
Principles of AI Planning
13. Computational complexity of classical planning

Malte Helmert

Albert-Ludwigs-Universität Freiburg

January 30th, 2009

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 1 / 24

Principles of AI Planning
January 30th, 2009 — 13. Computational complexity of classical planning

Motivation

Background
Turing machines
Complexity classes

Complexity of propositional planning
Plan existence and bounded plan existence
PSPACE-completeness

More complexity results

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 2 / 24

Motivation

How hard is planning?

I We have seen that planning can be done in time polynomial in the
size of the transition system.

I However, we have not seen algorithms which are polynomial in the
input size (size of the task description).

 What is the precise computational complexity of the planning
problem?

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 3 / 24

Motivation

Why computational complexity?

I understand the problem

I know what is not possible

I find interesting subproblems that are easier to solve
I distinguish essential features from syntactic sugar

I Is STRIPS planning easier than general planning?
I Is planning for FDR tasks harder than for propositional tasks?

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 4 / 24

Background Turing machines

Nondeterministic Turing machines

Definition (nondeterministic Turing machine)

A nondeterministic Turing machine (NTM) is a 6-tuple 〈Σ,�,Q, q0, qY, δ〉
with the following components:

I input alphabet Σ and blank symbol � /∈ Σ
I alphabets always nonempty and finite
I tape alphabet Σ� = Σ ∪ {�}

I finite set Q of internal states with initial state q0 ∈ Q and accepting
state qY ∈ Q

I nonterminal states Q ′ := Q \ {qY}
I transition relation δ ⊆ (Q ′ × Σ�)× (Q × Σ� × {−1,+1})

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 5 / 24

Background Turing machines

Deterministic Turing machines

Definition (deterministic Turing machine)

A deterministic Turing machine (DTM) is an NTM where the transition
relation is functional, i. e., for all 〈q, a〉 ∈ Q ′ × Σ�, there is exactly one
triple 〈q′, a′,∆〉 with 〈〈q, a〉, 〈q′, a′,∆〉〉 ∈ δ.

Notation: We write δ(q, a) for the unique triple 〈q′, a′,∆〉 such that
〈〈q, a〉, 〈q′, a′,∆〉〉 ∈ δ.

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 6 / 24

Background Turing machines

Turing machine configurations

Definition (Configuration)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM.

A configuration of M is a triple 〈w , q, x〉 ∈ Σ∗
� × Q × Σ+

�.

I w : tape contents before tape head

I q: current state

I x : tape contents after and including tape head

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 7 / 24

Background Turing machines

Turing machine transitions

Definition (yields relation)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM.

A configuration c of M yields a configuration c ′ of M,
in symbols c ` c ′, as defined by the following rules,
where a, a′, b ∈ Σ�, w , x ∈ Σ∗

�, q, q′ ∈ Q and 〈〈q, a〉, 〈q′, a′,∆〉〉 ∈ δ:

(w , q, ax) ` (wa′, q′, x) if ∆ = +1, |x | ≥ 1

(w , q, a) ` (wa′, q′,�) if ∆ = +1

(wb, q, ax) ` (w , q′, ba′x) if ∆ = −1

(ε, q, ax) ` (ε, q′,�a′x) if ∆ = −1

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 8 / 24

Background Turing machines

Accepting configurations

Definition (accepting configuration, time)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM,
let c = 〈w , q, x〉 be a configuration of M, and let n ∈ N0.

I If q = qY, M accepts c in time n.

I If q 6= qY and M accepts some c ′ with c ` c ′ in time n, then M
accepts c in time n + 1.

Definition (accepting configuration, space)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM,
let c = 〈w , q, x〉 be a configuration of M, and let n ∈ N0.

I If q = qY and |w |+ |x | ≤ n, M accepts c in space n.

I If q 6= qY and M accepts some c ′ with c ` c ′ in space n, then M
accepts c in space n.

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 9 / 24

Background Turing machines

Accepting words and languages

Definition (accepting words)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM.

M accepts the word w ∈ Σ∗ in time (space) n ∈ N0

iff M accepts (ε, q0,w) in time (space) n.

I Special case: M accepts ε in time (space) n ∈ N0

iff M accepts (ε, q0,�) in time (space) n.

Definition (accepting languages)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM, and let f : N0 → N0.

M accepts the language L ⊆ Σ∗ in time (space) f
iff M accepts each word w ∈ L in time (space) f (|w |),
and M does not accept any word w /∈ L (in any time/space).

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 10 / 24

Background Complexity classes

Time and space complexity classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 11 / 24

Background Complexity classes

Polynomial time and space classes

Let P be the set of polynomials p : N0 → N0 whose coefficients are
natural numbers.

Definition (P, NP, PSPACE, NPSPACE)
P =

⋃
p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)

PSPACE =
⋃

p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 12 / 24

Background Complexity classes

Polynomial complexity class relationships

Theorem (complexity class hierarchy)

P ⊆ NP ⊆ PSPACE = NPSPACE

Proof.
P ⊆ NP and PSPACE ⊆ NPSPACE is obvious because deterministic
Turing machines are a special case of nondeterministic ones.

NP ⊆ NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result known as
Savitch’s theorem (Savitch 1970).

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 13 / 24

Complexity of planning (Bounded) plan existence

The propositional planning problem

Definition (plan existence)

The plan existence problem (PlanEx)
is the following decision problem:

Given: Planning task Π
Question: Is there a plan for Π?

 decision problem analogue of satisficing planning

Definition (bounded plan existence)

The bounded plan existence problem (PlanLen)
is the following decision problem:

Given: Planning task Π, length bound K ∈ N0

Question: Is there a plan for Π of length at most K?

 decision problem analogue of optimal planning

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 14 / 24

Complexity of planning (Bounded) plan existence

Plan existence vs. bounded plan existence

Theorem (reduction from PlanEx to PlanLen)

PlanEx ≤p PlanLen

Proof.
A propositional planning task with n state variables has a plan
iff it has a plan of length at most 2n − 1.

 map instance Π of PlanEx to instance 〈Π, 2n − 1〉 of PlanLen,
where n is the number of n state variables of Π

 polynomial reduction

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 15 / 24

Complexity of planning PSPACE-completeness

Membership in PSPACE

Theorem (PSPACE membership for PlanLen)

PlanLen ∈ PSPACE

Proof.
Show PlanLen ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(〈A, I ,O,G 〉, K):
s := I
k := K
while s 6|= G :

guess o ∈ O
fail if o not applicable in s or k = 0
s := appo(s)
k := k − 1

accept

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 16 / 24

Complexity of planning PSPACE-completeness

Hardness for PSPACE

Idea: generic reduction

I For an arbitrary fixed DTM M with space bound polynomial p and
input w , generate planning task which is solvable iff M accepts w in
space p(|w |).

I For simplicity, restrict to TMs which never move to the left of the
initial head position (no loss of generality).

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 17 / 24

Complexity of planning PSPACE-completeness

Reduction: state variables

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM and let p be its
space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions X := {1, . . . , p(n)}.

State variables

I stateq for all q ∈ Q

I headi for all i ∈ X ∪ {0, p(n) + 1}
I contenti ,a for all i ∈ X , a ∈ Σ�

 allows encoding a Turing machine configuration

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 18 / 24

Complexity of planning PSPACE-completeness

Reduction: initial state

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM and let p be its
space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions X := {1, . . . , p(n)}.

Initial state
Initially true:

I stateq0

I head1

I contenti ,wi
for all i ∈ {1, . . . , n}

I contenti ,� for all i ∈ X \ {1, . . . , n}
Initially false:

I all others

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 19 / 24

Complexity of planning PSPACE-completeness

Reduction: operators

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM and let p be its
space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions X := {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = 〈q′, a′,∆〉
and each cell position i ∈ X :

I precondition: stateq ∧ headi ∧ contenti ,a
I effect: ¬stateq ∧ ¬headi ∧ ¬contenti ,a

∧ stateq′ ∧ headi+∆ ∧ contenti ,a′

I If q = q′ and/or a = a′, omit the effects on stateq and/or contenti,a,
to avoid consistency condition issues.

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 20 / 24

Complexity of planning PSPACE-completeness

Reduction: goal

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM and let p be its
space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions X := {1, . . . , p(n)}.

Goal
stateqY

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 21 / 24

Complexity of planning PSPACE-completeness

PSPACE-completeness for STRIPS plan existence

Theorem (PSPACE-completeness; Bylander, 1994)

PlanEx and PlanLen are PSPACE-complete.
This is true even when restricting to STRIPS tasks.

Proof.
Membership for PlanLen was already shown.

Hardness for PlanEx follows because we just presented a polynomial
reduction from an arbitrary problem in PSPACE to PlanEx. (Note that
the reduction only generates STRIPS tasks.)

Membership for PlanEx and hardness for PlanLen follows from the
polynomial reduction from PlanEx to PlanLen.

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 22 / 24

More complexity results

More complexity results

In addition to the basic complexity result presented in this chapter, there
are many special cases, generalizations, variations and related problems
studied in the literature:

I different planning formalisms
I e. g., finite-domain representation, nondeterministic effects, partial

observability, schematic operators, numerical state variables

I syntactic restrictions of planning tasks
I e. g., without preconditions, without conjunctive effects, STRIPS

without delete effects

I semantic restrictions of planning task
I e. g., restricting to certain classes of causal graphs

I particular planning domains
I e. g., Blocksworld, Logistics, FreeCell

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 23 / 24

More complexity results

Complexity results for different planning formalisms

Some results for different planning formalisms:
I FDR tasks:

I same complexity as for propositional tasks (“folklore”)
I also true for the SAS+ special case

I nondeterministic effects:
I fully observable: EXP-complete (Littman, 1997)
I unobservable: EXPSPACE-complete (Haslum & Jonsson, 1999)
I partially observable: 2EXP-complete (Rintanen, 2004)

I schematic operators:
I usually adds one exponential level to PlanEx complexity
I e. g., classical case EXPSPACE-complete (Erol et al., 1995)

I numerical state variables:
I undecidable in most variations (Helmert, 2002)

M. Helmert (Universität Freiburg) AI Planning January 30th, 2009 24 / 24

	Motivation
	Background
	Turing machines
	Complexity classes

	Complexity of propositional planning
	Plan existence and bounded plan existence
	PSPACE-completeness

	More complexity results

