding of the Hoare Semantics
The Hoare semantics encoding in Isabelle is also given by an

inductive definition. We first declare its type and a

paraphrasing:

consts hoare :: ”(assn ∗ com ∗ assn) set”
translations ” ` {P} c {Q}” ≡ ”(P, c,Q) ∈ hoare”

An object of the form {P} c {Q} is called a Hoare-triple.

We now start giving the actual inductive definition . . .
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Inductive Definition: SKIP
inductive hoare

intrs
skip ” ` {P} SKIP {P}”

No surprise here.
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The Inductive Definition

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”

This may be counter-intuitive, why not the other way round?
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The Inductive Definition

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”

This may be counter-intuitive, why not the other way round?

Consider an example: a ≡ λs.1 and P ≡ λs. s x = 1
{λs.(λs.s x = 1)(s[x ::= 1])} x :== λs.1 {λs.s x = 1} −→β

{λs.(s[x ::= 1])x = 1} x :== λs.1 {λs.s x = 1} −→β

{λs.(1 = 1)} x :== λs.1 {λs.s x = 1} −→β

{λs.True} x :== λs.1 {λs.s x = 1}
What do we see? (You might also check the types.)
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The Inductive Definition

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”

This may be counter-intuitive, why not the other way round?

Consider an example: a ≡ λs.1 and P ≡ λs. s x = 1
{λs.(λs.s x = 1)(s[x ::= 1])} x :== λs.1 {λs.s x = 1} −→β

{λs.(s[x ::= 1])x = 1} x :== λs.1 {λs.s x = 1} −→β

{λs.(1 = 1)} x :== λs.1 {λs.s x = 1} −→β

{λs.True} x :== λs.1 {λs.s x = 1}
What do we see? (You might also check the types.)

The ass rule is such that it relates the pre-state True with

the post-state λs. s x = 1, which is what we expect.
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Inductive Definition: Semi and
IF − THEN − ELSE

semi ”J` {P} c {Q};` {Q} d {R}K =⇒` {P} c; d {R}”
If ”J` {λs.P s ∧ b s} c {Q};` {λs.P s ∧ ¬b s} d {Q}K

=⇒` {P} IF b THEN c ELSE d {Q}”

Since we are reasoning about sets of states, b s may

sometimes be true and sometimes false, and so we have two

premises for those two cases. It turns out that if b s is

trivially true or trivially false, then one of the premises will

be trivial to prove.
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Inductive Definition: WHILE
While ” ` {λs.P s ∧ b s} c {P} =⇒

` {P} WHILE b DO c {λs.P s ∧ ¬b s}”
This has a flavor of loop invariants: in the pre-state, b s

holds, in the post-state, b s does not hold, and P holds all

the time.
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Inductive Definition: Weakening and
Strengthening

conseq ”J∀s.P ′s→ P s;` {P} c {Q};∀s.Q s→ Q′ sK
=⇒` {P ′} c {Q′}”

One can always strengthen the pre-condition or weaken the

post-condition.
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The Rules at a Glance
inductive hoare

intrs
skip ” ` {P} SKIP {P}”
ass ” ` {λs.P (s[x ::= a s])} x :== a {P}”
semi ”J` {P} c {Q};` {Q} d {R}K =⇒` {P} c; d {R}”
If ”J` {λs.P s ∧ b s} c {Q};` {λs.P s ∧ ¬b s} d {Q}K =⇒

` {P} IF b THEN c ELSE d {Q}”
While ” ` {λs.P s ∧ b s} c {P} =⇒

` {P} WHILE b DO c {λs.P s ∧ ¬b s}”
conseq ”J∀s.P ′s→ P s;` {P} c {Q};∀s.Q s→ Q′ sK =⇒

` {P ′} c {Q′}”
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Validity Relation
We define a validity relation:

|= {P} c {Q} ≡ ∀s t.(s, t) ∈ C(c)→ (P s)→ (Q t)
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Validity Relation
We define a validity relation:

|= {P} c {Q} ≡ ∀s t.(s, t) ∈ C(c)→ (P s)→ (Q t)

A Hoare triple {P}c{Q} is valid if it relates a set of input

states and a set of output states correctly w.r.t. the

denotational (or equivalently, operational) semantics: for any

input state s and output state t related by the denotational

semantics, if P holds for s, then Q must hold for t.
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Validity Relation
We define a validity relation:

|= {P} c {Q} ≡ ∀s t.(s, t) ∈ C(c)→ (P s)→ (Q t)

A Hoare triple {P}c{Q} is valid if it relates a set of input

states and a set of output states correctly w.r.t. the

denotational (or equivalently, operational) semantics: for any

input state s and output state t related by the denotational

semantics, if P holds for s, then Q must hold for t.

Why do we raise the issue of a semantics being valid, why

don’t we just say “it’s defined like this, full stop”?
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Relating Hoare and Denotational Semantics
Theorem 9 (Hoare soundness):

` {P} c {Q} =⇒|= {P} c {Q}

Theorem 10 (Hoare relative completeness):

|= {P} c {Q} =⇒` {P} c {Q}

Why relative?

So the Hoare relation is in fact compatible with the

denotational semantics of IMP.
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Example Program

tm :== λx.1;
sum :== λx.1;
i :== λx.0;
WHILE λs.(s sum) <= (s a) DO

(i :== λs.(s i) + 1;
tm :== λs.(s tm) + 2;
sum :== λs.(s tm) + (s sum))
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Example Program

tm :== λx.1;
sum :== λx.1;
i :== λx.0;
WHILE λs.(s sum) <= (s a) DO

(i :== λs.(s i) + 1;
tm :== λs.(s tm) + 2;
sum :== λs.(s tm) + (s sum))

What does this program do?
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Example Program

tm :== λx.1;
sum :== λx.1;
i :== λx.0;
WHILE λs.(s sum) <= (s a) DO

(i :== λs.(s i) + 1;
tm :== λs.(s tm) + 2;
sum :== λs.(s tm) + (s sum))

What does this program do?

Try a = 1, a = 2, . . . , and look at i!

Smaus: CSMR; WS08/09



Example Program 1271

Square Root
Answer: The program computes the square root. Informally:

Pre ≡ ”True”
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Square Root
Answer: The program computes the square root. Informally:

Pre ≡ ”True”
Post ≡ ”i2 ≤ a < (i+ 1)2”
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Square Root
Answer: The program computes the square root. Informally:

Pre ≡ ”True”
Post ≡ ”i2 ≤ a < (i+ 1)2”

Formally

Pre ≡ λs. True
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Square Root
Answer: The program computes the square root. Informally:

Pre ≡ ”True”
Post ≡ ”i2 ≤ a < (i+ 1)2”

Formally

Pre ≡ λs. True
Post ≡ λs. (s i) ∗ (s i) ≤ (s a) ∧

s a < (s i+ 1) ∗ (s i+ 1)
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Proving {Pre} . . . {Post}
We will now construct a proof tree showing that the

program computes the square root.

Generally, the difficulty is to know when to apply conseq.

We try to illustrate the search for the proof tree by

animation. Still you may not understand each choice

immediately, but only in hindsight!

We use two metavariables: Inv for the loop invariant, PW

for the enter condition of the loop. We instantiate later.

Abbreviation: ExC ≡ λs.Inv s ∧ ¬s sum ≤ s a (“exit

condition”). We omit `!

Smaus: CSMR; WS08/09



Example Program 1273

Proof

{Pre} tm . . . {Post}

This is what we want to prove.
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Proof

{ } tm . . . {ExC} I2

{Pre} tm . . . {Post}
conseq

Nothing happens after the loop, so intuition says that ExC

must imply Post .
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Proof

{PW} WH . . . {ExC}

{ } i . . . {ExC}
semi

{ } sum . . . {ExC}
semi

{ } tm . . . {ExC}
semi

I2

{Pre} tm . . . {Post}
conseq

Apply semi three times. PW (“pre while”) is just a sensible

choice of name: we don’t know yet what it is.
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Example Program 1273

Proof

A3 {PW} WH . . . {ExC}

{ } i . . . {ExC}
semi

{ } sum . . . {ExC}
semi

{ } tm . . . {ExC}
semi

I2

{Pre} tm . . . {Post}
conseq

This application of ass will allow us to reconstruct the pre-

condition in the line just below.
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Proof

A2

A3 {PW} WH . . . {ExC}

{λs.PW (s[”i”])} i . . . {ExC}
semi

{ } sum . . . {ExC}
semi

{ } tm . . . {ExC}
semi

I2

{Pre} tm . . . {Post}
conseq

And likewise A2 .
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Example Program 1273

Proof

A1

A2

A3 {PW} WH . . . {ExC}

{λs.PW (s[”i”])} i . . . {ExC}
semi

{λs.PW (s[”i, sum”])} sum . . . {ExC}
semi

{ } tm . . . {ExC}
semi

I2

{Pre} tm . . . {Post}
conseq

And likewise A1 .
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Example Program 1273

Proof

I1

A1

A2

A3 {PW} WH . . . {ExC}

{λs.PW (s[”i”])} i . . . {ExC}
semi

{λs.PW (s[”i, sum”])} sum . . . {ExC}
semi

{λs.PW (s[”i, sum, tm”])} tm . . . {ExC}
semi

I2

{Pre} tm . . . {Post}
conseq

We now know (by the form of conseq) what I1 is.
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Proof

I1

A1

A2

A3

I3 {Inv} WH . . . {ExC} I4

{PW} WH . . . {ExC}
conseq

{λs.PW (s[”i”])} i . . . {ExC}
semi

{λs.PW (s[”i, sum”])} sum . . . {ExC}
semi

{λs.PW (s[”i, sum, tm”])} tm . . . {ExC}
semi

I2

{Pre} tm . . . {Post}
conseq

Intuition says that PW must imply Inv .

Of course, we are not ready yet. . .
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Example Program 1274

Completing the Proof
A1 , A2 and A3 are complete, and I4 is trivial.
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Example Program 1274

Completing the Proof
A1 , A2 and A3 are complete, and I4 is trivial.

I1 , I2 , I3 , and {Inv} WH . . . {ExC} remain to be

shown.
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Example Program 1274

Completing the Proof
A1 , A2 and A3 are complete, and I4 is trivial.

I1 , I2 , I3 , and {Inv} WH . . . {ExC} remain to be

shown.

This also involves the question of how the metavariables

must be instantiated.
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Example Program 1275

What is PW?
The metavariable PW (“precondition of WHILE ”) must

fulfill (to show I1 )

∀s.Pre s→ PW (s[i ::= 0][sum ::= 1][tm ::= 1])

where

s[i ::= 0][sum ::= 1][tm ::= 1] = λy. if y = tm then 1 else
(if y = sum then 1 else(if y = i then 0 else (s y)))
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Example Program 1275

What is PW?
The metavariable PW (“precondition of WHILE ”) must

fulfill (to show I1 )

∀s.Pre s→ PW (s[i ::= 0][sum ::= 1][tm ::= 1])

where

s[i ::= 0][sum ::= 1][tm ::= 1] = λy. if y = tm then 1 else
(if y = sum then 1 else(if y = i then 0 else (s y)))

Solution (recall that Pre ≡ λs.True):

PW = λs.s i = 0 ∧ s sum = 1 ∧ s tm = 1
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Example Program 1276

What is Inv?
Continuing our proof tree construction:

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}

{Inv} WH . . . {ExC}
While

Smaus: CSMR; WS08/09



Example Program 1276

What is Inv?
Continuing our proof tree construction:

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}

{P ′′}sum :== λs.s tm+ s sum{Inv}

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}
semi2

{Inv} WH . . . {ExC}
While

Just blindly applying semi twice gives three formulas to be

proven using ass, one for each assignment in the loop.
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Example Program 1276

What is Inv?
Continuing our proof tree construction:

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}

{P ′′}sum :== λs.s tm+ s sum{Inv}

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}
semi2

{Inv} WH . . . {ExC}
While

Just blindly applying semi twice gives three formulas to be

proven using ass, one for each assignment in the loop.

Now what are P ′ and P ′′? Have a look at rule ass first!
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Example Program 1277

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv(s[sum ::= s tm+ s sum])
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Example Program 1277

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv(s[sum ::= s tm+ s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm+ 2]) (rule ass)
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Example Program 1277

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv(s[sum ::= s tm+ s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm+ 2]) (rule ass)
= λs′.(λs.Inv(s[sum ::= s tm+ s sum]))

(s′[tm ::= s′ tm+ 2])
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Example Program 1277

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv(s[sum ::= s tm+ s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm+ 2]) (rule ass)
= λs′.(λs.Inv(s[sum ::= s tm+ s sum]))

(s′[tm ::= s′ tm+ 2])
= λs′.Inv((s′[tm ::= s′ tm+ 2])

[sum ::= (s′[tm ::= s′ tm+ 2]) tm+
(s′[tm ::= s′ tm+ 2]) sum])
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Example Program 1277

Calculating P ′ and P ′′ (by Rule ass)

P ′′ = λs.Inv(s[sum ::= s tm+ s sum])

P ′ = λs′.P ′′(s′[tm ::= s′ tm+ 2]) (rule ass)
= λs′.(λs.Inv(s[sum ::= s tm+ s sum]))

(s′[tm ::= s′ tm+ 2])
= λs′.Inv((s′[tm ::= s′ tm+ 2])

[sum ::= (s′[tm ::= s′ tm+ 2]) tm+
(s′[tm ::= s′ tm+ 2]) sum])

= λs′.Inv(s′[tm ::= s′ tm+ 2]
[sum ::= s′ tm+ 2 + s′ sum]).
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Example Program 1278

Applying ass to i :== λs.s i+ 1
Now treat i :== λs.s i+ 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).
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Example Program 1278

Applying ass to i :== λs.s i+ 1
Now treat i :== λs.s i+ 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i+ 1]) (by rule ass)
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Example Program 1278

Applying ass to i :== λs.s i+ 1
Now treat i :== λs.s i+ 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i+ 1]) (by rule ass)
= λs′.(λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]))

(s′[i ::= s′ i+ 1])

Smaus: CSMR; WS08/09



Example Program 1278

Applying ass to i :== λs.s i+ 1
Now treat i :== λs.s i+ 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i+ 1]) (by rule ass)
= λs′.(λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]))

(s′[i ::= s′ i+ 1])
= λs′.Inv((s′[i ::= s′ i+ 1])

[tm ::= (s′[i ::= s′ i+ 1]) tm+ 2]
[sum ::= (s′[i ::= s′ i+ 1]) tm+ 2 + (s′[i ::= s′ i+ 1]) sum]))
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Example Program 1278

Applying ass to i :== λs.s i+ 1
Now treat i :== λs.s i+ 1 in the same way. Temporarily,

let’s write P for λs.Inv s ∧ s sum ≤ s a. Recall P ′ =

λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

P = λs′.P ′(s′[i ::= s′ i+ 1]) (by rule ass)
= λs′.(λs.Inv(s[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]))

(s′[i ::= s′ i+ 1])
= λs′.Inv((s′[i ::= s′ i+ 1])

[tm ::= (s′[i ::= s′ i+ 1]) tm+ 2]
[sum ::= (s′[i ::= s′ i+ 1]) tm+ 2 + (s′[i ::= s′ i+ 1]) sum]))

= λs.Inv(s[i ::= s i+ 1][tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

Smaus: CSMR; WS08/09



Example Program 1278

Applying ass to i :== λs.s i+ 1

λs.Inv s ∧ s sum ≤ s a

= λs.Inv(s[i ::= s i+ 1][tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum]).

So Inv must solve this equation.
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Example Program 1279

Inv Must Fulfill the Equation
Inv must fulfill the equation

λs.Inv s ∧ s sum ≤ s a=
λs.Inv(s[i ::= s i+ 1][tm ::= s tm+ 2]

[sum ::= s tm+ 2 + s sum])

Smaus: CSMR; WS08/09



Example Program 1279

Inv Must Fulfill the Equation
Inv must fulfill the equation

∀s.Inv s ∧ s sum ≤ s a↔
∀s.Inv(s[i ::= s i+ 1][tm ::= s tm+ 2]

[sum ::= s tm+ 2 + s sum])

Don’t think syntactically! We are in HOL: = means ↔, and

we can replace λ by ∀.
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Example Program 1279

Inv Must Fulfill the Equation
Inv must fulfill the equation

∀s.Inv s ∧ s sum ≤ s a↔
∀s.Inv(s[i ::= s i+ 1][tm ::= s tm+ 2]

[sum ::= s tm+ 2 + s sum])

Don’t think syntactically! We are in HOL: = means ↔, and

we can replace λ by ∀.
Guessing the right Inv is obviously difficult! Informally

Inv ≡ ”(i+ 1)2 = sum ∧ tm = (2 ∗ i) + 1 ∧ i2 ≤ a”
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Example Program 1280

Checking that Inv Fulfills Equation

s sum ≤ s a ∧ (6)

(s i+ 1)2 = (s sum) ∧ (7)

s tm = (2 ∗ (s i)) + 1 ∧ (8)

(s i)2 ≤ (s a) ∧ (9)

(recall: = means ↔) = (10)

((s i+ 1) + 1)2 = (s sum) + (s tm) + 2 ∧ (11)

(s tm+ 2) = (2 ∗ (s i+ 1)) + 1 ∧ (12)

(s i+ 1)2 ≤ (s a) (13)
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Example Program 1281

Proof Sketch
First show the “→”-direction:

(8) → (12) and (6) ∧ (7) → (13) by simple arithmetic. (11)

is shown as follows:

((s i+ 1) + 1)2 = (s i+ 1)2 + 2 ∗ (s i+ 1) + 1
(7)
= (s sum) + 2(s i) + 1 + 2
(8)
= (s sum) + (s tm) + 2
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Example Program 1282

Proof Sketch (Cont.)
Now show the “←”-direction:

(12) → (8) and (13) → (9) by simple arithmetic. (7) is

shown as follows:

(s i+ 1)2 = ((s i+ 1) + 1)2 − 2 ∗ (s i+ 1)− 1
(11)
= (s sum) + (s tm) + 2− 2 ∗ (s i+ 1)− 1
(12)
= (s sum) + 2 ∗ (s i+ 1) + 1

−2 ∗ (s i+ 1)− 1
= s sum

Finally, (7) ∧ (13) → (6).
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Example Program 1282

Proof Sketch (Cont.)
Now show the “←”-direction:

(12) → (8) and (13) → (9) by simple arithmetic. (7) is

shown as follows:

(s i+ 1)2 = ((s i+ 1) + 1)2 − 2 ∗ (s i+ 1)− 1
(11)
= (s sum) + (s tm) + 2− 2 ∗ (s i+ 1)− 1
(12)
= (s sum) + 2 ∗ (s i+ 1) + 1

−2 ∗ (s i+ 1)− 1
= s sum

Finally, (7) ∧ (13) → (6). So Inv is indeed an invariant!
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Example Program 1283

The WHILE Loop: Remarks
We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”
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Example Program 1283

The WHILE Loop: Remarks
We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

One would definitely expect →, but ← is remarkable!
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Example Program 1283

The WHILE Loop: Remarks
We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

One would definitely expect →, but ← is remarkable!

We can show this because our invariant is so strong: for

showing →, the weaker invariant (7) ∧ (8), i.e.

”(i+ 1)2 = sum ∧ tm = (2 ∗ i) + 1

would do (check it!).
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Example Program 1283

The WHILE Loop: Remarks
We have shown

(“enter condition” ∧ “invar. at entry”)↔“invar. at exit”

One would definitely expect →, but ← is remarkable!

We can show this because our invariant is so strong: for

showing →, the weaker invariant (7) ∧ (8), i.e.

”(i+ 1)2 = sum ∧ tm = (2 ∗ i) + 1

would do (check it!).

But the extra condition i2 ≤ a is needed for showing Post ,
which states what the program actually computes.
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Example Program 1284

Taking Care of Post
We have shown I1 and {Inv} WH . . . {ExC}. Now

continue with I2 .

Does Post s follow from Inv s ∧ ¬s sum ≤ s a?
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Example Program 1284

Taking Care of Post
We have shown I1 and {Inv} WH . . . {ExC}. Now

continue with I2 .

Does Post s follow from Inv s ∧ ¬s sum ≤ s a?
Yes!

(s i)2 ≤ (s a) follows from (9)

(s a) < (s i+ 1)2 follows from ¬s sum ≤ (s a) and (7).
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Example Program 1285

The Final Missing Part
I3 remains to be shown, i.e.

∀s.PW s→ Inv s

or, expanding the solutions for PW and Inv

∀s. s i = 0 ∧ s sum = 1 ∧ s tm = 1→
(s i+ 1)2 = s sum ∧
s tm = (2 ∗ (s i)) + 1 ∧
(s i)2 ≤ (s a)

This is easy to check.
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Example Program 1286

An Alternative for Tackling the Loop Part
Recall that our loop invariant was “too strong”. An
alternative:

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}

{Inv} WH . . . {ExC}
While
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Example Program 1286

An Alternative for Tackling the Loop Part
Recall that our loop invariant was “too strong”. An
alternative:

∀s.(Inv s∧
s sum ≤ s a)→
Inv ′ s

{Inv ′} ”body” {Inv}

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}
conseq

{Inv} WH . . . {ExC}
While
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Example Program 1286

An Alternative for Tackling the Loop Part
Recall that our loop invariant was “too strong”. An
alternative:

∀s.(Inv s∧
s sum ≤ s a)→
Inv ′ s

{Inv ′}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}

{P ′′}sum :== λs.s tm+ s sum{Inv}

{Inv ′} ”body” {Inv}
semi2

{λs.Inv s ∧ s sum ≤ s a} ”body” {Inv}
conseq

{Inv} WH . . . {ExC}
While
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Alternative (Cont.)
Applying ass as before gives

Inv ′ = λs.Inv(s[i ::= s i+ 1][tm ::= s tm+ 2]
[sum ::= s tm+ 2 + s sum])

We are left with the proof obligation

∀s.(Inv s ∧ s sum ≤ s a)→ Inv(s[i ::= s i+ 1]
[tm ::= s tm+ 2][sum ::= s tm+ 2 + s sum])

Just this could be shown setting weak Inv ≡ (7) ∧ (8), but

for actually showing Post , i2 ≤ a is still needed.
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Automating Hoare Proofs 1288

Automating Hoare Proofs

In the example, we have verified a program computing the

square root.

But this was tedious, and parts of the task can be

automated.
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Automating Hoare Proofs 1289

Weakest Liberal Preconditions
Observation: the Hoare relation is deterministic to a certain

extent.

Idea: we use this fact for the generation of (weakest liberal)

preconditions.

Weakest liberal preconditions are:

constdefs wp :: com⇒ assn ⇒ assn
”wp c Q ≡ (λs.∀t.(s, t) ∈ C(c)→ Q t)”

So wp c Q returns the set of states containing all states s

such that if t is reached from s via c, then the

post-condition Q holds for t. Computable?
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Automating Hoare Proofs 1289

Weakest Liberal Preconditions
Observation: the Hoare relation is deterministic to a certain

extent.

Idea: we use this fact for the generation of (weakest liberal)

preconditions.

Weakest liberal preconditions are:

constdefs wp :: com⇒ assn ⇒ assn
”wp c Q ≡ (λs.∀t.(s, t) ∈ C(c)→ Q t)”

So wp c Q returns the set of states containing all states s

such that if t is reached from s via c, then the

post-condition Q holds for t. Computable? Not obvious.
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Equivalence Proofs
Main results of the wp-generator are:
wp SKIP: wp SKIP Q = Q

wp Ass: wp (x :== a) Q = (λs. Q (s[x ::= a s]))
wp Semi: wp (c; d) Q = wp c (wp d Q)
wp If: wp (IF b THEN c ELSE d) Q =

(λs.(b s→ wp c Q s) ∧ (¬b s→ wp d Q s))
wp While True: b s =⇒ wp (WHILE b DO c) Q s =

wp (c; WHILE b DO c) Q s

wp While False: ¬b s =⇒ wp (WHILE b DO c) Q s = Q s

wp While if: wp (WHILE b DO c) Q s =
(if b s then wp(c; WHILE b DO c) Q s else Q s)

Last case summarises the two before.
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WP-Semantics
Except for termination problem due to While, (weakest

liberal) precondition wp can be computed.

This fact can be used for further proof support by

verification condition generation.
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Verification Condition Generation
First, we must enrich the syntax by loop-invariants:

datatype acom =
Askip

| Aass loc aexp
| Asemi acom acom
| Aif bexp acom acom
| Awhile bexp assn acom

Almost same as com, but While gets an additional

argument for asserting a loop invariant. Asserting this is the

difficult, creative step to be done by a human.
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Computing a Weakest Liberal Precondition
We define a function that computes a wp:
primrec

”awp Askip Q = Q”
”awp (Aass x a) Q = (λs.Q(s[x ::= as]))”
”awp (Asemi c d) Q = awp c (awp d Q)”
”awp (Aif b c d) Q = (λs.(b s→ awp c Q s)∧ (¬b s→ awp d Q s))”
”awp (Awhile b Inv c) Q = Inv”

Idea: for all statements, the exact wp is computed, except

for While, where the assertion provided by the user is taken

as approximation. Proof obligation: show that such an

assertion is compatible with the program and the desired

property . . .
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A Verification Condition
Construct a formula vc c Q s with the intuitive reading: as

far as the invariant assertions are concerned, s is a good

pre-state for reaching desired post-property Q using

annotated program c.

This is not about distinguishing good pre-states from bad

pre-states! It is about formalising well-chosen invariants. For

an annotated program with well-chosen invariants,

∀s. vc c Q s holds, i.e. vc c Q ≡ λs.True.
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The Definition of vc
Roughly, an annotated programm has well-chosen invariants

if its components have well-chosen invariants, so most of the

definition is saying just that:
primrec

”vc Askip Q = (λs.True)”
”vc (Aass x a) Q = (λs.True)”
”vc (Asemi c d) Q = (λs.vc c (awp d Q) s ∧ vc d Q s)”
”vc (Aif b c d) Q = (λs.vc c Q s ∧ vc d Q s)”
”vc (Awhile b Inv c) Q = (λs.(Inv s ∧ ¬b s→ Q s)∧

(Inv s ∧ b s→ awp c Inv s) ∧ vc c Inv s)”
Only the case for While is non-trivial . . .
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vc: The While case

”vc (Awhile b Inv c)Q = (λs.(Inv s ∧ ¬b s→ Q s)∧
(Inv s ∧ b s→ awp c Inv s)∧
vc c Inv s)”

Why is Inv a well-chosen invariant?

• Inv + exit condition imply Q: Inv s ∧ ¬(b s)→ Q s;

• Inv + loop condition imply precondition of Inv (so that

Inv will hold after one execution of c):

Inv s ∧ (b s)→ awp c Inv s.
• vc c Inv s is in the spirit of the rest of the definition of vc:

call vc recursively for the component.
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Results of the wp-Generator
vc sound: ∀Q.(∀s.vc ac Q s)→
` {awp ac Q} astrip ac {Q}
vc complete: ` {P} c {Q} =⇒ ∃ac.astrip ac = c∧
(∀s.vc ac Q s) ∧ (∀s.P s→ awp ac Q s)

To prove that c has property Q after execution, annotate it

with loop invariants (ac) and show ∀s. vc ac Q s. This

implies that a Hoare proof exists, for the computable

precondition awp ac Q. For good (robust) programs,

awp ac Q = λs.True.
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Summary
IMP closely follows the standard textbook [Win96].

Isabelle/HOL is a powerful framework for embedding

imperative languages.

Isabelle/HOL is also a framework for state-of-the-art

languages like JAVA including interfaces, inheritance,

dynamic methods.

It works in theory and for non-trivial problems in practice

(but of modest size). ¸
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More Detailed Explanations
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Flavors of Semantics

One distinguishes

• operational,

• denotational,

• axiomatic

semantics.

For operational semantics, the idea is that our machine is always in some

state, essentially consisting of the values of the program variables. The

instructions of a program transform a state into a new state. Operational

semantics are useful for compiler construction.

For denotational semantics, the idea is that the meaning of a particular

program is a relation between “input” states and “output” states.

Axiomatic semantics consist of a calculus for constructing proof
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obligations. This allows us to state the desired behavior of a program as

a logic formula and check it.

Back to main referring slide
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Imperative Languages in the HOL Library
You should find directories for each mentioned imperative language in

your Isabelle distribution. Or, if you only have an Isabelle executable, you

can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide

Smaus: CSMR; WS08/09
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Shallow and Deep
The notions shallow and deep refer to the way the imperative language

at hand is encoded in Isabelle.

In a deep embedding, the syntax of the analyzed programming is

modeled by (an) explicit datatype(s).

In a shallow embedding, the syntax of the analyzed programming

language is implicit in the notation for operators on the semantic domain.

Back to main referring slide
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Equivalence Proofs
Summarizing, we have the following equivalence results:

• natural vs. transition semantics

• denotational vs. natural semantics.

Back to main referring slide
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Com.thy
This file defines the command syntax. An Isabelle term of type com is

an IMP program.

You should find the files in your Isabelle distribution. Or, if you only have

an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide

Smaus: CSMR; WS08/09

http://isabelle.in.tum.de/library/


More Detailed Explanations 1306

Locations
We realize program variables via pointers (locations). The type of

pointers is an abstract datatype.

We take the type of values to be nat , just to have something simple.

A state is a function taking a location to a value, i.e. intuitively, each

program variable has a value in a state.

Back to main referring slide
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Abstractness of aexp and bexp
In a formalization of the syntax of an imperative language, there will

usually be some grammar saying that 1, x+ 1 (provided that x is an

arithmetic variable) etc. are arithmetic expressions and that True,

x == 1 etc. are Boolean expressions. Such expressions can only be

evaluated if the state, i.e. the value of the program variables, is given.

Now, our notion of expressions (as realized by the types aexp and bexp)

is much more abstract than that. An expression is e function taking a

state to a value or Boolean, as applicable.

The fact that IMP has no explicit expression language allows for simple

and abstract proofs.

Back to main referring slide
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The Intuition of Natural Semantics
The idea of the natural semantics is that a program relates two states,

the “input state” and the “output state”.

This may remind you of denotational semantics, and in fact, the natural

semantics is a kind of hybrid between operational and denotational

semantics.

The fact that the natural semantics just relates an “input state” and an

“output state” means, so to say, that it does not record what happens in

between, i.e. at the single steps of a computation. In that respect, it

resembles denotational semantics.

But the way the meaning of a whole program is defined is still

operational in nature. Essentially, it is defined in terms of the meaning of

the first execution step and the meaning of the rest of the program.

Back to main referring slide
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The Intuition of Transition Semantics
Unlike the natural semantics, the transition semantics records the single

steps of the computation. A configuration is a pair consisting of a

program and a state, and one step reaches a new program and a new

state.

Why “reaching a new program”? This realizes a program counter. For

example, if the first line of the program is an assignment, then the new

program is obtained by removing that line from the old program.

Back to main referring slide
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The Power of Paraphrasing
As you see, paraphrasing in Isabelle is very powerful. One can think of

c−→ and
1−→ as infix symbols. But

n−→ is by no means one single symbol.

In fact the term cs0
n−→ cs1 is a paraphrasing of (cs0, cs1) ∈ evalc1n.

Back to main referring slide
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Relation Power.thy
This file should be contained in your Isabelle distribution. Or, if you only

have an Isabelle executable, you can find the sources here:

http://isabelle.in.tum.de/library/

Back to main referring slide
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Define C by Primitive Recursion
Recall that the primrec syntax is used for defining functions recursively.

Here, the argument type of the function C is the datatype com. It is

characteristic for the definition of a datatype that its elements are

defined by (structural) induction, i.e., its elements are syntactic terms

formed from previously generated syntactic forms using a specific set of

term constructors. For datatypes, it is clear that the subterm relation is

a well-founded order. Hence it is legitimate to define C using recursion.

Back to main referring slide
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Understanding Γ
Let’s try to understand

”Γ b cd ≡ (λφ. {(s, t) | (s, t) ∈ (φ◦cd)∧b(s)}∪{(s, t) | s = t∧¬b(s)})”

Note that in the definition of WHILE , the second argument to Γ is (C c),
which is the semantics of the body of the WHILE statement, i.e., a

binary relation between input states and output states. So cd above is

the semantics of the body of the WHILE statement.

Let

S0 = {(s, t) | s = t ∧ ¬b(s)}

Smaus: CSMR; WS08/09



More Detailed Explanations 1314

and for i > 0,

Si = {(s, t) | ∃s0, . . . , si. s0 = s ∧ si = t∧
(s0, s1) ∈ cd ∧ . . . ∧ (si−1, si) ∈ cd∧
b(s0) ∧ . . . ∧ b(si−1)}

When we apply (Γ b cd) to ∅ (the empty relation), then since ∅ ◦ cd = ∅,
we get just S0. Now it is easy to see that (Γ b cd)S0 = S0 ∪ S1, and

generally, for all i > 0

(Γ b cd)(
⋃
j≤i

Sj) =
⋃

j≤i+1

Sj

So the intuition of the functional (Γ b cd) is as follows: given the

semantics of the WHILE statement for up to i passes through the loop,

return the semantics of the WHILE statement for up to i+ 1 passes
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through the loop. The lfp of this functional is the actual semantics of

the WHILE statement.

Another explanation is similar to the one we gave for fac and Fin A: A

straightforward attempt to define the semantics of a WHILE statement

would be

C(WHILE b DO c) = {(s, t) |
(¬b(s) ∧ s = t) ∨
(b(s) ∧ ∃u. (s, u) ∈ C(c) ∧ (u, t) ∈ C(WHILE b DO c))}

which is equivalent to

C(WHILE b DO c) =
{(s, t) | (s, t) ∈ (C(WHILE b DO c) ◦ C(c)) ∧ b(s)}∪
{(s, t) | s = t ∧ ¬b(s)}.
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However, there is a problem here since this is a recursive equation:

C(WHILE b DO c) occurs on the r.h.s. And this recursive equation is

different from the other clauses of recursive definition of C since the

argument to C is the same on both sides — there is no decrease by a

well-founded order.

But as we did for fac and Fin A, we can rewrite as follows:

C(WHILE b DO c) =
(λφ.{(s, t) | (s, t) ∈ (φ ◦ C(c)) ∧ b(s)} ∪ {(s, t) | s = t ∧ ¬b(s)})

C(WHILE b DO c)

which explains that

(λφ.{(s, t) | (s, t) ∈ (φ ◦ C(c)) ∧ b(s)} ∪ {(s, t) | s = t ∧ ¬b(s)})

is the functional defining C(WHILE b DO c), and the lfp of this
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functional is hence C(WHILE b DO c).

Back to main referring slide
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Is the Axiomatic Semantics Really Axiomatic?
In terms of Isabelle/HOL, the semantics is not defined by axioms, but is

an inductive definition.

Back to main referring slide
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The Types in the Hoare Assignment Rule
Things are getting a bit complicated, maybe it helps to recall the types

of the terms occurring in

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”

P has type assn, which is state ⇒ bool . In turn , state is loc ⇒ val .
x has type loc.

a has type aexp, which is state ⇒ val .
s has type state.

Back to main referring slide
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The Assignment Rule
You can also argue a bit more generally. Let Q be an arbitrary assertion,

and let

P ≡ λs. ∃s′. s = s′[x ::= (a s′)] ∧Q s′

Intuitively: P is an assertion allowing any state obtained from a state

allowed by Q by updating that state at location x with the expression a.

Now consider the rule for assignment:

ass ” ` {λs.P (s[x ::= (a s)])} x :== a {P}”

in particular the assertion on the left-hand side. It reduces as follows:

λs. P (s[x ::= (a s)]) −→β

λs. (∃s′. Q s′ ∧ s[x ::= (a s)] = s′[x ::= (a s′)]) −→β . . .

λs. (∃s′. Q s′ ∧ s = s′) −→β . . . λs. (Q s) −→η Q
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So you see that any pre-state Q will be related to a post-state P as

given above.

By this argument, we have only shown which post-states are possible

given an arbitrary pre-state, not which post-states are not. Such an

argument is more complicated.

Back to main referring slide
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A Table of Values

a is not modified anywhere. You should think of a as input of the

program.

i counts the number of times the loop is entered, i.e. the final value of i

is the number of times the loop was entered. This number depends on a.

The following table shows that final values of i, tm and sum depending

on the value of a:
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i tm sum

0 ≤ a < 1 0 1 1
1 ≤ a < 4 1 3 4
4 ≤ a < 9 2 5 9
9 ≤ a < 16 3 7 16
16 ≤ a < 25 4 9 25
25 ≤ a < 36 5 11 36
36 ≤ a < 49 6 13 49

sum takes the values of all squares successively, computed by the famous

binomial formula:

(i+ 1)2 = i2 + 2i+ 1

Since tm takes the value 2i+ 1 for all i successively, it follows that
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sum+ tm always gives the next value of sum.

Back to main referring slide
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(s i), (s a) etc.
Informally we talk about variables i, x etc. and say “x has value 5”, for

example. But formally, variables are realized via locations, and so we get

expressions of the form s x. That is, s x is the value of variable x.

Back to main referring slide
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Nondeterminacy in the Hoare Calculus
The conseq rule can always be applied. If one decides not to apply the

conseq rule, then the choice of any other rule is deterministic.

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1327

Why Do We Question Hoare?

You may wonder: Why do we raise the issue of a semantics being valid,

why don’t we just say “it’s defined like this, full stop”? After all, we

didn’t question the operational and denotational semantics in the same

way. So why do we take the denotational semantics as the real semantics

of a program that another semantics such as the Hoare semantics has to

be somehow equivalent to in order to be correct? Couldn’t we do it the

other way round?
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Why Do We Question Hoare?

You may wonder: Why do we raise the issue of a semantics being valid,

why don’t we just say “it’s defined like this, full stop”? After all, we

didn’t question the operational and denotational semantics in the same

way. So why do we take the denotational semantics as the real semantics

of a program that another semantics such as the Hoare semantics has to

be somehow equivalent to in order to be correct? Couldn’t we do it the

other way round?

First: If you want to accept anything as the real semantics of a program,

it would be the transition semantics, since we believe that by the

transition semantics, we have modeled what the compiler of the

programming language actually does. The transition semantics records

the actual computation steps.

Secondly, we have shown that the transition semantics is equivalent to
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the natural semantics, which in turn is equivalent to the denotational

semantics.

Thirdly, someone might claim that the Hoare semantics “obviously”

reflects the real semantics of a program, but that would seem quite

far-fetched, because the semantics speaks about properties of states

rather than about states directly.

Together this explains why we call a Hoare triple valid if it is correct

w.r.t. the denotational semantics.

Back to main referring slide
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Relative Completeness
We will not give any details here, but the completeness result is

restricted in the same way that the completeness of HOL is restricted to

general models, as opposed to standard models.

Back to main referring slide
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Program “Fragment”
This is the entire program, namely:

tm :== λx.1;
sum :== λx.1;
i :== λx.0;
WHILE λs.s sum ≤ s a DO

(i :== λs.s i+ 1;
tm :== λs.s tm+ 2;
sum :== λs.s tm+ s sum)

(return to main proof tree)

Back to main referring slide
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Program Fragment
This is the program fragment starting from sum :==, namely:

sum :== λx.1;
i :== λx.0;
WHILE λs.s sum ≤ s a DO

(i :== λs.s i+ 1;
tm :== λs.s tm+ 2;
sum :== λs.s tm+ s sum)

(return to main proof tree)

Back to main referring slide
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Program Fragment
This is the program fragment starting from i :==, namely:

i :== λx.0;
WHILE λs.s sum ≤ s a DO

(i :== λs.s i+ 1;
tm :== λs.s tm+ 2;
sum :== λs.s tm+ s sum)

(return to main proof tree)

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1333

Program Fragment
This is the program fragment starting from WHILE , namely:

WHILE λs.s sum ≤ s a DO
(i :== λs.s i+ 1;
tm :== λs.s tm+ 2;
sum :== λs.s tm+ s sum)

(return to main proof tree)

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1334

Program Fragment
This is the program fragment consisting of the loop body, namely:

i :== λs.s i+ 1;
tm :== λs.s tm+ 2;
sum :== λs.s tm+ s sum

(return to main proof tree)

Back to main referring slide
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A Missing Part
I1 is the formula

∀s.Pre s→ PW (s[”i, sum, tm”])

where Pre is defined above and PW is a metavariable (“precondition of

WHILE ”).

(return to main proof tree)

Back to main referring slide
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A Missing Part
I2 is the formula

∀s.ExC s→ Post s,

i.e.

∀s.Inv s ∧ ¬sum s ≤ s a→ Post s,

where Post is defined above and Inv is a metavariable (“loop invariant”).

(return to main proof tree)

Back to main referring slide
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A Missing Part
A1 is the proof tree

{λs.PW (s[”i, sum, tm”])}tm :== λx.1{λs.PW (s[”i, sum”])}
ass

where PW is a metavariable (“precondition of WHILE ”).

(return to main proof tree)

Back to main referring slide

Smaus: CSMR; WS08/09



More Detailed Explanations 1338

A Missing Part
A2 is the proof tree

{λs.PW (s[i ::= 0][sum ::= 1])}sum :== λx.1{λs.PW (s[i ::= 0])}
ass

where PW is a metavariable (“precondition of WHILE ”).

(return to main proof tree)

Back to main referring slide
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A Missing Part
A3 is the proof tree

{λs.PW (s[i ::= 0])}i :== λx.0{PW}
ass

where PW is a metavariable (“precondition of WHILE ”).

(return to main proof tree)

Back to main referring slide
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A Missing Part
I3 is the formula

∀s.PW s→ Inv s

where PW is a metavariable (“precondition of WHILE ”) and Inv is a

metavariable (“loop invariant”).

(return to main proof tree)

Back to main referring slide
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A Missing Part
I4 is the formula

∀s.ExC s→ ExC s

which is of course trivial to prove.

(return to main proof tree)

Back to main referring slide
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An Abbreviation for an Updated State
We use s[”i, sum, tm”] as abbreviation for

s[i ::= 0][sum ::= 1][tm ::= 1]

Note that this is

λy. if y = tm then 1 else
(if y = sum then 1 else(if y = i then 0 else (s y)))

(return to main proof tree)

Back to main referring slide
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An Abbreviation for an Updated State
We use s[”i, sum”] as abbreviation for

s[i ::= 0][sum ::= 1]

Note that this is

λy. if y = sum then 1 else(if y = i then 0 else (s y))

(return to main proof tree)

Back to main referring slide
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An Abbreviation for an Updated State
We use s[”i”] as abbreviation for

s[i ::= 0]

Note that this is

λy. if y = i then 0 else (s y)

(return to main proof tree)

Back to main referring slide
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Displaying Proof Tree
Of course, these three formulas should be side by side in the proof tree,

but this cannot be displayed.

Back to main referring slide
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What must Inv Be?
Recall that we had to prove the three formulas

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i+ 1{P ′}
{P ′}tm :== λs.s tm+ 2{P ′′}
{P ′′}sum :== λs.s tm+ s sum{Inv}

all by ass. Dealing with the second and third formula using ass, we

found that

P ′ = λs′.Inv(s′[tm ::= s′ tm+ 2][sum ::= s′ tm+ 2 + s′ sum]).

Therefore, to show

{λs.Inv s ∧ s sum ≤ s a}i :== λs.s i+ 1{P ′}
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as well, Inv must have such a form that the formula becomes an

instance of ass.

Back to main referring slide
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astrip
The function astrip turns acom programs into com programs by

removing the loop invariant assertions.

Back to main referring slide
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Just a few Isabelle or HOL Applications
We briefly introduce two Isabelle/HOL applications, and one

application of HOL Light:

• Java bytecode verification;

• floating-point arithmetic;

• red-black trees.

This is just to stimulate you to look for more applications on

your own!
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Java Bytecode Verification

Typically, Java programs are delivered as bytecode, as

opposed to source code on the one hand and machine code

on the other hand. Bytecode is machine-independent.

A Java runtime system provides the Java Virtual Machine,

i.e., an interpreter for Java bytecode.

Java is a typed language: the type system forbids things like

pointer arithmetic, thus preventing illegal memory access.

However, bytecode is not type-safe by itself. For various

reasons, bytecode could be corrupted. This is obviously

critical for security and possibly safety.
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Ensuring Type Safety
The loader of a typical JVM has a bytecode verifier: A

program that checks whether bytecode is type-safe.

Klein and Nipkow have specified a JVM and a bytecode

verifier in Isabelle and proved its correctness using Isabelle

[KN03, Nip03].

Such applications may have big impact since they are

concerned with the correctness of not just some particular

program, but rather the programming language

(implementation) itself.
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JavaCard
JavaCard is a subset of Java employed on smart cards.

Aspects in contrast to full Java:

• Memory on smart cards is limited.

• Security is vital for smart card applications (banking etc.).

Project Verificard concerned with ensuring reliability of

smart card applications.

Verificard @ Munich have applied the work on bytecode

verification (using Isabelle) to JavaCard.

End user panel includes Ericsson, France Télécom R&D, and

Gemplus.
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Floating Point Arithmetic

John Harrison has done much work on verifying arithmetic

functions operating on various number types adhering to

certain standards [Har98, Har99, Har00].

He has used HOL Light, not Isabelle. This means: no

metalogic, specialized theorem prover for HOL.

He formally proved that the floating point operations of an

Intel processor behave according to the IEEE standard 754

[IEE85]. First machine-checked proof of this kind.

We briefly review his work [Har99] using an Isabelle-like

syntax where helpful.
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What Are Floats?
Conventionally: floats have the form ±2e · k.
e is called exponent, Emin ≤ e ≤ Emax.

k is called mantissa, can be represented with p bits.
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Floats in HOL
For formalization in HOL, equivalent representation

(−1)s · 2e−N · k

with k < 2p and 0 ≤ e < E.

Thus a particular float format is characterized by maximal

exponent E, precision p, and exponent offset (“ulpscale”)

N . The set of real numbers representable by a triple is:

format (E, p,N) =
{x | ∃s e k. s < 2 ∧ e < E ∧ k < 2p ∧ x = (−1)s · 2e · k/2N}
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Rounding
Rounding takes a real to a representable real nearby.

E.g. rounding up:

round fmt x = εa. a ∈ format fmt ∧ a ≤ x∧
∀b ∈ format fmt . b ≤ x→ b ≤ a

Formalization of the Standard [IEE85].

Useful lemmas such as:

x ≤ y =⇒ round fmt x ≤ round fmt y
a ∈ format fmt ∧ b ∈ format fmt ∧ 0.5 ≤ a

b ≤ 2 =⇒
(b− a) ∈ format fmt
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Operations
For operations such as addition, multiplication etc., it is

proven in HOL that they behave as if they computed the

exact result and rounded afterwards.

However, there are some debatable questions related to the

sign of zeros.
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Red-Black Trees

Red-black trees are trees that can be used for implementing

sets/dictionaries, just like AVL trees. To formulate

“balanced-ness” invariants, nodes are colored:

1. Every red node has a black parent.

2. Each path from the root to a leaf has the same number of

black nodes.

Together these invariants ensure that maximal paths can

differ in length by at most factor 2.

These invariants must be maintained by insertion and

deletion operations.
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Red-Black Trees in SML
Red-black trees provided in New Jersey SML library [Pau96].

Angelika Kimmig tried to verify the insertion operation of

red-black trees using Isabelle. Findings?
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Red-Black Trees in SML
Red-black trees provided in New Jersey SML library [Pau96].

Angelika Kimmig tried to verify the insertion operation of

red-black trees using Isabelle. Findings?

• There is a mistake in the implementation of red-black

trees in New Jersey SML! Insertion may lead to a violation

of the first invariant, since the root may become red.

• As long as one just inserts, this is just a slight constant

deterioration.

• Angelika has suggested a fix and proven the correctness of

red-black tree insertion using Isabelle.
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Node Deletion
• Deletion is also wrongly implemented!

• With deletion, not just the root can become red, but the

tree coloring can become completely wrong.

• Angelika has an idea for fixing deletion as well, but no

proof (yet?).

Read the Studienarbeit for more details [Kim03]!
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More Detailed Explanations
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Illegal Memory Access
By “illegal memory access”, we mean access to regions not assigned to

the program.

Back to main referring slide
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Limited Memory on Smart Cards
The memory on smart cards is limited. A full-fledged bytecode verifier

would be too large/slow. One approach to tackling this problem is to

work with bytecode programs with type annotations. Checking if a

bytecode program is consistent with its type annotations is a much

simpler task than computing these type annotations, which is what a

bytecode verifier is supposed to do. The task can therefore be performed

on a smart card more easily than full bytecode verification.

Back to main referring slide
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Angelika Kimmig
Angelika Kimmig is a student who took this course in Wintersemester

02/03 in Freiburg. She then continued working with Isabelle in a

Studienarbeit (a project required by computer science students in

Freiburg).

Back to main referring slide
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Smaus: CSMR; WS08/09



More Detailed Explanations 1385

editors, Contributions to Mathematical Logic,

pages 215–229. North-Holland, 1968.

[Pra65] Dag Prawitz. Natural Deduction: A proof theo-

retical study. Almqvist and Wiksell, 1965.

[Pra71] Dag Prawitz. Ideas and results in proof theory.

In Jens Erik Fenstad, editor, Proceedings of the

Second Scandinavian Logic Symposium, pages

235–308. North-Holland, 1971.

[SH84] Peter Schroeder-Heister. A natural extension of

Smaus: CSMR; WS08/09



More Detailed Explanations 1386

natural deduction. Journal of Symbolic Logic,

49(4):1284–1300, 1984.

[Sza69] M. E. Szabo. The Collected Papers of Gerhard

Gentzen. North-Holland, 1969.

[Tho91] Simon Thompson. Type Theory and Functional

Programming. Addison-Wesley, 1991.

[Tho95a] Della Thompson, editor. The Concise Oxford

Dictionary. Clarendon Press, 1995.

[Tho95b] Simon Thompson. Miranda: The Craft of Func-

tional Programming. Addison-Wesley, 1995.

Smaus: CSMR; WS08/09



More Detailed Explanations 1387

[Tho99] Simon Thompson. Haskell: The Craft of Func-

tional Programming. Addison-Wesley, 1999. Sec-

ond Edition.

[vD80] Dirk van Dalen. Logic and Structure. Springer-

Verlag, 1980. An introductory textbook on logic.

[Vel94] Daniel J. Velleman. How to Prove It. Cambridge

University Press, 1994.

[vH67] Jean van Heijenoort, editor. From Frege to Gödel:
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Smaus: CSMR; WS08/09



More Detailed Explanations 1389
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