Pushing the Envelope of Abstraction-based Admissible Heuristics

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning Preliminary Evaluation

Context

New Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

New Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Classical Planning

Planning task is 5-tuple $\langle V, A, C, s^0, G \rangle$:

- V: finite set of finite-domain state variables
- A: finite set of actions of form (pre, eff) (preconditions/effects; partial variable assignments)
- $\mathcal{C}: A \mapsto \mathbb{R}^{0+}$ captures action cost
- s^0 : initial state (variable assignment)
- G: goal description (partial variable assignment)

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

New Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Cost-Optimal Planning

 $\begin{array}{ll} \mbox{Given:} & \mbox{planning task } \Pi = \langle V, A, s^0, G \rangle \\ \mbox{Find:} & \mbox{operator sequence } a_1 \dots a_n \in A^* \\ & \mbox{transforming } s^0 \mbox{ into some state } s_n \supseteq G, \\ & \mbox{while minimizing } \sum_{i=1}^n \mathcal{C}(a_i) \end{array}$

Approach: A^* + admissible heuristic $h: S \mapsto \mathbb{R}^{0+}$

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning Preliminary

New Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Cost-Optimal Planning

 $\begin{array}{ll} \mbox{Given:} & \mbox{planning task } \Pi = \langle V, A, s^0, G \rangle \\ \mbox{Find:} & \mbox{operator sequence } a_1 \dots a_n \in A^* \\ & \mbox{transforming } s^0 \mbox{ into some state } s_n \supseteq G, \\ & \mbox{while minimizing } \sum_{i=1}^n \mathcal{C}(a_i) \end{array}$

Approach: A^* + admissible heuristic $h: S \mapsto \mathbb{R}^{0+}$

Admissible \equiv underestimate goal distance

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning Preliminary

New Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S'

Well-known: projection (pattern database) heuristics Here we: both generalize and enhance them Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

New Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S'

Well-known: projection (pattern database) heuristics Here we: both generalize and enhance them Introduction Abstractions Projections Structural Abstractions

Action-Cost Partitioning

Preliminary Evaluation

Transition Graphs

Transition graph

TG-structure $\mathcal{T} = (S, L, Tr, s^0, S^{\star})$:

- S: finite set of states
- L: finite set of transition labels
- $Tr \subseteq S \times L \times S$: labelled transitions
- $s^0 \in S$: initial state
- $S^{\star} \subseteq S$: goal states

Transition graph $\langle \mathcal{T}, \varpi \rangle$:

- T: **TG-structure** with labels L
- transition cost function $arpi : L \mapsto \mathbb{R}^{0+}$

(Transition graph of planning task defined in the obvious way.)

Abstractions

projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Transition Graphs

Transition graph

TG-structure $\mathcal{T} = (S, L, Tr, s^0, S^{\star})$:

- S: finite set of states
- L: finite set of transition labels
- $Tr \subseteq S \times L \times S$: labelled transitions
- $s^0 \in S$: initial state
- $S^{\star} \subseteq S$: goal states

Transition graph $\langle T, \varpi \rangle$:

- T: **TG-structure** with labels L
- transition cost function $\varpi: L \mapsto \mathbb{R}^{0+}$

(Transition graph of planning task defined in the obvious way.)

Abstractions Projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Definition (additive abstractions)

Additive abstraction of transition graph $\langle \mathcal{T}, \varpi \rangle$ is $\{\langle \langle \mathcal{T}_i, \varpi_i \rangle, \alpha_i \rangle\}_{i=1}^m$ where

- $\langle T_i, \varpi_i \rangle$: transition graph
- α_i maps states of \mathcal{T} to states of \mathcal{T}_i such that
 - initial state maps to initial state
 - goal states map to goal states
- holds $\sum_{i=1}^{m} d(\alpha_i(s), \alpha_i(s')) \leq d(s, s')$

Abstraction heuristic: $h(s) = \sum_{i=1}^{m} d(\alpha_i(s), S_i^*) \text{ is (trivially) admissibl}$

Abstractions

rojections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Definition (additive abstractions)

Additive abstraction of transition graph $\langle \mathcal{T}, \varpi \rangle$ is $\{\langle \langle \mathcal{T}_i, \varpi_i \rangle, \alpha_i \rangle\}_{i=1}^m$ where

- $\langle T_i, \varpi_i \rangle$: transition graph
- α_i maps states of \mathcal{T} to states of \mathcal{T}_i such that
 - initial state maps to initial state
 - goal states map to goal states
- holds $\sum_{i=1}^m d(\alpha_i(s),\alpha_i(s')) \leq d(s,s')$

Abstraction heuristic:

 $h(s) = \sum_{i=1}^m d(\alpha_i(s), S_i^\star)$ is (trivially) admissible

Abstractions

rojections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Projections

Widely-exploited idea: projections

 \rightsquigarrow map states to abstract states with perfect hash function

Definition (projection)

Projection $\Pi^{[V']}$ to variables $V' \subseteq V$: homomorphism α where $\alpha(s) = \alpha(s')$ iff s and s' agree on V'

Introduction Abstractions

Projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Example Copyrights: Malte Helmert

- one package, two trucks, two locations
- state variable package: $\{L, R, A, B\}$
- state variable truck A: $\{L, R\}$
- state variable truck B: $\{L, R\}$

Introduction Abstractions Projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Example: Projection (1)

Project to {package}:

Introduction Abstractions Projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Example: Projection (2)

Project to {package, truck A}:

Introduction Abstractions Projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Example: Projection (2)

Project to {package, truck A}:

Introduction Abstractions Projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

No tricks: abstract spaces are searched exhaustively

- \sim → must keep number of reflected variables in each projection small ($\leq O(\log(|V|))$)
- ightarrow (often) price in heuristic accuracy in long-run

Introduction Abstractions Projections

Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Structural Abstraction Heuristics: Main Idea

Objective

```
(Katz & D, 2008a):
```

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

Introduction Abstractions Projections Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Structural Abstraction Heuristics: Main Idea

Objective

```
(Katz & D, 2008a):
```

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

 guarantee abstract space can be searched (implicitly) in poly-time

How

Abstracting Π by an instance of a tractable fragment of cost-optimal planning

- Inot many such known tractable fragments
- Should find more, and useful for us!

Introduction Abstractions Projections Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Structural Abstraction Heuristics: Main Idea

Objective

```
(Katz & D, 2008a):
```

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

 guarantee abstract space can be searched (implicitly) in poly-time

How

Abstracting Π by an instance of a tractable fragment of cost-optimal planning

- © not many such known tractable fragments
- © should find more, and useful for us!

Introduction Abstractions Projections Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Here Come the Forks!

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

Running Example

$$V = \{p_1, p_2, c_1, c_2, c_3, t\}$$

$$dom(p_1) = dom(p_2) = \{A, B, C, D, E, F, G, c_1, c_2, c_3, t\}$$

$$dom(c_1) = dom(c_2) = \{A, B, C, D\}$$

$$dom(c_3) = \{E, F, G\}$$

$$dom(t) = \{D, E\}$$

$$s^0, G \mapsto \text{ see picture}$$

$$A \mapsto \text{ loads, unloads, single-segment movements}$$

Introduction Abstractions Projections Structural Abstractions Performance

Causal Graph + Domain Transition Graphs

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning Preliminary Evaluation

Fork-Decomposition (Additive Abstractions)

+ ensuring proper action cost partitioning

Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Action Cost Partitioning = Gluing Things Together

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Forks and Inverted Forks are Hard

- ② Even non-optimal planning for problems with fork and inverted fork causal graphs is NP-complete (D & Dinitz, 2001).
- ② Even if the domain-transition graphs of all variables are strongly connected, optimal planning for forks and inverted forks remains NP-hard (Helmert, 2003-04).

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Evaluation

Summary

 \sim Shall we give up?

Tractable Cases of Planning with Forks

Theorem (forks)

Cost-optimal planning for fork problems with root $r \in V$ is poly-time if

(i)
$$|dom(r)| = 2$$
, or

(ii) for all $v \in V$, we have |dom(v)| = O(1),

Theorem (inverted forks)

Cost-optimal planning for inverted fork problems with root $r \in V$ is poly-time if |dom(r)| = O(1).

Introduction Abstractions Projections Structural Abstractions

Action-Cost Partitioning

Preliminary Evaluation

Tractable Cases of Planning with Forks

"I think you should be more explicit here in step two." Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Theorem (inverted forks)

Theorem (inverted forks)

Cost-optimal planning for inverted fork problems with root $r \in V$ is poly-time if $|dom(r)| = \mathbf{d} = O(1)$.

Proof sketch (Construction)

- (1) Create all $\Theta(d^d)$ cycle-free paths from $s^0[r]$ to G[r] in $DTG(r, \Pi)$.
- (2) For each $u \in \operatorname{pred}(r)$, and each $x, y \in dom(u)$, compute the cost-minimal path from x to y in $DTG(u, \Pi)$.
- (3) For each path in DTG(r, Π) generated in step (1), construct a plan for Π based on that path for r, and the shortest paths computed in (2).

(4) Take minimal cost plan from (3).

Introduction Abstractions Projections Structural Abstractions

Performance

Action-Cost Partitioning

Preliminary Evaluation

Mixing Causal-Graph & Variable-Domain Decompositions

+ ensuring proper action cost partitioning

Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Back to our example

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning Preliminary

Back to our example

$$\forall l \in Dom(p_1): \quad \phi'_{p_1,i}(l) = \begin{cases} 0, d(I[p_1], l) < 2i - 1\\ 1, d(I[p_1], l) = 2i - 1\\ 2, d(I[p_1], l) > 2i - 1 \end{cases}$$

Introduction Abstractions Projections Structural Abstractions **Performance** Action-Cost Partitioning

Preliminary Evaluation

Informative?

(Intractable) Fork Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\max} = 8$ $h^2 = 13$ $h^{\mathfrak{SI}} = 15$

- $h_{\rm max}$ (Bonet & Geffner, 2001)
- *h*² (Haslum & Geffner, 2000)

Introduction Abstractions Projections Structural Abstractions **Performance** Action-Cost

Action-Cost Partitioning

Preliminary Evaluation

Informative?

(Intractable) Fork Decomposition

$$d(s^0, S_G) = 19 \quad \ h_{\max} = 8 \quad \ h^2 = 13 \quad \ h^{\mathcal{H}} = 15$$

(Tractable) Fork + Variable-Domains Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\max} = 8$ $h^2 = 13$ $h^{\mathcal{G}} = 16$

Hmm ... what?

Further abstraction gives a more precise estimate??

Introduction Abstractions Projections Structural Abstractions **Performance** Action-Cost

Preliminary Evaluation

Informative?

(Intractable) Fork Decomposition

$$d(s^0, S_G) = 19 \quad h_{\max} = 8 \quad h^2 = 13 \quad h^{\mathcal{F}} = 15$$

(Tractable) Fork + Variable-Domains Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\max} = 8$ $h^2 = 13$ $h^{\mathcal{FI}} = 16$

Hmm ... yes, that is possible!

Variable-domains abstraction may eliminate certain dependencies between the variables \sim less dependencies \sim less action representatives \sim less action cost erosion \sim (potentially) higher estimate

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost

Preliminary Evaluation

Performance Evaluation

Option 1: Empirical evaluation

Implement h, plug into A^{*}, test (comparatively) on standard benchmark suites

- © standard approach, per-problem-instance comparison
- © no conclusions a la

"h expands fewer nodes than h' on a benchmark suite X"

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Performance Evaluation

Option 1: Empirical evaluation

Implement h, plug into A^* , test (comparatively) on standard benchmark suites

Option 2: Asymptotic performance analysis (Helmert and Mattmüller, 2008)

Given suite \mathcal{D} and heuristic h, find a value $\alpha(h, \mathcal{D}) \in [0, 1]$ such that

(i) for all states s in all problems $\Pi\in\mathcal{D}$, $h(s)\geq\alpha(h,\mathcal{D})\cdot h^*(s)+o(h^*(s))$

(ii) there exist $\{\Pi_n\}_{n\in\mathbb{N}}\subseteq\mathcal{D}$ and solvable states $\{s_n\}_{n\in\mathbb{N}}$ with $s_n\in\Pi_n$, $\lim_{n\to\infty}h^*(s_n)=\infty$, and $h(s_n)\leq\alpha(h,\mathcal{D})\cdot h^*(s_n)+o(h^*(s_n))$ Introduction Abstractions Projections Structural Abstractions **Performance** Action-Cost Partitioning

Preliminary Evaluation

Asymptotic Performance Ratios Selected benchmark suites

Domain	h^+	h^k	h^{PDB}	$h_{\sf add}^{\sf PDB}$	$h^{\mathfrak{F}}$	$h^{\mathfrak{I}}$	$h^{{ m FI}}$
Gripper	2/3	0	0	2/3	2/3	1/2	2/3
Logistics	3/4	0	0	1/2	1/2	1/2	1/2
Blocksworld	1/4	0	0	0	0	0	0
Miconic	6/7	0	0	1/2	5/6	1/2	1/2
SATELLITE	1/2	0	0	1/6	1/6	1/6	1/6

ratios for h^+ , h^k , h^{PDB} , $h^{\text{PDB}}_{\text{add}}$ are by Helmert and Mattmüller, 2008.

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Asymptotic Performance Ratios Selected benchmark suites

Domain	h^+	h^k	h^{PDB}	$h_{\sf add}^{\sf PDB}$	$h^{\mathfrak{F}}$	$h^{\mathfrak{I}}$	$h^{{ m FI}}$
Gripper	2/3	0	0	2/3	2/3	1/2	2/3
Logistics	3/4	0	0	1/2	1/2	1/2	1/2
Blocksworld	1/4	0	0	0	0	0	0
Miconic	6/7	0	0	1/2	5/6	1/2	1/2
SATELLITE	1/2	0	0	1/6	1/6	1/6	1/6

 $h_{\text{add}}^{\text{PDB}}$: optimal, manually-selected set of projections

 $h^{\mathcal{H}}$: non-parametric set of abstractions basic variable-domain abstractions to binary/ternary Introduction Abstractions Projections Structural Abstractions **Performance** Action-Cost Partitioning

Action-Cost Partitioning: Back to Projections

Definition (projection)

Projection $\Pi^{[V']}$ to variables $V' \subseteq V$: homomorphism α where $\alpha(s) = \alpha(s')$ iff s and s' agree on V'

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning Preliminary

Action-Cost Partitioning: Back to Projections

Action-Cost Partitioning: Back to Projections

need selecting a good action-cost partition \sim optimal action-cost partition?

Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Optimizing Action-Cost Partitioning

Pitfalls

- Infinite space of choices
- © decision process should be fully unsupervised
- © decision process should be state-dependent

 "determining which abstractions [action-cost partitions] will produce additives that are better than max over standards is still a big research issue." (Yang et al., JAIR, 2008) Introduction Abstractions Projections Structural Abstractions Performance Action-Cost

Action-Cost Partitioning

Preliminary Evaluation

Main Idea

(Katz & D, 2008b):

Instead of searching each abstract transition graph $\langle T_i, \varpi_i \rangle$ given an action cost partition using dynamic programming

compile SSSP problem over each TG-structure T_i into a linear program L_i with action-costs being free variables

2 combine $\mathscr{L}_1, \ldots, \mathscr{L}_m$ with additivity constraints $\mathcal{C}(a) \geq \sum_{i=1}^m \mathcal{C}_i(a^{[V_i]})$

 ${ extsf{3}}$ solution of the joint LP ${ imes}$

ightarrow h(s) under optimal action-cost partition

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Main Idea

(Katz & D, 2008b):

Instead of searching each abstract transition graph $\langle T_i, \varpi_i \rangle$ given an action cost partition using dynamic programming

 compile SSSP problem over each TG-structure T_i into a linear program L_i with action-costs being free variables

2 combine $\mathscr{L}_1, \ldots, \mathscr{L}_m$ with additivity constraints $\mathcal{C}(a) \ge \sum_{i=1}^m \mathcal{C}_i(a^{[V_i]})$

Solution of the joint LP → → h(s) under optimal action-cost partition Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

LP formulation

Given: digraph G = (N, E), source node $v \in N$ LP variables: $d(v') \rightsquigarrow$ shortest-path length from v to v'LP:

$$\max_{\overrightarrow{d}} \sum_{v'} d(v')$$

s.t. $d(v) = 0$
 $d(v'') \le d(v') + w(v', v''), \quad \forall (v', v'') \in E$

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Step 1: Compile SSSP over \mathcal{T}_i into \mathscr{L}_i

LP formulation

Given: TG-structure \mathcal{T}_i , state sLP variables: $\{d(s') \mid s' \in S_i\} \cup \{d(S_i^{\star})\} \cup \{w(a, i)\}$ LP:

$$\begin{array}{ll} \max \ d(S_{i}^{\star}) \\ \text{s.t.} & \begin{cases} d(s') \leq d(s'') + w(a,i), & \forall \langle s'', a, s' \rangle \in Tr_{i} \\ d(s') = 0, & s' = s^{[V_{i}]} \\ d(S_{i}^{\star}) \leq d(s'), & s' \in S_{i}^{\star} \end{cases}$$

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Evaluation

Step 2: Properly combine $\{\mathscr{L}_i\}_{i=1}^m$

LP formulation

Given: TG-structure $\{\mathcal{T}_i\}_{i=1}^m$ state sLP variables: $\bigcup_{i=1}^m \{d(s') \mid s' \in S_i\} \cup \{d(S_i^\star)\} \cup \{w(a,i)\}$ LP: max $\sum_{i=1}^m d(S_i^\star)$

s.t.
$$\forall i \begin{cases} d(s') \leq d(s'') + w(a, i), & \forall \langle s'', a, s' \rangle \in Tr_i \\ d(s') = 0, & s' = s^{[V_i]} \\ d(S_i^{\star}) \leq d(s'), & s' \in S_i^{\star} \end{cases}$$
$$\forall a \in A : \sum_{i=1}^m w(a, i) \leq \mathcal{C}(a)$$

Optimizing Action-Cost Partitioning: Generalization

General theory of LP-optimizable ensembles of additive heuristic functions

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Optimizing Action-Cost Partitioning: Generalization

General theory of LP-optimizable ensembles of additive heuristic functions

- Warning: Any reduction to LP is not enough
- Works as above for
 - projection and variable-domain abstraction (PDB) heuristics
 - constrained PDBs heuristics (Haslum et al., 2005)
 - merge-and-shrink abstractions (Helmert et al., 2007)
- Suitable poly-size LPs \mathscr{L}_i exist also for
 - fork-decomposition heuristics
 - tree-COP reducible fragments of tractable cost-optimal planning (from Katz & D, 2007)

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Summary

• ...

Optimizing Action-Cost Partitioning: Generalization

General theory of LP-optimizable ensembles of additive heuristic functions

- Warning: Any reduction to LP is not enough
- Works as above for
 - projection and variable-domain abstraction (PDB) heuristics
 - constrained PDBs heuristics (Haslum et al., 2005)
 - merge-and-shrink abstractions (Helmert et al., 2007)
- Suitable poly-size LPs \mathscr{L}_i exist also for
 - fork-decomposition heuristics
 - tree-COP reducible fragments of tractable cost-optimal planning (from Katz & D, 2007)

Introduction Abstractions Projections Structural Abstractions Performance

Action-Cost Partitioning

Preliminary Evaluation

Summary

• ...

LP for Inverted Forks (1) Given: problem Π , state s, goal G

Variables

$$\overrightarrow{x} = \{h^*\} \cup \bigcup_{\substack{v \in V' \setminus \{r\},\\ \vartheta, \vartheta' \in dom(v)}} \{d(v, \vartheta, \vartheta')\}.$$

 $d(v, \vartheta, \vartheta') \rightsquigarrow$ cost of the cheapest sequence of actions affecting v that changes its value from ϑ to ϑ'

Objective

$\max \{h^*\}$

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

LP for Inverted Forks (2) Given: problem Π , state s, goal G

Constraints (I)

For each simple path $\langle a_1\cdot\ldots\cdot a_m\rangle$ from s[r] to G[r] in $\textit{DTG}(r,\Pi),$

$$h^* \leq \sum_{v \in V \setminus \{r\}} d(v, s_0[v], s_1[v]) + \sum_{i=1}^m \left(\mathcal{C}(a_i) + \sum_{v \in V' \setminus \{r\}} d(v, s_i[v], s_{i+1}[v]) \right)$$

where

$$s_i[v] = \begin{cases} s[v], & i = 0\\ G[v], & i = m + 1, \text{ and } G[v] \text{ is specified} \\ \operatorname{pre}(a_i)[v], & 1 \le i \le m, \text{ and } \operatorname{pre}(a_i)[v] \text{ is specified} \\ s_{i-1}[v], & \text{otherwise} \end{cases}$$

Semantics: The cost of solving the problem is not greater than the cost of any cycle-free path of r plus sums of costs of reaching the prevail conditions of actions on this path and reaching the goal afterwards.

LP for Inverted Forks (3) Given: problem Π , state s, goal G

Constraints (II)

For each $v \in V \setminus \{r\}$, $\vartheta \in dom(v)$,

$$d(v,\vartheta,\vartheta)=0$$

For each v-changing action $a \in A$,

 $d(v, \vartheta, \mathsf{post}(a)[v]) \le d(v, \vartheta, \mathsf{pre}(a)[v]) + \mathcal{C}(a)$

Semantics: Shortest-path constraints.

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

Empirical Evaluation

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

Empirical Evaluation Are you crazy?? Well, depends on the moon's position ;)

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

Since September 2008 ...

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

Initial State Estimate / Logistics-00

Uniform action-cost partition

#	h^*	HHH_{10^5}	$h^{\mathcal{F}}$	$h^{\mathfrak{I}}$	h^{FJ}
01	20	20	20 /20	18 /20	18 /20
02	19	19	19 /19	15 /19	16 /19
03	15	15	15 /15	11 /14	12/15
04	27	27	27 /27	24 /26	24/27
05	17	17	17 /17	14/17	14/17
06	8	8	8/8	7/7	7/8
07	25	25	25 /25	21 /24	22/25
08	14	14	14 /14	11 /14	12/14
09	25	25	25 /25	22 /25	22/25
10	36	36	36 /36	30 /35	30/36
11	44	42	43 /43	36 /43	36/44
12	31	31	31 /31	26 /28	26/31
13	44	43	44 /44	38/43	38/44
14	36	35	36 /36	30 /34	30/36
15	30	30	30 /30	26 /28	26/30
16	45	27	45 /45	36/44	36/45
17	42	36	42 /42	34/39	34/42
18	48	39	48 /48	40 /45	40/48
19	60	54	59 /59	50 /57	50/60
20	42	36	42 /42	33 /38	34/42
21	68	43	67 /67	58 /66	58/68

Action-Cost Partitioning

Initial State Estimate / Logistics-00

From uniform to optimal action-cost partition

#	h^*	HHH_{10^5}	$h^{\mathfrak{F}}$	$h^{\mathfrak{I}}$	h^{FJ}
01	20	20	20/20	18/20	18/20
02	19	19	19/19	15/19	16/19
03	15	15	15/15	11/14	12/15
04	27	27	27/27	24/26	24/27
05	17	17	17/17	14/17	14/17
06	8	8	8/8	7/7	7/8
07	25	25	25/25	21/24	22/25
08	14	14	14/14	11/14	12/14
09	25	25	25/25	22/25	22/25
10	36	36	36/36	30/35	30/36
11	44	42	43/43	36/43	36/44
12	31	31	31/31	26/28	26/31
13	44	43	44/44	38/43	38/44
14	36	35	36/36	30/34	30/36
15	30	30	30/30	26/28	26/30
16	45	27	45/45	36/44	36/45
17	42	36	42/42	34/39	34/42
18	48	39	48/48	40/45	40/48
19	60	54	59/59	50/57	50/60
20	42	36	42/42	33/38	34/42
21	68	43	67/67	58/66	58/68

Action-Cost Partitioning

Planning / Logistics-00 Expanded nodes

#	h^*	HHH ₁₀₅			$h^{\mathcal{F}}$		$h^{\mathfrak{FI}}$	+ opt
		nodes	time	nodes	time		nodes	time
01	20	21	0.05	21	10.49		21	20.82
02	19	20	0.04	20	10.4		20	20.36
03	15	16	0.05	16	5.18		16	10.85
04	27	28	0.33	28	22.81		28	47.42
05	17	18	0.34	18	11.72		18	21.63
06	8	9	0.33	9	2.99		9	8.89
07	25	26	1.11	26	26.88		26	53.81
08	14	15	1.12	15	10.37		15	21.19
09	25	26	1.14	26	27.78		26	51.52
10	36	37	4.55	37	426.07		37	973.46
11	44	2460	4.65	1689	14259.8		45	1355.23
12	31	32	6.5	32	374.48		32	876.9
13	44	7514	6.84	45	702.29		45	1621.74
14	36	37	8.94	37	474.8		37	1153.85
15	30	31	8.84	31	448.86		31	1052.46
16	45	29319	17.35	46	3517.25		46	7635.96
17	42	1561610	45.61	43	3297.69		43	7192.51
18	48	199428	24.95				49	10014.3
19	60						61	15625.5
20	42	6095	24.9	43	4325.45		43	9470.85
21	68						69	22928.4

Planning / Logistics-00 Expanded nodes and Time

#	h^*	HHH ₁₀₅			$h^{\mathcal{F}}$			$h^{\mathcal{FI}} + opt$	
		nodes	time	nodes	time		nodes	time	
01	20	21	0.05	21	10.49		21	20.82	
02	19	20	0.04	20	10.4		20	20.36	
03	15	16	0.05	16	5.18		16	10.85	
04	27	28	0.33	28	22.81		28	47.42	
05	17	18	0.34	18	11.72		18	21.63	
06	8	9	0.33	9	2.99		9	8.89	
07	25	26	1.11	26	26.88		26	53.81	
08	14	15	1.12	15	10.37		15	21.19	
09	25	26	1.14	26	27.78		26	51.52	
10	36	37	4.55	37	426.07		37	973.46	
11	44	2460	4.65	1689	14259.8		45	1355.23	
12	31	32	6.5	32	374.48		32	876.9	
13	44	7514	6.84	45	702.29		45	1621.74	
14	36	37	8.94	37	474.8		37	1153.85	
15	30	31	8.84	31	448.86		31	1052.46	
16	45	29319	17.35	46	3517.25		46	7635.96	
17	42	1561610	45.61	43	3297.69		43	7192.51	
18	48	199428	24.95				49	10014.3	
19	60						61	15625.5	
20	42	6095	24.9	43	4325.45		43	9470.85	
21	68						69	22928.4	

#	h^*	HHH ₁₀₅			$h^{\mathcal{F}}$			+ opt
		nodes	time	nodes	time	•	nodes	time
01	20	21	0.05	21	10.49		21	20.82
02	19	20	0.04	20	10.4		20	20.36
03	15	16	0.05	16	5.18		16	10.85
04	27	28	0.33	28	22.81		28	47.42
05	17	18	0.34	18	11.72		18	21.63
06	8	9	0.33	9	2.99		9	8.89
07	25	26	1.11	26	26.88		26	53.81
08	14	15	1.12	15	10.37		15	21.19
09	25	26	1.14	26	27.78		26	51.52
10	36	37	4.55	37	426.07		37	973.46
11	44	2460	4.65	1689	14259.8		45	1355.23
12	31	32	6.5	32	374.48		32	876.9
13	44	7514	6.84	45	702.29		45	1621.74
14	36	37	8.94	37	474.8		37	1153.85
15	30	31	8.84	31	448.86		31	1052.46
16	45	29319	17.35	46	3517.25		46	7635.96
17	42	1561610	45.61	43	3297.69		43	7192.51
18	48	199428	24.95				49	10014.3
19	60						61	15625.5
20	42	6095	24.9	43	4325.45		43	9470.85
21	68						69	22928.4

#	h^*	HHH ₁	05		$h^{\mathcal{F}}$			$h^{\mathcal{F}}$ + opt	
		nodes	time	nodes	time	A 1	nodes	time	
01	20	21	0.05	21	10.49	0.27	21	20.82	
02	19	20	0.04	20	10.4	0.27	20	20.36	
03	15	16	0.05	16	5.18	0.27	16	10.85	
04	27	28	0.33	28	22.81	0.33	28	47.42	
05	17	18	0.34	18	11.72	0.33	18	21.63	
06	8	9	0.33	9	2.99	0.33	9	8.89	
07	25	26	1.11	26	26.88	0.41	26	53.81	
08	14	15	1.12	15	10.37	0.43	15	21.19	
09	25	26	1.14	26	27.78	0.41	26	51.52	
10	36	37	4.55	37	426.07	3.96	37	973.46	
11	44	2460	4.65	1689	14259.8	4.25	45	1355.23	
12	31	32	6.5	32	374.48	4.68	32	876.9	
13	44	7514	6.84	45	702.29	4.63	45	1621.74	
14	36	37	8.94	37	474.8	5.12	37	1153.85	
15	30	31	8.84	31	448.86	5.12	31	1052.46	
16	45	29319	17.35	46	3517.25	24.73	46	7635.96	
17	42	1561610	45.61	43	3297.69	24.13	43	7192.51	
18	48	199428	24.95	697		24.73	49	10014.3	
19	60			21959		33.61	61	15625.5	
20	42	6095	24.9	43	4325.45	29.61	43	9470.85	
21	68			106534		61.54	69	22928.4	

ntroduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation

Empirical Evaluation

Introduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning Preliminary

Evaluation

Summary

Formal results on abstraction-based admissible heuristics

- from small projections to structural abstractions
- optimal combination of multiple abstractions

Ongoing and future work:

- structural pattern databases! (in theaters in 2009?)
- more tractability results for (cost-optimal) planning
- optimization of patterns selection
- optimization of variable-domains abstraction
- approximation-oriented structural patterns

ntroduction Abstractions Projections Structural Abstractions Performance Action-Cost Partitioning

Preliminary Evaluation