Computer-Supported Modeling and
Reasoning

Jan-Georg Smaus

WS08/09

How to Use Lecture Notes

These lecture notes are generated from sources that were
originally intended for hypermedia, as lecture slides or online
course. Instead of hyperlinks you have footnotes and pointers
to page numbers, indicated by =¥. The online versions of this
material make heavy use of overlays. In this printout version,
overlays are usually handled by putting the items in question
side by side, separated by m.

1 General Introduction

What this Course is about
e Mechanizing and using logic

— program verification['}
input: theories, programs, properties
output: correctness guarantees
— Hilbert’s program?
input: arithmetic
output: theorems

Verification is the process of formally proving that a pro-
gram has the desired properties. To this end, it is necessary
to define a specification language in which the desired prop-

erties can be formulated, i.e. specified. One must define a
semantics for this language as well as for the program. These
semantics must be linked in such a way that it is meaningful

to say: “Program X makes formula ® true”.
2In the 1920’s, David Hilbert attempted a single rigorous

formalization of all of mathematics, named Hilbert’s pro-

gram. He was concerned with the following three questions:

1. Is mathematics complete in the sense that every state-
ment can be proved or disproved?

2. Is mathematics consistent in the sense that no statement
can be proved both true and false?

3. Is mathematics decidable in the sense that there exists a
definite method to determine the truth or falsity of any
mathematical statement?

Hilbert believed that the answer to all three questions was

e Technically: mechanization and applicationﬁ

e Generally: making logic come to life and useful as a

general tool.

Thanks to the the incompleteness theorem of Godel (1931)
and the undecidability of first-order logic shown by Church
and Turing (1936-37) we know now that his dream will never
be realized completely. This makes it a never-ending task to
find partial answers to Hilbert’s questions.

For more details:

x Panel talk by Moshe Vardi

x Lecture by Michael J. O’Donnell

x Article by Stephen GG. Simpson

% Original works Uber das Unendliche and Die Grundlagen

der Mathematik [VHGT]

x Some quotations shedding light on Godel’s incomplete-

ness theorem

x Fric Weisstein’s world of mathematics explaining Godel’s
incompleteness theorem

sWe will learn to make logic run on a computer by using

http://www.cs.rice.edu/~vardi/sigcse/mv1.ps.gz
http://people.cs.uchicago.edu/~odonnell/OData/Courses/22C:096/Lecture_notes/Hilbert_program.html
http://www.math.psu.edu/simpson/papers/hilbert/hilbert.html
http://www.miskatonic.org/godel.html
http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

Overview: Four Parts

1. Logieﬂ (propositional, first-order, higher-order): appr. 6
units

2. Metalogics| (Isabelle): appr. 2 units

3. Modeling mathematics and computer science (program-
ming languages) in higher-order logic: appr. 6 units

4. Some case study in formalizing a theoryﬂ (functional or
imperative programming, or the specification language
7): appr. 2 units

Presentation roughly follows this structure.

the Isabelle system.
“T'he word logic is used in a wider and a narrower sense.

In a wider sense, logic is the science of reasoning. In fact,
it is the science that reasons about reasoning itself.

In a narrower sense, a logic is just a precisely defined lan-
guage allowing to write down statements, together with a
predefined meaning for some of the syntactic entities of this
language. Propositional logic, first-order logic, and higher-

order logic are three different logics.
s A metalogic is a logic that allows us to express properties

of another logic.
sIntuitively, whenever you do computer-supported model-

ing and reasoning, you have to formalize a tiny portion of
the “world”, the portion that your problem lives in. For
example, rational numbers may or may not exist in this por-
tion. A theory is such a formalization of a tiny portion of the
“world”. A theory extends a logic by axioms that describe
that portion of the “world”.

http://isabelle.in.tum.de/

Why this Course Matters

Academic motivation: deepen knowledge of logic and
formal reasoning

Practical motivation: verification and formal methods

e The last decade has seen spectacular hardware and
software failures and the birth of a new discipline:
the verification engineer

e Exciting positions at companies like Intel, Gemplus,

Theories will be considered in more detail later (=¥ p{118)).

http://www.intel.com/
http://www.gemplus.com/

Why this Course Matters (2)

In general:

e Understanding formal reasoning improves understand-
ing of how to build correct systems

e Mechanization provides formal guarantees

Want to see some Isabelle/HOL applications (=¥ p{699))?

Relationship to other Courses

Logic: deduction, foundations, and applications

Software engineering: specification, refinement, verifica-
tion
Hardware: formalizing and reasoning about circuit models

Artificial Intelligence: knowledge representation, reason-
ing, deduction

In general, you will develop a deeper understanding of math-
ematical and logical reasoning, which is central to computer
science.

Requirements

Some knowledge of logid’| is useful for this course.

We will try to accommodate different backgrounds, e.g.
with pointers to additional material. Your feedback is essen-
tial!

You must be willing to participate in the labs and get your
hands dirty using a proof development system:

e further develop course material

e present material on pragmatics of mechanized reasoning

e hands-on experience.

Experience shows that it makes no sense to follow just a
little bit. It is hard in the beginning but the rewards are
large.

"We will introduce different logics and formal systems (so-
called calculi) used to deduce formulas in a logic. We will
neglect other aspects that are usually treated in classes or
textbooks on logic, e.g.:

e semantics (interpretations) of logics; and

e correctness and completeness of calculi.

As an introduction we recommend [vD8()].

10

What’s Happening in Freiburg?
Harald Hiss and Stetan Wolll work with Isabelle here at
Freiburg:

e There is a trend to use XML (a generalization of HTML)
for database applications. However, this gives rise to

possible inconsistencies. Harald uses Isabelle to prove
formally that such inconsistencies cannot occur.

e There are various formal theories that allow to reason
about the relationship of objects in space and time. Ste-
fan uses Isabelle for proving consequences of such theo-
ries, dependencies between theories etc.

Also, David Basin occasionally seeks PhD students.

11

http://www.informatik.uni-freiburg.de/~hiss/
http://www.informatik.uni-freiburg.de/~woelfl/
http://www.inf.ethz.ch/people/detail?id=19

2 Propositional Logic
2.1 Propositional Logic: Overview

e System for formalizing certain valid patterns of reasoning

e Expressions built by combining “atomic propositions”
using not, if...then..., and, or, etc.

e Validity¥ means: no counterexample. Validity indepen-
dent of content. Depends on form of the expressions =
can make patterns explicit by replacing words by sym-

bols
A— B A

From if A then B and A it follows that B.m» B

*A and B are symbols whose meaning is not “hard-wired”

into propositional logic.

From if A then B and A it follows that B
is valid because it is true regardless of what A and B “mean”,
and in particular, regardless of whether A and B stand for
true or false propositions.

12

e What about!

From if A then B and B it follows that A?

From if A then B and B it follows that A

is invalid because there is a counterexample:
Let A be “Kim is a man” and B be “Kim is a person”.

13

More Examples (Which are Valid?)!

. If it is Sunday, then I don’t need to work.

[t is Sunday:.
Therefore I don’t need to work.

. It will rain or snow.

[t will not snow.
Therefore it will rain.

The Butler is guilty or the Maid is guilty.
The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty.

10

. It it is Sunday, then I don’t need to work.

[t is Sunday.
Therefore I don’t need to work. VALID

It will rain or snow.
It is too warm for snow.
Therefore it will rain. VALID

. The Butler is guilty or the Maid is guilty:.

The Maid is guilty or the Cook is guilty.
Therefore either the Butler is guilty or the Cook is guilty:.
NOT VALID

14

History

e Propositional logic was developed to make this all pre-
cise.

e Laws for valid reasoning were known to the Stoic philoso-
phers (about 300 BC).

e The formal system is often attributed to George Boole
(1815-1864).

Further reading: [vD80], [Tho91l, chapter 1].

15

More Formal Examples

Formalization allows us to “turn the crank”[!]
Phrases like “from . . . it follows” or “therefore” are formalized!?
as derivation rules, e.g.
A—B A
B

Rules are grafted together to build trees called derivations.

—-F

This defines a proof systemﬁ in the style of natural deduction.

1By formalizing patterns of reasoning, we make it possible
for such reasoning to be checked or even carried out by a
computer.

From known patterns of reasoning new patterns of reason-

ing can be constructed.
2At this stage, we are content with a formalization that

builds on geometrical notions like “above” or “to the right
of”. In other words, our formalization consists of geometrical
objects like trees.

We study formalization in more detail later (=¥ p[299).
A proof system or deductive system is characterized by a

particular set of rules plus the general principles of how rules
are grafted together to trees in natural deduction. We will
see this shortly, but note that natural deduction is just one
style of proof systems.

We call the rules in that particular set basic rules. Later

we will see one can also derive (=» pf4€) rules.

16

2.2 Formalizing Propositional Logic

e We must formalize

1. Languagd'] and semantics (=% p2)
2. Deductive system

e Here we will focus on formalizing the deductive machin-
ery and say little about metatheoremﬂ (soundness and

completenes@ :

e For labs we will carry out proofs using the Isabelle System.

[sabelle supports a Natural Deduction deductive system.

1By language we mean the language of formulae. We can
also say that we define the (object) logic. Here “logic” is

used in the narrower sense (=¥ plg).
A metatheorem is a theorem about a proof system, as

opposed to a theorem derived within the proof system. The
statement “proof system XYZ is sound” is a metatheorem.
1A proof system is sound if only valid (=¥ p[12) proposi-
tions can be derived in it.
A proof system is complete if all valid (=» p{12) proposi-
tions can be derived in it.

17

2.3 Propositional Logic: Language and
Semantics

Propositions are built from a collection of (propositional)
variabled'’| and closed under disjunction, conjunction, impli-
cation, ...

"In mathematics, logic and computer science, there are
various notions of variable. In propositional logic, a variable
stands for a proposition, i.e., a variable can be interpreted

as True or Fulse.
This will be different in logics that we will learn about

later (=¥ p[67).

18

Propositional Logic: Language (2)
More formally: Let a set V' of variables be given. Lp, thd™
language of propositional logic, is the smallest Seﬂ where:
e XinLpif XinV.
18Strictly speaking, the definition of Lp depends on V. A

different choice of variables leads to a different language of
propositional logic, and so we should not speak of the lan-

guage of propositional logic, but rather of a language of
propositional logic. However, for propositional logic, one
usually does not care much about the names of the variables,
or about the fact that their number could be insufficient to
write down a certain formula of interest. We usually assume
that there are countably infinitely many variables.

Later (=¥ p[70]), we will be more fussy about this point.
vThe language of propositional logic is a set of formulae,

defined by induction. Note the following points about the
definition, which are important characteristics of any induc-
tive definition:

e By the second item in the definition, Lp is non-empty
(also, one would usually have that V' is non-empty, since
otherwise Lp is not very interesting);

e Lp is required to be the smallest set meeting the above

19

o |Min L,

o (A /\EIB) in Lpif Ain Lp and B in Lp.
e (AVB)in Lpif Ain Lp and B in Lp.
e (A— B)in Lpif Ain Lp and B in Lp.

conditions. Otherwise, anything (a number, a dog, the
pope) could be a propositional formula.

e All conditions (or rules) defining Lp have the form: if
Yy and ...and 1, are in Lp, then some formula built
from ¢ and ...and %, is in Lp.

[t is crucial that no negation is involved here. If for
example, there was a rule stating: if Aisin Lp then A
is not in Lp, then there could be no Lp fulfilling such a
rule.

More detail on inductive definitions can be found in an
article by Aczel [Acz77].

20

The symbol L stands for “false”.

2The connectives are called conjunction (A), disjunction
(V), implication (—) and negation (—).

The connectives A, V, — are binary since they connect two

20

o (mAPin Lpif Ain Lp.)
The elements of Lp are called (propositional) formulaﬂ.
We omit unnecessary brackets|

formulas, the connective = is unary (most of the time, one

only uses the word connective for binary connective).
2“Officially”, negation does not exist in our language and

proof system. Negation is only used as a shorthand, or
syntactic sugai™| for reasons of convenience. In paper-and-
pencil proofs, we are allowed to erase any occurrence of =P
and replace it with P — 1. or vice versa, at any time.
However, we shall see that when proofs are automated, this

process must be made explicit.
2[n logic, the word “formula” has a specific meaning.

Formulae are a syntactic category, namely the expressions
that stand for a statement. So formulas are syntactic expres-
sions that are interpreted (on the semantic level) as True or
False.

We will later (=¥ p[70) learn about another syntactic cat-

egory, that of terms.
»To save brackets, we use standard associativity and

precedences. All binary connectives (=¥ p20]) are right-

21

Propositional Logic: Semantics

An assignment is a function A : V' — {0,1}. We say that
A assigns a truth value to each propositional variable. We
identify 1 with True and 0 with False.

A is lifted (=extended) to formulas in Lp as follows . ..

associative:
AoBo(C=A0o(Bo(C)

The precedences are — before A before V before —. So for
example

A— BAN-CVD=A— ((BAN(=C))V D)

22

Propositional Logic: Semantics (2)

A(L) =0

400 = {) i
AlpAY) = {(1) gtiggvbv)i; 1 and A() = 1
40V9) = e
469) e

23

Propositional Logic: Semantics (3)

If A(¢p) =1, we write A [¢.
Two formulae are equivalent if they yield the same truth

value for any assignment of the propositional variables.
The semantics will be generalised later (=» p|[75).

24

2.4 Deductive System: Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].
Designed to support ‘natural’ logical arguments:

e we make (temporary) assumptions;

e we derive new formulas by applying rules;

e there is also a mechanism for “getting rid of” assump-
tions.

25

Natural Deduction (2)

Derivations are trees

A—-(B—-C) A
B—C —E g
C

where the leaves are called assumptions.

We write Ay, ..., A, = A if there exists a derivation of A
with assumptions Ay, ..., 4,, eg. A — (B — C),A,B I
@ al!

A proof is a derivation where we “got rid” of all assump-
tions.

—-E

2For the moment, the way to understand it is as follows:
by writing A — (B — (), A, B F C, we assert that C
can be derived in this proof system under the assumptions
A— (B—C),AB.

We will say more about the - notation later (=¥ p/49)).

26

Natural Deduction: an Abstract Example™
o Language L = {9V, & ¢}

e Deductive system given by rules of proof:

9]
¢ ¢ & 4 v
2 a7 v T

How do you read these rules??)
How about this one?

a, 3,7, 0 are just names for the rules.

sNatural deduction is not just about propositional logic!
We explain here the general principles (=¥ p[16)) of natural
deduction, not just the application to propositional logic.

In order to emphasize that applying natural deduction is
a completely mechanical process, we give an example that is
void of any intuition.

[t is important that you understand this process. Applying
rules mechanically is one thing. Understanding why this

process is semantically justified is another.
»The first rule reads: if at some root of a tree in the forest

you have constructed so far, there is a ¢, then you are allowed
to draw a line underneath that ¢ and write # underneath
that line.

The third rule reads: if the forest you have constructed so
far contains two neighboring trees, where the left tree has
root ¥ and the right tree has root #, then you are allowed
to draw a line underneath those two roots and write ¥ un-

derneath that line.
30The last rule reads: if at some root of a tree in the forest

27

Proof of ¥

The rules: The proof:

¢

4 T

: — 0 —
T S NP A S 4
— *J) " 20 7
* & v v Ya

\ 4

you have constructed so far, there is a ¥, then you are allowed
to draw a line underneath that ¥ and write ¢ underneath
that line. Moreover you are allowed to discharge (eliminate,
close) 0 or more occurrences of 4 at the leaves of the tree.

Discharging is marked by writing [] around the discharged
formula.

Note that generally, the tree may contain assumptions
other than 4 at the leaves. However, these must not be
discharged in this rule application. They will remain open
until they might be discharged by some other rule applica-
tion later.

28

We makﬂ an assumption. The assumption is now open@.

We apply a.

Similarly with (.

We apply 7.

We apply 9, discharging two occurrences of . We mark
the brackets and the rule with a label so that it is clear
which assumption is discharged in which step. The deriva-
tion is now a proof: it has no open assumptions (=» p.
(all discharged).

si[n everyday language, “making an assumption” has a con-

notation of “claiming”. This is not the case here. By making
an assumption, we are not claiming anything.

When interpreting a derivation tree, we must always con-
sider the open assumptions. We must say: under the as-
sumptions ..., we derived

[t is thus unproblematic to “make” assumptions.
22For example, all assumptions in

A—(B—C) A
B—C —E g
C

are open. For the moment, it suffices to know that when

—-k

an assumption is made, it is initially an open assumption.

29

2.5 Deductive System: Rules of Propositional
Logic

We have rules for conjunction, implication, disjunction,
falsity and negation.
Some rules introducd®|, others eliminate connectives.

]t is typical that the basic (=¥ pJL6]) rules of a proof sys-
tem can be classified as introduction or elimination rules for
a particular connective.

This classification provides obvious names for the rules and
may guide the search for proofs.

The rules for conjunction are pronounced
and-introduction, and-elimination-left, and

and-elimination-right.
Apart from the basic (=¥ p[16) rules, we will later see that
there are also derived rules.

30

Rules of Propositional Logic (= p.16)):

Conjunction
e Rules of two kinds: introduce (=» p{30)) and eliminate (=¥ pJ30)
connectives
A B AANB AANB
ANB N-1 P N-EL B N-ER

e Rules are schematid®

e Why valid® If all assumptions are true, then so is
conclusion

AEAANB (2 ppR4)if AEAand A B

34The letters A and B in the rules are not propositional
variables. Instead, they can stand for arbitrary propositional
formulas. One can also say that A and B are metavariables,

i.e., they are variables of the proof system as opposed to
object variables, i.e., variables of the language that we reason

about (here: propositional logic).

When a rule is applied, the metavariables of it must be
replaced with actual formulae. We say that a rule is being
instantiated.

We will see more about the use of metavariables

later (=¥ pp2).

»A rule is valid if for any assignment (=% p[22)) under which
the assumptions of the formula are true, the conclusion is

true as well.

This is consistent with the earlier intuitive
explanation (=¥ p[12) of validity of a formula. Details
can be found in any textbook on logic [vD80].

Note that while the notation A = ... will be used again

31

Example Derivation with Conjunction

The rules:
A B Al
AND AN(BAC)
ANB | oo AN(BAC) Bac VBE
A 1 N-EL C) ;\-ER
A lA} B AER ANC

Can we prove anything with just these three rules?ﬂ

later (=¥ pJ79), there A will not stand for an assignment,
but rather for a construct having an assignment as one con-
stituent. This is because we will generalize, and in the new
setting we need something more complex than just an as-
signment. But in spirit A |= ... will still mean the same
thing.

36 All three rules have a non-empty sequence of assumptions.
Thus to build a tree using these rules, we must first make
some assumptions.

None of the rules involves discharging an assumption.

We have said earlier (=¥ p[26) that a proof is a derivation
with no open assumptions.

Consequently, the answer is no. We cannot prove anything
with just these three rules.

32

Rules of Propositional Logic: Implication

e Rules
4]
B
A—>B_>_I AHBB A_>_E

e —-F is also called modus ponens.

e —-[formalizes strategy:
To derive A — B, derive B under the additional as-
sumption A.

33

A very Simple Proof
The simplest proof we can think of is the proof of P — P.
P!
P— P

L

Do you find this strange?’’]

"When we make the assumption P, we obtain a
forest (=¥ pl27)) consisting of one tree. In this tree, P is
at the same time a leaf and the root. Thus the tree P is a
degenerate example of the schema

A
B
where both A and B are replaced with P.

Therefore we may apply rule —-I, similarly as in our ab-
stract example (=¥ p27)).

34

Examples with Conjunction and Implication

1.A— B — A%
2. AN(BANC)— ANCH
The rule(s):
The proof:
A
38 { :] [A]l
B B— A = I
Ao A—-B— A"
The rules:
A B
AnB™Mt
The proof:
AANB
4 MEL [AN(BAC)
4 A B [AN(BACO)? Brc VER
s A-ER P N-EL C ;\—ER
. ANC - 2
{ﬂ (AN(BAC)) — (ANC)
B
A— B o

39

3(A-B—0C)—(A—-B)—A—CY

Are these object or metavariables here?]

The rules: The proof:
A (A= B—CO)F [4P (A= B)' [AP
: B0 —- B —-F
N B H_I 8. —-F
A— B Ao F a
A—-B A | (A=B)~A=C " B
5 —l ASBSCO) S (A-B -A-C

4]n these examples, you may regard A, B,C as propo-
sitional variables. On the other hand, the proofs are
schematic, i.e., they go through for any formula replacing

A, B, and C.

36

Disjunction

e Rules
A (B
A B AV B C C
AV B V-1L AV B V-IR C V-E

e Formalizes case-split strategy for using AV B.

37

Disjunction: Example

e Rules
4] (B
A B AVB C C
AVBV'IL AVBV'IR C

e Example: formalize and prove

When it rains then I wear my jacket.
When it snows then I wear my jacket.
[t is raining or snowing.

Therefore I wear my jacket.

38

Falsity and Negation
e Falsity

L (= p.
P 1-FE

No introduction rulel*

e Negation: define (=» p21)) =A as A — L. Rules for —
just special caseq™| of rules for —. Convenient to have

2The symbol L stands for “false”.
It should be intuitively clear that since the purpose of a

proof system is to derive true formulae, there is no introduc-
tion rule for falsity. One may wonder: what is the role of
L then? We will see this soon. The main role is linked to

negation. We quote from [And02, p. 152]:
L plays the role of a contradiction in indirect proofs.

13 The rule
-A A

il
is simply an instance of —-E (=% p33) (since —A is short-
hand for A —_1).

Likewise, the rule

39

-A A

A A T —-K
B B derived by (* pfi0) B Lk

is simply an instance of —-I (=¥ p[33). Therefore, we will
not introduce these as special rules. But there is a special

rule —=-E (=¥ pJ0).

“For negation, it is common to have a rule

-A A
B

-1

We have seen how this rule can be derived. The con-
cept of deriving rules will be explained more systematically

later (=¥ pl40).

This rule is also called ex falso quod libet (from the false

whatever you like).

40

Intuitionistic versus Classical Logic

e Peirce’s Law: (A — B) — A) — A.
Is this valid®? Provabld™®?

#5Yes, simply check the truth table:

A B |[(A—=B)— A — A
True | True True
True | False True
False | True True
Fualse | False True

#[n the proof system given so far (=» p[42)), this is not
provable. To prove that it is not provable requires an analysis

of so-called normal forms of proofs. However, we do not do
this here.

41

e It is provable in classical logid"], obtained by adding

-4 A
L AA A lassical
AV -ABor A k Yor A classica P9

“The proof system we have given so far is a proof system
for intuitionistic logic. The main point about intuitionistic

logic is that one cannot claim that every statement is either
true or false, but rather, evidence must be given for every
statement.
In classical reasoning, the law of the excluded middle holds.
One also says that proofs in intuitionistic logic are
constructive whereas proofs in classical logic are not nec-

essarily constructive.
We quote the first sentence from [Min00]:

Intuitionistic logic is studied here as part of familiar
classical logic which allows an effective interpretation
and mechanical extraction of programs from proofs.

The difference between intuitionistic and classical logic has
been the topic of a fundamental discourse in the literature
on logic [PMG68] [Tho91l, chapter 3]. Often proofs contain
case distinctions, assuming that for any statement v, either
1 or =1 holds. This reasoning is classical; it does not apply

42

Example of Classical Reasoning
Recall the story of Oedipus from greek mythology:
e Jokaste is the mother of Oedipus.

e [okaste and Oedipus are the parents of Polyneikes.
e Polyneikes is the father of Thersandros.
e Oedipus is a patricide.

e Thersandros is not a patricide.

in intuitionistic logic.
18 AV —=A is called axiom of the excluded middle.
©The rule
A

- RAA
A

1s called reduction ad absurdum.

50The rule
A

A
— classical

A

corresponds to the formulation is Isabelle.

43

Example of Classical Reasoning (cont.)

lokaste
§ Oedipus (patr.)
;
Polyneikes (— patr.)
:
Thersandros (— patr.)

Does Iokaste have a child that is a patricide and that itself
has a child that is not a patricide?

Case 2: If Polyneikes is not a patricide, then Iokaste has
a child (Peblipeikps) that is a patricide and that itself has a
child (TPblsnseikdsgs) that is not a patricide.

Herd!]is another example.

“There exist irrational numbers a and b such that a’ is
rational.

Proof: Let b be v/2 and consider whether or not o” is
rational.

Case 1: If rational, let a = b = /2
Case 2: If irrational, let a = ﬂﬂ, and then

2
=V2 =2
We still don’t know how to choose a and b so that a’ is
rational. Hence the proof if non-constructive (=% pJi2)).

b \/é\/gﬂ _ \/é(x/?*\/?)

a =

44

Overview of Rules

A B ANDB ANDB

g M o A-EL 5 N-ER
Al [B]
A B AVB C C
Tug VL g, VR - V-E
[A]
B A=B A L (= pp0)
a-p ! B —-b A L-E

45

2.6 Deductive System: Derived Rules

Using the basic (=¥ p[16) rules, we can derive new rules.
Example: Resolution rule.

-5 [9]"
. —k

RVS =S RvS [R} R
\-Fl

R R

46

It looks like this.

We build a fragment of a derivation by writing the con-
clusion R and the assumptions RV S and —.S.

Since we have assumption RV .S, using V-FE seems a good
idea. So we should make assumptions R and S. First R.
But that is a derivation of R from R!

So now S.

=S and S allow us to apply —-E (=¥ p21)).

To apply V-E in the end, we need to derive R. But that’s
casy using | -F!

Finally, we can apply V-E. The derivation with open
assumptions is a new rule that can be used like any other
rule.

47

A Variation of Natural Deduction: Boxes

We have seen just one deductive system.

One variation of natural deduction is the following: A
derivation is not a tree, but a sequence of numbered lines.
Instead of subtrees relying on open assumptions, a subderiva-
tion relying on an assumption is enclosed in a box.

You find this explained in [HR04].

48

2.7 Alternative Deductive System Using
Sequent Notation

One can base the deductive system around the derivability
judgement?] i.c., reason about I' = A where I' = Ay, ..., A,
instead of individual formulae.

2An object like A — (B — (), A, B F C is called a
derivability judgement. We explained it earlier (=» p{26))
as simply asserting the fact that there exists a derivation

tree with C' at its root and open assumptions A — (B —
(), A, B.

However, it is also possible to make such judgements the
central objects of the deductive system, i.e., have rules in-
volving such objects.

The notation I' = A is called sequent notation. How-
ever, this should not be confused with the sequent calculus
(we will consider it later (=» p271)). The sequent cal-
culus is based on sequents, which are syntactic enti-
ties of the form A,...,A, + Bi,...,B,, where the
A, ... A, By, ..., B, are all formulae. You see that this
definition is more general than the derivability judgements

we consider here.
What we are about to present is a kind of hybrid between
natural deduction and the sequent calculus, which we might

49

Sequent Rules (for — /A Fragment)
Rules for assumptions®?| and weakening%

I'-B
[+ (where A € T) ATLR weaken

Rules for A and —:

I'-A I'HB I'FAADB I'FAADB

rrang M e a AMEL g AER
ATFB g '-A— B FI—A_}E
'-A—B '+ B i

call natural deduction using a sequent notation.
The special rule for assumptions takes the role in this

sequent style (=» p[49) notation that the process of making
and discharging assumptions had in natural deduction based
on trees (=» p25).

It is not so obvious that the two ways of writing proofs
are equivalent, but we shall become familiar with this in the

exercises by doing proofs on paper as well as in Isabelle.
The rule weaken is

'FB
ATFB

Intuitively, the soundness of rule weaken should be clear:

weaken

having an additional assumption in the context cannot hurt
since there is no proof rule that requires the absence of some

assumption.

We will see an application of that rule later (=¥ p267)).
%An axiom is a rule without premises. We call a rule with

premises proper.

50

More rules can be derivedPY.

One can write an axiom A as

A

to emphasise that it is a rule with an empty set of premises.

Note that the natural deduction rules (=¥ pJ45]) for proposi-
tional logic contain no axioms. In the sequent style (=¥ p49)
formalization, having the assumption rule (axiom) is essen-
tial for being able to prove anything, but in the natural de-
duction style we learned first, we can construct proofs with-
out having any axioms.

Note also that even a proper rule in the object
logic (=¥ pJ17)) is just an axiom at the level of Isabelle’s meta-

logic (= p[d). This will be explained later (=» p[316]).
6 As an example, consider

ABTHC THFAAB
I-C

N-E

51

Example: Refinement Style with Metavariables
ANBANC)E AN (B AC)

AN(BAC)F AANTRAC) ANBAOE (@ ac) VER
ArBroFa MED ANBrO EC VER
ANBAC)FANC A
AN(BAC) = ANC
This rule can be derived as follows:
A BTFC
A,FI—B—>O_>_I ' AAB
rra-s-c 1 "1ra ML g
FB—C -k r-p VBB
—-k

I'=C

52

We want to show that AA(BAC) — AAC is a tautology,
i.e., that it is derivable without any assumptions.

The topmost connective of the formula is —, so the best
rule®”l to choose is —-IL.

The topmost connective of the formula is A, so the best
rule (=¥ ppH3) to choose is A-L.

Things are becoming less obvious. To know that A-EL is
the best rule for the r.h.s., you need to inspect the assump-
tion AN (B AC).

Now it’s becoming even more difficult. To know that
A-ER is the best rule for the Lh.s., you need to look deep
into the assumption A A (B A C).

Again you need to look at both sides of the F to decide
what to do.

Solution for 77 = A, 7Y = Band 7X = (B AC).

“In general, statements about which rule to choose when
building a proof are heuristics, i.e., they are not guaran-
teed to work. Building a proof means searching for a proof.
However, there are situations where the choice is clear. E.g.,
when the topmost connective of a formula is —, then —-I
is usually the right rule to apply.

The question will be addressed more systematically
later (=¥ p[264]).

53

Comments about Refinement
This crazy way of carrying out proofs is the (standard) Isabelle-
way!
e Refinement style means we work from goals to axioms™)
e metavariables used to delay commitments

[sabelle allows other refinements’”/alternatives too (see

labs).

#As you saw in our animation, we worked from the root of

the tree to the leaves.
“One aspect you might have noted in the proof is that the

steps at the top, where A-EL and A-ER were used, required
non-obvious choices, and those choices were based on the
assumptions in the current derivability judgement.

In Isabelle, we will apply other rules and proof techniques
that allow us to manipulate assumptions explicitly. These
techniques make the process of finding a proof more deter-
ministic.

But that is just one aspect. We will give a more
theoretic account of the way Isabelle constructs proofs
later (=¥ p.242).

54

Outlook

e Computer Supported Modeling and Reasoning is about

turning logic into a useful tool and bringing it to life.

e We will cover:

— deductive aspects of logic (their proof systems)
— metatheoretic aspects (their representation)
— pragmatics (their use), and

— case studies.

e This is an active, hands-on course

— The labs are as important as (if not more than!) the
lectures

— Individual projects are possible. Individual initiative

desired!

50

3 Natural Deduction: Review

56

Overview

e Short review: ND Systems and proofs (=¥ pJp6)
e First-Order Logic (=¥ p[63)

— Overview (=¥ p[63)

— Syntax (=¥ p[70)

— Semantics (=¥ pl75)

— Deduction (=¥ pi83), some derived rules, and exam-
ples

57

How Are ND Proofs Built?

ND proofﬂ build derivations under (possibly temporary)
assumptions.

oND stands for Natural Deduction. It was explained in
the previous lecture (=¥ p25)).

58

ND: Example for — /A Fragment

Rules:

A B
ANB

ANB
A
Al

N-1

N-EL

Proof:
ﬂAAEl
B

[A A B]!

N-EL 1

N-ER

N-1

BANA
L

ANB —-BANA

59

Alternative Formalization Using Sequents’]|

Rules (for — /A fragment). Here, I' is a set of formulae.

I'FA (where A€T)

A TFB P AAB F-AAB
rFang M e a AMEL o AER
AT'FDB g '-A— B FI—A_)E
rFASB - B -

Two representations (=¥ p. equivalent. Sequent nota-
tion seems simpler in practice@.

@ The judgement (I' - ¢) means that we can derive ¢ from
the assumptions in " using certain rules. As explained in the
previous lecture (=¥ pf9), one can make such judgements

the central objects of the deductive system.
2[n particular, the sequent style notation is more amenable

to automation, and thus it is closer to what happens in Is-

abelle.

60

Example: Refinement Style with Metavariables

ANBNANC)E?ZANCY NC)
ANBANC)EANTX ANBAC)F (Y ANC)

ANBANC)FA ANBANC)FC
ANBANC)FANC
FAN(BAC)— ANC

Solution for 77 = A, 7Y = Band 'X = (B A C).
We went through this example in detail last lecture (=% p/52).

61

Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-
way!

e Refinement style means we work from goals to axioms (=¥ p[p4))
e Metavariables used to delay commitments

Isabelle allows other refinements (=¥ p/54))/alternatives too
(see labs).

62

4 First-Order Logic

4.1 First-Order Logic: Overview

In propositional logic, formulae are Booleaﬂ combina-

tions of propositions. This will remain important for model-
ing simple patterns of reasoning (=¥ p..

An atomic (=¥ pJ12)) proposition is just a letter (variable (=¥ p[Lg)).
All one can say about it is that it is true or false. E.g. it is
meaningless to say “A and B state something similar”. Also,

infinity plays no role.

s The set (or “type”) bool contains the two truth values
True, False. A propositional formula containing n variables
can be viewed as a function bool" — bool. For each com-
bination of values True, False for the variables, the whole
formula assumes the value True or False.

63

First-Order Logic: the Essence

)

In first-order logic, an atom(ic proposition) says that “things’

have certain “properties”™] Infinitely many “things” can be
denoted, hence infinitely many atoms generated and distin-
guished. Comparisons of atoms become meaningful: “Tim

)

is a boy” and “Carl is a boy” state something similar.
Example reasoning: “Tim is a boy”; “boys don’t cry”;
hence “Tim doesn’t cry”.

Further reading: [vD80], [Tho91l, chapter 1].

¢‘[n propositional logic, there is no notation for writing
“thing = has property p” or “things x and y are related as
follows” or for denoting the “thing obtained from thing = by
applying some operation”.

In particular, no statement about all elements of a possibly
infinite domain can be expressed in propositional logic, since
each formula involves only finitely many different variables,
and up to equivalence (=» p24)) and for a set containing n
variables, there are only finitely many (to be precise 22"))
different propositional formulae.

64

Variables: Intuition

In first-order logic, we talk about “things” that have certain
“properties”.

A variable in first-order logic stands for a “thing”.

This is in contrast to propositional logic (=¥ p. where
variables stand for propositions.

[t is common to use letters x, y, z for variables.

65

Predicates: Intuition
A predicate denotes a property /relation.
p(x) = x is a prime number d(z,y) = x is divisible by y

Propositional connectives (=» p20]) are used to build state-
ments

e 1 is a prime and y or z is divisible by x
p(@) A (dy,z) V d(z, 7))

e 1 is a man and ¥y is a woman and x loves y but not vice
versa
m(z) Aw(y) Allz,y) Ay, z)

66

Predicates: Intuition (2)

We can represent only “abstractions” of these in proposi-
tional logic, e.g., p A (dy V dg) could be an abstraction of
p(@) A (d(y, z) vV d(z, x)).

Here p stands for “x is a prime” and d; stands for “y is
divisible by z”.

But the sense in which p(x), d(y, z), d(z, z) state some-
thing similar is lost. What it means to be divisible or to be
a prime cannot be expressed.

67

Functions: Intuition

e A constant stands for a “fixed thing”ﬂ in a domainm.

e More generally, a function of arity (=¥ p[70)) n expresses
an n-ary operation over some domain, e.g.

Function arity expresses . . .

0 nullary number “0”

s unary Successor in
+ binary function plus in N

Note special notationﬁ: infix, prefix, etc.

s As opposed to a variable which also stands for a “thing”.

This distinction will become clear soon (=¥ p[69).
ssFor example, the set of integers, the set of characters, the

set of people, you name it!

Any set of “things” that we want to reason about.
"N denotes the natural numbers.
%50 a function symbol f denotes an operation that takes

n “things” and returns a “thing”. f(t1,...,t,) is a “thing”
that depends on “things” ¢1,...,1%,.

The generic notation for function application is like this:
f(t1,...,t,), but the brackets are omitted for nullary func-
tions (= constants), and many common function symbols
like + are denoted infix, so we write 04 0 instead of +(0, 0).
Another common notation is prefix notation without brack-
ets, as in —2. There are also other notations.

68

Quantifiers: Intuition

e A variable stands for “somd®| thing” in a domain of
discourse. Quantifiers V, 3 are used to speak about all
or some members of this domain.

e Examples: Are they satisfiable? valid{"|

Va.dy.y x2 = x true for rationals

r<y—3dz.rx<zAz<y true for any
dense (=¥ pJ122)) order

Jx.x #0 true for domains with

more than one element
(Vx.p(x,x)) — pla,a) valid

® Just like a constant, a variable stands for a “thing”.
The most important difference between a constant and a
variable is that one can quantify over a variable, so one can

)

make statements such as “for all z ...”7 or “there exists x

such that ...".
©[ntuitively, satisfiable means “can be made true” and

valid means “always true”.

More formally, this will be defined later (=¥ p[79).

69

4.2 First-Order Logic: Syntax

e T'wo syntactic categories: termﬂ and formulae

o A first-order languagd™is characterized by giving a finite
collection of function symbols F and predicate symbols
P as well as a set Var of variables.

e Sometimes write f* (or p') to indicate that function sym-
bol f (or predicate symbol p) has arity i € N (=¥ p[68).

e One often calls the pair (F,P) a signature.

"We have already learned about the syntactic category of
formulae last lecture (=¥ p21]).
A term is an expression that stands for a “thing”.

Intuitively, this is what first-order logic is about: We have
terms that stand for “things” and formulae that stand for
statements/propositions about those “things”.

But couldn’t a statement also be a “thing”? And couldn’t
a “thing” depend on a statement?

In first-order logic: nol!
“?There isn't simply the language of first-order logic!

Rather, the definition of a first-order language is
parametrised by giving a F and a P. Each symbol in F

and P must have an associated arity, i.e., the number of
arguments the function or predicate takes. This could be
formalized by saying that the elements of F are pairs of the

form f/n, where f is the symbol itself and n, and likewise
for P. All that matters is that it is specified in some unam-
biguous way what the arity of each symbol is.

70

Terms in First-Order Logic
Term[™], the set of terms, is the smallest (= p[19) set

where

1. x € Term if x € Var, and

2. fM(t,...,tn) € Term if f" € F and t; € Term, for
all 1 < j <n

One often calls the pair (F,P) a signature. Generally, a
signature specifies the “fixed symbols” (as opposed to vari-
ables) of a particular logic language.

Strictly speaking, a first-order language is also
parametrised by giving a set of variables Var, but this
is inessential. Var is usually assumed to be a countably
infinite set of symbols, and the particular choice of names

of these symbols is not relevant.
= Term and Form together make up a first-order language.

Note that strictly speaking, Term and Form depend on the
signature (=» p[70), but we always assume that the signature

is clear from the context.
“Note in particular the casen = 0. Then 1 < 5 < 0 means

that there exists no such 7, and so t; € Term for all j is
vacuously true. We then speak of f as a constant (=» p[68).

71

Formulae in First-Order Logic

Form (=¥ p[71]), the set of formulae, is the smallest (=» p[19)
set where

1. Le Form,

2. p™(t1,...,ty) € Form if p" € P and t; € Term, for all
1 <9 <n,

3. ~¢ € Form if ¢ € Form,

4. ((=» pRI)¢p o ¢) (=» pRI) € Form if ¢ € Form and
Y € Form and o € {A\,V,—},

5. Qxr.¢ € Form if ¢ € Form and x € Var and Q €
{v,3}.

Formulae as in point [2 are called atoms.

Note quantifier scoping™|

“We adopt the convention that the scope of a quantifier
extends as much as possible to the right, e.g.

Va.p(z) V q(x)
1S
va.(p(z) V q(x))
and not
(V.p(x)) V q(x)
This is a matter of dispute and other conventions are around,
but the one we adopt here corresponds to Isabelle.

Compare this to the precedences (=¥ p. and associativ-
ity in propositional logic.

72

Variable Occurrences

e All occurrences of a variable in a formula are bound
or free or binding,.
A variable z in a formula ¢ is bound if x occurs within
a subformula of ¢ of the form dx.v or V.1,

e Example:

(q(x)VIz.Vy.p(f(x), 2)Aq(y))VVz. r(2, 2, g(x))™ (q(7)V
dx. Vy. p((>7Z) ()) V V. 7"(33 A g(g;))\m»(()
Jz.Vy. p(f(z), 2) A qly)) V Ve.r(x, 2, g(x))m=»(q(z) V
Ja.Vy. p(f(x), 2) A q(y)) V Va.r(z, 2, g())m

Which are bound? Which are free? Which are binding?

There will be an lexercisd

©wA]ll occurrences of a variable in a term or formula are

bound or free or binding. These notions are defined by in-
duction on the structure of terms/formulae. This is why
the following definition is along the lines of our definition of

terms (=¥ pJ71]) and formulae (=¥ p[72).
1. The (only) occurrence of z in the term x is a free occur-
rence of x in x;

2. the free occurrences of x in f(ty,...,t,) are the free
occurrences of x in tq,...,t,;

3. there are no free occurrences of z in 1 ;

4. the free occurrences of x in p(ty, ..., t,) are the free oc-
currences of x in tq,...,t,;

5. the free occurrences of x in —¢ are the free occurrences
of x in ¢;

6. the free occurrences of x in 1) o ¢ are the free occurrences
of x in ¢ and the free occurrences of x in ¢ (o € {A,V, —

1;

73

A formula with no free variable occurrences is called closed.

7. the free occurrences of z in Vy. 1, where y # x, are the
free occurrences of x in 1; likewise for 4;

8. x has no free occurrences in V. v; in V.1, the (outer-
most) V binds all free occurrences of x in v; the occur-
rence of x next to V is a binding occurrence of x; likewise

for 4.

A variable occurrence is bound if it is not free and not
binding.
We also define

FV(¢) = {z | x has a free occurrence in ¢}

74

4.3 First-Order Logic: Semantics

A structurem is a pair A = (Uy, I4) where Uy is an
nonempty set, the universe, and I 4 is a mapping where

L. I4(f") is an n-ary (total) function on Uy, for f" € F,
2. I4(p") is an n-ary relation on Uy, for p" € P, and

3. I4(x) is an element of Uy, for cach x € Var.

7As usual, there isn’t just one way of formalizing things,
and so we now explain some other notions that you may have
heard in the context of semantics for first-order logic.

A universe is sometimes also called domain (=¥ pJ6§).

As you saw, a structure gives a meaning to functions,

predicates, and variables.

An alternative formalization is to have three different map-

pings for this purpose:

1. an algebra gives a meaning to the function symbols
(more precisely, an algebra is a pair consisting of a do-
main and a mapping giving a meaning to the function
symbols);

2. in addition, an interpretation gives a meaning also to

the predicate symbols;

3. a variable assignment, also called valuation, gives a

meaning to the variables.

As before (=¥ p[71)), we assume that the signature (=¥ p[70))

75

As shorthand, write p for I4(p"), ete.

is clear from the context. Strictly speaking, we should say
“structure for a particular signature”.

Details can be found in any textbook on logic [vD80].

#[n the notation p, the superscript has nothing to do with
the superscript we sometimes use (=¥ p[70]) to indicate the
arity.

76

The Value of Terms

Let A be a structure. We define the value of a term ¢ under

A, written A(t), as
1. A(x) = 24, for x € Var, and

2 A(f(tr, . 1)) = FACA), .. Alt)).

7

The Value of Formulae

We define the (truth-)value of the formula ¢ under A, writ-

ten A(¢), as
.A(p(tl, e ,tn)) =

ANVz. ¢) =

A(Tz. ¢) =

if (A(t1),...,Alt,)) € pA
otherwise

if for all u € Ug, Appyu] (@) = 1
otherwise

if for some u € Uy, Ap/y(0) =1

otherwise

Rest as for propositional logic (=¥ p23).

79

Al 1s the structure A’ identical to A, except that A =

u.

78

Models

o If A(¢p) =1, we write A = ¢ and say ¢ is true in A or
A is a model of ¢.

e If every suitable structur@ is a model, we write = ¢
and say ¢ is valid or ¢ is a tautology.

e If there is at least one model for ¢, then ¢ is satisfiable.

e If there is no model for ¢, then ¢ is contradictory.

There is also more differentiated terminology*]

“A structure (=¥ pJ79)) is suitable for ¢ if it defines mean-
ings for the signature (=¥ p[70)) of ¢, i.e., for the symbols
that occur in ¢. Of course, these meanings must also re-
spect the arities, so an n-ary function symbols must be inter-
preted as an n-ary function. Without explicitly mentioning

it (=¥ p[76), we always assume that structures are suitable.
si[f you are happy with the definition of a model just given,

this is fine. But if you are confused because you remember a
different definition from your previous studies of logic, then
these comments may help.

As explained before (=¥ pl75)), it is common to distinguish
an interpretation, which gives a meaning to the symbols in

the signature, from an assignment, which gives a meaning to

the variables. Let us use Z to denote an interpretation and
A to denote an assignment.
Recall that we wrote A(.) for the meaning of a

term (=¥ pJ77) or formula (=¥ p[7g). In the alternative ter-
minology, we write Z(A)(.) instead. This makes sense since

79

An Example
Va.p(x, s(x))

We now show a model and a non-model . ..

in the alternative terminology, Z and A together contain
the same information as A in the original terminology. We

define:

e For a given Z, we say that ¢ is satisfiable in Z if there
exists an A so that Z(A)(¢) = 1;

e for a given Z, we write Z |= ¢ and say ¢ is true in Z or

7 is a model of ¢, if for all A, we have Z(A)(¢) = 1;

e we say ¢ is satisfiable if there exists an Z so that ¢ is
satisfiable in Z;

e we write = ¢ and say ¢ is valid if for every (suitable)
7, we have T |= ¢.

Note that satisfiable (without “for ...”) and valid mean

the same thing in both terminologies, whereas true in ...

means slightly different things, since a structure is not the
same thing as an interpretation.

80

A model% Not a model?%

Uy = N(-)p. Uy = {a,b,c}
pA - {(man) ’ m < 83n}pA = {(a7 b)7 (a7 C)}
sA(x) = x4+ 1 (= pRi) s = “the identity function”

2]t is true that for all numbers n, n is less than n + 1.
$In logic, we insist on the distinction between syntax

and semantics. In particular, we set up the formalism
so that the syntax is fixed first (=» p[70) and then the
semantics (=¥ p., and so there could be different seman-
tics for the same syntax.

But the dilemma is that once we want to give a particu-
lar semantics, we can only do so using again some kind of
language, hence syntax. This is usually natural language in-
terspersed with usual mathematical notation such as <, +
etc.

Some people try to mark the distinction between syntax
and semantics somehow, e.g., by saying 0 is a constant that
could mean anything, whereas 0 is the number zero as it
exists in the mathematical world.

When we give semantics, the symbols <, 4, and 1 have
their usual mathematical meanings. The function that maps
x to x + 1 is also called successor function. Of course, when

81

4.4 Towards a Deductive System

In natural language, quantifiers are often impliciﬁ: all
males don’t cry.

Some phrases in natural language proofs have the flavor
of introduction rules (=% p30).

Take “boys are males” and “males don’t cry” implies
“boys don’t cry”’: assume an arbitrary boy x; then x is a

male; hence x doesn’t cry; hence “x is a boy” implies “x
doesn’t cry” (—-I); since x was arbitrary, we can say this
for all z. (V-I). See later (=» p[90).

Existential statements are proven by giving a witness.

we write m < n, we assume that m,n € N (=» p[r9), in this

context.
si'The identity function maps every object to itself.

[t is not true that for every character a« € {a,b,c},

(o,) € {(a,b),(a,c)}. Eg., (a,a) ¢ {(a,b),(a,c)}.

5]n the statement
if > 2 then 22 > 4
the V-quantifier is implicit. It should be
for all z, if z > 2 then 22 > 4.

82

4.5 First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic.
All the rules of propositional logic (=¥ p[30)) are “inherited”ﬁ.
But we must introduce rules for the quantifiers.

sskirst-order logic inherits all the rules of propo-
sitional logic (=» p{30). Note however that the
metavariables (=% p[31]) in the rules now range over first-
order formulae.

83

Universal Quantification (V): Rules

P(x) Va. P(x)
ve. P TP F

where side condition (also called: proviso or eigenvariable

condition) * means: x must be arbitrary.
Note that rules are schematid>]

wSimilarly as in the previous lecture (=¥ p.7 one should
note that P is not a predicate, but rather P(x) is a schematic
expression: P(x) stands for any formula, possibly containing
occurrences of .

In the context of V-E, P(t) stands for a formula where all
occurrences of x are replaced by ¢ (=¥ p87).

84

Universal Quantification: Side Condition

What does arbitrary mean? Consider the following “prootf”

[z = 0]!
‘v’x.x:Ov_I a
r=0—=Vo.o=0
V-1
Ve. (x=0—Ve.z=0)
0—0—Vrao—0 "F ozoreﬂ?
Ve.x =0 T

Formal meaning of side condition (=¥ p[84)): x not free in
any open assumption on which P(x) depends. Violated!™

ss\When one has a predicate symbol =, it is usual to have

a rule that says that = is reflexive (=¥ p{110)).

Don’t worry about it at this stage, just take it that we have

such a rule. We will look at this later (=¥ pJ106]).
»The side condition is violated in the proof since in the

first V-I step, x does occur free in x = 0.

Note that saying “z must not free in any open assumption
on which P(x) depends” means in particular that P(x) itself
must not be an assumption. This is the case we have here!

So whenever V-I (=¥ p84)), the P(z) above the line will be
the root of a derivation tree constructed so far, and this tree
cannot be the trivial tree just consisting of the assumption

P(z).

89

Another Proof? (1)
Is the following a proof? Is the conclusion valid?
V. —Vy. x = y|!
VY Y=y
Ve.-Vy.x =y) — Vy.y =y

V-E

L

Conclusion is not valid.
The formula is false when U4 has at least 2 elements/”)
Proof is incorrect.

“Here we assume that the predicate symbol = is inter-
preted by A (=¥ p. as equality on Uy. Suppose Uy
contains two elements o and [and I4(x) = « and
Iqly) = B. Then A(x = y) = 0, hence A(Vy.x =
y) = 0, hence A(—-Vy.x = y) = 1. Now one can see
that Ap) (F pliS)(-Vy.x = y) = 1 for all u € Uy,
and hence A(Vzx.—Vy.x = y) = 1. On the other hand,
A'(y = y) = 1 for any A" and hence AVy.y = y) = 1
and hence A(—Vy.y = y) = 0. Therefore, A((Vz. -Vy.x =
y) — Vy.y =y) =0.

86

Reason: Substitution”!] must avoid capturing” variables.

“The notation s|x <« t] denotes the term obtained by
substituting ¢ for z in s. However, a substitution |[x «]
replaces only the free occurrences of x in the term that it is
applied to. A substitution is defined as follows:

L zlx —t] =t
2. ylx «+ t] = y if y is a variable other than x;

3. ftr, ..., t)[r — t] = fltalx «— t],... tulz — t])
(where f is a function symbol, n > 0);

4. p(ty, ... ty)lx — t| = pltifr — t],... . tylx «— t])
(where p is a predicate symbol, possibly L);

(W) — 1] = —(lr — 1))

(Wods —] = Wz — ool — 1)) (where o €
AV, =));

7. (Qr.yp)[x — t] = Qr.ap (where Q € {V,3});

S Ot

87

Replacing « with y in V-E is illegal because y is bound (=¥ p[73)
in =Vy.y = y. This detail concerns substitution (and re-
naming of bound (=¥ p[73)) variables), not V-E. [Exercise

8. (Qu.)[x — t] = Qu.(¢Y[x « t]) (where Q € {V,3}) if
y#xandy & FV(t);

9. (QuY)|lx «— t] = Qz.(W|y « z|[r « t]) (where Q €
{Vv,3}) if y # x and y € FV(t) where z is a variable
such that z € FV(t) and z € FV ().

2 A substitution (=¥ pl87) (replacement of a variable by a
term) must not replace bound (=» p[73)) occurrences of vari-
ables, and if we replace x with £ in an expression ¢, then
this replacement should not turn free (=¥ p[73) occurrences
of variables in ¢ into bound (= p[73)) occurrences in ¢. It is
possible to avoid this by renaming variables.

This is part of the standard definition of a
substitution (=» p87). The problem is not related to
V-E in particular.

The definition can be found in any textbook on logic
[vD80]. We will also give a formal definition later (=¥ p{161)),
in a different context.

88

Another Proof? (2)

(vz. Alz)) A (Va. B)(x)) L

(Vx. A(x) A B(z)) — (Vz. A(x)) A (Vx. B(x))
Yes (check side conditiong™] of V-I)

“In both cases, x does not occur free (=¥ p. in
V. A(x) A B(x), which is the open assumption (=¥ pJ85)
on which A(z), respectively B(x), depends.

89

Boys Don’t Cry
Let ¢ = (Vx.b(z) — m(z)) A (Vo.m(x) — —c(x)).

)
| o AEL
) Vo ba) = ml) "

Vr.m(z) — —c(x) o b(r) — m(x) [b())?

m(zx) — —c(z) m(z)

90

Aside: A — B

Defind A <+ Bas A — BAB — A.
The following rule can be derived (=¥ pJ46) (in proposi-
tional logic, actually):

A 1B
B A
A~ B -l

You could do this as an lexercisel

“By defining we mean, use A <+ B as shorthand for A —
B AN B — A, in the same way as we regard negation as a

shorthand (=¥ p21]).

91

Proof?

Al V. Al
ve. A"l T4 ;E
AoV A 7

Yes, but only if z not free (=¥ p[73) in A.

Similar requirement arises in proving

(A — V. B(x)).

92

(V. A — B(x)) <

Side Conditions and Proof Boxes

We mentioned previously (=¥ pJg) a style of writing deriva-
tions where subderivations based on temporary assumptions
are enclosed in boxes.

These boxes are also handy for doing derivations in first-
order logic, since one can use the very clear formulation: a
variable occurs inside or outside of a box. See [HR04].

93

Existential Quantification

e We could defind®| 3x. A as —Vx. —A.

e Equivalence follows from our definition of semantics (=¥ p[7g)).

A(=A) — {(1) if A(A)=0

otherwise

{ 1 if for all u € UA,A[x/u](A) =1

0 otherwise

ANVzx. A) =

| 1 if for some u € Uy, Appjy(A) =1
A3z 4) = { 0 otherwise

Conclude: A(Fz. A) = A(—-Vx. - A)

%By defining we mean, use dx.A as shorthand for
—Vx.—A, in the same way as we regard negation as a
shorthand (=¥ pl21)).

However, we have already introduced 4 as syntactic en-
tity, and also its semantics. If we now want to treat it as
being defined in terms of V, for the purposes of building a
deductive system, we must be sure that dx. A is semantically

equivalent to V. —A, i.e., that A(Jz. A) = A(—-Vz. -A).

94

Where do the Rules for 4 Come from?

o We can’® use definition 3z. A = —Vz. - A and the given
rules for ¥ to derive (=% pJi6) ND (=» pp8) proof rules.

e Alternatively, we can give rules as part of the deduction
system and prove equivalence as a lemma, instead of by
definition.

We will do the first here. The Isabelle formalization
follows the second approach.

96

— We can use definition dx. A = —Vx. - A and the given
rules for V to derive (=¥ pJ6) ND (= p8) proof rules.
In this case, the soundness (=¥ p[17) of the derived rules
is guaranteed since

x the rules for V are sound:;
* we have proven the equivalence of dz. A and =Vx. - A
semantically.

— Alternative: give rules as part of the deduction system

and prove the equivalence as a lemma, instead of by def-
inition.
In this case, the soundness (=% pJI7) must be proven
by hand (however, proving rules sound is an aspect we
neglect (=¥ pll0)) in this course). But once this is done,
the equivalence of dx. A and —Vz.—-A can be proven
within the deductive system, rather than by hand, pro-
vided that the deductive system is complete (=¥ pJL7)).

95

3-1 as a Derived Rule

The rule: Va. —P(z)]! b
Po | PO T PO,
e, P(z) L o
Jdx. P(x)~Vz. - P(x)

We want to have Jz. P(x) as conclusion.
But by definition that’s —=Vx. =P(x).
We aim for applying —-Iin the last step (recall =-definition (=¥ p21])
We apply V-E.
Making assumption P(t) allows us to use —-FE (recall —-
definition (=¥ p21])).
Finally we can apply —-I. Note that the assumption P(t)
is still open.

96

J-F as a Derived Rule

The rule:

[P(2)]?
[P() ~R! R
: 1 —-F
dz. P(x) R 5 ~P() N
& 3z. P(z)-Vz.-~P(z) Vz.—P(x) vl
1 -k
& RAAT

97

We will use Jz. P(z) as one assumption.

But by definition that’s =Vz. = P(x).

We assume a hypothetical derivation}

We make an additional assumption and apply —-E (recall —-
definition (= pl21))

Now we can discharge the assumption P(z) made in the hypo-
thetical derivation.

At this step, the side condition from V-I applies. 3-F will inherit
it {7

We apply —-FE.

We are done. Note that this proof uses classical™| reasoning.

"We are constructing here a “schematic fragment” of a
derivation tree. Within this construction, we assume a hy-
pothetical derivation of R from assumption P(z). When
we are done with the construction of this fragment, we will
collapse the fragment by throwing away all the nodes in the
middle and only keep the root and leaves.

Note two points:

e We assume a hypothetical derivation of R from assump-
tion P(x). Somewhere in the middle of the constructed
fragment, we will discharge the assumption P(x). In the
final rule 3-E, this means an application of 3-E involves
discharging P(x). Therefore 3-E has brackets around
the P(z).

e The hypothetical derivation of R may contain other as-
sumptions than P(x). These are not discharged in the
constructed fragment, and so in the final rule 3-E, we
must also read the notation

P(x)
R
as a derivation of R where one of the assumptions is

P(z). There may be other assumptions, but these
are not discharged. This is no different from previous

rules (=¥ p27) involvingg%ischarging.

9%4-F will inherit the side condition from V-I. Hence, the

“Defining (=¥ p94) Jz. A as —=Vx. = A is only sensible in
classical reasoning (=¥ p[2)), since the derivation of the rule
3-E requires the RAA (=» p[42) rule.

99

Example Derivation Using 3-E

We want to prove (Vx. A(z) — B) — ((Jz. A(x)) — B),
where @ does not occur free in B (=¥ p[92)).

Vx. A(x) — B]! K
Ao~ T awp
[Hx. A(z)]? B
E - 3-E*
(dx. A(x)) — B L

(Vz. A(x) — B) — ((3z. A(x)) — B)

100

4.6 Conclusion on FOL

e Propositional logic is good for modeling simple patterns
of reasoning (=¥ p[12)) like “if ... then ...else”.

e In first-order logic, one has “things” and relations on /

properties of “things”. Quantify over “things”. Powerful

100

e Some people advocate intuitionistic, relevance, and other

w]n first-order logic, one has

“things” and

relations/properties that may or may not hold for these

“things”. Quantifiers are used to speak about “all things”

and “some things”.
For example, one can reason:

All men are mortal, Socrates is a man, therefore

Socrates is mortal.

The idea underlying first-order logic is so general, abstract,

and powerful that vast portions of human (mathematical)

reasoning can be modeled with it.

In fact, first-order logic is the most prominent logic of all.

Many people know about it: not only mathematicians and

computer scientists, but also linguists, philosophers, psychol-

ogists, economists etc. are likely to learn about first-order

logic in their education.

While some applications in the fields mentioned above re-

quire other logics, e.g. modal logics (=¥ p.

105

. those can

often be reduced to first-order logic, so that first-order logic

101

remains the point of reference.

On the other hand, logics that are strictly more expressive
than first-order logic are only known to and studied by few
specialists within mathematics and computer science.

This example about Socrates and men is a very well-known

one. You may wonder: what is the history of this example?
In English, the example is commonly given using the word

(44

man’, although one also finds “human”. Like many lan-

guages (e.g., French, Italian), English often uses “man” for
“human being”, although this use of language may be con-

sidered discriminating against women. E.g. [Tho95al:

man [...] 1 an adult human male, esp. as distinct
from a woman or boy. 2 a human being; a person
(no man is perfect).

While the example does not, strictly speaking, imply that
“man” is used in the meaning of “human being’, this is
strongly suggested both by the content of the example (or
should women be immortal?) and the fact that languages

102

that do have a word for “human being” (e.g. “Mensch” in
German) usually give the example using this word. In fact,
the example is originally in Old Greek, and there the word
avipwrog (anthropos = human being), as opposed to avip
(anér = human male), is used.

The example is a so-called syllogism of the first figure,

which the scholastics called Barbara. It was developed by
Aristotle [Ari] in an abstract form, i.e., without using the
concrete name “Socrates”. In his terminology, dvipwnoc is
the middle term that is used as subject in the first premise
and as predicate in the second premise (this is what is called
first figure). Aristotle formulated the syllogism as follows: If
A of all B and B is said of all C, then A must be said of all
C.

And why “Socrates”?” It is not exactly clear how it
came about that this particular syllogism is associated with
Socrates. In any case, as far it is known, Socrates did not
investigate any questions of logic. However, Aristotle fre-

103

101

“deviant” logics

quently uses Socrates and Kallias as standard names for in-

dividuals [Ari]. Possibly there were statutes of Socrates and
Kallias standing in the hall where Aristotle gave his lectures,
so it was convenient for him to point to the statutes whenever

he was making a point involving two individuals.
wi'There are still controversies about what the best

logic is for reasoning about “things” and properties/re-
lations, and scope (quantification). Some argue for
intuitionistic (=¥ p., relevance, modal and other “de-
viant” logics.

An example where first-order logic is inappropriate might

be:

From “a dollar buys a candy bar” and “a dollar buys
an ice cream” we cannot normally conclude “a dollar
buys a candy bar and an ice cream”.

However, such analogies should be treated with care. De-
pending on how ice-creams, candy bars, dollars and buying

104

102

e Limitation: cannot quantify over predicates

e “A” world or “the” world is modeled in first-order logic
using so-called first-order theories. This will be studied
next lecture (=¥ p{118§)).

are modeled, first-order logic may very well be appropriate.
Modal logics are logics that have modality operators, usu-

ally I and ¢.

Sometimes these denote temporal aspects, e.g., [1¢ means

“¢ always holds”. But many other interpretations are possi-
ble, e.g., a¢ could mean “A knows that ¢ holds” [HCGS].

In relevance logics, it is not true that A — B holds when-
ever A is false. Rather, A must somehow be “relevant” for

B

102The idea underlying first-order logic seems so general that
it is not so apparent what its limitations could be. The
limitations will become clear as we study more expressive
logics.

For the moment, note the following: in first-order logic, we
quantify over variables (hence, domain elements), not over
predicates. The number of predicates is fixed in a particu-
lar first-order language. So for example, it is impossible to
express the following:

105

5 First-Order Logic with Equality

For all unary predicates p, if there exists an x such
that p(x) is true, then there exists a smallest x such
that p(x) is true,

since we would be quantifying over p.

106

Overview

Last lecture: first-order logic (=» p[63).
This lecture:

e first-order logic with equality (=¥ p{106) and first-order
theories (=¥ pJ118));

e set-theoretic reasoning (=¥ pJ130)).

We extend language and deductive system to formalize
and reason about the (mathematical) world.

107

FOL with Equality

Equality is a logical symbol rather than a mathematical
ond%
Speak of first-order logic with equality rather than adding

equality as “just another predicate”.

103

In logic languages, it is common to distinguish between
logical and non-logical symbols. We explain this for first-

order logic.

Recall (=¥ pJ70)) that there isn’t just the language of first-
order logic, but rather defining a particular signature gives
us a first-order language. The logical symbols are those that
are part of any first-order language and whose meaning is
“hard-wired” into the formalism of first-order logic, like A or
V. The non-logical symbols are those given by a particular
signature (=» p[70), and whose meaning must be defined “by
the user” by giving a structure (= p|[75).

Above we say “mathematical” instead of “non-logical” be-

cause we assume that mathematics is our domain of dis-
course, so that the signature (=% p[70]) contains the symbols
of “mathematics”.

Now what status should the equality symbol = have? We
will assume that = is a symbol whose meaning is hard-wired

108

Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 =ty € Form (=¥ p[12) if t1,t2 € Term (=¥ p[71).

Semantics : recall astructure (=¥ p[7d)) is a pair A = (U4, 14)

and [4(t) is the interpretation of t.
Ials = 1) = { 1 if Ty(s) = 14()

0 otherwise
Note the three completely different uses of “="

104 herel

into the formalism. One then speaks of first-order logic with

equality.

Alternatively, one could regard = as an ordinary (binary
infix) predicate. However, even if one does not give = a
special status, anyone reading = has a certain expectation.
Thus it would be very confusing to have a structure that
defines = as a, say, non-reflexive relation.

N 1 af]A<S)EIA(t)
Ta(s=t) = { 0 otherwise

The first = is a predicate symbol.

The second = is a definitional occurrence: The expression
on the left-hand side is defined to be equal to the value of
the right-hand side.

The third = is semantic equality, i.e., the identity relation

on the domain (=¥ p[75).

109

Ruled™)

e Equality is an equivalence relation"
refl Y Syl vy trans
r=x y=2x xr=2z
T07

on terms and all rela-

e Equality is also a congruencd

155ince = is a logical symbol in the formalism of first-order
logic with equality, there should be derivation rules (=¥ p.

for = to derive which formulas a = b are true.
s]n general mathematical terminology, a relation = is an

equivalence relation if the following three properties hold:

Reflexivity: a = a for all a;

Symmetry: a = b implies b = a;

Transitivity: a = b and b = c implies a = c.
Example: being equal modulo 6.

“a is equal b modulo 6” is often written @ = b mod 6.
7n general mathematical terminology, a relation = is a

congruence w.r.t. (or: on) f, where f has arity n, if a; =

bi,...,a, = by, implies f(ay,...,a,) = f(b1,...,by).
Example: being equal modulo 6 is congruent w.r.t. multi-
plication.
14 = 8 mod 6 and 15 = 9 mod 6, hence 14 - 15 = 8 -
9 mod 6.

110

tiond08]

TS T = e
t(xy, ..., xn) =ty1, - Yn)
TI=yY o Ty =Yy A,) cong,
A(Yyt, -, Yn)

This can be defined in an analogous way for a property
(relation) P.
Example: being equal modulo 6 is congruent w.r.t. divisi-

bility by 3.
15 = 9 mod 6 and 15 is divisible by 3, hence 9 is divisible
by 3.

14 = 8 mod 6 and 14 is not divisible by 3, hence 8 is not
divisible by 3.

ws\Why did we use letters t and A here?

Recall the rules for building terms (=¥ p[fl) and
atoms (=¥ pl72).

Is t(x1,...,z,) a term, and A(xy,...,z,) and atom, ob-
tained by one application of such a rule, i.e.: is ¢t a function
symbol in F, applied to x1,...,x,, and is A a predicate
symbol in P, applied to x1,...,x,"

In general, no! The notations t(zy,...,7,) and
A(xy,...,x,) are metanotations (=¥ pBI). t(zy,...,x,)
stands for any term in which xq,...,x, occur, and

111

Soundness of Rules

109 and

For any U 4, equality in U 4 is an equivalence relation

A(zq,...,x,) stands for any atom in which xq,..., 2, oc-
cur.

This is why we used letters ¢ (term) and A (atom) here
instead of f (function) and P (predicate).

And in this context, the notation #(y,...,y,) stands for
the term obtained from t(xy, ..., z,) by replacing all occur-
rences of xy with y; and so forth. In analogy the notation
Ay, ..., yn) is defined.

Note that in the schematic formulation of the rule, we use
letters x and y to suggest variables, but the rule applies to
arbitrary terms.

This description is not very formal, but this is not too
problematic since we will be more formal once we have some

useful machinery for this at hand (=¥ p{230)).
wOn the semantic level, two things are equal if they

are identical. Semantic equality is an equivalence

relation (=¥ pJ110). This semantic fact is so fundamental

that we cannot explain it any further.

112

functions/predicates/logical-operators are “truth-functional”

110

Adding further rules gives us an equational theory (=¥ pJ125)),

e.g. groups (=¥ pJ124)).

So one can prove that I4(s = s) = 1 for all all terms
s, because [4(s) = I4(s) for all terms, and likewise for

symmetry and transitivity.
mo[f ¢(x) is a term containing z and ¢(y) is the term obtained

from ¢(z) by replacing all occurrences of x with y, and more-
over Iq(x =y) =1, then I4(x) = I4(y). One can show by
induction on the structure of ¢ that I4(¢t(x)) = L4(t(y)).

So by “truth-functional” we mean that the value I 4(t(z))
depends on I 4(x), not on z itself.

This can be generalized to n variables as in the rule.

An analogous proof can be done for rule congs,.

113

Congruence: Alternative Formulation

One can specialize congruence rules to replace only some

term occurrences.

M=o e = e cong;
t[zl <—£U1,...,Zn<—.ib'n] :t[zl <_y17---72n<_yn}
1 =Y1 - Tp =1UYUn A[Zl <—y1,...,zn<—yn] cong,
Alzg — X1, ..oy 2 — Ty
One time the z’s are replaced with z’s and one time with
o [ITT
y's.
mThe notation t[z; «— x1,...,2, < x,] stands for the

term obtained from ¢ by simultanecously replacing each z;
(2 € {1,...,n}) with z;.
(21 < x1,. .., 2, < x,] is called a substitution (=¥ p..
To have an unambiguous notation for “replacing some oc-

currences of x1,...,x,”, we start from a term ¢ containing
variable occurrences z1, ..., z,. On the LHS, these are re-
placed with x4, ..., z,, on the RHS they are replaced with
Y1, - - - Yn. D0 on the RHS we have a term obtained from the
one on the LHS by replacing some occurrences of x4, ..., x,
with y1, ..., yn.

One can say that the zq,..., 2, are introduced to mark

the occurrences of xy,...,x, that should be replaced by
Yi,- - -5 Yn-

Note that in the schematic formulation of the rule, we use
letters x and y to suggest variables, but the rule applies to
arbitrary terms. The z’s however are variables (substitutions
replace variables, not arbitrary terms).

114

Congruence: Example
How many ways are there to choose some occurrences of x
in 22 4+ y? > 12 - 27 4, namely:
A=22+y?> 122, A=224+9y>>12 2, |
A=2>+y>>12-2, A=224+¢y*> 122
We show two ways:

r=3 ¥+y*>12-x

P+ >12-w
r=3 2*+y*>12-x

v +y? > 123

with A =22 +92>12 -2

with A =224+ 9> > 12- 2

12The atom z? + y? > 12 - o contains two occurrences of
x. There are four ways to choose some occurrences of x in
o’ 4 y? > 12 .

Each of those ways corresponds to an atom obtained from
22 4+ y? > 12 - by replacing some occurrences of x with
z. That is, there are four different A’s such that Alz/z] =
2’ +y? > 12-2. Now the atom above the line in the examples
is obtained by substituting x for z, and the atom below the
line is obtained by substituting vy for z.

115

Isabelle Rule

The Isabelle FOL rule is simply' | (using a tree syntax)

r=vy Pz
P(y)

subst

or literally
[a = b; P(a)] = P(b)

13The Isabelle FOL rule is:
r=y P(r)

P(y)

subst

In this rule, P is an Isabelle metavariable (=» p31)).
Why doesn’t the Isabelle rule contain a 2z to

mark (=¥ p{114) which occurrences should be replaced?

We cannot understand this yet (=¥ p230

. but think of P

as a formula where some positions are marked in such a way

that once we apply P to t (we write P(t)), t will be inserted

into all those positions. This is why P(z) is a formula and

P(y) is a formula obtained by replacing some occurrences of

x with y.

116

Proving dz.t ==z

— refl (=¥ pJ110

t=1
—— 3-I(=» p6)

dr.t=x

A(t)
——— -1 (=¥ p.
In the rule 3z. A(x) (2P , “A(x)
In the example, A(z) = (t = x).
Notational confusion avoided by a precise metalanguage (=¥ p{209)).

7 is metanotation (=¥ p31).

117

6 First-Order Theories

118

What Is a Theory?

Recall our intuitive explanation of theories (=% pJ0).

A theory involves certain function and/or predicate sym-
bols for which certain “laws” hold.

Depending on the context, these symbols may co-exist
with other symbols.

Technically, the laws are added as rules (in particular,
axioms) to the proof system (=¥ p|L6).

A structure (=» p[75) in which these rules are true is then
called a model (=¥ pJ79) of the theory.

6.1 Example 1: Partial Orders

4. ALHS

e The language of the theory of partial orders

A partial order is a binary relation that is reflexive,

transitive (=¥ pJ110)), and anti-symmetric: @ < b and b < a

implies a = b.
15 is (by convention) a binary infix predicate symbol.
The theory of partial orders involves only this symbol, but
that does not mean that there could not be any other sym-
bols in the context.

119

e Axioms (=¥ pJ50)

Vo, y,z.o <yAy<z—a < 410
117

Ve,y o <yAy <z x=1

e Alternative to axioms is to use rules

TSY Y=z TSy ysw oo =y
trans antisym
r <z =1 r <y

<-refl

Such a conversion is possible since implication is the
main connective[¥]

16The axiom Vr,y,z.x < y Ay < z — x < z encodes
transitivity.

"Note that Vr,y.x <y Ay < x < x = y encodes both
antisymmetry (—) and reflexivity («). Recall (=¥ p1])
that A «» B as shorthand for A - BA B — A.

150ne can see that using —-I and —-E (=¥ p.7 one can

always convert a proof using the axioms to one using the
proper (=» p[p0)) rules.

More generally, an axiom of the form Vaq,...,x,. A1 A
... N A, — B can be converted to a rule

A LA,
B

Do 1t| in Isabelle!

120

A Second Transitivity Rule

One may also consider adding the rule

> Y <-refl2
y<ax

to the system. This rule can be derived (=¥ pf4€) as follows:

x:
ysym
y=x
<-refl
y<uw

121

More on Orders

e A partial order (=¥ p[119) < is a linear or total order' "

when
Ve,yr <yVy<zx
120

Note: no “pure” rule formulation <*| of this disjunction.

e A total order < is dense when, in addition
121

Ve,y.o <y — Jz(z<zAz<y)

What does < mean?

19We define these notions according to usual mathematical
terminology:.

A partial order (=¥ p|119)) < is a linear or total order if for
all a, b, either a < bor b < a.
A partial order (=¥ p[119) < is dense if for all a, b where

a < b, there exists a ¢ such that a < ¢ and ¢ < b.
120The axiom Vx,y.:lj < y Vy < x cannot be phrased

as a proper (=¥ p/50)) rule in the style of, for example, the

transitivity axiom (=¥ pJ120)).
21\We use s < t as shorthand for s < ¢t A —=s = ¢.

We say that < is the strict part of the partial
order (=¥ p{119)) <.

122

Structures for Orders ...
Give structures (=» p[75) for orders that are . . .

1. not total: C-relation'??

2. total but not dense: integers with <;

3. dense: reals with <.

22The C-relation is partial but not total. As an example,
consider the C-relation on the set of subsets of {1, 2}.

{1,2}

{1}/ \{2}
\/

Depicting partial orders (=¥ p.

119

by a such a graph is

quite common. Here, node a is below node b and connected
by an arc if and only if a < (=¥ p{122

c with a < ¢ < b.

123

b and there exists no

6.2 Example 2: Groups

e Language: Function symbols _-_, 71 ¢'*

In this example, we have the partial order (=¥ p|119

{@,0), {13, {11), ({1}, {1}), ({1, 2}, {1, 2}),
@, 413), (@, {1}), {1}, {1, 2}), ({1}, {1, 2})}-

123_. g a binary infix function symbol (in fact, only - is the

symbol, but the notation _- _is used to indicate the fact that
the symbol stands between its arguments).

i is a unary function symbol written as superscript.
Again, the _is used to indicate where the argument goes.

e is a nullary function symbol (= constant) (=¥ p[6).

Note that groups are very common in mathematics, and
many different notations, i.e., function names and fixity (in-

fix, prefix...) are used for them.

124

e A group if** a model'*| of
Ve,y,z.(x-y)-z = x-(y-2z) (assoc)
Ve.x-e = x (r-neutr)
Ve.z-z7t = e (r-inv)

126

It is an example of an equational theory

Two theorems: (I) z7'- -z =ecand () e-xz ==
We will now prove them.

21]n general mathematical terminology, a group consists of
three function symbols _-_, .71, e, obeying the following laws:

Associativity (a-b)-c=a-(b-c) for all a,b,c,

Right neutral a - e = a for all a,

1

Right inverse a -a=" = e for all a.

A model (=¥ p[79) of the group axioms is a
structure (=¥ pJ79)) in which the group axioms are true.

However, when we say something like, “this model is a
group”, then this is a slight abuse of terminology, since there
may be other function symbols around that are also inter-
preted by the structure.

So when we say “this model is a group”, we mean, “this
model is a model of the group axioms for function symbols

-, ~Land e clear from the context”.
126 A1 equational theory is a set of equations. Each equation

1S an axiomnl.

125

Theorem
Ve,y,z.(x-y)-z = x-(y-2z) (assoc)

Ve.z-e = x (r-neutr)
Vo.x -z — e (r-inv)
rlox=e (1)
v brx=ctl (z-e)=a"t. (:L' (z' z717h) =
et (e)) = (e) =
(z7l-e) -z =g 1. x_l —e.

Sometimes, each equation is surrounded by several V-
quantifiers binding all the free variables in the equation, but
often the equation is regarded as implicitly universally quan-

tified.
More generally, a conditional equational theory consists

of proper (=» pp() rules where the premises are called
conditions [HA190].
Note also that sometimes, one also considers the basic rules

of equality (=¥ p{110]) as being part of every equational the-

ory. Whenever one has an equational theory, one implies
that the basic rules are present; whether or not one assumes
that they are formally elements of the equational theory is
just a technical detail.

126

Theorem [2

Ve,y,z.(x-y)-z = x-(y-2z) (assoc)

Ve.x-e = r (r-neutr)
Vo .z -zt = e (r-inv)
e-r==x (2)
e-xv= -z) x=a (27! 1) el o=y

127

6.3 Lessons Learned from these Examples

Equational proofs are often tricky!

127

e Equalities used in different directions, “eureka’|*‘|terms,

etc.

e In some cases (the word problem|' ¥ is) decidable.

1278y “eureka’ terms we mean terms that have to be guessed
in order to find a proof. At least at first sight, it seems like
these terms simply fall from the sky.

The Greek eupexa (heureka) is 1st person singular per-
fect of euptoxew (heuriskein), “to find”. It was exclaimed
by Archimedes upon discovering how to test the purity of

Hiero’s crown.
2The word problem w.r.t. an equational theory (here: the

group axioms) is the problem of deciding whether two terms
s and t are equal in the theory, that is to say, whether the
formula s = ¢ is true in any model (=¥ p[79) of the theory.

128

Equational versus ND Proofs

e Above proofs were of a particular, equational form'?”|

e In [sabelle this is accomplished by term rewriting.

Term rewriting is a process for replacing equals by equals
(see later (=¥ p280))).

e Alternative is natural deduction (=¥ p[25)):

— requires explicit proofs using equality rules;

130

— tedious in practice. Try it on above examples!

129 An equational proof consists simply of a sequence of equa-
tions, written as t; = t9 = ... = t,, where each t;,1 is ob-
tained from ¢; by replacing some subterm s with a term &/,
provided the equality s = s’ holds.

This style of proof can be justified by the rules given for

equality, in particular the congruences (=¥ p/110). How-

ever, it looks very different from the natural deduction
style (=» p25).

130

z-xl=e
e=x- 27! o e-x:eoxreﬂ
Theorem (1] (z-z7Y) z=2 (27! 2) e-rx=(z -z 2
rlr=e w0
rT-e€=T e-r=x-e€
e-r==x

Most steps use the congruence rule congy (=¥ pJ110)).

Fach framed box in the derivation tree stands for a sub-tree

129

7 Naive Set Theory

7.1 Naive Set Theory: Basics

e A set is a collection of objects where order and repetition

are unimportant.

Sets are central in mathematical reasoning [Vel94]. E.g.,

set of prime numbers.

e In what follows we consider a simple, intuitive formal-

ization: “naive set theory”.

We will be somewhat less formal than usual. Our goal

is to understand standard mathematical practice.
Later, in HOL (=¥ p{362), we will be completely formal.

consisting of a group axiom (=¥ p.
applications of V-E (=¥ pJg4)).

130

124

and possibly several

Sets: Language

Assuming any first-order language with equality, we add:
T31

e set-comprehension {x|P(x)}

and a binary membership

predicate €.

e Term/formula distinction inadequatq' ™

- need a syntac-

tic category for sets.

e We will be more formal about syntax later (HOL (=¥ p{362

e Comprehension is a binding operator: x bound in {z|P(x)

1s1Set comprehension is a way of defining sets. {z|P(z)}
stands for the set of elements of the universe for which P(x)

(some formula usually containing x) holds.
132]t is more adequate to regard a set as a term than as

a formula. A set is a “thing”’, not a statement about
“things”. (=¥ p[70)

After all, we have the predicate € expecting a set on the
RHS (and even the LHS may be a set!), and predicates take
terms as arguments. (=¥ p|72)

However, the syntax used in set comprehensions is not legal
syntax for terms (=¥ p|71]), since P(x) is a formula.

This is why we introduce a special syntactic category for
sets.

131

)

(=» p..

Examples

o Vz.x € {ylymod 6 =0} - (zmod2=0Axmod3 =
0).
e What does the following say?
2 € {w|6 ¢ {z|x is divisible by w}}

Answer: 6 ¢ {x|x divisible by 2} i.e., 6 not divisible by
2.

132

Proof Rules for Sets

Introduction, elimination, extensional equality

P(t) t € {z|P(z)}
compr-1 compr-E
t € {z|P(z)} P(t)
Vx.xEAHxEB_I A=1B B
A=21B O Ve.xeA—zxeB

134].

133

-BE

The following equivalence is derivable

V. P(x) < (= pPl)z € {y|P(y)}

33 T'wo things are extensionally equal if they are “equal in
their effects”. Thus two sets are equal if they have the same
members, regardless of what syntactic expressions are used
to define those sets.

Note that extensional equality may be undecidable.

[Pz)]! compr-1 [z € {ylPy)}] compr-E

v € WIPW) Pla) ’
P o ve Py Tl

Va. P(x) <z € {y[P(y)}
Rule V-I (=¥ pj84)) was defined in a previous lecture.

V-1

133

7.2 Digression: Sorted Reasoning

e In mathematical arguments we often (implicitly) assume
that variables are restricted to some universe of dis-

coursd™]
E.g., 2 <9 (universe either R, N, ...)
T35

we can include sort information

e To avoid ambiguity

in formulae:

members x of U where P(x) = {x € U|P(x)}

Formally
{reU|P(x)} ={x|x€UANP(x)}.

wWe already know what a universe (=¥ p[75) or
domain (=¥ p[79)) is. To interpret a particular language, we
have a structure (=¥ p[75)) interpreting all function symbols
as functions on the universe.

However, it is often adequate to subdivide the universe into
several “sub-universes”. Those are called sorts. Note that a

sort 1s a set.

For example, in a usual mathematical context, one may dis-
tinguish R (the real numbers) and N (the natural numbers)
to say that \/z requires x to be of sort R and x! requires x

to be of sort N.
135\We want to make explicit the sort of the variable in ques-

tion. So we do not want the set of all x such that P(x)
holds, but only the ones of the right sort, so the ones for
which x € U (U being the sort /universe) holds.

The whole expression {x € U|P(z)} is a special kind of
syntax. Therefore, you must look at it as a whole: it makes
no sense to see any meaning just in, say, the bit x € U in this

134

Sorted Reasoning in an Unsorted Logic

We may introduce the additional set comprehension syntax
{z € U|P(x)}, but our logic is still unsorted™®’| We have

yeleeUlP()} oyeiz|ze UNP(x)} < Uly)AP(y)

expression. It is called set comprehension, and it is defined

by

{reU|P(x)} ={x|x€UAP(z)}.

37]n sorted logic, sorts are part of the syntax. So the
signature (=¥ p. contains a fixed set of sorts. For each
constant, it is specified what its sort is. For each function
symbol, it is specified what the sort of each argument is, and
what the sort of the result is. For each predicate symbol, it
is specified what the sort of each argument is.

Terms and formulas that do not respect the sorts are not
well-formed, and so they are not assigned a meaning.

In contrast, our logic is unsorted. The special syntax we
provide for sorted reasoning is just syntactic sugar (=¥ p21]),
i.e., we use it as shorthand and since it has an intuitive
reasoning, but it has no impact on how expressive our logic
is.

135

Sorted Quantification

Vo e U. P(z)'™® Ve.x € U — P(x)
dr e U.P(x) = Jx.x € UAN P(x)

50 Vo € U. P(x) is simply a shorthand or syntactic
sugar (=» pR1) for Vo.x € U — P(z), and analogously
for 3z € U. P(x).

136

7.3 Operations on Sets

e [Functions on sets

Ar¥B {z|]r € ANz € B}
AUB = {zlr€e AVx e B}
A\ B {zlr €e ANz & B}

e Predicates on sets

ACB=Vz.oe A—>x€B

139

N is called intersection.

U 1s called union.

\ is called set difference.

C 1s called inclusion.

137

Examples of Operations on Sets

One often depicts sets as circles or bubbles.

What are AN B, AUB, A\ B?

ANB

AUB

A\ B

Se=

138

Correspondence between Set-Theoretic and
Logical Operators

r€ANB < € ANz EB
r€AUB < z€ AV EeB
r€A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the set-

theoretic operators (=¥ p|137) and Vx. P(x) < = € {y|P(y)} (=¥ pJ133).
Example: what is the logical form*"| of z € (AN B) U

(ANC))? (reANzeB)V(re ANz e ()

wi\When we transform an expression containing set opera-
tors N, U, \, C into an expression using A, V, -, —, we call
the latter the logical form of the expression.

139

Proof of AN(BUC)=(ANB)U(ANC) (1)

141

Venn diagram (Is this a proof?)

mwA Venn diagram draws sets as bubbles. Intersecting sets

are drawn as overlapping bubbles, and the overlapping area
is meant to depict the intersection of the sets.

A Venn diagram is not a proof in the sense defined
carlier (=¥ p[10)).

Moreover, it would not even be acceptable as a proof ac-
cording to usual mathematical practice. If it is unknown
whether two sets have a non-empty intersection, how are we
supposed to draw them? Trying to make a case distinctions
(drawing several diagrams depending on the cases) is error-
prone.

Venn diagrams are useful for illustration purposes, but they
are not proofs.

140

Proof of AN(BUC)=(ANB)U(ANC) (2)

142

Natural deduction (natural languagg

By extensionality (=¥ p{133), suffices to show

Ve,ex e AN(BUC) < ze(ANB)UANC).
For an arbitrary x, this is equivalent to establishing

(re AN(zreBvzxel)) <
(re ANz eB)V(xe Anx e ()

But that is a propositional tautology.

12\We intersperse formal notation with natural language
here in order to give an intuitive and short proof.
We can also do this more formally in Isabelle.

141

Same in Isabelle

Last proof carries over to Isabelle: extensionality (=¥ p{133

rewriting (=¥ p.

280

, tautology (=¥ p[79) checking.

142

Do it!

Prove: for all Sets A and B, (AU B)\ B)
Let’s try a similar semi-formal proof:

Let A and B be arbitrary sets.

Let be element of (AU B) \ B.

So(xe€e AVe e B)A—x € B.
Therefore z € A.

Therefore x € (AUB)\ B — z € A
Therefore (AU B) \ B) C A.

CA

Combination'*| of forward reasoning with backward rea-
soning. This is common in practice and usually easy to un-
scramble.

143

Let A and B be arbitrary sets. (V-I)

Let x be an element of (AU B) \ B (temporary assumption)

So(re AVee B)A—~z € B (equivalent proposition)

Therefore 2z € A (P follows from (P V Q) A =Q (= pliq))

Therefore z € (AUB)\ B -z € A (—-I)

Therefore (AU B)\ B) C A (def of C)

Concerning forward and backwards reasoning, one may
look at it as follows: we first construct the derivation step

at the root of the proof tree (V-I), and then we jump to a

leaf (by making the temporary assumption) and work down-

wards from there.

143

7.4 Extending Set Comprehensions

Recall set comprehensions (=¥ pi131) {z|P(x

Now what do you think this is?

)}

{f(@)|P(x)} = {y[Fz. P(z) Ny = f(z)}

Example: t € {z*|z > 5} equivalent to (=¥ p.
SAL =z’
True for t € {36,49,...}

144

133

dr.x >

Indexing

Sometimes, it is natural to denote a function f applied to an

argument r as “f indexed by z”, so f,, rather than f(x).
Example: let S = set of students and let my stand for

“the mother of 5”7, for s a student. Call S an index set.

r € {myls € S} «— (=dplldd) z € {y|ds.s € SAy=my}
— (=»pll33) ds.s € S Ax =my
— (=¥ pll36) ds € S.x=m;,

Uses extended comprehensions (=¥ pJ144)); indexing syn-
tax, and sorted quantification (=¥ p{130)).

145

Logical Forms of the New Notation

Question: what is the logical form (=¥ pJ139

I} CA?

Ve.x e {x;liel} -z €A
Ve (diel.x=ux)— xe A
%0 suggests that Vi € I.z; € A (=¥ pl136

Intuition

also correct, i.e.,

144

U

l.e.

)

(Ve.(diel.x=2)—x€cA) — VMielx,cA.

Proving this would be another exercise

147

of {x;]i €

1S

on using ex-

tended comprehensions (=¥ pl144)), indexing syntax, and sorted

quantification (=¥ p{1306)).

144

{ziliel} CA=Ve.xe{xiel} -z A

follows from the definition of C (=¥ p.

145

We want to show

139).

Ve.xe{xliel} wx € A=Vae.(Fiel.x=2)—x €A

x € {x;|i € I}
re{yldi.iel Ny=ux}
di.iel Nx =ux;
diel.x=ux;

(def. of notation) (=¥ p.
compr-1 (=¥ p.
(Sorted quantification) (=¥ p.

1]t may be helpful to pronounce both forms out loud in

natural language to get an intuitive feeling that they are

equivalent.
U \Want to prove

(Ve.(diel.x=2)—>axcA) - Vielx A

146

144

133

136

Powersets
o(A) = {alz C A}
What is the logical form (=¥ p{139)) of:
1. x € p(A)?
rCAie, Yy (yex—yecA
2. p(4) C p(B)?
Ve.x € p(A) — x € p(B), ie.,

Veex CA—xC B, ie,
Ve.(Vy.yex—yeA) — (Vy.yex—ye€DB)

Exercisel prove that the last answer is equivalent to A C
B,ie,Vx.t € A—x € B.

° CC_)??
Let i € I be arbitrary. Now from assumption (for the
instance x;) we have (3j € I.x; = z;) — z; € A. But
premise is true for ¢ = 5, so x; € A.

W, »
o <

Let x be arbitrary and assume 3¢ € [.x = x;. So for
some ¢ € I, we have v = x;. Now Vi € [.x; € A.
Hence x € A.

“—" in more detail: Want to prove
Ve (diel.o=x)—ar€eA) — MelxecA
We show Vi € I.x; € A assuming Va.(Ji € [.x = x;) —
x e A
So we show that for arbitrary ¢ € I, assuming Vr.(3i €

I.x =x;) > x € A, we have x; € A. So let i € I be
arbitrary:.

147

7.5 Outlook

Sets can have other sets as elements.

Since we have Va.(3i € I.x = x;) — = € A, by rule
V-E (= pl34)) we can specialize to (35 € I.2; = z;) —
z; € A. But premise (35 € I.x; = z;) is true for ¢ = j, and
so x; € A, which is what was to be proven.

This proof could be made more formal by drawing a proof
tree or using Isabelle.

44)

<" in more Detail: Want to prove
Ve (diel.o=x)—az€eA) — VMielxgecA

We show Vz.(3i € .o = x;) — = € A, assuming Vi €
I.x; € A

So we show that for arbitrary x, assuming Vi € I.x; € A,
we have (3t € I.x = x;) — x € A. So let x be arbitrary.

To show (FJi € [.o =x;) > x € A, assume Ji € [.x =
x;. S0 for some ¢ € I, we have z = x;. Now by our earlier
assumption Vi € I.x; € A, and so it follows that x € A.
thus we have shown x € A under the assumption (Ji €
I.x = x;), thus we have shown (3i € [.x = x;) —» x € A,

148

148

Implicitly assume that universe of discourse is collection

of all sets.

which is what was to be proven.
This proof could be made more formal by drawing a proof

tree or using Isabelle.
us\We speak of collection of all sets rather than set of all

sets in order to pretend that we are being careful since we
are not sure if there is such a thing as a set of all sets. There-

fore we use the “neutral” word collection whose meaning is
obvious. ..

[s it?

Recall that we have defined set as collection of
objects (=¥ p{130) in the first place. So it is rather futile
to suggest now that there should be some difference between

collections and sets.

The fact of the matter is: the approach of allowing arbi-
trary collections of “objects” and regarding such collections
as “objects” themselves is naive. We will see this shortly.

149

Russell’s Paradox

Suppose U := {z | T[*}. Then™|U € U.
Quite strange but no contradiction yet.

Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not. Let R := {A|A & A}.

Assume R € R. By the definition of R, this means R €
{A|A ¢ A}. Using compr-E (=¥ p|133), this implies R ¢
R.

Now assume R ¢ R. Using compr-I (=¥ p133)), this im-
plies R € {A|A ¢ A}. By the definition of R, this means
R € R.

What does this tell us about setsd™]]

wAgsume that T is syntactic sugar (=¥ p21)) for a propo-
sition that is always true, say T = L — 1. We have not

introduced this, but it is convenient.

So semantically (=¥ p[7§), we have I4(T) =1 for all I4.
1s0Recall that a set comprehension (=¥ pJ131)) has the form

{z|P(z)}, where P(x) is a formula usually containing x.

The set comprehension U := {x | T} is strange since T
does not contain x.
But by the introduction rule for set

comprehensions (=¥ p133), this means that = € U for

any x. Thus in particular, U € U.

1]t tells us that there can be no such thing as the set of all
sets.
The fundamental flaw of naive set theory is in saying that

a set is a collection of “objects” (=¥ p|130)) without worrying

what an object is. If we make no restriction as to what an
object is, then a set is obviously also an object. But then we
effectively base the definition of the new concept set on the

150

Where Do We Go from here?

e The A-calculus (=¥ p{152) as basis for a metalanguage (=¥ p.

to avoid notational confusion (=¥ pJ117

209

e Resolution (=¥ p242)) and other deduction techniques (=¥ p[254):

understanding Isabelle better and achieving a higher
level of automation

e Higher-order logic (=¥ p{362): a formalism for (among
152

other things) non-naive set theory

existence of sets, so the definition is circular.

The intuition for the solution to this dilemma is not diffi-
cult: A set is a collection of objects of which we are already
sure that they exist. In particular, since we are only just
about to define sets, these objects may not themselves be
sets.

Once we have such sets, we can introduce “sets of second
order”, that is, sets that contain sets of the first kind. This
process can be continued ad infinitum.

The formal details will come later (=¥ p{362).
s2Higher-order logic (=¥ p{362) is a solution to the dilemma

posed by Russell’s paradox. (=¥ pJ150
It is a surprisingly simple formalism which can be

extended (=¥ pi40)) conservatively: this means that it can

be ensured that the extensions cannot compromise the truth
or falsity of statements that were already expressible before
the extension.

151

8 The M\-Calculus

152

The M-Calculus: Motivation

A way of writing functions. E.g., Ax.x + 5 is the function
taking any number n to n+5. Theory underlying functional
programming.

Turing-complete model of computation.

One of the most important formalisms of (theoretical)
computer science!

Why is it interesting for us? The A-calculus is used for rep-
resenting object logics in Isabelle. It is the core of Isabelle’s
metalogic!

Further reading: [Tho91, chapter 2], [HS90, chapter 1].

153

Outline of this Lecture

e The untyped A-calculus

e The simply typed A-calculus (=¥ pJ175)) (A7)

e An extension of the typed A-calculus (=¥ p.

e Higher-order unification (=¥ p205

8.1 Untyped M-Calculus

From functional programming , you may be familiar with

function definitions such as

frx=x4+5

The A-calculus is a formalism for writing nameless functions.

The function Az. x + 5 corresponds to f.

154

191

The application to say, 3, is written (Azx.z + 5)(3). Its
result is computed by substituting 3 for x, yielding 3 + 5,
which in usual arithmetic evaluates to 827

153As you might guess, the formalism of the A-calculus is
not directly related to usual arithmetic and so it is not built
into this formalism that 3+ 5 should evaluate to 8. However,
it may be a reasonable choice, depending on the context, to
extend the A-calculus in this way, but this is not our concern
at the moment.

155

Syntax

(z € Var, c € Const|"”*

e :=x | c| (ee) | (Aw.e)”

wSimilarly as for first-order logic (=¥ pJ70]), a language of

the untyped A-calculus is characterized by giving a set of

variables and a set of constants.

One can think of Const as a signature.

Note that Const could be empty.

Note also that the word constant has a different meaning
in the A-calculus from that of first-order logic (=% p6g). In
both formalisms, constants are just symbols.

In first-order logic, a constant is a special case of a function
symbol, namely a function symbol of arity 0.

In the A-calculus, one does not speak of function symbols.
In the untyped A-calculus, any A-term (including a constant)

can be applied (=¥ p{155) to another term, and so any A-

term can be called a “unary function”. A constant being
applied to a term is something which would contradict the
intuition about constants in first-order logic. So for the A-
calculus, think of constant as opposed to a variable, an ap-

plication, or an abstraction.
A \-term can either be

156

50 are called A-terms

The objects generated by this grammar

or simply terms.

e a variable (case x), or
e a constant (case c), or

e an application of a A\-term to another A-term (case (ee)),
or

e an abstraction over a variable x (case (Az.e)).

156 A notation like

e =2 | c| (ee) | (Ax.e)
To=T | 7—>71
e :=x | c| (ee) | (Ax".¢)

P:=xz | -P| P\P| P—P...
for specifying syntax is called Backus-Naur form (BNF) for

expressing grammars. For example, the first BNF-clause
reads: a A-term can be

a variable, or

a constant, or

a A-term applied to a A-term, or

157

—

or

Conventions: iterated A & left-associated application

(Az. (Ay. (Az. ((22)(y2))))) = (Azyz. (22)(y2)))
Aryz. xz(yz)

Is \x.x + 5 a Aterm?™9

a A-abstraction, which is a A-term of the form Ax.e, where

e is a A-term.
The BNF is a very common formalism for speci-

fying syntax, e.g., of programming languages. See
http://cui.unige.ch/db-research/Enseignement/
analyseinfo/AboutBNF.html or

http://en.wikipedia.org/wiki/Backus—Naur form.
BTWe write Az1xs . .. x,.€ instead of Azp.(Aza.(...€)...).

ey ey...e, is equivalent to (...(e; eg)...e,)..., not
(e1(e2...€,)...). Note that this is in contrast to the as-
sociativity of logical operators (=» p21)). There are some

cood reasong| for these conventions.
B8Strictly speaking, Ax. x +5 does not adhere to the defini-

tion of syntax of A-terms, at least if we parse it in the usual
way: + iIs an infix constant applied to arguments x and 5.
If we parse x+5 as ((x+)5), i.e., z applied to (the constant)
+, and the resulting term applied to (the constant) 5, then
Az. x + 5 would indeed adhere to the definition of syntax of

158

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://en.wikipedia.org/wiki/Backus-Naur_form

Substitution

e Reduction'*”| based on substitutions (=¥ p[114

(Az. gz 3)(5) = (gx3)[x « 5] =¢g53

e Must respect free (=¥ p{160) and bound (=¥ p{160)) vari-
ables,

(Ax.z(Az.zy))(e) = ((z(Az. 2y))|[x — €] = e(Ax. 2Y)

e Same problems as with quantifiers (=¥ pg7)
Va. (P(z) A Jz. Q(z,y)) Va. (P(z) A Jy. Q(z,y))

Ple)ATr.Qy) T Py) A3z Qyz)

A-terms, but of course, this is pathological and not intended
here.

It is convenient to allow for extensions of the syntax of
M-terms, allowing for:

e application to several arguments rather than just one;

e infix notation (=¥ p[6g).

Such an extension is inessential for the expressive power of
the A-calculus. Instead of having a binary infix constant
+ and writing Az.x + 5, we could have a constant plus
according to the original syntax and write Ax. ((plus) 5)
(i.e., write 4+ in a Curryed (=¥ pJ169)) way).

Reduction is the notion of “computing”, or “evaluation”,

in the A-calculus.
wHere we use the notation e[z «—] for the term obtained

from e by replacing with ¢. There is also the notation
elt/z|, and confusingly, also e[|z /t]. We will attempt to be

159

Bound, Free, Binding Occurrences

Recall the notions of bound, free, and binding occurrences
of variables in a term. Same thing here:

A-calculus FOL

FV(x) = {xz} = FV(z)
FV(c):=10 = FV(c)
FV(MN):=FV(M)UFV(N) =FV(MAN)
FV(Ax. M) = FV(M)\{zx} =FV(N¥Nz.M)

Example: FV (ry(Ayz. xyz)) ={x,y}
A term with no free variable occurrences is called closed (=¥ p[74).

consistent within this course, but be aware that you may
find such different notations in the literature.

160

Definition of Substitution

M [z < N] means substitute N for z in M
L. zlx < N] =N

2. alr «+— N| = a if a is a constant or variable other than
T

PQ)lr — N] = (Pl — N|Q|z — NJ)
Az. P)lx «— N| = X\z. P

(Ay. P)lx < N| = Ay.Plz « N]ify # x and y ¢
FV(N)

6. (A\y. P)lx «— N] = Az. Ply « z|[z < N]if y # z and
y € FV(N), and z is fresh (=¥ p205)): z ¢ FV(N)U
FV(P)

3. (
4. (
D.

161

Cases similar to those for quantifiers: A binding is ‘generic]

161

wRecall the definition (=¥ pj87) of substitution for first-

order logic.

We observe that binding and substitution are some very

general concepts. So far, we have seen four binding opera-

tors: 3, V and A, and set comprehensions (=¥ p.

131)).

The

A operator is the most generic of those operators, in that it

does not have a fixed meaning hard-wired into it in the way

that the quantifiers do. In fact, it is possible to have it as

the only operator on the level of the metalogic. We will see

this later (=¥ p.

230)).

162

Substitution: Example

(x(Ax. zy)) T — A2. 2] g zlr — Az. z](Ax. xy)|x — Az 2]

i (Az. 2)A\z. 2y

| = Az ((ay)[z — 2lly «— 2))
Bz (zyly — al)

B2 NZ. 22

162

In the last example, clause @ avoids capture, i.e., Ax. zx

02f it wasn’t for clause[g], i.e., if we applied clause [5ignoring
the requirement on freeness, then (Az. zy)ly <] would be

AL TX.

163

Reduction: Intuition

Reduction is the notion of “computing”, or “evaluation”, in
the A-calculus.
frx=x+5(=Fp{ldd) ~ f=Ar.x+5
f3=3+5 ~
(Az.x4+5)(3) —p (x +5)[x 3| =345 (= pfl55
B-reduction replaces (=¥ p{l55]) a parameter by an argu-

ment'%]
This should propagate into contexts'%% e.g.

Ax.((Az.x +5)(3)) =5 A\x.(3+5).

163]n the Ad-term (Az.M)N, we say that N is an argument
(and the function Ax.M is applied to this argument), and ev-
ery occurrence of x in M is a parameter (we say this because
x is bound by the A).

This terminology may be familiar to you if you have ex-
perience in functional programming, but actually, it is also
used in the context of function and procedure declarations
in imperative programming.

164]

Ax.((Az. x +5)(3)),

the underlined part is a subterm occurring in a context. (-

reduction should be applicable to this subterm.

164

Reduction: Definition

e Axiom for f-reduction: (Az.M)N —g M|x N

166

e Rules for B-reduction of rediced *’| in contexts:

M—>5M/ M—>@M/ M—>@M/
*
NM —3 NM' MN —3 M'N Xz.M —g 2. M’ 157

e Reduction is reflexive-transitive (=¥ p[110]) closure
M —3 N M—5N N3P
M —5 N M —5 M M —5 P

e A term without redices is in G-normal form.

165 As you see, B-reduction is defined using rules (two of them

being axioms (=» pp0), the rest proper rules (=% p50))
in the same way that we have defined proof systems
for logic (=¥ pll6) before. Note that we wrote the first

axiom (=¥ p/0)) defining S-reduction without a horizontal

bar.
166[n a A-term, a subterm of the form (Az. M)N is called a

redex (plural redices). It is a subterm to which [(-reduction

can be applied.
5"T'he rule for propagating — 3 to an abstraction, let us call

it A-abstr,
M —z M’

Az M —5 Az M’

actually has a vacuous side condition:

M-abstr

2z is not free in any open assumption on which M — 3
M’ depends.

The side condition is just like for V (=» p4).
The side condition is vacuous because in the derivation

165

Reduction: Examples

(Az. Ay.gxy)ab —5 (Ay.(gay))b —s gab
So (Az. \y.gxy)ab—j;gab

system for —5 (or —7) we present here, there is no rule
involving discharging open assumptions, and thus there is
no point in making assumptions. The root of a derivation
tree for —g is always an application of the axiom for (-
reduction. When we consider —7, we may in addition have
applications of the reflexivity axiom.

However, we will have |exercises on — 4 using an Isabelle

theory called RED, and in this theory, the above rule is called
epsi and looks as follows:

"[I!tx. M(x) ——> N(x)|] ==> (lam x. M(x)) --> (lam x. N(x

Observe that there is a meta-level universal quantifier in this
rule. From the [exercises, you know that the meta-level uni-
versal quantifier corresponds to a side condition in paper-
and-pencil proofs.

Moreover, when we later look at the meta-logic (=¥ p{299

166

there will be a rule (=¥ p;311
a=0b
(Ax.a) = (Azx.b)

looking very similar to the A-abstr rule and having a side

=-abstr"

condition.

To illustrate why the side condition is needed in general,
consider a derivation system where in addition to the rules
for —5 and —7%, we also allow applications of the rule for
rules for — (=» p33) (implication) and V (=» p.??) of first-
order logic.

For the example we give, suppose that we have an en-
coding of the number 0 and the + function in the untyped
A-calculus, and that these behave as expected (in fact we will
have an showing this; in the following we use “0”
and “+7 just for simplicity and clarity; 4 is written infix).

Under these assumptions, we will now derive Azy. y+x —3
Azry.y. Before looking at the derivation tree, think about
what this says intuitively: it says that + is a function that

167

takes two arguments, ignores the first argument and returns
the second argument. Clearly, this does not correspond to
the usual definition of +! The trick in the following deriva-
tion is to smuggle in an instantiation of x, namely to force
x to be 0. The derivation looks as follows:

y+2 =5yl
A-abstr
ANY.Y+T —3 Y.y
A-abstr

AZY. Y+ T —3 ATY. Y i

(Yy+2 —py) = Ay y +2 —5 A\xy. y _;I
Ve(y+a —py) = Aoy y +x —3 Axy.y 5 (routine)
(y+0—59y) = day.y+x —s ry.y y+0—5y o
—

AZY. Y+ T —5 ATY. Y
In the above derivation, the side condition for A-abstr is
violated.
In Isabelle, such a “smuggling in” of an instantiation can be
achieved using instantiate tac, see RED wrongepsi.thy

168

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/csmr/RED_wrongepsi.thy

168

Shows Currying
(Az. zx)Ax. 2) — 5 (A2, 22) (AT 2) —058

169

Shows divergence

But (A\zy. y)(Az. xx)(Ax. z2)) —5 Ay y

and wrongepsi.ML.
18You may be familiar with functions taking several argu-

ments, or equivalently, a tuple of arguments, rather than just
one argument.

In the A-calculus, but also in functional programming, it
is common not to have tuples and instead use a technique
called Currying (Schénfinkeln in German). So instead of

writing g(a, b), we write g a b, which is read as follows: g is
a function which takes an argument a and returns a function
which then takes an argument b.

Recall that application associates to the left (=¥ p[158), so

gabisread (ga)b.
Currying will become even clearer once we introduce the

typed A-calculus (=¥ p{176)).
1\We say that a S-reduction sequence diverges if it is infi-

nite.
Note that for (Azy.y)((Az. xx)(Az. xx)), there is a finite

169

file:wrongepsi.ML

Conversion

e [-conversion: “symmetric closure” (=¥ p{110]) of g-reduction
M —5 N M =3 N
M =3 N N =M

170

e a-conversion: bound variable renaming (usually implicit

Ae.M =, A\z.M|x « z| where z & FV (M)

171

e 7-conversion: for normal-form analysis

M=, x. Mz) itx g FV (M)

B-reduction sequence
(Azy. y)(Ax. zz)(Az. 2x)) —5 Ay. y

but there is also a diverging sequence

(Azy. y)(Ax. zz)(Az. 2x)) —p (Azy. y)(Azv. zz)(Ax. zx)) —45 ...

ma-conversion is usually applied implicitly, i.e., without
making it an explicit step. So for example, one would simply
write:
N2. 2 =3 A\x. T

p-conversion is defined as
M=, x. Mz) ite g FV (M)

[t is needed for reasoning about normal forms.

gr =, Ay.gry reflects gaxb=5(\y.gzy)b

170

More specifically: if we did not have the n-conversion rule,
then gz and A\y. g x y would not be “equivalent” up to con-
version. But that seems unreasonable, because they behave
the same way when applied to b. Applied to b, both terms
can be converted to g b. This is why it is reasonable to
introduce a rule such that gz and A\y. g z y are “equivalent”
up to conversion.

One also says that the n-conversion expresses the idea of
extensionality (=¥ p{133)) [HS90, chapter 7].

Note that with the help of (G-reduction and
transitivity (=¥ p{l65]), n-conversion can be generalized to

more than one variable, i.e. M =g, Axy...2,. M x1... 7).

171

172

A-Calculus Meta-Properties
173

Confluence (equivalently?, Church-Rosser): reduction is

order-independent.
For all M, Ny, Ny, it M —5 Ny and M —5 Ny, then
there exists a P where Ny —>; P and No —>; P.

Here, «—:= (—) "1 is the inverse of —, and «»:=« U — is
the symmetric closure of —, and «<»:= («+>)* is the reflexive

transitive symmetric closure of —.

So for example, if we have
My — My — Mz — My «— M5 «— Mg — M7 «— Mg < My

then we would write M; <> M.

Confluence is equivalent to the Church-Rosser property
[BNOS, page 10].
E.g. we can derive Azyz. M xy z =g, M:

M Mzyz=,Muzy
ANyz Mxyz=g, \y Mzy Iy Mzxzy=, Mz

ANyz. Mxyz=g, Mz
Aeyz. Mxyz =g, \e. M x Ae. M x =, M
Axyz. Mxyz =g, M

For any n, we call Azy...2z,. M z1...2, an n-expansion of

172

/N

Uniqueness of Normal Forms

Corollary of the Church-Rosser property:
It M —>Z N7 and M —>; N5 where N; and N5 in normal
form, then Ny =, No.
Example:
(Azy.y)((Az. 2x)a) —5 (Azy. y)(aa) —5 Ay.y
(Azy. y)((Az. 22)a) —5 Ay.y

M.

172

By metaproperties, we mean properties about reduction

and conversion sequences in general.
1A reduction — is called confluent if

for all M, N1, No, it M —* Ny and M —* Ny, then
there exists a P where Ny —* P and Ny, —* P.

A reduction is called Church-Rosser if

for all Ny, Ny, if Ny <> Ny, then there exists a P
where N7y —* P and Ny —* P.

173

Turing Completeness

174

The A-calculus can represent all computable functions.

1 The untyped A-calculus is Turing complete. This is usu-
ally shown not by mimicking a Turing machine in the -
calculus, but rather by exploiting the fact that the Turing
computable functions are the same class as the p-recursive

functions [HS90, chapter 4]. In a lecture on theory of compu-
tation, you have probably learned that the p-recursive func-
tions are obtained from the primitive recursive functions by

so-called unbounded minimalization, while the primitive re-

cursive functions are built from the O-place zero function,
projection functions and the successor function using com-
position and primitive recursion [LPSI].

The proof that the untyped A-calculus can compute all -
recursive functions is thus based on showing that each of
the mentioned ingredients can be encoded in the untyped
A-calculus. While we are not going to study this, one crucial
point is that it should be possible to encode the natural
numbers and the arithmetic operations in the untyped A-
calculus.

174

8.2 Simple Type Theory \™

Motivation: Suppose you have constants 1, 2 with usual
meaning. Is it sensible to write 1 2 (1 applied to 2)7
A7 (simply typed A-calculus, simple type theory) restricts

syntax to “meaningful expressions”.

In untyped A-calculus, we have syntactic objects | called
terms (=¥ p{156)).
We now introduce syntactic objects called types

176

We will say “a term has a type” or “a term is of a type”.

mWe also say that we have defined a term

language (=¥ pJ156). A particular language is given by

a signature, although for the untyped A-calculus this is

simply the set of constants Const.
16\We can say that we define a type language, i.e., a language

consisting of types. A particular type language is character-
ized by giving a set of base types B. One might also call B
a type signature.

A typical example of a set of base types would be {N, bool },
where N represents the natural numbers and bool the
Boolean values L (=» p20) and T.

All that matters is that B is some fixed set “defined by the
user” .

175

Two Syntaxes

e Syntax for types (B a set of base types (=¥ p/175)), T €
B)

T:o=T | 7T — 7 (= p|ld7
Examples: N, N — N, (N - N) = NN - N —
NI

e Syntax for (raw
T80

179

terms: A-calculus (=¥ pJ156]) augmented

with types
e = (=Ppld7)z | ¢ | (ee) | (A\z".¢)

17"The type N — N is the type of a function that takes a
natural number and returns a natural number.

The type (N — N) — N is the type of a function that
takes a function, which takes a natural number and returns

a natural number, and returns a natural number.
1To save parentheses, we use the following convention:

types associate to the right, so N — N — N stands for
N — (N — N).

Recall that application associates to the left (=¥ pJ158]).
This may seem confusing at first, but actually, it turns out

that the two conventions concerning associativity fit together

very neatly.
"[n the context of typed versions of the A-calculus,

raw terms are terms built ignoring any typing

conditions (=¥ pJ/180). So raw terms are simply terms
as defined for the untyped A-calculus (=¥ pJ156]), possibly

augmented with type superscripts.
180S0 far, this is just syntax!

176

(z € Var, c € Const"™

The notation (Az".e) simply specifies that

binding (=¥ p{160) occurrences of variables in simple type

theory are tagged with a superscript, where the use of the
letter 7 makes it clear (in this particular context) that the
superscript must be some type, defined by the grammar we

just gave.
81 Var and Const are the sets of variables and constants,

respectively, as for the untyped A-calculus (=¥ p{150])).

177

Signatures and Contexts

Generally (in various logic-related formalisms) a signature
defines the “fixed” symbols of a language, and a context

defines the “variable” symbols of a language. In A7,

e a signature X is a sequence (¢ € Const (=¥ p{l77))
M= ()| S,c: T

e a context ' is a sequence (z € Var)
Fe=() | o7

183

What'’s the difference to signatures you have seen so far?

182\We call an expression of the form x : 7 or ¢ : 7 a type
binding.

The use of the letter 7 makes it clear (in this particular
context) that the superscript must be some type, defined by

the grammar we just gave.
wFor propositional logic (=% pl19)), we did not use the no-

tion of signature, although we mentioned that strictly speak-
ing, there is not just the language of propositional logic, but
rather a language of propositional logic which depends on
the choice of the variables (=% pJ19).

In first-order logic (=¥ p[70), a signature was a pair (F, P)
defining the function and predicate symbols, although
strictly speaking, the signature should also specify the ar-
ities of the symbols in some way. Recall that we did not
bother to fix a precise technical way of specifying those ari-
ties. We were content with saying that they are specified in
“some unambiguous way” .

In sorted logic (=¥ p{135), the signature must also specify

178

Type Assignment Calculus

We now define type judgements: “a term has a type” or “a

term is of a type”. Generally this depends on a signature X
and a context I'. For example

184

['Fycx:o

where X =c:7 —ocand['=2x: 7.
We usually leave X implicit and write F instead of Fy.
If ' is empty it is omitted.

the sorts of all symbols. But we did not study sorted logic
in any detail.

In the untyped A-calculus, the signature is simply the set
of constants (=¥ pJ156]).

Summarizing, we have not been very precise about the

notion of a signature so far.

For A7, the rules for “legal” terms become more tricky,
and it is important to be formal about signatures.

In A7, a signature associates a type with each constant
symbol by writing ¢ : 7.

Usually, we will assume that Const is clear from the con-
text, and that > contains an expression of the form c : 7 for
each ¢ € Const, and in fact, that X is clear from the context
as well. Since X contains an expression of the form ¢ : 7 for
each ¢ € Const, it is redundant to give Const explicitly. It

is sufficient to give ..
18The expression

I'Fycx:o

179

185

Type Assignment Calculus: Rules

is called a type judgement. It says that given the signature

Y =c: 7T — o and the context [' = z : 7, the term
c x has type o or
c x is of type o or
c x is assigned type o.
Recall that you have seen other judgements (=% pJ49)) be-

fore.
s Type assignment is defined as a system of rules for

deriving type judgements (=¥ pJ179), in the same way
that we have defined derivability judgements (=% pJ9) for
logics (=¥ p|16), and F-reduction (=¥ pJL65)) for the untyped
A-calculus.

180

0:76@2 187

assum Uex:7,AFx:7 hyp

I'Fe:T
. . N .
Fl—e.a—>7/F|—e'.0app Na:o™Fe:T e
['Fee: T I'EXxl.e:o—T

wRecall that X is a sequence (=¥ p{181)). By abuse of no-
tation, we sometimes identify this sequence with a set and

allow ourselves to write ¢ : 7 € ..
We may also write ¥ C ¥/ meaning that ¢ : 7 € X implies
c:teY
187One could also formulate hyp as follows:
rz.:7el

h
I'Fax:T P

That would be in close analogy to LF', a system not treated

here.
188 A sequence is a collection of objects which differs from sets

in that a sequence contains the objects in a certain order, and
there can be multiple occurrences of an object.

We write a sequence containing the objects o4, ..., 0, as
(01, ...,0p), or sometimes simply oy, ..., 0y

If Q is the sequence o1,...,0,, then we write €2, 0
for the sequence (o1,...,0,,0) and o,€) for the sequence

181

—

39

Note that rule abs is deterministiq ®”|when applied bottom-

up.

(0,01, ...,0p).
An empty sequence is denoted by ().
S (=¥ p{l78)ignatures and contexts are sequences, and in-

tuitively, the order in which the type bindings (=¥» p|178]) oc-

cur in these sequences does not matter.

Now, the way we have set up the type assignment calculus,
it would seem that the order does matter, namely since in
rule abs, the binding x : o above the horizontal line must be
the last binding in the context. An alternative formulation

would be
o, AFe:T

VAF XN e co— T

However, the original formulation is more straightforward in

abs

light of the fact that type derivations are usually constructed
bottom-up. The bottom-up application of the original abs
is deterministic, whereas the alternative formulation would
confront us with the choice of how to split up the context.
For example, we could start a derivation of y : p, 2z : w

182

190

Also note the analogy to minimal logic over —

Ax?.c . 0 — T in three ways:
T o,y:p,ziwke:T

y:p,z:wl—)\x".cza—w'abs
o y:p,x .0,z wkc:T

y:p,z:wl—A:U".c:a—w'abS
or

y:p,ziw,x:obc:T

y:p,z:wl—)\x".cza—w'abs

mwRecall the sequent rules (=¥ pp0) of the “— /A" frag-
ment of propositional logic. Consider now only the “—7
fragment. We call this fragment minimal logic over —.

If you take the rule
Ce:7,AFxz:7 hyp
of A7 and throw away the terms (so you keep only the types),

183

(-Reduction in A~
B-reduction defined as before (=¥ pJ165)), has subject reduc-

you obtain essentially the rule for assumptions
' A (where AeT) (= plo)

of propositional logic.
Likewise, if you do the same with the rule
'Fe:o—7 T'kHe 0o

app
I'Fee: 7
of A7, you obtain essentially the rule
'FA—-B T'HA
—-B

I'-B

(=» pp0)of propositional logic.
Finally, if you do the same with the rule
x:okFe:T

' Xzl e :U_”_abs

of A7, you obtain essentially the rule

ATFB
'-A4—B

I

184

(=» p[0)of propositional logic.

Note that in this setting, there is no analogous proposi-
tional logic rule for

c:TEX

I'Fe: T

So for the moment, we can observe a close analogy between

assuin

A7, for XJ being empty, and the — fragment of propositional

logic, which is also called minimal logic over — (=¥ p{183).

Such an analogy between a type theory (of which A7 is

an example) and a logic is referred to in the literature as
Curry-Howard isomorphism [Tho91]. One also speaks of

propositions as types [GLT89]. The isomorphism is so fun-

damental that it is common to characterize type theories by
the logic they represent, so for example, one might say:

A~ is the type theory of minimal logic over —.

Note that for this analogy, it is quite crucial that we have
no constants (3 is empty). Namely, this condition implies
that for some types, we cannot give a closed (=¥ p{160]) term

185

191 192

tion property | and is strongly normalizing

that has this type. For example, we can give a closed term
of type 7 — ¢ — 7, namely Azy. z, while we cannot give a
closed term of type (1 — 7) — 7. Wesay that 7 — 0 — 7
is inhabited (=¥ p{379) while (7 — 7) — 7 is not inhabited.

The inhabited types correspond exactly to the formulas
that are derivable in minimal logic over —, and the inhab-

iting term is regarded as a proof.
wSubject reduction is the following property:

reduction (=¥ p{165)) does not change the type of a term, so
if ks M :7and M —3 N, then Fxy N @ 7.
192The simply-typed A-calculus, unlike the untyped -

calculus (=¥ p{154)), is normalizing, that is to say, every term

has a normal form. Even more, it is strongly normalizing,
that is, this normal form is reached regardless of the reduc-
tion order.

186

Example 1

hyp

r.o0,y.7THx:0o

abs

r:oFXN.x:T—>0

abs

FX? ANy 0 — (T — o)

Note the use of schematic typed

193|

For simplicity, applications of hyp (=¥ p{180)) are usually

not explicitly marked in proof.

193] this example, you may regard o and 7 as base types
(this would require that o,7 € B), but in fact, it is more
natural to regard them as metavariables standing for arbi-

trary types. Whatever types you substitute for o and 7, you

obtain a derivation of a type judgement.

This is in analogy to schematic derivations in a

logic (=¥ p39).

Note also that ¥ (=¥ p.

and hence arbitrary:.

178

is irrelevant for the example

187

Example 2

'=f:0—0—>T12:0

I'rf:o—0—7 I'Fx:0
app

'cfx:o—r7 I'Fx:0
I'Efoxax: 7
fio—mo—T17FXN. frx.:0—T

FAfOTOTT N frx (0 >0 —T) >0 —T

app

abs

abs

188

Example 3
Y =fi0—>0—T
I'=2:0

fio—0—-TEY

assum
I'f.0—0—1 I'Fx:0

I'-frx.o—r 'Fx:o
' faxx: T
Note that this time, f is a constant|™"|

We will often suppress applications of assum (=¥ p{180)).

win Example 3, we have f : 0 — 0 — 7 € X, and so f is
a constant (=¥ pJ178).
In Example 2, we have f : 0 - 0 — 7 €1, and so f is a
variable (=¥ p{178).
Looking at the different derivations of the type judgement
'+ fxax: 7in Examples 2 and 3, you may find that they

are very similar, and you may wonder: What is the point?
Why do we distinguish between constants and variables?

In fact, one could simulate constants by variables. When
setting up a type theory or programming language, there
are choices to be made about whether there should be a dis-
tinction between variables and constants, and what it should
look like. There is a famous epigram by Alan Perlis:

One man’s constant is another man’s variable.

For our purposes, it is much clearer conceptually to make
the distinction. For example, if we want to introduce the nat-
ural numbers in our A~ language, then it is intuitive that
there should be constants 1,2, ... denoting the numbers. If

189

http://en.wikiquote.org/wiki/Alan_Perlis

Type Assignment and afn-Conversion

Type construction:

e Type construction | is decidable.

e There is a practically useful implementation for type-
construction (Hindley-Milner algorithm W [Mil78,[NN99]).

Term congruence™| (e =,3, €7 (= pJ170)) is decidable.

1,2, ... were variables, then we could write strange expres-

2N —N

sions like A .1, so we could use 2 as a variable of type

N — N.

1w Type construction is the problem of given a %, I' and e,
finding a 7 such that X, I' Fe: 7.
Sometimes one also considers the problem where I' is un-

known and must also be constructed.
wiqyFn-conversion is defined as for A7 (=¥ pJ170)). Given

two (extended) A-terms e and €', it is decidable whether

/
€ —afn €.

190

8.3 Polymorphism and Type Classes

We will now look at the typed A-calculus extended by

polymorphism (=¥ pJ192) and type classes (=¥ pJ195)).

As we will see later (=¥ p209)), this is the universal repre-

sentation for object logics in Isabelle.

191

Polymorphism: Intuition

In functional programming, the function append for con-
catenating two lists works the same way on integer lists and
on character lists: append is polymorphid™’|
Type language (=¥ p{175) must be generalized to include

type variables (denoted by «, 3. ..) and type constructors.

Example: append has type a list — o list — « list, and
by type instantiation, it can also have type, say, int list —
int list — int list.

w[n functional programming, you will come across func-
tions that operate uniformly on many different types. For
example, a function append for concatenating two lists works
the same way on integer lists and on character lists. Such
functions are called polymorphic.

More precisely, this kind of polymorphism, where a func-
tion does exactly the same thing regardless of the type in-
stance, is called parametric polymorphism, as opposed to

ad-hoc polymorphism (=¥ p{196)).

In a type system with polymorphism, the notion of base

type (= p{176) (which is just a type constant, i.e., one sym-

bol) is generalized to a type constructor with an arity > 0.

A type constructor of arity n applied to n types is then a
type. For example, there might be a type constructor list of
arity 1, and ent of arity 0. Then, int list is a type.

Note that application of a type constructor to a type is
written in postfix notation, unlike any notation for function
application we have seen (=¥ pl68). However, other conven-

192

Polymorphism: Two Syntaxes

e Syntax for polymorphic types (B a set of type construc-
torg ¥ including —), T € B, « is a type variable)

To=a | (1,...,7) T (=» p[157

Examples: NN — (=¥ p/176)N, « list, N list, (N, bool) pair.

e Syntax for (raw (=» p{176))) terms as before (=¥ p|176):
e m= (Fpllb7)z | ¢ | (ee) | (Ax” (=¥ p{L76 .€)
(z € Var, c € Const (=¥ p{l77))

tions exist, even within Isabelle (=¥ p201]).

A type constructor of arity > 0 is called type operator by
some authors [GM93, page 196], but we do not follow this
terminology. Also, those authors say type constant for what

we call “type constructor” (i.e., of arity 0 as well as > 0),
but again, we do not follow this terminology: for us a type
constant has arity 0.

See [Pau96], Tho95b), Tho99] for details on the polymorphic

type systems of functional programming languages.
1w Ag before (=¥ p{l75), we define a type language, i.e., a

language consisting of types, and a particular type language
is characterized by giving a certain set of symbols B. But
unlike before, B is now a set of type constructors. Each

type constructor has an arity associated with it just like a
function in first-order logic (=» p[70)). The intention is that
a type constructor may be applied to types.

Following the conventions of ML [Pau96], we write types
in postfix notation (=¥ pl68), something we have not seen

193

Polymorphic Type Assignment Calculus
Type substitutions (denoted ©) defined in analogy to sub-

stitutions in FOL'™| Apart from application of © in rule

assum, type assignment is as for A~ (=¥ p180)):
c:T € (=FplI81)X

assum® e:7,AFx:7 hyp (= p{l8l]

I'Fe: 706

- = .o (=»pll&l) Fe:T
Fl—e.a—w'/Fl—e.aapp (p he

['Fee: T I'EFXx?.e:o—T

*: © is any type substitution.

before. I.e., the type constructor comes after the arguments

it is applied to.
It makes perfect sense to view the function construction

arrow — as type constructor (=¥ pj201)), however written

infix rather than postfix.
So the B is some fixed set “defined by the user”, but it

should definitely always include —.
wA type substitution replaces a type variable by a type,

just like in first-order logic (=¥ p[87), a substitution replaces
a variable by a term.

194

Type Classes: Intuition

200

Type classeg™"| are a way of . ..

20Type classes are a way of “making ad-hoc
polymorphism (=¥ pl196)) less ad-hoc” [HHPW96, WBS&9).
Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are
defined.

For example, for some types, a symbol < (which is a binary
infix predicate (=¥ pl68)) may exist and for some it may not,
and we could have a type class ord containing all types for
which it exists.

Suppose you want to sort a list of elements (smaller el-
ements should come before bigger elements). This is only
defined for elements of a type for which the symbol < exists.

Note that while a symbol such as < may have a similar
meaning for different types (for example, integers and reals),
one cannot say that it means exactly the same thing regard-

less of the type of the argument to which it is applied. In
fact, < has to be defined separately for each type in ord.

This is in contrast to parametric poymorphism (=¥ p{192)),

195

“making ad-hoc polymorphism“Y|less ad-hoc” [HHPW96, WBS&9].
Type classes are used to group together types with certain

properties, in particular, types for which certain symbols are
defined.

We only sketch the formalization here, and refer to [HHPW96),
Nip93, NP93] for details.

but also somewhat different from ad-hoc

polymorphism (=¥ p196): The types of the symbols must

not be declared separately. E.g., one has to declare only
once that < is of type (a :: ord (=¥ p{197), a).
201 Ad-hoc polymorphism, also called overloading, refers to

functions that do different (although usually similar) things
on different types. For example, a function < may be defined
as 'a’ < 'b’... on characters and 1 < 2... on integers.
In this case, the symbol < must be declared and defined
separately for each type.

This is in contrast to parametric pomorphism (=¥ p{192)),

but also somewhat different from type classes.

Type classes are a way of “making ad-hoc polymorphism
less ad-hoc” [HHPWO96|, WBR&9J].

196

Type Classes in Isabelle

e Syntactic classeg”"?

(similarly as in Haskell): E.g., de-
clare that there exists a class ord which is a subclass of
class term, and that for any 7 :: ord, the constant <

is defined and has type 7 — 7 — bool. Isabelle has
syntax for this.

202A gyntactic class is a class of types for which certain
symbols are declared to exist. Isabelle has a syntax for such
declarations. E.g., the declaration

sort ord < term

const <= : [’a::ord, ’al] => bool
may form part of an Isabelle theory file. It declares a type
class ord which is a subclass (that’s what the < means; in
mathematical notation it will be written <) of a class term,
meaning that any type in ord is also in term. We will write
the “class judgement” ord < term. The class term must

be defined elsewhere.

The second line declares a symbol <=. Such a declaration
is preceded by the keyword const. The notation « :: ord
stands for a type variable constrained to be in class ord. So

<= is declared to be of type [« :: ord, a] = bool, meaning
that it takes two arguments of a type in the class ord and
returns a term of type bool. The symbol =(=>) is the

function type arrow (=¥ p(176) in Isabelle. Note that the

197

205

e Axiomatic classeq”™”| Declare (axiomatize) that certain

theorems should hold for a 7 :: kK where & is a type class.

E.g., axiomatize that < is reflexive by an |(Isabelle) the-

orem| "z < 2”. Isabelle has syntax for this (=¥ p|198).

second occurrence of « is written without :: ord. This is
because it is enough to state the class constraint once.
Note also that [« :: ord, a] => bool is in fact just another
way of writing a :: ord => «a => bool, similarly as for
goals (=¥ p250)).

Haskell [HHPW96] has type classes but ML [Pau96] hasn’t.
203[n addition to declaring the syntax of a type class, one

can axiomatize the semantics of the symbols. Again, Isabelle
has a syntax for such declarations. E.g., the declaration

axclass order < ord
order_refl: ’’x <= x 7’
order trans: ’’[| x <=y; y <=z |] ==> x <=

may form part of an Isabelle theory file. It declares an
axiomatic type class order which is a subclass of ord de-
fined above.

The next two lines are the axioms. Here, order_refl

and order_trans are the names of the axioms. Recall that

198

204

To use a class, we can declare memberg™”| of it, e.g., N is

a member of ord.

— is the implication symbol in Isabelle (that is to say, the
metalevel implication).

Whenever an Isabelle theory declares (=¥ pi199)) that a
type is a member of such a class, it must prove those ax-

ioms.

The rationale of having axiomatic classes is that it allows
for proofs that hold in different but similar mathematical
structures to be done only once. So for example, all theorems
that hold for dense orders can be proven for all dense orders

with one single proof.
2040ne also speaks of a type being an instance of a type

class, but this is slightly confusing, since we also say that a

instance of a, since afa «+— (N — N)] = N — N (= p(194)).
So it is better to speak of a member of a type class.

type can be an instance of another type, e.g., N — N is an

I[sabelle provides a syntax for declaring that a type is a
member of a type class, e.g.

instance nat :: ord

199

Syntax: Classes, Types, and Terms

Based on

200

e aset of type classes™?|, say KC = {ord, order, lattice, ...},

e a set of type constructorg””’| say

declares that type nat is a member of class ord.

If the class k is a syntactic class, such a declaration must
come with a definition of the symbols (=¥ p{197) that are
declared to exist for .

In addition, if k is an axiomatic class, such a declaration
must come with a proof of the axioms.

If a type 7 is (by declaration) a member of class k, we write

the “class judgement” 7 :: K.
205The set K we gave is incomplete and just exemplary.

So the set of type classes involved in an Isabelle theory is
a finite set of names (written lower-case), typically including
ord, order, and lattice.

We have seen some Isabelle syntax for declaring the type

classes previously (=¥ p{197)).

In grammars and elsewhere, k is the letter we use for “type

class”.
2 Ag before, the set B we gave is is incomplete (there

44

are “...”) and just exemplary. We might call B a type

200

B = {bool, . — | ind, _ list, _set ...},

e a set of constants (=¥ p|l77) Const and a set of
variables (=¥ pi177) Var,

we define

signature (=¥ pJ175)).
Note also that an _ is used to denote the arity of a type
constructor (=¥ pJ192).

— _ list means that [zst is unary type constructor;

— _— _means that — is a binary infix type constructor.

The notation using _ is slightly abusive since the _ is not
actually part of the type constructor. _ list is not a type
constructor; [ist is a type constructor.

So the set of type constructors involved in an Isabelle the-
ory is a finite set of names (written lower-case) with each
having an arity associated, typically including bool, —, and
list. Note however that bool is fundamental (since object
level predicates are modeled as functions taking terms to

a Boolean), and so is —, the constructor (=¥ pl201)) of the

function space between two types (=¥ pJ176]).

In grammars and elsewhere, T is the letter we use for “type

constructor”.
207[n A7, types were built from base types using a “special

201

203|.

e Polymorphic typeg™|
T o= (Fpd) o | k| (1,...,7)T
e Raw (=¥ p(176]) terms (as before (=¥ p176))):

e = (pllE) z | ¢ | (ee) | (A" (=> {76 .e)
(a is type variable, T € B (=» p200), x € K (=¥ p200)),
x € Var, c € Const (=¥ p{l77))

symbol” — (=¥ pJ170)).
When we generalize A™ to a A-calculus with polymor-

phism, this “special symbol” becomes a type constructor.

However, the syntax is still special, and it is interpreted in a

particular way (=¥ p{176)).
wr = (=dpd7) @ | azn | (7,...,7) T
(av is type variable)

is a grammar defining what polymorphic types are (syn-
tactically). As before (=¥ pl178|), 7 is the non-terminal we
use for (now: polymorphic) types.

This grammar is not exemplary but generic, and it deserves
a closer look.

A type variable is a variable that stands for a type, as
opposed to a term. We have not given a grammar for type

variables, but assume that there is a countable set of type
variables disjoint from the set of term variables. We use « as
the non-terminal for a type variable (abusing notation, we

202

Type Assignment Calculus with Type Classes

Assume some syntax for declaring 7 :: k (=¥ p{199) and k <
k' (=¥ pf197). In addition introduce the rule

ToK K <K

T K

subclass

Type assignment rules as before (=¥ pJ194)), but type substi-

tution © in

c:T € (=FplI81)X
['Fe: 70

must respect class constraints (=¥ p/197): for each a =@ &

assuin

occurring in 7 where a© = o, judgement (=¥ p200) o :: Kk
must hold.

often also use « to denote an actual type variable).
First, note that a type variable may be followed by a class
constraint (=¥ p{197)) :: k (recall (=¥ p200)) that & is the non-

terminal for type classes). However, a type variable is not

necessarily followed by such a constraint, for example if the
type variable already occurs elsewhere and is constrained in
that place. We have already seen this (=¥ pl197).

Moreover, a polymorphic type is obtained by preceding a

type constructor with a tuple of types. The arity of the tuple
must be equal to the declared arity of the type constructor.

It is not shown here that for some special type constructors,
such as —, the argument may also be written infix.

203

Example

Suppose that by virtue of declarations, we have N :: order,
order < ord, and <: a :: ord — o — bool € . Derive

N :: order order < ord

N - ord subclass

and then (© = [«+ NJ)
(<:(a:ord) — a— bool) € ¥
F<:N — N — bool

assulin

which respects the class constraint since the judgement N ::
ord was derived above.

204

8.4 Higher-Order Unification

The A-calculus is “the” (=¥ p153)) metalogic. Hence we
now (sometimes) call its variables “metavariables” (=» p{31])
for emphasis and we precede them with “?”. E.g. they can
stand for object (=¥ p31])-level formulae (=¥ pl21]). More de-
tails later (=¥ p[209).

Two issues concerning metavariables are:
209

e suitable renamingg™”| of metavariables;

210

e unification | before rule application.

209\Whenever a rule is applied, the metavariables occurring
in it must be renamed to fresh variables to ensure that no

metavariable in the rule has been used in the proof before.
The notion fresh is often casually used in logic, and it

means: this variable has never been used before. To be

more precise, one should say: never been used before in the

relevant context.
20 The mechanism to instantiate metavariables as needed is

called (higher-order) unification. Unification is the process
of finding a substitution (=¥ pJ161)) that makes two terms

equal.
We will now see more formally what it is and later also
where it is used (=¥ p242)).

205

What Is Higher-Order Unification?

Unification of terms e, ¢”: find substitution (=» p{159)) 6 for

metavariables such that e =,3, €'6.
o1

Examples

X +7Y =afp T +
'P(z) =apy ¢ + @
fO0X) =45, Y
PG) = [(9())
Why higher-order (=¥ p233)? Metavariables may be in-
stantiated to functions, e.g. [TP «— Ay.y + y].

211

A solution for 7X +7Y =43, * + xis [7X 2,7 « 1.
A solution for ?7P(x) =45, * + x is [?P «— (Ay.y +y)].
A solution for f(?Xx) =43,7Y z is [7X «— (A2.2),7Y «
.

Three solutions for ?F(?G x) =3, f(g(x)) are

PF — f, 7G « ¢,

PF — (A\x.f(gz)), 1G «— (A\z.7)],

PF — (A\r.x), 7G — (A\x.f(gx))],

206

Higher-Order Unification: Facts

e Unification modulg”*?|a,3 (HO-unification) is semi-decidable

(in Isabelle: incomplete).

e Unification modulo /37 is undecidable (in Isabelle: in-
complete).

e HO-unification is well-behaved for most practical cases.

e Important fragments (like HO-patterns (=¥ p289))) are
decidable.

e HO-unification has possibly infinitely many solutions.

We will look at some of these issues again later (=¥ p[280)).

22{Jnification of terms e, ¢’ modulo a3 means finding a sub-
stitution € for metavariables such that 6(e) =.3 0(¢€’).
Likewise, unification of terms e, ¢’ modulo aeGn means find-

ing a substitution o for metavariables such that o(e) =.g,
o(e).

207

8.5 Summary on A-Calculus

A-calculus is a formalism for writing functions (=¥ p{154)).

B-reduction (=¥ pi165)) is the notion of “computing” in A-

calculus.

A-calculus is Turing-complete (=¥ p174]).

A7 (=¥ p{l75)) restricts syntax to “meaningful” A-terms.

Extension of typed A-calculus (=¥ p[191]) used to represent

syntax of object logics. A-terms

213

formulae, possibly containing “distinguished occurrences” (=¥ p.

stand for object terms/-

of (object) variables. This will be explained thoroughly next

lecture (=¥ p,209).

HO-unification (=¥ p205|) important in constructing proofs.

114

2330 just like first-order logic (=¥ p[70)), the A-calculus has
a syntactic category called terms. Bit the word “term” has a

different meaning for the A-calculus than for first-order logic,

and so one can say A-term for emphasis.

Note that at this stage (=¥ p.

304

, we have no syntactic

category called “formula” for the A-calculus.

208

9 Encoding Syntax

209

Metatheory: Motivation

Previously (=¥ p{152)), we have seen the (polymorphically (=¥ p.

typed A-calculus (=¥ pJ175)) (with type classes (=¥ p{195))).

Now, we will see how the typed A-calculus can be used as
14

a metalanguage (=¥ pJ117)) for representing
an object logic, e.g. first-order logic (=¥ p[63).
Idea: An object-level proposition is a meta-level term.

the syntax of

Metalogic type o for propositions.

The terms of type o encode object level propositions: ¢ €
Prop iff "¢ : g*7)

192

Later (=¥ p[299): How do we represent the proofs/provability?

21l the following, we will distinguish between the object

logic and the metalogic. We have already seen this kind of
distinction before (=¥ p[31]).

The object logic, or user-defined theory if you like, has
a syntax and has a notion of proof. Both must be repre-
sented in the metalogic. This is what this lecture and a later
lecture (=¥ p299)) are about.

215

¢ € Prop it "¢ € o means: The object level formula
¢ is a well-formed (according to the syntactic rules of the
object logic) proposition if and only if its encoding in the
metalogic, written "¢, has type o.

210

Why Have a Metalogic?

Why should we have a meta- or framework logic rather than

implementing provers for each object logic individually?
716

+ Implement ‘core]°| only once

217

+ Shared support for automation

213

+ Conceptual framework | for exploring what a logic is

But

+/— Metalayer'”| between user and logic

220

— Makes assumptiong”*”| about structure of logic

9.1 \7: Review

26By the core we mean the syntax and proof rules of the

metalogic. These should be simple, so that one can be rea-

sonably confident that the implementation is correct.
27There are some general techniques involved in automating

the search for a proof that work for various object logics. It
is therefore useful to implement these techniques on a higher

level, rather than considering each object logic individually.
25By implementing various object logics within the same

metalogic, we can compare the object logics in a more formal
way.

2vHaving a logic and a metalogic can be very mind-boggling.
We already experienced that when working with Isabelle, it is
sometimes confusing to know whether we are at the level of a
particular theory, or at the level of general Isabelle syntax, or
at the level of ML, the programming language that Isabelle

is implemented in.
20Designing a metalogic is a bold endeavor.

How are we supposed to know that the metalogic is ex-
pressive enough to encode any object logic someone might

211

A~ is sufficient for presentation here (no polymorphism (=¥ p.

type classes (=¥ pi195))).

e Syntax for types (B a set of base types (= p{l75), T €
B)

To=T | 7— 7 (= pllH7
Examples: N, N — (= pl/l7¢)N, (N — N) — N,
N—N— N (=p[l76

e Syntax for terms: A-calculus (=¥ p{156|) augmented with
types (=¥ p{l76

e = (=Ppld)z | ¢ | (ee) | (A\z".¢)
(x € Var, c € Const (=¥ p{l77))

192

invent?

There is probably no general satisfactory answer to this
question.

In fact, we make assumptions that object logics are of a
certain kind.

This is related to the nature of implication. Roughly
speaking, we assume logics and proof systems for which the
deduction theorem holds, i.e., for which A = B (B is deriv-
able under assumption A) holds if and only if - A — B

(A — B is derivable without any assumption).
There are logics (modal, relevance logics) for which the
theorem does not hold [BMO0].

212

Type Assignment

e Signature (=» p{178) X = () | X,c: 7 (=» p[l78).

e Context (= p/l78) ' = () | ',z : 7 (=» p[I78).

e Type assignment rules (=¥ p|180

C:TE X
—Fl—c:Tassum Ue:7,AFx:7 hyp
'Fe:o—71 T'kHe:0o Nex:okFe:T
app
'Fee 7 FI—)\:CU.G:U—M'abS

213

9.2 Representing Syntax of Propositional Logic
Let Prop®{ be our object logic (=¥ p210)):
P = (*plld)z | -P | PN\P | P—P

Let A™ be our metalogic (=¥ p210)). Declare
o B= {0} (= ppI0).

222).

e Signature (=¥ p[178) assigns types to constants

¥ = (not:o0—o,and:0— 0— 0,imp:0— 0— 0)

21\We consider here the fragment of propositional logic con-

taining the logical symbols (=¥ pl108)) =, A, —, and we call

it Prop. We chose this small fragment because it is sufficient
for our purposes, namely to demonstrate how encoding syn-
tax in A~ works. It would be trivial to adapt everything in

the sequel to include V or L (=» p20).
22Now the object/meta distinction starts becoming mind-

boggling!
We declare

¥ ={(not:0—o,and:0— o0 — o0,imp:0— 0— 0),

and so on the level of our metalogic (=¥ p{210) A, not, and,

and ¢mp are constants (=¥» p|178|). However, these constants

represent the logical symbols (=» p{10§) of the object logic.

Note the types of the constants:
not has type o — o, so it takes a proposition and returns a
proposition.
and and imp have type o — o0 — o0, so each takes

two (=¥ p{169) propositions and returns a proposition.

214

225

e Context (=¥ p|178|) assigns types to variabled

This approach is called first-order syntax (see later (=¥ p[234

23\We identify metalevel variables and object level proposi-
tional variables. Hence I' should contain expressions of the
form a : o, where a is a A\~ variable, representing a propo-
sitional variable. Note that under this agreement, I" should
not contain expressions like, e.g., a : 0 — o.

215

Digression: Programming Languages

A7 is the theory underlying typed functional programming.
Our declaration of B and 2 on the previous slide corresponds
to the declaration of an algebraic datatype (=¥ p[616) in a
functional programming language [Pau96]:

datatype Prop =
VarIngect of Variable | not of Prop
| and of Prop % Prop | imp of Prop x Prop

216

Example of First-Order Syntax
774

a:ot imp (nota)a:d

a:oFnot:o—o a:olFa:o
a:obFimp:0—0—o0 a:okFnota:o

a:ob imp(nota):o— o a:oba:o

a:ob imp(nota)a: o

Applications of hyp (=¥ p{187) and assum (=¥ p189)) sup-
pressed. Otherwise always rule app (=¥ p{180)).

21q: 0 F imp (not a) a : o is a judgement (=¥ pJ179) in

A7, which may or may not be provable.

If we set up everything correctly and if a : o F
imp (not a) a : o is provable, then the judgement repre-
sents the fact —a — a is a proposition.

In this sense, we could then say that derivability in A™
captures the syntax of Prop, i.e., it can distinguish a legal
proposition from a ‘“non-proposition”.

Note that this has nothing to do with the question of
whether it is a true proposition! So far, we are only talk-
ing about the representation of syntax.

217

Non-example of First-Order Syntax
775

a:ot not(impa)a:d

a:oFmmp:o—0—0 a:o0kFa:o

a:oFnot:o—o a:oFimpa:o—o
777

226.)

No proof possible! (Requires analysis of normal forms

25 . 0 F not (imp a) a : ois a judgement (=¥ pJ179) in

A~ which may or may not be provable.

If we set up everything correctly and if a : o F
not (imp a) a : o is provable, then the judgement repre-
sents the fact that (— a)—a is a proposition.

However, you may observe that (— a)—a is gibberish.
In fact, there is no formal sense whatsoever in saying that
not (imp a) a corresponds to (— a)—a.

We will see that a : o F not (imp a) a : o isn’t prov-
able, and this reflects the fact that there is no proposition

represented by not (imp a) a.
26(Generally, it is difficult to prove that a proof of a given

judgement within a given proof system (=¥ pJl6) does not
exist, since there are infinitely many possible proofs and it is
not obvious to predict how big an existing proof might be.
However, under certain conditions, there are techniques
for simplifying proofs. In fact, there may be normal form

proofs, i.e., proofs simplified as much as possible. One can

218

Bijection between Prop and o
727

We desire bijection|"-7: Prop — o that is

e adequate: each proposition in Prop can be represented
by a A™-term of type o:

If P€ Propthen'"P"':0

e faithful: each A™ term of type o represents a proposition

in Prop:
IfTFt:o0then "t € Prop

then argue: if a proof of a certain judgement exists, it must
be no bigger than a certain size. By searching through all
proofs smaller than this size, one can prove that no proof
exists.

In this lecture, we do not go into the details of this topic

|GLT89, [Pra65].
27]n general mathematical terminology, a bijection between

Aand Bisamapping f : A — Bsuch that foralla,a’ € A,
where a # a’, we have f(a) # f(a'), and for each b € B,
there exists an a € A such that f(a) =b.

For a bijection f, the inverse f~! is always defined, and we
have f(f~'(b)) =bfor all b € B and f~'(f(a)) = a for all
a € A.

219

Adequacy of Bijection

Example: (—a) — b € Prop therefore imp (not a) b : o

Formalize mapping -

[p—

x x for x a variable
"—P'" = not" P
I_P \ Q—I — and I_P—I I_Q—I
I_P — Q_I — Zmp I_P—I I_Q_I
Formal statement accounts for variables:
If P € Prop, and if for each propositional variable x in P,
we have z : 0 € I', then I' = " P : 0. Proof by induction>9,

28][f P € Prop, and if for each propositional variable z in
P, wehavex: o€l then'F"P": 0.

Proof: By structural induction on Prop.

Base case: P is a propositional variable.
Then "P' = P, and so if P : 0 € I, then we have I' -
"P7: 0 by rule hyp (=¥ p{180).

Induction step: Suppose the claim holds for P € Prop and
Q) € Prop.

Consider the propositional formula =P. We have " =P ' =

not "P. Assume that for each propositional variable x
in P, we have x : o € I'. DBy the induction hypoth-
esis, ' = TP : o. Moreover I' = not : o — o by
rule assum (=¥ p{I80), and so I' = not "P7 : o by rule
app (=¥ p{180).

Now consider the propositional formula P A). We have
"PAQ"=and "P'"(Q'. Assume that for each propo-
sitional variable x in P or (), we have x : o € I'. By the
induction hypothesis, ' F"P1:o0and I' " Q' : 0. More-

220

Faithfulness of Bijection

Define -1
FxT—I
"ot P71
Tand P Q71
Timp P Q7!

For bijection (=¥ pJ2

= X
_|I_P—|—1

I—P—l—l A I_Q—I—l
I_P_|—1 N I_Q—I—l

19

for x a variable

. should have ""P77-1 = P and

=17 = ¢, Former is trivial”®’, but what about latter?

over I' = and : 0 — 0o — o by rule assum (=¥ p{180)),

and so I' = and "P"' "Q" : o by two applications of rule

app (=¥ p{180).

The case P — () is completely analogous.

29By the definition of Prop (=¥ p214) and the definition
of T-7 (=¥ p20)), it is clear that " P is defined for all P €
Prop. 1t is very easy to show by induction on Prop that

rrpai-1 . p

Here is an example of a proof by induction on

Prop. (=¥ p220

Obviously, everything we say here depends on the partic-

ular fragment (=¥ p.

214

of propositional logic, but in an

inessential way. It would be trivial to adapt to other frag-

ments.

221

t7-! Is not Total

Example: For t = not (Ax°. x)a), we have a : 0ot : 0

a:o,r:o0kFx:o0

abs
a:oFXxl.x:0— o0 a:okFa:o

app
a:obknot:o—o a:obF (Ax°.z)a:o

a:oF not((Az°.x)a): o

app

But "¢ 7! is undefined!

222

Normal Forms

If ¢ : o, then there exists a ¢’ such that t =3, (=¥ p[170)¢',
730

where t' : 0 and ¢’ is in canonical (8n-long) normal™"| form,

e.g.

not ((Ax°.) a) =3, nota
not =g, Ax’.notw
imp (not (Azx°.x)a)) =g, Ax’.imp (nota)zx

230

A canonical n-long normal form of a A-term is obtained

by applying first G-reduction as long as possible, and then

computing the maximal n-expansion (=¥ p[170)).

You may wonder: Why is there such a thing as a
maximal n-expansion? Can’t | expand a A-term to
AT1...Z,. M xq... 2, for arbitrary n? In the untyped A-
calculus, this is indeed the case. But in the typed A-calculus,
the answer is no! Consider this example:

not can be expanded to Ax. not x since not is of function

type: it has type o — o (=¥ p214)). Therefore, not x can be

assigned a type (=¥ p{180)), which is an intermediate step in

typing Ax. not x:
[x:oFnot:o—o0 I''z:oFx:0

app
[x:okFnotx:o

FI—)\x.notxzo—>oabS

But we cannot, say, expand not to Ary.not x y since it is
impossible to assign a type to not x y.

223

Bijection Theorem

The encoding "- 7 is a bijection between propositional for-
731

mulae with variables in I]
I'Et o
Proof: Based on normalization (=¥ p218

and canonical terms t', where

r.ole:T abs
FAx?.e o0 —T Feé o
- (Ax?.e)e T =3 Felr €T
Corollary: If t : ™| then ¢t =g, t' and "¢'7~! € Prop for

some canonical t'.
Effectively, when a term of type m — 7, — 7 is 1-

expanded, it will have the form Axqxo. .. x,.€.

Normal forms are unique (=¥ p{173)).
215aying that a propositional formula has variables in I is

an abuse of terminology, i.e., it isn’t exactly true, but it is

trusted that the reader can guess the exact formulation.
What we mean is: a propositional formula such that for

each propositional variable x occurring in the formula, we

have z : 0 € T
22\What this picture says is that if the left hand side is a frag-

ment from a proof tree, deriving the judgement (=¥ p179

= (Az7.e)e’ : 7, then there exists a proof of the judgement
Felr — €T
Be aware however that our argument here is very sketchy:.

We do not go into the details in this course.
235imply writing ¢ : o is again a bit sloppy. We should

write: I' =t : o for some I' containing only expressions of
the form « : 0, where x is a propositional variable in Prop.

224

9.3 Representing Syntax of First-Order Logic

In Prop, we only have the syntactic category (= p21]) of

formulae (propositions), represented in A~ by the type o (=¥ p,210)).
731

In first-order™| logic, we also have the syntactic category (=¥ p[70)

of terms. For representation in A, we now introduce type
i, s0 B =i,0}.
Just like I' F a : o means that a represents a proposition (=¥ p 217

[' =t : 1 means that ¢ represents a term.

24[n the previous section (=¥ p214)), we have seen how we

can use first-order syntax (of A7) to represent the syntax of

an object logic, then Prop. We haven’t really understood
yet why we speak of first-order syntax, but note that the
notion “first-order” refers to A7, i.e., the metalevel.

We will now consider first-order logic as object language.
So we will now attempt to represent the syntax of first-order
logic (the object language) using first-order A~ syntax (the
metalanguage). To avoid confusion, it is best to imagine
that it is a mere coincidence that both the object and the
metalanguage (=» p234)) are described as “first-order”. Of
course there are reasons why both languages are called like
that, but it is best to understand this separately for both
levels. We will come back to this.

225

Example: First-Order Arithmetic (FOA)

Following fragment of FOA is our object (=¥ p210)) level
735,

languaga

Terms T == (=plld7) =z | 0| 9T | T+T | TxT
Formulae F L= T=T|-F | FNF | F—F
In A7 (on metalevel), define signature (=¥ p214) ¥ =

Zj:%? U 273 U Eci

Yr = (zero:i, succ: i — i, plus:i— i — i,

times : i — 1 — 1)
Yp = (eq:i—1— 0)
Ye = (not:o—o,and:0— 0— 0, imp:0— 0— 0)

25\With this grammar, we specify a certain language of a
fragment (since quantifiers, V, and L are missing) of first-
order logic.

Alternatively, we could say that F =
{0,s,+,x} (= p[f0) and P = {=} (= p[i0). How-
ever, the way we defined first-order logic (=¥ p[r2), the
language thus obtained would also include quantifiers, V,
and L. For the moment we want to restrict ourselves to the

fragment given by the grammar for FOA.
265 i3 a unary prefix (=¥ p[68) function, so s applied to T

1s written s7 .

27We have defined

Yr = (zero:i, succ:i — i, plus:i—i— i, times: 1 — i — 1)
YXp = (eq:1—1i— o)

zero : ¢ means: viewed on the object level, 0 is a term.
plus : 1 — 1 — ¢ means: viewed on the object level, plus

is a function that takes two (=¥ p[169) terms and returns a

term. eq : 1 — ¢ — o means: viewed on the object level, =

226

253

Example: "2 4+ 50}

= plus x (succ zero).

is a predicate that takes two (=¥ p.

169

proposition.

terms and returns a

On the metalevel (level of A7), zero, plus and eq are con-

stants. Note that we could also formalize them as variables.

Recall that we encoded the non-logical (=¥ p{108) symbols

of an object logic as constants. It would however be possible

to set up the encoding in such a way that the non-logical

symbols are encoded as variables, so we would have a con-
text I'x U I'p and instead of our Xz U Xp. This is in line
with Perlis’ epigram (=¥ p{189). We will sometimes take this

approach in the exercises as the encoding of A™ in Isabelle

makes it more straightforward to play around with different

[’s than with different >.’s.

28\We extend the definition of -7 (=¥ p220)) as follows:

l_.flf—l

[
8

0" = zero

227

Encoding FOL in General

In general, to encode some first-order language (=¥ pJ70]), we
must define Xz and >p so that for each n-ary f € F,p € P

fenc:zﬁ...ﬁgﬁiez‘f}
TV
n times

penc:@._> P — 1, —0 € 2777
n times

and then ™ f(t1,...t,) " = fene "t1 ... "ty Tand Tp(ty, ...) =
DPene " 11 1. T,

Abusing notation, we might skip the subscript enc.

st = succ™t
"r+t! = plusr1 Tt
"rxt! = times™r1T¢]

Note that here, on the object level, x is a first-order variable
(a variable is a term (=¥ pl69))), and hence on the metalevel,
it has type i (=¥ p225)).

228

Quantifiers in First-Order Syntax

Along the same lines (=¥ p.226|), one might suggest

all : var — o — o, so "Ve.P'=qallz"P"

But this approach has some problems:

e Variables are also terms, so “var C 7P No subtyp-
ing!
e all is not a binding operator (=» p[73) in A~. E.g.,

x) A Vz.glx))z — a| cannot be modeled*®| as
(p(z) q(x))]]

(and (p =)(all & (g 2)))lz — a].

29]n first-order logic, variables are not a syntactic
category (=¥ p[70) of their own, but rather they are a “sub-
category” of terms. Therefore one should expect that var
should be a “subtype” of 7, that is to say, every term of type
var is automatically also of type . However, there is no such
notion in A7,

20There is a notion of substitution (=¥ p[l61) in A7,
hence on the metalevel. But all is just a con-

stant like any other on the level of A7, and hence

(and (p x)(all x (q 2)))|z — a] = (and (p a)(all a (¢ a))),
and not (and (p a)(all x (¢ =x))) as one should

expect (=¥ p159).
That is to say, the standard operation of substitution,

which exists on the metalevel, is of no use for implement-
ing substitution on the object level. Instead, substitution on
the object level must be “programmed explicitly”.

Note that the following question arises: on the A~ level,

229

9.4 Higher-Order Abstract Syntax (HOAS)
Example, full FOA (=» p226): F = ...Vx. A | dz. A
Y=Y (=P p226) U Xp (=» p226) U X (=P p226) U Xo:

Yo = (all : (i — ¢**]) — o, exists: (i — 0) — o)
Extend the definition of ©.7 (=¥ p[220)):
"Vx.P7 = all (\x'."P7)
"Hx. P = exists (Ax'.T P

should the terms of type var be variables or constants?
One could imagine that they are variables. This means

that the signature 3 (=¥ pJ178) would not contain any con-

stants of type var or ... — war. The only terms of
type var would be variables. In this case, a A~ term like
(and (p z)(all x (g x))) could only be typed in a context I
contalning x : var.

Alternatively, one could imagine that they are constants.

The signature signature > (=¥ p[178) would contain expres-

sions of the form x : var, where x would be a A\™ constant.
One thing that isn’t nice about this approach is that > can-
not be an infinite sequence, and so we would have to fix a
finite set of variables that can be represented in A™.

In either case, the operation of substitution on the met-
alevel is of no use for implementing substitution on the ob-

ject level.
21Some intuition: a proposition is represented by a term of

type o. Now a term of type ¢« — o represents a proposition

230

242

Adequacy and faithfulness as beford

where some positions are marked in a special way. For exam-
ple, in \z'. eq x x, the positions where z occurs are marked
in a special way, by virtue of the fact that the A in front of the
expression binds the x. This “marking” allows us to “insert”
other terms in place of x. We will see this soon (=¥ p[2306)).

all is a constant which can be applied to a term of type

71— 0.
22Terms and formulae are represented by (canonical)

members of ¢ and o. The principle is similar as for
Prop (=¥ p219).

231

Examples

"Vr.x =2z (=¥ p230 = all(Az'.eqz z (=¥ pP30

V. dy.—(x+x=y) (=¥ pl30)"T =

)

all(A\z'. exists(\y'. not (eq (plus x x) y)))

Example derivation (all but one steps use rule app (=¥ p.

ritkFeqg:i—i—o0 x:ikFx:i

180))):

r:iikeqx:1— o0 ritbkxii

r:ilkeqxx:o

. , : abs
Fall: (i —o0)—o0 FXxl.eqrxii— o

Fall(\x'.eqrx): o

232

Order

Order of a type: For type 7 written m; — ... — 7, right
associated (=¥ pll76)), 7, € B:

e Ord(t)=0if 7 € B,ie.,ifn=1;
e Ord(t) = 1+ maz(Ord(m;)),

Intuition: “functions as arguments”

243

A type of order 1 is first-order, of order 2 second-order

ete.
A type of order > 1 is called higher order.

23\ term of first-order type is a function taking (an arbi-

trary number of (=¥ p{169)) arguments all of which must be
of base type.
A term of second-order type is a function taking (an arbi-

trary number of (=» p{169)) arguments some of which may

be functions (of first order type).
A term of third-order type is a function taking (an arbi-

trary number of (=» p{169)) arguments some of which may

be functions, which again take functions (of first order type)
as arguments.

Obviously, it would be wrong to think of the order as “num-
ber of arrows in a type”. Instead, one can think of order as
the “nesting depth of arrows in a type”.

Sometimes, the notion “second-order” is used in the con-
text of type theories for quite a different concept, but we will
avoid that other use here.

233

Why “Higher Order”?

Constants representing propositional operators (=¥ p.214)) (log-
ical symbols) or non-logical symbols (=¥ p[226)) are first-order
(hence first-order syntax):

and 0 — 0 — 0

Variable binding operators are higher-order (hence higher-order

syntax):
all - (i —0) — o0

234

Exercise: Summation Operator

What is the order of the summation operator > 7

sum i —1— (i — 1) — 1

n
FZ(@“ +2)7 = sum zeron (Azx'. plus x (succ succ zero))
=0

So the order is 2.

235

Why “Abstract”?

HOAS looks quite different from the concrete object level
syntax and hence “abstracts” from this object level syntax.

More specifically, different object level binding operators
are represented by a combination of a constant (all, exists)
and the generic (= p{162)) A-operator.

Thanks to this technique, standard operations on syntax
need no special encoding (=¥ p{229)), but are supported im-
plicitly by A™.

We will now see this.

236

Binding

Binding (=¥ pJ73) on the object level and metalevel coincide.
So in Vx. P, all occurrences of x in P are bound, and
likewise, in all(Az’.” P7), all occurrences of x in "P7 are
bound.
This provides support for substitution (=¥ pJ229).

237

Substitution

Recall rules for V (=¥ pJ84)):

V. P(x) all P
Py = pi) P
Vo 1 — 1 all (\z'.eq x x)

V-E V-E

0= 0x = x[z <« (] eq zero zero(A\x'. eq x) zero

Now apply substitution. . .
Now apply (-reduction. ..

We now understand “marked positions in a formula” (=¥ p|116)).

238

Equivalence under Bound Variable Renaming

On the object level, formulae are equivalent under renaming
of bound variables:

(Vx. P < (=» pPI)Vy. Plx < y])

Likewise, on the metalevel, formulae obtained by bound

variable renaming are a-equivalent (=¥ p|170)):

all(\x'. P) =, all(\y'. Plx < y))

239

9.5 Summary of Encoding Syntax

Object Language Metalanguage
Syntactic Type
category (=¥ pf225)) Term, declaration (=¥ p[225
Prop B =i,o}
Variable x

Variabld®*| x
Non-logical Ist-order
symb. (=¥ p226)) + constant (=¥ p226

plus 1 — 1 —1
Logical symbol (=¥ p214)) Ist-order
A constant (=¥ pl214
and:0— 0— o0

24 Although propositional variables (=¥ pJ18)) and first-order
variables (=» p[65)) are quite different concepts, the rep-
resentation in A~ uses A~ -variables for both. Techni-
cally however, there is a difference between the represen-

tations of propositional variables (=¥ p215|) and first-order

variables (=¥ p227). In particular, propositional variables

are represented as A~ -variables of type o, and first-order
variables are represented as A\~ -variables of type 7.

240

Object Language

Metalanguage

Binding

operator (=¥ p230)) V

2nd-order
const. (=¥ p230) all
(1 —0)—o0

Meaningful
expr. (=¥ p)214
aN\b € Prop

241

Member of type (=¥ pl217
(andab) : o

10 Resolution

242

Three Sections on Deduction Techniques

After encoding syntax (=¥ p,209

ory is encoding proofs (=¥ p[299)).

, the next topic in the the-

But before, we look at some more practical issues:

e Resolution (=¥ p.

242

e Proof search (=¥ p{254

e Term rewriting (=¥ p.

280

We will explain many techniques relevant for Isabelle, but

not in extreme detail and rigor. We want to understand

better how Isabelle works, but not provide a formal proof

that she works correctly, or be able to rebuild her.

243

Resolution

Resolution is the basic mechanism for transforming proof
states in Isabelle in order to construct a proof.

It involves unifying (=¥ p[205)) a certain part of the current
goal (state) with a certain part of a rule, and replacing that

part of the current goal.

We have already explained this in the and you have
been working with it all the time, but now we want to un-
derstand it more thoroughly (in the next lecture (=¥ p[299)),
we will look at it more abstractly).

We look at several variants of resolution.

Note: The following slides on Resolution rely heavily on
animation features. It is therefore advised that you study
them on a screen in slide or screen-notes form.

244

245

Resolution (rtac, as in Prolog

25Prolog is a logic programming language [Apt97].

The computation mechanism of Prolog is resolution of a
current goal (corresponding to our ¢1, ..., ¢,) with a Horn
clause (corresponding to our [asg;. .. ;] = 3).

245

I

- - e,
()

é1, . .., ¢n are current sub-
goals and 1 is original goal.
[sabelle displays

Level ... (n subgoals)
(0

1. ¢

n. on
log; ..o, = Bisrule.
Simple scenario where ¢;

has no premises™" Now (3

must be unifiable with se-
lected subgoal ¢;.
We apply the unifier (/
We replace ¢! by the premises
of the rule.

247

26¢h; 1s the selected subgoal. In Isabelle, the number 7 of the

selected subgoal is always one of the arguments of a tactic.

One writes:

by (tactic rule i);

We assume here that ¢; is a formula, i.e., it contains no

—> (metalevel implication). The form of the other subgoals

¢17 ey ¢i—17 ¢i+17 I ¢n 18 arbitl“&l’y.
27]n all illustrations that follow, we use ' to suggest the

application of the appropriate unifier.

246

Resolution (with Lifting over Parameters)

Nz.ailz]--- \wag,|z]
At Bl

- Nw.a) WW

Now suppose the 7'th (selected) subgoal is preceded by /\

(metalevel universal quantifier*9)).

Rule is lifted“*| over z: Apply [?7X «—?X (z)].

As before, 7 must be unifiable with ¢;; apply the unifier.

We replace ¢! by the premises of the rule. o, ..., o) are
preceded by A z.

25 /\ is the metalevel universal quantification (also written
I1). If a goal is preceded by A x, this means that Isabelle must
be able to prove the subgoal in a way which is independent

from z, i.e., without instantiating x.
20T he metavariables of the rule are made dependent on .

That is to say, each metavariable 7.X is replaced by a ?.X (z).

You may also say that 7.X is now a Skolem function of x.
This process is called lifting the rule over the parameter x.
We denote by plz| the result of lifting p over .

247

Resolution (with Lifting over Assumptions)

Now, suppose the i’'th (selected) subgoal has assumptions

Gity - s Dik;-
As before, we have a rule. Here, 3 is (hopefully) unifiable
with ¢;, but 3 is not*”Y| unifiable with the entire ¢'th subgoal.

Rule must be lifted over assumptiong*!| No unification
so far!

»0The selected subgoal is [¢i1,. .., ¢,] = ¢ where

Gits - -+, Qir;, @i are object-level formulae. So the se-

lected subgoal is not an object-level formula, but it has

—> (=» p{199) as “top-level constructor” and is hence a for-

mula in the metalogic.
Moreover, (3 is a formula. It is clear that an object-level
formula cannot be unifiable with a formula in the metalogic

having = as“top-level constructor’.
»1Fach premise of the rule, as well as the conclusion of the

rule, are preceded by the assumptions [¢i1, .. ., ¢i,] of the
current subgoals. Actually, the rule

(i1 - Diry] @i - - - Di]

a1 c 7%

248

Now, subgoal and rule conclusion (below the bar) are

unifiable??
Non-trivially?>?, 3 must be unifiable with ¢;.
We apply the unifier,

We replace the subgoal.

may look different from any rules you have seen so far, but
it can be formally derived from the rule:

1 s 799
o
The derived rule should be read as: If for all j €
{1,...,m}, we can derive a; from ¢;y,..., ¢i,, then we
can derive (3 from @1, ..., @i,

225t1ll assuming that ¢; and @ are unifiable.
23Both the subgoal and the conclusion of the lifted rule are

preceded by assumptions @1, ..., @;,. Hence the assump-
tion list of the subgoal and the assumption list of the rule
are trivially unifiable since they are identical.

249

Rule Premises Containing —-
(@ - P -]

¢’1 [[71 lﬂ:>5¢;1

w/
What if some o’ has the form [1;...;v] = 07
Is this what we get?
Well, we write : for =, and use A —= B —= (C =
[A; B] = C™

z4Generally, Isabelle makes no distinction between

[b1; s = (s] = ¢
and
[0 ns s] = &
and displays the second form. Semantically, this corresponds
to the equivalence of Aj A...ANA, - Band A — ... —
A, — B.

We have [seen this in the exercises.

250

Elimination-Resolution

- 1»%1----‘- Bl 1 Fat

i+l

o g b @) o i1 O

Same scenario as before

(i

200

. but now [must be unifiable

with ¢;, and oy must be unifiable with ¢;;, for some [.

Apply the unifier.

We replace ¢ by the premises of the rule except the

first°Y|

/
il”

/

a4, ...,al inherit the assumptions of ¢!, except

2550 the scenario looks as for resolution with lifting over

assumptions (=¥ p.248). However, this time we do not show

the lifting over assumptions in our animation.
26 limination-resolution is used to eliminate a connective

in the premises.

For example, if the current goal is

ANB

B
ANB — B

and the rule is

P ;: Q]

PAQ R
R

N-E

251

Destruct-Resolution

Dy - @) - - Pl P
& - q% .
4

Simple rule, and o must be unifiable with ¢;;, for some I.

We apply the unifier,
57

We replace premiseg™| ¢/, with the conclusion of the rule.

10.1 Summary on Resolution

e Build proof resembling sequent style notation (=» p[49);

e technically: replace goals with rule premises, or goal
premises with rule conclusions;

then the result of elimination resolution is
|A; B
B
ANB — B

Effectively, the interplay between elimination rules and

elimination-resolution is such that one “does not throw any
information away”. Before we had the assumption A A B.
This was replaced by the components A and B as separate

assumptions.
»7Destruct-resolution is used to eliminate a connective in

the premises. The difference compared to elimination-

resolution (=¥ p251]) can be seen in the following example.

Unlike elimination-resolution, destruct-resolution “throws
information away” .

252

e metavariables and unification (=¥ p[205) to obtain ap-

propriate instance of rule, delay commitments;

e lifting over parameters (=¥ p[247)) and assumptions (=¥ p.

e various techniques to manipulate premises or conclu-

sions, as convenient: rtac (=¥ p245)), etac (=¥ p251)),
dtac (=» p252).

For example, if the current goal is
A A B]
B
ANB — B

and the rule is
PAQ

conjunct?2

then the result of destruct-resolution is
B]
B
ANB — B

If we had instead used rule
PAQ

conjunct2

253

11 Automation by Proof Search

the result would have been

4]

B
ANB — B

and we would be stuck. We accidentally “threw away” the
assumption B.

254

Outline of this Part

e Proof search and backtracking

e Classifying rules (=¥ p[264

e Proof procedures (=¥ p 277

11.1 Proof Search and Backtracking

e Need for more automation™

e Some aspects in proof construction are highly non-deterministic:

— unification: which unifier (=¥ p,205|) to choose?

28\We have seen in the exercises that doing a proof step by
step is very tedious and often involves difficult guessing or
alternatively, backtracking. We cannot hope to prove any-
thing about realistic systems if proving simple theorems is
so tedious.

Efficiency considerations are important for automation.
The non-determinacy in proof search obviously leads to in-
efficiencies as many possibilities have to be explored.

255

299

— resolution: where™”| to apply a rule (which ’sub-

goal’)?
— which rule to apply?

260F

e How to organize proof-search technically

%\We have seen in the exercises (and also in the
lecture (=¥ p242))) that one can choose the subgoal to which

one wants to apply a rule.
20\We have seen in the previous lecture (=¥ p[242) that res-

olution transforms a proof state into a new proof state. But

how does one organize all those potential proof states in or-
der to find proofs?

256

Organizing Proof Search Conceptually
761

of theorems“* (thm’s).
e Tactic applications move us along
leftmost path.

Organize proof search as a tree

S1

T e Using undo(); (=¥ p.??) moves

82\‘ Sf’ us upwards (previous proof state).
4] |55 56 e Using back(); moves us (up and)
= 318 : right (alternative successorg”*? due
to different unifiers (=¥ p207))).
A ()
e This can be understood as tableau

proving (=¥ p266|) [Pau97al.

261\We have seen in the previous lecture (=¥ p242) that reso-

lution transforms a proof state into a new proof state. Since
in general, a proof state has several successor states (states
that can be obtained by one resolution step), conceptually
one obtains a tree where the children of a state are the suc-

CESSOTS.
22 Technically, a proof state is an Isabelle theorem, (thm),

i.e. something which Isabelle (=¥ p.?7) regards as true.

23Note that when there are no more successors (you can-
not go right) anymore, back(); will go to the previous proof
state, i.e., go up one level (just like undo();), and then try
alternative successors.

257

Problems

The search space of proof search can be thought of as such
a tree, but it cannot be implemented like this straightaway:

e Branching of the tree infinite in general (HO-unification (=¥ p.

264

e Explicit tree representation™” expensive in time and

space.

200

As an asideg™?] it is also possible to understand proof search

more abstractly. But we are interested in the operational
aspects.

2640Obviously, an infinite tree cannot be represented explic-
itly. But even if the tree is finite, it is generally expensive
to represent it explicitly. In particular, the tree may contain
many failing branches and only few successful ones, which
begs the question if representing the unsuccessful branches

cannot be avoided somehow.
2 The explicit tree representation is not very abstract in

that each node has a defined order of the children (first suc-
cessor, second successor, ...). This order is an artefact of

the order in which unifiers are enumerated (=¥ p{205) by the

unification algorithm used. It is inessential for the proofs
that are contained in the tree.

As a more abstract understanding of proof search, one can
organize proof search as a relation on theorems (thm’s)

prooftrees = P(thm X thm)

More precisely, one can look at a fragment of a tree of theo-
rems as before (=¥ p257)).
One could say that each tactic application (with a particu-

258

205

Organizing Proof Search Operationally

lar rule) gives rise to a relations on theorems. That is to say,
s and s’ are in the relation if s’ is a successor proof state of
S.

This is abstract in that there is no order among the suc-

cessors of a proof state.
Also, one does not represent a tree explicitly.
Advantage: we have an abstract algebra.
e PT) o PTy: sequential composition (“then”).
Given two relations between thm’s (=¥ p257), PT; and
PT5, we define composition PT} o P15 as the relation

{(s,s") | there is s” such that (s, s") € PTy and (s",s") € P15}

e PT1 U PTy: alternative of proof attempts (“or”)

The union of two relations is defined as usual for sets. If

PTi and P15 each model the application of a particular
tactic, then PTy U PT, models the application of “first
tactic or second tactic”.

259

e PT* : reflexive transitive closure (“repeat ™)
PT* is inductively defined as the smallest set where
— (s,8) € PT* for all s;
—if (s,8') € PT and (s,s") € PT* then (s",5') €
PT™,
So if PT models the application of a particular tactic,
then PT™ models the application of that tactic arbitrar-
ily many times.
o (0= ¢,¢0) € PT* = “thereis a proof for ¢”
Note that the initial proof state is ¢ = ¢.
[sabelle (=¥ p.?7) will display this as
Level 1: (1 subgoal)

¢
1. ¢

[t might contradict your intuition and experience with
[sabelle to think that the initial proof state is ¢ = ¢.

260

Shouldn’t it be just ¢? However, this seeming contra-
diction can be resolved.

The way Isabelle displays the proof state focuses on what
has to be proven, the subgoals. The proof state should
be read as: if I have proven ¢ (the ¢ occurring after the
1.), I am done.

Technically, the proof state is an Isabelle theorem (thm),
i.e. something which Isabelle regards as true. Now of

course, she cannot initially regard ¢ as true, as ¢ is
what is to be proven. But she can regard ¢ =— ¢ as
true. The aim of a proof search is to transform ¢ =—> ¢
(¢ can be shown if I assume ¢) into ¢ (¢ can be shown
if I assume nothing).

However, this also has some disadvantages:

e Union U is difficult to implement (needs comparison
with all previous results since one wants to avoid du-
plicates).

261

Organize proof search as a function on theorems™° (thm’s)

type tactic = thm — thm seq

207

where se is the type constructor for infinite lists.

e More operational (=¥ p259), strategic interpretations of

union U are desirable (try this — then that, interleave
attempts in PT} with attempts in PT5, and so forth).

266'T'his way of understanding and origanizing proof search is

not so abstract (=¥ p258)), but rather operational. Instead

of saying that ¢ and ¢ are in a relation, one says that ¢’ is
in the sequence returned by the tactic applied to ¢. There
is an order among the successors of a proof state.

One still does not represent a tree explicitly, al-
though conceptually, proof search is about exploring this

tree (=¥ p257).
xFor any type 7, the type T seq (recall the

notation (=¥ p{192)) is the type of (possibly) infinite lists of
elements of type 7. This is of course an abstract datatype.
There should be functions to return the head and the tail of
such an infinite list.

An abstract datatype is a type whose terms cannot be rep-

262

This allows us to have tacticald0st
e THEN

e ORELSE
e REPEAT
e INTLEAVE, BREADTHFIRST, DEPTHFIRST, ...

resented explicitly and accessed directly, but only via certain
functions for that type.

268

e THEN

e JRELSE

e REPEAT

e INTLEAVE, BREADTHFIRST, DEPTHFIRST, ...

are called tacticals.

Tacticals are operations on tactics. They play an impor-
tant role in automating proofs in Isabelle (=» p.??). The
most basic tacticals are THEN and ORELSE. Both of those
tacticals are of type tactic * tactic — tactic and are
written infix: tac; THEN tacy applies tac; and then tacs,
while tacy ORELSE taco applies tacy if possible and other-
wise applies tacy [Pau0dl, Ch. 4].

263

11.2 Classifying Rules

How to organize Proof Rules?

Observation: Some rules can always be applied blindly
in backward reasoning, e.g. —-I (=¥ pp0)) or A-I (=¥ pl50)).
Others are problematic, e.g. A-EL (=¥ pJ50]) or A-ER (=¥ p50)
(you do not know which to apply to get rid of a A in the
premises).

But proof rules can be tailored to be applied blindly.

In the following we will explain this using sequent style

notation (=¥ pJ9).

264

Review: Sequent Notation

I'-B

'FA (where AeT) ATL R weaken

I'-A I'HB I'-AAB I'FAAB

reang M a4 AMEL o ABR

AFFB_%IFFA—J3FFA
'-A—B I'B

I A I B
rravp /L o g VIR

I'AvB T"ARC TI'BFC
I'=cC

—-F

V-E

265

Example: A-E
769

In the sequent calculus™”’|, one writes A-F*'Y as:

ABIEC
ANBTFC
This mimics*""| the effect of using A-E (conjE of Isabelle)

in combination with etac (=¥ p251). The rule A-E' can be
o772

formally derived

29 Tableau proving is a derivation system [Fit96].

[t turns out that the language of tableaux is equivalent

to the sequent calculus (=» p271)) (recall our use of sequent
style notation (=% pJ9))) [Paud7a]. The techniques Isabelle
uses for automating proofs can thereby be understood as

tableau proving [Pau97al.
20[n Isabelle (=¥ p.?7) notation, it looks as follows:

[P&Q; [P; Q] = R] — R
(see IFOL_lemmas.ML (=¥ p276)).

1 That is to say, A-E' behaves for the sequent notation as

conjE+etac (=¥ p251)) behaves for Isabelle.
2] et us first derive the rule A-E (conjE of Isabelle), here

written in sequent style notation (=¥ p[9):

TFAAB ABTFC
TEC N-E (=¥ p.

266

A Proof by Blind Rule Application

P,V @
N-E
phowto"
PAGEY — ¢
H
FpNd) = — ¢
The topmost connective is —, which asks for —-I (=¥ p[53).
Again —-1I.

-1

The derivation looks as follows:

ABTFC

—-1
BIT'+FA—-C
FI—A/\B/_ER

rrBoAmc ! LB " TrAAB
'-A—C) r—A '

I'=cC

Now based on A-E, the derivation of A-E' is:
A BTFC
ANBTHAANB ABANBTEC Veken (30
ANBTFC NE
If we replace I with A A B, T (just instantiation (=% p31])),
then one part holds by the assumption rule (=% pJ50)), and
we can apply weakening (=¥ p[50)).

—-F

267

To decomposd’ | the assumption pAg, use A-E' (=¥ p[260)).
The proof can now be completed by the assumption rule (=¥ pJ0).

Alternatively, we can derive A-E directly:

ABTFC
BF}—A—>C
FFB%A—%f%I AANB,TFAAB
ANBTEB Ao veaken — o srre "M AABT
AANBTFASC -k AN B,
AAB.TFC

73See now that we first derived the rule A-E' (=% p 266
which is a rule that can be used blindly to decompose a

)

conjunction in the assumptions. This was not something ad-
hoc to prove this particular formula. The rule A-E should
be used generally instead of A-EL or A-EL, because it has
the advantage that it can be applied blindly.

The essential point about being able to apply a rule blindly
is that the application does not throw any information

268

Safe and Unsafe Rules

Combined tactics (=¥ p278) rely on classification of rules,

maintained in Isabelle (=¥ p.??) data structure clasetf""|

2170

and accessed by functions”?|of type claset * thm 1ist — claset.

Class: To add use function:

Safe introduction rules addSIs
Safe elimination rules addSEs
Unsafe introduction rules addIs
Unsafe elimination rules addEs

away (=» p[251]). This is indeed the case for A-E'. We re-
move the assumption ¢ A ¢, but we get the two conjuncts ¢

and 1 as assumptions instead.
The rule A-E' mimics the effect of using A-E in combi-
nation with etac (=¥ p251|), which you can see by looking

again at the jexercises on etac|
2iclaset is an abstract datatype. Overloading notation,

claset is also an ML unit function which will return a term
of that datatype when applied to (), namely, the current
classifier set.

A classifier set determines which rules are safe and un-
safe introduction, respectively elimination rules. The cur-
rent classifier set is a classifier set used by default in certain
tactics.

The current classifier set can be accessed via special func-

tions for that purpose.
25 The functions addSIs, addSEs, addIs, addEs are all of

type claset * thm 1ist — claset. They add rules to the

269

Adapting Rules for Automated Proof Search

As seen for A-E (=¥ p266)), rules must be suitably adapted
in order to be useful in automated proof search. Another

example:

S ira T
—|(og—>ﬁ)l—ﬁ—>a_>_1

V-
@ = A V(Eoa)
Neither V-IL nor V-IR would work here. Uses classical (=¥ p{12)
logic.

20

current classifier set. For example, addSIs adds a rule as

safe introduction rule.
26 T'he rule V-swap is

~ATFB
FAVB

V-swap

To derive it you need classical (=» p[2)) reasoning, as the
rule exploits the equivalence of A — B and AV B.
This is a derived rule which is explicitly contained in the

[sabelle classifier set as the clasical introduction rule for V.

It is called disjCI (check out FOL lemmas1.ML (=¥ p{276)))!
2"The rule —-swapk is

A-C T'FB
—-(A— B),I'FC
To derive it you need classical (=¥ pJ2) reasoning, as the

rule exploits the equivalence of =(A — B) and A A = B.
This is a standard technique in Isabelle, based on

—-swaph

swapping (=¥ p272). For dealing with negated formulas in

270

218 with derived rules.

Principle: Emulate sequent calculus

the premises of the current subgoal, introduction rules are

combined with swap using etac.

Generally, we have a formula —(A o B) in the premises,
where o is some binary connective. Swapping will put (Ao B)
in the conclusion and put the old conclusion into the premises
after negating it. Afterwards, an introduction rule for o will

be used [Paul3, Section 11.2].
28 The sequent calculus works with expressions of the form

Ay,...,A, + By,...,B, which should be interpreted
as: under the assumptions A,...,A,, at least one of
B1,...,B,, can be proven. So as a formula, this would be
Al/\.../\An—>B1\/...\/Bm.

In Isabelle (and the proof trees we have seen, e.g,. in
this lecture), we only have sequents with one formula to
the right of the . We have said that we use sequent
notation (=¥ pf49).

The important point to note here is that in the sequent
calculus, one can shift a formula from left to right or vice

271

Handling Quantifiers
Can derive®”| V-E' (= a118*Y) using V-E (= spec):
[A(z), Vo A(z)]

Va. A(x) B
B

V-EV-dupE

versa, but one has to negate it, or more precisely, turn A
into = A and = A into A. This is called swapping and is an

important technique for combined tactics (=¥ p278)).

The sequent calculus inherently relies on classical (=% p/42)
reasoning [Pau03, Ch. 11].

29You should in Isabelle. The rule is:
[ALL z. P(x); P(x) = R] = R

20As you may have noticed earlier, there is a confusion be-
tween the names of proof rules as we present them for the
theory and the names used in Isabelle. For example, rule
—-F is called mp in Isabelle. This confusion concerns elimi-
nation rules.

There is however a good reason for these choices. In tradi-
tional presentations of logic, one sets up the simplest possible
elimination rules for the connectives which naturally arise

272

from the meaning of those connectives. This is what we
have done as well. However, as we see in this lecture, these
rules cannot be applied blindly and are thus not very suit-

able for automation. Therefore, combined tactics (=¥ p 278
in Isabelle use derived rules such as A-E (=¥ p266|) (called
conjE in Isabelle).

Since this is of such central importance for Isabelle, one
prefers to have the obvious names conjE, allE etc. for the

rules that are actually used in “advanced” applications of
[sabelle.

273

What is the differencd® to 3-FF5%
Problem: Vx.A(z) may still be needed.

21 The difference between

Alz)
. A(x) B
B 3-F
and
Alz)
Vo . A(z) B
B V-E

1s that the first rule has a side condition: 2 must not occur
free in any assumption on which B depends. See also what

this means in terms of Isabelle (=¥ p274)).
2The rule

274

255 rules. Turns search

Principle: Introduce duplicating

was derived previously (=» p97) (but in Isabelle, it is a basic
rule in IFOL.ML (=¥ p276))). It is

[ALL z. P(x); !'z. P(x) = R] = R
Note that the rule allE (V-E') is
[ALL z. P(x); P(x) = R] = R

The difference is that the former rule contains a metalevel

universal quantifier. In terms of paper-and-pencil proofs,
J-F has the side condition that £ must not occur free in any
assumption on which B (see tree!) depends. There is no

such side condition for V-E .
23You should recall that elimination rules are used in com-

bination with etac (=¥ p[251). Using allE will eliminate
the quantifier.

You should ftry a prooff of the formula (Vax.P(z)) —
(P(a) A P(b)) in Isabelle to convince yourself that this is
a problem since the quantified formula Vz.P(x) is needed

275

infinitd?®
Check out allE and all_dupE in IFOL_lemmas . ML

twice as an assumption, with two different instantiations of
x.
The duplicating rule V-dupF has the effect that the univer-

sally quantified formula will still remain as an assumption.
21Given only the rules so far (in combination with

the appropriate tactics, rtac and etac (=¥ p242), and
swapping (=¥ p272)), excluding V-dupE, the proof search
would be finite.

The rule V-dupFE is responsible for making the proof search

infinite. This can be no surprise however, as first-order logic
is undecidable [And02], and so there can be no automatic

procedure for proving all true first-order formulas.
25 These files should be contained in your Isabelle (=¥ p.?7)

distribution. Or, if you only have an Isabelle executable, you
can find the sources here:

http://isabelle.in.tum.de/library/

276

http://isabelle.in.tum.de/library/

11.3 Proof Procedures (Simplified)
Tactics in Isabelle (=¥ p.??) are performed in order
1. REPEAT (rtac safe I rules ORELSE etac safe F rules)

280

2. canonize: propagate “x = t” throughout subgoal
3. rtac unsafe_I _rules ORELSE etac unsafe_F _rules

4. atac

w6Tactics in Isabelle (=¥ p.?7?) are performed in order:
1. REPEAT (rtac safe I rules ORELSE etac safe E rules);

2. canonize: propagate “xr =1t ...throughout subgoal;
3. rtac unsafe_I _rules ORELSE etac unsafe_FE _rules;

4. atac.

One elementary proof step consists of trying a safe intro-

duction rule with rtac (=¥ p242), or, if that is not possible,

a safe elimination rule with etac (=¥ p{251)). This will be

repeated as long as possible.

Then in the current subgoal, any assumption of the form
x = t (where z is a metavariable) will be propagated
throughout the subgoal, i.e., all occurrences of x wil be re-
placed by t.

Then Isabelle will try one application of an unsafe intro-

duction rule with rtac (=¥ p242), or, if that is not possible,

an unsafe elimination rule with etac (=¥ p251)).

277

Combined Proof Search Tactics (= p.?7?)

e step_tac : claset — int — tactic
(just safe steps)

e fast tac: claset — int — tactic
(safe and unsafe steps in depth-first stategy)

e best_tac : claset — int — tactic
(safe and unsafe steps in breadth-first stategy)

e slow_tac : claset — int — tactic
(like fast_tac, but with backtracking atac’s)

e blast_tac : claset — int — tactic
(like fast_tac, but often more powerful)

Finally, she will use atac. Note that atac is unsafe. In
general, there are several premises in a subgoal and atac
may unify the conclusion of the subgoal with the wrong
premise.

278

11.4 Summary on Automated Proof Search

e Proof search can be organized as a tree of theorems (=¥ p.

257)).

e Calculi can be set up to facilitate proof search (although

this must be done by specialists).

e Combined with search strategies (=¥ p[278]), powerful au-

tomatic procedures arise. Can prove well-known hard

problems such as
(Fy Vo J(y,x) V ~J(x,z)) — ~(Ve.JyVz.J(z,y) V
—J(z, 1))

e Unfortunately, failure is difficult to interpret]

287

»fast_tac, blast_tac just tell you that the tactic
failed, but not why. And it would be difficult to do

that, since backtracking means that all attempts failed.

This can have several reasons: a rule is missing, a

rule has been classified (= p{269) wrongly, the search

strategy (=¥ p.

278)) was not adequate for the problem, enu-

meration of unifiers (=¥ p|205) in a bad order. Or a com-

bination thereof.

steps (=¥ p.
number.

277

Or it might be that too many unsafe
are needed, since fast_tac limits their

279

12 Term Rewriting

12.1 Higher-Order Rewriting
Motivation:

e Simplification is a very important part of deduction, e.g.:
0+ (z+ 0 = o
[a,b,d] @ [a,b]* = [a,b,d,a,b]

e Based on rewrite rules as in functional programming?”’
r+0 = =z, O+x ==z
X = X, (x 2 X)QY =z (XQY)

2Simplifying 0+ (x+0) to 2 is something you have learned
in school. It is justified by the usual semantics of arithmetic
expressions. Here, however, we want to see more formally

how such simplification works, rather than why it is justified.
29 ists are a common datatype in functional programming.

la,b,d,a,b] is a list. Actually, this notation is syntactic
sugar (=¥ pR1)) for a == (b = (d = (a == (b]])))). Here,
[] is the empty list and :: is a term constructor taking an
alement and a list and returning a list. @ stands for list
concatenation.

Intuitively, it is clear that [a, b, d] concatenated with [a, b]
yields [a, b, d, a, b].

Term constructor is usual terminology in functional pro-

gramming. In first-order logic, we would speak of a func-
tion symbol (=¥ p[70). In the A-calculus, we would speak
of a (special kind of) constant (this will become clear
later (=¥ p284))).
20For example, the lines
X = X
(x - X)QY =z (XQY)

280

What Kind of Terms?

In our context, a term is a A-term, since we use the \-calculus

to encode object logics (=¥ p,209).

define the list concatenation function @.

281

Term Rewriting: Foundation

e Recall (=» p{125): An equational theory consists of rules (=¥ pJ110

refl syl trans
=z y=ux T =2z
T = Pl(x
y P@) subst (=¥ p[l116
P(y)

e plus additional (possibly conditional) rules of the form
¢1:¢17---7¢n:¢n:>¢:¢-

The additional rules can be interpreted as rewrite rules
i.e. they are applied from left to right.

291

21An equational theory is a formalism based on equational
rules of the form ¢ = Y1,..., 0, =, = ¢ = 1.

A term rewriting system (to be defined shortly) is another
formalism, based of rewrite rules. They also have the form
o =Y1,...,0, =Y, = ¢ =1, but they have a different

flavor in that = must be interpreted as a directed symbol.

One could also write ~~ instead of = to emphasize this.

282

Incomplete Decision Procedure for Goal ¢ = ¢
To decide if e = €’ in an equational theory:
1. stop if the goal is solved, i.e., e = € (syntactical equal-
ity)
2. make a rewrite step:
(a) pick asubterm ¢ in e(t) (=¥ p{l16)) (resp. €'(t) (=» p{116]))

(b) for a rewrite rule ¢1 = 1, ..., ¢ = 1, = ¢ = 1,
match™? (unify) ¢ against ¢, i.e., find € such that
o0 =t

(c) solve™] (¢1 =11, ..., dn =)0

(d) replace e(t) (=¥ pJ116]) by e(10) (=¥ p|116)) (resp. €'(t) (=¥ p|116

by €'(10) (=¥ p(116))
22(Given two terms s and t, a unifier (=¥ p205) is a sub-

stitution € such that sf = t6. A match is a substitution
which only instantiates one of s or ¢, so s =t or s = 10

(one should usually clarify in the given context which of the

terms is instantiated).
23T'his means that the procedure is called recusively for the

conditions of the rewrite rule.

283

3. goto [T
This procedure + the rules define a term rewriting sys-

temP?

241The procedure defines a term rewriting system [BNOS|
Klo93].
Equational theories, term rewriting systems, propositional

logic, first-order logic, different versions of the A-calculus —
with all those different formalisms playing a role here, we
must agree on some terminology. In particular, the words
term, function, predicate, constant and variable are used

somewhat differently in the different formalisms.
Our point of reference for the terminology is the A-calculus

as it is built into Isabelle (=¥ p{191)) for representing object

logics. In particular:

e A term is a A-term; object-level formulae (including

equations) as well as object-level terms are all repre-
sented as A-terms, and so for example, when we rewrite
an equation, we rewrite a term.

e One could say that a function is any A-term of functional
type, i.e., of type containing at least one —. Apart

284

Term Rewriting is Non-Trivial

e There are two major problems: this decision procedure
may fail because:

— it diverges (the rules are not terminating), e.g. x +
y=y+rorr=y=— T =1y;

— rewriting does not yield a unique normal form (the

rules are not confluent (=¥ pl171))), e.g. rules a = b,

from that, there may be function symbols (=¥ p[70)) in
some object logic. On the metalevel (and hence also

for the purpose of term rewriting), these would be
constants (=¥ p{287)).

e There may be predicate symbols (=» p[70) in some
object logic. ~ On the metalevel (and hence also

for the purpose of term rewriting), these would be
constants (=¥ p287)).

e A constant is a A-term consisting of just one symbol from
aset Const. Constants (=¥ p[287)) of the A-calculus may
be used to represent connectives, quantifiers, functions,

predicates or any other symbols that an object logic may
contain.

e The notion of variable is that of the metalevel, and so
we usually mean “variables including metavariables”.

Nevertheless, some confusion may arise wherever we use
the terminology from the point of view of an object logic.

285

See the following example:

The following is an example rewrite sequence, using the

rules (=¥ p280

for lists (=¥ p280)).

The picked subterm

which is being replaced is underlined in each step:

1))@ (a:: (b

(@ (b (d:

)

(b
a:((b:(d:

[

)@ (a: (b
b

)

(
a:: (b ((d:
a:(b:(d:

a:(b:(d:

al
1) @fa(
([@fa: (]

)

)
)
)

(@ (b))

)
)
)

)
)
)

= la,b,d,a,b

la,b,d, a,b]
la,b,d,a,b]
la,b,d,a,b]
)
)

HE A

A

la,b,d,a,b

Note the we are done now, as the right-hand side is iden-
tical to the left-hand side, modulo the use of syntactic

sugar (=¥ p{280)).

Note that generally, a term rewriting sequence rewrites ar-

bitrary terms.

Here we only rewrite equations. From the

point of view of term rewriting, an equation is just a special

case (=¥ p284

of a term.

One could also imagine that object-level function and pred-

286

a=d

e Providing criteria for terminating and confluent rule sets
is an active research area (see [BN9S| [Klo93], RTA| ...).

icate symbols are represented as variables, as is done in LF.

Recall Perlis” epigram (=¥ p.

25For a rewriting system consisting of rules a = b, a = ¢,

one cannot rewrite b = ¢ to

holds:
a=>0

b=a

sym

189).

prove the equality, although it

a—==c

b=rc

287

http://rewriting.loria.fr/rta/

12.2 Extensions of Rewriting

e Symmetric rules are problematic, e.g. ACI:

290

(x+y)+z =2+ (y+2) (A
r+y = y+x (C)
r+r =2 (I)

e Idea: apply only if replaced term gets smaller w.r.t. some
In example, if (y +)0 (=¥ p[283) is

term ordering.

smaller than (z + y)0 (=¥ p283).

297

e Ordered rewriting solves rewriting modulo ACI*/| using

derived rules (lexercise)).

206 ACI stands for associative, commutative and idempotent.

In
(z +y)
X

X

the constant + (=¥ p.

+ z
Ty
+x

284

=+ (y+2) (A)
= y+x (C)
= x (T)

is written infix (=¥ p[6g).

27Consider an equational theory consisting only of those
rules (apart from refl, sym, trans, subst (=¥ pJ125))). Apart
from that, the language may contain arbitrary other constant

symbols. For such a language, it is possible to give a term

ordering that will assign more weight to the same term on
the left-hand-side of a + than on the right-hand side. We can

base such a term ordering on a norm

298

. For example, the

inductive definition of a norm || (=¥ p289) might include

the line:

|5+ t] == 2|s| + |¢|
This means that if |s| > |t|, then |s + t| = 2|s| + |[t] >

21t| + |s| = |t + s|.

288

Extension: HO-Pattern Rewriting

Rules such as F(Gc¢) = .. F%|lead to highly ambiguous
matching (=¥ p283)) and hence inefficiency:.

Solution is to restrict to higher-order pattern rules:
A term t is a HO-pattern if

e it is in S-normal form (=¥ p{165); and

e any free (=¥ p[160) F int occursin asubterm F xy ...z,

where the x; are n-equivalent (=¥ p170)) to distinct bound

variables.

Matching (unification) (=¥ p[283)) is decidable, unitary ("unique’)

and efficient algorithms exist.
This has two effects:

— Applications of (A) or (I) always decrease the weight of
a term (provided the weight of s is > 0):
(s +1t)+7r|=2|s+t|+|r| =4]s| +2|t| + |r| >
2ls| +2|t| + |r| = 2|s| + [t + 7| =|s+ (£ + 7).
— Applications of (C) are only possible if the left-hand side
is heavier than the right-hand side.

We haven’t worked out here how the norm should be de-
fined for the other symbols of the language. This would have
to depend on that language.

The notation || (the argument is between the
bars (=¥ p{124))) is used in standard mathematics for the ab-

solute value of a number and is standard for norms as well.
29For higher-order rewriting, it is very problematic to have

rules containing terms of the form F/(G ¢) on the left-hand
side, where F' and G are free variables and c¢ is a constant
or bound variable. The reason can be seen in an example:

289

HO-Pattern Rewriting (Cont.)
A rule ... = ¢ = is a HO-pattern rule if:
e ¢ is a HO-pattern;

e all free (=¥ pJ160]) variables in ¥ occur also in ¢; and

e ¢ is constant-head, i.e. of the form Axq..x,.cpi...p,
(where ¢ is a constant (=¥ p284)), m >0, n > 0).

Example™| (Vz.Pz A Qz) = (Vo.Px) A (Vo.Qx)
Result: HO-pattern rules allow for very effective quantifier

reasoning.

Suppose you want to rewrite the term f(g(h(z c))) where f,
g, h, i are all constants. There are four unifiers of F (G ¢)
and f(g(h(ic))):

[F = f, G — (Az.g(h(ix)))],

[F = (A flg), G — (Az.h(iz))],

(F = Az.fg(hx))), G — (Aviz),

(F = Az.f(g(h(i2)))), G — (Av.x)].

This ambiguity makes such TRSs (=¥ p284)) very inefficient.
soofurther examples:

e (Jx.PxV Qx) = (Jx.Px) V (Fx.Qx)
o (dx.P — Qz) =P — (J2.Qx)
e (Jx.Px — Q) = (Vo.Pz) — Q

In these examples, you may assume that first-order logic is
our object logic.
On the metalevel (=¥ pJ191)), and hence also for the sake of

term rewriting, V, 3 are constants (=¥ p[284]).

290

Extensions Related to if — then — else

The if-then-else construct will play an important role
later (=¥ p03). It asks for special rewrite rules.

In the notation (Vz.Px A Qx), the symbols P and @) are
metavariables (as far as term rewriting is concerned, simply
think: variables).

Actually, (Vz.Px AQx) mixes object and metalevel syntax
in a way which is typical for Isabelle: (Vx.Px A Qx) is a
“pretty-printed” version of ALL (P & Q).

You may want to look at a theory file (say,
IFOL.thy (=» p2706)) to get a flavor of this. The principle
was explained thoroughly before (=¥ p[230).

291

Extension: Congruence Rewriting

Problem :
if Athen Pelse() = if Athen P else()
where P = P’ under condition A

is not a ruld®]]
Solution in Isabelle (=¥ p.?7): explicitely admit this extra
class of rules (congruence rewriting)
A= P=P]=
if Athen Pelse() = if Athen P else()

mRewrite rules (=¥ pf282) have the form ¢ =

V1, Op = U, = ¢ = 1 (several equations imply
one equation). It is not possible that any of the equations

o1 = U1,...,0, = Y, again depend on some condition, as
n
if Athen Pelse() = if Athen P else()
where P = P’ under condition A

292

Extension: Splitting Rewriting
Problem:
P(if Athenxelsey) = if Athen (P x)else(Py)

is not a HO-pattern rule (since it is not constant-head (=¥ p.

290))).

Solution in Isabelle (=¥ p.?7): explicitely admit this extra

class of rules (case splitting).

293

12.3 Organizing Simplification Rules

e Standard (HO-pattern conditional ordered rewrite (=¥ p.

rules:

e congruence rules (=% p[292

e splitting rules (=¥ p[293)).

[sabelle (=¥ p.??) data structure: simpset?’-

eration O}

e addsimps : simpset * thm 1list — simpset

. Some op-

e delsimps : simpset * thm 1list — simpset
e addcongs : simpset * thm 1list — simpset

e addsplits : simpset * thm 1list — simpset

289

12The simpset is an abstract datatype and at the same
time an ML unit function for returning the current simplifier

set. This is in analogy to the classifier set (=¥ p.269).
338T'hese function manipulate the simplifier set, in analogy

to the classifier set (=¥ p269).

294

Commutativity (=¥ p.

mination.

288

can be added without losing ter-

295

How to Apply the Simplifier?
Several versions (=¥ p.?77?) of the simplifier:
e simp tac : simpset — int — tactic

e asm simp_tac : simpset — int — tactic
(includes assumptions into simpset)

e asm full simp tac : simpset — int — tactic
(rewrites assumptions, and includes them into simpset)

004

Using global”*| simplifier sets: Simp_tac, Asm_simp tac,
Asm full simp tac.

304Simp tac, Asm simp tac, Asm full simp tac work like
their lower-case counterparts but use the current (global)
simplifier set and hence do not take a simplifier set as first
argument (e.g., Simp tac has type int — tactic)

There are analogous capitalized versions for the tactics of
the classical reasoner (=¥ p278)).

296

12.4 Summary on Term Rewriting

Simplifier is a powerful proof tool for

e conditional equational formulas (=¥ p.

o ACl-rewriting (=¥ p{288

e quantifier reasoning (=¥ p{290

e congruence rewriting (=¥ p[292

e automatic proofs by case splitting (=¥

Fortunately, failure is quite easy to interpret

289

p293

5{05)

35\WWhen you use simp_tac, usually you can just look at the

term that you get to understand which simplification has not
worked although you think that it should have worked.

297

12.5 Summary on Last Three Sections

e Although Isabelle is an interactive theorem prover, it is

a flexible environment with powerful automated proof
procedures.

e For classical (=¥ pJ42)) logic and set theory, tableau (=% p[266
like procedures (=¥ p{277) like blast tac and fast tac
decide many tautologies.

e For equational theories (datatypes (=¥ p614)), evaluat-
ing functional programs (=¥ p{583), but also higher-order
logic (=¥ p;362))) simp_tac (=¥ p{296)) decides many tau-
tologies (and is fairly easy to control).

298

13 Isabelle’s Metalogic

299

Representing Syntax and Proofs

e Previously (= p209), we have seen how the
(polymorphically (=¥ p{191))) typed A-calculus (=¥ p{l75
can be used to represent the syntax of an object logic.

e Today, we will extend the A-calculus to a logic (with for-

mulae and inference rules): Isabelle’s metalogic, which
goes under the names of M, Purg®”| HOL.

This lecture is based on Paulson’s work [Pau89]. It is

maybe the most challenging lecture of this course.

360 [sabelle jargon, the metalogic is called Pure.

In this course, we will avoid calling the Isabelle metalogic
HOL, although you may find such uses in the literature.

In the literature and in Isabelle formalizations, we find var-
ious definitions of higher-order logic (HOL) that differ more

or less substantially.

But the important point to remember here is this: The
[sabelle metalogic M we study here is not identical to the
logic w (=¥ pi362)e will study during the entire second half
of this course. And the most important difference between

M and HOL is not in the logics themselves, but in the way
we use them:

M is a (the) metalogic!

HOL is an object logic!

300

What Is Formality anyway?

e Ultimately, logic and formal reasoning have to resort to
natural language. Proofs of, say, the soundness of a
derivation system employ the usual mathematical rigor,
but that’s all. Imagine this for the situation that we just
want to do reasoning”’| in propositional logic (=¥ p[12)
and nothing else.

e We will now introduce a logic M. Its proof system (=¥ p|L6)
is small!

30"We would formalize the language and the proof system
as we did in the first lecture (=¥ pJ17)). Any proofs of sound-
ness and completeness or other meta-properties should be
rigorous, but they still resort to natural language.

301

Proof Techniques = Meta-Theorems

e When constructing proofs, there are

— aspects that are specific to certain logics and its log-
ical symbols (=¥ pJ108)): the proof rules (=¥ p[30));

— aspects that reflect general principles (=¥ pJ16]) of
proof building: making and discharging assumptions,
substitution (=¥ pl87), side conditions (=¥ p[34),
resolution (=¥ p242)).

[t seems that the latter must be justified by complicated
(and thus error-prone) explanations in natural language.

e Using a metalogic such as M has two benefits:

— Shared implementational support for the “general
principles”;

302

— to a wide extent, the “general principles” are for-
mally derived in M. This gives a high degree of
confidence.

13.1 The Logic M

We first introduce M just like any other logic, without con-
sidering its special role as metalogic. Nonetheless, we use
the qualification “meta” to avoid confusion later (=¥ p|313).

Some variations are possible (mainly: polymorphism /type

classes or not), but those are not so important for us.
M will be based on A™. Would you call A~ (=¥ p{l75) a
logic?

So far, A7 (=¥ p|175)) is not a logic (no connectives, no
formulae). We will now extend it to a logic.

303

Logic Based on A~

308

Assume some B (=¥ pJ175) where bool € B, and somg
signature Y (=¥ p[178) where

e = bool — bool — bool (=¥ pJ1706) € ¥,

e =, 0 — 0 — bool € X for all types o, and

o A\, : (0 — bool) — bool € ¥ for all types o.

We usually omit type subscripts™”’| and write =, A.

=, =, and A\'Y are the logical symbols (=¥ p[108) of M.
= and = are written infix (=¥ p[68)).

Terms of type bool are called (meta-)formulae: types gen-

eralize syntactic categories (=¥ p..

Y] contains =, = and /\, but in addition, > may specify

other symbols.
39 Alternatively, we could define that

e =, a— a— bool € X, and

o A\, : (a— bool) — bool € ¥,

where « is a type variable (=¥ p{193).
s0=> ig called meta-implication, = is called meta-equality,

and /\ is called meta-universal-quantification.

304

Folding Assumptions

Lists of (meta-)formulae are denoted by ®, W, €. If ¢ is the

list [¢1, ..., ¢p], then

(D1, ..., D) = Y, e
O =Y

abbreviates the meta-formula ¢1 = ... = ¢, = .
You have seen this in [the exercises
Note that [¢1, ..., ¢, on its own is not a term in M!

305

Proof System for M

The proof system will be presented in the style of natural
deduction (=¥ p)25)).

This is as formal as we get (for the metalogic): derivation
trees in natural deduction style are authoritative.

The judgements™ | just like for natural deduction proofs (=¥ p29)
in propositional logic or first-order logic, are formulae, i.e.,

terms of type bool (=¥ pj304)). This is in contrast to deriv-
ability judgements (=¥ p[9)) or type judgements (=» p{179).

suWe define our proof system for M using natural
deduction (=¥ p)25)).

The judgements are formulae, ie., term of type
bool (=¥ pi304)). This means that a node ¢ in a derivation
tree, as in

¢

must be a term of type bool. It cannot be a derivability
judgement (=¥ p/49) or type judgement (=¥ p[I79) or a term
of type, say bool — bool.

306

Rules for =

4
" b= ¢
7¢:> ¢:>—I ” =-F

Just like rules for — (=» p33)!
For layout reasons we sometimes swap left and right:

¢ ¢=>¢:>
W

-B

307

Rules for A

Meta-universal-quantification is formalized in the style of

higher-order abstract syntax (=» p230) (A, : (¢ — bool) —

bool (=¥ p[304)); may write A x.¢ as syntactic sugar (=¥ p21))
for A(Az.¢).

Note: quantification over terms of arbitrary type!

Rules: A
x.
¢ /\—I* A /\—E
Nz dlo — b
Side (eigenvariable) condition *: x is not free in any assump-

tion on which ¢ depends.
Just like rules for V (=¥ pJ84)).

308

Rules for =: Equivalence Relation

b

a

a

=-refl =-Symin

a=a b

a=b b=c

=-trans

Just like rules for = (=¥ p110)).

309

Rules for =:)\ (i.e., a, 3,n) Conversions

(Az.a) = (M\y.alr «— y]) o (Az.a)b = (alx < b)) P

%k

()\:U.fx)zfn

Side condition *: y is not free in a.
Side condition **: x is not free in f.
Just like rules for =, g, (=¥ p{170).
n is equivalent to extensionalityP 4

s2fxtensionality is the rule
fr=gx
f=y

where the side condition is that £ must not be free in f or g
or any assumption on which the proof of f x = g x depends.
It is equivalent to the n-axiom [HS90, pages 72-74].

Recall that we have used the notion of extensionality be-
fore, for sets (=¥ p{133). The idea is the same here.

310

Rules for =: Abstraction, Combination

a

(Ax.a)

=-abstr" =-comb

\z.b) fa=gb

b f=g a=b
(

Side (eigenvariable) condition *: x is not free in any assump-
tion on which a = b depends. Compare with S-reduction (=¥ p{165)).

As defined for — 3 before (=¥ p[165)), = is propagated into
contexts.

Conversion is built into the proof system!

Recall (=¥ p{190) that e = €’ is decidable in A™ (=-rules
so far).

However, e = ¢’ is not decidable in M (see next slide).

311

Rules for =: Introduction and Elimination

Nt
b 6=v ¢
b=¢-— oy =T

What is the type of ¢ and v here? ¢ and ¢ are formulae,
hence (=¥ p.306) bool (=¥ pi304)).
What object-level connective does = correspond to? « (=¥ p .

312

13.2 Encoding Syntax and Provability

We use FOL (=¥ pf63)) and its subset propositional logic (=¥ pJ12)
(which we call here Prop) as exemplary object logic.

We already know how to encode syntax (=¥ p[209)).

We will now see how to encode proof rules and mimic

proofs of the object logic.

To encode a particular object logic L, we have to extend
M by extending the type language (=¥ p{175), the term lan-
guage (the signature (=¥ p214))) and the proof rules. The
thus extended logic will be called M.

313

Encoding Syntax: Review

As before, 1,0 € B (=» p225)). Previously:

¥ D (not:0—o0,and:0— 0 — o0,imp:0— 0 — 0,

all : (i — o (=» p230)) — o, exists : (1 — 0) — 0)

SB3l for truth values: o and bool.

Two types
We now need a more concise (sweeter (=¥ p21))) syntax
or things will become hopelessly unreadable.

But this is also quite demanding: you should always be
able to “unsugar” the syntax.

2350 we have truth values in the metalogic (type bool) and
in the object logic (type 0). To distinguish them clearly there
are two different types for them.

314

Encoding Syntax Readably

D (Lo,
A,\/,—>314 S0 — 0 — 0,
V,3:(i — 0) — o,
true : 0 — bool).
e — is both a constant declared in > and the function

type arrow (=¥ p170)).

e A\, V,— will be written infix (=¥ p., and we may write
Va.¢ for V(Az.¢), and likewise for 3.

o true A" is usually written [A].

s14\Ne write
(Lo,

AN, V,—:0— 0— o0,
V,3: (i — 0) — o,
true : 0 — bool)
as shorthand for
(Lo,
N0 — 0— 0,
V:io— 0— o,
—10— 0— 0,
V(i — 0)— o,
1:(i —0)—o0
true : 0 — bool)
%550 we have truth values in the metalogic (type bool) and
in the object logic (type o).
Paulson [Pau89] says: “the meta-formula [A] abbreviates
true A and means that A is true”. More precisely, we can

315

Encoding the Rules

The rules of the object logic are encoded as axioms of the

metalogic. These axioms are added to the proof system of
M (to obtain My).

To avoid confusion, we will use distinctive terminology:

e There is a meta-rule called =-F.

e There is a similar object rule that we call the —-FE rule.

e [t is encoded as a meta-axiom that we call the —-F

axiom.

say that [A] is a meta-formula that may or may not be deriv-
able in My, (=¥ p;313)), and that this should reflect derivabil-
ity of Ain L (=¥ p;318).

In the file IFOL.thy in your Isabelle
distribution (=¥ p{276)), you find

Trueprop :: "o => prop"

Trueprop corresponds to true.

316

Encoding of the Rules of Propositional Logic

NAB.[A] = ([B] = [A A B]) (A-I)
N AB.[AN B] = [A] (A-EL)
NAB.[AN B] = |B] (A-ER)
NAB.[A] = [AV B] (V-IL)
NAB.[B] = [AV B] (V-IR)
NABC.[AV B] = (V-E)
([A] = [C]) = (IB] = [C]) = [C]

N AB.([A] = |B]) = [A — B] (—-I)
NAB.JA — B] = [A] = |B] (—-E)
AALL] = [4] (L-E)

317

Faithful Metalogics

For any object logic L, we define:

e M is sound for L if, for every proof of [B] from as-
sumptions [A4], ..., [An] in My, there is a proof of B
from assumptions Ay, ..., A, in L.

e M is complete for L if, for every proof of B from as-
sumptions Ay, ..., A, in L, there is a proof of [B] from
assumptions [A4], ..., [An] in M.

o M is faithful for L if M is sound and complete for
L.

Using concepts of Prawitz [Pra65l, Pra71], one can show by

structural induction that M p,, is faithful for Prop (=¥ p{313).

318

An Example Proof

A-EL (=% p$317)

N\ AB.[AN B]
. A
/\AB.(|[A][][Z> [Bgi I (= pBI17) /\B'[Pj 1[9]]] A-E (» pB)
= —
A-E (= p[303) = [P]
A [[?3%: lel])l) T ES AR
Prqsppp PO PES " p
[PAQI=[P]
= [PAQ — P
[PAQ — P =-E (= pp00

319

Example Proof Simplified

—-1 (=¥ pi317)

/\AB.(E][][A;» _[[)BB% /\AB.I[A/\i]] A-EL (= pBT7)
T EICTEA — L Nk 009
= [PANQ — B] AE (+ /\Bﬂi/\[f;%
(P AQI = [P]) " o i NP 0B
= [PANQ — P]
=-E (= pB07)

[PAQ — PJ

320

Remarks about Example Proof

o \-EL (= p317) and —-E (=¥ p317

but (=¥ p;316) meta-axioms!

are not object rules

e The first, more complicated proof corresponds to the

construction one would use to show that M p,,, is com-

plete for Prop (=¥ p.

318).

e Proof fragments of the form

? ;&Z 9 g (= pB307

can be collapsed into ¢ = : proof normalization.

321

13.3 Reasoning with Resolution

In Isabelle, we mainly use backwards reasoning: we con-

struct a proof tree starting from the root working to the
leaves.
On the meta-level, this proof is in fact a forwards proof:

working from the leaves to the root.
This is achieved by starting the proof of 1 with the trivial

meta-theorem ¢ = ¢P'% and using a technique called
resolution (=¥ p242)).

#6\We have seen this before (=¥ p[34) as a proof in proposi-
tional logic.

———— = [(= pB07]

322

The Resolution Rule

For any formulae q,...,¢U,, 0, ¢1,...,¢m, @ where
FV (= p{160)(¢1, ..., ¢m,d) C {x1, ..., 2k}, and ¢ = 1,

for some ¢ € {1,...,n}, resolution is the following rule:

Axlxk[¢177¢m]:>¢ [¢17"'7¢n]:>¢re

1, i, 010, OO, ik, .] = Y
Intuition: A z1... 2k [P1, ..., O] = ¢isameta-axiom (=¥ pi316
such as A-EL (=¥ p317), [¢1,...,%,] = 9 is the current
goal (proof state).
Compare to phrasing using V

S

3T7)

We will now derive the rule.

317You may have seen the following formulation of the reso-
lution rule:

AV...VA, B/V...VB,
(A1V...VA_1,A V.. VA VBV...VB; i,Bj1V...VB,)f
where either A;,0 = =B;0 or —A;0 = B,0.

You can see the correspondence to the rule given here by re-
calling that in first-order logic (=» p63), ¢1 — ... — ¢, —
@ is equivalent to ¢1 A ... A ¢@,, — ¢, which is in turn equiv-
alent to =1 V...V 7o, V @.

You may still be wondering though why in the rule res, we
only allow instantiation of [¢q, ..., ¢n] = @. This restric-
tion will in fact be lifted later (=¥ p{357)).

323

Resolution as Derived Meta-Rule

/\.I'l SR
(D1, Om] = & 1 1 [,]
G2 6l Tl ol = g8 [P PES) [] = ¢
e =-E (= pj307) PRSP =-E (= pj307)
Wz‘+17 s 7¢n] = ’L/} é_@

=T (= p[307)2
s n] = (

[¢19""’¢m9)/¢}i+1,...
= w =-1 (-) P m

[17/}17 s >wi—17¢197 s 7¢m97¢i+17 s 7wn}

s8Recall that ¢pf = ;.

324

Deriving Resolution: Remarks

e We collapsed iterated applications of rules (denoted by
double horizontal line).

e This is not just a matter of simplicity. The derivation
is schematic not just in the sense that the Greek letters

could stand for arbitrary formulae (=¥ p31]); we don’t
even know how many formulae are involved (k, m,n,

could be any natural numbers).

e But for any concrete vy, ..., 10,0, b1, ..., Om, @, you
could do the formal derivation in M.

325

Dropping Outer Quantifiers

We adopt the convention that outer quantifiers in meta-
formulae are dropped. E.g. [A] = [B] = [A A B] instead
of NAB.[A] = [B] = [A A B].

In addition: use renaming for freshness

319

Then we can write the resolution rule as follows:

[¢17---7¢m]:>¢ [¢177¢n]:>¢

[¢17 o 7¢i—17 ¢197 sy ¢m‘97¢2’~|—17 S 7¢n] =4 ¢
where ¢f = ;.

We will now work with this schematic form.

res

29The schematic form of the resolution rule (=¥ p[323) is:

01, Om] =@ |1,] =4

W1, Yic, 310, Ol Vi,] =
where ¢ = 1.

We will work with this schematic form, but remember: if

res

necessary, you could construct an actual derivation in M.
In this schematic form, it is always assumed

that the free variables in [¢y,...,¢0,] = ¢ are

fresh (=¥ pR205), ie FV (=¥ pll60)([¢1,...,0m] =

@) NFV (D pL6O)([vo1, ..., ¥ = ¥) =
This assumption may be justified considering the formal

derivation of the resolution rule (=¥ p[324). Suppose that
the free variables in [gbl, oy Om] = ¢ are not all fresh,
and consider A 2} ...z..[¢],..., ¢, = ¢, obtained from
Nzx1...xp|d1, ..., dm] = ¢ by replacing each x; with a/,

where the x} are fresh.
[t is easy to see that in the formal derivation of the reso-

326

Proof of ANB—C — ANC (1)

Let’s prove AN B — (C' — A A C') by resolution. We start
by resolution with —-I (=¥ p317)):

([A1] = [B1]) [ANB — (C— ANC)]
S —m] PP Lo (0o ancy PR R
(AAB]= [C — AAC)) res (% p20)
=[AANB— (C— ANC)]
lution rule (=¥ p.324)), one can replace
x a:kqb ,...,gbm :>§Z§
Ao 2 | A-E (= p308
[¢197 SR ¢me] = Q5(9
with
Nzi.ap o, ol = ¢
= A-E (= p308
[¢1‘97---7¢m] $¢9
Therefore we can assume without loss of generality that the
free variables in [¢q, .. .,] = @ are fresh.

The next question is: why do we want fresh variables?
Maybe this is clear intuitively: A rule is always meant to
be schematic and the choice of variables names in a rule
should be irrelevant. More concretely, one may say that if
one does not rename the variables in a rule and hence there
is some variable, say A, that occurs in the current subgoal,
then resolution may lead to a subgoal containing occurrences
of A originating from the goal and others originating from

327

What to do next??’? Again resolution with —-I (=¥ p[317).

Problem: the conclusion of —-I (=¥ p;317) is not unifi-
able®*!| with [A A B] = [C — A A C].

the rule, and these are inadvertently identified, leading to a

proof state that is more instantiated than it should be.
200n the one hand, we want to resolve

([ANB] = [C —- ANC])=[AANB — (C — ANC),

i.e., we have to match ([AA B] = [C — A A C]) against
the conclusion of some meta-axiom.

On the other hand, think what Isabelle would display in
this situation. The (only) subgoal would be

IL.LANB=C—ANANC,

so we have to show C' — A A C' (using assumption A A B).
So you should look at C' — AAC' to guess which meta-axiom

should be used now.
221[n our current situation, Isabelle would display:

Level 1(1 subgoal)
ANB — (C— ANC)
1. ANB=C—-ANC

328

Lifting over Assumptions

The rule for lifting an object rule (meta-axiom (=¥ p{316)))

(1, -+ ., O] = @ over a list of assumptions V¥ is

[¢17---7¢m]:>¢
V= ¢1,..., V= o, = (V= 9)

a-lift

We will now derive it for one assumption, so ¥ = [¢].

From your experience with Isabelle, it is clear that since the
top-level symbol in C' — A A C'is —, you would use —-1.
But look at the resolution rule (=¥ p;326) again. We
would take a fresh instance of —-I, say ([As] = [Bs]) =
[Ay — Bs]. The problem is that [Ay — Bs] is not unifiable
with [A A B] = [C — A A (], and so res is not applicable.

329

Deriving Assumption Lifting for one

Assumption
1 2 1 2

b = = F (= pj307)
0o g 1 B0
m
W= o1,.... 0= on] = (¥ = ¢) =-I (= pB307)

This process can be repeated for any number of assumptions
to get the general rule.

330

Proof of ANB — (C— ANC) (2)

We do resolution using the —-I axiomP’*4 lifted over [A A BJ:

F (= pjB27)
([AAB] = (JAs] = [B:])) (JAAB]=[C — AAC])
= ([AANB]=[A2— B]) =[AAB— (C—AAC)w

(QAANB] = [C]=[ANC])
= w[AANB — (C — ANC)]

Before we proceed, we introduce the abbreviations

w=[AANB — (C—ANC)], Q=][[ANAB],[C]]

res (= p57)

322

(IAA Bl = ([A2] = [B2])) = ([AA Bl = [A2 — By))

is the —-Frule (meta-axiom (=¥ pi316))) lifted over the as-
sumption A A B (=¥ p{329).

331

Proof of ANB — (C — ANC) (3)
We do resolution using the A-I axiomP*| lifted over :

: (= p331)
(Q=]ANC]) = w

(Q = [As]) = (2= [Bs])
= (= [A3 A Bs))
Q=[A]) = Q=][C]) =w res (=¥ p-

At this point, Isabelle would display Q2 = [A] and Q2 = [C]
as two subgoals.

The next step is to solve = [C] by assumption, but
this must be formalized.

323

(2= [A3]) = (2= [Bs3]) = (2= [A3 A\ Bs])
is the A-I-rule (meta-axiom (=¥ pi316)) lifted over the as-
sumption list 2 (=¥ p|329). Recall that 2 was an abbrevi-

ation for [[A A B], [C]], but this is obviously irrelevant for
the process of lifting.

332

The Assumption Axiom

The assumption axiom is: for any i € {1,...,m}
assum
D1, O] = @i
It has a simple (schematid®*%) derivation:
[#i]! L
¢i 17"'7¢m:>¢i)
90] — 1 (= pB307)"
(@i -] = O e
-
(@15, O] = @i
2¢The assumption axiom
assum
D1, O] = @i

is schematic in two senses:
e the Greek letters could stand for arbitrary
formulae (=¥ pBI);

e just like for resolution rule (=¥ pi325)), we don’t even

know how many formulae are involved (m,i could be

any natural numbers).

However, one could also write the axiom as

ass
Ay Ag] = 4

where the A’s are variables (of type bool (=¥ p;304))) and in-
stantiate it later when it is used (=¥ pi334)) in some resolution

step.
22Recall here that the rule =-1I, just like —-I, allows you to

333

Proof of ANB — (C— ANC) (4)
We do resolution using the assumption axiom (=¥ p[333):
L (=¥ pf332

O=[C] (= pB33) Q= [A,Q=[C] = w

res (=¥ p{326

(Q2=]4]) = w

We used the correct instance of the assumption axiom.
326

Alternatively
B4.

What to do next? (Recall that Q = [[A A B], [C]].) Res-
olution with A-EL.

, we could have use the more generic [A4, By =

discharge zero or more (=¥ pl27)) assumptions. In the present
derivation, we discharge the assumption ¢; at some point but

we do not discharge any other assumptions.
2 As explained previously (=¥ p{333)), we could use a more

generic variant of the assumption axiom, in that we have
variables in it that may become instantiated upon resolution.
As in previous proof steps we assume that these variables are
suitably renamed; for this purpose we index them by 4.

Note however that the variant is still specific in the sense
that m = 2. Like in meta-axioms used before, we use letters
from the beginning of the alphabet, so the variant of the
assumption axiom that we use is [A4, By| = By. The proof
fragment would then look as follows:

L (= pi332
Ay, By = By (= p333) [Q2=[A],Q=[C]] = w
Q=[A]) = w
where 0 = {Ay — [A A B], By — [C]}.

334

326

res (=¥ p.

Proof of ANB — (C — ANC) (5)

Magically, we guess the right instance of A-EL and lift it
over €2

: (=¥ pi334
Q=[AANB])=(Q=[4]) Q=[4]) =w
(Q=[AANB]) =w

res (=¥ pl326

What to do next? (Recall that Q = [[A A B],[C]].) Prove
the subgoal by assumption.

335

Proof of ANB — (C — ANC) (6)

We do resolution using the assumption axiom (=¥ p{333):

Q= [ANAB] (=p.

L (=¥ p.

335

333

(Q=[AAB]) = w

w

res (=¥ p.

Recall that w =[AA B — (C — A A C)]. Done!

336

326

Getting Rid of the Magic

In one step (=¥ p.

Solutions:

e Generalize (=¥ p.

335

., we had to guess the right instance of
A-EL. This is not practical.

307

the resolution rule (=¥ p.

326

to

allow for instantiation of the current proof state and not

just of meta-axioms.

e Derive

AN ABC[[AA B ([A], [B]) = [C])]) = [C]

which encodes the A-E object rule (=» pI)).

337

The Whole Proof at a Glance

Compare prootf in M p,,, with corresponding proot in Prop:

—-1 w=w

—-1 LW

=W

=W

a. (= p333)

A-EL
a. (=¥ pP333) "

w
[A A BJ!

1 MEL P
anrc M
coanc o F

A/\B%(C%A/\C) —-F

“The meta-level proof is the object level proof upside-

338

downP?7”

27 [ntuitively, as far as the order in which the object
rules (= p/316)), resp. meta-axioms (=¥ pi316|), are applied,
the proof in M p,,), is the proof in Prop turned upside-down.

However, this may seem suspicious for two reasons:

e In derivation trees, the direction of implication (forget-
ting about whether it is meta- or object implication)
is “downwards”: whatever is above implies whatever is
below. So it seems strange that this order should be re-
versed just because we go from the object to the meta-
level.

e In general, a derivation tree in the object level is a proper
tree, i.e., there are nodes where it branches. So what
sense does it make to “turn it upside-down”? The result
would not be any tree at all.

These points will now be addressed (=¥ p{340)).

339

Direction of the Implication

[s the direction of the implication reversed just because we
go from the object to the meta-level?

No! The direction is reversed because we start from the
trivial meta-theorem w = w, and the resolution steps mod-
ify the left-hand side of this meta-theorem.

340

How Can One Turn a Tree Upside-Down?

A proper tree has nodes where it branches. Also, in Isabelle
proofs, we frequently have to prove several subgoals. So how
is this branching reflected in the meta-proof?

A meta-formula of the form ¢¥; = ... = 1, = ¥ cor-
responds to a branching point in the object level proof. It
means that there are subgoals (=» p332) 91, ...,%,. Butin
the derivation tree in M py,,, there is no branching.

In the construction of a meta-proof (just like in Isabelle),

one is always free to choose which subgoal to solve next.
328

is possible.

Interleaving

28[f one pictures the object level proof and how it is modeled
in Mpy,,, one intutive way of thinking of it is as follows:
Each rule application in the object level proof must also be
performed at the meta-level. Now, starting at the root of
the object level proof, we may do any rule application that
is the child of a rule application we have done previously.

Take for example the following object level proof:

[ANA(BAC)! -
AnBror _BACNE%F
A C
ANC -
A T

AN(BAC) = ANC

Then in the meta-proof, the meta-axioms might be applied
in the following orders:

AP AERY A-ERY A-EIB, or
AP AER AERY AERY. o
— A AERY AEIE A-ERY

341

13.4 Quantification

We add the following meta-axioms to obtain
Mpor, (= pp13):

V-I)

N\ Fy.[Vx.F x| = [Fy] (V-E)
(
(

N\ Fy.[Fy] = [Fz.F x] I)

=
AFB.[3x.Fa] = (ANx.[F 2] = [B]) = [B] (3-E)

Similarly as for Prop (=¥ p|318), one can show that Mpoyr,
is faithful for FOL.

Side condition checking is shifted to the meta-level (=¥ pi355)).

We now consider resolution proofs (=¥ p{322) for FOL.

But this is not new to you: In Isabelle, you are always free
to choose the subgoal that you want to work on next, and
so you can interleave the proofs of the different subgoals.

342

Proof of (V2.Gz) — (V2.GzV H z) (1)

([A:] = [Bi])
= [A; — Bi]

[(V2.Gz) — (V2.GzV H =z

(B | [voq2) — (¥2G 2 v Hzﬂ (= pj22)

(V2.Gz] = [V2.Gz Vv H z]) res (=¥ p

= [(V2.Gz) = (V2.GzV H z2)]

What to do next? Resolution with V-I (=¥ p[342) lifted over
assumption [Vz.G z].

343

Proof of (V2.Gz) — (V2.GzV H z) (2)
: (= pP343)

([V2.G z] = (A z.[Fiz])) ([V2.Gz] = [V2.GzV H z])
= ([V2.Gz] = [Vz.Fiz]) =[V2.Gz)— (V2.GzV H 2)]

(V2.Gz] = (AN2.[G=zV H z]))
= [(V2.Gz2) — (V2.GzV H z)]

The substitution 6 (=¥ p|326) is [F} «— A\w.G w V H w].
329

res (= p20)

We suppress conversion~”|, assuming terms are in normal

form (=¥ p223).
What to do next? Resolution with V-IL after lifting

over assumption (=¥ pi329). Problem: the conclusion of

V-IL (=¥ p[317) is not unifiable with A z.]G 2z V H z]).

29T'his means, we do not show any applications of the con-

version rules (=¥ p{310)) explicitly. Otherwise, we would have

to show subderivations such as

([Vz.Gz] = (Az.] w.Gw Vv Hw)z]))
= [(V2.Gz) — (V2.G 2z V H 2)]

([Vz.Gz] = (N2 [GzV H z]))
= [(V2.Gz2) — (V2.Gz V H 2)]

which would be using those conversion rules (=¥ p{310)).

Note that this suppressing is the reason why you find the
=-symbol so rarely in this part of this chapter.

344

Lifting over Parameters

Lifting over parameters seems easier to explain if outer A’s
are not dropped (=¥ pi326). The rule for lifting a meta-

axiom (=¥ pi316) Awyi...yk-[01,.. ., Om] = ¢ over a pa-
rameter z 1S

/\yl...yk.[qbb...,qu] = ¢
NS JelNzdh o Nzdn] = (Az.¢)

/

p-lift

where ’ stands for application of the substitution [y; «

J12z, o Yk — fk:Z]-
We will now derive it.

345

Deriving Parameter Lifting for one Parameter

" stands for application of [y; < fi(2),...,yx — fr(2)].

/11 o
Ay [./yk.[%(;/.]jvj = ¢ A-E (= pB03) [/\';/¢1] A-E (= pB08) [A;/¢m] ALE (» o5
Trevos m g 1 n - -
AZ¢/ /_I(-’ p
- m
Azd,..., Nz.dh] = N\z¢ =-I (= p{307)

-I (= p{308
A T AR A

After parameter lifting, we drop (=¥ p{326)) outer quantifiers

again.

346

Lifting V-IL

Lifting A AB.[A] = [AV B] (V-IL (=¥ p;317)) over z gives
N GoHo (\ 2.[G22]) = (\ 2.[G2 2 Vv H, 2]).

We drop (=¥ p{326)) outer quantifiers and lift over assumption (=¥ p,329
[Vz.G z] to obtain

([V2.G 2] = N\ z.[G2z2]) =
([Vz.G z] = N\ z.[G22zV Hs 2])

This rule will be applied in the next step.

347

Proof of (V2.Gz) — (Vz2.GzV H z) (3)

(< pBH)
([V2.Gz] = N=2[G2z2]) = ([V2.Gz] = (AN=z[G=zV Hz]))
([V2.G z] = N\ =2[G2zV Hyz]) = [(V2.Gz2) — (V2.GzV H z)]

(V2.Gz] = Nz [Gz]) =
[(V2.G2) = (V2.G 2V H 2)]
What to do next? Resolution with V-E (= p{342) lifted
over z. However, this cannot be guessed from looking at
N z.]G z], but rather from looking at premise [Vz.G z].

(= p{347))

res (=¥ p{320)

348

Lifting of V-E over 2z

Lifting A\ Fy.[vVx.Fzx] = [Fy] (V-E (= pi342)) over
parameter (=¥ pi345|) z gives

N Gsfs.(\ 2.[V2.(Gs 2)x]) = (/\ 2.[G3 2(f3 2)]).

We drop (=¥ p{326)) outer quantifiers and lift over assumption (=¥ p,329
[Vz.G z] to obtain

([Vz2.G 2] = N\ z.[Vz.(Gs 2)x]) =
([V2.G 2] = Az]Gsz(fs 2)])

This rule will be applied in the next step.

349

Proof of (V2.Gz) — (V2.GzV H z) (4)

L (= pP4g)
([V2.G z] = N\ z.[Vz.(Gs 2)x]) : (V2.Gz] = N=z[Gz]) =
([V2.G z] = N\ 2.[G32(f5 2) (= B9 [(V2.Gz) — (V2.GzV H z2)

(|[Vz.Gz]l = Az[ve.Ga]) =
[(V2.Gz) — (V2.G 2V H 2)]

The substitution 8 (=¥ p{320)) is | f5 «— Aw.w, G5 «— Avw.G w].
We suppress conversion (=¥ p|344)), assuming terms are in

res (= p{320)

normal form (=¥ p[223)).
What to do next? Since z ¢ F'V (=¥ p|160)(Vx.G x), we

can use a modified assumption axiom (=¥ p.333)).

350

Modified Assumption Axiom

assum
[¢177¢m} :>/\Z¢Z WhereZ¢FV(¢Z)
It has the following derivation:
1

o)

ASEZ —[(= pB3

Gittse s Om] = N\ 2.0 j—
7 ol = Nz =-1 (=¥ pi307
SRR LAk I (= pB33
[¢17 c 7¢m] = /\2¢2

351

Instance of Modified Assumption Axiom
In the next step, we will use the instance
V2.G 2] = /\ z.[Vx.G x]

of
[¢17 s 7¢m] = /\ Z¢Z

We identified Vz.G z and V.G x by conversion (=¥ p{310)).

352

Proof of (V2.Gz) — (Vz2.GzV H z) (5)

L (= pf352 : (=¥ p{350

Vz2.Gz] = ([V2.Gz] = Nz [Ve.Gz]) =
N\ z.[Vz.G 2] (V2.Gz) — (V2.G 2z V H 2)]

res (=¥ p{326

[(V2.Gz2) — (V2.G 2V H z)]

Done!

353

Remark on Step 2
Recall Step 2 (=¥ p{344):

: (=» pP343)
(V2.Gz] = (AN z.[F12])) (V2.Gz] = [V2.G 2z V H 2])
= ([V2.Gz] = [Ve.Fiz]) = [V2.Gz) — (V2.GzV H 2)]
)
]

res (=% p}326)

(V2.Gz] = (ANz.[G=zV H z])
= [(V2.G2) = (V2.GzV H z)

One could have obtained A z.([Vz.G z] = (|[GzV H z]))
instead of ([Vz.G z] = (A 2.[G 2V H z])) by lifting V-I in

a different way'l This will be an |exercisel

0[n our proof, we lifted V-I (=» p|342)) over assumption
[Vz.G 2] as follows:

([Vz.G z] = /\az [F1z]) = ([V2.G 2] = [Vz.Fi x])
It would have been possible to derive (formally, in M) the

following rule instead:
(N\2.[V2.Gz] = [Fi2]) = ([V2.G 2] = [Vo.Fy a])

This is essentially so since z ¢ FV (=¥ p{l60)[Vz.G z]. If
we had done it like that, step 2 (=¥ p{344) would have looked
as follows

L (=» pP343)
(A z.[Vz2.G 2] = [Fix]) ([V2.Gz] = [V2.GzV H z])
= ([V2.Gz] = [Vx.Fiz]) = [V2.Gz)— (V2.GzV H 2)]

(Az.[Vz.Gz] = [G=zV H z])
= [(V2.G2) — (V2.GzV H 2)]

The rest of the proof would then have looked slightly differ-
ently due to the different scope of the A. For example, it

res (= pi326)

354

Checking Side Conditions

To demonstrate how side conditions are checked, we show a
proof attempt that fails due to a side condition.

Take Ju.Vw. w = v in FOL with equality (=¥ pJ106)), so

assume we have a meta-axiom (=¥ p,316|) for reflexivity (=¥ p.

Nz [z=2z2] (ref])

110):

would have been necessary to lift V-IL (=¥ pi347) over as-

sumptions before lifting it over parameters.
In fact, if we denote a vector of variables by overlining, then
we can derive the following rule for lifting over assumptions:

(AZ1-01), -, (AT 0On)] = ¢
(AT = ¢1),..., (ANT1.V = ¢p)] = (V= ¢)

where 7q,...Z, ¢ FV(V). Compare this to rule
a-lift (=¥ p;329). Using the more complicated rule, where

the assumption list ¥ is pulled into the scope of A’s sur-
rounding each rule premise ¢;, would probably have made
the presentation here somewhat more complicated. On the
other hand, this is indeed what happens in Isabelle (try to

do the proof of (Vz.G z) — (Vz.G 2z V H z) in Isabelle).

355

Failed Proof Attempt of Ju.Vw.w =u

[Fiy] = (= pB1) [FuYw. w =u] = (+ pB2)

(o [Fya]) [Fz.F] [FuYw. w = u] res (+ pB)
= [Vm.]% 7] (= P12 [Vw. w =] = [FuVw. w = u]
res (=¥ p[320))

Az lz=wnl) = Byve.z =yl
Substitution? [F] < Av.Yw.w = v, Fy < Av.v = 14].

What to do next? Resolution with refl (= p{355) lifted
over parameter x (=» p345): A x.[gz3x = gz z]**} But A\ z.[z = y]
and A z.[g3 x = g3 x] are not unifiable®” Proof fails!

3 Note that lifting refl (=¥ p.345

/\z[z = 7]
/\93- /\CU-|[93CU = g3 z].

Here the variable z in refl was replaced by the variable g3

over T gives

that depends on z. However, we drop (=¥ pj326)) the outer

quantification /\ g3. In this particular case, A x is also an
outer quantification, but we keep it, since obtaining this
quantification was the very purpose of lifting (recall that

lifting is done to achieve unifiability (=¥ pi344]))).
#2Recall (=¥ p[308) that A x.¢ is syntactic sugar (=¥ p[21])

for A\ x.(Az.¢).
So we have to unify Az.[z = y1] and Az.[g3 z = g3 x].

[t turns out that this task can be decomposed into having
to unify Ax.x and Az.gsx on the one hand, and Az.y; and
Az.g3 x on the other hand. Unification of Az.x and \x.g3x
forces g3 to be Azx.x, so we are left with having to unify Ax.y;

356

13.5 Free Variables in Goals

The resolution rule can be generalized to allow for instanti-
ation of variables in goals:

01, Om] =@ |1,] =4

(1, i1, @1, ooy Py Vi1, -+ 0] =)
where ¢ = ;0.

But then we must distinguish the status of the free vari-

ables. Denote the universal closurg®™?| of ¢ by A _.1b. Then

res
0

and Axr.x. But these terms are not unifiable!
This was just a semi-formal argument that A z.[x = yi]
and A z.[gs © = g3 x] are not unifiable, but it gives you the

idea.
333The universal closure of a meta-formula ¢ is the formula

Nxi...x,.0 where FV (=¥ pll60) (1) = {x1... 2, }.

As might be expected, the same concept is also used for
FOL (=» p[63) formulae where it is defined in analogy using
V instead of A.

357

Instantiation of the Initial Goal

Previously, when we proved ¢ we in fact proved A _.1.
Now, allowing for instantiation of %, we in fact prove

A 0.

N-v =1
o0 A-E (= p308
I p1308
A W N-I (=

334

This may not be what we want

335

Problem: more unifiers, hence bigger search space

Suppose we want to prove (A — B) — A) — A. [If
we allow for instantiation of the free variables A and B, we
could easily end up proving ((A — A) — A) — A. This is
probably not what we want. In fact the proof has little to do
with the proof of (A — B) — A) — A that is schematic
in A and B (= pf30).

In terms of M Prop; we want to prove
NAB.[((A— B) — A) — A]

Recall that (A — B) — A) — A is Peirce’s
law (= pf41)).

335The more free variables in the goal we allow Isabelle to
instantiate, the more unifiers there are. This may increase
the search space to the extent of making it impossible to find
a proof.

358

Two Kinds of Free Variables

In Isabelle, control over instantiation is given by having two
kinds of free variables:

e ordinary variables must not become instatiated:;

e metavariables (unknowns, schematic variables) may be-

come instantiated.

In goals we can have both kinds, in rules we have metavari-
336

ables. Try it out in Isabelle!

Once a theorem is proven, any free variables will be made
237 and the reading is as for rules (=¥ p[326)):
The theorem is implicitly universally quantified over the free

metavariables

variables.

36To understand the difference, try proving AN B — P
and A AN B —7P in Isabelle. The first won'’t succeed while

the second may succeed in various ways.
#Prove A A B —7P in Isabelle and save (qed) it as a

theorem and then have a look at the theorem.

359

13.6 Conclusion on Isabelle’s Metalogic

The logic M and its proof system are small.

What makes M powerful enough to encode a large variety
of object logics?

e The A-calculus (=¥ pJ175)) is very powerful for expressing

syntax and syntactic manipulations (— substitution).

M must be extended by appropriate signature (=¥ p{178

for an object logic.

e Rules of the object logic can be encoded and added to
MP3 as axioms.

33[n some course on propositional logic, you may have
learned that the connective — is not really necessary since
A — B is equivalent to = A V B. Likewise, we considered
= A as syntactic sugar (= p1]) for A — L.

Therefore, when we introduce a logic M that is
so extremely simple as far as the number of logical
symbols (=¥ p|304)) is concerned (just =, =, /\), one might
think that the idea is that all the other logical symbols one
usually needs are just syntactic sugar. This is not the case!

To encode propositional logic (=» p[12) or FOL (=¥ p63)
in M, we must add their rules as axioms.

Later (=» p362), we will be working with a logic just
slightly richer than M but still quite simple, and there the
idea is indeed that all the other logical symbols one usually

needs are just syntactic sugar.

360

Conclusion (2)

General principles of proof building (e.g. resolution, proving
by assumption, side condition checking) are not something
that must be justified by complicated (and thus error-prone)
explanations in natural language — they are formal deriva-
tions in the metalogic.

This has two big advantages (=» p{302): shared support
and high degree of confidence.

361

14 HOL: Foundations

14.1 Overview
339

HOL is expressive foundation?””| for

e Mathematics: analysis, algebra, . ..

e Computer science: program correctness, hardware veri-

fication, ...
HOL is very similar to M (=¥ p299)), but it “is” an object
logid”!

e HOL is classicalPt]

e Still’*4important: modeling of problems/domains (now
within HOL).

e Still important: deriving relevant reasoning principles.

339 Theorem proving in higher-order logic is an active re-

search area with some impressive applications.
#0The differences between M (=¥ p299)) and HOL are sub-

tle and the matter is further complicated by the fact that

there are some variations in the way in which the Isabelle
metalogic M on the one hand and the object logic HOL on
the other hand are presented.

But what matters for us here is that HOL is an object
logic, i.e., it is one of the object logic that can be represented
by M, just like propositional logic (= p[12) or first-order

logic (=¥ pl63). That is to say, we use HOL as object logic.
suRecall (=% p[A2) the distinction between classical and in-

tu1tlomstlc logics. There is a particular rule (=¥ pj392) in
HOL from which the rule of the excluded middle (=¥ p32
can be derived. This is in contrast to constructive (=¥ p.363

(intuitionistic) logics.
#2\We have previously looked at metatheory (=¥ p[299), i.e.,

how can one logic be represented /modeled in a metalogic.

362

http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/
http://web.comlab.ox.ac.uk/oucl/conferences/TPHOLs2005/

Isabelle/HOL vs. Alternatives
We will use Isabelle/HOL}**|

e Could forgo the use of a metalogic

044

and employ al-

ternatives, e.g., HOL system or PVS, or constructive

provers™ ™| such as Coq or Nuprl.

e Choice depends on culture and application.

In particular, we have seen how general reasoning

principles (=¥ p302) can be derived in the metalogic.

We now set aside the issue of metalogics, but there is still
an issue of modeling one system within another: how do we
model problems/domains within HOL? How do we derive

reasoning principles?
#5We use Isabelle/HOL, and this means that HOL is an

object logic represented by the metalogic M (=¥ p299).
s4There are theorem proving systems that have no meta-

logic, but rather have a particular logic hard-wired into them,

e.g. a HOL system or PVS.
s5Constructive provers are based on intuitionistic logic.

The rationale is that one has to give evidence (=¥ p{42) for
any statement. Coq and Nuprl are examples of such systems.

363

http://www.cl.cam.ac.uk/research/hvg/HOL/
http://pvs.csl.sri.com/
http://coq.inria.fr/
http://www.cs.cornell.edu/info/Projects/Nuprl/

Safety through Strength

Safety®*Y via conservative (definitional) extensions (=¥ p[440)):

e Small kernel of constants and rules:

e extend theory with new constants and types defined us-
ing existing ones;

e derive properties/theorems.
Contrast with:

e Weak logics (e.g., propositional logic): can’t define much;

e axiomatic extensions®*’

. can lead to inconsistency.

Bertrand Russel once likened the advantages of postula-
tion over definition to the advantages of theft over honest
toil!

346'T'he principle is simple: the smaller a system is, the easier
it is to check that it is correct, and the more confident one
can be about it.

We have seen this before when we argued for the use of

metalogics (=¥ pf302). However, in that context, we still had
to add further axioms (=¥ pi360|) to M. Here this is not the
case.

Safety through strength means: HOL is strong enough to

model interesting systems without having to add further ax-

ioms — that’s what makes it safe.
s"\What we attempt to do here has similarities to the process

of representing (=¥ p.299) an object logic in a metalogic. But

an important difference must be noted.

We will see many extensions of the HOL kernel by
constants (and types). The definitions of those constants
and types involve axioms that must be added according to
a strict discipline (=¥ p#40). Other than that, we will not
add any axioms (=¥ p{360))!

364

Set Theory as Alternative?

Set theory is the logician’s choice as basis for modern

mathematics.

o ZFCP™ [Zer07, [Fra22]: has been implemented in Is-
abelle, with impressive applications!

e Neumann-Bernays-Godel [Ber91]: equivalent to ZFC,
310

but finitely axiomatizabld

Set theories (both) distinguish between sets and classes.

e Consistency maintained as some collections are “too big”

to be sets, e.g., class of all sets V' is not a set (=¥ p{148).

e A class cannot belong to another class (let alone a set)!

s/FC stands for Zermelo-Frankel set theory with
choice [Dev93| [EbhI4].

#Strictly speaking, an axiom (=% pp0]) within the object
language in question. In this sense, the axiom of the ex-
cluded middle (=¥ p[2)) from propositional logic, A V —A
(for example) is not an axiom, because A is a meta-variable

which could stand for an arbitrary formula, and thus AV —-A4
is not within the object language of propositional logic. One
says that A V =A is an axiom schema that represents in-

finitely many axioms.
So far we have not made this distinction explicit in
most places, although we have raised this issue very early

on (=¥ pJ31)).

Now a theory is finitely axiomatizable if it only uses axioms,

but no axiom schemata.

365

Finally: We Choose HOL!

HOL developed by [Chu40], Hen50] and rediscovered by [And02,
CMO3).

e Rationale: one usually works (=¥ p[152) with typed en-

tities.
e Reasoning is then easier with support for types.
HOL is classical logic based on A7 (=¥ p372).

e [sabelle/HOL also supports “mod cons”P?!| like

polymorphism (=¥ pJ192)) and type classes (=¥ p{195)!

HOL is weaker than ZF set theory, but for most ap-
plications this does not matter. If you prefer ML to
Lisp, you will probably prefer HOL to ZF. (Paulson)

350 “Mod cons” stands for “modern conveniences”.

366

What Does Higher-Order Mean?
“Type” order@ Logic order

Example
Just o 07| ANB— BAA
1 1 | Va, y. R(z,y) — R(y, x)

+ quantification | 2 | False =VP. P
PANQ=VR.(P—Q — R)

2 3
+ quantification | 4 | VX.(X(R,S) < (Vz. R(z) — S(x)))
— X(R',S") (= subrel(R',5"))

#1Recall the definition of an order on types (=¥ p{233
and assume here, as we did in the lecture on representing

syntax (=¥ p225)), that there is a type 7 of individuals and a

type o for truth values.

In the sequel, we follow [And02 §50], who uses a definition
of order slightly different from ours (=¥ p[233). I will phrase
his definition using the concept of predicate type:

e 7 is a type of order 0.

e cvery type of the form

i — ...1 =0,

-~

n times
where n > 0, is a predicate type of order 1.

o If,..., 7, are predicate types, theny — ... = 7, —
o is a predicate type whose order is 1+ the maximum of
the orders of 7, ..., 7.

367

Note that this means that there are no function symbols,
since we did not consider types of the form ... — ¢. How-
ever it is better to say that we simply disregard them in the
subsequent explanations, for simplicity.

In the table, we classify logics by the order of the non-

logical symbols (=¥ p{108) (e.g., for first-order logic: vari-

ables, predicate symbols).
A hierarchy of logics is obtained by the following alterna-
tion:

e admit an additional order for the non-logical symbols in
the logic;

e admit quantification over symbols of that order.

We start this hierarchy with first-order logic.

It has symbols of first-order type (predicate symbols), but
quantification is allowed only over individuals, which are of
order 0.

Now, if one admits quantification over symbols of first-

368

order type, i.e., over symbols of typeoori — ... — i — o,
one obtains second-order logic.

Now, if one admits symbols of second-order type (sym-
bols taking predicate symbols as arguments), one obtains
third-order logic.

Now, if one admits quantification over symbols of second-
order type, one obtains fourth-order logic.

Hence quantification over nth-order variables corresponds
to (2n)th-order logic.

In the end, one will never bother to discuss, say, 7th-order
logic, since higher-order logic is the union of all logics of finite
order, and this is what we will be working with.

Andrews has said that propositional logic might be re-
garded as zeroth order logic, but unfortunately, propositional

logic cannot be found in this hierarchy in a straightforward
way. According to the hierarchy, below first-order logic there
should be a logic where the symbols are of order 0 and quan-
tification over such symbols is allowed. But in fact, in propo-

369

Explanation for subrel(R', S") >

sitional logic the symbols are of type o, which is of order 1
but is not the only type of order 1, and no quantification is
allowed at all.

However, once you take higher-order logic as your point
of reference and not propositional or first-order logic, which
can just be viewed as special cases, you will probably not

find this bothering anymore.
$22Consider the binary predicate subrel which takes two

unary relations as arguments. subrel(R,S) is defined as
true whenever R is a subrelation of S| i.e. when Vz. R(x) —
S(z).

Now instead of defining such a predicate and writing, say,
a formula subrel(R',S"), one could abstract from that name
and write

VX.(X(R,S) < (Vx. R(x) — S(x))) — X (R, 5"
The subformula X (R, S) < (Vx. R(x) — S(x)) is true if

and only if X is indeed the predicate subrel and so the entire
formula is true if R’ is indeed a subrelation of S’

370

HOL = Union of All Finite Orders

w-order logic, also called finite-type theory or higher-order

logic (HOL), includes logics of all finite orders.

371

14.2 Syntax

Syntactically, HOL is a polymorphic (although not nec-

essarily) variant of A\ (=¥ p{175) with certain default types

and constants.

Default constants can be called logical symbols (=¥ pJ108)).

372

Types (Review)

Given a set of type constructors (=¥ p200)), say B>’| = {bool, - —
_ (=¥ pR01)), ind>™, - x P> _ list, _ set, ...}, polymorphic
types (=» p202) are defined by 7 == (=»p{l57) o |
(7,..,7) T (=¥ p200)), where « is a type variable.

e hool is also called o in literature [Chu40, [And02].
Confusingly (=¥ p;314)), the truth value type in Isabelle/HOL
(i.e., object-level) is called bool.

e bool and — always present in HOL; ind will also play

a special role; other type constructors may be defined.

350)

e Note polymorphism

53 As before (=¥ p200)), we use the letter B to denote a par-
ticular set of type constructors.

Note that this set is not hard-wired into HOL, but can
be specified as part of a particular HOL language. One can

therefore speak of B as a type signature (=¥ p{175)).
B is some fixed set “defined by the user”. In Isabelle, there
is a syntax provided for this purpose.

However, some type constructors are always present.
siynd (“indefinite”) is a type constructor which stands for

a type with infinitely many members, a concept which is

central in HOL, as we will see later (=¥ p{370)).
ssFor any two types T and o, we write 7 X ¢ for the type of

pairs where the first component is of type 7 and the second
component is of type o.

The infix syntax is in analogy to — (=¥ p201]).

The pair type is not in the core of HOL, but it can be

defined (=¥ p}462)) in it.
56\We have seen the generalization (=¥ p{194) of A~ to poly-

373

Terms

Reminder (=» p[176): e == (=»p/ld7) z | ¢ | (ee) |
()\x@.e)

Typing rules as in polymorphic A-calculus (=¥ p{194)), with

Y defining and typing (=¥ p{178) constants.

Terms of type bool are called (well-formed) formulae.
In HOL, X always includes:

True, False®® . bool

= . a— a — bool (polymorphic, or sef]

309

— : bool — bool — bool
c 360

. (e — bool) — « (in Isabelle: Eps or SOME

morphism.
Note that in order to simplify the presentation, we neglect

polymorphism in the section on semantics (=¥ p;375). In

that section, 7 and ¢ will be metavariables (used in the
description of the formalism) ranging over types, rather than
type variables of a polymorphic type system.

374

14.3 Semantics

Intuitively: many-sorted semantics (=¥ pJ134

+ functions

e FOL: structure (=¥ pJ[77)) is domain and functions/rela-
tions. Many-sorted FOL: domains are sort-indexed

A={(Dy,..., Dy, L)

e HOL extends idea: D indexed by (infinitely many) types.

e Complications due to polymorphism (=¥ p.

373

[GM93].

e We only give a monomorphic variant of semantics here!

375

Model Based on Universe of Sets U

U is a collection of sets (domains), fulfilling closure conditions:

Inhab: Each X € U is a nonempty set

Sub: If X el andY C X andY #0, then Y € U
Prod: If XY € Y then X XY € U.

Pow: f X e Y then p(X)={Y | Y C X} elU

301]

Infty: U contains a distinguished infinite set
Choice: There is a function ch € [x¢y. X (=¥ p378).

361'The infinity axiom

infty

anjective f A —surjective f

says that there is a function from I to I (the postulated in-
finite set in) which is injective (any two different elements
e, € of I have different images under f) but not surjective
(there exists an element of I which is not the image of any
element).

Such a function can only exist if [is infinite, and in fact
the axiom expresses the very essence of infinity, as we will
see later (=¥ p}h93)).

Think of the natural numbers and the successor function

as an example: for any two different natural numbers, the
successors are different, and the number 0 is not the successor
of any number.

376

Prod: Encoding X xY

X x Y is the Cartesian product, i.e., the set of pairs (z,y)
such that x € X and y € Y.

One can actually “encode” a tuple (z,y) without explic-
2 B (r,y) =

itly postulating the “existence of tuples”

Hzh A7,y

322 According to usual mathematical practice, one would ar-
gue that if two sets A and B are well-defined, then the set
A x B of pairs (tuples) (a,b) where a € A and b € B is also
well-defined.

That is, we assume that if one understands what a and b
are, then one also understands what the pair (a, b) is. A pair
is a “semantic object”.

Ultimately, semantics can only be understood using
one’s intuition, and only be explained using natural
language (=¥ p;301)). (One can only “hope” [GM93, page
193] that no confusion arises.) One should try to base the

semantics on a very small number of fundamental concepts.
Therefore, one might want to avoid having a concept “pair”
(“tuple”) explicitly, or put differently, one might want to
reduce “pairs” to something even more fundamental. That’s
what is intended by the encoding {{z}, {x,y}}.
Note that this reduction step somehow makes the type

discipline (=¥ pi382) invisible, because x and y might be se-

377

Choice: Picking a Member

The function ch takes a set X € U as argument and returns
a member of X.
We hence write ch € TTxcy. XPY) i.e., ch is of dependent

type.
Essentially, the constant € will be interpreted as ch, but

you will see the technical details later (=¥ p384)).

mantic objects “of different type”.
363\When we write ch € llx¢y. X, l.e., ch is of dependent

type, then this is a statement on the semantic level. The
expression Ilx¢y,. X is not part of the formal syntax of HOL
(unlike in LF, a system we have not treated here), and its
meaning is only described in plain English, by saying that
ch takes a set X € U as argument and returns a member of

X.

378

Function Space in U/
Define set X — Y as (graphs of) functions’®*| from X to Y.

300

e For nonempty X and Y]™°| this set is nonempty and is

a subset of (X x Y).

e From closure conditions (=¥ p376): X,Y € U then
X—-Yelu.

364n any basic math course on algebra, we learn that a
binary relation between X and Y is set of a pairs of tuples
of the form (z,y) where z € X and y € Y. One also calls
such a set a graph since one can view pairs (x,y) as edges.

We also learn that a relation R is called a function from X
to Y if for each x € X, there exists exactly one y € Y such
that (x,y) € R. Provided that Y is nonempty, a function
from X to Y always exists.

Thus the set of functions from X to Y, denoted X — Y,
is a nonempty subset of the set of relations on X and Y, i.e.,
©(X xY). Since X — Y is nonempty, by Prod (= p{376

we have that X — Y € U.
6]t is crucial in the semantics that any type is

inhabited (=¥ p{376)), i.e., has an element. The reason for
this is that otherwise, there would be terms (=¥ p{374) for
which we cannot give a semantics:

Suppose p was an empty (non-inhabited) type. Then
we cannot give any semantics to the term x”. Moreover,

379

Distinguished Sets
From
Infty: U contains a distinguished infinite set (=¥ p|376) [

Sub: f X eUYandY C X andY # 0, thenY e U

it follows that the following sets exist in U:

if the signature (=¥ p{374)) includes a constant ¢”, then we

cannot give a semantics to ¢’. Even if we only consider
closed (=» p{46)) terms (i.e., terms without free variables),
and we explicitly forbid the existence of a constant ¢” for an

empty type p, there will be terms for which we cannot give
a semantics. The simplest example is the term Az”.z.

We know (=¥ p{153)) that A-terms denote functions, as in
Az’.x, and so it is natural to expect that all functions we

can write in the A-calculus actually exist in the semantics.
Generally, the function space X — Y is empty if X or Y is

empty. This means that D, _, (= p{382)) would necessarily

be empty if 7 is empty:.

One way of understanding why it would be bad if some
A-terms denoting functions had no semantics is by looking
at (-reduction: for any types 7,0 and a constant c of type
o, we expect (Az"7.c)x = c¢. But this wouldn’t hold if we
cannot give a semantics to (Az".c) since D,_,, is empty.

Therefore: inhabitation.

380

Unit: A distinguished 1-elementf’®® set {1}
Bool: A distinguished 2-element set {T', F'}.

One specific point where inhabitation is crucial is related

to the e-operator (=¥ pi384)), as we will see later.
In the book [GM93] that is one of the sources for this
lecture, inhabitation is mentioned, but it is not explained

why it is crucial.

Here we speak of semantic inhabitation, i.e., our semantic
universe must be big enough so that all terms (of type 7)
can be given a meaning (in D;). This is a different ques-
tion from whether there might be types that are not inhab-
ited (syntactically) in the first place, i.e., types for which
there exists no term of this type (compare this to the Curry-

Howard isomorphism (=¥ p{185)). Thus we are concerned

with making sure that every term has a meaning, not that
every meaning has a term. However, it turns out that that
in HOL, each type 7 is also syntactically inhabited, namely

e.g. by the term €(-_,ppo1)—(Az7. True).
3660f course, the conditions on U do not per se enforce the

existence of sets containing the elements 1 or 7" or F'. Just

381

Frames

For semantics, we neglect polymorphism (=» p{373). 7 and

o range over types.

A frame is a collection {D; }» of non-empty sets (domains (=¥ p376

D, € U, one for each type 7, where:
1 Dbool - {Ta F};

e D, ., CD,— D,,ie.,some collection of functions (=¥ p{379
from D, to D,.

© Dy (= pPB73) =1 (=»p370).

Note: for fundamental reasons discussed later (=¥ p.j395

one cannot simply define D,_,, = D, — D, at this stage.

as well, one could say that they enforce the existence of sets

1Ll

containing elements @ or &b or &,
It is only because the name of a semantic element is ulti-

mately irrelevant that we claim, without loss of generality,
that there is a 1-element set {1} and a 2-element set {T', F'}.
We say that these sets are distinguished because they play a

special role in the setup of the semantics.

382

Interpretations

An interpretation MM = ({D,},, J) is a frame {D, }, and a
denotation function J mapping each constant of type 7 to

an element of D, where:

o J(True) =T and J(Fualse) = F’;

367

i \7(:7—>7‘—>b001) IS M on Dﬂ

e J(—) is implication function over Dy,y. For b b €

(T.F}
T()b,H) = {

F ifb=Tandb =F
T otherwise

s7For = and €, we give type subscripts in the presentation
of the semantics since we assume, conceptually, that there

are infinitely many copies (=¥ p{374)) of those constants, one
for each type. We do this to avoid explicit polymorphism in
this presentation.

383

Interpretations (Cont.)

) j<€(7’—>b00l)—>7‘ (2 pBs3) is defined by (for f € (D, —
Dbool)):

T (€(—tonty =) (F P = { EZE{)T;({T})) T #0

Note: If a frame {D; }, does not contain all of the functions
used above, then {D;}, cannot belong to any interpreta-
tion.

s368\We have
\7(6(7—>bool)—>7)(f) = { EZE;;T;({T})) gt}{;riffl{sz}> ?é 0

ch is a (semantic) function (=» p|378|) which takes a

nonempty set and returns an element from that set. f
is a semantic function from D, to Dy,,;. However, f can
be interpreted as set. This is done in all formality here:
we write f~1({T}). One says that f is the characteristic
function (=¥ pH58)) of the set f~1({T}).

Now the type of € is (1 — bool) — 7 (for any 7), so €

expects a function as argument, which can be interpreted as
a set as just stated. This set can be empty or nonempty.
In case it is nonempty, an element is picked from the set
non-deterministically. If the set is empty, an element from
the type 7 (which must be nonempty since each type is
interpreted (=¥ p{382) as nonempty set (=¥ pi376])). Note
the importance of inhabitation (=¥ p.379).

384

A Terminological Note

The terminology is slightly different from FOL:
In FOL, “({D,}.,J)" is called structure (=¥ p[75) and
“J" is called interpretation (=¥ p[7d).

In HOL, ({D,}.,J) is called interpretation and J is
called denotation function.

385

The Value of Terms (Naive)

In analogy to FOL (=» p[77), given an interpretation 9T =
369

({D;}:,J) and a type-indexed collection of assignments
A = {A,},, define VI such that VI¥(t,) € D, for all ¢, as
follows:

L V¥(x,) = Ax,);
2. V(¢

3. VW (s, o) = (VR(s))(VIH(1)), i.e., the value of the
function VY%(s) at the argument VI (t);

J (¢) for ¢ a constant;

4. VW (\x". t,) = the function from D, into D, whose

value for each e € D, is V%x% 6]371 (1).

What is the problem? Condition []

»An assignment (previously called valuation (=¥ p[75))
maps variables to elements of a domain (=¥ p{376)).

A type-indexed collection of assignments is an assignment
that respects the types: a variable of type 7 will be assigned
to a member of D, [GM93]. Note that a variable has a
type by virtue of a context I', which is suppressed in our

presentation of models.
s70]n the presentation of models, we give type subscripts for

the cases VIV (s, ot,) and VI (Ax". t,) to indicate the types
of s and ¢ in those definitions. Note that a term has a type in
a certain context I', which is suppressed in our presentation
of models. The semantics is only defined for well-formed
terms, in particular, applications and abstractions having

types of the indicated forms.
s A[x < e] denotes the assignment that is identical to A

except that A(z) = e.

386

Condition (4] Is Critical

For Vﬁﬁ to be well-defined, the function from D, into D, in

condition 4] must live

e in some domain (=¥ p376

guaranteed by closure conditions on U (=¥ p.376));

e in a certain domain (=¥ p.

of U (since it is required that
ngt(tp) € D, for all t, and D, € U (=¥ pi382)): this is

376

of U, namely D, .,

302

for this, D,_,, must be big enough.

If V¥ is well-defined, we call M = (D, J) a (general)

model.

373

2[n condition [} the semantics of Az". ¢, is defined unam-

biguously as a certain function. But in general, there is no

guarantee that this function is actually in D,_,,, and in this

case, M = ({D;},, J) would not be a model.
s3General models must be distinguished from standard

models, as we will see later (=¥ p.

338)).

We sometimes omit the word “general” in general model.

387

Models

Hence: Not all interpretations are general models, but we
restrict our attention to the general models.

If D, is the set of all functions from D, to D,, then it is
certainly “big enough”. In this case, we speak of a standard

model. Important for completeness (=¥ p.395)).
If 9 is a general model and A an assignment, then V"

is uniquely determined.
ngt(t) is value of ¢ in 9 wrt. A.

Note that in contrast to first-order logic (=¥ pl79)), “model”
does not mean “an interpretation that makes a formula true”.

338

Satisfiability and Validity

A formula (term of type bool) ¢ is satisfiable wrt. a model

O (=» p386) if there exists an assignment A such that V' (¢) =

T,

A formula ¢ is valid wrt. a model 99t (=¥ p.

assignments A, we have V7' (¢) =T.

336

if for all

A formula ¢ is valid in the general sense if it is valid in

every general model (=¥ p|387)).

A formula ¢ is valid in the standard sense if it is valid in

every standard model (=¥ p|388)).

389

Existence of Values

Closure conditions (=¥ p{386|) for general models guarantee

every well-formed term has a value under every assignment,
and this means that certain values must exist, e.g.,

e Closure under functions: since V{'(\z™. z) is defined,
the identity function from D, to D, must always belong
to D._,,.

e Closure under application: if Dy is natural numbers,
and Dy_.n_n contains addition function p where px y =
x + y, then Dy_y must contain k where kx = 2x + 5,
since k = V¥ (A\rw. f(f xx)y) where A(f) = p and
Aly) =5.

390

stated using only the constants =

14.4 Basic Rules

We now give the core calculus of HOL. Its rules can be

will be one rule, tof (=¥ p{392

be hard to read if we did that.

—, and e. However, there

)

(“true or false”), which would

So we allow ourselves to “cheat”P™ and also use constants

True, False, V to write rule tof (=¥ p.;392).

Later we will define those constants, i.e., regard them as

syntactic sugar (=¥ p.

7).

sRule tof (=¥ p.

392

can be written as follows:

tof

(M. (= (Ar.x = rx) —) —

(¢ = ((An.n) = Az.(Az.2 = Aw.x)) —) —) =
(Ax.(Ax.x = A\z.7))

Our notation for rule tof (=¥ p|392)) is thus based on the
following definitions:

True (=¥ pi03

False (=¥ p}03
V (= pi03

— ()\xbool (-) p403
\V/¢bool (-) p403 ¢ (_) p403

X = A\.7)

APNNP.(¢ —) — (1 —1p) — 4

391

Basic Rules in Sequent Notation

Fl—qb:qbreﬁ
I'Foxr=nx
A ext’t™)

I'-¢—n F|_¢m

['Fn

1Y

'Fo=n T'F Po)

' P(n)

¢ = True V ¢ = Fulse

tof (=¥ p{391

I'F ox

[Foon oo —@=m"

['F ¢(ex.px

377

subst

select P79

375'The rule

has the side condition that = ¢ FV ().

Phrased like

I'Fopx=nx

I'Fop=n

pr=nx
T ext

¢ =n

ext

the rule has the side condition that x must not occur

freely (=¥ p[73)) in the derivation of ¢ & = n .
s6You may wonder why there is no rule for eliminating e.

We will later (=¥ p.

427

see a rule derivation where an € is

effectively eliminated, and we will also see that this is done

without requiring a rule explicitly for this purpose.

Apart from that, the e-operator is used in HOL as basis for

defining (=¥ p402

4 and the if-then-else constructs. Once

we have derived the appropriate rules for those, we will not

explicitly encounter € anymore.
s77For readability, we will frequently use a syntax that one is

392

Axiom of Infinity

There is one additional rule (axiom) that will give us the
existence of infinite sets (=¥ p370)):

infty

3 flnd=ind) injective S| f A —surjective f

Has special role. Interesting to look at HOL with or with-
out infinity (=¥ p;395). Won't (=¥ pH93)) consider infinity
today.

Note “cheating” (=¥ pi02) (use of 3).

These eight (nine) rules are the entire basis!

more used to than higher-order abstract syntax (=¥ p[230)):
ex.¢px stands for €(¢).

Va.¢(x) stands for V(¢), and likewise for 3.
We have done the same previously (=¥ p315)) for M.

393

Soundness and Completeness

Soundness is straightforward [And02, p. 240].

394

Soundness and Completeness

Completeness only follows w.r.t. general models (=¥ p387)),
as opposed to standard (=¥ p/388|) models. Recall that a
standard model is one where D;_,, is always the set of all

functions from D, to D, .

There are formulas that are valid (=¥ p{389) in all stan-

dard models, but not in all general models, and which cannot

be proven in our calculus (=¥ p[391)). Our calculus can prove

the formulas that are true in all general models including
non-standard ones (Henkin models [Hen50]). This recon-
ciles HOL with Godel’s incompleteness theorem”"”| [Henb(,
Mil92].

If we consider a version of HOL without infinity (=¥ p.376]),
380

then every model is a standard model”®"|and so completeness

holds.

s9This is a standard trick when faced with the problem
that a deductive system is not complete. One can either
enlarge the set of axioms, or one can weaken the models
by permitting more models. If we allow more models, then
fewer theorems will be valid (i.e., hold in all models), and
so fewer theorems will have to be provable in the derivation
system.

Here, completeness is based on general models, and
not standard (=» p{388) models. This resolves the ap-
parent contradiction with Godel’s incompleteness theorem:
HOL with infinity contains I (=¥ p,;376]), hence the natural
numbers (=¥ pH98)), hence arithmetic By Godel’s in-

completeness theorem, there cannot be a consistent deriva-
tion system that can prove all valid theorems in the natural
numbers.

A readable account on this problem can be found in

[And02] ch. 7].
330\WWe might consider a version of HOL without infinity, i.e.,

395

14.5 Isabelle/HOL

We now look at a particular instance of HOL (given by
defining certain types and constants) which essentially cor-
responds to the HOL theory of Isabelle®™|

one where each domain (=¥ p{376) is finite (note that U is

still infinite, since there are infinitely many types, e.g., bool,
bool — bool, bool — bool — bool, ...)).

One can see that every function in such a finite domain is
representable as a A-term, and so for any ¢ and 7, we must
have (=¥ p386) D, ., = D, — D,.

For details consult [And02), §54].

81'T'his file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

There you will also find all the derivations of the rules
presented in this lecture.

However, the presentation of this lecture is partly based on
HOL.thy of Isabelle 98, which in turn is based on a standard
book [GM93]. E.g., the definition of Ex def is now different
from the one presented here.

Note also that here in the slides, we use a style of display-

396

http://isabelle.in.tum.de/library/
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0506/csmr/HOL.thy

582

We present language and ruleg’®| using “mathematical”

syntax, but also comparing with Isabelle (concrete/HOAS (=¥ p 230

syntax.
We take polymorphism (=¥ p{373) back on board.

ing Isabelle files which uses some symbols beyond the usual

ASCII set (=¥ p405)).
#2We will mix natural deduction (=¥ pl25]) (with discharg-

ing assumptions), natural deductlon written in sequent
style (=» p[49), and Isabelle syntax.
For a thorough account of this, consult [SH&4].

Some general remarks about the correspondence: A rule

W

¢

in ND notation corresponds to an Isabelle rule v = ¢.
A rule

1S written as

397

(Central Parts of the) Language

in sequent style or

p=9
¢
using the Isabelle meta-implication =—>.
A rule
v
¢(x)

with side condition that x must not occur free in any undis-
charged assumption on which v depends is written as

'
[+ ¢(z)
in sequent style, where the side condition reads: must not

occur free in I'. Using the Isabelle meta-universal quantifi-
cation, the rule is written

Az
¢(x)

398

S =

{ True, False™| : bool,
— 384 : bool — bool,
AN, _V_, _— _ :bool — bool — bool,
vV, 3 . (e — bool) — bool,
€ . (a — bool) — «,
iof _then_else_ : bool — a — a — a,

= ra — a — bool}

We will switch between the various ways of writing the rules!
This means in particular that we will use = and A from

[sabelle’s metalogic (=¥ p{299)).
s3or convenience (and to save space, we write ...a : T, b:

T...as ...a,b : 7...1n a signature. This is of course
syntactic sugar (-) p21)).

#1We use a notation with _ to indicate the arity and
fixity of constants, as this has been done for type
constructors (=¥ p.200)) before.

The whole matter of arity of fixity is one of notational
convenience. For example, as the type of A indicates, we
should write (A¢)y (Curryed notation (=¥ pJl169))), but we
write ¢ A 1 since it is more what we are used to.

399

Basic Rules in Isabelle Notation

refl: "t = t"
subst: "[I s =t; P(s) |] ==> P(t)"
ext: "(Mx. (f x) = g x) ==>
(Bx. £ x) = (Ux. g x)"
impI: "(P ==> Q) ==> P--—>Q"
mp : "[| P-=>Q; P [|] ==> Q"
iff: "(P-->Q) --> (Q-—>P) -—> (P=Q)"
True_or_False: "(P=True) | (P=False)"
selectI: "P (x) ==> P (@x. P x)"

See HOL. thy (=» p{396).

400

Basic Rules in Mixed (= p{397) Notation

gbngreﬂ
Mext* (=¥ p.
¢ —1 ¢mp
n

392

¢p=n P(o)

subst

P(n)
b=

¢ —

impl

iff

(¢—mn)—m—9)—(p=n)

¢ = True V ¢ = Fualse to

401

¢lex.¢r)

x
¢ select]

No more “Cheating”: The Definitions

402

TrueP®| = 39 (Azbo! (=» pH03) . _ A7)

/el -)\¢a—>bool (-) P74 (gb — \7. T’I“U€>
Fal8€388 — V¢b00_¢390

VP = AV —) = (n—) — ¢

N = oo —n— v) -

9 = Ao.(¢p — False)

1 = (Apoler.gr))

Iff = \¢"ay.ez.(¢p = True — z = x)A

(¢ = False — z = y)

385

True = (Ax" .2 = \z.x)

The term Az*! .2 = \z.z evaluates to T (=» p[383), and so
it 18 a suitable definition for the constant True.

Note that we give the type for £ once. The right-hand side
Az.x will thereby also be forced to be of type bool — bool.
This is necessary for reasons that will become clear
later (=¥ p{446)).
Note that (Az*'.x = \z.x) is closed (=» p[46)). Defini-

tions must always be closed (=¥ p446)).
6]t 1s a design choice if we want to add these definitions at

the level of the object logic (HOL) (=¥ p{362) or at the level
of the M (=¥ p299)). In the first case, we would use = and
have axioms such as

True = (A\x"'.o = Az.x)
In the second case, we would have meta-axioms

True = (A\z"' .2 = \x.x)

This would mean that we would regard True merely as syn-
tactic sugar (=¥ p1]). The second way corresponds to what
is done in Isabelle, see HOL. thy (=¥ p{396)). It is technically

more convenient since rewriting (=¥ p[280)) is based on meta-

level equalities. 403
Logically, it is not a big difference which way one chooses.

Y YT T

395

If = Mpxy.ez.(p = True — z = x)AN(¢p = False — z = y)
The constant If stands for the if-then-else construct. Note
first that €z.(¢p = True — z = x) A (¢ = Fualse — z = y)
is m-equivalent to ez.(Az.(¢p = True — z = x) A (¢ =
False — z = y))z, which is written e(Az.(¢p = True —
z=1x) A (¢ = False — z = y)) in the “real” HOL syntax,
which uses the concept of HOAS (=¥ p[230)).
The expression €(Az.(¢p = True — z = x)\(¢ = False —
z = y)) picks a term from the set of terms z such that
(¢ = True — z = x) A (¢ = False — z = y) holds. But
this means that z = x it ¢ = True, or z = y it ¢ = Fulse.

Since If should be a function which takes ¢, x and y as
arguments, we must abstract over those variables, giving
Aoxy.ez.(¢p = True — z = x) A\ (¢ = False — z = y).

404

Note: Different Syntaxes

Mathematical vs. Isabelle, e.g.
— Not Phi
Agbool p %% 13 bool. P

HOAS (= p230 vs. concrete, e.g.

v (Az".(Ap(z) g(7))) VaT.p(z) A q(z)
€ (P) ex.P(x)

We use all those forms as convenient. For displaying Is-

abelle files, we will sometimes use a style where some ASCII
words (e.g. %) are replaced with mathematical symbols (e.g. A).

Note that the A-binder of the object logic HOL is
not distinguished from the A-binder of Isabelle’s metalogic
M (=¥ p299). One could introduce an object level constant
lambda, but one quickly sees that it would be an unnecessary

overhead.
»As we have learned previously (=¥ p|176), A-abstracted

variables should have a type superscript, although this

superscript is often omitted since the type can be
inferred (=¥ p374).

Since Vx.p(x) A q(x) is the “concrete syntax” version of
V (Az.(Ap(x) q(x))), it makes sense that we allow an optional
superscript also for V-bound (and likewise for 3-bound) vari-

ables.
In Isabelle the optional type annotation is written using ::
instead of a superscript.

405

14.6 Conclusions on HOL

e HOL generalizes semantics of FOL:

— bool serves as type of propositions;

— Syntax/semantics allows for higher-order functions.

e [ogic is rather minimal: 8 or 9 rules, based on 3 con-

stants, soundness (=¥ p,;394)) straightforward.

e Logic complete (=¥ p;395) (w.r.t. general models, but
not standard (=¥ pi388)) models).

e Next lecture we will see how all well-known inference
rules can be derived.

406

15 HOL: Deriving Rules

407

Outline

Last lecture (=¥ pj362): Introduction to HOL

e Basic syntax (=» p{372) and semantics (=» p{375

e Basic eight (or nine) rules (=¥ pi392

e Definitions (=¥ p02) of True, False, A\, V, V ...
Today:

e Deriving rules (=» p}407)) for the defined constants

e Outlook on the rest of this course (=¥ p 435

408

Reminder: Different Syntaxes

Mathematical

-
Axbool p

HOAS (= p.

230

405

¢(P)

(Ap(z) q()))

VS.

VS.

[sabelle, e.g.

Not Phi
% (=% p/09)x

concrete, e.g.

ex.P(x)

- bool. P

p(z) A q()

We use all those forms as convenient. For displaying Is-

abelle files, we will sometimes use a style where some ASCII
words (e.g. %) are replaced with mathematical symbols (e.g. A).

409

Reminder: Definitions

True (=% pf03) = (Ax! (> p{03) , — AT.2)

V(= ph0d) = rge—tol (FPBA) (6 = Ax. True)
False (= pi0g) = Vot (P PE03) 4 (o 103

V (= p403 = V(¢ = ¢) = (n—¢) = ¢
A (=¥ pi03 = ApnNVY.(¢p — n —) — P

— (= pl103 = \o.(¢ — Fulse)

3 (=» p403 = (\p.¢(ex.ox))

If (=» pi03 = Apxy.ez.(¢p = True — z = x)A

(¢ = False — z = y)

410

Derived Rules

The definitions (=¥ p410)) can be understood either semanti-
cally (checking if each definition captures the usual meaning

of that constant) or by their properties (= derived rules).
We now look at the constants in turn and derive rules for
them. We will present derivations in natural deduction style.
We usually proceed as follows: first show a rule involving
a constant, then replace the constant with its definition (if
applicable), then show the derivation.

15.1 Equality

393

e Rule sym and ND derivation
refl (=¥ p,392

symsubst (=¥ pi392

s=1t s=3s

t==s

198We present most of those proofs by giving a derivation
tree (=¥ p. for it, but sometimes, we also give an Isabelle
proof script.

Note also the mix of syntaxes (=¥ p[397)).

411

e [sabelle rule s=t ==> t=s. Proof script:

Goal "s=t ==> t=s";

by (etac subst 1); (x P is %x.x=s *)
by (rtac refl 1); (* s=s *)
ged "sym",

412

Equality: Transitivity and Congruences

e Rule trans and ND derivation (=¥ p.
"=3 sym (= pfill
s=r s=t

r=t
[sabelle rule [| r=s; s=t |] ==>

e Congruences (only Isabelle forms):

411

transsubst (=¥ p.

392

r=t

(f::’a=>’b) = g ==> f(x)=g(x) (fun_cong)

x=y ==> f(x)=£f(y)
[sabelle proofs using subst (=¥ p{392

413

(arg_cong)
and refl (=¥ p.

392)).

Equality of Booleans (iff])
Rule iffT and ND derivation (= pi411

[P]
: Q]
iff © impl :
(P-Q-Q-P)—(P=@" P-Q * P _
(Q—P)— (P=Q) Q—>P.ﬂp
P-0 irlmp

[sabellerule [| P ==> Q; Q ==> P |] ==> P=(Q.
Uses mp (=¥ p{392), iff (=¥» p{392), impl (=¥ p}01)).

414

Equality of Booleans (iffD2)

Rule iff D2 and ND derivation (=¥ pi4l1l
P=dQ

sym (=¥ pill

Q=P

© iffD2subst (=¥ pi392

P

[sabelle rule [| P=Q; Q |] ==> P.

415

15.2 True

True = (A\x"'.2) = (\r.x))
e Rule Truel and ND derivation (=¥ p.

True(Az.z) = (Ax.x)

A11

e Rule eqTrueE and ND derivation (=¥ pi4l1l

P = True True Truel

P

[sabelle rule P=True ==> P.

416

eqTrueEiffD2 (=¥ p.

Truelrefl (=¥ p;392

415

True (Cont.)

e Rule eqTruel and ND derivation (= p{4l1l
Truel (=¥ p/416

True

P .
eqTrueliffl (=¥ p 414

P = True

Note that 0 assumptions were discharged.

[sabelle rule P ==> P=True.

417

15.3 Universal Quantification
VP = (P = (Ax.True))
e Rule alll and ND derivation (=¥ p411
P(z)

eqTruel (=¥ piAl17
alllext (=¥ p{392

VPP = \x. True

Inherits (=» p98) the side condition of ext (=¥ p[392):

x must not occur freely in the derivation of P(x).

[sabelle rule ('1x. P(x)) ==> ALL x. P(x).

418

Example Illustrating Side Condition

Why is this correct? Let’s do it without using alll explicitly:

[r(@)]?
riz) = r(@) H_ﬂeqTrueI
(r(x) — r(x)) = True ot
Az. (r(x) — r(x)) = Ax. True

The side condition is respected.

419

Universal Quantification (Cont.)

e Rule spec (recall (=¥ p|392)) VP means Vo.Px) and ND
derivation (=¥ p{dl1

VPP = \x.True
P(t) = True
P(t)

fun_cong (=¥ p413
speceqTruel (=¥ pl416

[sabelle rule ALL x::’a. P(x) ==> P(x).

Note: Need universal quantification to reason about False

(since False = (VP.P)).

420

15.4 Fulse

False = (VP.P) (= V(AP.P) (=» p{392))

e Falsel: No rule!

e Rule FalseE and ND derivation (=¥ p@l11
FalseVP. P

FalseEspec (=¥ p 420

P

[sabelle rule False ==> P.

421

Fualse (Cont.)

e Rule False neq True and ND derivation (=¥ py11

False = True
False

[sabelle rule False=

e Similar:
True =

eqTrueE (=¥ p.

True ==> P.

Fualse

P

422

416

False neq_TrueFalseE (=¥ p.

True_neq_False

421

15.5 Negation

-P =P — Fualse

e Rule notl and ND derivation (=¥ p@11
P

F a.lse

notlimpl (=¥ p 401

- PP — False

[sabelle rule (P ==> False) ==> ~P.

423

Negation (2)

e Rule notE and ND derivation (=¥ p.

-PP — False P
False

[sabelle rule [| ~P; P |] ==> R.

424

411

mp (=¥ p.
notEFalseE (=¥ p.

392

421

Negation (3)

e Rule True Not False and ND derivation (=¥ p@11

[True = False]
False
—(True = False)(True = False) — False

True neq_False (=¥ p}22
True_Not_FalsenotE

[sabelle rule True ~= False.
Uses notl (=¥ p423

425

15.6 Existential Quantification

4P = P(ex.P(x))

e Rule existsl and ND derivation (=» p{dl11
P(z)

existslselect] (=¥ p{392

JdPP(ex.P(x))

[sabelle rule P(x) ==> EX x::’a.P(x).

426

Existential Quantification (Cont.)
e Rule existsE and ND derivation (=¥ p{411

[P()]!
Q
P -0
Vo (P~ Q)
JPP(ex.P P(ex.P —
(ez.P(x)) . (ex.P(z)) — Q excistsEung ™
Inherits side condition from alll (just like in FOL (=¥ p[97)).
100

On the meta-level

, this derivation is extremely simple.
[sabellerule [| EX x.P(x); !'!'x.P(x) ==>Q |] ==>
Q.

00(ne can write the derivation of existsE as follows:

ANz. Plx) = Q A_E
P(ex.P(x)) Pler.P(z)) = Q
0 existsE=—=-E

This is an attempt to capture in an ad-hoc tree notation how
this derivation can be done in Isabelle. In particular, existsE
inherits a side condition from the meta-level universal quan-
tification. However, while this may help to understand how
this derivation works in Isabelle, it is not very rigorous and
you could not be expected to believe that the side condition
checking is correct.

For a thorough account of side conditions in ND proofs,
consult [SH84].

You might also justify existsE in plain English words, i.e.,
completely on the meta-level: If I have a derivation of () from
P(z) not making any assumptions about x, and in addition
[have a derivation of P(ex.P(x)), then I can combine these

427

15.7 Conjunction
PANQ=VR(P—Q—R)— R
e Rule conjl and ND derivation (=¥ p}411
P—-Q—R' P

0 R mp (=¥ p{392
7 mp (=¥ p;392
PSOoR = & impl (= p[01 0
conjlalll

PAQVR.(P—-Q — R)— R
[sabelle rule [| P; Q |] ==> P & Q.

two derivations: modify the first one by instantiating x with
ex.P(x). This justifies having existsE.

What happens in our rather complicated derivation is that
we are turning a meta-level reasoning into an object-level
one, which is more trustworthy for an ND derivation.

428

Conjunction (Cont.)

e Rule conjEL and ND derivation (=¥ p411

P
I
PAQVYR.(P—Q —R)— R Q_-pP
(P—-Q—P)—P e P—>Q—>P1mpﬁl

7 conjELmp (=% p[392

[sabelle rule P & Q ==> P.

Uses spec, impl.

429

Conjunction (Cont.)

e PNQ =@ (conjER)

o [PANQ; [P;Q] = R]= R (conjE) (rule anal-
ogous to disjE (=¥ p432))

430

15.8 Disjunction

PVvQ=VR(P—R) —(Q—R)— R

e Rule disjIL and ND derivation (=¥ p.

PR P
R
(@ > R)— R

411

mp (=¥ p{392
impl (=¥ p {401

(P—R)—(@—R)—R

impl (=¥ p.

PVQVR(P—R)— (Q—R)— R

[sabelle rule P ==> P|Q.

431

401

il

disjILalll

Disjunction (Cont.)

e) = PV (@ (disjIR) similar
e Rule disjE and ND derivation (=» pi411

7]
: Q]
P\/QVR.(PHR)H(QHR)HRSpeC R ; :
(P—R) —(Q—R)—R PR R '
Q- R —R oo orT?
disjEmp

R

[sabellerule [| P | Q; P ==>R; Q ==> R |] ==>
R.

e PV =P (excl. midd). Follows using tof (=¥ pi392)).
Uses spec (=¥ p{20), mp (=¥ pi392)), impl (=¥ p401]).

432

15.9 Miscellaneous Definitions

See HOL.thy (=¥ p.

396

l

Typical example (if-then-else (=¥ p.

403

):

If = \¢"'zy.ez. (¢ = True — z = x)
N (¢ = False — z = y)

The way rules are derived should now be clear. E.g.,

P = True

(If Pxy)==x

P = Fulse

433

Uf Pzy)=1y

15.10 Summary on Deriving Rules

HOL is very powerful in terms of what we can represen-

t/derive:
e All well-known inference rules can be derived.

e Other “logical” syntax (e.g. if-then-else (=¥ p.
be defined.

433

) can

e Rich theories can be obtained by a method we see next

lecture (=¥ p440)).

434

15.11 Mathematics and Software Engineering in
HOL

In coming weeks, we will see how Isabelle/HOL can be
used as foundation for mathematics and software engineer-

ng.
Outline:

e The central method for making HOL scale up: conser-
vative extensions (=¥ p440)) (< 1 week)

e How the different parts of mathematics are encoded in
the Isabelle/HOL library (= p469) (several weeks)

e How software systems are embedded in Isabelle/HOL
(several weeks)

435

Outlook on Mathematics

After some historical background, we will look at how central
parts of mathematics are encoded as Isabelle/HOL theories:

e Orders (=¥ p 73
o Sets (=P piU82

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ pH09

o (Well-founded) recursion (=¥ pjh41

e Arithmetic (=¥ pH89

e Datatypes (=¥ p[614

436

Outlook on Software Engineering

Some weeks from now, we will look at case studies of how

HOL can be applied in software engineering, i.e. how software
systems can be embedded in Isabelle/HOL:

e Foundations, functional languages and denotational se-
mantics

e Imperative languages, Hoare logic (=¥ p/636

o 7'l and data-refinement, CSP and process-refinement

e Object-oriented languages (Java-Light .. .)

Of the last three items, we want to treat only one in depth,
depending on the audience’s preferences.

10/, and CSP are specification languages. CSP stands for
communicating sequential processes.

437

Conservative Extensions: Motivation

But first, conservative extensions.
Stage of our course before studying HOL:

e fairly small theories,

e “intuitive” models, (e.g. naive set theory (=¥ p,

130

),

e but inconsistent (=¥ pi150)) (due to foundational prob-

lems).

How can we use HOL to

e rcason about a reasonably large part of mathematics and

software engineering;

e prevent inconsistencies?

438

What Is Needed for Scaling up?
Well-known structuring mechanisms:

e Modularization: Isabelle supports (class) polymorphism

and theories.

e Reuse: Isabelle supports libraries and retrieval utilities.

e Safe, well-understood integration mechanisms: Isabelle
supports conservative theory extensions.

Topic of next lecture (=¥ p440)).

439

16 Conservative Theory Extensions

440

Outline

In the previous lecture (=¥ p}07)), we have derived all well-

known inference rules. There is now the need to scale up.
Today we look at conservative theory extensions, an impor-

tant method for this purpose.
In the weeks to come, we will look at how mathematics is
encoded in the Isabelle/HOL library.

16.1 Conservative Theory Extensions: Basics

Some definitions [GM93], [Hué]

Definition (theory):
A (syntactic) theory T is a triple (B,%, A), where B is a
type signature (=¥ p;373)), 2 a signature (=» p374) and A a
set of axiomd™?

Definition (theory extension):

12The definition of theory extension requires that A consists
of axioms, not proper rules (=» pjp0). However, we have
seen (=¥ pf120) that any rule one might wish to postulate

can also be phrased as an axiom (using — rather than =).

441

A theory T = (B, ¥/, A’) is an extension of a theory T =
(B,X,A)iff BC B and X C ¥ and A C A"

442

Definitions (Cont.)

Definition (conservative extension):
A theory extension T" = (B, >/, A’) of atheory T' = (B, 3, A)
is conservative iff for the set of derivable formulas™| Th we

have
Th(T) = Th(T") Iz,
where |y, filters away all formulas not belonging to ..
Counterexample:

Y f = (Y) s

03The derivable formulas are terms of type bool deriv-
able using the inference rules of HOL (=¥ p{392). We write

Th(T) for the derivable formulas of a theory T
mGiven a function f : @ — «, a fixpoint of f is a term

t such that ft = t. Now Y is supposed to be a fixpoint
combinator, i.e., for any function f, the term Y f should be
a fixpoint of f. This is what the rule

vy f=fYf)

says. Consider the example f = —. Then the axiom al-

fix

lows us to infer Y (=) = =(Y(—)), and it is easy to derive
False from this. This axiom is a standard example of a
non-conservative extension of a theory:.

It is not surprising that this goes wrong: Not every function
has a fixpoint, so there cannot be a combinator returning a
fixpoint of any function.

Nevertheless, fixpoints are important and must be realized

in some way, as we will see later (=¥ p;509).

443

Consistency Preserved

Corollary (consistency):
If T" is a conservative extension of T', then

False ¢ Th(T) = False ¢ Th(T").

A4

Syntactic Schemata for Conservative Extensions

e Constant definition (=¥ p46

e Type definition (=¥ p452

e Constant specification

e Type specification

Will look at first two schemata now.
For the other two see [GM93].

445

16.2 Constant Definition

Definition (constant definition):
A theory extension T" = (B, ¥/, A’) of atheory T' = (B, 3, A)
is a constant definition, iff

o B'=Band ¥ =X U{c: 7}, where c & dom[""”[2);
o A'=AU{c=FE}

407

0% ¢ and is closed™}

e [does not contain

e 1o subterm of F has a type containing a type variable (=¥ p448
that is not contained in the type of c.

05 The domain of X, denoted dom(X), is {c¢ | ¢ : A €
>; for some A}.

Likewise, the domain of I', denoted dom(T'), is {z | = :
A €T for some A}.

Note the abuse of notation (=¥ p|181)).
w6[f F) did contain ¢ then we would speak of a recursive def-

inition, but at this stage, recursion (=¥ pH41)) is forbidden.
07 A term is closed or ground if it does not contain any

free (=¥ p[r3) variables.

446

Constant Definitions Are Conservative

Lemma (constant definitions):

Constant definitions are conservative [GM93] page 223.
Proof Sketch:

o TH(T) C Th(T") |5, : trivial.

o Th(T) D Th(T") |g: let @’ be a proof for ¢ € Th(T") |x.
We unfold any subterm in 7’ that contains ¢ viac = FE
into . Then 7 must be a proof in T', implying ¢ &€

Th(T).

447

The Need for the Side Conditiond™|

Here is a counterexample concerning closedness (=¥ pj446

of E: Define ¢ : bool by the axiom ¢ = .

axi0m

c=2z
alll (=¥

VYe.c=x

c = False

pil1g

spec (=¥ p.

420

C=X

Ve.c=x

c = True

False = True

Fualse

False neq_True (=¥ p 422

axiom

alll (= p[ATS
spec (=¥ p 20
subst (=¥ p,392

Intuition: when you define ¢ as the variable x, then ¢ just
isn’'t a constant! Usually taken for granted.

03By side conditions we mean

e [does not contain ¢ and is closed;

e no subterm of F has a type containing a type variable

that is not contained in the type of ¢;

in the definition (=¥

p.A46]).

The second condition also has a name: one says that the

definition must be type-closed.

The notion of having a type is defined by the type assign-

ment calculus (=¥ p.

203

. Since F is required to be closed, all

variables occurring in £ must be A-bound, and so the type of

those variables is given by the type superscripts (=¥ p{176)).

448

The Need for the Side Conditions (2)

Now type-closedness (=¥ pd4g)): Let F = Jz“y*. = # y
and suppose o is a type inhabited (=» p{379) by only one

term, and 7 is a type inhabited (=¥ p{379) by at least two

terms. Then we would have:

c=c holds by refl (=¥ p;392
= (J2%y.x #y)=(FaTy.x #y)
— Fulse = True
— Fulse

This explains definition of True'”, Other (standard) exam-
ple later (=¥ p}595)).

0 Trye is defined as M\x’'.x = Az.x (= p[03) and
not Ax“x = Ax.x. The definition must be type-
closed (=¥ p448)).

449

Constant Definition: Examples

Definitions of True,

Here the original (=¥ p|396)) Isabelle syntax (Ex_def changed (=¥ p.

False, N\, V, ¥ ... (=¥ p}02

Note the use of !["'Y and meta-level (=¥ p 03] equality.
True_def: "True == ((%x::bool. x) = (Vx. x))"
Al1l_def: "A11(P) == (P = (¥x. True))"
Ex_def: "Ex(P) == P (SOME x. P x)"
False_def: "False == (!P. P)"
not_def: " P == P-->False"
and_def: "P & Q == 'R. (P-—>Q-->R) --> R"
or_def: "P | Q == 'R. (P-->R) -—> (Q--—>R)

--> R"
am1” ig just another Isabelle notation for ALL, and

s is just another Isabelle notation for EX. See

HOL.thy (= p[396
[sabelle 2005).

in the section “syntax (HOL)” (this is

450

306)

More Constant Definitions in Isabelle

Function application (Let), if-then-else, unique existence*''|
consts

Let :: [’a, ’a => ’b] => ’b

If :: [bool, ’a, ’al => ’a
defs

Let_def "Let s f == f(s)"
if _def "If P x y == @z::’a.(P=True-->z=x) &
(P=False-->z=y)"
Ex1_def "Ex1(P) == 7x. P(x) & (ly. P(y) -—> y=x)"
Note use of 7 (=¥ p450)).

Recall: => is function type arrow (=¥ p{197)); also recall |]
syntax (=¥ p{198)).

mWe have never used unique existential quantification
(3 before. ANz, .. xp.P(x1, ..., x,) is defined as

Elxla cee 7xn'¢(x17 s 7$n) A (vyla R yn¢(y17 s 7yn> -
TI=Y N ... ATy =1Yp).
Note that in general 3lx.(3y.¢) is not the same as Fxy.¢).

451

16.3 Type Definitions

Type definitions, explained intuitively: we have
e an existing type p;

e apredicate S : p — bool, defining a non-empty “subset”
of p;

412

e axioms stating an isomorphism between S and the new

type 7.

12 Although a set is formally a different object than a pred-

icate, it is standard to interpret a predicate a set: the set of

terms for which the predicate returns true. We have done

this before (=¥ pJ134]).

452

Type Definition: Definition

Definition (type definition):
Assume a theory T' = (B,3, A) and a type p and a term
S such that X+ (=» p203)S : p — bool.
A theory extension T" = (B, 3, A’) of T' is a type definition
“4 (where T fresh™), iff

for type 7

1sHere, S is any “predicate” (=¥ p367), i.e., term of type

p — bool, not necessarily a constant.
mA type definition is supposed to define a type

constructor (=¥ p373)) (where the arity and fixity are indi-

cated in some way). We abuse notation here: we use 7
to denote a type constructor, but also the type obtained
by applying the type constructor to a vector of different

type variables (=¥ p202) (as many as the type constructor

requires).
So think of 7 as either being a type constructor or a

“generic” type (just a type constructor being applied to type
variables).

We do the same in examples.
15The type constructor 7 must not occur in B.

453

B = B 4! {7},
Yo=Y U {AbsY: p — 7, Rep, (=¥ pldd) : T — p}
A= AU {Vo.Abs,(Rep, x) = af'¥

Vr.Sx — Rep;(Abs,x) =z (=¥ pibd)}
“Y 32, S x can be proven inside HOL!

Proof obligation

16The symbol W denotes disjoint union, so the expression
AW B is well-formed only when A and B have no elements

in common. One thus uses this notation to indicate this fact.
170f course we are giving a schematic definition here, so

any letters we use are metanotation.

Notice that Abs, and Rep, stand for new constants. For
any new type 7 to be defined, two such constants must be
added to the signature to provide a generic way of obtaining
terms of the new type. Since the new type is isomorphic

to the “subset” (=¥ p452) S, whose members are of type p,

one can say that Abs, and Rep, provide a type conversion
between (the subset S of) p and 7.

So we have a new type 7, and we can obtain members of
the new type by applying Abs, to a term ¢ of type p for

which St holds.
418The formulas

Va.Abs (Rep, x) = x
Vr.Sx — Rep;(Abs,) =x

454

Type Definitions Are Conservative

Lemma (type definitions):
Type definitions are conservative.
Proof see [GM93, pp.230].

state that the “set” S (=» pi452) and the new type T are
isomorphic. Note that Abs; should not be applied to a term

not in “set” S (=¥ p/452)). Therefore we have the premise

S x in the above equation.
Note also that S could be the “trivial filter” Ax.True. In
this case, Abs, and Rep, would provide an isomorphism

between the entire type p and the new type 7.
wWe have said previously (=¥ pi452) that S should be

a non-empty “subset” (=» pib2) of 7. Therefore it

must be proven that dx.Sx. This is related to the
semantics (=¥ p.376)).
Whenever a type definition is introduced in Isabelle, the

proof obligation must be shown inside Isabelle/HOL. Is-
abelle provides the typedef syntax for type definitions,

as we will see later (=¥ py64). Using this syntax, the

“author” of a type definition can either explicitly pro-
vide a proof (see Product Type.thy (= pi65))), or the
proof is so easy that Isabelle can do it automatically (see

455

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to

a subset of an existing type, how is this construction going

to lead to a “rich” collection of types for large-scale applica-

tions?

But in fact, due to ind (=¥ p.

373

types in HOL are already very rich.

and — (=¥ p.

We now give three examples to convince you.

373

the

)

Sum Type.thy (=¥ p.

167))).

456

Example: Typed Sets

General scheme, substituting p = o — bool (« is any type
variable (=¥ p202)), 7 = « set (=¥ p@d3) (or set (=P piH3
S = Azl Trye
B = B W {7set},
Y= 3 U {Abs;se : pla — bool) — T set,
Rep;ser - T set — p(a — bool)}
A = A U {Vr.AbS;set(Reprset) = ,
V.S xTrue — Reprset(AbSrer x) = '}

),

Simplification since S = Az. True. Proof obligation (=¥ p454]):

(Jz.Sx) trivial since (Jz. True) = True. Inhabitation prop-
20

agates

2We have S = Az " True, and so in (32.57), the
variable « has type v — bool. The proposition (Jx.Sx) is

true since the type o — bool is inhabited (=¥ p{379), e.g. by
the term Ax®. True or Az“.False.

Beware of a confusion: This does not mean that the
new type « set, defined by this construction, is the type

of non-empty sets. There is a term for the empty set: The
empty set is the term Absg; (Ax. False).
So we see that inhabitation of types propagates in the fol-

lowing sense: since each type 7 is inhabited, the type 7 set
is inhabited as well.

457

Sets: Remarks

Any function r : @ — bool can be interpreted as a set of
a; r is called characteristic function. That’s what Absgy 7

does; Abs,.; is a wrapper saying “interpret r as set”.
S = A\x. True and so S is trivial™Y in this case.

21\We said that in the general formalism for defining a new
type, there is a term S of type p — bool that defines a
“subset” (=¥ p452) of a type p. In other words, it filters
some terms from type p. Thus the idea that a predicate can

be interpreted as a set is present in the general formalism for
defining a new type.

Now we are talking about a particular example, the type
a set. Having the idea “predicates are sets” in mind, one is
tempted to think that in the particular example, S will take

the role of defining particular sets, i.e., terms of type « set.
This is not the case!

Rather, S is Ax.True and hence trivial in this example.
Moreover, in the example, p is & — bool, and any term r of
type p defines a set whose elements are of type a; AbSge T
is that set.

458

More Constants for Sets

For convenient use of sets, we define more constants:

459

{x | fz} = Collect® f = Abs,e f
v €A = (Repser Af¥| 2
AUB (= pl137) = {z|x€ AVa e B}

24 adequate for most of mathematics

Consistent set theory

22\\e have seen Collect before in the theory file NSet . thy]
(naive set theory (=¥ p{130))).

Collect f is the set whose characteristic
function (=¥ p}58)) is f. There is also a concrete (=¥ p405
(i.e., according to mathematical practice) syntax {x | f x}.
It is called set comprehension. The correspondence between
the HOAS (=¥ p405) Collect f and the concrete syntax
{x | fx} also makes it clear that set comprehension is a
binding operator, as we learned some time ago (=¥ pJ131]).

Note also that Collect is the same (=» pi85) as AbsSse
here.

The file Set . thy should be contained in your Isabelle dis-
tribution. Or, if you only have an Isabelle executable, you
can find the sources here:

http://isabelle.in.tum.de/library/

23\Ne define
r €A = (Repst A)

460

http://isabelle.in.tum.de/library/

and computer science.

In Isabelle/HOL however, sets are a special case (=¥ p485)).

Here, sets are just an example to demonstrate type defi-

nitions. Later (=¥ p{482) we study them for their own sake.

Since Reps.; has type (=» pidb7) aset — (a0 — bool), this
means that (=¥ p203) x is of type a and A is of type (@ —

bool). Therefore € is of type o — (aset) — bool (but

written infix (=¥ pf6g)).

In the Isabelle theory file Set.thy (=¥ p.

460

, you will in-

deed find that the constant : (Isabelle syntax for €) has type

a — (aset) — bool.

However, you will not find anything (=¥ p.

responding to Repger.

2Typed set theory is a conservative extension (=¥ p/455

of HOL and hence consistent (=¥ p444).

Recall the problems with untyped set theory (=¥ p{150)).

461

AR5

directly cor-

Example: Pairs

Consider type a — 3 — bool. We can regard a term f :
a — [— bool as a representation of the pair (a,b), where
a:«aand b: G, iff fxyistrue exactly for = a and y = b.
Observe:

425

e For given a and b, there is exactly ong**°|such f (namely,

My’ x =a ANy =b).

e Some functions of type @ — (3 — bool represent pairs
and others don’t (e.g., the function A\zxy. True does not
represent a pair). The ones that do are exactly the ones
that have the form A\xz“y”. 2 = a A y = b, for some a

and b.

25\When we say that there is “exactly one” f, this is meant
modulo equality in HOL. This means that e.g. Az®y’.y =
bAx = ais also such a term since (A\x°y’.x = aAy = b) =
(A\x®y’.y = b Az = a) is derivable in HOL.

462

Type Definition for Pairs

This gives rise to a type definition where S (=¥ p4b2)) is

non-trivial:

p = a— [— bool
S = Nfooh=bold Jap f = Xy’ =aNny=>b
T = axf (X infix)

It is convenient to define a constant Pair Rep (not to be
confused with Rep,**%) as \a®t’ A\z®y”. © = a Ay = §*?]
Then Pair Repab = \z®y’. x =a Ay = b.

26 Rep,, would be the generic name for one of the two

isomorphism-defining functions (=¥ p454)).

Since Repy looks funny, the definition scheme for type
definitions in Isabelle is such that it provides two names
for a type, one if the type is used as such, and one for the
purpose of generating the names of the isomorphism-defining
functions.

»\We write A\a®b’ A\z®y’.x = a Ay = b rather than
NV xy’.x = a Ay = b to emphasize the idea that one
first applies Pair_Rep to a and b, and the result is a func-
tion representing a pair, wich can then be applied to x and

Y.

463

[sabelle has a special set-based

Now in Isabelle
178

syntax for type definitions:

typedef (7))
(typevars) "T" (fixity)
—) {x.¢}77

How is this linked to our scheme (=¥ p{453):
e the new type is called 7" (=¥ p463);

e p is the type of x (inferred (=¥ pi374)));
o Sis \x.¢;

e constants (=» pi63) Abs T and Rep T are automati-
cally generated.

2The syntax "{x.¢}” does not just look like a set
comprehension (=¥ p460), it is one!

So, since the typedef syntax is based on sets, sets

themselves could not have been defined using that syntax.

This is the reason why in Isabelle/HOL, sets are a special

case (=¥ p.

A85

of a type definition.

See Typedef .thy, which should be contained in your Is-

abelle distribution. Or, if you only have an Isabelle exe-

cutable, you can find the sources here:

http://isabelle.in.tum.de/library/

464

http://isabelle.in.tum.de/library/

Isabelle Syntax for Pair Example

constdefs
Pair_Rep :: [’a, ’b] => [’a, ’b] => bool
"Pair_Rep == (%a b. %x y. x=a & y=b)"

typedef (Prod)
(’a, ’b) "x" (infixr 20) =

"{f.7a b. f=Pair_Rep(a::’a)(b::’b)}"

29

The keyword constdefs ™| introduces a constant defini-
tion. The definition and use of Pair Rep (=¥ p{63)) is for

convenience. There are “two names” (=¥ p{463) * and Prod.
130

See Product _Type . thy

29[[sabelle theory files, consts is the keyword preceding
a sequence of constant declarations (i.e., this is where the
Y, (=¥ pi41)) is defined), and defs is the keyword preceding
the axioms that define these constants (i.e., this is where the

A (=¥ pfd4l)) is defined).
constdefs combines the two, i.e. it allows for a sequence

of both constant declarations and definitions. When the
constdefs syntax is used to define a constant ¢, then the
identifier c_def is generated automatically. E.g.

constdefs
id :: "’a => ’a"
"id == Yx. x"

will bind id_def to id = \x.x.
130T'his file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

465

http://isabelle.in.tum.de/library/

Example: Sums
131

1s either Inl a where a : « or

An element of («, 3) sum
Inr b where b : 3.
So think of Inl a and Inr b as syntactic objects that we

want to represent.
Consider type a« — (3 — bool — bool. We can regard
f:a— B — bool — bool as a

representation of ... [iff fxyi is true for ...
Inl a xr = a, y arbitrary, and ¢ = True
Inr b x arbitrary, y = b, and ¢ = Fulse.

Similar to pairs (=¥ p462).

11]dea of sum or union type: t is in the sum of 7 and o

if ¢ is either in 7 or in 0. To do this formally in our type

system (=¥ p{191)), and also in the type system of functional

programming languages like ML, ¢ must be wrapped to signal
if it is of type 7 or of type o.
For example, in ML one could define

datatype (o, () sum = Inl o | Inr 3

So an element of (o, 3) sum is either Inl a where a : « or

Inr b where b : 3.

466

Isabelle Syntax for Sum Example

constdefs
Inl_Rep :: [’a, ’a, ’b, bool] => bool
"Inl_Rep == (%a. %x y p. x=a & p)"
Inr_Rep :: [’b, ’a, ’b, bool] => bool
"Inr_Rep == (4b. %x y p. y=b & "p)"

typedef (Sum)
(Pa,’b)"+" =
"{f. (?a. f = Inl_Rep(a::’a)) |
(?b. £ = Inr_Rep(b::’b))}"

137

See Sum Type . thy
How would you defing

433

a type even based on nat?

132This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

s3Suppose we have a type nat and a constant + with the
expected meaning. We want to define a type even of even
numbers. What is an even number?

The following choice of S (=¥ p453) is adequate:
S=Xr.dnz=n+n

Using the Isabelle scheme, this would be
typedef (Even)

even = "{x. 7y. x=y+y}"
We could then go on by defining an operation PLUS on even,

467

http://isabelle.in.tum.de/library/

16.4 Summary on Conservative Extensions

We have seen two schemata:

e Constant definition (=¥ p446): new constant must be
defined using old constants. No recursion! Subtle side

condition (=¥ p449) concerning types.

e Type definition (=¥ pi452): new type must be isomor-
phic to a “subset” (=» pf452) S of an existing type p.
Not possible to define any type that is “structurally”
richer than the types one already has. But HOL is rich
enough (=¥ p450)).

say as follows:
constdefs
PLUS: : [even,even] => even (infixl 56)
PLUS_def "PLUS ==
%xy. Abs Even (Rep Even(x)+Rep Even(x))"

Note that we chose to use names even and Even (=¥ p463),

but we could have used the same name twice as well.

468

17 Mathematics in the Isabelle/HOL
Library: Introduction

469

Isabelle/HOL at Work

We have seen how the mechanism of conservative extensions
works in principle.

For several lectures, we will now look at theories of the Is-
abelle/HOL library, all built by conservative extensions and
modelling significant portions of mathematics.

470

Sets: The Basis of Principia Mathematica
Sets are ubiquitious in mathematics:
e 17th century: geometry can be reduced to numbers [Des16,
vIL16].

e 19th century: numbers can be reduced to sets [Canl§|
Peal§| [Fre93, [Fre03].

e 20th century: sets can be represented in logics [Zer(7,
Fra22, WR25, [God31, Ber91l, [Chud)].
We call this the Principia Mathematica Structure [WR25].

The libraries of theorem provers follow this Principia Math-
ematica Structure — in reverse order[™

4]t is not surprising that the logical built-up of theorem
prover is reversed w.r.t. to the historical development of
mathematics and logics. Research usually starts from ap-
plications and the intuition and works its way back to the
foundations.

471

The Roadmap

e Orders (=¥ py73

e Sets (=¥ pi482

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ p.

e (Well-founded) recursion (=¥ p.

e Arithmetic (=¥ p/589

e Datatypes (=¥ p[614

472

509

041

18 Orders

473

The Roadmap

We are looking at how the different parts of mathematics are
encoded in the Isabelle/HOL library (=% p469).

e Orders
e Sets (=¥ p482

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ p/509

o (Well-founded) recursion (=¥ p{541

e Arithmetic (=¥ p;H89

e Datatypes (=» pl614

474

Three Order Classes

We first define a syntactic class (=¥ p/197) ord. It is the

class of types for which symbols < and <= exist.

We then define two axiomatic classes (=¥ pJ198) order

and linorder for which < and <= are required to have

certain properties, that of being a partial order (=¥ p.

or a linear order (=¥ p[122)), resp.

475

119

)

Orders (in HOL.thy"”

axclass
ord < type
consts
"op <" :: [’a::ord, ’a] => bool
"op <=" :: [’a::ord, ’al => bool
constdefs
min :: "[’a::ord, ’al => ’a"
"min a b == (if a <= b then a else b)"
max :: "[’a::ord, ’al => ’a"
"max a b == (if a <= b then b else a)"

Recall constdefs (=¥ p{65) syntax and note two uses of
<9

5 In previous versions of Isabelle (=» p{396)), there used to
be a theory file Ord.thy. Nowadays orders are defined in

HOL. thy.
136'The line

axclass order < ord

in the theory file states that order is a subclass (=¥ pJ197
of ord.
The line

"op <" :: [’a::ord, ’al => bool ("(_ <)" [60, 51] 50)

in the theory file declares a constant < with a certain type.
type is the class containing all types. In previous versions
of Isabelle (=¥ pi396)), it used to be called term.

476

Orders in HOL.thy (Cont.)

axclass order < ord

order_refl "x <= x"
order_trans "[lx <=y; y <= z|] ==> x <= z"
order_antisym "[|x <= y; y <= x|] ==> x = y"
order_less_le "x <y = (x <=y & x "= y)"

b

axclass linorder < order
linorder_linear "x <=y | y <= x"

477

In Ord.thy (=¥ p.

Least Elements

476

. least elements used to be defined as:

Least :: "(’a::ord => bool) => ’a"
Least_def "Least P == 0x. P(x) &
(ALL y. P(y) ==> x <= y)"

Now it is done without using the Hilbert operator (=¥ p{374)).

478

Monotonicity

In Ord. thy (=¥ p{476), monotonicity used to be defined as:

mono :: [’a::ord => ’b::ord] => bool
mono_def "mono(f) ==
(1A B. A <=B -—> f(A) <= £(B))

Now it is done using a completely different syntax, but
one can still use monotonicity as before.

479

Some Theorems™’ about Orders

monol (NABA<B= fA< fB)
—> mono f

monoD [monof,A<B]—= fALfB

order eq refl rT=yYy=—=>x <Y

order less irrefl <X

order_le_less (x<y)=(x<yVz=y)

linorder less linear z <yVzr=yVy<uzx

linorder neq iff (x#y)=(r<yVy<x)

min same MINTT =T

le min iff conj (z<minzy)=(z<zAz<y)

18.1 Summary on Orders

Type classes are a structuring mechanism in Isabelle:

#7[n the rest of the course, we will mostly be dealing
with Isabelle HOL, and so when we speak of a theorem,

we ususally mean an Isabelle theorem, ie., a theorem

what we also call a

in Isabelle’s metalogic (=¥ p299

)

thm (=¥ p257). Such theorems may contain the meta-level

implication = and universal quantifier .
So they are not theorems within HOL. Logically, this is not
a big deal as one switches between object and meta-level by

the introduction and elimination rules for — (=» p{392) and
V (=¥ p{18). But technically (for the proof procedures), it
makes a difference.

To see a theorem displayed in Isabelle, simply type the

.
y -

name of the theorem followed by

480

e Syntactic classes (= p[197) (e.g. t == «a :: ord as in
Haskell [HHPWO9G]): merely a mechanism to structure
visibility of operations.

e Axiomatic classes (=¥ p[198) (e.g. t == « =2 order): a
138

mechanism for structuring semantic knowledge
(foundation to be discussed later (=¥ p}493))).

in types

133The Isabelle type system records for any type variable

what class constraints (=¥ pJ197)) there are for this type vari-

able. These class constraints may arise from the types of the
constants used in an expression, or they may be given ex-
plicitly by the user in a goal. E.g. one might type

Goal "(x::’a::order)<y ==> x<=y";

to specify that x must be of a type in the type class order.

The axioms of an axiomatic class can only be applied if
any constant declared in the axiomatic class (or a syntactic
superclass) is applied to arguments of a type in the axiomatic

class. E.g. order refl (=¥ pi477) can only be used to prove

y <=y if the type of y is in the type class order.
In this sense the type information (y is of type in class
order) is semantic knowledge (y <= y holds).

481

19 Sets

482

The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library (=¥ p{469).

e Orders (=¥ p473

e Sets

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ p/509

o (Well-founded) recursion (=¥ p{541

e Arithmetic (=¥ p;H89

e Datatypes (=» pl614

483

Set.thy

theory Set = HOL:
typedecl ’a set

instance set :: (type) ord ..
consts
{3 ;1 ’a set ("{}")
UNIV :: ’a set
insert :: [’a, ’a set] => ’a set
Collect :: (’a => bool) => ’a set
"op :" :: "’?a => ’a set => bool"

Note that Collect and “” correspond (=¥ p4b9)) to Absse: (=¥ pA60

and Repger (=¥ pA60)).

484

Sets Are a Special Case

Recall that the typedef (=¥ p{464)) syntax is based on set
comprehension (=¥ p464]). Therefore, sets are a special case

of type definitions.

In deviation from our conservative approach (=» p{391)),

sets are axiomatized as follows:

axioms
mem Collect_eq [iff]™’: "(a : {x. P(x)}) = P(a)"
Collect mem eq [simp]: "{x. x:A} = A"

140

One can see though that this is equivalent™"| to the type

definition scheme (=¥ p452).
wWe earlier (=¥ p{4b9) presented a definition of a set ac-

cording to the scheme of type definitions (=» p{452)). How-
ever, in Isabelle/HOL (Set.thy (= p460))), it is not done
exactly like that. The reason lies in the special set-based

syntax (=¥ p464) used for type definitions.
The type « set is defined in Isabelle/HOL in a way which
essentially corresponds to the type definition scheme, but

is different in the technical details. In particular, there
are no constants Absg; and Repgy. Instead, we have

Collect (=¥ p{460) and the €-sign (=¥ p{60). We will now
explain how.

Concerning Absge, there is no worry, since it corresponds

exactly to Collect (=¥ p460).
Repger is related to the €-sign (=¥ pd60) via

r €A = (Repst A)

Let us see that this setup is equivalent to the scheme

of type definitions (=¥ p{452). There are two axioms in

485

Set.thy: More Constant Declarations

Un, Int :: [’a set, ’a set] => ’a set

Ball, Bex :: [’a set, ’a => bool] => bool
UNION, INTER:: [’a set, ’a => ’b set] => ’b set
Union, Inter:: ((’a set) set) => ’a set

Pow :: ’a set => ’a set set

"image" :: [’a => ’b, ’a set] => (’b set)

We use old syntax (=¥ pi396|) here but only since it is more

concise.
In what follows, recall that

{z | fx} = Collect (=¥ p460)) f = Abss f

Set.thy (=¥ p460):

axioms
mem Collect eq [iff]: "(a : {x. P(x)}) = P(a)"
Collect mem eq [simp]l: "{x. x:A} = A"

We translate these axioms using the definitions (=¥ p}459):
a€{r|Px}=Pa~
a € (Collect P) = Pa ~
a € (Absset P) = Pa ~~
Repset(Absset P)a = Pa ~
Repset(Absset P) =P

The last step uses extensionality (=¥ p{392).

Now the second one:
{r|ze A=A~
{z | (Repset A) x} = A ~
Collect(Repger A) = A

[gnoring some universal quantifications (these are implicit in

[sabelle), these are the isomorphy axioms for set (=¥ p457)).

486

Set.thy: Constant Definitions

empty_def : "{} == {x. Falsel}"
UNIV_def: "UNIV == {x. Truel}"

Un_def: "A Un B == {x. x:A | x:B}"
Int_def: "A Int B == {x. x:A & x:B}"
insert_def: "insert a B == {x. x=a} Un B"
Ball_def: "Ball A P == ALL x. x:A -—> P(x)"
Bex_def: "Bex A P == EX x. x:A & P(x)"

Nice syntax:
{z,y, 2} for insert x (insert y (insert z {}))

AlLz: A.Sx for Ball A S
EXx:A Sxr for Bex A S

487

Set.thy: Constant Definitions (2)

subset_def: "A <= B == ALL x:A. x:B"
Compl_def: "— A == {x. "x:A}"
set_diff_def: "A - B == {x. x:A & “x:B}"
UNION_def: "UNION A B == {y. EX x:A. y: B(x)}"
INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}"

Note use of <=**!instead of C!

Nice syntax:
UNz:A.Sz or (J,cn .Sz for UNION A S

INTx:A.Sx or (),e . Sx for INTER A S

mSets are an instance of the type class ord (=¥ pi473
where the generic constant <= is the subset relation in this

)

particular case.
In fact, the subset relation is reflexive, transitive and anti-
symmetric, and so sets are an instance of the axiomatic

class (=¥ p/198) order. This is non-obvious and must be
proven, which is done not in Set . thy itself but in Fun. thy,
later (=¥ p/493)). This is a technicality of Isabelle.

488

Set.thy: Constant Definitions (3)

Union_def: "Union S == (UN x:S. x)"
Inter_def: "Inter S == (INT x:S. x)"
Pow_def: "Pow A == {B. B <= A}"
image_def: "fA == {y. EX x:A. y = £(x)}"

Nice syntax:

S for Union S
(S for Inter S

489

Some Theorems (= p.480) in Set.thy

CollectI Pa=ac{z.Px}

CollectD a € {v.Pr} = Pa

set_ext (ANz.(reA)=(xreB)=— A=B8B
subsetI (Nexe A=—2e€eB)=— ACB
eqset_imp iff A=B = (r € A)=(x € B)
UNIV_I xr € UNIV

subset UNIV A C UNIV

empty subsetI {} C A

Pow iff (A€ PowB)=(ACB)
IntI [ce A;ce Bl =ce ANB

490

More Theorems (= p./480) in Set.thy

insert iff (a € insertbA) =(a=bVaecA)
image Un f(AUB)= f‘AU ‘B

Inter lower BeA= (1ACB

Inter greatest (NX. X e A=CCX)=CCA

19.1 Summary on Sets

Rich and powerful set theory available in HOL:

e No problems with consistency (=¥ p460

e Weaker than ZFC (=¥ p;365)) (since typed set-theory:)
112 113

there is no “union of set§**7"; but: complement-closed

e Good mechanical support (=¥ p254)) for many set tau-
tologies (Fast tac (=» p278), fast tac set cs, fast tac eq cs,
..simp tac set ss (=» p2906) ...)

12]n typed set theory (what we have here in HOL), it is not
possible to form the union of two sets of different type. This

is in contrast to ZFC (=¥ p.365)).
13The complement of a typed set A, i.e.

{z |z ¢ A}
is again a set, whose type is the same as the type of
A, In ZFC (=» p;365)), the complement construction is

not generally allowed since it opens the door to Russell’s
Paradox (=¥ p{150)).

491

e Powertful basis for many problems in modeling

492

20 Functions

493

The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library (=¥ p{469).

e Orders (=¥ p473
e Sets (=¥ p482

e Functions

e (Least) fixpoints and induction (=¥ p/509

o (Well-founded) recursion (=¥ p{541

e Arithmetic (=¥ p;H89

e Datatypes (=» pl614

494

Fun.thy

The theory Fun.thy*| defines some important notions on

functions, such as concatenation, the identity function, the
image of a function, etc.
We look at it briefly.

144 This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

Fun.thy builds on Set.thy (=¥ p460)), and it is here that
it is proven and used that sets are an instance of the type

class order.

495

http://isabelle.in.tum.de/library/

Two Extracts from Fun.thy

Composition and the identity function:

constdefs

id :: "’a => ’a"

"id == Yx. x"

comp :: "[’b => ’c, ’a => ’b, ’al] => ’c"

"f o g = Ux. f(gx))"

Recall constdefs (=¥ p465|) syntax.

496

Instantiating an Axiomatic Class

Sets are partial orders (=¥ p{119): set is an instance of the

axiomatic class order (=¥ p{A75).

For some reason (=¥ p}488)), this is proven in Fun.thy.

instance set :: (type) order
by (intro_classes,
(assumption | rule subset_refl
subset_trans subset_antisym psubset_eq)+)

440

e Axiomatic classes result in proof obligationg

20 whenever instance is stated.

e These are discharged

e Type-checking (=¥ pd&1]) has access to the established
properties.

“5To claim that a type is an instance of an ax-

iomatic class (=¥ p{198)), it has to be proven that the ax-

ioms (in the case of order: order refl, order trans,
order antisym, and order less le) are indeed fulfilled

by that type.
1“6'The Isabelle mechanism is such that the line

instance set :: (type) order
by (intro classes,
(assumption | rule
subset refl subset trans subset antisym psubset_eq)+)

instructs Isabelle to prove the axioms using the previously

proven theorems (=¥ p/480)) subset refl, subset trans,

subset antisym, and psubset _eq.

497

20.1 Conclusion of Orders, Sets, Functions

e Theory says: conservative extensions can be used (=¥ p440

to build consistent libraries.

e Scts as one important package (=¥ p482)) of Isabelle/HOL
library:

— Set theory is typed, but very rich and powerfully

supported.

— Sets are instance of ord (=¥ p{473) and order (=¥ p497
type class, demonstrates type classes as structuring

mechanism in Isabelle.

e Will see more examples: Isabelle/HOL contains some
10000 thm (=¥ p257))’s.

498

21 Background: Recursion, Induction,
and Fixpoints

499

The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library (=¥ p{469).

e Orders (=¥ p473
e Sets (=¥ p482

e Functions (=¥ p493

e (Least) fixpoints and induction

e (Well-founded) recursion

e Arithmetic (=¥ p;H89

e Datatypes (=» pl614

500

Recursion Based on Set Theory

Current stage of our course:

e On the basis of conservative extensions (=¥ p40)), set
theory (=¥ p482) can be built safely.

e But: our mathematical world is still quite small and
quite remote from computer science: we have no means
of introducing recursive definitions (recursive programs,
recursive set equations, ...).

How can we benefit from set theory to introduce recur-
sion”

501

Recursion and General Fixpoints

Naive Approach: One could axiomatize fixpoint combinator
Y as

fi
Y = A\EF(YF) ™

This axiom is not a constant definition®]
Then we could easily derive

VEOTUY F = F(Y S

e Why are we interested in Y7
e What is the problem with such a definition?

“7The axiom
Y =AF.F(YF)
is not a constant definition (=¥ pl446)), since Y occurs again

on the right-hand side.
“s8[n words, this says that Y F'is a fixpoint of F'.

502

Why Are We Interested in Y?

First, why are we interested in recursion (solutions to recursive
449\ 9

equations

e Recursively defined (=¥ p{569) functions are solutions of
150

such equations (example: fac

e Inductively defined (=¥ p}531)) sets are solutions of such

1By a recursive equation, we mean an equation of the form
f=e

where f occurs in e. A fortiori, such an equation does not

qualify as constant definition (=¥ pl446)).
#50[n the following explanations, any constants like 1 or +

or if-then-else are intended to have their usual meaning.

A fixpoint combinator (=¥ p|502) is a function Y that re-

turns a fixpoint of a function F', i.e., Y must fulfill the equa-
tion YF = F(YF). Doing A-abstraction over F' on both
sides and 7-conversion (backwards) on the left-hand side, we
have
Y =AF.F(YF)

This is a recursive equation. We will now demonstrate how a
definition of a function fac (factorial) using a recursive equa-
tion can be transformed to a definition that uses Y instead
of using recursion directly.

503

In a functional programming language we might define
fac n = (if n =0 then 1 else n * fac (n —1)).

We now massage this equation a bit. Doing \-
abstraction (=¥ p{165)) on both sides we get

An. fac n = (An. if n = 0 then 1 else n * fac(n — 1))
which is the n-conversion (=¥ pJ170)) of
fac = (An. if n =0 then 1 else n * fac(n — 1))
which in turn is a G-reduction (=¥ p{165]) of
fac = (Af. An.if n =0 then 1 else nx f(n — 1)) fac)

(3)
We are looking for a solution to (3). We abbreviate the
underlined expression by Fac. We claim fac =Y Fuc, i.e.,

it is a solution to ([3). Simply replacing fac with ¥ Fac in
we get

Y Fac = Fac (Y Fac)

504

equations (example: Fin A7 all finite subsets of A).

We are interested in Y because it is the mother of all

which holds by the definition of Y.
Thus we see that a recursive definition of a function can be
transformed so that the function is the fixpoint of an appro-

priate functional (a function taking a function as argument).
151\We want to define a function Fin such that Fin A is the

set of all finite subsets of A.
How do you construct the set of all finite subsets of A?

The following pseudo-code suggests what you have to do:

S={{}k

forever do

foreach a € A do
foreach B € S do
add ({a}UB)to S
od od od

This means that you have to add new sets forever (however,
when you actually do this construction for a finite set A,

it will indeed reach a fixpoint, i.e., adding new sets won’t
change anything).

505

Generally (even if A is infinite), Fin A is a set such
that adding new sets as suggested by the pseudo-code won't
change anything. Written as recursive equation:

Fin A = {{}}UUZIZ € A.((insert (=» pd87) x)‘ (Fin A))

Recall that © is nice syntax for image (=¥ p{489), defined in
Set.thy (= pi60).
The above is a B-reduction (=¥ pl165|) of

Fin A= (AX. {{}} U J= € A((insert (= p[i87) z)‘ X)) (Fin A)
(4)

We are looking for a solution to (). We abbreviate the
underlined expression by FA. We claim

Fin A=Y FA,

Le., it is a solution to (). Simply replacing Fin A with
Y FA in () we get

Y FA = FA(Y FA),

506

recursions. With Y, recursive axioms can be converted
into constant definitions (=¥ p446]).

402

which holds by the definition of Y.
You should compare this to what we said about fac. Note

that in this example, there is no such thing as a recursive

call to a “smaller” argument as in fac example.

52 Any recursive function can be defined by an expression

(functional) which is not itself recursive, but instead relies

on the recursive equation defining Y.

Consider fac (=¥ p}503

or Fin A as an example.

507

What’s the Problem with such an Axiom?

Such a definition would lead to inconsistency (=¥ pi43)).
This is not surprising because not all functions have a

fixpoint.
Therefore we only consider special forms (=¥ p|587)) of fix-

point combinators.
We consider two approaches: Least fixpoints (=¥ p|509
(Tarski) and well-founded (=¥ p}541)) orderings.

508

22 Least Fixpoints

509

The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library (=¥ p469).

e Orders (=¥ p 73

o Sets (=P piU82

e Functions (=¥ p493

e (Least) fixpoints and induction

e (Well-founded) recursion (=¥ pjh41

e Arithmetic (=¥ p/589

e Datatypes (=¥ p[614

22.1 First Approach: Least Fixpoints (Tarski)

510

e Recall: (=» p{502) We would like to define Y = AF.F (Y F),
where F' is of arbitrary type a — «, but we must
not (=¥ p.H08).

e Restriction: F' (=¥ ph02) is of set type (o set — « set).

e Instead of Y define Ifp by an equation which is not re-
cursive.

e [fp is fixpoint combinator, but only under additional
153

condition that F'is monotond

and: this is not obvious

(requires non-trivial proof)!

This leads us towards recursion and induction (=¥ p/531)).

5 A function f is monotone w.r.t. a partial order (=¥ p{119
< if the following holds: A < B implies f(A) < f(B).
In particular, we consider the order given by the subset

relation.

b1l

Lfp.thy™*

Lfp = Product_Type +

constdefs
1fp :: [’a set => ’a set] => ’a set
"1fp(f) == Inter({u. f(u) <= u}h)"

e => is function type arrow (=¥ pJ197).
o <= (“C”" (=» pi8Y)) is a partial order (=¥ p|119).

e Inter (“(") (=» p{89) gives a “minimum”: VA € S.([)S) C
A. Note that
— (0 = UNIV (=» pid87), i.e., if {ulf(u) C u} =0,
then [fp(f) = UNIV;

151 These files should be contained in your Isabelle distribu-

tion. Or, if you only have an Isabelle executable, you can
find the sources here:

http://isabelle.in.tum.de/library/

512

http://isabelle.in.tum.de/library/

— If f has a fixpoint a, then f(a) = a and hence a
fortiori f(a) C a, and so {u|f(u) C u} # 0.

513

Is it a Fixpoint?

We have

Up(f) = ulf(u) € u}

Definition of Ifp is conservative (=¥ p.

is it a fixpoint combinator? (=¥ p.

514

446

520

. That’s fine. But

22.2 Tarski’s Fixpoint Theorem

Theorem (Tarski):
If f is monotone (=¥ pb11)), then Ifp f = f (ifp f).

In Isabelle, the theorem is shown in Lfp.ML (=¥ p/512
and called 1fp unfold.

We show the theorem using mathematical notation and a
graphical illustration to help intuition.

The proof has four steps.

Side remark: if f is monotone, then clearly f has some
fixpoint, since f UNIV = UNIV and thus UNIV is always a
fixpoint.

515

Tarski’s Fixpoint Theorem (1)
Claim 1 (“Ifp lower bound”): If f A C A then Ifp f C A.

The box denotes “the set” af®?. The
three circled™? denote the sets A for
which f A C A.

By definition (=» p{512), Ifp f is the
intersection.

Pick an A for which f A C A.
Clearly, Ifp f C A.

Or as proof tree (=¥ p[522).

#5¢v is not a set but a type (variable). But we can consider
the set of all terms of that type (UNIV of type «).

The polymorphic constant UNIV was defined in
Set.thy (=¥ p487). UNIV of type 7 set is the set

containing all terms of type 7.
156[n general, needless to say, there could be any number of

such sets, but the picture is to be understood in the sense

that the three circles are all the sets A with the property
fACA.

516

Tarski’s Fixpoint Theorem (2)

Claim 2 (“Ifp greatest”): Forall A, iffor all U, f U C U implies A C U,
then A C Ifp f.

The three circles denote the sets U
for which f U C U.

By hypothesis, A C U for each U
(1st, 2nd, 3rd ...).

By definition (=» p{512), Ifp f is the
intersection.

Clearly, A C lfp f.
Or as proof tree (=¥ p[523).

517

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone (=¥ p.

b1l

then f(Ifp f) C Up f.

First show Claim 3*: f U C U implies f(Iifp f) C U.
Let the circle be such a U. By Claim

1 (=» ppl6), ifp f CU.
f U C U (hypothesis).
ffp f) C

monotonicity p. :
icity (=¥ ppll

ffp f) C
(transitivity (=¥ p493
Claim 3* shown.

By Claim 2 (=» pp17) (letting A :=

of

ffp 1)), fUfp f) S lfp f.

518

fu

o (O

C

)

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone (=¥ pp11)) then ifp f C f(ifp f).

By Claim 3 (=¥ p/518)), f(ifp) C

ifp .
By monotonicity (=¥ p/H11)),

FUffp 1)) € ffp f). .‘
By Claim 1 (=¥ p}516)) (letting A := @
f(fp 1)), Up f < f(lfp f).

Or as proof tree (=¥ pH25)).

519

Tarski’s Fixpoint Theorem: QED

Claim 3 (=» pH18)) (Ifp f C f(ifp f)) and Claim 4 (=¥ p/H19
(f(ifp f) C ifp f) together give the result:

If f is monotone, then Ifp f = f (Ifp f).

So under appropriate conditions, Ifp is a fixpoint combinator (=¥ p{503)).

We will later reuse Claim 1 (=¥ p.516)).

520

Alternative: A Natural-Deduction Style Proof

The proof can also be presented in natural deduction style (=¥ p..

521

Tarski’s Fixpoint Theorem (1)

Claim 1 (“Ifp lower bound”): If f A C A then Ifp f C A.
fAC AL
Ae{u.fuCu}
Mu.fuCu} CA

ifp fCA
fACA—IfpfCA

Collectl (=» p}490
Inter lower (=¥ p490
Def. Ifp (=¥ p}H12
—-I (= plao1)®

522

Tarski’s Fixpoint Theorem (2)

Claim 2 (“Ifp greatest”): For all A, if forall U, f U C U

implies A C U, then A C Ifp f.
Vo.fr Cax— AC x|
Ve.x € {u.fuCu} - ACzx
A C N{u.fu Cu}
AClfpf

Def. Ifp (=¥ p.

Vo.frCox— ACx)— ACIfpf

523

subst (=¥ p.
Inter_greatest (=¥ p490

401]), Collectl (=¥ p.

512

—-I (= pl0T)"

490

Tarski’s Fixpoint Theorem (3)

Claim 3: If f is monotone (=¥ pp11)) then f(Ifp f) C Ifp f.
[fz C]
[mono f1' Ufp f C

l C C z)?
flfp J) }(Jl;ﬂff) c frca order_trans (=¥ p {477
D f) Cx
V-1 (= pJ396), —-I (= p01
Vo.fr Co— f(lfp f) Ca
Ifp_greatest (=¥ pH23)), —-E (=» p401

U) Up f |
mono [— f(p f) C ifp £ L1 PAU

524

Tarski’s Fixpoint Theorem (4)

Claim 4: If f is monotone (=¥ p 11| then Ifp f C f(ifp f).

[mono f]!

[mono fI' f(ifp f) S ifp f

fUf £) € fifp f)
ifp £ < f(lfp f)
mono f — Ifp f C f(lifp f)

—-1 (=¥ p.

525

monoD (=¥ p.
Ifp_lowerbound (=¥ p.

Claim 3 (=¥ p.

H24

430

401

il

)

522

—-E (= pli0l

)

—-E (=¥ p.

401

Completing Proof Tree

[mono f]! . [mono f]! _
Claim 4 (=¥ pH25 Claim 3 (=¥ p.
ifp f < ffp f) fUfp f) S lfp f cqualityl
ifp f=f(fp f) I (= pT"

mono f — Ifp f = f(lfp f)

526

524

22.3 Induction Based on Lfp.thy

Theorem (Ifp induction):
If

e f is monotone (=¥ pH11)), and

o fUfp f{z| Pa}) C{a| Paj,
then Ifp f C {z | Pz}

In Isabellg™’] it is called 1fp_induct:

la € lfp f;mono f; Nx.x € f(ifp fN{x.Pz}) = Px]
— Pa

We now show the theorem similarly as Tarski’s Theorem (=¥ p.

515)).

#57The theorem is phrased a bit differently in the “mathe-
matical” version we give here and in the Isabelle version (see
Lfp.ML (=» p}512)). This is convenient for the graphical il-
lustration of the proof.

The “mathematical phrasing” corresponding closely to the
[sabelle version would be the following:

Theorem (Induct (alternative)):
If

eaclfp f,and

e f is monotone (=¥ pH11)), and

o forall x, x € f(lfp fN{x | Px})implies P x
then P a holds.

Other phrasings, which may help to get some intuition
about the theorem:

Theorem (Induct (alternative)):
If

527

Showing 1fp induct

eaclfp f,and

e f is monotone (=¥ pHll

and

)

o flfp fO{x| Pa}) C{x| Puxj

then P a holds.

Theorem (Induct (alternative)):

If

e f is monotone (=¥ ppHll

and

)

o fifp f{z | Px})C{x|Px}
then for all x in [fp f, we have P x.

528

Circles denote Ifp f and {x | Px}.

By monotonicity[*”%,
flfp fo{z | Px}) © f(lfp f). By
Tarski (=» pp13), ifp f = f(ifp f). Hence
ffp fofe| Pay) Slifp f.

By hypothesis (=» p{527), f(ifp fN{x |
Pz}) C {z| Px}, and so we must ad-
just picture: f(ifp f N{x | Pz}) C
ifp fN{x | Pz}

By Claim 17, Ifp f C Ifp f0{x | Pz}
and sa™| Ifp f = Ifp f N {z | Pz}
Conclusion: Ifp f C {x | Px}.

wifp f N {x| P} C fpf, so by

monotonicity (=¥ p{527), f(ifp fN{xz| Pz}) C f(ifp f).
wWe have just seen f(ifp f Nn{x | Pzx}) C

ifp f{z| Pa}.
By Claim 1 (=» p}516

If f AC Athenlfp f C A

(setting A := Ifp f N {x | Pa}), this implies Ifp(f) C
ifp fN{x| Pax}.

wWe have fp f 0 {z | Pe} C Ifp(f) and Uplf) C
ifp fO x| P}, and so ifp(f) = Ifp f N {x | Px} by the
antisymmetry of C (=¥ p493).

529

Approximating Fixpoints

Looking ahead: Suppose we have the set N of natural

numbers (the type is formally introduced later (=¥ p}598))).

The theorem approx

vS. f(J (= pEYS) = J(f (@ pEY) = {3 =1l f

shows a way of approximating [fp, which is important for
161

algorithmic solutiong™’| (e.g. in program analysis).

There will be an on this.

461'T"he theorem

(vs. f({J (= pERIYS) = J(f * (= pH8Y) 8)) = ([J(r"{}) = lfp f
neN
says that under a certain condition, [fp f can be computed

by applying f to the empty set over and over again:

e although the expression uses the union over all natural
numbers, which is an infinite set, this can sometimes

effectively be computed. Under certain conditions, there
exists a k such that f* {} = f*H{}.

e Even if (Jn € N.f {} cannot be effectively computed,
it can still be approximated: for any k, we know that

Ui <kf{}UYUneN.f"{}.

530

Where Are We Going? Induction and Recursion

Let’s step back: What is an inductive definition of a set S7
It has the form: S is the smallest set such that:

e) C S (just mentioned for emphasis);

o if S C S then F(S") C S (for some appropriate F').

At the same time, S is the smallest solution of the recur-

sive equation (=¥ p.

503

S = F(S).

Induction and recursion are two faces of the same coin.

531

Lfp.thy for Inductive Definitions (= p.512

Least fixpoints are for building inductive definitions of sets
in a definitional way["*4 S = Ifp F.

This is obviously (=¥ p.
about monotonicity (=¥ p.
Tarski (=¥ p.

512

o1l

well-defined, so why this fuss
and Tarski (= p{515])7

H15)) allows us to exploit the equation Iifp f =

f(lfp f) in proofs about S! That’s what [fp is all about.

12Recall why we were interested (=¥ pf503)) in fixpoints.

The

problem

it leads

course (=¥ p.
definition (=¥ p.

to

447

)

with
inconsistency (=¥ p443 (and of
the definition of Y is not a constant

Y (=¥ pho8 is that

446)) /conservative extension.).

The definition of Ifp is conservative.

And in appropriate situations, it can be used to define

recursive functions.

Compared to Y (=¥ p.
restricted (=¥ p.

511]).

499

. the type of Ifp is

This restriction means that there is no obvious way to

use Ifp for defining recursive numeric functions such as

fac (=¥ p.

503]).

532

Example (from Motivation) (= p.505
The set of all finite subsets of a set A:
Fin A=lfp F

where FF = AX {{}}UJx € A.((insert (=» p{87) x)‘ X).

Thus we can do using Ifp what we would have wanted to
do using Y (=¥ p{H05)).

To show: F' is monotond®]

In the Isabelle library™®¥ this is done a bit differently[*®”|

There will be an lexercisd on this.

163T'his proof is of course done in Isabelle.
164T'his file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

15 Above, we defined the set of finite subsets of a set A. Al-
ternatively, one could define “the set of all finite sets whose
elements have type 77. In this case, no fixed set A is in-
volved, and it is closer to what actually happens in Isabelle.
In Finite Set.thy a constant Finites is defined. It has
polymorphic type « set set. We have A € Finites if and
only if A is a finite set. However, it would be wrong to think
of Finites as one single set that contains all finite sets. In-
stead, for each 7, there is a polymorphic instance (=¥ p{373
of Finites of type 7 set set containing all finite sets of ele-

ment type 7.
In Finite Set.thy we find the lines

533

http://isabelle.in.tum.de/library/

22.4 The Package for Inductive Sets

Since monotonicity proofs can be automated, Isabelle has
special proof support for inductive definitions. Example:

consts Fin :: ’a set => ’a set set
inductive "Fin(A)"
intrs
emptyI "{} : Fin(A)"
insertI "[| a: A; b: Fin(A) |] ==
insert a b : Fin(A)"

Translated (=¥ pH33) into expression using Ifp.

inductive "Finites"
intros
emptyl [simp, intro!]: "{} : Finites"
insertI [simp, intro!]: "A : Finites ==>
insert a A : Finites"
The Isabelle mechanism of interpreting the keyword

inductive translates this into the following definition:
Finites = lfp G where

G=MNS. {zx|x={}Vv(TAa z=inserta ANA€S)}
You can see this by typing in your proof script:

open Finites;

defs;

Talking (ML-)technically, Finites is a structure (=¥ p[535
(module), and defs is a value (component) of this
structure (=¥ pH35)).

534

As a sanity-check, consider the type (=» p{372)) of this ex-

pression. The expression insert a A forces A to be of type
T set for some 7 and a to be of type 7. Next, inserta A is
of type 7 set, and hence x is also of type 7 set. Moreover,
the expression A € S forces S to be of type 7 set set. The
expression {x | x = {}V (FAa. z = inserta ANA € S)}
is of type 7 set set. Next, G is of type 7 set set — T set set,
and so finally, Finites is of type 7 set set. But actually, since
T is arbitrary, we can replace it by a type variable a.
Note that there is a convenient syntactic translation

translations "finite A" == "A : Finites"

When does Isabelle generate ML-structures, and what are
the names of those structures?

This question is highly Isabelle-technical, related to differ-
ent formats used for writing theory files, which is in turn
partly due to mere historic reasons.

[t used to be the case that for a theory file called F'.thy,

535

a structure F' would be generated. Certain keywords in
F.thy such as inductive, recursive, and datatype,
would trigger the creation of substructures, so for example
inductive I would call for the creation of a substructure
I.

For a newer format of theory files, this is no longer the
case.

The treatment of the keyword constdefs, followed by the
declaration and definition of a constant C', also depends on
the format used for writing theory files.

e Sometimes (when an older format is used), it will auto-
matically generate a thm (=¥ p[257)) called C'_def which
is the definition of C'.

e Sometimes (when a newer format is used), it will insert
the definition of C'into a database which can be accessed
by a function called thm taking a string as argument. In
this case, not C'_def would be the definition of C, but

536

Package relies on proven lemma**’|1fp_unfold (=¥ pJ515).

rather
thm "' def”

You should be aware of such problems, but we do not treat

them in this course.
©[f you look around in the ML-files of the Is-

abelle/HOL library, you might not find any uses of
1fp unfold (=» p{515), so you may wonder: why is it im-
portant then? But you must bear in mind that the package
for inductive sets relies on these lemmas.

This is a general insight about proven results in the library:
Even though you might not find them being used in other
ML-files, special packages of Isabelle/HOL might use those
results.

537

Technical Support for Inductive Definitions

Support important in practice since many constructions are
based on inductively defined sets (datatypes (=¥ p614)), ...).
Support provided for:

e Automatic proof of monotonicity

e Automatic proof of induction rule (=¥ p{527), for exam-
pla™®’|
[xa € Fin A; P {}; Nab.Ja € A;b € Fin A; Pb] =

P (insertabd)] = P za

%7The theorem
[xa € Fin A; P {}; ANab.Ja € A;b € Fin A; Pb] = P (insertab)]
— Pxa

is an instance of the general induction scheme (=¥ p[527)).

That is to say, if we take the general induction scheme
1fp induct (=¥ pH27

[a € Ifp f;monof;/\x.x e f(lifp fn{z.Pzx}) = Pz] = Pa

and instantiate f to AX{{}} U U= €
A.((insertz) X) (=¥ pH33) then some massaging us-

ing the definitions will give us the first theorem.
Note here that monotonicity has disappeared from the as-

sumptions. This is because the monotonicity of F' (=¥ p[533

is shown by Isabelle once and for all. This is one aspect

of what we mean by special proof support for inductive
definitions (=¥ p}534)).

The least fixpoint of the functional is Fin A (the set of
finite subsets of A) in this case.

538

This works also for mutually recursive

4068

409

inductiveg™”| definitions, ...

definitions, co-

168T'wo functions f and g are mutually recursive if f is de-

fined in terms of g and vice versa.

159Co-induction is a construction analogous to induction but

using greatest fixpoints.

539

22.5 Summary on Least Fixpoints

We are interested in recursion because inductively defined

sets and recursively defined functions are solutions to recur-

sive equations.

We cannot have general fixpoint operator Y (=¥ pJ508

)

but we have, by conservative extension (=¥ pi4g)), least fix-

points for defining sets.

There is an induction scheme (Ifp induction (=¥ p.

527

for proving theorems about an inductively defined set.

)

Restriction of F' to set type (=¥ p/pll]) (a set — «a set)

means that least fixpoints are not generally suitable for defin-

ing functions . ..

540

23 Well-Founded Recursion

541

The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library (=¥ p{469).

e Orders (=¥ p473
e Sets (=¥ p482

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ p/509

e (Well-founded) recursion

e Arithmetic (=¥ p;H89

e Datatypes (=» pl614

542

Well-Founded Recursion

After least fixpoints (=¥ p{509)), well-founded recursion is our

second concept of recursion (and fixpoint combinator).

Idea: Modeling “terminating” recursive functions, i.e. re-
cursive definitions that use “smaller” arguments for the re-
cursive call.

23.1 Prerequisite: Relations

We need some standard operations on binary relations (sets

of pairs (=¥ p462))), such as converse, composition, image of

a set and a relation, the identity relation, ...
70

These are provided by Relation.thy

0 This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

543

http://isabelle.in.tum.de/library/

Relation.thy (Fragment)

constdefs
converse :: "(’a * ’b) set => (’b * ’a) set"
"r°-1 == {(y, x). (x, y):r}"
rel_comp :: "[(’b *x ’c) set, (’a * ’b) set] =>

(’a * ’c) set"
"r 0 s == {(x,2). EXy. (x, y):s & (y, z):r}"

Image :: "[(’a * ’b) set, ’a set] => ’b set"
"r ‘¢ s ==A{y. EX x:s. (x,y):r}"
Id c: "(Pa *x ’a) set"

"Id == {p. EX x. p = (x,x)}"

Somewhat similar to Fun. thy (=¥ p/493).

544

23.2 Prerequisite: Closures

We need the transitive, as well as the reflexive transitive
closure of a relation.

These are provided by Transitive_Closure.thy |
172

How would you define those inductively, ad-hoc?

1 This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

a20* 19 the smallest set such that:
o [d (=» ppHdd) C r*;

o if " Cr*thenr’ Uror Co'.

Or, in line with the schema for inductive
definitions (=¥ p{H31)):

o () Cr¥

o if ¥/ C r* then (As.Id (=¥ ppdd) U (ros))r’ C r*.
The latter form corresponds to the definition in

Transitive Closure.thy (=¥ p/H46).
The definition of 7 is similar.

545

http://isabelle.in.tum.de/library/

Transitive Closure.thy (Fragment)

consts

rtrancl :: "(’a * ’a) set => (’a * ’a) set"
("(_"*x)" [1000] 999)

inductive "r~x"

intros
rtrancl_refl [...]: "(a, a) : r x"
rtrancl_into_rtrancl [...]: "(a, b) : r**x ==

(b, ¢) : r ==> (a, c) : r *"

546

Transitive Closure.thy (Fragment Cont.)

consts

trancl :: "(’a * ’a) set => (’a *x ’a) set"
("(_"+)" [1000] 999)

inductive "r~+"

intros
r_into_trancl [...]: "(a, b) : r ==

(a, b) : r~+"
trancl_into_trancl [...]: "(a, b) : r’+ ==>

(b, c) : r ==> (a,c) c T4

547

23.3 Well-Founded Orderings
173

Defined in Wellfounded Recursion.thy

Wellfounded_Recursion = Transitive_Closure +

constdefs
wi :: "(Pa * ’a) set => bool"
"wf(r) ==
('P. (!'x. (My. (y,x):r -—> P(y)) -—> P(x))
--> (!'x. P(x)))"
What does this mean? r is well-founded if well-founded

474

(Noetherian) induction based on r is a valid proof scheme

73This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:
http://isabelle.in.tum.de/library/
In older versions the file used to be called WF. thy.
mFor a moment, forget everything you have ever heard
about proofs using induction! The definition of wf has the
form
wf (r) =VP.¢(r, P) — Vx.P(x)

That is, it says: a relation r is well-founded if a certain
scheme ¢ can be used to show a property P that holds for
all x.

By the fact that this is a constant definition (=¥ p446
(conservative extension), it is immediately clear that this

gives us a correct method of proving Vz.P(z). To

prove Vz.P(x) for some given P, find some 7 such that
VP.¢(r, P) — Vx.P(x) holds, and show ¢(r, P).

548

http://isabelle.in.tum.de/library/

Once again, this method is correct regardless of what ¢ is.
Forget about induction!

But how is that possible? How is it ensured that only true
statements can be proven, if the method is correct for any
old @7

The point is this: The method is correct in principle, but it
will typically not work unless ¢ is something sensible, e.g. an
induction scheme as in the actual definition of wf. It will not
work simply because we will fail to show either VP.¢(r, P) —
Va.P(x) or ¢(r, P).

549

I

175 6h

Example: Is () well-founded"™? < on the integers

75 The definition of wf is:
wf(r) = (VP.(Ve.(Vy.(y, x) € r — P(y)) — P(z)) — (Va.P(z)))

Let’s instantiate r to (.

wf(0) = (VP.(Vz.(Vy.(y,2) € 0 — P(y)) — P(z)) — (Vz.P(z)))
wf (D) = (VP.(Vx.(Vy. False — P(y)) — P(x)) — (Vx.P(z)))
wf (D) = (VP.(Vx.(Vy. True) — P(x)) — (Vz.P(x)))
wf (D) = (VP.(Vx. True — P(x)) — (Vx.P(x))) (%)

wf((Z)) = (VP.True)

wf () = True

So the empty set is well-founded.

Note the line marked (x). Note that the well-foundedness
of () is useless for proving any P, because the induction step
degenerates to the proof obligation Va.P(x).

7Let us check (in an intuitive way) whether < on the in-

550

Intuition of Well-Foundedness

Intuition of wf: All descending chains are finite.

tegers is well-founded. So we must check whether
(VP.(Vz.(Vy.y <z — P(y)) — P(x)) — (Vz.P(x)))
holds. Instantiating P to Ax.False we obtain
(Vx.(Vy.y < x — False) — False) — (False)

Now since for every x there exists a y with y < x, it follows
that (Vy.y < © — Fulse) is equivalent to False and hence
we obtain

(Vx.False — False) — (False)

and thus
Fualse

Thus, assuming that < on the integers is well-founded, we
derived a contradiction. You might think of (Vy.y < x —
False) as being a conjunction containing infinitely many
Falses, and such a non-empty conjunction is False.

551

477

But: Cannot express infinity; must look for alternatives

e Not symmetric: (z,y) € r — (y,x) & r?

e No cycles: (z,x) ¢ r* (=» ppH43))?

~
(]
+.<.<.<O
(

[]
»
(B X LN J
»
[]
_—

e 7 has minimal element: Jx.Vy.(y,z) & r’
Note: Trivial for r = .

|

e Any subrelation must have minimal ele-
ment: Vp.p C r — JxVy.(y,z) ¢ p?
“Minimal element” badly formalized"| (al-

T T
o<0<o

ready in previous point).

What is different when we assume < on the natural num-
bers? The difference is that it is not the case that for all x,
we have that (Vy.y < © — False) is equivalent to False.
Namely, for x = 0, we have (Vy.y < 0 — False) is equiva-
lent to True because y < 0 is always False. Compared to
the previous case, we have a conjunction consisting of only
Trues.

[t turns out that when we do a proof using well-founded
recursion on the natural numbers, for 0 there will be a non-

trivial proof obligation, i.e., we will have to show P(0).
7We will now try some ideas, work out their formalization

as a formula, and then illustrate why the condition is either
too weak or too strong, using an example. Finally, we will

give the correct condition.
#s[n this attempt, we formalized the “minimal element in

p” as an x such that there is no y with (x,y) € p. But this is
a bad formalization since an isolated element, i.e., one that
is completely unrelated to p, or even to r, would meet the

552

The Characterization

All these attempts are just necessary but not sufficient
conditions for well-foundedness.
Here is a characterization*"}

(VRz.x€Q — (32 € QVy.(y,2) €r =y ¢ Q))

Here is an alternative characterization (fexercise)):
(Vror £{} Ar Cp— (Ix € Domain rNy.(y,z) & r))

Let’s see some theorems to confirm our intuition, including

the statements just shown.

definition.
In fact, this problem was already present for the previous
attempt where we just required Jz.Vy.(y, x) & r (i.e., r has

a minimal element).
The final condition

VQ.2€Q — (F2€QVy.(y,2) er —y ¢ Q))

expresses the absence of infinite descending chains without
explicitly using the concept of infinity.

[t is a characterization of well-foundedness. One could say
that the above formula expresses what well-foundedness is,
while the “official” (=¥ pH48|) definition is somewhat indirect
since it defines well-foundedness by what one can do with
it (=¥ piH48)).

553

A Theorem ™| on the Empty Set

wf _empty wf {}
Proof sketch: wf_empty: substitute r into definition, simplify.

#The theorems (=¥ p{480) we present here are proven in
Wellfounded Recursion.ML.

This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

but in older versions the file used to be called WF.ML

554

http://isabelle.in.tum.de/library/

A Theorem (=* p.554) for Induction
18T

of the definition of well-foundedness
VP.(Vz.(Vy.(y,x) € r — Py) —» Px) — (Vx.Px)
one obtains the theorem wf_induct

[[wfr;/\a:.Vy.(y,a:) €r— Py=— Pz] = Pa.

By massage

This is a form suitable for doing induction proofs in Isabelle.

1 Ag far as the induction principle is concerned, induct _wf
states the same as the very definition of wf (=¥ p|548).
All that happens is that some explicit universal object-

level quantifiers are removed (=¥» p@480) and the accord-

ing variables are (implicitly) universally quantified on
the meta-level, and some shifting (=¥ p}480)) from object-

level implications to meta-level implications using mp.
This is why we dare say “logical massage”. See
Wellfounded Recursion.ML (=¥ pih5d)).

595

Induction Theorem as Proof Rule

The Isabelle theorem wf_induct (=¥ ppHb5

[[wfr;/\x.Vy.(y,x) €r— Py=— Pz] = Pa.
as proof rule (=¥ pl29)):
Vy.(y,2) €7 — Pyl

wf r Pz
Pa

wf_induct

556

A Theorem (= p.

554

on Antisymmetry

wf not sym [wfr;(a,z)€r]= (z,a) &r

Proof sketch:

Vy.(y,x) €r — (VZ-(C:% z)€r— (2,y) &)

wf r Vz.(x,2) € 7":—> (z,2) &r

wf _induct

Vz.(a,2) €r — (2,a) €1

The induction part needs classical reasoning (=¥ p271)).

We will first give an intuitive proof.

57

The Induction Part Intuitively

Notation: Write a < b instead of (a,b) € 7.

Hypothesis: for every y < o have V. y < w — w £ .

To show: It holds that Vz. x < 2z — 2 £ x. Renaming.

We make a case distinction on z.

Case 1: z £ x. Then trivially x < 2 — 2z £ x.

Case 2: z < x. Then setting y := 2z and w := z in the
hypothesis, we get 2 < x — x £ z, which is equivalent to
r<z—zHLx.

In both cases * < z — 2z £ x holds, and thus Vz. z <

558

The Induction Part Formally

We will now give the induction part at a level of detail that
shows the essential reasoning but hides all the swapping (=¥ p.
involved in the Isabelle proof.

A variation will be done as lexercisel

559

272

The Induction Part in More Detail

Vy.(y,w) €7 — (Va(y,2) €7 = (2,1) &7)
(w,a) €7 — (Va(w,2) €7 = (zw) ¢ 1)

(w,z) ¢ rV (Vz.(w,z) € r — (z,w) &) (2@

“(c)” stands for classical reasoning steps.

Vz.(w,2) €r — (2,w) & 7]t
Vz.(z,w) €r — (w,2) &7 Qi

(v,w)er — (w,z) & dz_gm
(z,w) €7 — (w,x) ¢ r I :
Vz(x,2) €er — (z,2) &r

(w, x) ¢ r]! .
¢ (r,w)er— (w,x)é¢r impl”

560

Theorems (=¥ p.554])) on Absence of Cycles

wf not refl wfr= (a,a) &r
wf trancl wfr = wf(r")
wf acyclic wfr = acyclicr
(acyclicr =Vx.(x,x) & r* (=¥ pH4y))
wf not refl: Corollary of wf not sym.

Proof sketch: wf_trancl: Uses induction.

wf acyclic: Apply wf not refl and wf trancl

Ergo: Definition of wf (=¥ p}548|) really meets our intu-

ition of “no cycles”.

561

Another Theorem| (“Exists Minimal Element”)

wf minimal wfr = Jz.Vy.(y,z) ¢ r*
Proof sketch, writing ¢ = (Jz.Vy.(y,z) ¢ r"):

Vw.(w,v)
ert—o¢

o o |
Ve Jy.(y,x) € rt —Jw.(w,v) € r*

Fal
“*C FulseE (=» pl421])

disjE (= p 32
wf minimalwf_induct (= p[555)"

#4]n the proof of 3x.Vy.(y,x) € r* we had the sub-proof
—¢ Yw.(w,v) €rt — @

—Jw.(w,v) € r*

This sub-proof does not actually depend on ¢, it would hold
no matter what ¢ is (unlike the entire proof (=¥ p}564)))

In detail, the sub-proof looks as follows:
Vw.(w,v) € rt — ¢

[(w,v) €er™* (w,v) €rT — ¢

spec

mp

Jw.(w,v) € r*|?
-,) | existsE (= p/27)"

¢

e notE (=¥ pd24
notl (=¥ p}23 4

False
—Jw.(w,v) €T
Uses mp (=» p{392), spec (=¥ p}20

|

562

This is what we must construct.

Note “special case”: w and v do not occur in ¢!
This is wf_trancl.

We now try a proof by case distinction on ¢.

Classical (=¥ p[362) reasoning.
Using some elementary equivalences

485

This subproof works for any ¢. Think semantically or
check (5 rule applications)!

[t is routine to derive False.

This completes the proof by case distinction . ..

...and the proof by induction.
See (=» pH61) and (=¥ pi32).

563

Remarks on the Proof

We used an instance of wf_induct (=¥ p{H55|), where we
instantiated x by v, y by w, and P by Aw.(Fz.Vy.(y, x) ¢
r*). Le., ¢ does not contain the “induction variables” w and
.

Still this is a “proper” induction proof: Although ¢ does

not contain the “induction variables”, the proof does depend
on the actual form of ¢! (Try doing it without induction .. .)

Scoping of quantifiers (e.g., in general (Vw.(w,v) € rt —
¢) £ (Yw.(w,v) € 1) — ¢) and side conditions (=¥ pJ34)
are very subtle in this proof. Underlines the importance of

machine-checked proofs.

564

Remarks on wf minimal

Ergo: Definition of wf (=¥ pH4g)) fulfills
the condition corresponding to our first

attempt (=¥ pH51)) of characterizing well-

foundedness using minimal elements.
However, this formalization had a problem:
there could be local minima, and isolated points

are also always minima. In particular, if r is
empty, then any element is trivially a minimum.

565

N B BN B)

00«0 -0 <-0+0

A Characterization (= p./554

The theorem wf_eq minimal is a characterization of well-
foundedness (=¥ p553)).:

wfr=VQ.zeQ — (2 QNVNy.(y,2) Er -y & Q))

Proof uses split =Y wf_def (=» pr4g)), rest routine.
Ergo: Definition of wf (=¥ p[548)) meets textbook defini-
tions “every non-empty set () has a minimal element in 7.

#6By this we simply mean to split a proof of ¢ = 9 into
two proofs ¢ = 1) and ¥ = ¢.

566

A Theorem (= p.554)) on Subsets

wf subset [wfr;p Cr]= wfp
Proof sketch: wf_subset: simplification tactic using

wf _eq minimal (=¥ p{560).

567

A [Theoreml on Subrelations

wf subrel
wf r = Vp.p Cr — JzVy.(y,x) & p*
Proof sketch:
Combine wf minimal (=¥ pl562) and wf _subset (=¥ p;567)).
This implies wfr = Vp.p C r — Jz.Vy.(x,y) ¢
p (= pB51).
Ergo: Definition of wf (=¥ p.H48)) fulfills the condition cor-
responding to our second attempt (=¥ p{H51)) of characteriz-

ing well-foundedness using minimal elements.

However, this formalization still (=» p{565) had a prob-

lem: The minimum could be an isolated element, unrelated

to the subrelation.

568

23.4 Defining Recursive Functions

Idea of well-founded recursion: Wish to define f by recursive
equation (=¥ pH03) f =e, e.g. (=» pH03

fac = (An. if n =0 then 1 else n * fac(n — 1))

Define F' = Af.e, e.g. (a-conversion (=¥ pJ170) of what you
have seen (=% p{504)))

Fac = (Mac. An. if n = 0 then 1 else n x fac(n — 1))

We say: F'is the functional defining f.
Recall (=» p/503) that Y F would solve f = e, but we
don’t have (=®» p{508) Y, so what can we do?

569

Coherent Functionals

A functional F' is coherent w.r.t. < if all recursive calls are

with arguments “smaller” than the original argument. This
means that if F' has the form

Afn.e

then for any (f m) occurring in €', we have m < n.

Here < could be any relation (although the idea is that it
should be a well-founded ordering).

(Simplification, assumes that recursion is on the first ar-
gument of f.)

570

Using Bad f’s

Let f|-, be a function that is like f on all values < a, and
arbitrary elsewhere. f|., is an approximation, a “bad” f.
If F'is coherent, then we would expect that for any a,

fa=(Ffla=(F fl<)a. (5)

[t’s not that we are ultimately interested in constructing
such a “bad” f, but our formalization of well-founded recur-
sion defines coherence by the fact that one could use such a

“bad” f, i.e., via (f).

571

“Bad” f’s: Example

Consider fac (=¥ ppH03). On the right-hand side, we show
S for fac|4):

one possibility

fac fac

<4

|IIIIIIIIIIIIIIIIIIIIII? |IIIIIIIIIIIIIIIIIIIIII?

#7For the construction we have in mind, it would be fine
that f|-, be a function that is like f on all values < a, and
arbitrary elsewhere. E.g., fac|-4 could be

Jac fCLC‘<4

|IIIIIIIIIIIIIIIIIIIIII1= |IIIIIIIIIIIIIIIIIIIIII?

However, such a fac|-4 could not be in a model (=¥ p|386
for HOL (with the extensions we consider here).

The way that arbitrary elements are formalized in
HOL. thy (=¥ p;396)), it turns out that in any model and for
each type, there must be one specific domain element for the

constant arbitrary (you don’t have to understand why this
is so). That is, in different models we could have different
ones, but within each model the element must be a specific

572

cut (in Wellfounded Recursion.thy (= p.548)))

constdefs
cut o "(Pa => b)) => (Pa * ’a) set =>
)a =>)a =>)bll
"cut f r x ==

(%y. if (y,x):r then f y else arbitrary)"

cut f r x is what we denoted by f|-, (taking < for r).
arbitrary (=® pH72)) is defined in HOL. thy (=¥ p{396).

The function cut f r x is unspecified for arguments y
where (y,x) € r, but for each such argument, (cut f r z) y

must be the same (in any particular model (=¥ p386))).

one. Since the value of fac|o4 is “arbitrary” for all argu-
ments > 4, this means that in each model, this value must
be the same for all argcuments > 4, ruling out the function
above.

Of course, these are considerations taking place only in
our heads. In the actual deduction machinery, one never
constructs these “arbitrary” terms.

573

Theorems (=¥ p.|554]) Involving cut

(cut fro=cutgrz) =

(Vy.(y,) € — fy=gy)
cut apply (z,a) €r = cut frax= fx

cuts_eq

Or, using the more intuitive notation:

cutseq (fleo=9l<e) = Vyy<z— fy=gy)
cut apply = <a = flewz=fx

574

wfrec_rel (in
Wellfounded Recursion.thy (=¥ p.548))

Auxiliary construction: “approximate” f by a relation wfrec_rel R F'.

wfrec_rel :: "(’a * ’a) set =>
((’a => ’b) => ’a => ’b) => (’a * ’b) set"
inductive "wfrec_rel R F"
intrs
wirecl
"ALL z. (z, x) : R -——>
(z, g z) : wirec_rel R F
==> (x, F g x) : wfrec_rel R F"

575

wfrec_rel Explained

Vz.(z,2) € R — (2,9 2) € wfrec_rel R F' =
(x,Fgz) € wfrec_rel R F

e For R and F' arbitrary, wfrec_rel R F' is defined but we
wouldn’t want to know what it is.

e But if R is well-founded and F'is coherent, wfrec_rel R F’
defines a recursive “function”*%

Show| that (4,24) € (wfrec_rel <’ Fac)!
Now let us really turn wfrec_rel R F' into a function . ..

#\When we say that a binary relation r : 7 X ¢ is in fact a
function, we mean that for ¢ : 7, there is exactly one s : o
such that (t,s) € r.

576

wfrec (in Wellfounded Recursion.thy (= p.548)))

wfrec :: "(’a * ’a) set =>
((7a => Jb) => ‘g =>)b) => g => bH"
"wfrec R F == Yx. THE y.

(x, y) : wfrec_rel R (%f x. F (cut £ R x) x)"

THE x. P a1 picks the unique a such that P a holds, if it

exists. We don’t care what it does otherwise (see HOL . thy (=¥ p396

®The operator THE is similar to the Hilbert
operator (=¥ pi374)), but it returns the unique element
having a certain property rather than an arbitrary one. The

[sabelle formalization of HOL nowadays heavily relies on
THE rather than the Hilbert operator.

577

wfrec Explained

wfrec RF =
Ax.THEy.(x,y) € wfrec_rel R(Afz.F (cut f Rx)x)

We don’t care what this means for arbitrary R and F'.

But if R is well-founded and Fis coherent, then F' (cut f Rx) x =
F fx (by (), and so Afx.F (cut f Rx)x = F, and so
Ax.THEy.(x,y) € wfrec_rel R(Afx. ' (cut f Rx)x) is the
function defined by wfrec_rel R F' in the obvious way.

wfrec R F' is the recursive function defined by functional
F.

578

The “Fixpoint” Theorem (= p./554

wirec wfr = wfrecr Ha = H(cut(wfrecr H)ra)a
Note that wfrec is used here both as a name of a constant

(defined above (=¥ p.

577

) and a theorem.

So if 7 is well-founded and H is coherent, we have (by (B]))

wfrecr Ha = H(wfrecr H)a

Theorem states that wfrec is like a fixpoint combinator

(disregarding the additional argument r).

Thus we can do using wfrec what we would have liked to

do using Y (=¥ p.

003)).

579

23.5 Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism /support for defin-
ing recursive functions. We illustrate this using nat, the type

of natural numbers (pretending we have it (=» p{598))).

wfrec is applied to a well-founded order and a functional
to define a function.
First, define predecessor relation:

constdefs
pred_nat :: "(nat * nat) set"
pred_nat_def "pred_nat == {(m,n). n = Suc m}"

580

Defining Addition and Subtraction

add :: [nat, nat] => nat (infix1l 70)
"m add n == wfrec (pred nat~+)

(%f j. if j=0 then n else Suc (f (pred j))) m"
190

Recursive in first argument
subtract :: [nat, nat] => nat (infixl 70)

"m subtract n == wfrec (pred nat”+)

(%f j. if j=0 then m else pred (f (pred j))) n"

Recursive in second argument.

490

add :: [nat, nat] => nat (infixl 70)

"m add n == wfrec (pred nat~+)

(%f j. if j=0 then n else Suc (f (pred j))) m"

Here we suppose that we have a predecessor function pred.
The implementation in Isabelle is different (=¥ p{585)), but
conceptually, the above is a definition of the add function.

Note that add is a function of type nat — nat — nat
(written infix), but it is only recursive in one argument,
namely the first one.

You may be confused about this and wonder: how do I
know that it is the first? Is this some Isabelle mechanism
saying that it is always the first? The answer is: no. You
must look at the two sides in isolation. On the right-hand
side, we have

wfrec (pred nat™+)
(%f j. if j=0 then n else Suc (f (pred j)))

581

Defining Division and Modulus
div :: [’a::div, ’al] => ’a (infixl 70)
"m div n == wfrec (pred_nat~+)
(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"

mod :: [’a::div, ’a] => ’a (infix1l 70)
"m mod n == wfrec (pred_nat”+)

(%f j. if j<n | n=0 then j else f (j-n)) m"
Here, div is a syntactic class for which division is defined
(don’t worry about it). We know how to define — (=¥ p|581J).

The functions are recursive in one argument (just like
add (=» pp8&l)).
By the definitions (of wfrec (=¥ p/h77) most importantly),
this expression is a function of type nat — nat, namely the
function that adds n (which is not known looking at this
expression alone; it occurs on the left-hand side) to its argu-

ment. The function is recursive in its argument (and hence
not in n). Now, this function is applied to m. Therefore we
say that the final function add is recursive in m but not in

n.
Now look at subtraction:

subtract :: [mnat, nat] => nat (infixl 70)
"m subtract n == wfrec (pred nat”+)

(%f j. if j=0 then m else pred (f (pred j))) n"
Note that subtract is recursive in its second argument,
simply because the right-hand side of the defining equation
was constructed in a different way than for add.
Similar considerations apply for other binary functions de-
fined by recursion in one argument.

582

Theorems (= p.

554

wf pred nat wf pred _nat

m modn =

mod_if

of the Example

(if m < nthenm else (m — n) modn)

0<n=mdivn=
(if m < nthen 0 else Suc((m —n) divn))

div_if

This is very similar to functional programming code and

hence lends itself to real computations (rewriting), as op-

posed to only doing proofs.

583

23.6 Conclusion on Well-founded Recursion

Well-founded recursion allows us to define recursive functions
in HOL and thus reason about computations.

We can derive recursive theorems (=¥ p480)) that can be
used for rewriting just like in a functional programming lan-

guage.

584

Isabelle Package for Primitive Recursion
19T

. finding a well-founded ordering is
102

For primitive recursion

simple enough for automation|

Examples (use nat (=® pH98) and case (=¥ p|604)-syntax):

A function is primitive recursive if the recursion is based

on the immediate predecessor w.r.t. the well-founded order
used (e.g., the predecessor on the natural numbers; as op-
posed to any arbitrary smaller numbers).

This is not the same concept as used in the context of
computation theory, where primitive recursive is in contrast

to p-recursive [LPSI].
2The primrec syntax provides a convenient front-end for

defining primitive recursive functions.

[sabelle will guess a well-founded ordering to use. E.g. for
functions on the natural numbers, it will use the usual <
ordering.

585

Recursion and Arithmetic

primrec
add_O: "O + n =
add_Suc: "Suc m +

primrec
diff_O: "m - 0 =
diff_Suc: "m - Suc
(casem - n of O

primrec
mult_O: "O x n =
mult_Suc: "Suc m *

n

n=2S8uc (m + n)"

mll

n =

=> 0 | Suc k => k)"
OII

n=n+ (m*xn)"

586

23.7 Conclusion on Recursion and Induction

We are interested in recursion because inductively defined

sets and recursively defined functions are solutions to recur-
sive equations.

We cannot have general fixpoint operator Y (=¥ pJ508

but we have, by conservative extension (=¥ p446)):

e Least fixpoints for defining sets (=¥ p{509);

)

e well-founded orders for defining functions (=¥ p{H41]).

Both concepts come with induction schemes (Ifp induction (=¥ p[527]
and definition of well-foundedness (=¥ pH48))) for proving
properties of the defined objects.

587

Summary: Proof Support

The methodological overhead can be faced by powerful me-
chanical support in Isabelle, since many proof-tasks are rou-
tine.

538

24 Arithmetic

589

The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library (=¥ p{469).

e Orders (=¥ p473
e Sets (=¥ p482

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ p/509

o (Well-founded) recursion (=¥ p{541

e Arithmetic

e Datatypes (=» pl614

590

Current Stage of our Course

e On the basis of conservative embeddings, set theory (=% p482

can be built safely.
e Inductive sets (=¥ p.

533

can be defined using least fixpoints (=¥ p.
and suitably supported by Isabelle (=% ph34]).

e Well-founded orderings (=¥ p/541)) can be defined with-
out referring to infinity (=» pJ551)). Recursive functions

can be based on these. Needs inductive sets (=¥ plH75H

though. Support by Isabelle (=¥ pl585|) provided.

Next important topic: arithmetic.

591

009

Which Approach to Take?

e Purely definitional (=¥ p440)?

Not possible with eight basic rules (=¥ pj392) (cannot
enforce infinity*? of HOL model)!

e Heavily axiomatic? I.e., we state natural numbers by
194

Peano axioms

and claim analogous axioms for any

other number type?

Danger of inconsistency!

e Minimally axiomatic? We construct an infinite set, and

define numbers etc. as inductive subset (=¥ p|509)?

Yes. Finally use infinity (=¥ p,376|) axiom.

24.1 What is Infinity? Cantor’s Hotel

©3Qur intuition/knowledge about arithmetics clearly re-
quires that there are infinite sets, e.g., the set of infinite
numbers. Technically, the HOL model of the set of natural
numbers must be an infinite set, otherwise we would not be

willing to say that have “modeled” arithmetic.
94The Peano axioms are

— 0 € nat

— Vr.x € nat — Suc(x) € nat

— Vz.Suc(x) # 0

— YV y.Suc(x) = Suc(y) — =y

— VP.(P(0) AVn.(P(n) — P(Suc(n)))) — Vn.P(n).
However, there are various ways of phrasing the Peano ax-
ioms.

592

Cantor’s hotel has infinitely many rooms. New guest ar-

rives.

The doors open, and all guests come out of their rooms.
195

They move one room forward™”|, the new guest walks to-

wards the first room, they turn around, enter their new

rooms. The doors close, all guests are accomodated.

15T'his means, there must be a successor function on rooms.
To each room, it assigns the “next” room.

593

Axiom of Infinity

496

The axiomatic core

497 .

of datatypes (and hence, numbers

df :: (ind — ind). injective f N —surjective f

where

mjective

498

f=Yey fa=fy—ax=y

surjective f = Vy.dr.y= fx

infty (=¥ p.

Forces ind to be “infinite type” (=¥ p376) (called “I” in

[Chudq)]).

We will see soon (=¥ p}H98|) how this is done in Isabel

le.

393

9 Note that theoretically, it is not needed to add the infinity
axiom (or some equivalent formulation (=¥ p}598))) to HOL.

Instead one could add the infinity axiom as premise to each

arithmetic theorem that one wants to prove.

However this would not be a viable approach since the

resulting formulas would be very, very complicated.
©7The natural numbers can be built as an algebraic

datatype by having a constant 0 and a term constructor
Suc (for successor).

©5These constants (actually called inj and sur (=¥ p.
are defined in Fun.thy (= p#495).

96)

594

24.2 Type-Closed Conservative Extensions

Why must conservative extensions be type-closed [GM93,
page 221]7

Consider H = df 1 a = a.injective f N\ —surjective f

Then the type of H is bool, but H contains a subterm of
type a = « (H is not type-closed).

Then we could reason as follows . ..

595

Type-Closed Conservative Extensions (2)

(H =3f : a = a.injective f N —surjective f)

H=H holds by refl (=¥ p|392
= 3f :: bool = bool.inj™| f A —sur f =
df :and = ind.ang f N\ —sur f
= False = True

= Fulse
(unfolding H using two different type instantiations, and

then using axiom of infinity (= p|393)) and the fact that
there are only finitely many functions on bool).

9We use tnj and sur as abbreviations for injective and
surjective.

596

Types Affect the Semantics

Type instantiations may change semantic values, and hence
cause inconsistency!

This example was somewhat more concrete than our pre-

vious simpler example (=¥ p{449)).

597

24.3 Natural Numbers: Nat.thy

consts

Zero_Rep :: 1nd

Suc_Rep :: "ind => ind"
axioms

inj_Suc_Rep: "inj Suc_Rep"

Suc_Rep_not_Zero_Rep: "Suc_Rep x "= Zero_Rep"

So the axiom of infinity (=¥ p{393) is formulated by defining

a constant Suc_Rep having the two required properties.
inj (=¥ pp96) is defined in Fun.thy (=¥ p{95).
Think of Zero Rep, Suc_Rep as provisional 0, successor.

598

Defining the Set Nat

Want to define new type nat. How?
Must define a set isomorphic (=¥ p{452)) to the natural
numbers. How?

By induction using the inductive syntax (=¥ ph34)):

inductive Nat
intros
Zero_Repl: "Zero_Rep : Nat"
Suc_RepI: "i : Nat ==> Suc_Rep 1 : Nat"

Translated by Isabelle to:
Nat = Ifp (AX.{Zero_Rep} U (Suc_Rep ‘' X))

599

Defining the Type nat

Now we have the set Nat. What next?
Define the type nat, isomorphic to Nat, using the typedef (=¥ p 464

syntax:

typedef (open Nat)

nat = "Nat" by (rule exI, rule Nat.Zero_RepI)
500

After these two stepg”””| we have the type nat.

500

Note the two ingredients for defining the type nat:

e An inductively defined set (= p527) Nat, ie., a
set defined as fixpoint of a monotone function.
In Isabelle (Nat.thy (=» p{602)), the inductive
syntax (=¥ p}H34)) is used for this purpose. This auto-
matically generates an induction rule (=¥ p[538) for the

set.

e A type definition (=¥ p{452) based on this set, defined
using the typedef syntax (=¥ p64).

Recall (=¥ p{64) that this process automatically gen-
erates the two constants Abs Nat (= p{463) and
Rep Nat (=¥ p463).

But note: the induction theorem is not inherited auto-

matically. More precisely, the typedef syntax does not
cause the type nat to inherit the inductive theorem of the
set Nat. The theorem nat_induct is explicitly proven in

600

Constants in nat

o01].

Moreover, define

consts

Suc :: "nat => nat"

pred_nat :: "(nat * nat) set"
defs

Zero_nat_def: "O == Abs_Nat Zero_Rep"
Suc_def: "Suc ==

(%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
pred_nat_def: "pred_nat == {(m, n). n = Suc m}"

Nat.thy (=¥ p602).
#Based on the generic constants Abs Nat (=» p{463) and

Rep Nat (=¥ p463), we define all the constants that we need
to work conveniently with nat, most importantly, 0 and Suc.

601

Some Theorems (=¥ p.

nat_induct

We can now exploit that nat is defined based on a set (=¥ p|531

480]) in Nat.thy’'”

[P0; An.Pn= P(Sucn)] = Pn

INx.Px0; \Ny.P0O(Sucy);
diff induct Azy.Pry=— P (Sucx)(Sucy)]

= Pmn

defined using least fixpoints (=¥ pH10
follows (but not “automatically”! (=¥ p600

theorem (=¥ p.

480

of Lfp (=¥ p.

512)).

. In particular, nat_induct

) from the induct (=¥ p.

2T'his file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the

sources here:

http://isabelle.in.tum.de/library/

602

027

http://isabelle.in.tum.de/library/

Nat (= p.

602

and Well-Founded Orders

Examples of theorems (=¥ p 480

wf _pred nat

less_linear
Suc_less_SucD Sucm < Sucn=—=>m <n

603

involving well-founded orders (=¥ p.

wf pred_nat
m<nVm=nVn<m

H41)):

Using Primitive Recursion

Nat.thy (=¥ p/602) defines rich theory on nat. Uses primrec (=¥ ph85
syntax for defining recursive functions (=¥ pJ541)), and case’
construct.

primrec

add_0 "0+ n=n"

add_Suc "Suc m + n = Suc(m + n)"
primrec

diff_0 "m - 0 =m"
diff_Suc "m - Suc n =
(casem - nof 0 =>0 | Suc k => k)"
primrec
mult_O "O * n = 0"
mult_Suc "Suc m *n =n + (m * n)"

*03The case statement for nat is a function of type nat =
(nat = nat) = nat = nat. case z [n is defined as
follows (using a common mathematical notation):

case z fn= @ ifn=0
| fkifn=Suck

The syntax
diff Suc "m - Suc n = (casem - n of 0 => 0 | Suc k => k)

used on the slide is a paraphrasing (“concrete
syntax” (=¥ p405)) of the original (“abstract”) syntax.
In the original syntax it would read case 0 (Az.z) (n —m).

604

Some Theorems (= p.480) in Nat (=¥ p.602

add 0. right m+0=m

add_ac

mult_ac

m+n+k=m+ (n+k)

m+n=n-+m

t+(y+z2)=y+(x+2)

mxn*xk=mx(nxk)

m *x

n=mns*xm

rx(yxz)=y*(xrx*2)

Note third partP”*

N

of add_ac, mult_ac, respectively.
Technically, add ac and mult_ac are lists of thm (=¥ p[257

01The theorems £+ (y+2) = y+ (v +2) and z % (y* 2) =
y * (x * z) are called left-commutation laws and are crucial

for (ordered (=¥ p.

288

) rewriting (=¥ p.

280)).

Suppose we have the term shown below.
tivity (m +n +k = m + (n + k)) this will be rewritten
to the second term.

Using associa-

Using left-commutation, this will
be rewritten to the third term. This is a so-called AC-

normal form (=¥ p[285

ordering (=¥ p288)).

|

|

/< >\

1 842 75 6 3 6

605

, for an appropriately chosen term

Proof of add 0 right

add_Suc
Sucn + 0 = Suc(n + 0) [n+0=mn]!
Sym arg_cong
add_0 Suc(n +0) = Sucn+0 Suc(n +0) = Sucn
0+0=0 Sucn + 0 = Sucn subst
add,O,rightnat,inductm
m+0=m

Note that Suc n+0 = Suc(n+0) is an instance of Suc m+
n = Suc(m +n).

606

24.4 Integers
505

0006

The integers are implemented’”| as equivalence classed

over nat X nat.

IntDef = Equiv + NatArith +

constdefs
intrel :: "((nat * nat) * (nat * nat)) set"
"intrel == {p. EX x1 yl1 x2 y2.
p=((x1::nat,yl),(x2,y2)) & xl+y2 = x2+y1}"

typedef (Integ)
int = "UNIV//intrel" (quotient_def)

05The file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

’6Recall the general concept of an equivalence

relation (=¥ pJ110). Generally, for a set S and an equiva-
lence relation R defined on the set, one can define S//R,
the quotient of S w.r.t. R.

S//R={A|ACSAVz,y€ A(x,y) € R}

That is, one partitions the set .S into subsets such that each

subset collects equivalent elements. This is a standard math-
ematical concept.

We do not go into the Isabelle details here, but we explain
how this works for the integers. One can view a pair (n, m) of
natural numbers as representation of the integer n —m. But
then (n,m) and (n',m') represent the same integer if and

607

http://isabelle.in.tum.de/library/

Some Theorems (=¥ p.480)) in IntArith

zminus zadd distrib —(z +w)=—z+ —w
zminus zminus —(—2)==z2
zadd ac 214+ 22+ 23 =21+ (22+ 23)

ZHw=w+z
t+(y+z)=y+(z+2)

zmult ac 21 % 22 % 23 = 21 * (22 % 23)
ZkW =W * 2

21 % (22 % 23) = 22 % (21 % 23)
Compare to nat theorems (=¥ p(605)).

only if n—m = n'—m/, or equivalently, n+m’' = n’+m. In
this case (n,m) and (n’,m’) are said to be equivalent. The
construction of the integer type is based on this equivalence
relation, called intrel. More precisely, the definition of

the integers will be based on (=¥ p452)) the set of all pairs of
naturals (which corresponds to the UNIV (=¥ p}487)) constant
on the type nat x nat (=¥ p462)) modulo the equivalence

intrel. In other words, it will be based on the quotient of
the set of pairs of naturals w.r.t. intrel.

608

24.5 Further Number Theories

007

e Binary Integers (Integ/Bin.thy"’| for fast computa-

tion)

e Rational Numbers (Real/PRat.thy’"

07 T'his file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

08 T'his file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

609

http://isabelle.in.tum.de/library/
http://isabelle.in.tum.de/library/

[

o Real"™| (Real/PReal.thyP'"} based on Dedekind-cuts

of rationals [Fle00])

*9'T'he reals have been axiomatized by Dedekind by stating
that a set R is partitioned into two sets A and B such that
R=AUBandforalla € Aandb € B, we havea < b. Now
there is a number s such that ¢ < s < b for all ¢« € A and
b € B. The irrational numbers are characterised by the fact
that there exists exactly one such s. This axiomatization
has been used as a basis for formalizing real numbers in

[sabelle/HOL.

510'T'his file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

610

http://isabelle.in.tum.de/library/

e Hyperreal§’''| (Real/RealDef . thyP | for non-standard
analysis)

e Machine numbers (floats); see work for Intel’s Pentiu-
mlV; built in HOL-light [Har98|, [Har(0]

s1[n non-standard analysis, one works with sequences that
are not necessarily converging. This is a relatively new field
in mathematics and Isabelle/HOL has been successfully ap-
plied in it [FP98]. We just mention this here to say that
[sabelle/HOL is used for “cutting-edge” mathematics and

not just toy examples.
512T'his file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

611

http://www.intel.com/
http://isabelle.in.tum.de/library/

24.6 Conclusion on Arithmetic

Using conservative extensions (=¥ p{440) in HOL, we can
build

e the naturals (=¥ pH98) (as type definition (=¥ p452) based
on ind), and

e higher number theories (=¥ pJ609) (via equivalence con-

struction).
Potential for

e analysis of processor arithmetic units, and

e function analysis in HOL (combination with computer

algebra systems such as Mathematica).
513

Future: analysis of hybrid systems

sB3Hybrid systems is a field in software engineering con-

cerned with using finite automata for controlling physical
systems such as ABS in cars etc.

612

The methodological overhead can be tackled by powerful
mechanical support, since many proof-tasks are routine.

613

25 Datatypes

614

The Roadmap

We are still looking at how the different parts of mathematics
are encoded in the Isabelle/HOL library (=¥ p{469).

e Orders (=¥ p473
e Sets (=¥ p482

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ p/509

o (Well-founded) recursion (=¥ p{541

e Arithmetic (=¥ p;H89

e Datatypes

615

What Are Datatypes?
514

We have seen types, but what are data *types?

e Order 0 (=» p233) (no — in type).

e Terms defined by finite set of term constructors (=¥ p280)).

e Typically inductive definition.

e Term constructed by syntactic rule is unique.

s14\We have seen types, but what are datatypes?
First of all, a datatype must be of order 0 (=¥ p[233)), so it
must be a non-functional type. Note that if we do not have

polymorphism, this means that a datatype must be a in

B (=» p{175). But if we have polymorphism, it just means

that the type must not contain —. E.g., a [list could be
a datatype. However, when one describes a datatype, one
would usually speak about generic instances such as «a [ist,
and not about, say, nat list.

Secondly, the terms that inhabit a datatype 7 must be de-

fined using a finite set of term constructors (=¥ p{280)) that

have 7 as result type. At least one term constructor should
just have type 7. E.g., Nil : « list and Cons : a —
(o list) — « list are the term constructors that define the
list datatype. One also finds a syntax where Nil is written]
and Cons is written ::. Intuitively, we could say: the terms
of a datatype are exactly the terms that can be constructed
by some finite syntactic construction rule.

616

Counterexampld’” « set (=¥ p/A82).

Whenever we have a term constructor that has 7 as ar-
gument as well as result, the construction rule is inductive.
E.g., we have

o Nil is a list;
e if £ is a list A is of type «a, then Cons(h,t) is a list.

This is an inductive construction of lists. Usually, when one
speaks about datatypes, one has inductively defined ones

in mind. Examples are lists, natural numbers (=¥ p[594)),
trees. One could say that e.g. bool is also a datatype deﬁned
by the constants True and False, but it is not particularly

interesting in this context.
At the same time, each term constructed by such a syntac-
tic rule is unique. So if we say: lists are defined by the above

inductive construction, then we imply that Cons(1, Nil)

must not be equal to Cons(1, Cons(1, Nil)).
s5To understand better the distinction of a datatype

from another type, consider the following counterexample:

617

Datatypes: Motivation

We will now construct “datatypes (=¥ p{616)” (as in ML
[Pau96]). This construction is based on so-called S-expressions

[Pau97h].
Caveat: We will only sketch the construction and we
will simplify, meaning that the technical details will not be

a set (=¥ piA82). Sets are not a datatype:

1. While the type a set does not contain an —, it is

isomorphic (=¥ pi57) to a — bool which does contain

an —.

2. The most basic way of defining “what a set is” is: if f
is of type 7 — bool, then Abss,; f (=¥ p{bS) (alter-
natively: Collect f (=¥ p{59)) is a set. This is not an
inductive syntactic construction rule.

3. One could define sets similarly to lists by an induc-
tive rule saying: {} is a set; if S is a set and
h is some term of type «, then Insert(h,S) is a
set. But then Insert(1,{}) would be different from
Insert(1, Insert(1,{})), which is not what we want!
Moreover, we could not define infinite sets this way.

4. In point |2 we say: the definition of the terms called
“sets” is not an inductive definition. This is not in con-

018

strictly correct! See Datatype Universe.thy’ ’land [Wen99).

tradiction to the inductive definition (=¥ piH31)) of par-
ticular sets. These inductive definitions have the form:
It foo is in the set then bar is in the set, e.g., if n is in
the set then Suc n is in the set. This is in contrast to
what is suggested in point [3 where we say: If foo is a
set then bar is a set.

516 This file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

619

http://isabelle.in.tum.de/library/

S-Expressions as Basis

In the end we want to have datatypes such as lists (=¥ p.280

and trees.

[t turns out that LISP-like S-expressions are a datatype
that is so rich that other datatypes can nicely be embedded
in it.

Since we do not have the concept of datatype yet, we
must first represent S-expressions using constructs we al-
ready have.

25.1 S-Expressions
517

LISP-like S-expressions’| are a kind of of binary trees.
We call the type a dtree. This uses a + nat (=¥ p466).

57 The datastructure we have in mind here consists of binary

trees where the inner nodes are not labeled, and the leaves

are labeled

e cither with a term of arbitrary type, in which case the

leaf would be an actual “piece of content” in the datas-
tructure,

e or with a natural number, in which case the leaf serves
special purposes for organizing our datastructure, as we
will see later.

I.e., such binary trees have a type parametrized by a type
variable «, the type of the latter kind of leaves. Let us call
the type of such trees a dtree.

As always with parametric polymorphism (=¥ p192

)

when we consider how the datastructure as such works, we
are not interested in what the values in the former kind of
leaves are. This is just like the type and values of list ele-

ments are irrelevant for concatenating (=¥ p{192) two lists.

620

The type definition (=¥ p452

coding.

Q
¥
A
b
This is encoded as a set of “nodes”P'®| (defined by their
path from the root and a value in the leaves), e.g.:

{((0,0),a), ((0,1),0), (1), ¢)}

of « dtree uses such an en-

Of course, a could, by coincidence, be instantiated to type

nat.

Think of a label of the first kind as content label and a
label of the second kind as administration label.

Technically, if something is either of this type or of that

type, we are talking about a sum type (=¥ p}66). So a leaf

label has type a + nat (written (o, nat) sum (=¥ pA66

before), and it has the form either Inl (=¥ p}466|)(a) for some

a::a,or Inr (=¥ p.
518 The set

466

(n) for

some n :: nat.

{((0,0),a), ({0,1),), ({1), ¢)}

represents the tree

e

® @
a b

C

The path (0,0) means: from the root take left subtree,
then again left subtree. The path (1) means: take right

subtree.

621

Building Trees

o Atom(n)f®

L]]

n

e Scons X YPX
O

/ N, — \,
:éﬁzaj Eémé%m réhvajté:éﬁz

How can a path (py, ..., ps) be represented? One idea is
to use the function f :: nat = nat defined by

2 otherwise
as representation of (pg, ..., pn).
9 Atom takes a leaf label (=¥ p[621)) and turns it into a
(simplest possible) S-expression (=¥ p{620]) (tree).
So it has type a + nat = « dtree.
20 Scons takes two S-expressions (=¥ pl620) and creates a
new S-expression as illustrated below:

A
v A

: Sa=d v i

So it has type |« dtree, « dtree] (=¥ p/198)) = « dtree.

622

Tagging Trees

We want to tag an S-expression by either 0 or 1. This can be
done by “Scons” (=¥ p{622)-ing it with an S-expression con-
sisting of an administration label (=¥ pl621)). By convention,
the tag is to the left.

e In0 def [n0(X) = SconsAtom(Inr (=¥ pi66|)(0))X

O
o) HEé\O

ficn oo

e Inl def [Ini(X) = SconsAtom(Inr (=¥ p{60)(1))X

o
o) _>\‘o

hicn choo

623

Products and Sums on Sets of S-Expressions

Product of two sets A and B of S-expressions: All Scons (=¥ p.

trees where left subtree from A, right subtree from B.

uprod_def wuprod AB = U U {(Scons xy)}

reAyeB

Sum of two sets A and B of S-expressions: union of A and

B after S-expressions in A have been tagged 0 (=¥ p.

and S-expressions in B have been tagged 1 (=¥ pl623

that one can tell where they come from.

usum def wusum A B = In0 ‘P2AU In1 ‘B

623

, SO

21 Recall that © denotes the image (=¥ p489) of a function

applied to a set.

624

622

Some Properties of Trees and Tree Sets

o Atom, In0, In1, Scons are’*4 injective (= p[393).

e Atom and Scons are pairwise distinct. In0 are Inl
pairwise distinct.

e 'Tree sets represent a universe that is closed under products
and sums: usum, uprod have type
[(a dtree) set, (a dtree) set] (=¥ p{l198) = (« dtree) set.

e uprod and usum are monotone (=¥ pJH11)).

e Tree sets represent a universe that is closed under prod-
573

ucts and sums
of Ifp (=¥ pp10).

Reminder: we simplified!

combined with arbitrary applications

22 This means that any of Atom, In0, In1, Scons applied
to different S-expressions will return different S-expressions.

Moreover, a term with root Scons is definitely different
from a term with root Atom, and a term with root In0 is
definitely different from a term with root InI.

Why is this important? It is an inherent character-

istic of a datatype (=¥ p/616). A datatype consists of

terms constructed using term constructors (=¥ p280) and

is uniquely defined by what it is syntactically (one also
says that terms are generated freely using the constructors).

For example, (= p594)) injectivity of Suc and pairwise-

distinctness of 0 and Suc mean for any two numbers m and
n, the terms Suc(. .. Suc(0)...) and Suc(. .. Suc(0)...) are

' m times n times
different.

2Given a set T of trees (S-expressions), the closure of T

under Atom, In0, Inl, Scons, usum, uprod is the smallest

set T" such that T C T" and given any tree (or two trees,

625

25.2 Lists in Isabelle

Similar to the construction of nat (=¥ p{600]), we first con-

struct a set of S-expressions having the “structure of lists”.

We start by defining “provisional” (=¥ p}598)) list construc-

tors:

constdefs
NIL :: ’a dtree
"NIL == InO(Atom(Inr(0)))"
CONS :: [’a dtree, ’a dtree] => ’a dtree

"CONS M N == In1(Scons M N)"
504

What type do you expect’**| Cons to have, and how does

CONS compare? Must wrap list elements by Atom o Inl.

as applicable) from 7", any tree constructable using Atom,
In0, In1, Scons, usum, uprod is also contained in T”.
Remembering the construction of inductively defined

sets (=¥ pH09), the closure is the least fixpoint of a mono-

tone function adding trees to a tree set. This function must
be constructed using Atom, In0, In1, Scons, usum, uprod.
We do not go into the details, but note that it is crucial that

uprod and usum are monotone (=¥ ph11)), and note as well

that slight complications arise from the fact that usum and
uprod have type [(a dtree) set, (« dtree) set] (=¥ p198)) =

(av dtree) set rather than («v dtree) set = («v dtree) set.
21 (Cons should have the polymorphic type [a, v list] =

a list. The important point is: the first argument is of dif-
ferent type than the second argument. If the first is of type
7, then the second must be of type 7 list.

In contrast, CONS is of type [(«dtree), (« dtree)] =
« dtree.

In order to apply CONS to a “list” (in fact an S-

626

Lists as S-Expressions: Intuition

Examples of how lists would be represented as S-expressions:

NifF2 0
In0(Atom(Inr 0))
Cons(7, Nil) 7]
CONS (Atom(Inl7)) In0(Atom(Inr 0))
Cons(5, Cons(7, Nil)) [5,7]
CONS (Atom(Inl5))
(CONS (Atom(Inl7)) In0(Atom(Inr 0)))

Now let’s construct the S-expressions having this form.

expression) and a “list element”, we must first wrap the list
element by Atom o Inl, so that it becomes an S-expression.
2 Nil, Cons(7, Nil), Cons(5, Cons(7, Nil)) are lists writ-
ten according to what some programming languages intro-
duce as the first, “official” syntax for lists.
For convenience, programming languages typically allow
for the same lists to be written as [, [7], [5, 7].

627

Lists as S-Expressions: Inductive Construction
Idea: let A :: (a dtree) set be the set of all “wrapped” ele-

ments, e.g. for a = nat, theset {(Atom Inl0), (Atom Inl 1), ...

Then define list(A), the set of S-expressions that represent
lists of element type «:

list :: "3 dtree set => ’a dtree set"
inductive "list(A)"
intrs

NIL_I "NIL : list(A)"
CONS_I "[la : A; M : list(A) |] ==
CONS a M : list(A)"

See SList.thy2| for how it’s really done!

226T'his file should be contained in your Isabelle distribution.
Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

628

http://isabelle.in.tum.de/library/

Defining the “Real” List Type

We now apply the type definition mechanism (=¥ p{452) us-
ing the typedef (=¥ pu64) syntax. How do we define A
formally?

typedef (List)
’a list =
"list(range (Atom o Inl)) :: ’a dtree set"
by ...

Choosing A as range (Atom o Inl) together with the ex-
plicit type declaration forces A to be the set containing all
Atom (Inlt), for each t :: a.

Example of a definition of a polymorphic (=» p{192)) type.

629

List Constructors
We define the real constructor names for lists:

Nil_def "Nil::’a list == Abs_1list(NIL)"
Cons_def "x#(xs::’a list) ==
Abs_list (CONS (Atom(Inl(x))) (Rep_list xs))"

We then forget about NIL and CONS.

630

Isabelle’s Datatype Package

Similar to the typedef syntax (=¥ pi64)), Isabelle provides
the datatype syntax to support the construction (=¥ p452

of a datatype:
datatype ’a list = Nil | Cons ’a (’a list)
In particular, this automates the proofs of:

e the induction theorem;
e distinctness;

e injectivity of constructors.

The package also works for mutually and indirectly recursive
datatype definitions.

527h

Question: Why didn’t we use this package to define nat

2"The datatype syntax is very convenient since the com-
plex construction we have seen today is transparent to the
normal user.

In particular, proofs of the induction theorem are auto-
mated. This is in contrast to the construction of nat where

this theorem was not generated automatically (=¥ p{600)).
So why didn’t we use the datatype syntax to define nat,
since it is so much more convenient?
The reason is that we needed nat (=¥ p/621)) to define S-
expressions, so the type mat must exist before there can be

a datatype package, and so the datatype package cannot be
used to define nat.

631

26 Summary of HOL Library / Outlook
on Modeled Systems

632

Summary

In the previous weeks, we looked at how the different parts of

mathematics are encoded in the Isabelle/HOL library (=¥ p.

e Orders (=¥ p473
e Sets (=¥ p482

e Functions (=¥ p493

e (Least) fixpoints and induction (=¥ p/509

o (Well-founded) recursion (=¥ p{541

e Arithmetic (=¥ p;H89

e Datatypes (=» pl614

633

469)):

Summary (Cont.)

We conclude: HOL is a logical framework for theoretical
computer science. Its features are:

e a clean methodology, which can be supported automat-
ically to a surprising extent;

e a powerful set theory and proof support;

e adequate theories for arithmetics (proof-support: not
quite satisfactory so far);

e a package for induction;
e a package for recursion;

e a package for datatypes.

634

Outline

We will now look at how various formalisms (specification
and programming languages) can be embedded in HOL:

e 7/ and data-refinement

e Imperative languages (=¥ p636

e Denotational semantics and functional languages

e Object-oriented languages (Java-Light .. .)

635

27 IMP
27.1 IMP: Introduction

IMP is a small imperative programming language. We

study how its syntax and semantics are represented in HOL.

Semantics come in different Aavord?St

e operational,

e denotational,

e axiomatic (Hoare-logic).

20ne distinguishes

e operational,
e denotational,

e axiomatic

semantics.
For operational semantics (=¥ p.

641

. the idea is that our

machine is always in some state, essentially consisting of

the values of the program variables. The instructions of a

program transform a state into a new state. Operational

semantics are useful for compiler construction.

For denotational semantics (=¥ p{652

, the idea is that the

meaning of a particular program is a relation between “in-

put” states and “output” states.

Axiomatic semantics (=¥ pJ657

consist of a calculus for

constructing proof obligations. This allows us to state the

desired behavior of a program as a logic formula and check

it.

636

Imperative Languages in the Isabelle/HOL
Library

There are several embeddings of imperative languages in
[sabelle/HOL [Nip02]:
529,

030

e Hoare shallowish?”|, good examples

o IMP: deepish, good theory

o [MPP: extends IMP with procedures

e MicroJava: complex, powerful, state-of-the-art

We choose IMP to learn a bit about “good ole imperative
languages” .

637

Semantics Provided for IMP
IMP offers:

e operational (=¥ p|641]) semantics;

— natural semantics (=¥ pl643);

— transition semantics (=¥ p647);

e denotational semantics (=¥ p{652));

e axiomatic semantics (=¥ pl657)) (Hoare logic);

e cquivalence proofy*>'f

e weakest preconditions (=¥ p[688) and verification condi-

tion generator (=¥ p{693).
It closely follows the standard textbook [Win96].

sslSummarizing, we have the following equivalence results:

— natural vs. transition semantics (=¥ p[651

— denotational vs. natural semantics (=¥ p,656]).

638

An Imperative Language Embedding

We will now define the syntax and various semantics of IMP,
but in fact, we define those as Isabelle theories. We say that
we embed IMP in Isabelle/HOL.

You will see that such an embedding is more abstract and
less detailed than if we were really going to define IMP for
use as a programming language, i.e., if we were going to
define a compiler for it.

639

The Command Language (Syntax)

The (abstract) syntax is defined in Com.thyP>?|

Com = Main + datatype com =
types SKIP

loc | ":==" loc aexp (infixl 60)

val = nat (*e.g.x*) | Semi com com ("_ ; _" [60, 60] 10)
state = loc => val | Cond bexp com com

aexp = state => val ("IF _ THEN _ ELSE _" 60)
bexp = state => bool | While bexp com ("WHILE _ DO _" 60)

The type loc stands for locationg™|

054

Note the abstractnesy’””| of aexp and bexp.

The datatype com stands for command(sequence)s.

2 This file defines the command syntax. An Isabelle term
of type com is an IMP program.

You should find the files in your Isabelle distribution. Or,
if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

#wWe realize program variables via pointers (locations).

The type of pointers is an abstract datatype (=¥ p{262).
We take the type of values to be nat (=¥ pJ598)), just to
have something simple.

A state is a function taking a location to a value, i.e. intu-

itively, each program variable has a value in a state.
534

In a formalization of the syntax of an imperative language,

there will usually be some grammar saying that (=¥ p{157

1, x + 1 (provided that x is an arithmetic variable) etc. are
arithmetic expressions and that True, r == 1 etc. are

640

http://isabelle.in.tum.de/library/

27.2 Operational Semantics: Two Kinds

039l .

Natural semantics [Plo81] (idea: a program relates states

S W state”
state”

evalc :: (com * state * state) set

Boolean expressions. Such expressions can only be evalu-

ated if the state, i.e. the value of the program variables, is

given.

Now, our notion of expressions (as realized by the types
aexp and bexp) is much more abstract than that. An ex-
pression is e function taking a state to a value or Boolean,

as applicable.
The fact that IMP has no explicit expression language al-

lows for simple and abstract proofs.
535 T'he idea of the natural semantics is that a program relates

two states, the “input state” and the “output state”.

This may remind you of denotational (=¥ p.636]) semantics,

and in fact, the natural semantics is a kind of hybrid between
operational and denotational semantics.

The fact that the natural semantics just relates an “input
state” and an “output state” means, so to say, that it does
not record what happens in between, i.e. at the single steps
of a computation. In that respect, it resembles denotational

641

000l .

Transition semantics (idea: sequence of “configurations”

X" state”
a == b: X, state X, state’ <
X" state"”

evalcl :: ((com * state) x (com * state)) set

semantics.

But the way the meaning of a whole program is de-
fined is still operational in nature. Essentially, it is
defined (=¥ pl644)) in terms of the meaning of the first ex-

ecution step and the meaning of the rest of the program.
536

Unlike the natural semantics, the transition semantics
records the single steps of the computation. A configuration

is a pair consisting of a program and a state, and one step
reaches a new program and a new state.
Why “reaching a new program”? This realizes a program

counter (=¥ pl648). For example, if the first line of the pro-

gram is an assignment, then the new program is obtained by
removing that line from the old program.

642

27.3 Embedding of the Natural Semantics

The natural semantics encoding in Isabelle is given by an

inductive definition. We first declare its type and define a

paraphrasing using an arrow symbol for readability:
consts evalc :: " (com * state * state) set”

7 — N

. C
translations 7(c,s9) — s1” =" (¢, S0, 51) € evalc”

Note that — (in ASCII: —c->) is one fixed (=¥ p[650
arrow symbol.

We now start giving the actual inductive definition. It
defines the — transitions (implicit: these are the only ——
transitions) . ..

643

Inductive Definition: Skip and Assignment

inductive evalc

intrs
Skip: (SKIP,s) —— s
Assign: (v :==a,s) — s[z = (a s)]

Skip and Assign are just names for the clauses of the
inductive definition.
slx = v] is short for update s x v, where

update sz v = \y. if y = x then v else (s y)

Note that a is of type aexp or bexp (=¥ p)640)).

644

Inductive Definition: Semicolon

Semi : [{co, 8) — s1;{c1,81) —
— (co; c1, S) — 89

82]]

The rationale of natural semantics: To figure out the

meaning of a program consisting of a “first instruction” ¢

and a “rest” c;, starting from state s, you have to show two

subgoals: ¢y starting from state s goes to some state sq, and

c1 starting in state s; goes to some state so.
Note that by the definition of Semi (=¥ p.

640

not have to be “atomic” (whatever this means).

645

. ¢o does

Inductive Definition: Control

IfTrue: [b s; {cy, s) —— 51]
— (IF b THEN ¢ ELSE ¢y,) —— 8,
IfFalse: [-b s; {c1, s) — s1]

— (IF b THEN ¢ ELSE ¢y, 5) — 51
WhileFalse: [—bs] = (WHILEbDO c,s) — s
WhileTrue: [bs;{c,s) — si; (WHILE b DO c,s;) — 5]
— (WHILE b DO ¢, s) — 59
Note the termination problem in WhileTrue! Simplest
example: b = Ax.True. Then, no proof is possible and no
so can effectively be computed.

646

27.4 Embedding of the Transition Semantics

The transition semantics encoding in Isabelle is also (=¥ p643

given by an inductive definition. We first declare its type and

define a paraphrasing, as before (=¥ p643)):

consts evalcl == 7 ((com * state) x (com * state)) set”

. 1
translations “csyg — c¢s1” =7 (cSg, c51) € evalel”

Note that — is one fixed (=¥ pi650) arrow symbol.

We now start giving the actual inductive definition . ..

647

Inductive Definition

inductive evalcl
intrs

Assign: "(z :==a,s) LN (SKIP, s[z ::= (a s)])”

Semil: 7(SKIP:c,s) — (c,s)

Semi2: 7 (cg, s) SN (cf, ') = (co; 1, 8) SN (ch;c1,8)

So far, we see that the component of com type in the con-

figuration corresponds to a program stack (built by
642)).

which represents a program counter (=¥ p.

648

IR
)

(<> p.

640

7

Inductive Definition: Control

TfTrue: "b s = (IF b THEN ¢; ELSE ¢s, 8) — (c1, s)”
IfFalse: "—bs == (IF b THEN ¢; ELSE ¢s,5) — (s, 5)"
WhileFalse: "—b s = (WHILE b DO c,s) 1, (SKIP, s)”
WhileTrue: “bs=—> (WHILEbDO c,s) — (c;WHILE DO c,s)”

Termination problem as before (=¥ p)646)), but somehow
less disturbing: we cannot be shocked about the fact that
some computations are infinite, and at least, the transition
semantics assigns a meaning to any finite prefix of an infinite

computation.

649

Generalizations to more than one Step
n-step semantics:

n
"esg — cs1” =" (esg, ¢s1) € evalel™”

Unlike —— (=¥ pl643)) and BN (= pl647), — is not a fixed

arrow symbol, but meta-notation: for any number n, there
537

is the paraphrasing®’| — defined as above. Here, evalc1”
(ASCII: “n) is defined in Relation Power.thyP™|
multistep-semantics:

*
"esg — cs1” =" (esg, ¢s1) € evalel™

* .
— is a fixed arrow symbol.

37As you see, paraphrasing in Isabelle is very powerful.
One can think of —— (=¥ p[643)) and 1, (=¥ pl647) as in-
fix symbols (=» p68). But — is by no means one single
symbol. In fact the term ¢sy — c¢sy is a paraphrasing of

(cso, cs1) € evalel™.
538 T'his file should be contained in your Isabelle distribution.

Or, if you only have an Isabelle executable, you can find the
sources here:

http://isabelle.in.tum.de/library/

650

http://isabelle.in.tum.de/library/

Equivalence of Semantics

Natural semantics vs. transition semantics.

Theorem (evalcl eq evalc):

(¢, s) — (SKIP,t) = ({c,s) — 1)

The proof is by induction on the structure of programs.

651

27.5 Embedding of the Denotational Semantics

Domain: A semantics relates states (similar to natural (=¥ p.
semantics)

com_den = (state * state) set
Semantic function: assigns semantics to a program

consts C' :: com = com_den

Before (=¥ p{641)), semantics were relations.

652

641

Characteristics of Denotational Semantics

A denotational semantics is a function (here: C') assigning
a meaning to a program. More precisely, the meaning of a
program is some ‘mathematical” function of the meanings
of its components.

This is in contrast to the operational view where computation

order (“first do this, then that...”) and logical reasoning

using proof rules (“if (...) computes (...) then (...) com-

putes (...)") are focused.

The “mathematics” uses the Ifp (= p{H10]) operator.

653

The Recursive Definition

The semantics C' is defined recursively>
primrec
C.skip "C(SKIP) = Id”
Cassign "C(x :==a)={(s,t) |t =s[z == (a 9)]}"
Ccomp "Cleg;er) = Cley) o Cley)”
Cif "C(IF b THEN ¢; ELSE ¢))

{(5,0) | (s,1) € Cler) A b(s)}U
()| (s.4) € Clez) A—b(s))"

—b(s
Cwhile "C(WHILEbDOc) = lfp(T'b(C c))
wherd™"T'bed = (Ap.{(s,t) | (5,t) € (¢ o cd) A b(s)}U
{(s,8) | s =t A =b(s)})"

Recall (=¥ plh85)) that the primrec syntax is used for

defining functions recursively. Here, the argument type of
the function C' is the datatype com (=¥ p|640)). It is char-
acteristic for the definition of a datatype that its elements

are defined by (structural) induction, i.e., its elements are
syntactic terms formed from previously generated syntac-
tic forms using a specific set of term constructors. For

datatypes, it is clear that the subterm relation is a well-
founded order. Hence it is legitimate to define C' using re-
cursion.

654

Equivalence of Programs

We have seen an equivalence result relating different
semantics (=¥ pl651]).
The following is an equivalence relating program frag-

ments.
Theorem (C While If):
C(WHILE b DO C) = C(IF b THEN (C; WHILE b DO C) ELSE SKIP)

Such a result is important because it justifies a program
transformation (the two fragments have the same semantics
and so they are interchangeable).

655

Equivalence of Semantics

We have already suggested that the natural semantics is a
hybrid (=¥ p641]) between operational and denotational se-

mantics. In fact, there is a simple equivalence relationship
between the two:

Theorem (denotational is natural):
((s,t) €C c) = ({c,;5) — 1)

656

27.6 Axiomatic (Hoare) Semantics

Idea: we relate “legal states” before and after a program
execution. A set of legal states is modeled as “assertion”:

types assn = state = bool

So rather than reasoning about single states, we reason
about properties or sets of states. This is what we really

need for verification of programs.

Semantics called axiomatic for historic reasong®*l| It is

also called Hoare semantics.

541

In terms of Isabelle/HOL, the semantics is not defined by
axioms, but is an inductive definition (=¥ p{534]).

657

Embedding of the Hoare Semantics

The Hoare semantics encoding in Isabelle is also (=¥ p{643

given by an inductive definition. We first declare its type
and a paraphrasing:

consts hoare :: " (assn x com * assn) set”
translations " F {P}c{Q} ="(P,c Q) € hoare”

An object of the form { P} ¢ {Q} is called a Hoare-triple.
We now start giving the actual inductive definition . ..

658

Inductive Definition: SKIP

inductive hoare
intrs

skip 7 F {P} SKIP {P}"

No surprise here.

659

The Inductive Definition

ass " FA{As.P(slx == (a s)])} x == a {P}”

This may be counter-intuitive, why not the other way

round?

Consider an example a=As.land P=MAs.sx =1
{As.(As.sx = 1)(s|x :])}a:::)\sl{ks.sle}—m
{As.(slx i=1))z =1} v == As.1 {As.sx =1} —3

{As.1=1}z == As.1{As.sx =1} —3

{As. True} x === As.1 {\s.sx =1}
What do we see? (You might also check the types

542.)

The ass rule is such that it relates the pre-state True with
513

the post-state As. s x = 1, which is what we expect]

“Things are getting a bit complicated, maybe it helps to
recall the types of the terms occurring in

ass " FA{Xs.P(slz = (as)])} x ==a {P}”
P has type assn, which is (=¥ pl657) state = bool. In

turn , state is (=¥ pl640)) loc = val.
x has type loc (=¥ p{640)).

a has type aexp, which is (=¥ p[640) state = val.

s has type state.
“3You can also argue a bit more generally. Let () be an

arbitrary assertion, and let

P=Xs.3s. s=5z:=(as]NQ S
Intuitively: P is an assertion allowing any state obtained
from a state allowed by () by updating that state at location

x with the expression a. Now consider the rule for assign-
ment:

ass "FA{As.P(slz = (a s)])} x :==a {P}”

660

Inductive Definition: Sem: and
IF — THEN — ELSE
semi "[-{P}c{Q}F{Q} d{R}] =+ {P}c;d{R}"
If "[F{As.PsAbs}c{Q};F{As.P sA-bs}d{Q}]
—F {P} IF b THEN ¢ ELSE d {Q}”

Since we are reasoning about sets of states, b s may some-
times be true and sometimes false, and so we have two
premises for those two cases. It turns out that if b s is triv-
ially true or trivially false, then one of the premises will be
trivial to prove.

in particular the assertion on the left-hand side. It reduces
as follows:
As. P(slx == (as)]) —p
As. (3. Q' Nslxw=(as)| =5z = (as)]) —p...
As. (3. Qs Ns=5)—p...Xs. (Qs) — Q
So you see that any pre-state () will be related to a post-state
P as given above.

By this argument, we have only shown which post-states
are possible given an arbitrary pre-state, not which post-
states are not. Such an argument is more complicated.

661

Inductive Definition: WHILE

While "F {As.P sAbs}c{P} =
= {P}WHILE b DO ¢ {\s.P s A b s}”

This has a flavor of loop invariants: in the pre-state, b s
holds, in the post-state, b s does not hold, and P holds all
the time.

662

Inductive Definition: Weakening and
Strengthening
conseq "[Vs.P's — P s;F {P} c{Q};Vs.Q s — Q' s]
:>|_ {Pl} c {Ql}n

One can always strengthen the pre-condition or weaken

the post-condition.

663

The Rules at a Glance

inductive hoare

intrs

skip 7 F {P} SKIP {P}"

ass " A{As.P(slx :=a s])} x == a {P}"

semi "[F{P}c{Q};F{Q} d{R}] =F {P}c;d {R}

If "IFAAs. P sAbs}c{Q};F{As.P sA-bs}d{Q}] =

~ {P} IF b THEN ¢ ELSE d {Q}"

While 7" F{As.PsAbs}c{P} =
— {P} WHILE b DO ¢ {As.P s A —=b s}”

conseq "[Vs.P's = P s;F{P}c{Q};Vs.Q s — Q s] =
(P} e{QY

664

Validity Relation
We define a validity relation:
={P}c{Q} =Vst.(s,t) € Clc) = (Ps) = (Q1)
A Hoare triple {P}c{@} is valid if it relates a set of input
states and a set of output states correctly w.r.t. the deno-

tational (or equivalently (=¥ p|656)), operational) semantics:

for any input state s and output state ¢ related by the deno-
tational semantics (=¥ p{652)), if P holds for s, then @) must
hold for ¢.

WhyP*| do we raise the issue of a semantics being valid,

why don’t we just say “it’s defined like this, full stop”?

sYou may wonder: Why do we raise the issue of a se-
mantics being valid, why don’t we just say “it’s defined like
this, full stop”? After all, we didn’t question the operational
and denotational semantics in the same way. So why do we
take the denotational semantics as the real semantics of a

program that another semantics such as the Hoare seman-
tics has to be somehow equivalent to in order to be correct?
Couldn’t we do it the other way round?

First: If you want to accept anything as the real
semantics of a program, it would be the transition

semantics (=¥ pJ647), since we believe that by the transition

semantics, we have modeled what the compiler of the pro-
gramming language actually does. The transition semantics
records the actual computation steps (=¥ p|642).

Secondly, we have shown that the transition semantics is

equivalent to the natural semantics (= p|651)), which in turn

is equivalent to the denotational semantics (=¥ p|650)).

Thirdly, someone might claim that the Hoare semantics

665

Relating Hoare and Denotational Semantics

Theorem (Hoare soundness):

= {P}c{Q} =F AP} c{Q}

Theorem (Hoare relative completeness):

={P}c{Q} =+ {P} c{Q}
Why relative®[?

So the Hoare relation is in fact compatible with the deno-
tational semantics of IMP.

“obviously” reflects the real semantics of a program, but that
would seem quite far-fetched, because the semantics speaks
about properties of states rather than about states directly.

Together this explains why we call a Hoare triple valid if

1t 1s correct w.r.t. the denotational semantics.
s5We will not give any details here, but the completeness

result is restricted in the same way that the completeness of

HOL (=¥ p[395) is restricted to general models, as opposed
to standard models.

666

27.7 Example Program

tm == A\x.1;
sum == A\x.1;
1 == A\x.0;

WHILE As.(s sum) <= (s a) DO
(i :== As.(s i)+ 1;
tm === As.(s tm) + 2;
sum == As.(s tm) + (s sum))
What does this program do?
Trya=1 a=2,..., and look at 4!

040

s6g 1s not modified anywhere. You should think of a as
input of the program.

¢ counts the number of times the loop is entered, i.e. the
final value of 7 is the number of times the loop was entered.
This number depends on a. The following table shows that
final values of 7, tm and sum depending on the value of a:

1 tm | sum
0<a<l1l [0 1 1
1<a<4 |1 3 4
41<a<9 2] 5 9
9<a<16 |3| 7| 16
106<a<25/4] 9| 25
20 <a<36|5| 11| 36
36 <a<49|6| 13| 49

sum takes the values of all squares successively, computed
by the famous binomial formula:

14+ 1) =i +2+1

667

Square Root

Answer: The program computes the square root. Informally:

Pre = 7 True”
Post = 7i2<a < (i+1)%
Formally
Pre = Xs. True
Post = Xs. (si)Y* (si) < (sa) A
sa<(si+1)x(si+1)

Since tm takes the value 2¢+1 for all ¢ successively, it follows
that sum + tm always gives the next value of sum.

668

Proving {Pre}...{Post}

We will now construct a proof tree showing that the program
computes the square root.

Generally, the difficulty’® is to know when to apply
conseq (=¥ pl664]).
We try to illustrate the search for the proof tree by anima-

tion. Still you may not understand each choice immediately,
but only in hindsight!
We use two metavariables: Inv for the loop invariant, PW
for the enter condition of the loop. We instantiate later.
Abbreviation: ExC = As.Inv s A —s sum < s a (“exit
condition”). We omit !

“The conseq (=¥ p{663) rule can always be applied. If one

decides not to apply the conseq rule, then the choice of any
other rule (=¥ p|664) is deterministic.

669

Proof

LY (o) WH .. [{EzC} [,
A (PwywH By o
AP e PWrT P By
(AP s PW(sPi, sum” P\ sum . P BxC}
T, P° {As.PW (s]1, sum,tm”]}{EmC} semt T, [52

{Pre }Post}

670

conseq

This is what we want to prove.

Nothing happens after the loop, so intuition says (=¥ p{669

that FxC must imply Post.

Apply semi three times. PW (“pre while”) is just a

sensible choice of name: we don’t know yet what it is.

This application of ass (=¥ p.

660

will allow us to recon-

struct the precondition in the line just below.

And likewise | As |.
And likewise | Ay |

We now know (by the form of conseq) what |Z;
Intuition says (=¥ pi669)) that PW must imply Inv.

Of course, we are not ready yet.

671

1S.

Completing the Proof

A1 (= p670), | As| (= p{670) and | A3 (=¥ p[670]) are com-
plete, and | Z4| (=¥ p{670)) is trivial.

T (= pB70), || (= pB70), (T3] (= pl570), and
{Inv}l WH ...| (= p670){ ExC (=¥ p669)} remain to be
shown.

This also involves the question of how the metavariables
must be instantiated.

672

What 1s PW?

The metavariable PW (“precondition of WHILE) must ful-
fill (to show |Z;| (=¥ pl670))

Vs.Pre (=¥ pl668) s — PW (s|i == 0][sum == 1|[tm == 1])

where

sli = 0][sum == 1][tm == 1] (=¥ p6dd]) =
Ay. if y=1tm then 1 else
(if y = sum then 1 else(if y =i then 0 else (sy)))

Solution (recall (=¥ p{668) that Pre = As. True):

PW =Xs.s1t=0Assum=1Astm=1

673

What is Inv?

Continuing our proof tree construction:

{As.Inv s AN ssum < sa}i:== As.si+ 1{P'}
{P'}tm :== As.stm + 2{P"}

{P"}sum :== As.stm + s sum{Inv}
2

semi
{\s.Inv s A s sum < s a}|”body” P® Inv}

{Inv} WH ...| (= pl670){E2zC (= p}

While (= pl662)

064 to

Just blindly applying semz twice gives three formulag

be proven using ass (=¥ pf660]), one for each assignment in

the loop.
Now what are P’ and P”? Have alook at rule ass (=¥ p,660
first!

610f course, these three formulas should be side by side in
the proof tree, but this cannot be displayed.

674

Calculating P’ and P” (by Rule ass)

P" = A\s.Inv(s[sum == s tm + s sum))

P =\ . P'(s'[tm ::== &' tm + 2]) (rule ass (=¥ pl660
= \s'.(As.Inv(s[sum = s tm + s sum]))

(s'[tm =& tm + 2])
= As".Inv((s'[tm == s tm + 2])

[sum = (s'[tm = s tm + 2]) tm+
(s'[tm = &' tm + 2]) sum))
= A\s".Inv(s'[tm = s tm + 2]
[sum = s tm + 2 + 5’ sum)).

675

Applying ass to 1 :== As.si+ 1

Now treat 7 ;=== As.s 7 + 1 in the same way. Temporarily,
let’s write P for As.Inv s Assum < sa (=¥ pl674). Recall
P’ = (=¥ pl675

As (=¥ p{170).Inv(s (=¥ p/l70)[tm == s (=¥ pil70) tm +
2|[sum = s (=¥ p]L70) tm + 2+ s (=¥ pil70) sum]).

P=M\s.P'(sli :=5"i+1]) (by rule ass (=¥ pl660))
= \s.(As.Inv(s[tm == s tm + 2][sum == s tm + 2 + s sum)))
(s']i = "1+ 1])

= \¢'.]m)((i v=s"i+1])
[tm = (s'[i —S’i+1})tm—i—2]
[sum = (s'[i i=5"i+1]) tm+ 24 (§'[i == 5" i+ 1]) sum]))
= \s (=¥ p{l70).Inv(s[i == s i+ 1]{tm = stm + 2]
[sum = stm + 2+ s sum)).

676

000

So Inv must solve®?| this equation.

w5 Recall (=¥ pl674)) that we had to prove the three formulas

{As.Inv s A s sum < sa}i == As.si+ 1{P'}
{P'}tm == As.stm + 2{P"}
{P"}sum == As.stm + s sum{Inv}

all by ass (=¥ pf660)). Dealing with the second and third
formula using ass, we found that

P' = \s'.Inv(s'[tm .= §" tm~+2][sum ::= & tm + 2+5" sum)).
Therefore, to show
{As.Inv s A s sum < sa}i:== As.si+ 1{P'}

as well, Inv must have such a form that the formula becomes
an instance of ass.

677

Inv Must Fulfill the Equation

Inv must fulfill the equation

AVs.Inv s A ssum < sa = «
AVs. Inv(s|i = si+ 1][tm == stm + 2]
[sum = stm + 2+ s sum])

Don’t think syntactically! We are in HOL (=¥ p.

A14):

means «, and we can replace X by V (=¥ p{403)).

Guessmg the right Inv is obviously difficult! Informally (=¥ p.

Inv = "(i+1)*=sum A tm=2x1)+1 A *<da”

678

068

Checking that Inv Fulfills Equation

ssum < sa N

(si+1)* = (ssum) A

stm=2x(si))+1 A

(si)" < (sa) A

(recall: = means <) =

((Si+1)+1)2:(ssum)+(stm)+2 A

(stm+2)=2x(si+1)+1 A
(si+1)" < (s)

679

Proof Sketch

First show the “—”-direction:

) — and () A — by simple arithmetic.

11)) is shown as follows:

((si+1)+1)?

(si4+1)24+2*(si+1)+1
(s sum)+2(si)+1+2
(s sum) + (stm) + 2

=

630

Proof Sketch (Cont.)

Now show the “«"-direction:

— (§) and — () by simple arithmetic. (7)) is

shown as follows:

(si+1) = ((si+1)+12=2x(si+1)~1
D (s sum) + (stm) +2— 2+ (si+1)— 1
@

(ssum)+2x(si+1)+1
—2x%(si+1)—1
s sum

Finally, A — (6). So Inv (=¥ p[678) is indeed an

invariant!

631

The WHILE Loop: Remarks

We have shown (=¥ p[678

(“enter condition” A “invar. at entry”)« “invar. at exit”

One would definitely expect —, but <« is remarkable!
We can show this because our invariant is so strong: for

showing —, the weaker invariant A , i.e.
"+ 1) =sum A tm=(2%14)+ 1

would do (check it!).

But the extra condition 2

< a is needed for showing
Post (=¥ p668), which states what the program actually
computes.

632

Taking Care of Post

We have shown Zy| (=» p{670 and

{Inv (=¥ pl67T) WH ...| (=» p670){ ExC (=» p{669)}. Now

continue with |Zy/ (

=» pl670)).

Does Post (=¥ pl668) s follow from Inv (=¥ pl678) s A

—-s sum < s a?
Yes!

(si)? < (sa)

follows from @

(sa) < (si+1)* follows from —s sum < (s a) and .

633

The Final Missing Part

Zs| (=¥ pi670) remains to be shown, i.e.

Vs.PW s — Inv (=¥ p678) s

or, expanding the solutions for PW (=¥ p673) and Inv (=¥ p.

Vs. si=0Assum=1Astm=1—
(si+1)? =ssum A
stm=(2x(si))+1A
(s1)* < (sa)

This is easy to check.

634

678

An Alternative for Tackling the Loop Part

Recall that our loop invariant was “too strong” (=¥ p[682).

An alternative:
{Inv'}i === Xs.si+ 1{P'}
{P'}tm :== As.stm + 2{P"}
{P"}sum :== As.stm + s sum{Inv}

Vs.(Inv sA semi?
ssum < sa) — {Im/} (= pl674){ v}
Inv' s
conseq
{As.Inv s A\ s sum < s a}-”body” (=» pl674){Inv}
While (= pl662)

{Io} WH .| (= pBTO){ ExC (= p[669)}

685

Alternative (Cont.)

Applying ass (=¥ pf660]) as before gives

Inv' = Xs.Inv(s[i := si+ 1][tm == s tm + 2]
[sum = stm + 2+ s sum))

We are left with the proof obligation

Vs.(Inv s A s sum < sa) — Inv(sli = 51+ 1]
[tm = stm + 2][sum = stm + 2+ s sum])

Just this could be shown setting weak Inv = (=¥ pj682) (7]
A (8), but for actually showing Post (=¥ pl66g), i* < a is
still needed.

636

27.8 Automating Hoare Proofs

In the example (=¥ p.

667

puting the square root.

, we have verified a program com-

But this was tedious, and parts of the task can be auto-

mated.

687

Weakest Liberal Preconditions

Observation: the Hoare relation is deterministic to a certain
extent.
Idea: we use this fact for the generation of (weakest liberal)

preconditions.

Weakest liberal preconditions are:

constdefs wp :: com = assn = assn

"wp e Q= (AsVt.(s,t) € Clc) = Qt)

So wp ¢ @ returns the set of states (=¥ p657)) containing

all states s such that if ¢ is reached from s via ¢, then the
post-condition) holds for ¢. Computable? Not obvious.

638

Equivalence Proofs

Main results of the wp-generator are:

wp_SKIP: wp SKIP Q) = Q)

wp_Ass: wp (x :==a) Q = (As. Q (s[x == a s]))
wp_Semi: wp (¢;d) Q = wp ¢ (wp d Q)

wp_If: wp (IF b THEN ¢ ELSE d) Q =

(As.(bs—wpc@Qs)AN(=bs—wpdQ@ s))
wp_While True: bs== wp (WHILEbDOc) Q s =
wp (¢; WHILEbH DO ¢) @ s
wp_While False: —bs=— wp (WHILEbDOc) Q s =Q s
wp While if: wp (WHILEbDO ¢) @ s =
(if b s then wp(c;WHILE b DO ¢) @ s else Q s)

Last case summarises the two before.

689

WP-Semantics

Except for termination problem due to While, (weakest lib-
eral) precondition wp can be computed.

This fact can be used for further proof support by verifi-
cation condition generation.

690

Verification Condition Generation
First, we must enrich the syntax by loop-invariants:

datatype acom =
Askip
| Aass loc aexp
| Asemi acom acom
| Aif bexp acom acom
|

Awhile bexp assn acom

Almost same as com (=¥ p|640)), but While gets an ad-
ditional argument for asserting a loop invariant. Asserting

this is the difficult, creative step to be done by a human.

691

Computing a Weakest Liberal Precondition

We define a function that computes a wp (=¥ p{688):
primrec

"awp Askip Q) = Q)
"awp (Aass x a) Q = (As.Q(s|x == as]))”
"awp (Asemi cd) Q = awp ¢ (awp d Q)"
"awp (Aif bed) Q = (As.(bs— awp ¢ Q s)A\
(=bs— awp d@Qs))”
"awp (Awhile b Inv ¢) Q = Inv”
Idea: for all statements, the exact wp (=¥ pJ688)) is com-

puted, except for While, where the assertion provided by
the user is taken as approximation. Proof obligation: show

that such an assertion is compatible with the program and
the desired property ...

692

A Verification Condition

Construct a formula ve ¢) s with the intuitive reading: as
far as the invariant assertions are concerned, s is a good pre-
state for reaching desired post-property () using annotated
program (=¥ p{691)) c.

This is not about distinguishing good pre-states from bad

pre-states! It is about formalising well-chosen invariants. For

an annotated program with well-chosen invariants, Vs.vc ¢ @) s
holds, i.e. vc ¢ QQ = As. True.

693

The Definition of vc

Roughly, an annotated programm has well-chosen invariants
if its components have well-chosen invariants, so most of the

definition is saying just that:
primrec

"ve Askip Q = (As.True)”

"ve (Aass x a) Q = (As.True)”

"ve (Asemi cd) Q = (As.vec e (awp d Q) s Nved Q s)”
"ve (Aif bed) Q = (Asvee@Q sANved @ s)”

"ve (Awhile b Inv ¢) Q = (As.(Inv s A =b s — Q s)A

(Inv s ANbs — awp c Inv s) Nvc ¢ Inv s)”
Only the case for While is non-trivial . ..

694

ve: The While case

"ve (Awhile b Inv ¢)Q = (As.(Inv s A—=bs — Q s)A
(Inv s ANbs — awp ¢ Inv s)A\
ve e Inv s)”

Why is Inv a well-chosen invariant?
e Inv + exit condition imply Q: Inv s A =(bs) — @ s;

e Inv + loop condition imply precondition of Inv (so that
Inv will hold after one execution of ¢): Inv s A (b s) —
awp ¢ Inv s.

e vc ¢ Inv s is in the spirit of the rest of the definition of
ve: call ve recursively for the component.

695

Results of the wp-Generator

vc_sound: VQ.(Vs.vcac @ s) —

= {awp ac Q} astrip’®ac {Q}

vc_complete: F {P}c{Q} = Jac.astrip ac = cN\
(Vs.wcac @ s) N (Vs.P s — awp ac Q s)

To prove that ¢ has property @ after execution, annotate (=¥ pJ691

it with loop invariants (ac) and show Vs. vc ac @ s. This
implies that a Hoare proof exists, for the computable precon-
dition awp ac Q. For good (robust) programs, awp ac QQ =
As. True.

696

Summary

IMP closely follows the standard textbook [Win96].

[sabelle/HOL is a powerful framework for embedding im-
perative languages.

[sabelle/HOL is also a framework for state-of-the-art lan-
guages like JAVA including interfaces, inheritance, dynamic
methods.

[t works in theory and for non-trivial problems in practice
(but of modest size).

697

28 A Taste of some Isabelle and HOL
Applications

698

Just a few Isabelle or HOL Applications

We briefly introduce two Isabelle/HOL applications, and one
application of HOL Light:

e Java bytecode verification:;

e floating-point arithmetic (=¥ p{703);

e red-black trees (=¥ p{708).

This is just to stimulate you to look for more applications
on your own!

28.1 Java Bytecode Verification

Typically, Java programs are delivered as bytecode, as op-
posed to source code on the one hand and machine code on
the other hand. Bytecode is machine-independent.

699

http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/projects.html

A Java runtime system provides the Java Virtual Machine,

i.e., an interpreter for Java bytecode.

Java is a typed language: the type system forbids things

like pointer arithmetic, thus preventing illegal’®’| memory

access.

However, bytecode is not type-safe by itself. For various
reasons, bytecode could be corrupted. This is obviously crit-
ical for security and possibly safety.

7By “illegal memory access”, we mean access to regions
not assigned to the program.

700

Ensuring Type Safety

The loader of a typical JVM has a bytecode verifier: A pro-

gram that checks whether bytecode is type-safe.

Klein and Nipkow have specified a JVM and a bytecode
verifier in Isabelle and proved its correctness using Isabelle
[KNO3|, Nip03].

Such applications may have big impact since they are con-
cerned with the correctness of not just some particular pro-
gram, but rather the programming language (implementa-
tion) itself.

701

JavaCard

JavaCard is a subset of Java employed on smart cards. As-

pects in contrast to full Java:

003

e Memory on smart cards is limited

e Security is vital for smart card applications (banking
etc.).

Project Verificard concerned with ensuring reliability of
smart card applications.

Verificard @ Munich have applied the work on bytecode
verification (using Isabelle) to JavaCard.

End user panel includes Ericsson, France Télécom R&D,
and Gemplus.

s The memory on smart cards is limited. A full-fledged
bytecode verifier would be too large/slow. One approach
to tackling this problem is to work with bytecode programs
with type annotations. Checking if a bytecode program is

consistent with its type annotations is a much simpler task
than computing these type annotations, which is what a
bytecode verifier is supposed to do. The task can therefore
be performed on a smart card more easily than full bytecode
verification.

702

http://www.verificard.org/
http://isabelle.in.tum.de/verificard/
http://www.ericsson.com
http://www.francetelecom
http://www.gemplus.com/

28.2 Floating Point Arithmetic

John Harrison has done much work on verifying arithmetic
functions operating on various number types adhering to cer-
tain standards [Har98, [Har99, Har(0)].

He has used HOL Light, not Isabelle. This means: no
metalogic, specialized theorem prover for HOL.

He formally proved that the floating point operations of
an Intel processor behave according to the IEEE standard
754 [IEES85]. First machine-checked proof of this kind.

We briefly review his work [Har99] using an Isabelle-like
syntax where helpful.

703

http://www.cl.cam.ac.uk/users/jrh/
http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html

What Are Floats?

Conventionally: floats have the form £2¢- k.
e is called exponent, F,,;n < e < Epge.
k is called mantissa, can be represented with p bits.

704

Floats in HOL

For formalization in HOL, equivalent representation
(_1)8 . 26—N . k

with k < 2P and 0 < e < F.

Thus a particular float format is characterized by maximal
exponent E', precision p, and exponent offset (“ulpscale”) N.
The set of real numbers representable by a triple is:

format (E,p,N) =
{x|3sek.s<2Ne< EANk <2 ANz =(-1)*-2°k/2N}

705

Rounding

Rounding takes a real to a representable real nearby. E.g. round-
ing up:

round fmt x = €a. a € format fmt N a < xA
Vb € format fmt. b<x —b<a

Formalization of the Standard [TEESH].
Useful lemmas such as:

x <y = round fmt x < round fmt y
a € format fmt Ab € format fmt N0.5 < § <2 =
(b —a) € format fmt

706

Operations

For operations such as addition, multiplication etc., it is
proven in HOL that they behave as if they computed the
exact result and rounded afterwards.

However, there are some debatable questions related to

the sign of zeros.

07

28.3 Red-Black Trees

Red-black trees are trees that can be used for implement-

ing sets/dictionaries, just like

AV L trees

ness’ invariants, nodes are colored:

1. Every red node has a black parent.

. To formulate “balanced-

2. Each path from the root to a leaf has the same number

of black nodes.

Together these invariants ensure that maximal paths can

differ in length by at most factor 2.

These invariants must be maintained by insertion and

deletion operations.

708

Red-Black Trees in SML

Red-black trees provided in New Jersey SML library [Pau96].
569

Angelika Kimmig’’| tried to verify the insertion operation

of red-black trees using Isabelle. Findings?

e There is a mistake in the implementation of red-black
trees in New Jersey SML! Insertion may lead to a vio-
lation of the first invariant, since the root may become

red.

e As long as one just inserts, this is just a slight constant
deterioration.

e Angelika has suggested a fix and proven the correctness
of red-black tree insertion using Isabelle.

9 Angelika Kimmig is a student who took this course in
Wintersemester 02/03 in Freiburg. She then continued work-
ing with Isabelle in a Studienarbeit (a project required by
computer science students in Freiburg).

709

http://www.smlnj.org/

Node Deletion

e Deletion is also wrongly implemented!

e With deletion, not just the root can become red, but the

tree coloring can become completely wrong.

e Angelika has an idea for fixing deletion as well, but no

proof (yet?).

Read the

Studienarbeit

References

[AczTT]

for more details [Kim03]!

Peter Aczel. Handbook of Mathematical Logic,

chapter An Introduction to Inductive Defini-
tions, pages 739-782. North-Holland, 1977.

710

[AHMP92] Arnon Avron, Furio Honsell, lan A. Mason, and

[And02]

[Apt97]

[Ari]
[Ber91]

Robert Pollack. Using typed lambda calculus to
implement formal systems on a machine. Journal
of Automated Reasoning, 9(3):309-354, 1992.

Peter B. Andrews. An Introduction to

Mathematical Logic and Type Theory: To Truth

Through Proofs. Kluwer Academic Publishers,
2002. Second Edition.

Krzysztof R. Apt. From Logic Programming to

Prolog. Prentice Hall, 1997.

Aristotle. Analytica priora I, chapter 4.

Paul Bernays. Axiomatic Set Theory. Dover
Publications, 1991.

711

[BMOO]

[BNOS]

[Can18§]
[Chud0]

[ABS0]

David A. Basin and Sean Matthews. Structuring
metatheory on inductive definitions. Information

and Computation, 162(1-2):80-95, 2000. Down-

load.

Franz Baader and Tobias Nipkow. Term
Rewriting and All That. Cambridge University

Press, 1998.
Georg Cantor. 77 77 1877

Alonzo Church. A formulation of the simple the-
ory of types. Journal of Symbolic Logic, 5:56-68,
1940.

Nicolaas G. de Bruijn. A survey of the project
AUTOMATH. In Essays in Combinatory Logic,

712

http://www.informatik.uni-freiburg.de/~basin/pubs/metaind.ps.Z
http://www.informatik.uni-freiburg.de/~basin/pubs/metaind.ps.Z

[Des16]

[Dev93]

[Ebbod]

[Fit96]

[Fle00]

Lambda Calculus, and Formalism. Academic

Press, 1980.
Rene Descartes. 77 77,1677

Keith Devlin. The Joy of Sets. Fundamentals
of Contemporary Set Theory. Undergraduate

Texts in Mathematics. Springer-Verlag, 1993.

Heinz-Dieter Ebbinghaus. Einfithrung in die
Mengenlehre. BI-Wissenschaftsverlag, 1994.

M. Fitting. First-order Logic and Automated
Theorem Proving. Springer-Verlag, 1996.

Jacques D. Fleuriot. On the mechanization of
real analysis in isabelle/hol. In Proceedings of

the 13th International Conference on Theorem

713

[FPOS]

[Fr&22]

[Fre93]

Proving in Higher Order Logics, volume 1869 of

Lecture Notes in Computer Science, pages 145—

161. Springer, 2000.

Jacques D. Fleuriot and Lawrence C. Paulson.
A combination of nonstandard analysis and ge-
ometry theorem proving, with application to
newton’s principia. In Claude Kirchner and
Hélene Kirchner, editors, Proceedings of the
15th CADE, volume 1421 of LNCS, pages 3-16.

Springer-Verlag, 1998.

Adolf Frankel. Zu den Grundlagen der Cantor-
Zermeloschen Mengenlehre. Mathematische
Annalen, 86:230-237, 1922. See [vH6T].

Gottlob Frege. Grundgesetze der Arithmetik,

714

[Fre03]

[Fur64]

[Gen3b]

(GLTS9]

volume I. Verlag Hermann Pohle, 1893. Trans-
lated in part in [Fur64].

Gottlob Frege. Grundgesetze der Arithmetik,
volume II. Verlag Hermann Pohle, 1903. Trans-
lated in part in [Fur64].

Montgomery Furth. The Basic Laws of

Arithmetic. Berkeley: University of California

Press, 1964. Translation of [Fre(3].

Gerhard Gentzen. Untersuchungen tiber das
logische Schliessen. Mathematische Zeitschrift,
39:176-210, 405431, 1935. English translation
in [Sza69].

Jean-Yves Girard, Yves Lafont, and Paul Taylor.
Proofs and Types. Cambridge University Press,

715

(GMO93)

(God31]

[Har98]

[Har99]

1989.

Michael J. C. Gordon and Tom F. Melham, ed-
itors. Introduction to HOL. Cambridge Univer-
sity Press, 1993.

Kurt Godel. Uber formal unentscheidbare Sitze
der Principia Mathematica und verwandter Sys-
teme. Monatshefte fiir Mathematik und Physik,
38:173-198, 1931.

John Harrison. Theorem Proving with the Real

Numbers. Springer-Verlag, 1998.

John Harrison. A machine-checked theory of
floating point arithmetic. In Yves Bertot, Gilles
Dowek, André Hirschowitz, C. Paulin, and Lau-
rent Théry, editors, Proceedings of the 12th

716

[Har00]

[HC68)]

[Hen50]

[HHPO3]

TPHOLSs, volume 1690 of LNCS, pages 113-130.

Springer-Verlag, 1999.

John Harrison. Formal verification of the 1A /64
division algorithms. In Mark Aagaard and
John Harrison, editors, Proceedings of the 13th

TPHOLS, volume 1869 of LNCS, pages 233-251.

Springer-Verlag, 2000.

George E. Hughes and Maxwell John Cresswell.
An Introduction to Modal Logic. Muthuen and

Co. Ltd, London, 1968.

Henkin. Completeness in the theory of types.
Journal of Symbolic Logic, 15(2):81-91, 1950.

Robert Harper, Furio Honsell, and Gordon D.
Plotkin. A framework for defining logics. JACM,

17

40(1):143-184, 1993,

[HHPWO96] Cordelia V. Hall, Kevin Hammond, Simon L.

[H5190]

[HP93]

[HRO4]

Peyton Jones, and Philipp Wadler. Type classes
in Haskell. ACM Transactions on Programming
Languages and Systems, 18(2):109-138, 1996.

Steffen Holldobler. Conditional equational the-
ories and complete sets of transformations.
Theoretical Computer Science, 75(1&2):85-110,

1990.

G. Huet and G. Plotkin, editors. Logical
Environments. Cambridge University Press,

1993.

Michael Huth and Mark Ryan. Logic in
Computer Science. Modelling and Reasoning

718

[HS90]

[Hud]
TEESS]

[Kim03]

about Systems. Cambridge University Press,

2nd edition edition, 2004.

J. Roger Hindley and Jonathan P. Seldin.
Introduction to Combinators and M-Calculus.

Cambridge University Press, 1990.
Gerard Huét. 77 77,77

The Institute of Electrical and Electronic En-
gineers, Inc. [EEE. Standard for binary

floating point arithmetic. ANSI/IEEE Standard

754-1985, 1985.

Angelika Kimmig. Red-black trees of slmnj. Stu-
dienarbeit at Universitat Freiburg, Download,
2003.

719

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0506/csmr/rbt.pdf

K1093]

[KNO3]

LPS1]

IMil78]

Jan Willem Klop. Handbook of Logic in

Computer Science, chapter "Term Rewriting

Systems”. Oxford: Clarendon Press, 1993.

Gerwin Klein and Tobias Nipkow. Verified byte-
code verifiers. Theoretical Computer Science,
3(298):583-626, 2003.

Harry R. Lewis and Christos H. Papadim-
itriou. Elements of the Theory of Computation.
Prentice-Hall, 1981.

Robin Milner. A theory of type polymorphism in
programming. Journal of Computer and System

Sciences, 17(3):348-375, 1978.

720

Mi192]

[Min00]

[Nip93]

INipos]

INip02]

Dale Miller. Logic, higher-order. In Stu-
art C. Shapiro, editor, Encyclopedia of Artificial
Intelligence. John Wiley & Sons, 2 edition, 1992.

Grigori Mints. A Short Introduction to
Intuitionistic Logic. Kluwer Academic/Plenum
Publishers, 2000.

Tobias Nipkow. Order-Sorted Polymorphism in
[sabelle, pages 164-188. Cambridge University
Press, 1993. In [HP93].

Tobias Nipkow. Winskel is (almost) right: To-
wards a mechanized semantics. Formal Aspects
of Computing, 10(2):171-186, 1998.

Tobias Nipkow. Hoare logics in Isabelle/HOL.
In H. Schwichtenberg and R. Steinbriiggen, ed-

721

[Nip03]

INN9Y]

INP93]

itors, Proof and System-Reliability, pages 341
367. Kluwer, 2002.

Tobias Nipkow. Java bytecode verification.
Journal of Automated Reasoning, 30(3-4):233—

233, 2003.

Wolfgang Naraschewski and Tobias Nipkow.
Type inference verified: Algorithm W in Is-
abelle/HOL. Journal of Automated Reasoning,
23(3-4):299-318, 1999.

Tobias Nipkow and Christian Prehofer. Type
checking type classes. In Proceedings of the 20th

ACM Symposium Principles of Programming
Languages, pages 409-418. ACM Press, 1993.

722

[Pausy)]

[Pau94]

[Pau96)

[Pau97a]

[Pau97b]

Lawrence C Paulson. The foundation of a
generic theorem prover. Journal of Automated

Reasoning, 5(3):363-397, 1989.

Lawrence C. Paulson. Isabelle: A Generic

Theorem Prover, volume 828 of LNCS. Springer,

1994.

Lawrence C. Paulson. ML for the Working
Programmer. Cambridge University Press, 1996.

Lawrence C. Paulson. Generic automatic proof
tools. In Robert Veroff, editor, Automated
Reasoning and its Applications: Essays in Honor

of Larry Wos, chapter 3. MIT Press, 1997.

Lawrence C. Paulson. Mechanizing coinduction
and corecursion in higher-order logic. Journal

723

[Pau05]

[Peals]
[Plo81]

[PMG68]

of Logic and Computation, 7(2):175-204, 1997.

Download.

Lawrence C. Paulson. The Isabelle Reference

Manual. Computer Laboratory, University of
Cambridge, October 2005.

Guiseppe Peano. 77 77 1877

Gordon D. Plotkin. A structural approach to
operational semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus
University, Denmark, 1981.

Dag Prawitz and Per-Erik Malmnas. A sur-
vey of some connections between classical, in-
tuitionistic and minimal logic. In A. Schmidt
and H. Schiitte, editors, Contributions to

724

http://arxiv.org/pdf/cs.LO/9711105

[Pra65]

[Pra71]

ISHS4]

[Sza69)

Mathematical Logic, pages 215-229. North-

Holland, 1968.

Dag Prawitz. Natural Deduction: A proof
theoretical study. Almqvist and Wiksell, 1965.

Dag Prawitz. Ideas and results in proof theory.
In Jens Erik Fenstad, editor, Proceedings of the

Second Scandinavian Logic Symposium, pages

235-308. North-Holland, 1971.

Peter Schroeder-Heister. A natural extension of

natural deduction. Journal of Symbolic Logic,
49(4):1284-1300, 1984,

M. E. Szabo. The Collected Papers of Gerhard
Gentzen. North-Holland, 1969.

725

[Tho91]

[Tho95a]

[Tho95b]

Tho99]

[vD80]

Simon Thompson. Type Theory and Functional

Programming. Addison-Wesley, 1991.

Della Thompson, editor. The Concise Oxford
Dictionary. Clarendon Press, 1995.

Simon Thompson. Miranda: The Craft
of Functional Programming. Addison-Wesley,

1995.

Simon Thompson. Haskell: The Craft of
Functional Programming. Addison-Wesley;,

1999. Second Edition.

Dirk van Dalen. Logic and Structure. Springer-

Verlag, 1980. An introductory textbook on logic.

726

[Vel94]

[VH67]

[vL16]
[WB&9]

Daniel J. Velleman. How to Prove It. Cambridge
University Press, 1994.

Jean van Heijenoort, editor. From Frege to

Godel: A Source Book in Mathematical Logic,

1879-193. Harvard University Press, 1967. Con-

tains translations of original works by David
Hilbert and Adolf Fraenkel and Ernst Zermelo.

Gottiried Wilhelm von Leibniz. 77 77, 1677

Phillip Wadler and Stephen Blott. How to
make ad-hoc polymorphism less ad-hoc. In
Conference Record of the 16th ACM Symposium

on Principles of Programming Languages, pages

60-76, 1989.

27

[Wen99]

[Win96]

[WR25]

[Zer(7]

Markus Wenzel. Inductive datatypes in HOL -
lessons learned in formal-logic engineering. In
Yves Bertot, Gilles Dowek, André Hirschowitz,
and and Laurent Théry C. Paulin, editors,
Proceedings of TPHOLSs, volume 1690 of LNCS,

pages 19-36. Springer-Verlag, 1999.

Glynn Winskel. The Formal Semantics of

Programming Languages — An Introduction.
MIT Press, 1996. 3rd ed.

Alfred N. Whitehead and Bertrand Russell.
Principia Mathematica, volume 1. Cambridge
University Press, 1925. 2nd edition.

Ernst Zermelo. Untersuchungen tiber die
Grundlagen der Mengenlehre. Mathematische

728

Annalen, 65:261-281, 1907. See [vH6T].

729

	1. General Introduction
	2. Propositional Logic
	2.1. Propositional Logic: Overview
	2.2. Formalizing Propositional Logic
	2.3. Propositional Logic: Language and Semantics
	2.4. Deductive System: Natural Deduction
	2.5. Deductive System: Rules of Propositional Logic
	2.6. Deductive System: Derived Rules
	2.7. Alternative Deductive System Using Sequent Notation

	3. Natural Deduction: Review
	4. First-Order Logic
	4.1. First-Order Logic: Overview
	4.2. First-Order Logic: Syntax
	4.3. First-Order Logic: Semantics
	4.4. Towards a Deductive System
	4.5. First-Order Logic: Deductive System
	4.6. Conclusion on FOL

	5. First-Order Logic with Equality
	6. First-Order Theories
	6.1. Example 1: Partial Orders
	6.2. Example 2: Groups
	6.3. Lessons Learned from these Examples

	7. Naïve Set Theory
	7.1. Naïve Set Theory: Basics
	7.2. Digression: Sorted Reasoning
	7.3. Operations on Sets
	7.4. Extending Set Comprehensions
	7.5. Outlook

	8. The -Calculus
	8.1. Untyped -Calculus
	8.2. Simple Type Theory
	8.3. Polymorphism and Type Classes
	8.4. Higher-Order Unification
	8.5. Summary on -Calculus

	9. Encoding Syntax
	9.1. : Review
	9.2. Representing Syntax of Propositional Logic
	9.3. Representing Syntax of First-Order Logic
	9.4. Higher-Order Abstract Syntax (HOAS)
	9.5. Summary of Encoding Syntax

	10. Resolution
	10.1. Summary on Resolution

	11. Automation by Proof Search
	11.1. Proof Search and Backtracking
	11.2. Classifying Rules
	11.3. Proof Procedures (Simplified)
	11.4. Summary on Automated Proof Search

	12. Term Rewriting
	12.1. Higher-Order Rewriting
	12.2. Extensions of Rewriting
	12.3. Organizing Simplification Rules
	12.4. Summary on Term Rewriting
	12.5. Summary on Last Three Sections

	13. Isabelle's Metalogic
	13.1. The Logic M
	13.2. Encoding Syntax and Provability
	13.3. Reasoning with Resolution
	13.4. Quantification
	13.5. Free Variables in Goals
	13.6. Conclusion on Isabelle's Metalogic

	14. HOL: Foundations
	14.1. Overview
	14.2. Syntax
	14.3. Semantics
	14.4. Basic Rules
	14.5. Isabelle/HOL
	14.6. Conclusions on HOL

	15. HOL: Deriving Rules
	15.1. Equality
	15.2. True
	15.3. Universal Quantification
	15.4. False
	15.5. Negation
	15.6. Existential Quantification
	15.7. Conjunction
	15.8. Disjunction
	15.9. Miscellaneous Definitions
	15.10. Summary on Deriving Rules
	15.11. Mathematics and Software Engineering in HOL

	16. Conservative Theory Extensions
	16.1. Conservative Theory Extensions: Basics
	16.2. Constant Definition
	16.3. Type Definitions
	16.4. Summary on Conservative Extensions

	17. Mathematics in the Isabelle/HOL Library: Introduction
	18. Orders
	18.1. Summary on Orders

	19. Sets
	19.1. Summary on Sets

	20. Functions
	20.1. Conclusion of Orders, Sets, Functions

	21. Background: Recursion, Induction, and Fixpoints
	22. Least Fixpoints
	22.1. First Approach: Least Fixpoints (Tarski)
	22.2. Tarski's Fixpoint Theorem
	22.3. Induction Based on Lfp.thy
	22.4. The Package for Inductive Sets
	22.5. Summary on Least Fixpoints

	23. Well-Founded Recursion
	23.1. Prerequisite: Relations
	23.2. Prerequisite: Closures
	23.3. Well-Founded Orderings
	23.4. Defining Recursive Functions
	23.5. Example for wfrec: Natural Numbers
	23.6. Conclusion on Well-founded Recursion
	23.7. Conclusion on Recursion and Induction

	24. Arithmetic
	24.1. What is Infinity? Cantor's Hotel
	24.2. Type-Closed Conservative Extensions
	24.3. Natural Numbers: Nat.thy
	24.4. Integers
	24.5. Further Number Theories
	24.6. Conclusion on Arithmetic

	25. Datatypes
	25.1. S-Expressions
	25.2. Lists in Isabelle

	26. Summary of HOL Library / Outlook on Modeled Systems
	27. IMP
	27.1. IMP: Introduction
	27.2. Operational Semantics: Two Kinds
	27.3. Embedding of the Natural Semantics
	27.4. Embedding of the Transition Semantics
	27.5. Embedding of the Denotational Semantics
	27.6. Axiomatic (Hoare) Semantics
	27.7. Example Program
	27.8. Automating Hoare Proofs

	28. A Taste of some Isabelle and HOL Applications
	28.1. Java Bytecode Verification
	28.2. Floating Point Arithmetic
	28.3. Red-Black Trees

