# Principles of Al Planning 10. State-space search: abstractions

er. State space search, abstraction

Malte Helmert and Gabriele Röger

Albert-Ludwigs-Universität Freiburg

December 16th, 2008

Al Planning

M. Helmert G. Röger

informally

# Coming up with heuristics in a principled way

#### General procedure for obtaining a heuristic

Solve an easier version of the problem.

#### Two common methods:

- relaxation: consider less constrained version of the problem
- abstraction: consider smaller version of real problem

In previous chapters, we have studied relaxation, which has been very successfully applied to satisficing planning.

Now, we study abstraction, which is one of the most prominent techniques for optimal planning.

AI Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

## Abstracting a transition system

Abstracting a transition system means dropping some distinctions between states, while preserving the transition behaviour as much as possible.

- An abstraction of a transition system  $\mathcal T$  is defined by an abstraction mapping  $\alpha$  that defines which states of  $\mathcal T$  should be distinguished and which ones should not.
- From  $\mathcal{T}$  and  $\alpha$ , we compute an abstract transition system  $\mathcal{T}'$  which is similar to  $\mathcal{T}$ , but smaller.
- The abstract goal distances (goal distances in  $\mathcal{T}'$ ) are used as heuristic estimates for goal distances in  $\mathcal{T}$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally Introduction Practical requirements Multiple abstractions

## Abstracting a transition system: example

#### Example (15-puzzle)

A 15-puzzle state is given by a permutation  $\langle b, t_1, \ldots, t_{15} \rangle$  of  $\{1, \ldots, 16\}$ , where b denotes the blank position and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location of tiles 8–15, i. e., two states are distinguished iff they differ in the position of the blank or one of the tiles 1–7:

$$\alpha(\langle b, t_1, \dots, t_{15} \rangle) = \langle b, t_1, \dots, t_7 \rangle$$

The heuristic values for this abstraction correspond to the cost of moving tiles 1–7 to their goal positions.

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

# Abstraction example: 15-puzzle

| 9  | 2  | 12 | 6  | 1  | 2  | 3  | 4  |
|----|----|----|----|----|----|----|----|
| 5  | 7  | 14 | 13 | 5  | 6  | 7  | 8  |
| 3  | 4  | 1  | 11 | 9  | 10 | 11 | 12 |
| 15 | 10 | 8  |    | 13 | 14 | 15 |    |

Al Planning

G. Röger

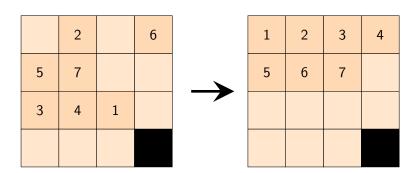
Abstractions informally Introduction Practical requirements Multiple abstractions

Abstractions formally

#### real state space

- $\bullet \ 16! = 20922789888000 \approx 2 \cdot 10^{13} \ \mathrm{states}$
- $\bullet$   $\frac{16!}{2} = 10461394944000 \approx 10^{13}$  reachable states

# Abstraction example: 15-puzzle



#### Al Planning

M. Helmert, G. Röger

# informally Introduction Practical

Outlook Abstractions

Abstractions formally

#### abstract state space

- $16 \cdot 15 \cdot \ldots \cdot 9 = 518918400 \approx 5 \cdot 10^8$  states
- $16 \cdot 15 \cdot \ldots \cdot 9 = 518918400 \approx 5 \cdot 10^8$  reachable states

# Computing the abstract transition system

Given  $\mathcal{T}$  and  $\alpha$ , how do we compute  $\mathcal{T}'$ ?

#### Requirement

We want to obtain an admissible heuristic.

Hence,  $h^*(\alpha(s))$  (in the abstract state space  $\mathcal{T}'$ ) should never overestimate  $h^*(s)$  (in the concrete state space  $\mathcal{T}$ ).

An easy way to achieve this is to ensure that all solutions in  $\mathcal{T}$  also exist in  $\mathcal{T}'$ :

- If s is a goal state in  $\mathcal{T}$ , then  $\alpha(s)$  is a goal state in  $\mathcal{T}'$ .
- If  $\mathcal{T}$  has a transition from s to t, then  $\mathcal{T}'$  has a transition from  $\alpha(s)$  to  $\alpha(t)$ .

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

## Computing the abstract transition system: example

#### Example (15-puzzle)

In the running example:

- $\mathcal{T}$  has the unique goal state  $\langle 16, 1, 2, \dots, 15 \rangle$ .
  - $\leadsto$   $\mathcal{T}'$  has the unique goal state  $\langle 16, 1, 2, \dots, 7 \rangle$ .
- Let x and y be neighboring positions in the  $4\times 4$  grid.  $\mathcal{T}$  has a transition from  $\langle x, t_1, \ldots, t_{i-1}, y, t_{i+1}, \ldots, t_{15} \rangle$  to  $\langle y, t_1, \ldots, t_{i-1}, x, t_{i+1}, \ldots, t_{15} \rangle$  for all  $i \in \{1, \ldots, 15\}$ .
  - $\sim$   $\mathcal{T}'$  has a transition from  $\langle x, t_1, \dots, t_{i-1}, y, t_{i+1}, \dots, t_7 \rangle$  to  $\langle y, t_1, \dots, t_{i-1}, x, t_{i+1}, \dots, t_7 \rangle$  for all  $i \in \{1, \dots, 7\}$ .
  - $\longrightarrow$  Moreover,  $\mathcal{T}'$  has a transition from  $\langle x, t_1, \dots, t_7 \rangle$  to  $\langle y, t_1, \dots, t_7 \rangle$  if  $y \notin \{t_1, \dots, t_7\}$ .

Al Planning

M. Helmert, G. Röger

Abstraction: informally Introduction Practical requirements Multiple abstractions

## Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be efficiently computable. This gives us two requirements for  $\alpha$ :

- For a given state s, the abstract state  $\alpha(s)$  must be efficiently computable.
- For a given abstract state  $\alpha(s)$ , the abstract goal distance  $h^*(\alpha(s))$  must be efficiently computable.

There are different ways of achieving these requirements:

- pattern database heuristics (Culberson & Schaeffer, 1996)
- merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)
- structural patterns (Katz & Domshlak, 2008)
  - not covered in this course

Al Planning

M. Helmert, G. Röger

Abstractions: informally Introduction Practical requirements Multiple abstractions

## Practical requirements for abstractions: example

#### Example (15-puzzle)

In our running example,  $\alpha$  can be very efficiently computed: just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search, most common algorithms precompute all abstract goal distances prior to search by performing a backward breadth-first search from the goal state(s). The distances are then stored in a table (requires about 495 MB of RAM).

During search, computing  $h^*(\alpha(s))$  is just a table lookup.

This heuristic is an example of a pattern database heuristic.

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

### Multiple abstractions

- One important practical question is how to come up with a suitable abstraction mapping  $\alpha$ .
- Indeed, there is usually a huge number of possibilities, and it is important to pick good abstractions (i. e., ones that lead to informative heuristics).
- However, it is generally not necessary to commit to a single abstraction.

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

## Combining multiple abstractions

#### Maximizing several abstractions:

- Each abstraction mapping gives rise to an admissible heuristic.
- By computing the maximum of several admissible heuristics, we obtain another admissible heuristic which dominates the component heuristics.
- Thus, we can always compute several abstractions and maximize over the individual abstract goal distances.

#### Adding several abstractions:

- In some cases, we can even compute the sum of individual estimates and still stay admissible.
- Summation often leads to much higher estimates than maximization, so it is important to understand when it is admissible.

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

Abstractions:

## Maximizing several abstractions: example

#### Example (15-puzzle)

- with the same amount of memory required for the tables for the mapping to tiles 1–7, we could store the tables for nine different abstractions to six tiles and the blank
- use maximum of individual estimates

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

# Adding several abstractions: example

| 9  | 2  | 12 | 6  |
|----|----|----|----|
| 5  | 7  | 14 | 13 |
| 3  | 4  | 1  | 11 |
| 15 | 10 | 8  |    |

| 9  | 2  | 12 | 6  |
|----|----|----|----|
| 5  | 7  | 14 | 13 |
| 3  | 4  | 1  | 11 |
| 15 | 10 | 8  |    |

Al Planning

M. Helmert, G. Röger

Abstractions: informally Introduction Practical requirements Multiple abstractions Outlook

- 1st abstraction: ignore precise location of 8–15
- 2nd abstraction: ignore precise location of 1–7
- Is the sum of the abstraction heuristics admissible?

# Adding several abstractions: example

|   | 2 |   | 6 |
|---|---|---|---|
| 5 | 7 |   |   |
| 3 | 4 | 1 |   |
|   |   |   |   |

| 9  |    | 12 |    |
|----|----|----|----|
|    |    | 14 | 13 |
|    |    |    | 11 |
| 15 | 10 | 8  |    |

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions Outlook

- 1st abstraction: ignore precise location of 8–15
- 2nd abstraction: ignore precise location of 1–7
- → The sum of the abstraction heuristics is not admissible.

# Adding several abstractions: example

|   | 2 |   | 6 |
|---|---|---|---|
| 5 | 7 |   |   |
| 3 | 4 | 1 |   |
|   |   |   |   |

| 9  |    | 12 |    |
|----|----|----|----|
|    |    | 14 | 13 |
|    |    |    | 11 |
| 15 | 10 | 8  |    |

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions Outlook

- 1st abstraction: ignore precise location of 8–15 and blank
- 2nd abstraction: ignore precise location of 1–7 and blank
- → The sum of the abstraction heuristics is admissible.

## Our plan for the next lectures

In the following, we take a deeper look at abstractions and their use for admissible heuristics.

- In the rest of this chapter, we formally introduce abstractions and abstraction heuristics and study some of their most important properties.
- In the following chapters, we discuss some particular classes of abstraction heuristics in detail, namely pattern database heuristics and merge-and-shrink abstractions.

Al Planning

M. Helmert, G. Röger

Abstractions informally Introduction Practical requirements Multiple abstractions

## Transition systems

#### Definition (transition system)

A transition system is a 5-tuple  $\mathcal{T} = \langle S, L, T, I, G \rangle$  where

- S is a finite set of states (the state space),
- L is a finite set of (transition) labels,
- $T \subseteq S \times L \times S$  is the transition relation,
- $\bullet$   $I \subseteq S$  is the set of initial states, and
- $G \subseteq S$  is the set of goal states.

We say that T has the transition  $\langle s, l, s' \rangle$  if  $\langle s, l, s' \rangle \in T$ .

Note: For technical reasons, the definition slightly differs from our earlier one. (It includes explicit labels.)

Al Planning

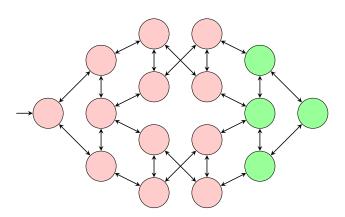
M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally

Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

## Transition systems: example



Note: To reduce clutter, our figures usually omit arc labels and collapse transitions between identical states. However, these are important for the formal definition of the transition system.

#### Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

## Transition systems of FDR planning tasks

#### Definition (transition system of an FDR planning task)

Let  $\Pi = \langle V, I, O, G \rangle$  be an FDR planning task.

The transition system of  $\Pi$ , in symbols  $\mathcal{T}(\Pi)$ , is the transition system  $\mathcal{T}(\Pi) = \langle S', L', T', I', G' \rangle$ , where

- S' is the set of states over V,
- L' = O,
- $\bullet \ T' = \{ \langle s', o', t' \rangle \in S' \times L' \times S' \mid \mathsf{app}_{o'}(s') = t' \},$
- $I' = \{I\}$ , and
- $G' = \{ s' \in S' \mid s' \models G \}.$

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally

Transition systems Abstractions Abstraction heuristics

Abstraction heuristics Additivity Refinements Equivalence Practice

## Example task: one package, two trucks

#### Example (one package, two trucks)

Consider the following FDR planning task  $\langle V, I, O, G \rangle$ :

- $V = \{p, t_A, t_B\}$  with
  - $\mathcal{D}_p = \{\mathsf{L}, \mathsf{R}, \mathsf{A}, \mathsf{B}\}$
  - $\bullet \ \mathcal{D}_{t_{\mathsf{A}}} = \mathcal{D}_{t_{\mathsf{B}}} = \{\mathsf{L},\mathsf{R}\}$
- $I = \{p \mapsto \mathsf{L}, t_\mathsf{A} \mapsto \mathsf{R}, t_\mathsf{B} \mapsto \mathsf{R}\}$
- $\begin{aligned} \bullet \ O &= \{\mathsf{pickup}_{i,j} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\}\} \\ & \cup \{\mathsf{drop}_{i,j} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\}\} \end{aligned}$ 
  - $\cup \ \{\mathsf{move}_{i,j,j'} \mid i \in \{\mathsf{A},\mathsf{B}\}, j,j' \in \{\mathsf{L},\mathsf{R}\}, j \neq j'\}, \ \mathsf{where}$
  - $\operatorname{pickup}_{i,j} = \langle t_i = j \land p = j, p := i \rangle$
  - $\mathsf{drop}_{i,j} = \langle t_i = j \land p = i, p := j \rangle$
  - $\mathsf{move}_{i,j,j'} = \langle t_i = j, t_i := j' \rangle$
- $\bullet \ G = (p = \mathsf{R})$

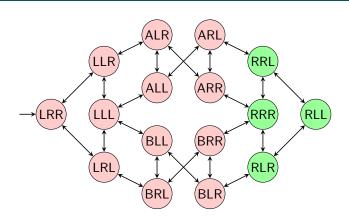
Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

## Transition system of example task



- State  $\{p \mapsto i, t_{\mathsf{A}} \mapsto j, t_{\mathsf{B}} \mapsto k\}$  is depicted as ijk.
- Transition labels are again not shown. For example, the transition from LLL to ALL has the label pickup<sub>A,L</sub>.

#### Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

#### **Abstractions**

#### Definition (abstraction, abstraction mapping)

Let  $\mathcal{T} = \langle S, L, T, I, G \rangle$  and  $\mathcal{T}' = \langle S', L', T', I', G' \rangle$  be transition systems with the same label set L = L', and let  $\alpha : S \to S'$  be a surjective function.

We say that T' is an abstraction of T with abstraction mapping  $\alpha$  (or: abstraction function  $\alpha$ ) if

- for all  $s \in I$ , we have  $\alpha(s) \in I'$ ,
- for all  $s \in G$ , we have  $\alpha(s) \in G'$ , and
- for all  $\langle s, l, t \rangle \in T$ , we have  $\langle \alpha(s), l, \alpha(t) \rangle \in T'$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstraction formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

## Abstractions: terminology

Let  $\mathcal{T}$  and  $\mathcal{T}'$  be transition systems and  $\alpha$  a function such that  $\mathcal{T}'$  is an abstraction of  $\mathcal{T}$  with abstraction mapping  $\alpha$ .

- $\bullet$   $\mathcal{T}$  is called the concrete transition system.
- $\bullet$  T' is called the abstract transition system.
- Similarly: concrete/abstract state space, concrete/abstract transition, etc.

We say that:

- T' is an abstraction of T (without mentioning  $\alpha$ )
- ullet lpha is an abstraction mapping on  ${\mathcal T}$  (without mentioning  ${\mathcal T}'$ )

Note: For a given  $\mathcal T$  and  $\alpha$ , there can be multiple abstractions  $\mathcal T'$ , and for a given  $\mathcal T$  and  $\mathcal T'$ , there can be multiple abstraction mappings  $\alpha$ .

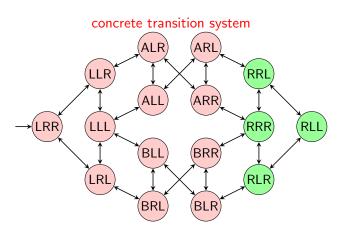
Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

## Abstraction: example



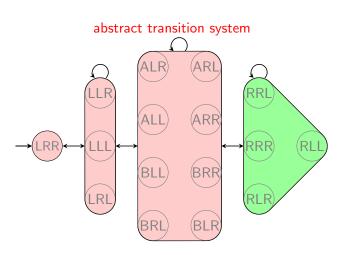
#### Al Planning

M. Helmert G. Röger

Abstractions: informally

formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Equivalence

## Abstraction: example



Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

Note: Most arcs represent many parallel transitions.

#### Induced abstractions

#### Definition (induced abstractions)

Let  $\mathcal{T}=\langle S,L,T,I,G\rangle$  be a transition system, and let  $\alpha:S\to S'$  be a surjective function.

The abstraction (of T) induced by  $\alpha$ , in symbols  $T^{\alpha}$ , is the transition system  $T^{\alpha} = \langle S', L, T', I', G' \rangle$  defined by:

- $T' = \{ \langle \alpha(s), l, \alpha(t) \rangle \mid \langle s, l, t \rangle \in T \}$
- $\bullet \ I' = \{\alpha(s) \mid s \in I\}$
- $\bullet \ G' = \{\alpha(s) \mid s \in G\}$

Note: It is easy to see that  $\mathcal{T}^{\alpha}$  is an abstraction of  $\mathcal{T}$ . It is the "smallest" abstraction of  $\mathcal{T}$  with abstraction mapping  $\alpha$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction heuristics Additivity Refinements Equivalence

## Induced abstractions: terminology

Let  $\mathcal{T}$  and  $\mathcal{T}'$  be transition systems and  $\alpha$  be a function such that  $\mathcal{T}' = \mathcal{T}^{\alpha}$  (i. e.,  $\mathcal{T}'$  is the abstraction of  $\mathcal{T}$  induced by  $\alpha$ ).

- $\alpha$  is called a homomorphism from  $\mathcal{T}$  to  $\mathcal{T}'$ , and  $\mathcal{T}'$  is called a homomorphic abstraction of  $\mathcal{T}$ .
- If  $\alpha$  is bijective, it is called an isomorphism between  $\mathcal{T}$  and  $\mathcal{T}'$ , and the two transition systems are called isomorphic.

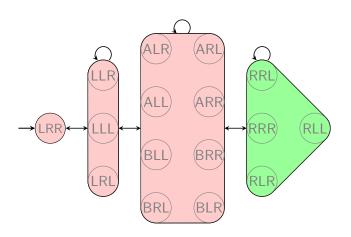
Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

## Homomorphic abstractions: example



This abstraction is a homomorphic abstraction of the concrete transition system  $\mathcal{T}$ .

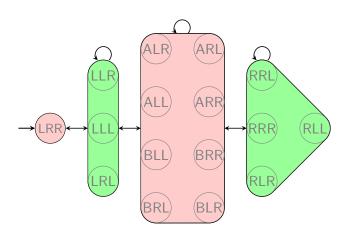
Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction heuristics Additivity Refinements Equivalence

## Homomorphic abstractions: example



If we add any initial states, goal states or transitions, it is still an abstraction of  $\mathcal{T}$ , but not a homomorphic one.

#### Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

#### Abstraction heuristics

#### Definition (abstraction heuristic induced by an abstraction)

Let  $\Pi$  be an FDR planning task with state space S, and let  $\mathcal{A}$  be an abstraction of  $\mathcal{T}(\Pi)$  with abstraction mapping  $\alpha$ .

The abstraction heuristic induced by  $\mathcal{A}$  and  $\alpha$ ,  $h^{\mathcal{A},\alpha}$ , is the heuristic function  $h^{\mathcal{A},\alpha}:S\to\mathbb{N}_0\cup\{\infty\}$  which maps each state  $s\in S$  to  $h^*_{\mathcal{A}}(\alpha(s))$  (the goal distance of  $\alpha(s)$  in  $\mathcal{A}$ ).

Note:  $h^{\mathcal{A},\alpha}(s)=\infty$  if no goal state of  $\mathcal{A}$  is reachable from  $\alpha(s)$ 

#### Definition (abstraction heuristic induced by a homomorphism)

Let  $\Pi$  be an FDR planning task and let  $\alpha$  be a homomorphism on  $\mathcal{T}(\Pi)$ . The abstraction heuristic induced by  $\alpha$ ,  $h^{\alpha}$ , is the abstraction heuristic induced by  $\mathcal{T}(\Pi)^{\alpha}$  and  $\alpha$ , i. e.,  $h^{\alpha}:=h^{\mathcal{T}(\Pi)^{\alpha},\alpha}$ .

Al Planning

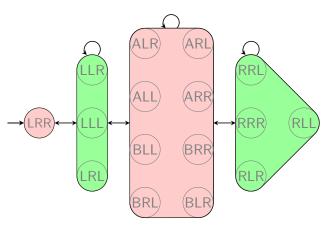
M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally

Transition systems
Abstractions
Abstraction heuristics
Additivity
Refinements

## Abstraction heuristics: example



 $h^{\mathcal{A},\alpha}(\{p\mapsto\mathsf{L},t_\mathsf{A}\mapsto\mathsf{R},t_\mathsf{B}\mapsto\mathsf{R}\})=1$ 

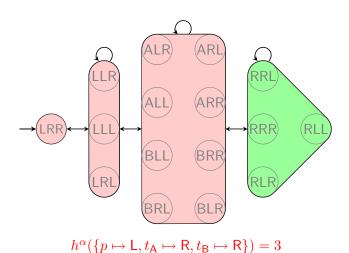
Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction heuristics Additivity Refinements Equivalence Practice

## Abstraction heuristics: example



Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

# Consistency of abstraction heuristics

#### Theorem (consistency and admissibility of $h^{\mathcal{A},\alpha}$ )

Let  $\Pi$  be an FDR planning task, and let A be an abstraction of  $\mathcal{T}(\Pi)$  with abstraction mapping  $\alpha$ .

Then  $h^{\mathcal{A},\alpha}$  is safe, goal-aware, admissible and consistent.

#### Proof.

We prove goal-awareness and consistency; the other properties follow from these two.

Let 
$$\mathcal{T} = \mathcal{T}(\Pi) = \langle S, L, T, I, G \rangle$$
 and  $\mathcal{A} = \langle S', L', T', I', G' \rangle$ .

Goal-awareness: We need to show that  $h^{\mathcal{A},\alpha}(s)=0$  for all  $s\in G$ , so let  $s\in G$ . Then  $\alpha(s)\in G'$  by the definition of abstractions and abstraction mappings, and hence  $h^{\mathcal{A},\alpha}(s)=h_A^*(\alpha(s))=0$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally Transition systems Abstractions Abstraction

Abstractions
Abstraction
heuristics
Additivity
Refinements
Equivalence

# Consistency of abstraction heuristics

#### Theorem (consistency and admissibility of $h^{\mathcal{A},\alpha}$ )

Let  $\Pi$  be an FDR planning task, and let  $\mathcal{A}$  be an abstraction of  $\mathcal{T}(\Pi)$  with abstraction mapping  $\alpha$ .

Then  $h^{\mathcal{A},\alpha}$  is safe, goal-aware, admissible and consistent.

#### Proof.

We prove goal-awareness and consistency; the other properties follow from these two.

Let 
$$\mathcal{T} = \mathcal{T}(\Pi) = \langle S, L, T, I, G \rangle$$
 and  $\mathcal{A} = \langle S', L', T', I', G' \rangle$ .

Goal-awareness: We need to show that  $h^{\mathcal{A},\alpha}(s)=0$  for all  $s\in G$ , so let  $s\in G$ . Then  $\alpha(s)\in G'$  by the definition of abstractions and abstraction mappings, and hence  $h^{\mathcal{A},\alpha}(s)=h_{\mathcal{A}}^*(\alpha(s))=0$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally

formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Equitience

# Consistency of abstraction heuristics (ctd.)

#### Proof (ctd.)

Consistency: Let  $s,t\in S$  such that t is a successor of s. We need to prove that  $h^{\mathcal{A},\alpha}(s)\leq h^{\mathcal{A},\alpha}(t)+1$ .

Since t is a successor of s, there exists an operator o with  $app_o(s)=t$  and hence  $\langle s,o,t\rangle\in T.$ 

By the definition of abstractions and abstraction mappings, we get  $\langle \alpha(s), o, \alpha(t) \rangle \in T' \leadsto \alpha(t)$  is a successor of  $\alpha(s)$  in  $\mathcal{A}$ . Therefore,  $h^{\mathcal{A},\alpha}(s) = h_{\mathcal{A}}^*(\alpha(s)) \leq h_{\mathcal{A}}^*(\alpha(t)) + 1 = h^{\mathcal{A},\alpha}(t) + 1$ , where the inequality holds because the shortest path from  $\alpha(s)$  to the goal in  $\mathcal{A}$  cannot be longer than the shortest path from  $\alpha(s)$  to the goal via  $\alpha(t)$ .

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

# Consistency of abstraction heuristics (ctd.)

#### Proof (ctd.)

Consistency: Let  $s,t \in S$  such that t is a successor of s. We need to prove that  $h^{\mathcal{A},\alpha}(s) \leq h^{\mathcal{A},\alpha}(t) + 1$ .

Since t is a successor of s, there exists an operator o with  $app_o(s)=t$  and hence  $\langle s,o,t\rangle\in T.$ 

By the definition of abstractions and abstraction mappings, we get  $\langle \alpha(s), o, \alpha(t) \rangle \in T' \leadsto \alpha(t)$  is a successor of  $\alpha(s)$  in  $\mathcal{A}$ . Therefore,  $h^{\mathcal{A},\alpha}(s) = h_{\mathcal{A}}^*(\alpha(s)) \leq h_{\mathcal{A}}^*(\alpha(t)) + 1 = h^{\mathcal{A},\alpha}(t) + 1$ , where the inequality holds because the shortest path from  $\alpha(s)$  to the goal in  $\mathcal{A}$  cannot be longer than the shortest path from  $\alpha(s)$  to the goal via  $\alpha(t)$ .

#### Al Planning

M. Helmert, G. Röger

informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

# Consistency of abstraction heuristics (ctd.)

#### Proof (ctd.)

Consistency: Let  $s, t \in S$  such that t is a successor of s. We need to prove that  $h^{\mathcal{A},\alpha}(s) \leq h^{\mathcal{A},\alpha}(t) + 1$ .

Since t is a successor of s, there exists an operator o with  $app_o(s)=t$  and hence  $\langle s,o,t\rangle\in T.$ 

By the definition of abstractions and abstraction mappings, we get  $\langle \alpha(s), o, \alpha(t) \rangle \in T' \leadsto \alpha(t)$  is a successor of  $\alpha(s)$  in  $\mathcal{A}$ .

Therefore,  $h^{\mathcal{A},\alpha}(s) = h^*_{\mathcal{A}}(\alpha(s)) \leq h^*_{\mathcal{A}}(\alpha(t)) + 1 = h^{\mathcal{A},\alpha}(t) + 1$ , where the inequality holds because the shortest path from  $\alpha(s)$  to the goal in  $\mathcal{A}$  cannot be longer than the shortest path from  $\alpha(s)$  to the goal via  $\alpha(t)$ .

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally
Transition systems
Abstractions
Abstraction heuristics
Additivity
Refinements
Equivalence

# Consistency of abstraction heuristics (ctd.)

#### Proof (ctd.)

Consistency: Let  $s, t \in S$  such that t is a successor of s. We need to prove that  $h^{\mathcal{A},\alpha}(s) \leq h^{\mathcal{A},\alpha}(t) + 1$ .

Since t is a successor of s, there exists an operator o with  $app_o(s)=t$  and hence  $\langle s,o,t\rangle\in T.$ 

By the definition of abstractions and abstraction mappings, we get  $\langle \alpha(s), o, \alpha(t) \rangle \in T' \leadsto \alpha(t)$  is a successor of  $\alpha(s)$  in  $\mathcal{A}$ . Therefore,  $h^{\mathcal{A},\alpha}(s) = h_{\mathcal{A}}^*(\alpha(s)) \leq h_{\mathcal{A}}^*(\alpha(t)) + 1 = h^{\mathcal{A},\alpha}(t) + 1$ , where the inequality holds because the shortest path from  $\alpha(s)$  to the goal in  $\mathcal{A}$  cannot be longer than the shortest path from  $\alpha(s)$  to the goal via  $\alpha(t)$ .

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

### Orthogonality of abstraction mappings

#### Al Planning

M. Helmert.

Additivity

### Definition (orthogonal abstraction mappings)

Let  $\alpha_1$  and  $\alpha_2$  be abstraction mappings on  $\mathcal{T}$ .

We say that  $\alpha_1$  and  $\alpha_2$  are orthogonal if for all transitions  $\langle s, l, t \rangle$  of  $\mathcal{T}$ , we have  $\alpha_i(s) = \alpha_i(t)$  for at least one  $i \in \{1, 2\}$ .

### Affecting transition labels

#### Definition (affecting transition labels)

Let  $\mathcal T$  be a transition system, and let l be one of its labels. We say that l affects  $\mathcal T$  if  $\mathcal T$  has a transition  $\langle s,l,t\rangle$  with  $s\neq t$ .

### Theorem (affecting labels vs. orthogonality)

Let  $A_1$  be an abstraction of T with abstraction mapping  $\alpha_1$ . Let  $A_2$  be an abstraction of T with abstraction mapping  $\alpha_2$ . If no label of T affects both  $A_1$  and  $A_2$ , then  $\alpha_1$  and  $\alpha_2$  are orthogonal.

(Easy proof omitted.)

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally Transition systems Abstractions Abstraction heuristics Additivity

Refinements Equivalence Practice

### Orthogonal abstraction mappings: example

|   | 2 |   | 6 |
|---|---|---|---|
| 5 | 7 |   |   |
| 3 | 4 | 1 |   |
|   |   |   |   |

| 9  |    | 12 |    |
|----|----|----|----|
|    |    | 14 | 13 |
|    |    |    | 11 |
| 15 | 10 | 8  |    |

Are the abstraction mappings orthogonal?

Al Planning

M. Helmert, G. Röger

Abstractions: informally

formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Equivalence

### Orthogonal abstraction mappings: example

|   | 2 |   | 6 |
|---|---|---|---|
| 5 | 7 |   |   |
| 3 | 4 | 1 |   |
|   |   |   |   |

| 9  |    | 12 |    |
|----|----|----|----|
|    |    | 14 | 13 |
|    |    |    | 11 |
| 15 | 10 | 8  |    |

Al Planning

M. Helmert G. Röger

informally

formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Equivalence

Are the abstraction mappings orthogonal?

### Orthogonality and additivity

### Theorem (additivity for orthogonal abstraction mappings)

Let  $h^{A_1,\alpha_1}, \ldots, h^{A_n,\alpha_n}$  be abstraction heuristics for the same planning task  $\Pi$  such that  $\alpha_i$  and  $\alpha_j$  are orthogonal for all  $i \neq j$ .

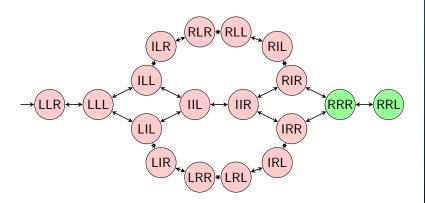
Then  $\sum_{i=1}^{n} h^{A_i,\alpha_i}$  is a safe, goal-aware, admissible and consistent heuristic for  $\Pi$ .

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Fauivalence



transition system T state variables: first package, second package, truck

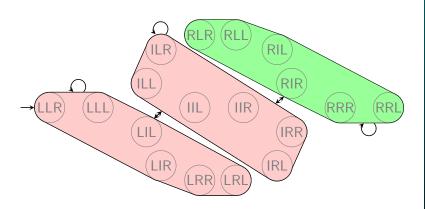
#### Al Planning

M. Helmert G. Röger

Abstractions informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

Equivalend Practice



AI Planning

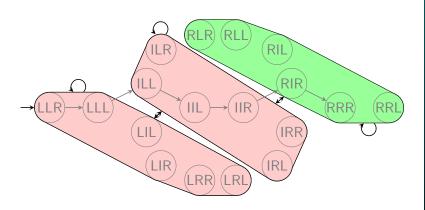
M. Helmert G. Röger

Abstractions informally

formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity
Refinements
Equivalence

abstraction  $\mathcal{A}_1$ 

mapping: only consider state of first package



Abstractio formally Transition

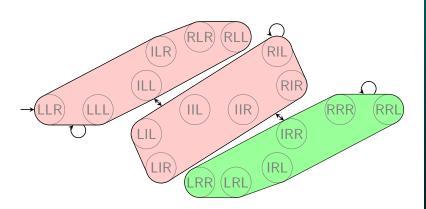
Al Planning

systems
Abstractions
Abstraction
heuristics
Additivity

Additivity
Refinements
Equivalence
Practice

### abstraction $\mathcal{A}_1$

mapping: only consider state of first package



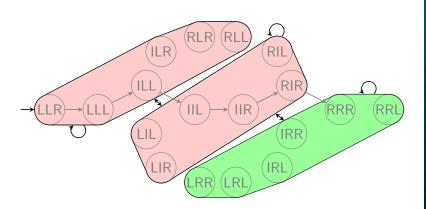
abstraction  $A_2$  (orthogonal to  $A_1$ ) mapping: only consider state of second package

#### Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction heuristics Additivity Refinements Equivalence



abstraction  $A_2$  (orthogonal to  $A_1$ ) mapping: only consider state of second package

#### Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

#### Proof.

We prove goal-awareness and consistency; the other properties follow from these two.

Let 
$$\mathcal{T} = \mathcal{T}(\Pi) = \langle S, L, T, I, G \rangle$$
.

Goal-awareness: For goal states  $s \in G$ ,  $\sum_{i=1}^n h^{\mathcal{A}_i,\alpha_i}(s) = \sum_{i=1}^n 0 = 0$  because all individual abstractions are goal-aware.

#### Al Planning

M. Helmert, G. Röger

### Abstractions informally

formally
Transition
systems
Abstractions
Abstraction

# heuristics Additivity Refinements Equivalence

#### Proof.

We prove goal-awareness and consistency; the other properties follow from these two.

Let 
$$\mathcal{T} = \mathcal{T}(\Pi) = \langle S, L, T, I, G \rangle$$
.

Goal-awareness: For goal states  $s \in G$ ,  $\sum_{i=1}^n h^{\mathcal{A}_i,\alpha_i}(s) = \sum_{i=1}^n 0 = 0$  because all individual abstractions are goal-aware.

#### Al Planning

M. Helmert, G. Röger

informally

Abstraction formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

### Proof (ctd.)

Consistency: Let  $s, t \in S$  such that t is a successor of s.

Let 
$$L := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(s)$$
 and  $R := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(t)$ .

We need to prove that  $L \leq R + 1$ .

$$\alpha_i(s) \neq \alpha_i(t)$$
 for at most one  $i \in \{1, \dots, n\}$ .

Case 1: 
$$\alpha_i(s) = \alpha_i(t)$$
 for all  $i \in \{1, ..., n\}$ .

Then 
$$L = \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(s)$$
  

$$= \sum_{i=1}^{n} h^*_{\mathcal{A}_i}(\alpha_i(s))$$

$$= \sum_{i=1}^{n} h^*_{\mathcal{A}_i}(\alpha_i(t))$$

$$= \sum_{i=1}^{n} h^*_{\mathcal{A}_i}(\alpha_i(t))$$

$$= \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(t)$$

$$= R < R \perp 1$$

Al Planning

G. Röger

Additivity

#### Proof (ctd.)

Consistency: Let  $s, t \in S$  such that t is a successor of s.

Let 
$$L := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(s)$$
 and  $R := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(t)$ .

We need to prove that  $L \leq R + 1$ .

Since t is a successor of s, there exists an operator o with  $app_o(s)=t$  and hence  $\langle s,o,t\rangle\in T.$ 

Because the abstraction mappings are orthogonal,

$$\alpha_i(s) \neq \alpha_i(t)$$
 for at most one  $i \in \{1, \dots, n\}$ .

Case 1: 
$$\alpha_i(s) = \alpha_i(t)$$
 for all  $i \in \{1, \dots, n\}$ .  
Then  $L = \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(s)$ 

$$= \sum_{i=1}^n h^*_{\mathcal{A}_i}(\alpha_i(s))$$

$$= \sum_{i=1}^n h^*_{\mathcal{A}_i}(\alpha_i(t))$$

$$= \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(t)$$

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

### Proof (ctd.)

Consistency: Let  $s, t \in S$  such that t is a successor of s.

Let  $L := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(s)$  and  $R := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(t)$ .

We need to prove that  $L \leq R + 1$ .

Since t is a successor of s, there exists an operator o with  $app_o(s) = t$  and hence  $\langle s, o, t \rangle \in T$ .

Because the abstraction mappings are orthogonal,

$$\alpha_i(s) \neq \alpha_i(t)$$
 for at most one  $i \in \{1, \dots, n\}$ .

Case 1: 
$$\alpha_i(s) = \alpha_i(t)$$
 for all  $i \in \{1, \ldots, n\}$ .

Then 
$$L = \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(s)$$
  

$$= \sum_{i=1}^{n} h^*_{\mathcal{A}_i}(\alpha_i(s))$$

$$= \sum_{i=1}^{n} h^*_{\mathcal{A}_i}(\alpha_i(t))$$

$$= \sum_{i=1}^{n} h^*_{\mathcal{A}_i}(\alpha_i(t))$$

$$= \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(t)$$

$$= R < R + 1$$

Al Planning

M. Helmert. G. Röger

Additivity

#### Proof (ctd.)

Consistency: Let  $s, t \in S$  such that t is a successor of s.

Let  $L := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(s)$  and  $R := \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(t)$ .

We need to prove that  $L \leq R+1$ .

Since t is a successor of s, there exists an operator o with  $app_o(s) = t$  and hence  $\langle s, o, t \rangle \in T$ .

Because the abstraction mappings are orthogonal,

$$\alpha_i(s) \neq \alpha_i(t)$$
 for at most one  $i \in \{1, \dots, n\}$ .

Case 1:  $\alpha_i(s) = \alpha_i(t)$  for all  $i \in \{1, \ldots, n\}$ .

Case 1: 
$$\alpha_i(s) = \alpha_i(t)$$
 for all  $i \in \{1, \dots, n\}$   
Then  $L = \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(s)$   
 $= \sum_{i=1}^n h^*_{\mathcal{A}_i}(\alpha_i(s))$   
 $= \sum_{i=1}^n h^*_{\mathcal{A}_i}(\alpha_i(t))$   
 $= \sum_{i=1}^n h^{\mathcal{A}_i, \alpha_i}(t)$   
 $= R \le R + 1$ .

Al Planning

M. Helmert.

Additivity

### Proof (ctd.)

Case 2:  $\alpha_i(s) \neq \alpha_i(t)$  for exactly one  $i \in \{1, ..., n\}$ . Let  $k \in \{1, ..., n\}$  such that  $\alpha_k(s) \neq \alpha_k(t)$ .

Then 
$$L = \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(s)$$
  
 $= \sum_{i \in \{1, \dots, n\} \setminus \{k\}} h^*_{\mathcal{A}_i}(\alpha_i(s)) + h^{\mathcal{A}_k, \alpha_k}(s)$   
 $\leq \sum_{i \in \{1, \dots, n\} \setminus \{k\}} h^*_{\mathcal{A}_i}(\alpha_i(t)) + h^{\mathcal{A}_k, \alpha_k}(t) + 1$   
 $= \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(t) + 1$   
 $= R + 1,$ 

where the inequality holds because  $\alpha_i(s) = \alpha_i(t)$  for all  $i \neq k$  and  $h^{\mathcal{A}_k,\alpha_k}$  is consistent.

Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions: formally

Abstractions
Abstraction
heuristics
Additivity
Refinements

Equivalence Practice

#### Proof (ctd.)

Case 2:  $\alpha_i(s) \neq \alpha_i(t)$  for exactly one  $i \in \{1, ..., n\}$ .

Let  $k \in \{1, \ldots, n\}$  such that  $\alpha_k(s) \neq \alpha_k(t)$ .

Then 
$$L = \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(s)$$
  

$$= \sum_{i \in \{1, \dots, n\} \setminus \{k\}} h^*_{\mathcal{A}_i}(\alpha_i(s)) + h^{\mathcal{A}_k, \alpha_k}(s)$$

$$\leq \sum_{i \in \{1, \dots, n\} \setminus \{k\}} h^*_{\mathcal{A}_i}(\alpha_i(t)) + h^{\mathcal{A}_k, \alpha_k}(t) + 1$$

$$= \sum_{i=1}^{n} h^{\mathcal{A}_i, \alpha_i}(t) + 1$$

$$= R + 1,$$

where the inequality holds because  $\alpha_i(s) = \alpha_i(t)$  for all  $i \neq k$  and  $h^{\mathcal{A}_k,\alpha_k}$  is consistent.

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally

Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

### Abstractions of abstractions

### Theorem (transitivity of abstractions)

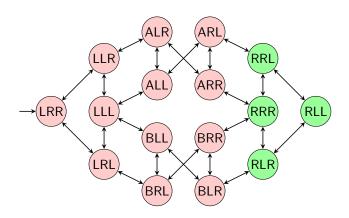
Let T, T' and T'' be transition systems.

- If T' is an abstraction of Tand T'' is an abstraction of T'. then T'' is an abstraction of T.
- If T' is a homomorphic abstraction of Tand T'' is a homomorphic abstraction of T', then T'' is a homomorphic abstraction of T.

Al Planning

M. Helmert. G. Röger

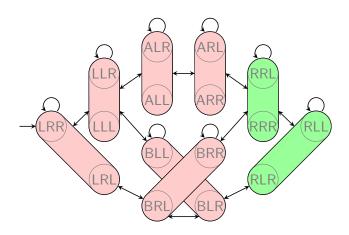
Refinements



transition system T

Al Planning

Refinements



Transition system  $\mathcal{T}'$  as an abstraction of  $\mathcal{T}$ 

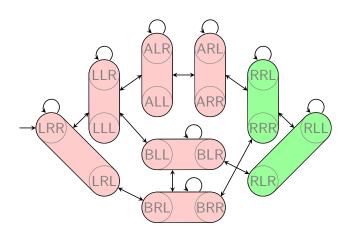
Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

Equivalen Practice



Transition system  $\mathcal{T}'$  as an abstraction of  $\mathcal{T}$ 

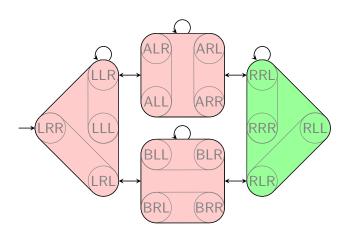
Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

Practice



Transition system  $\mathcal{T}''$  as an abstraction of  $\mathcal{T}'$ 

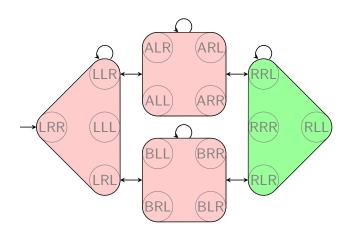
Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

Refinements Equivalence Practice



Transition system  $\mathcal{T}''$  as an abstraction of  $\mathcal{T}$ 

Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

Refinements Equivalence Practice

# Abstractions of abstractions (proof)

#### Proof.

Let  $\mathcal{T}=\langle S,L,T,I,G\rangle$ , let  $\mathcal{T}'=\langle S',L,T',I',G'\rangle$  be an abstraction of  $\mathcal{T}$  with abstraction mapping  $\alpha$ , and let  $\mathcal{T}''=\langle S'',L,T'',I'',G''\rangle$  be an abstraction of  $\mathcal{T}'$  with abstraction mapping  $\alpha'$ .

We show that T'' is an abstraction of T with abstraction mapping  $\beta:=\alpha'\circ\alpha$ , i. e., that

- **1** for all  $s \in I$ , we have  $\beta(s) \in I''$ ,
- ② for all  $s \in G$ , we have  $\beta(s) \in G''$ , and
- $\bullet$  for all  $\langle s, l, t \rangle \in T$ , we have  $\langle \beta(s), l, \beta(t) \rangle \in T''$ .

Moreover, we show that if  $\alpha$  and  $\alpha'$  are homomorphism, then  $\beta$  is also a homomorphism.

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

Practice

. . .

### Proof (ctd.)

1. For all  $s \in I$ , we have  $\beta(s) \in I''$ :

Let  $s \in I$ . Because  $\mathcal{T}'$  is an abstraction of  $\mathcal{T}$  with mapping  $\alpha$ , we have  $\alpha(s) \in I'$ . Because  $\mathcal{T}''$  is an abstraction of  $\mathcal{T}'$  with mapping  $\alpha'$  and  $\alpha(s) \in I'$ , we have  $\alpha'(\alpha(s)) \in I''$ . Hence  $\beta(s) = \alpha'(\alpha(s)) \in I''$ .

Homomorphism property if  $\alpha$  and  $\alpha'$  homomorphisms: Let  $s'' \in I''$ . Because  $\alpha'$  is a homomorphism, there exists a state  $s' \in I'$  such that  $\alpha'(s') = s''$ . Because  $\alpha$  is a homomorphism, there exists a state  $s \in I$  such that  $\alpha(s) = s'$ . Thus  $s'' = \alpha'(\alpha(s)) = \beta(s)$  for some  $s \in I$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally

systems
Abstractions
Abstraction
heuristics
Additivity

Refinements Equivalence Practice

### Proof (ctd.)

1. For all  $s \in I$ , we have  $\beta(s) \in I''$ :

Let  $s \in I$ . Because  $\mathcal{T}'$  is an abstraction of  $\mathcal{T}$  with mapping  $\alpha$ , we have  $\alpha(s) \in I'$ . Because  $\mathcal{T}''$  is an abstraction of  $\mathcal{T}'$  with mapping  $\alpha'$  and  $\alpha(s) \in I'$ , we have  $\alpha'(\alpha(s)) \in I''$ . Hence  $\beta(s) = \alpha'(\alpha(s)) \in I''$ .

Homomorphism property if  $\alpha$  and  $\alpha'$  homomorphisms: Let  $s'' \in I''$ . Because  $\alpha'$  is a homomorphism, there exists a state  $s' \in I'$  such that  $\alpha'(s') = s''$ . Because  $\alpha$  is a homomorphism, there exists a state  $s \in I$  such that  $\alpha(s) = s'$ . Thus  $s'' = \alpha'(\alpha(s)) = \beta(s)$  for some  $s \in I$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally Transition systems Abstractions Abstraction heuristics

Refinements
Equivalence
Practice

### Proof (ctd.)

2. For all  $s \in G$ , we have  $\beta(s) \in G''$ :

Let  $s\in G$ . Because  $\mathcal{T}'$  is an abstraction of  $\mathcal{T}$  with mapping  $\alpha$ , we have  $\alpha(s)\in G'$ . Because  $\mathcal{T}''$  is an abstraction of  $\mathcal{T}'$  with mapping  $\alpha'$  and  $\alpha(s)\in G'$ , we have  $\alpha'(\alpha(s))\in G''$ . Hence  $\beta(s)=\alpha'(\alpha(s))\in G''$ .

Homomorphism property if  $\alpha$  and  $\alpha'$  homomorphisms: Let  $s'' \in G''$ . Because  $\alpha'$  is a homomorphism, there exists a state  $s' \in G'$  such that  $\alpha'(s') = s''$ . Because  $\alpha$  is a homomorphism, there exists a state  $s \in G$  such that  $\alpha(s) = s'$ . Thus  $s'' = \alpha'(\alpha(s)) = \beta(s)$  for some  $s \in G$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally Transition systems Abstractions

Additivity
Refinements
Equivalence

Practice

### Proof (ctd.)

2. For all  $s \in G$ , we have  $\beta(s) \in G''$ :

Let  $s\in G$ . Because  $\mathcal{T}'$  is an abstraction of  $\mathcal{T}$  with mapping  $\alpha$ , we have  $\alpha(s)\in G'$ . Because  $\mathcal{T}''$  is an abstraction of  $\mathcal{T}'$  with mapping  $\alpha'$  and  $\alpha(s)\in G'$ , we have  $\alpha'(\alpha(s))\in G''$ . Hence  $\beta(s)=\alpha'(\alpha(s))\in G''$ .

Homomorphism property if  $\alpha$  and  $\alpha'$  homomorphisms: Let  $s'' \in G''$ . Because  $\alpha'$  is a homomorphism, there exists a state  $s' \in G'$  such that  $\alpha'(s') = s''$ . Because  $\alpha$  is a homomorphism, there exists a state  $s \in G$  such that  $\alpha(s) = s'$ . Thus  $s'' = \alpha'(\alpha(s)) = \beta(s)$  for some  $s \in G$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics

Additivity
Refinements
Equivalence

### Proof (ctd.)

3. For all  $\langle s,l,t\rangle\in T$ , we have  $\langle \beta(s),l,\beta(t)\rangle\in T''$ Let  $\langle s,l,t\rangle\in T$ . Because T' is an abstraction of T with mapping  $\alpha$ , we have  $\langle \alpha(s),l,\alpha(t)\rangle\in T'$ . Because T'' is an abstraction of T' with mapping  $\alpha'$  and  $\langle \alpha(s),l,\alpha(t)\rangle\in T'$ , we have  $\langle \alpha'(\alpha(s)),l,\alpha'(\alpha(t))\rangle\in T''$ . Hence  $\langle \beta(s),l,\beta(t)\rangle=\langle \alpha'(\alpha(s)),l,\alpha'(\alpha(t))\rangle\in T''$ .

Homomorphism property if  $\alpha$  and  $\alpha'$  homomorphisms: Let  $\langle s'', l, t'' \rangle \in T''$ . Because  $\alpha'$  is a homomorphism, there exists a transition  $\langle s', l, t' \rangle \in T'$  such that  $\alpha'(s') = s''$  and  $\alpha'(t') = t''$ . Because  $\alpha$  is a homomorphism, there exists a transition  $\langle s, l, t \rangle \in T$  such that  $\alpha(s) = s'$  and  $\alpha(t) = t'$ . Thus  $\langle s'', l, t'' \rangle = \langle \alpha'(\alpha(s)), l, \alpha'(\alpha(t)) \rangle = \langle \beta(s), l, \beta(t) \rangle$  for some  $\langle s, l, t \rangle \in T$ .

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction Abstraction heuristics Additivity Refinements Equivalence

### Proof (ctd.)

3. For all  $\langle s,l,t\rangle \in T$ , we have  $\langle \beta(s),l,\beta(t)\rangle \in T''$ Let  $\langle s,l,t\rangle \in T$ . Because T' is an abstraction of T with mapping  $\alpha$ , we have  $\langle \alpha(s),l,\alpha(t)\rangle \in T'$ . Because T'' is an abstraction of T' with mapping  $\alpha'$  and  $\langle \alpha(s),l,\alpha(t)\rangle \in T'$ , we have  $\langle \alpha'(\alpha(s)),l,\alpha'(\alpha(t))\rangle \in T''$ .

Hence  $\langle \beta(s), l, \beta(t) \rangle = \langle \alpha'(\alpha(s)), l, \alpha'(\alpha(t)) \rangle \in T''$ .

Homomorphism property if  $\alpha$  and  $\alpha'$  homomorphisms: Let  $\langle s'', l, t'' \rangle \in T''$ . Because  $\alpha'$  is a homomorphism, there exists a transition  $\langle s', l, t' \rangle \in T'$  such that  $\alpha'(s') = s''$  and  $\alpha'(t') = t''$ . Because  $\alpha$  is a homomorphism, there exists a transition  $\langle s, l, t \rangle \in T$  such that  $\alpha(s) = s'$  and  $\alpha(t) = t'$ . Thus  $\langle s'', l, t'' \rangle = \langle \alpha'(\alpha(s)), l, \alpha'(\alpha(t)) \rangle = \langle \beta(s), l, \beta(t) \rangle$  for some  $\langle s, l, t \rangle \in T$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction heuristics Additivity Refinements Equivalence

### Coarsenings and refinements

Terminology: Let  $\mathcal{T}$  be a transition system, let  $\mathcal{T}'$  be an abstraction of  $\mathcal{T}$  with abstraction mapping  $\alpha$ , and let  $\mathcal{T}''$  be an abstraction of  $\mathcal{T}'$  with abstraction mapping  $\alpha'$ .

#### Then:

- $\langle T'', \alpha' \circ \alpha \rangle$  is called a coarsening of  $\langle T', \alpha \rangle$ , and
- $\langle T', \alpha \rangle$  is called a refinement of  $\langle T'', \alpha' \circ \alpha \rangle$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstraction formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

### Heuristic quality of refinements

### Theorem (heuristic quality of refinements)

Let  $h^{\mathcal{A},\alpha}$  and  $h^{\mathcal{B},\beta}$  be abstraction heuristics for the same planning task  $\Pi$  such that  $\langle \mathcal{A}, \alpha \rangle$  is a refinement of  $\langle \mathcal{B}, \beta \rangle$ . Then  $h^{\mathcal{A},\alpha}$  dominates  $h^{\mathcal{B},\beta}$ .

In other words,  $h^{\mathcal{A},\alpha}(s) \geq h^{\mathcal{B},\beta}(s)$  for all states s of  $\Pi$ .

#### Proof

Since  $\langle \mathcal{A}, \alpha \rangle$  is a refinement of  $\langle \mathcal{B}, \beta \rangle$ , there exists a mapping  $\alpha'$  such that  $\beta = \alpha' \circ \alpha$  and  $\mathcal{B}$  is an abstraction of  $\mathcal{A}$  with abstraction mapping  $\alpha'$ .

For any state s of  $\Pi$ , we get  $h^{\mathcal{B},\beta}(s)=h^*_{\mathcal{B}}(\beta(s))=h^*_{\mathcal{B}}(\alpha'(\alpha(s)))=h^{\mathcal{B},\alpha'}(\alpha(s))\leq h^*_{\mathcal{A}}(\alpha(s))=h^{\mathcal{A},\alpha}(s)$ , where the inequality holds because  $h^{\mathcal{B},\alpha'}$  is an admissible heuristic in the transition system  $\mathcal{A}$ .

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally

Transition systems Abstractions Abstraction heuristics Additivity

Refinements Equivalence Practice

### Heuristic quality of refinements

#### Theorem (heuristic quality of refinements)

Let  $h^{\mathcal{A},\alpha}$  and  $h^{\mathcal{B},\beta}$  be abstraction heuristics for the same planning task  $\Pi$  such that  $\langle \mathcal{A}, \alpha \rangle$  is a refinement of  $\langle \mathcal{B}, \beta \rangle$ . Then  $h^{\mathcal{A},\alpha}$  dominates  $h^{\mathcal{B},\beta}$ .

In other words,  $h^{\mathcal{A},\alpha}(s) \geq h^{\mathcal{B},\beta}(s)$  for all states s of  $\Pi$ .

#### Proof.

Since  $\langle \mathcal{A}, \alpha \rangle$  is a refinement of  $\langle \mathcal{B}, \beta \rangle$ , there exists a mapping  $\alpha'$  such that  $\beta = \alpha' \circ \alpha$  and  $\mathcal{B}$  is an abstraction of  $\mathcal{A}$  with abstraction mapping  $\alpha'$ .

For any state s of  $\Pi$ , we get  $h^{\mathcal{B},\beta}(s)=h^*_{\mathcal{B}}(\beta(s))=h^*_{\mathcal{B}}(\alpha'(\alpha(s)))=h^{\mathcal{B},\alpha'}(\alpha(s))\leq h^*_{\mathcal{A}}(\alpha(s))=h^{\mathcal{A},\alpha}(s),$  where the inequality holds because  $h^{\mathcal{B},\alpha'}$  is an admissible heuristic in the transition system  $\mathcal{A}$ .

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions: formally Transition systems

Abstractions Abstraction heuristics Additivity Refinements Equivalence

Practice

### Isomorphic transition systems

### Definition (isomorphic transition systems)

Let  $\mathcal{T}=\langle S,L,T,I,G\rangle$  and  $\mathcal{T}'=\langle S',L',T',I',G'\rangle$  be transition systems.

We say that T is isomorphic to T', in symbols  $T \sim T'$ , if there exist bijective functions  $\varphi: S \to S'$  and  $\psi: L \to L'$  such that:

- $s \in I$  iff  $\varphi(s) \in I'$ ,
- $s \in G$  iff  $\varphi(s) \in G'$ , and
- $\langle s, l, t \rangle \in T$  iff  $\langle \varphi(s), \psi(l), \varphi(t) \rangle \in T'$ .

Al Planning

M. Helmert, G. Röger

Abstractions: informally

formally
Transition
systems
Abstractions
Abstraction
heuristics
Additivity

Refinements Equivalence Practice

# Graph-equivalent transition systems

### Definition (graph-equivalent transition systems)

Let  $\mathcal{T}=\langle S,L,T,I,G\rangle$  and  $\mathcal{T}'=\langle S',L',T',I',G'\rangle$  be transition systems.

We say that T is graph-equivalent to T', in symbols  $T \stackrel{\mathsf{G}}{\sim} T'$ , if there exists a bijective function  $\varphi: S \to S'$  such that:

- $s \in I$  iff  $\varphi(s) \in I'$ ,
- $s \in G$  iff  $\varphi(s) \in G'$ , and
- $\langle s, l, t \rangle \in T$  for some  $l \in L$  iff  $\langle \varphi(s), l', \varphi(t) \rangle \in T'$  for some  $l' \in L'$ .

Note: There is no requirement that the labels of  $\mathcal{T}$  and  $\mathcal{T}'$  correspond in any way. For example, it is permitted that all transitions of  $\mathcal{T}$  have different labels and all transitions of  $\mathcal{T}'$  have the same label.

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction Abstraction heuristics Additivity Refinements Equivalence

### Isomorphism vs. graph equivalence

- ullet ( $\sim$ ) and ( $\stackrel{\sf G}{\sim}$ ) are equivalence relations.
- Two isomorphic transition systems are interchangeable for all practical intents and purposes.
- Two graph-equivalent transition systems are interchangeable for most intents and purposes.
   In particular, their state distances are identical, so they define the same abstraction heuristic for corresponding abstraction functions.
- Isomorphism implies graph equivalence, but not vice versa.

Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

### Using abstraction heuristics in practice

In practice, there are conflicting goals for abstractions:

- we want to obtain an informative heuristic, but
- want to keep its representation small.

Abstractions have small representations if they have

- few abstract states and
- a succinct encoding for  $\alpha$ .

Al Planning

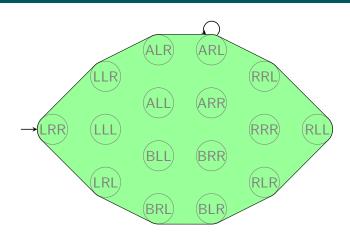
M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

Practice

### Counterexample: one-state abstraction



One-state abstraction:  $\alpha(s) := \text{const.}$ 

- + very few abstract states and succinct encoding for  $\alpha$
- completely uninformative heuristic

Al Planning

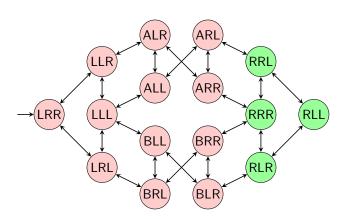
M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

Practice

### Counterexample: identity abstraction



Identity abstraction:  $\alpha(s) := s$ .

- + perfect heuristic and succinct encoding for  $\alpha$
- too many abstract states

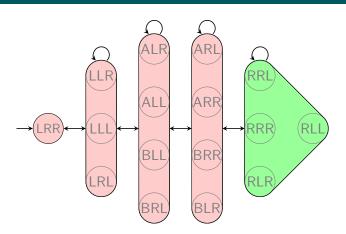
Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstraction heuristics Additivity Refinements Equivalence Practice

### Counterexample: perfect abstraction



Perfect abstraction:  $\alpha(s) := h^*(s)$ .

- + perfect heuristic and usually few abstract states
- usually no succinct encoding for  $\alpha$

Al Planning

M. Helmert G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements Equivalence

Practice

### Automatically deriving good abstraction heuristics

Abstraction heuristics for planning: main research problem

Automatically derive effective abstraction heuristics for planning tasks.

we will study two state-of-the-art approaches in the next two chapters

#### Al Planning

M. Helmert, G. Röger

Abstractions: informally

Abstractions formally Transition systems Abstractions Abstraction heuristics Additivity Refinements

Practice