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Motivation PDB limitations

Beyond pattern databases

I Despite their popularity, pattern databases have some fundamental
limitations ( example on next slides).

I In this chapter, we study a recently introduced class of abstractions
called merge-and-shrink abstractions.

I Merge-and-shrink abstractions can be seen as a
proper generalization of pattern databases.

I They can do everything that pattern databases can do (modulo
polynomial extra effort).

I They can do some things that pattern databases cannot.

I Initial experiments with merge-and-shrink abstractions have shown
very promising results.

I They have provably greater representational power than pattern
databases for many common planning domains.
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Motivation PDB limitations

Back to the running example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

I state variable package: {L,R,A,B}
I state variable truck A: {L,R}
I state variable truck B: {L,R}
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Motivation PDB limitations

Example: projection

Project to {package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR
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Motivation PDB limitations

Example: projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR
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Motivation PDB limitations

Limitations of projections

How accurate is the PDB heuristic?

I consider generalization of the example:
N trucks, M locations (fully connected), still one package

I consider any pattern that is proper subset of variable set V

I h(s0) ≤ 2  no better than atomic projection to package

These values cannot be improved by maximizing over several patterns or
using additive patterns.

Merge-and-shrink abstractions can represent heuristics with h(s0) ≥ 3 for
tasks of this kind of any size.
Time and space requirements are polynomial in N and M.
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Motivation Main ideas

Merge-and-shrink abstractions: main idea

Main idea of merge-and-shrink abstractions

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.
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Motivation Main ideas

The need for succinct abstraction mappings

I One major difficulty for non-PDB abstractions is to succinctly
represent the abstraction mapping.

I For pattern databases, this is easy because the abstraction mappings
– projections – are very structured.

I For less rigidly structured abstraction mappings, we need another idea.
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Motivation Main ideas

Merge-and-shrink abstractions: idea

I The main idea underlying merge-and-shrink abstractions is that given
two abstractions A and A′, we can merge them into a new product
abstraction.

I The product abstraction captures all information of both abstractions
and can be better informed than either.

I It can even be better informed than their sum.

I By merging a set of very simple abstractions, we can in theory
represent arbitrary abstractions of an SAS+ task.

I In practice, due to memory limitations, such abstractions can become
too large. In that case, we can shrink them by abstracting them
further using any abstraction on an intermediate result, then continue
the merging process.
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Motivation Running example

Running example: explanations

I Atomic projections – projections to a single state variable – play an
important role in this chapter.

I Unlike previous chapters, transition labels are critically important in
this chapter.

I Hence we now look at the transition systems for atomic projections of
our example task, including transition labels.

I We abbreviate operator names as in these examples:
I MALR: move truck A from left to right
I DAR: drop package from truck A at right location
I PBL: pick up package with truck B at left location

I We abbreviate parallel arcs with commas and wildcards (?) in the
labels as in these examples:

I PAL, DAL: two parallel arcs labeled PAL and DAL
I MA??: two parallel arcs labeled MALR and MARL
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Motivation Running example

Running example: atomic projection for package

T π{package} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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Motivation Running example

Running example: atomic projection for truck A

T π{truck A} :

L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
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Motivation Running example

Running example: atomic projection for truck B

T π{truck B} :

L R

PBL,DBL,MA??,
PA?,DA?

MBLR

MBRL

PBR,DBR,MA??,
PA?,DA?
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Synchronized products Definition

Synchronized product of transition systems

Definition (synchronized product of transition systems)

For i ∈ {1, 2}, let Ti = 〈Si , L,Ti , Ii ,Gi 〉 be transition systems with
identical label set.

The synchronized product of T1 and T2, in symbols T1 ⊗ T2, is the
transition system T⊗ = 〈S⊗, L,T⊗, I⊗,G⊗〉 with

I S⊗ := S1 × S2

I T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | 〈s1, l , t1〉 ∈ T1 and 〈s2, l , t2〉 ∈ T2}
I I⊗ := I1 × I2
I G⊗ := G1 × G2
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Synchronized products Definition

Synchronized product of functions

Definition (synchronized product of functions)

Let α1 : S → S1 and α2 : S → S2 be functions with identical domain.

The synchronized product of α1 and α2, in symbols α1 ⊗ α2, is the
function α⊗ : S → S1 × S2 defined as α⊗(s) = 〈α1(s), α2(s)〉.
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Synchronized products Example

Example: synchronized product

T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : S⊗ = S1 × S2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

A

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

L

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

AL
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : I⊗ = I1 × I2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

L ⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

R

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

LR
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : G⊗ = G1 × G2

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

R ⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

L

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

RL
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

PAL

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

PAL,DAL,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

PAL
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

M???

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

MALR

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

MALR
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
PBL

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
PAR,DAR,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

PBL
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Synchronized products Example

Example: computation of synchronized product
T π{package} ⊗ T π{truck A} : T⊗ := {〈〈s1, s2〉, l , 〈t1, t2〉〉 | . . . }

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

M???

⊗ L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?

PAL,DAL,MB??,
PB?,DB?

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

MB??
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Synchronized products Properties

Synchronized products are abstractions

Theorem (synchronized products are abstractions)

For i ∈ {1, 2}, let Ti be an abstraction of transition system T with
abstraction mapping αi such that α1 ⊗ α2 is surjective.

Then T⊗ := T1 ⊗ T2 is an abstraction of T with abstraction mapping
α⊗ := α1 ⊗ α2, and 〈T⊗, α⊗〉 is a refinement of 〈T1, α1〉 and of 〈T2, α2〉.
Remark: If α1 ⊗ α2 is not surjective, then the proof also holds if we
restrict T⊗ to the states in the image of α1 ⊗ α2.
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Synchronized products Properties

Synchronized products are abstractions (ctd.)

Proof.
We prove the first part. The refinement property is then easy to see: the
mapping 〈s1, s2〉 7→ si is a homomorphism from T⊗ to Ti for i ∈ {1, 2}.

To show that T⊗ is an abstraction of T with mapping α⊗, we need to
show that α⊗ is surjective and preserves initial states, goal states and
transitions.

Let T = 〈S , L,T , I ,G 〉, and let Ti = 〈Si , L,Ti , Ii ,Gi 〉 for i ∈ {1, 2,⊗}.
I α⊗ surjective: This is given in the premise.
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Synchronized products Properties

Synchronized products are abstractions (ctd.)

Proof (ctd.)

I α⊗ preserves initial states:
Let s ∈ I .
 α1(s) ∈ I1, α2(s) ∈ I2 (abstraction property for T1, T2)
 〈α1(s), α2(s)〉 ∈ I⊗ (definition of I⊗)
 α⊗(s) ∈ I⊗ (definition of α⊗)

I α⊗ preserves goal states:
analogous to proof for initial states

I α⊗ preserves transitions:
Let 〈s, l , t〉 ∈ T .
 〈α1(s), l , α1(t)〉 ∈ T1, 〈α2(s), l , α2(t)〉 ∈ T2

 〈〈α1(s), α2(s)〉, l , 〈α1(t), α2(t)〉〉 ∈ T⊗
 〈α⊗(s), l , α⊗(t)〉 ∈ T⊗
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Synchronized products Properties

Preserving homomorphisms

I It would be very nice if we could also prove that if T1 and T2 are
homomorphic abstractions, then so is T1 ⊗ T2.

I However, this is not true in general.

I It is not even true for SAS+ tasks.

I However, there is an important sufficient condition for preserving the
homomorphism property.
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Synchronized products Properties

Synchronized products and homomorphisms

Theorem (synchronized products and homomorphisms)

Let Π be an SAS+ planning task with variable set V , and let V1 and V2

be disjoint subsets of V .

For i ∈ {1, 2}, let Ti be a homomorphic abstraction of T (Π) with mapping
αi such that 〈Ti , αi 〉 is a coarsening of 〈T πVi , πVi

〉.

Then α⊗ := α1 ⊗ α2 is surjective and T⊗ := T1 ⊗ T2 is a homomorphic
abstraction of T (Π) with mapping α⊗.

(Proof omitted.)

Note: In this special case, we do not need to require that α⊗ is surjective
but can conclude it from the other premises.
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Synchronized products Properties

Synchronized products of projections

Corollary (Synchronized products of projections)

Let Π be an SAS+ planning task with variable set V , and let V1 and V2

be disjoint subsets of V .
Then T πV1 ⊗ T πV2 ∼ T πV1∪V2 .

Proof.

I By the theorem, T⊗ := TπV1 ⊗ T πV2 is a homomorphic abstraction of
T (Π) with mapping πV1 ⊗ πV2 .

I T πV1∪V2 is a homomorphic abstraction of T (Π) with mapping πV1∪V2 .

πV1 ⊗ πV2 and πV1∪V2 are identical functions up to renaming of abstract
states, and homomorphic abstractions are uniquely determined by the
abstraction function, so the abstractions must be isomorphic.
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Synchronized products Properties

Example: product for disjoint projections

T π{package} ⊗ T π{truck A} ∼ T π{package,truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Synchronized products Properties

Recovering T (Π) from the atomic projections

I By repeated application of the corollary, we can recover all pattern
database abstractions of an SAS+ planning task from the abstractions
for atomic projections.

I In particular, by computing the product of all atomic projections, we
can recover the abstraction for the identity abstraction id = πV .

Corollary (Recovering T (Π) from the atomic projections)

Let Π be an SAS+ planning task with variable set V .
Then T (Π) ∼

⊗
v∈V T

π{v} .

I This is an important result because it shows that the abstractions for
atomic projections contain all information of an SAS+ task.
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Algorithm Merge steps and shrink steps

Generic merge-and-shrink abstractions: outline

Using the results from the previous section, we can develop the ideas of a
generic abstraction computation procedure that takes all state variables
into account:

I Initialization step: Compute all abstract transition systems for atomic
projections to form the initial abstraction collection.

I Merge steps: Combine two abstractions in the collection by replacing
them with their synchronized product. (Stop once only one
abstraction is left.)

I Shrink steps: If the abstractions in the collection are too large to
compute their synchronized product, make them smaller by
abstracting them further (applying an arbitrary homomorphism to
them).

We explain these steps with our running example.
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Algorithm Merge steps and shrink steps

Initialization step: atomic projection for package

T π{package} :

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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Algorithm Merge steps and shrink steps

Initialization step: atomic projection for truck A

T π{truck A} :

L R

PAL,DAL,MB??,
PB?,DB?

MALR

MARL

PAR,DAR,MB??,
PB?,DB?
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Algorithm Merge steps and shrink steps

Initialization step: atomic projection for truck B

T π{truck B} :

L R

PBL,DBL,MA??,
PA?,DA?

MBLR

MBRL

PBR,DBR,MA??,
PA?,DA?

current collection: {T π{package} , T π{truck A} , T π{truck B}}
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Algorithm Merge steps and shrink steps

First merge step
T1 := T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??

current collection: {T1, T π{truck B}}
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Algorithm Merge steps and shrink steps

Need to simplify?

I If we have sufficient memory available, we can now compute
T1 ⊗T π{truck B} , which would recover the complete transition system of
the task.

I However, to illustrate the general idea, let us assume that we do not
have sufficient memory for this product.

I More specifically, we will assume that after each product operation we
need to reduce the result abstraction to four states to obey memory
constraints.

I So we need to reduce T1 to four states. We have a lot of leeway in
deciding how exactly to abstract T1.

I In this example, we simply use an abstraction that leads to a good
result in the end.
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL

DBL

DBR

PBR

MB?? MB??

MB?? MB??

MB?? MB??

MB?? MB??
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

R
MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL
D

ARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

MB?? MB??

MB??

MB??

M???

MB??
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AL ARAL AR

BL BR

R
MALR

MARL

MALR

MARL

MALR

MARL

PAL

DAL
D

ARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

MB?? MB??

MB??

MB??

M???

MB??
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

A

BL BR

R
MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

M???

MB??

MB??

M???

MB??
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

A

BL BRBL BR

R
MALR

MARL

MALR

MARL

PAL

DAL

DARPAR

PBRD
BR

DBL

PBL

PBL

DBL

DBR

PBR

MB??

M???

MB??

MB??

M???

MB??
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

A

B

R
MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL
DBL

MB??

M???

MB??

M???

M???
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR

AA

BB

R
MALR

MARL

PAL

DAL

DARPAR

PBRDBR
DBL

PBL

PBL
DBL

MB??

M???

MB??

M???

M???
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB??

MB??

M???D?R

P?R

M???

PBL

DBL

P?L

D?L
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Algorithm Merge steps and shrink steps

First shrink step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB??

MB??

M???D?R

P?R

M???

PBL

DBL

P?L

D?L

current collection: {T2, T π{truck B}}
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Algorithm Merge steps and shrink steps

Second merge step

T3 := T2 ⊗ T π{truck B} :

LRL

LRR

LLL

LLR

IL

IR

RL

RR

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

DAR

PAR

D?R

P?R

P?L

D?
L

PAL

DAL

M
A

L
R

M
A

R
L

M
A

L
R

M
A

R
L

PBLDBL

MA??

MA?? MA??

MA??

current collection: {T3}

M. Helmert, G. Röger (Universität Freiburg) AI Planning January 23rd, 2009 50 / 85



Algorithm Merge steps and shrink steps

Another shrink step?

I Normally we could stop now and use the distances in the final
abstraction as our heuristic function.

I However, if there were further state variables to integrate, we would
simplify further, e. g. leading to the following abstraction (again with
four states):

LRR
LLL
LRL
LLR

I R

M??? M???M???

M?RL

M?LR

P?L

D?L

D?R

P?R

I We get a heuristic value of 3 for the initial state, better than any
PDB heuristic that is a proper abstraction.

I The example generalizes to more locations and trucks, even if we
stick to the size limit of 4 (after merging).
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Algorithm Abstraction mapping

How to represent the abstraction mapping?

Idea: the computation of the abstraction mapping follows the sequence of
product computations

I For the atomic abstractions for π{v}, we generate a one-dimensional
table that denotes which value in Dv corresponds to which abstract
state.

I During the merge (product) step A := A1 ⊗A2, we generate a
two-dimensional table that denotes which pair of states of A1 and A2

corresponds to which state of A.

I During the shrink (abstraction) steps, we make sure to keep the table
in sync with the abstraction choices.
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Algorithm Abstraction mapping

How to represent the abstraction mapping? (ctd.)

Idea: the computation of the abstraction mapping follows the sequence of
product computations

I Once we have computed the final abstraction, we compute all
abstract goal distances and store them in a one-dimensional table.

I At this point, we can throw away all the abstractions
– we just need to keep the tables.

I During search, we do a sequence of table lookups to navigate from
the atomic abstraction states to the final abstraction state and
heuristic value
 2|V | lookups, O(|V |) time

Again, we illustrate the process with our running example.
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Algorithm Abstraction mapping

Abstraction mapping example: atomic abstractions
Computing abstraction mappings for the atomic abstractions is simple.
Just number the states (domain values) consecutively and generate a table
of references to the states:

L

A

B

R

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL
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Algorithm Abstraction mapping

Abstraction mapping example: atomic abstractions
Computing abstraction mappings for the atomic abstractions is simple.
Just number the states (domain values) consecutively and generate a table
of references to the states:

0

2

3

1

M???
PAL

DAL

M???

DAR
PAR

M???

PBR
DBR

M???

DBL

PBL

L R A B

0 1 2 3
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Algorithm Abstraction mapping

Abstraction mapping example: merge step

For product abstractions A1 ⊗A2, we again number the product states
consecutively and generate a table that links state pairs of A1 and A2 to
states of A:

LL LR

AL AR

BL BR

RL RR
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Algorithm Abstraction mapping

Abstraction mapping example: merge step

For product abstractions A1 ⊗A2, we again number the product states
consecutively and generate a table that links state pairs of A1 and A2 to
states of A:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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Algorithm Abstraction mapping

Maintaining the mapping when shrinking

I The hard part in representing the abstraction mapping is to keep it
consistent when shrinking.

I In theory, this is easy to do:
I When combining states i and j , arbitrarily use one of them (say i) as

the number of the new state.
I Find all table entries in the table for this abstraction which map to the

other state j and change them to i .

I However, doing a table scan each time two states are combined is
very inefficient.

I Fortunately, there also is an efficient implementation which takes
constant time per combination.
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Algorithm Abstraction mapping

Maintaining the mapping efficiently

I Associate each abstract state with a linked list, representing all table
entries that map to this state.

I Before starting the shrink operation, initialize the lists by scanning
through the table, then discard the table.

I While shrinking, when combining i and j , splice the list elements of j
into the list elements of i .

I For linked lists, this is a constant-time operation.

I Once shrinking is completed, renumber all abstract states so that
there are no gaps in the numbering.

I Finally, regenerate the mapping table from the linked list information.
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

Representation before shrinking:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

1. Convert table to linked lists and discard it.

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1

4 54 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1

4

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1

4

6 76 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1

4

6

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1

44

66

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

3. Renumber abstract states consecutively.

0 1 47→3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

3. Renumber abstract states consecutively.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅
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Algorithm Abstraction mapping

Abstraction mapping example: shrink step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

M. Helmert, G. Röger (Universität Freiburg) AI Planning January 23rd, 2009 73 / 85



Algorithm Abstraction mapping

Abstraction mapping example: shrink step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3
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Algorithm Abstraction mapping

The final heuristic representation
At the end, our heuristic is represented by six tables:

I three one-dimensional tables for the atomic abstractions:
Tpackage L R A B

0 1 2 3

Ttruck A L R

0 1

Ttruck B L R

0 1

I two tables for the two merge and subsequent shrink steps:

T 1
m&s s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3

T 2
m&s s2 = 0 s2 = 1

s1 = 0 1 1
s1 = 1 1 0
s1 = 2 2 2
s1 = 3 3 3

I one table with goal distances for the final abstraction:

Th s = 0 s = 1 s = 2 s = 3

h(s) 3 2 1 0

Given a state s = {package 7→ p, truck A 7→ a, truck B 7→ b},
its heuristic value is then looked up as:

I h(s) = Th[T 2
m&s[T

1
m&s[Tpackage[p],Ttruck A[a]],Ttruck B[b]]]
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Algorithm Concrete algorithm

Towards a concrete algorithm

I We have now described how merge-and-shrink abstractions work in
general.

I However, we have not said how exactly to decide
I which abstractions to combine in a merge step and
I when and how to further abstract in a shrink step.

I There are many possibilities here (just like there are many possible
PDB heuristics).

I Only one concrete method, called hHHH, has been explored so far in
planning, which we will now discuss briefly.
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Algorithm Concrete algorithm

Generic algorithm template

Generic abstraction computation algorithm
abs := {T π{v} | v ∈ V }
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstraction in abs

N: parameter bounding number of abstract states

Questions for practical implementation:

I Which abstractions to select?  merging strategy

I How to shrink an abstraction?  shrinking strategy

I How to choose N?  usually: as high as memory allows
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Algorithm Concrete algorithm

Merging strategy
Which abstractions to select?

hHHH: Linear merging strategy

In each iteration after the first, choose the abstraction computed in the
previous iteration as A1.
 fully defined by an ordering of atomic projections

Rationale: only maintains one “complex” abstraction at a time

hHHH: Ordering of atomic projections

I Start with a goal variable.

I Add variables that appear in preconditions of operators affecting
previous variables.

I If that is not possible, add a goal variable.

Rationale: increases h quickly (cf. causal graph criteria for growing
patterns)
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Algorithm Concrete algorithm

Shrinking strategy

Which abstractions to shrink?

hHHH: only shrink the product

If at all possible, don’t shrink atomic abstractions, but only product
abstractions.

Rationale: Product abstractions are more likely to contain significant
redundancies and symmetries.
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Algorithm Concrete algorithm

Shrinking strategy (ctd.)

How to shrink an abstraction?

hHHH: f -preserving shrinking strategy

Repeatedly combine abstract states with
identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

hHHH: Tie-breaking criterion

Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be explored by
A∗, so inaccuracies there matter less
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Conclusion Properties

Properties of merge-and-shrink abstractions

I We conclude by briefly mentioning a number of theoretical properties
of merge-and-shrink abstractions (without proof).

I While these theoretical results are interesting, heuristics in planning
usually need to be justified by good empirical performance.

I Regarding empirical performance, initial results for hHHH are very
encouraging, outperforming pattern databases (and all other
admissible heuristics) on a number of benchmark domains.

I However, merge-and-shrink abstractions are not nearly as well studied
(and understood) as pattern databases, so the jury is still out.
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Conclusion Properties

Theoretical properties: as good as PDBs

As powerful as PDBs

Pattern database heuristics are a special case of our abstraction heuristics,
and arise naturally as a side product.

I More precisely, PDB heuristics are merge-and-shrink abstractions
without shrink steps (terminating heuristic computation as soon as
space runs out).

I However, specialized PDB algorithms are faster than the generic
merge-and-shrink algorithm.

I This performance difference is only polynomial, but this does not
mean that it does not matter in practice!

I Still, this shows that representational power is at least as large as that
of PDB heuristics.
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Conclusion Properties

Theoretical properties: better than PDBs

Greater representational power

In some planning domains where polynomial-sized pattern database
heuristics have unbounded error (Gripper, Schedule, two Promela
variants), merge-and-shrink abstractions can obtain perfect heuristics in
polynomial time with suitable merging/shrinking strategies.

I This shows that representational power is strictly greater than that of
PDB heuristics.

I However, it does not mean that we know good general
(domain-independent) merging/shrinking strategies that will generate
these perfect heuristics in practice.
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Conclusion Properties

Theoretical properties: additivity

Get additivity for free

If P1 and P2 are additive patterns of a SAS+ task, then for all h-preserving
merge-and-shrink abstractions A1 of T πP1 , A2 of T πP2 and A of A1 ⊗A2,
the abstraction heuristic for A dominates hP1 + hP2 . (An abstraction is
h-preserving if α(s) = α(s ′) only for s, s ′ with same abstract goal
distance.)

I One can derive a similar theory of additivity for merge-and-shrink
abstraction as for pattern databases.

I However, this result shows that this is not as necessary as for pattern
databases: additivity is exploited automatically by a single
merge-and-shrink abstraction to some extent.

I Still, experimental results show that there is sometimes a benefit of
using multiple merge-and-shrink abstractions. (However, so far only
maximization has been explored.)
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Conclusion Literature

Literature

References on merge-and-shrink abstractions:

Klaus Dräger, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving Abstractions.
Proc. SPIN 2006, pp. 19–34, 2006.
Introduces merge-and-shrink abstractions (for model-checking).

Malte Helmert, Patrik Haslum and Jörg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential Planning.
Proc. ICAPS 2007, pp. 176–183, 2007.
Introduces merge-and-shrink abstractions for planning.
Most ideas of this chapter come from this paper.
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