Handlungsplanung

M. Helmert G. Röger, P. Eyerich Wintersemester 2008/2009 Universität Freiburg Institut für Informatik

Übungsblatt 9 Abgabe: 23. Dezember 2008

 ${\bf Aufgabe~9.1~(Finite-Domain-Repr\"{a}sentation,\,1.5+1.5+3~Punkte)}$

Betrachten Sie die propositionale Blocksworld-Planungsaufgabe $\Pi = \langle A, I, O, G \rangle$ mit

• der Variablenmenge

$$A = \{A\text{-}clear, B\text{-}clear, C\text{-}clear, A\text{-}on\text{-}B, A\text{-}on\text{-}C, A\text{-}on\text{-}T, B\text{-}on\text{-}A, B\text{-}on\text{-}C, B\text{-}on\text{-}T, C\text{-}on\text{-}A, C\text{-}on\text{-}B, C\text{-}on\text{-}T}\}$$

- I(a) = 1 für $a \in \{B\text{-}on\text{-}T, A\text{-}on\text{-}B, A\text{-}clear, C\text{-}on\text{-}T, C\text{-}clear}\}$ I(a) = 0 sonst
- O enthält für paarweise verschiedene $X,Y,Z\in\{A,B,C\}$ die Aktionen

$$\begin{aligned} \operatorname{move-}X\text{-}Y\text{-}Z &= \langle X\text{-}on\text{-}Y \wedge X\text{-}clear \wedge Z\text{-}clear,} \\ \neg X\text{-}on\text{-}Y \wedge Y\text{-}clear \wedge X\text{-}on\text{-}Z \wedge \neg Z\text{-}clear \rangle \\ \operatorname{move-}X\text{-}\operatorname{Table-}Z &= \langle X\text{-}on\text{-}T \wedge X\text{-}clear \wedge Z\text{-}clear,} \\ \neg X\text{-}on\text{-}T \wedge X\text{-}on\text{-}Z \wedge \neg Z\text{-}clear \rangle \\ \operatorname{move-}X\text{-}Y\text{-}\operatorname{Table} &= \langle X\text{-}on\text{-}Y \wedge X\text{-}clear,} \\ \neg X\text{-}on\text{-}Y \wedge Y\text{-}clear \wedge X\text{-}on\text{-}T \rangle \end{aligned}$$

• $G = B\text{-}on\text{-}C \wedge C\text{-}on\text{-}A$.

Eine Planungsaufgabe $\Pi' = \langle V, I', O', G' \rangle$ in Finite-Domain-Repräsentation ist äquivalent zu der propositionalen Planungsaufgabe Π , wenn es einen Isomorphismus zwischen der von Π' induzierten propositionalen Planungsaufgabe $\Pi'' = \langle A'', I'', O'', G'' \rangle$ und Π gibt.

Das heißt, es muss injektive Abbildungen $f: S \mapsto S''$ und $g: O \mapsto O''$ geben (wobei S die erreichbaren Zustände von Π sind und S'' die Zustände von Π''), so dass gilt:

- $\bullet \ I^{\prime\prime}=f(I)$
- Für erreichbare Zustände s_1, s_2 mit $s_2 = app_o(s_1)$ gilt $f(s_2) = app_{q(o)}(f(s_1))$.
- Für alle erreichbaren Zustände $s \in S$ gilt $s \models G$ genau dann, wenn $f(s) \models G''$.
- (a) Für Π kann man die folgenden Mutexgruppen finden:

$$L_{1} = \{B\text{-}on\text{-}A, C\text{-}on\text{-}A, A\text{-}clear\}$$

$$L_{2} = \{A\text{-}on\text{-}B, C\text{-}on\text{-}B, B\text{-}clear\}$$

$$L_{3} = \{A\text{-}on\text{-}C, B\text{-}on\text{-}C, C\text{-}clear\}$$

$$L_{4} = \{A\text{-}on\text{-}B, A\text{-}on\text{-}C, A\text{-}on\text{-}T}\}$$

$$L_{5} = \{B\text{-}on\text{-}A, B\text{-}on\text{-}C, B\text{-}on\text{-}T}\}$$

$$L_{6} = \{C\text{-}on\text{-}A, C\text{-}on\text{-}B, C\text{-}on\text{-}T}\}$$

Verwenden Sie diese Mutexguppen, um eine zu Π äquivalente Planungsaufgabe Π' in Finite-Domain-Repräsentation anzugeben. Benennen Sie die Variablen dabei sinnvoll (z.B. analog zu den Beispielen in der Vorlesung).

- (b) Geben Sie die von Π' induzierte propositionale Planungsaufgabe Π'' an.
- (c) Zeigen Sie, dass Ihre Planungsaufgabe Π' äquivalent zu Π ist. Geben Sie also Funktionen $f: S \mapsto S''$ und $g: O \mapsto O''$ an, und zeigen Sie, dass sie die geforderten Eigenschaften haben.

Aufgabe 9.2 (Abstraktionsheuristiken, 2+2 Punkte)

Ein Zustand im 15-Puzzle ist gegeben durch eine Permutation $\langle b, t_1, \dots, t_{15} \rangle$ von $\{1, \dots, 16\}$, wobei b das leere Feld bezeichnet und die anderen Komponenten die Positionen der 15 Plättchen. Sei $T^1 = \{t_1^1, \dots, t_n^1\}, T^2 = \{t_1^2, \dots, t_m^2\}$ mit $1 \leq n, m \leq 14$ eine Partitionierung von $\{t_1, \dots, t_{15}\}$ (d.h., dass $T^1 \cup T^2 = \{t_1, \dots, t_{15}\}$ und $T^1 \cap T^2 = \emptyset$). Betrachten Sie die folgenden Abstraktions-Abbildungen:

- (a) $\alpha_1(\langle b, t_1^1, \dots, t_{15} \rangle) = \langle b, t_1^1, \dots, t_m^1 \rangle$
- (b) $\alpha_2(\langle b, t_1, ..., t_{15} \rangle) = \langle b, t_1^2, ..., t_n^2 \rangle$
- (c) $\alpha_3(\langle b, t_1, \dots, t_{15} \rangle) = \langle t_1^1, \dots, t_m^1 \rangle$
- (d) $\alpha_4(\langle b, t_1, \dots, t_{15} \rangle) = \langle t_1^2, \dots, t_n^2 \rangle$

Für $1 \le i \le 4$ entsprechen die heuristischen Werte der Heuristik h_i den Kosten, das Puzzle im jeweils entstehenden Abstraktionsraum optimal zu lösen (es ist also $h_i(s) = h^*(\alpha_i(s))$. Zeigen Sie:

- (a) h_1+h_2 ist keine zulässige Heuristik.
- (b) h_3+h_4 ist eine zulässige Heuristik.

Die Übungsblätter dürfen in Gruppen von zwei Studenten bearbeitet werden. Bitte schreiben Sie beide Namen auf Ihre Lösung.