
Principles of AI Planning
10. State-space search: abstractions

Malte Helmert and Gabriele Röger

Albert-Ludwigs-Universität Freiburg

December 16th, 2008

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 1 / 66

Principles of AI Planning
December 16th, 2008 — 10. State-space search: abstractions

Abstractions: informally
Introduction
Practical requirements
Multiple abstractions
Outlook

Abstractions: formally
Transition systems
Abstractions
Abstraction heuristics
Additive abstraction heuristics
Coarsenings and refinements
Equivalent transition systems
Abstraction heuristics in practice

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 2 / 66

Abstractions: informally Introduction

Coming up with heuristics in a principled way

General procedure for obtaining a heuristic

Solve an easier version of the problem.

Two common methods:

I relaxation: consider less constrained version of the problem

I abstraction: consider smaller version of real problem

In previous chapters, we have studied relaxation, which has been very
successfully applied to satisficing planning.

Now, we study abstraction, which is one of the most prominent techniques
for optimal planning.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 3 / 66

Abstractions: informally Introduction

Abstracting a transition system

Abstracting a transition system means dropping some distinctions between
states, while preserving the transition behaviour as much as possible.

I An abstraction of a transition system T is defined by an abstraction
mapping α that defines which states of T should be distinguished and
which ones should not.

I From T and α, we compute an abstract transition system T ′ which is
similar to T , but smaller.

I The abstract goal distances (goal distances in T ′) are used as
heuristic estimates for goal distances in T .

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 4 / 66

Abstractions: informally Introduction

Abstracting a transition system: example

Example (15-puzzle)

A 15-puzzle state is given by a permutation 〈b, t1, . . . , t15〉 of {1, . . . , 16},
where b denotes the blank position and the other components denote the
positions of the 15 tiles.

One possible abstraction mapping ignores the precise location of tiles
8–15, i. e., two states are distinguished iff they differ in the position of the
blank or one of the tiles 1–7:

α(〈b, t1, . . . , t15〉) = 〈b, t1, . . . , t7〉

The heuristic values for this abstraction correspond to the cost of moving
tiles 1–7 to their goal positions.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 5 / 66

Abstractions: informally Introduction

Abstraction example: 15-puzzle

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

real state space

I 16! = 20922789888000 ≈ 2 · 1013 states

I 16!
2 = 10461394944000 ≈ 1013 reachable states

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 6 / 66

Abstractions: informally Introduction

Abstraction example: 15-puzzle

2 6

5 7

3 4 1

1 2 3 4

5 6 7

abstract state space

I 16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 states

I 16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 reachable states

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 7 / 66

Abstractions: informally Introduction

Computing the abstract transition system

Given T and α, how do we compute T ′?

Requirement

We want to obtain an admissible heuristic.
Hence, h∗(α(s)) (in the abstract state space T ′) should never
overestimate h∗(s) (in the concrete state space T).

An easy way to achieve this is to ensure that all solutions in T also exist in
T ′:

I If s is a goal state in T , then α(s) is a goal state in T ′.

I If T has a transition from s to t, then T ′ has a transition from α(s)
to α(t).

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 8 / 66

Abstractions: informally Introduction

Computing the abstract transition system: example

Example (15-puzzle)

In the running example:
I T has the unique goal state 〈16, 1, 2, . . . , 15〉.
 T ′ has the unique goal state 〈16, 1, 2, . . . , 7〉.

I Let x and y be neighboring positions in the 4× 4 grid.
T has a transition from 〈x , t1, . . . , ti−1, y , ti+1, . . . , t15〉
to 〈y , t1, . . . , ti−1, x , ti+1, . . . , t15〉 for all i ∈ {1, . . . , 15}.
 T ′ has a transition from 〈x , t1, . . . , ti−1, y , ti+1, . . . , t7〉

to 〈y , t1, . . . , ti−1, x , ti+1, . . . , t7〉 for all i ∈ {1, . . . , 7}.
 Moreover, T ′ has a transition from 〈x , t1, . . . , t7〉 to 〈y , t1, . . . , t7〉 if

y /∈ {t1, . . . , t7}.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 9 / 66

Abstractions: informally Practical requirements

Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be efficiently
computable. This gives us two requirements for α:

I For a given state s, the abstract state α(s) must be efficiently
computable.

I For a given abstract state α(s), the abstract goal distance h∗(α(s))
must be efficiently computable.

There are different ways of achieving these requirements:

I pattern database heuristics (Culberson & Schaeffer, 1996)

I merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)
I structural patterns (Katz & Domshlak, 2008)

I not covered in this course

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 10 / 66

Abstractions: informally Practical requirements

Practical requirements for abstractions: example

Example (15-puzzle)

In our running example, α can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search, most
common algorithms precompute all abstract goal distances prior to search
by performing a backward breadth-first search from the goal state(s). The
distances are then stored in a table (requires about 495 MB of RAM).
During search, computing h∗(α(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 11 / 66

Abstractions: informally Multiple abstractions

Multiple abstractions

I One important practical question is how to come up with a suitable
abstraction mapping α.

I Indeed, there is usually a huge number of possibilities, and it is
important to pick good abstractions (i. e., ones that lead to
informative heuristics).

I However, it is generally not necessary to commit to a single
abstraction.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 12 / 66

Abstractions: informally Multiple abstractions

Combining multiple abstractions

Maximizing several abstractions:

I Each abstraction mapping gives rise to an admissible heuristic.

I By computing the maximum of several admissible heuristics, we
obtain another admissible heuristic which dominates the component
heuristics.

I Thus, we can always compute several abstractions and maximize over
the individual abstract goal distances.

Adding several abstractions:

I In some cases, we can even compute the sum of individual estimates
and still stay admissible.

I Summation often leads to much higher estimates than maximization,
so it is important to understand when it is admissible.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 13 / 66

Abstractions: informally Multiple abstractions

Maximizing several abstractions: example

Example (15-puzzle)

I mapping to tiles 1–7 was arbitrary
 can use any subset of tiles

I with the same amount of memory required for the tables for the
mapping to tiles 1–7, we could store the tables for nine different
abstractions to six tiles and the blank

I use maximum of individual estimates

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 14 / 66

Abstractions: informally Multiple abstractions

Adding several abstractions: example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

I 1st abstraction: ignore precise location of 8–15

I 2nd abstraction: ignore precise location of 1–7

 Is the sum of the abstraction heuristics admissible?

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 15 / 66

Abstractions: informally Multiple abstractions

Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

I 1st abstraction: ignore precise location of 8–15

I 2nd abstraction: ignore precise location of 1–7

 The sum of the abstraction heuristics is not admissible.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 16 / 66

Abstractions: informally Multiple abstractions

Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

I 1st abstraction: ignore precise location of 8–15 and blank

I 2nd abstraction: ignore precise location of 1–7 and blank

 The sum of the abstraction heuristics is admissible.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 17 / 66

Abstractions: informally Outlook

Our plan for the next lectures

In the following, we take a deeper look at abstractions and their use for
admissible heuristics.

I In the rest of this chapter, we formally introduce abstractions and
abstraction heuristics and study some of their most important
properties.

I In the following chapters, we discuss some particular classes of
abstraction heuristics in detail, namely pattern database heuristics
and merge-and-shrink abstractions.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 18 / 66

Abstractions: formally Transition systems

Transition systems

Definition (transition system)

A transition system is a 5-tuple T = 〈S , L,T , I ,G 〉 where

I S is a finite set of states (the state space),

I L is a finite set of (transition) labels,

I T ⊆ S × L× S is the transition relation,

I I ⊆ S is the set of initial states, and

I G ⊆ S is the set of goal states.

We say that T has the transition 〈s, l , s ′〉 if 〈s, l , s ′〉 ∈ T .

Note: For technical reasons, the definition slightly differs from our earlier
one. (It includes explicit labels.)

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 19 / 66

Abstractions: formally Transition systems

Transition systems: example

Note: To reduce clutter, our figures usually omit arc labels and collapse
transitions between identical states. However, these are important for the
formal definition of the transition system.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 20 / 66

Abstractions: formally Transition systems

Transition systems of FDR planning tasks

Definition (transition system of an FDR planning task)

Let Π = 〈V , I ,O,G 〉 be an FDR planning task.
The transition system of Π, in symbols T (Π), is the transition system
T (Π) = 〈S ′, L′,T ′, I ′,G ′〉, where

I S ′ is the set of states over V ,

I L′ = O,

I T ′ = {〈s ′, o ′, t ′〉 ∈ S ′ × L′ × S ′ | appo′(s ′) = t ′},
I I ′ = {I}, and

I G ′ = {s ′ ∈ S ′ | s ′ |= G}.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 21 / 66

Abstractions: formally Transition systems

Example task: one package, two trucks

Example (one package, two trucks)

Consider the following FDR planning task 〈V , I ,O,G 〉:
I V = {p, tA, tB} with

I Dp = {L,R,A,B}
I DtA = DtB = {L,R}

I I = {p 7→ L, tA 7→ R, tB 7→ R}
I O = {pickupi ,j | i ∈ {A,B}, j ∈ {L,R}}

∪ {dropi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei ,j ,j ′ | i ∈ {A,B}, j , j ′ ∈ {L,R}, j 6= j ′}, where

I pickupi,j = 〈ti = j ∧ p = j , p := i〉
I dropi,j = 〈ti = j ∧ p = i , p := j〉
I movei,j,j′ = 〈ti = j , ti := j ′〉

I G = (p = R)

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 22 / 66

Abstractions: formally Transition systems

Transition system of example task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

I State {p 7→ i , tA 7→ j , tB 7→ k} is depicted as ijk.

I Transition labels are again not shown. For example, the transition
from LLL to ALL has the label pickupA,L.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 23 / 66

Abstractions: formally Abstractions

Abstractions

Definition (abstraction, abstraction mapping)

Let T = 〈S , L,T , I ,G 〉 and T ′ = 〈S ′, L′,T ′, I ′,G ′〉
be transition systems with the same label set L = L′,
and let α : S → S ′ be a surjective function.

We say that T ′ is an abstraction of T with abstraction mapping α (or:
abstraction function α) if

I for all s ∈ I , we have α(s) ∈ I ′,

I for all s ∈ G , we have α(s) ∈ G ′, and

I for all 〈s, l , t〉 ∈ T , we have 〈α(s), l , α(t)〉 ∈ T ′.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 24 / 66

Abstractions: formally Abstractions

Abstractions: terminology

Let T and T ′ be transition systems and α a function such that T ′ is an
abstraction of T with abstraction mapping α.

I T is called the concrete transition system.

I T ′ is called the abstract transition system.

I Similarly: concrete/abstract state space, concrete/abstract transition,
etc.

We say that:

I T ′ is an abstraction of T (without mentioning α)

I α is an abstraction mapping on T (without mentioning T ′)

Note: For a given T and α, there can be multiple abstractions T ′, and for
a given T and T ′, there can be multiple abstraction mappings α.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 25 / 66

Abstractions: formally Abstractions

Abstraction: example

concrete transition system

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 26 / 66

Abstractions: formally Abstractions

Abstraction: example

abstract transition system

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Note: Most arcs represent many parallel transitions.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 27 / 66

Abstractions: formally Abstractions

Induced abstractions

Definition (induced abstractions)

Let T = 〈S , L,T , I ,G 〉 be a transition system, and let α : S → S ′ be a
surjective function.

The abstraction (of T) induced by α, in symbols T α, is the transition
system T α = 〈S ′, L,T ′, I ′,G ′〉 defined by:

I T ′ = {〈α(s), l , α(t)〉 | 〈s, l , t〉 ∈ T}
I I ′ = {α(s) | s ∈ I}
I G ′ = {α(s) | s ∈ G}

Note: It is easy to see that T α is an abstraction of T . It is the “smallest”
abstraction of T with abstraction mapping α.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 28 / 66

Abstractions: formally Abstractions

Induced abstractions: terminology

Let T and T ′ be transition systems and α be a function such that
T ′ = T α (i. e., T ′ is the abstraction of T induced by α).

I α is called a homomorphism from T to T ′, and
T ′ is called a homomorphic abstraction of T .

I If α is bijective, it is called an isomorphism between T and T ′, and
the two transition systems are called isomorphic.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 29 / 66

Abstractions: formally Abstractions

Homomorphic abstractions: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

This abstraction is a homomorphic abstraction of the concrete transition
system T .

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 30 / 66

Abstractions: formally Abstractions

Homomorphic abstractions: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

If we add any initial states, goal states or transitions,
it is still an abstraction of T , but not a homomorphic one.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 31 / 66

Abstractions: formally Abstraction heuristics

Abstraction heuristics

Definition (abstraction heuristic induced by an abstraction)

Let Π be an FDR planning task with state space S , and let A be an
abstraction of T (Π) with abstraction mapping α.

The abstraction heuristic induced by A and α, hA,α, is the heuristic
function hA,α : S → N0 ∪ {∞} which maps each state s ∈ S to h∗A(α(s))
(the goal distance of α(s) in A).

Note: hA,α(s) = ∞ if no goal state of A is reachable from α(s)

Definition (abstraction heuristic induced by a homomorphism)

Let Π be an FDR planning task and let α be a homomorphism on T (Π).
The abstraction heuristic induced by α, hα, is the abstraction heuristic
induced by T (Π)α and α, i. e., hα := hT (Π)α,α.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 32 / 66

Abstractions: formally Abstraction heuristics

Abstraction heuristics: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hA,α({p 7→ L, tA 7→ R, tB 7→ R}) = 1

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 33 / 66

Abstractions: formally Abstraction heuristics

Abstraction heuristics: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hα({p 7→ L, tA 7→ R, tB 7→ R}) = 3

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 34 / 66

Abstractions: formally Abstraction heuristics

Consistency of abstraction heuristics

Theorem (consistency and admissibility of hA,α)

Let Π be an FDR planning task, and let A be an abstraction of T (Π) with
abstraction mapping α.
Then hA,α is safe, goal-aware, admissible and consistent.

Proof.
We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = T (Π) = 〈S , L,T , I ,G 〉 and A = 〈S ′, L′,T ′, I ′,G ′〉.
Goal-awareness: We need to show that hA,α(s) = 0 for all s ∈ G , so let
s ∈ G . Then α(s) ∈ G ′ by the definition of abstractions and abstraction
mappings, and hence hA,α(s) = h∗A(α(s)) = 0.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 35 / 66

Abstractions: formally Abstraction heuristics

Consistency of abstraction heuristics (ctd.)

Proof (ctd.)

Consistency: Let s, t ∈ S such that t is a successor of s. We need to prove
that hA,α(s) ≤ hA,α(t) + 1.
Since t is a successor of s, there exists an operator o with appo(s) = t and
hence 〈s, o, t〉 ∈ T .
By the definition of abstractions and abstraction mappings, we get
〈α(s), o, α(t)〉 ∈ T ′ α(t) is a successor of α(s) in A.
Therefore, hA,α(s) = h∗A(α(s)) ≤ h∗A(α(t)) + 1 = hA,α(t) + 1, where the
inequality holds because the shortest path from α(s) to the goal in A
cannot be longer than the shortest path from α(s) to the goal via
α(t).

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 36 / 66

Abstractions: formally Additivity

Orthogonality of abstraction mappings

Definition (orthogonal abstraction mappings)

Let α1 and α2 be abstraction mappings on T .

We say that α1 and α2 are orthogonal if for all transitions 〈s, l , t〉 of T , we
have αi (s) = αi (t) for at least one i ∈ {1, 2}.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 37 / 66

Abstractions: formally Additivity

Affecting transition labels

Definition (affecting transition labels)

Let T be a transition system, and let l be one of its labels.
We say that l affects T if T has a transition 〈s, l , t〉 with s 6= t.

Theorem (affecting labels vs. orthogonality)

Let A1 be an abstraction of T with abstraction mapping α1.
Let A2 be an abstraction of T with abstraction mapping α2.

If no label of T affects both A1 and A2, then α1 and α2 are orthogonal.

(Easy proof omitted.)

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 38 / 66

Abstractions: formally Additivity

Orthogonal abstraction mappings: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstraction mappings orthogonal?

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 39 / 66

Abstractions: formally Additivity

Orthogonal abstraction mappings: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstraction mappings orthogonal?

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 40 / 66

Abstractions: formally Additivity

Orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)

Let hA1,α1 , . . . , hAn,αn be abstraction heuristics for the same planning task
Π such that αi and αj are orthogonal for all i 6= j .
Then

∑n
i=1 hAi ,αi is a safe, goal-aware, admissible and consistent heuristic

for Π.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 41 / 66

Abstractions: formally Additivity

Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

transition system T
state variables: first package, second package, truck

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 42 / 66

Abstractions: formally Additivity

Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

LIL

LIR
LRR LRL

ILR

ILL

IIL IIR

IRR

IRL

RLR RLL
RIL

RIR

RRR RRL

abstraction A1

mapping: only consider state of first package

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 43 / 66

Abstractions: formally Additivity

Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

ILL

ILR
RLR RLL

LIR

LIL

IIL IIR

RIR

RIL

LRR LRL
IRL

IRR

RRR RRL

abstraction A2 (orthogonal to A1)
mapping: only consider state of second package

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 44 / 66

Abstractions: formally Additivity

Orthogonality and additivity: proof

Proof.
We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = T (Π) = 〈S , L,T , I ,G 〉.
Goal-awareness: For goal states s ∈ G ,

∑n
i=1 hAi ,αi (s) =

∑n
i=1 0 = 0

because all individual abstractions are goal-aware.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 45 / 66

Abstractions: formally Additivity

Orthogonality and additivity: proof (ctd.)

Proof (ctd.)

Consistency: Let s, t ∈ S such that t is a successor of s.
Let L :=

∑n
i=1 hAi ,αi (s) and R :=

∑n
i=1 hAi ,αi (t).

We need to prove that L ≤ R + 1.

Since t is a successor of s, there exists an operator o with appo(s) = t and
hence 〈s, o, t〉 ∈ T .
Because the abstraction mappings are orthogonal, αi (s) 6= αi (t) for at
most one i ∈ {1, . . . , n}.
Case 1: αi (s) = αi (t) for all i ∈ {1, . . . , n}.
Then L =

∑n
i=1 hAi ,αi (s)

=
∑n

i=1 h∗Ai
(αi (s))

=
∑n

i=1 h∗Ai
(αi (t))

=
∑n

i=1 hAi ,αi (t)
= R ≤ R + 1.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 46 / 66

Abstractions: formally Additivity

Orthogonality and additivity: proof (ctd.)

Proof (ctd.)

Case 2: αi (s) 6= αi (t) for exactly one i ∈ {1, . . . , n}.
Let k ∈ {1, . . . , n} such that αk(s) 6= αk(t).

Then L =
∑n

i=1 hAi ,αi (s)
=

∑
i∈{1,...,n}\{k} h∗Ai

(αi (s)) + hAk ,αk (s)

≤
∑

i∈{1,...,n}\{k} h∗Ai
(αi (t)) + hAk ,αk (t) + 1

=
∑n

i=1 hAi ,αi (t) + 1
= R + 1,

where the inequality holds because αi (s) = αi (t) for all i 6= k and hAk ,αk

is consistent.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 47 / 66

Abstractions: formally Refinements

Abstractions of abstractions

Theorem (transitivity of abstractions)

Let T , T ′ and T ′′ be transition systems.

I If T ′ is an abstraction of T
and T ′′ is an abstraction of T ′,
then T ′′ is an abstraction of T .

I If T ′ is a homomorphic abstraction of T
and T ′′ is a homomorphic abstraction of T ′,
then T ′′ is a homomorphic abstraction of T .

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 48 / 66

Abstractions: formally Refinements

Abstractions of abstractions: example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

transition system T

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 49 / 66

Abstractions: formally Refinements

Abstractions of abstractions: example

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Transition system T ′ as an abstraction of T

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 50 / 66

Abstractions: formally Refinements

Abstractions of abstractions: example

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BLR

BRR

BLL BLR

BRRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T ′

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 51 / 66

Abstractions: formally Refinements

Abstractions of abstractions: example

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 52 / 66

Abstractions: formally Refinements

Abstractions of abstractions (proof)

Proof.
Let T = 〈S , L,T , I ,G 〉, let T ′ = 〈S ′, L,T ′, I ′,G ′〉 be an abstraction of T
with abstraction mapping α, and let T ′′ = 〈S ′′, L,T ′′, I ′′,G ′′〉 be an
abstraction of T ′ with abstraction mapping α′.

We show that T ′′ is an abstraction of T with abstraction mapping
β := α′ ◦ α, i. e., that

1. for all s ∈ I , we have β(s) ∈ I ′′,

2. for all s ∈ G , we have β(s) ∈ G ′′, and

3. for all 〈s, l , t〉 ∈ T , we have 〈β(s), l , β(t)〉 ∈ T ′′.

Moreover, we show that if α and α′ are homomorphism,
then β is also a homomorphism.

. . .

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 53 / 66

Abstractions: formally Refinements

Abstractions of abstractions: proof

Proof (ctd.)

1. For all s ∈ I , we have β(s) ∈ I ′′:
Let s ∈ I . Because T ′ is an abstraction of T with mapping α, we have
α(s) ∈ I ′. Because T ′′ is an abstraction of T ′ with mapping α′ and
α(s) ∈ I ′, we have α′(α(s)) ∈ I ′′.
Hence β(s) = α′(α(s)) ∈ I ′′.

Homomorphism property if α and α′ homomorphisms:
Let s ′′ ∈ I ′′. Because α′ is a homomorphism, there exists a state s ′ ∈ I ′

such that α′(s ′) = s ′′. Because α is a homomorphism, there exists a state
s ∈ I such that α(s) = s ′.
Thus s ′′ = α′(α(s)) = β(s) for some s ∈ I .

. . .

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 54 / 66

Abstractions: formally Refinements

Abstractions of abstractions: proof (ctd.)

Proof (ctd.)

2. For all s ∈ G , we have β(s) ∈ G ′′:
Let s ∈ G . Because T ′ is an abstraction of T with mapping α, we have
α(s) ∈ G ′. Because T ′′ is an abstraction of T ′ with mapping α′ and
α(s) ∈ G ′, we have α′(α(s)) ∈ G ′′.
Hence β(s) = α′(α(s)) ∈ G ′′.

Homomorphism property if α and α′ homomorphisms:
Let s ′′ ∈ G ′′. Because α′ is a homomorphism, there exists a state s ′ ∈ G ′

such that α′(s ′) = s ′′. Because α is a homomorphism, there exists a state
s ∈ G such that α(s) = s ′.
Thus s ′′ = α′(α(s)) = β(s) for some s ∈ G .

. . .

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 55 / 66

Abstractions: formally Refinements

Abstractions of abstractions: proof (ctd.)

Proof (ctd.)

3. For all 〈s, l , t〉 ∈ T , we have 〈β(s), l , β(t)〉 ∈ T ′′

Let 〈s, l , t〉 ∈ T . Because T ′ is an abstraction of T with mapping α, we
have 〈α(s), l , α(t)〉 ∈ T ′. Because T ′′ is an abstraction of T ′ with
mapping α′ and 〈α(s), l , α(t)〉 ∈ T ′, we have 〈α′(α(s)), l , α′(α(t))〉 ∈ T ′′.
Hence 〈β(s), l , β(t)〉 = 〈α′(α(s)), l , α′(α(t))〉 ∈ T ′′.

Homomorphism property if α and α′ homomorphisms:
Let 〈s ′′, l , t ′′〉 ∈ T ′′. Because α′ is a homomorphism, there exists a
transition 〈s ′, l , t ′〉 ∈ T ′ such that α′(s ′) = s ′′ and α′(t ′) = t ′′. Because α
is a homomorphism, there exists a transition 〈s, l , t〉 ∈ T such that
α(s) = s ′ and α(t) = t ′.
Thus 〈s ′′, l , t ′′〉 = 〈α′(α(s)), l , α′(α(t))〉 = 〈β(s), l , β(t)〉 for some
〈s, l , t〉 ∈ T .

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 56 / 66

Abstractions: formally Refinements

Coarsenings and refinements

Terminology: Let T be a transition system,
let T ′ be an abstraction of T with abstraction mapping α, and
let T ′′ be an abstraction of T ′ with abstraction mapping α′.

Then:

I 〈T ′′, α′ ◦ α〉 is called a coarsening of 〈T ′, α〉, and

I 〈T ′, α〉 is called a refinement of 〈T ′′, α′ ◦ α〉.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 57 / 66

Abstractions: formally Refinements

Heuristic quality of refinements

Theorem (heuristic quality of refinements)

Let hA,α and hB,β be abstraction heuristics for the same planning task Π
such that 〈A, α〉 is a refinement of 〈B, β〉.
Then hA,α dominates hB,β .

In other words, hA,α(s) ≥ hB,β(s) for all states s of Π.

Proof.
Since 〈A, α〉 is a refinement of 〈B, β〉, there exists a mapping α′ such that
β = α′ ◦ α and B is an abstraction of A with abstraction mapping α′.
For any state s of Π, we get
hB,β(s) = h∗B(β(s)) = h∗B(α′(α(s))) = hB,α′

(α(s)) ≤ h∗A(α(s)) = hA,α(s),
where the inequality holds because hB,α′

is an admissible heuristic in the
transition system A.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 58 / 66

Abstractions: formally Equivalence

Isomorphic transition systems

Definition (isomorphic transition systems)

Let T = 〈S , L,T , I ,G 〉 and T ′ = 〈S ′, L′,T ′, I ′,G ′〉 be transition systems.
We say that T is isomorphic to T ′, in symbols T ∼ T ′, if there exist
bijective functions ϕ : S → S ′ and ψ : L → L′ such that:

I s ∈ I iff ϕ(s) ∈ I ′,

I s ∈ G iff ϕ(s) ∈ G ′, and

I 〈s, l , t〉 ∈ T iff 〈ϕ(s), ψ(l), ϕ(t)〉 ∈ T ′.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 59 / 66

Abstractions: formally Equivalence

Graph-equivalent transition systems

Definition (graph-equivalent transition systems)

Let T = 〈S , L,T , I ,G 〉 and T ′ = 〈S ′, L′,T ′, I ′,G ′〉 be transition systems.

We say that T is graph-equivalent to T ′, in symbols T G∼ T ′, if there
exists a bijective function ϕ : S → S ′ such that:

I s ∈ I iff ϕ(s) ∈ I ′,

I s ∈ G iff ϕ(s) ∈ G ′, and

I 〈s, l , t〉 ∈ T for some l ∈ L iff 〈ϕ(s), l ′, ϕ(t)〉 ∈ T ′ for some l ′ ∈ L′.

Note: There is no requirement that the labels of T and T ′ correspond in
any way. For example, it is permitted that all transitions of T have
different labels and all transitions of T ′ have the same label.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 60 / 66

Abstractions: formally Equivalence

Isomorphism vs. graph equivalence

I (∼) and (
G∼) are equivalence relations.

I Two isomorphic transition systems are interchangeable for all
practical intents and purposes.

I Two graph-equivalent transition systems are interchangeable for most
intents and purposes.
In particular, their state distances are identical, so they define the
same abstraction heuristic for corresponding abstraction functions.

I Isomorphism implies graph equivalence, but not vice versa.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 61 / 66

Abstractions: formally Practice

Using abstraction heuristics in practice

In practice, there are conflicting goals for abstractions:

I we want to obtain an informative heuristic, but

I want to keep its representation small.

Abstractions have small representations if they have

I few abstract states and

I a succinct encoding for α.

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 62 / 66

Abstractions: formally Practice

Counterexample: one-state abstraction

LRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLLLRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

One-state abstraction: α(s) := const.

+ very few abstract states and succinct encoding for α

− completely uninformative heuristic

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 63 / 66

Abstractions: formally Practice

Counterexample: identity abstraction

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Identity abstraction: α(s) := s.

+ perfect heuristic and succinct encoding for α

− too many abstract states

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 64 / 66

Abstractions: formally Practice

Counterexample: perfect abstraction

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR

ALL

BLL

BRL

ALR

BRL

ALL

BLL

ARL

ARR

BRR

BLR

ARL

BLR

ARR

BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Perfect abstraction: α(s) := h∗(s).

+ perfect heuristic and usually few abstract states

− usually no succinct encoding for α

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 65 / 66

Abstractions: formally Practice

Automatically deriving good abstraction heuristics

Abstraction heuristics for planning: main research problem

Automatically derive effective abstraction heuristics
for planning tasks.

 we will study two state-of-the-art approaches
in the next two chapters

M. Helmert, G. Röger (Universität Freiburg) AI Planning December 16th, 2008 66 / 66

	Abstractions: informally
	Introduction
	Practical requirements
	Multiple abstractions
	Outlook

	Abstractions: formally
	Transition systems
	Abstractions
	Abstraction heuristics
	Additive abstraction heuristics
	Coarsenings and refinements
	Equivalent transition systems
	Abstraction heuristics in practice

