
Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Pushing the Envelope of
Abstraction-based Admissible Heuristics

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Context

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Explaining the Context

New Abstraction-based Admissible Heuristics for Cost-Optimal
Classical Planning

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Explaining the Context

New Abstraction-based Admissible Heuristics for Cost-Optimal
Classical Planning

Classical Planning

Planning task is 5-tuple 〈V,A, C, s0, G〉:
V : finite set of finite-domain state variables

A: finite set of actions of form 〈pre, eff〉
A: (preconditions/effects; partial variable assignments)

C : A 7→ R0+ captures action cost

s0: initial state (variable assignment)

G: goal description (partial variable assignment)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Explaining the Context

New Abstraction-based Admissible Heuristics for Cost-Optimal
Classical Planning

Cost-Optimal Planning

Given: planning task Π = 〈V,A, s0, G〉
Find: operator sequence a1 . . . an ∈ A∗

transforming s0 into some state sn ⊇ G,
while minimizing

∑n
i=1 C(ai)

Approach: A∗ + admissible heuristic h : S 7→ R0+

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Explaining the Context

New Abstraction-based Admissible Heuristics for Cost-Optimal
Classical Planning

Cost-Optimal Planning

Given: planning task Π = 〈V,A, s0, G〉
Find: operator sequence a1 . . . an ∈ A∗

transforming s0 into some state sn ⊇ G,
while minimizing

∑n
i=1 C(ai)

Approach: A∗ + admissible heuristic h : S 7→ R0+

Admissible ≡ underestimate goal distance

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Explaining the Context

New Abstraction-based Admissible Heuristics for Cost-Optimal
Classical Planning

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S′

Well-known: projection (pattern database) heuristics
Here we: both generalize and enhance them

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Explaining the Context

New Abstraction-based Admissible Heuristics for Cost-Optimal
Classical Planning

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S′

Well-known: projection (pattern database) heuristics
Here we: both generalize and enhance them

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Transition Graphs

Transition graph

TG-structure T = (S,L, Tr, s0, S?):

S: finite set of states

L: finite set of transition labels

Tr ⊆ S × L× S: labelled transitions

s0 ∈ S: initial state

S? ⊆ S: goal states

Transition graph 〈T, $〉:
T: TG-structure with labels L

transition cost function $: L 7→ R0+

(Transition graph of planning task defined in the obvious way.)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Transition Graphs

Transition graph

TG-structure T = (S,L, Tr, s0, S?):

S: finite set of states

L: finite set of transition labels

Tr ⊆ S × L× S: labelled transitions

s0 ∈ S: initial state

S? ⊆ S: goal states

Transition graph 〈T, $〉:
T: TG-structure with labels L

transition cost function $: L 7→ R0+

(Transition graph of planning task defined in the obvious way.)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

(Additive) Abstractions

Definition (additive abstractions)

Additive abstraction of transition graph 〈T, $〉 is
{〈〈Ti, $i〉, αi〉}mi=1 where

〈Ti, $i〉: transition graph

αi maps states of T to states of Ti such that

initial state maps to initial state
goal states map to goal states

holds
∑m

i=1 d(αi(s), αi(s′)) ≤ d(s, s′)

Abstraction heuristic:
h(s) =

∑m
i=1 d(αi(s), S?

i) is (trivially) admissible

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

(Additive) Abstractions

Definition (additive abstractions)

Additive abstraction of transition graph 〈T, $〉 is
{〈〈Ti, $i〉, αi〉}mi=1 where

〈Ti, $i〉: transition graph

αi maps states of T to states of Ti such that

initial state maps to initial state
goal states map to goal states

holds
∑m

i=1 d(αi(s), αi(s′)) ≤ d(s, s′)

Abstraction heuristic:
h(s) =

∑m
i=1 d(αi(s), S?

i) is (trivially) admissible

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Projections

Widely-exploited idea: projections
; map states to abstract states with perfect hash function

Definition (projection)

Projection Π[V ′] to variables V ′ ⊆ V : homomorphism α where
α(s) = α(s′) iff s and s′ agree on V ′

Π/V

Π1/V1 Π2/V2 Π3/V3

V1, V2, V3 ⊂ V

Each a ∈ A satisfies C(a) ≥
∑m

i=1 Ci(a[Vi])

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Example
Copyrights: Malte Helmert

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

one package, two trucks, two locations

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Example: Projection (1)

Project to {package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Example: Projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Example: Projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Problems of Projections

No tricks: abstract spaces are searched exhaustively

; must keep number of reflected variables in each projection
small (≤ O(log(|V |)))

; (often) price in heuristic accuracy in long-run

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Structural Abstraction Heuristics: Main Idea

Objective

(Katz & D, 2008a):

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Structural Abstraction Heuristics: Main Idea

Objective

(Katz & D, 2008a):

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How

Abstracting Π by an instance of a tractable fragment of
cost-optimal planning

/ not many such known tractable fragments

, should find more, and useful for us!

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Structural Abstraction Heuristics: Main Idea

Objective

(Katz & D, 2008a):

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How

Abstracting Π by an instance of a tractable fragment of
cost-optimal planning

/ not many such known tractable fragments

, should find more, and useful for us!

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Here Come the Forks!

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Running Example

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

V = {p1, p2, c1, c2, c3, t}
dom(p1) = dom(p2) = {A,B,C,D,E, F,G, c1, c2, c3, t}
dom(c1) = dom(c2) = {A,B,C,D}
dom(c3) = {E,F,G}
dom(t) = {D,E}
s0, G 7→ see picture

A 7→ loads, unloads, single-segment movements

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Causal Graph + Domain Transition Graphs

A

C

D

B

E

F

G

D E at A at B at C at D at E at F at G

in c!

in c" in t

in c#

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

c! c" c# t

p! p"

p1, p2

c1, c2 c3

t

CG(Π)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Fork-Decomposition (Additive Abstractions)

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

CG(Π)

{ΠGf
v

,ΠG if
v

}v∈V

ΠGf
c1

ΠG if
p1

Π

+ ensuring proper action cost partitioning

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Action Cost Partitioning = Gluing Things Together

;

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Works?
Problem!

Forks and Inverted Forks are Hard ...

/ Even non-optimal planning for problems with
fork and inverted fork causal graphs is
NP-complete (D & Dinitz, 2001).

/ Even if the domain-transition graphs of all
variables are strongly connected, optimal
planning for forks and inverted forks remains
NP-hard (Helmert, 2003-04).

; Shall we give up?

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Tractable Cases of Planning with Forks

Theorem (forks)

Cost-optimal planning for fork problems with root r ∈ V is
poly-time if

(i) |dom(r)| = 2, or

(ii) for all v ∈ V , we have |dom(v)| = O(1),

Theorem (inverted forks)

Cost-optimal planning for inverted fork problems with root
r ∈ V is poly-time if |dom(r)| = O(1).

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Tractable Cases of Planning with Forks

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Theorem (inverted forks)

Theorem (inverted forks)

Cost-optimal planning for inverted fork problems with root
r ∈ V is poly-time if |dom(r)| = d = O(1).

Proof sketch (Construction)

(1) Create all Θ(dd) cycle-free paths from s0[r] to G[r] in
DTG(r,Π).

(2) For each u ∈ pred(r), and each x, y ∈ dom(u), compute
the cost-minimal path from x to y in DTG(u,Π).

(3) For each path in DTG(r,Π) generated in step (1),
construct a plan for Π based on that path for r, and the
shortest paths computed in (2).

(4) Take minimal cost plan from (3).

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Mixing Causal-Graph & Variable-Domain
Decompositions

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

{ΠGf
v

,ΠG if
v

}v∈V

CG(Π)

ΠGf
c1

ΠG if
p1

Π

φc1,i : dom(c1) !→ {0, 1} φ′

p1,i : dom(p1) !→ {0, . . . , k}

ΠG if

p1,i
ΠGf

c1,i

+ ensuring proper action cost partitioning

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Back to our example

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

{ΠGf
v

,ΠG if
v

}v∈V

CG(Π)

ΠGf
c1

ΠG if
p1

Π

ΠGf

c1,i
ΠG if

p1,i

φ′

p1,i : dom(p1) !→ {0, 1, 2}φc1,i : dom(c1) !→ {0, 1}

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Back to our example

at A at B at C at D at E at F at G

in c!

in c" in t

in c#

at A at B at C at D at E at F at G

in c!

in c" in t

in c#

at A at B at C at D at E at F at G

in c!

in c" in t

in c#

∀l ∈ Dom(p1) : φ′

p1,i(l) =

0, d(I[p1], l) < 2i − 1

1, d(I[p1], l) = 2i − 1

2, d(I[p1], l) > 2i − 1

φ′

p1,1 φ′

p1,2

φ′

p1,3

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Informative?

(Intractable) Fork Decomposition

d(s0, SG) = 19 hmax = 8 h2 = 13 hFI = 15

hmax (Bonet & Geffner, 2001)

h2 (Haslum & Geffner, 2000)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Informative?

(Intractable) Fork Decomposition

d(s0, SG) = 19 hmax = 8 h2 = 13 hFI = 15

(Tractable) Fork + Variable-Domains Decomposition

d(s0, SG) = 19 hmax = 8 h2 = 13 hFI = 16

Hmm ... what?

Further abstraction gives a more precise estimate??

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Informative?

(Intractable) Fork Decomposition

d(s0, SG) = 19 hmax = 8 h2 = 13 hFI = 15

(Tractable) Fork + Variable-Domains Decomposition

d(s0, SG) = 19 hmax = 8 h2 = 13 hFI = 16

Hmm ... yes, that is possible!

Variable-domains abstraction may eliminate certain
dependencies between the variables
; less dependencies ; less action representatives ;
less action cost erosion ; (potentially) higher estimate

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Performance Evaluation

Option 1: Empirical evaluation

Implement h, plug into A∗, test (comparatively) on standard
benchmark suites

, standard approach, per-problem-instance comparison

/ no conclusions a la
“h expands fewer nodes than h′ on a benchmark suite X”

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Performance Evaluation

Option 1: Empirical evaluation

Implement h, plug into A∗, test (comparatively) on standard
benchmark suites

Option 2: Asymptotic performance analysis
(Helmert and Mattmüller, 2008)

Given suite D and heuristic h, find a value α(h,D) ∈ [0, 1]
such that

(i) for all states s in all problems Π ∈ D,
h(s) ≥ α(h,D) · h∗(s) + o(h∗(s))

(ii) there exist {Πn}n∈N ⊆ D and solvable states {sn}n∈N
with sn ∈ Πn, limn→∞ h

∗(sn) =∞, and
h(sn) ≤ α(h,D) · h∗(sn) + o(h∗(sn))

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Asymptotic Performance Ratios
Selected benchmark suites

Domain h+ hk hPDB hPDB
add hF hI hFI

Gripper 2/3 0 0 2/3 2/3 1/2 2/3

Logistics 3/4 0 0 1/2 1/2 1/2 1/2

Blocksworld 1/4 0 0 0 0 0 0

Miconic 6/7 0 0 1/2 5/6 1/2 1/2

Satellite 1/2 0 0 1/6 1/6 1/6 1/6

ratios for h+, hk, hPDB, hPDB
add are by Helmert and Mattmüller, 2008.

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Asymptotic Performance Ratios
Selected benchmark suites

Domain h+ hk hPDB hPDB
add hF hI hFI

Gripper 2/3 0 0 2/3 2/3 1/2 2/3

Logistics 3/4 0 0 1/2 1/2 1/2 1/2

Blocksworld 1/4 0 0 0 0 0 0

Miconic 6/7 0 0 1/2 5/6 1/2 1/2

Satellite 1/2 0 0 1/6 1/6 1/6 1/6

hPDB
add : optimal, manually-selected set of projections

hFI: non-parametric set of abstractions
basic variable-domain abstractions to binary/ternary

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Action-Cost Partitioning: Back to Projections

Definition (projection)

Projection Π[V ′] to variables V ′ ⊆ V : homomorphism α where
α(s) = α(s′) iff s and s′ agree on V ′

Π/V

Π1/V1 Π2/V2 Π3/V3

V1, V2, V3 ⊂ V

Each a ∈ A satisfies C(a) ≥
∑m

i=1 Ci(a[Vi])

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Action-Cost Partitioning: Back to Projections

Π/V

Π1/V1 Π2/V2 Π3/V3

V1, V2, V3 ⊂ V

C :load(pack,A, L) !→ 0.3

C :drive(A,L,R) !→ 0.0

C3 :load(pack,A, L) !→ 0.3

C3 :drive(A,L,R) !→ 0.0

C2 :load(pack,A, L) !→ 1.0

C2 :drive(A,L,R) !→ 31.3

C1 :load(pack,A, L) !→ 4.1

C1 :drive(A,L,R) !→ 31.3

C :load(pack, A, L) !→ 5.4

C :drive(A, L, R) !→ 62.6

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Action-Cost Partitioning: Back to Projections

Π/V

Π1/V1 Π2/V2 Π3/V3

V1, V2, V3 ⊂ V

C :load(pack,A, L) !→ 0.3

C :drive(A,L,R) !→ 0.0

C3 :load(pack,A, L) !→ 0.3

C3 :drive(A,L,R) !→ 0.0

C2 :load(pack,A, L) !→ 1.0

C2 :drive(A,L,R) !→ 31.3

C1 :load(pack,A, L) !→ 4.1

C1 :drive(A,L,R) !→ 31.3

C :load(pack, A, L) !→ 5.4

C :drive(A, L, R) !→ 62.6

need selecting a good action-cost partition
; optimal action-cost partition?

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Optimizing Action-Cost Partitioning

Pitfalls

/ infinite space of choices

/ decision process should be fully unsupervised

/ decision process should be state-dependent

; “determining which abstractions [action-cost partitions] will

produce additives that are better than max over standards is

still a big research issue.” (Yang et al., JAIR, 2008)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Main Idea

Main Idea

(Katz & D, 2008b):

Instead of searching each abstract transition graph 〈Ti, $i〉
given an action cost partition using dynamic programming

1 compile SSSP problem over each TG-structure Ti into
a linear program Li with action-costs being free variables

2 combine L1, . . . ,Lm with additivity constraints
C(a) ≥

∑m
i=1 Ci(a[Vi])

3 solution of the joint LP ;
; h(s) under optimal action-cost partition

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Main Idea

Main Idea

(Katz & D, 2008b):

Instead of searching each abstract transition graph 〈Ti, $i〉
given an action cost partition using dynamic programming

1 compile SSSP problem over each TG-structure Ti into
a linear program Li with action-costs being free variables

2 combine L1, . . . ,Lm with additivity constraints
C(a) ≥

∑m
i=1 Ci(a[Vi])

3 solution of the joint LP ;
; h(s) under optimal action-cost partition

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Single-Source Shortest Paths: LP Formulation

LP formulation

Given: digraph G = (N,E), source node v ∈ N
LP variables: d(v′) ; shortest-path length from v to v′

LP:

max−→
d

∑
v′

d(v′)

s.t. d(v) = 0
d(v′′) ≤ d(v′) + w(v′, v′′), ∀(v′, v′′) ∈ E

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Step 1: Compile SSSP over Ti into Li

LP formulation

Given: TG-structure Ti, state s
LP variables: {d(s′) | s′ ∈ Si} ∪ {d(S?

i)} ∪ {w(a, i)}
LP:

max d(S?
i)

s.t.

d(s′) ≤ d(s′′) + w(a, i), ∀〈s′′, a, s′〉 ∈ Tri
d(s′) = 0, s′ = s[Vi]

d(S?
i) ≤ d(s′), s′ ∈ S?

i

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Step 2: Properly combine {Li}mi=1

LP formulation

Given: TG-structure{Ti}mi=1 state s
LP variables:

⋃m
i=1{d(s′) | s′ ∈ Si} ∪ {d(S?

i)} ∪ {w(a, i)}
LP:

max
m∑

i=1

d(S?
i)

s.t. ∀i

d(s′) ≤ d(s′′) + w(a, i), ∀〈s′′, a, s′〉 ∈ Tri
d(s′) = 0, s′ = s[Vi]

d(S?
i) ≤ d(s′), s′ ∈ S?

i

∀a ∈ A :
m∑

i=1

w(a, i) ≤ C(a)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Optimizing Action-Cost Partitioning:
Generalization

General theory of LP-optimizable ensembles
of additive heuristic functions

Warning: Any reduction to LP is not enough
; requires (surprising) relation between polyhedron and
planning problem

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Optimizing Action-Cost Partitioning:
Generalization

General theory of LP-optimizable ensembles
of additive heuristic functions

Warning: Any reduction to LP is not enough

Works as above for

projection and variable-domain abstraction (PDB)
heuristics
constrained PDBs heuristics (Haslum et al., 2005)
merge-and-shrink abstractions (Helmert et al., 2007)

Suitable poly-size LPs Li exist also for

fork-decomposition heuristics
tree-COP reducible fragments of tractable cost-optimal
planning (from Katz & D, 2007)
...

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Optimizing Action-Cost Partitioning:
Generalization

General theory of LP-optimizable ensembles
of additive heuristic functions

Warning: Any reduction to LP is not enough

Works as above for

projection and variable-domain abstraction (PDB)
heuristics
constrained PDBs heuristics (Haslum et al., 2005)
merge-and-shrink abstractions (Helmert et al., 2007)

Suitable poly-size LPs Li exist also for

fork-decomposition heuristics
tree-COP reducible fragments of tractable cost-optimal
planning (from Katz & D, 2007)
...

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

LP for Inverted Forks (1)
Given: problem Π, state s, goal G

Variables

−→x = {h∗} ∪
⋃

v∈V ′\{r},
ϑ,ϑ′∈dom(v)

{d(v, ϑ, ϑ′)}.

d(v, ϑ, ϑ′) ; cost of the cheapest sequence of actions
affecting v that changes its value from ϑ to ϑ′

Objective

max {h∗}

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

LP for Inverted Forks (2)
Given: problem Π, state s, goal G

Constraints (I)

For each simple path 〈a1 · . . . · am〉 from s[r] to G[r] in
DTG(r,Π),

h∗ ≤
X

v∈V \{r}

d(v, s0[v], s1[v])+

mX
i=1

0@C(ai) +
X

v∈V ′\{r}

d(v, si[v], si+1[v])

1A
where

si[v] =

8>>><>>>:
s[v], i = 0

G[v], i = m + 1, and G[v] is specified

pre(ai)[v], 1 ≤ i ≤ m, and pre(ai)[v] is specified

si−1[v], otherwise

Semantics: The cost of solving the problem is not greater than the cost of

any cycle-free path of r plus sums of costs of reaching the prevail

conditions of actions on this path and reaching the goal afterwards.

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

LP for Inverted Forks (3)
Given: problem Π, state s, goal G

Constraints (II)

For each v ∈ V \ {r}, ϑ ∈ dom(v),

d(v, ϑ, ϑ) = 0

For each v-changing action a ∈ A,

d(v, ϑ, post(a)[v]) ≤ d(v, ϑ, pre(a)[v]) + C(a)

Semantics: Shortest-path constraints.

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Empirical Evaluation
Are you crazy??

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Empirical Evaluation
Are you crazy?? Well, depends on the moon’s position ;)

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Since September 2008 ...

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Initial State Estimate / Logistics-00
Uniform action-cost partition

h∗ HHH105 hF hI hFI

01 20 20 20/20 18/20 18/20
02 19 19 19/19 15/19 16/19
03 15 15 15/15 11/14 12/15
04 27 27 27/27 24/26 24/27
05 17 17 17/17 14/17 14/17
06 8 8 8/8 7/7 7/8
07 25 25 25/25 21/24 22/25
08 14 14 14/14 11/14 12/14
09 25 25 25/25 22/25 22/25
10 36 36 36/36 30/35 30/36
11 44 42 43/43 36/43 36/44
12 31 31 31/31 26/28 26/31
13 44 43 44/44 38/43 38/44
14 36 35 36/36 30/34 30/36
15 30 30 30/30 26/28 26/30
16 45 27 45/ 45 36/44 36/45
17 42 36 42/42 34/39 34/42
18 48 39 48/48 40/45 40/48
19 60 54 59/59 50/57 50/60
20 42 36 42/42 33/38 34/42
21 68 43 67/67 58/66 58/68

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Initial State Estimate / Logistics-00
From uniform to optimal action-cost partition

h∗ HHH105 hF hI hFI

01 20 20 20/20 18/20 18/20
02 19 19 19/19 15/19 16/19
03 15 15 15/15 11/14 12/15
04 27 27 27/27 24/26 24/27
05 17 17 17/17 14/17 14/17
06 8 8 8/8 7/7 7/8
07 25 25 25/25 21/24 22/25
08 14 14 14/14 11/14 12/14
09 25 25 25/25 22/25 22/25
10 36 36 36/36 30/35 30/36
11 44 42 43/43 36/43 36/44
12 31 31 31/31 26/28 26/31
13 44 43 44/44 38/43 38/44
14 36 35 36/36 30/34 30/36
15 30 30 30/30 26/28 26/30
16 45 27 45/ 45 36/44 36/45
17 42 36 42/42 34/39 34/42
18 48 39 48/48 40/45 40/48
19 60 54 59/59 50/57 50/60
20 42 36 42/42 33/38 34/42
21 68 43 67/67 58/66 58/68

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Planning / Logistics-00
Expanded nodes

h∗ HHH105 hF hFI + opt
nodes time nodes time nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Planning / Logistics-00
Expanded nodes and Time

h∗ HHH105 hF hFI + opt
nodes time nodes time nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Planning / Logistics-00
Shall we redefine the notion of success?...

h∗ HHH105 hF hFI + opt
nodes time nodes time ♠ nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Planning / Logistics-00
No. Structural pattern databases!

h∗ HHH105 hF hFI + opt
nodes time nodes time ♠ nodes time

01 20 21 0.05 21 10.49 0.27 21 20.82
02 19 20 0.04 20 10.4 0.27 20 20.36
03 15 16 0.05 16 5.18 0.27 16 10.85
04 27 28 0.33 28 22.81 0.33 28 47.42
05 17 18 0.34 18 11.72 0.33 18 21.63
06 8 9 0.33 9 2.99 0.33 9 8.89
07 25 26 1.11 26 26.88 0.41 26 53.81
08 14 15 1.12 15 10.37 0.43 15 21.19
09 25 26 1.14 26 27.78 0.41 26 51.52
10 36 37 4.55 37 426.07 3.96 37 973.46
11 44 2460 4.65 1689 14259.8 4.25 45 1355.23
12 31 32 6.5 32 374.48 4.68 32 876.9
13 44 7514 6.84 45 702.29 4.63 45 1621.74
14 36 37 8.94 37 474.8 5.12 37 1153.85
15 30 31 8.84 31 448.86 5.12 31 1052.46
16 45 29319 17.35 46 3517.25 24.73 46 7635.96
17 42 1561610 45.61 43 3297.69 24.13 43 7192.51
18 48 199428 24.95 697 24.73 49 10014.3
19 60 21959 33.61 61 15625.5
20 42 6095 24.9 43 4325.45 29.61 43 9470.85
21 68 106534 61.54 69 22928.4

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Empirical Evaluation

Introduction

Abstractions

Projections

Structural
Abstractions

Performance

Action-Cost
Partitioning

Preliminary
Evaluation

Summary

Summary

Formal results on abstraction-based admissible heuristics

from small projections to structural abstractions

optimal combination of multiple abstractions

Ongoing and future work:

structural pattern databases! (in theaters in 2009?)

more tractability results for (cost-optimal) planning

optimization of patterns selection

optimization of variable-domains abstraction

approximation-oriented structural patterns

...

	Introduction
	Abstractions
	Projections
	Structural Abstractions
	Performance
	Action-Cost Partitioning
	Preliminary Evaluation
	Summary

