Principles of AI Planning

9. Invariants

Malte Helmert
Albert-Ludwigs-Universität Freiburg

December 5th, 2008

Spurious formulae in regression planning

Example

Al Planning
M. Helmert

Invariants
Motivation
Definition
Example
Complexity
Algorithms
Applications

$$
\langle A \text {-on- } C \wedge A \text {-clear } \wedge B \text {-clear, } A \text {-on- } B \wedge \neg B \text {-clear } \wedge C \text {-clear }\rangle
$$

resulting in the new subgoal

$$
A \text {-on- } C \wedge A \text {-clear } \wedge B \text {-clear } \wedge B \text {-on- } C .
$$

It is intuitively clear that no state satisfying this formula is reachable by any plan from a legal blocks world state.

Spurious formulae cause unnecessary search

- Goal formulae and formulae obtained by regressing them often represent some states that are not reachable from the initial state.
- If none of the states is reachable from the initial state,

Definition
Example
Complexity
Algorithms
Applications
Conclusion

- We would like to have reachable states only, if possible.
- The same problem shows up in satisfiability planning (discussed later in the course): partial valuations considered by satisfiability algorithms may represent unreachable states, and this may result in unnecessary search.

Restricting search to reachable sets

Goal: Restriction to states that are reachable.
Problem: Testing reachability is computationally as complex as testing whether a plan exists.
Solution: Use an approximate notion of reachability.
Implementation: Compute in polynomial time formulae that characterize a superset of the reachable states.

Invariants

Definition (invariant)

A formula φ is an invariant of $\langle A, I, O, G\rangle$ if $s \models \varphi$ for every state s reachable from I.

Invariants
Motivation
Definition
Example
Complexity

Example

The formula $\neg(A$-on- $B \wedge A$-on- $C)$ is an invariant in a well-formed blocks world task.

Remark

Invariants are usually proved inductively:

- Prove that φ is true in the initial state.
- Prove that operator application preserves φ.

Strongest invariants

Definition (strongest invariant)

An invariant φ is the strongest invariant of $\langle A, I, O, G\rangle$ iff for any invariant $\psi, \varphi=\psi$.

The strongest invariant exactly characterizes the set of all states that are reachable from the initial state:
For all states $s, s \models \varphi$ if and only if s is reachable.

Remark

There are infinitely many strongest invariants for any given planning task, but they are all logically equivalent. (If φ is a strongest invariant, then so is $\varphi \wedge T, \varphi \vee \varphi, \ldots$)

Example: strongest invariant for blocks world

Example (blocks world)

Let X be the set of blocks of a well-formed blocks world task Π, for example $X=\{A, B, C, D\}$.
The conjunction of the following formulae is the strongest

Invariants
Motivation
Definition
Example
Complexity
Algorithms
Applications
Conclusion

For all $x \in X: \operatorname{clear}(x) \leftrightarrow \bigwedge_{y \in X} \neg o n(y, x)$
For all $x \in X:$ ontable $(x) \leftrightarrow \bigwedge_{y \in X}$ \quad on (x, y)
For all $x, y, z \in X$ with $y \neq z: ~ \neg o n(x, y) \vee \neg o n(x, z)$
For all $x, y, z \in X$ with $y \neq z: ~ \neg o n(y, x) \vee \neg$ on (z, x)
For all $n \geq 1$ and $x_{1}, \ldots, x_{n} \in X$:
$\neg\left(o n\left(x_{1}, x_{2}\right) \wedge \operatorname{on}\left(x_{2}, x_{3}\right) \wedge \cdots \wedge \operatorname{on}\left(x_{n-1}, x_{n}\right) \wedge o n\left(x_{n}, x_{1}\right)\right)$

Strongest invariants: connection to plan existence

Theorem (strongest invariants vs. plan existence)
Let φ be the strongest invariant for $\Pi=\langle A, I, O, G\rangle$.
Then Π has a plan if and only if $G \wedge \varphi$ is satisfiable.

Proof.

Obvious.

Strongest invariants: complexity

Theorem (complexity of computing strongest invariants)

Al Planning

Computing the strongest invariant φ is PSPACE-hard.
Even deciding whether or not T is the strongest invariant is already PSPACE-hard.

Proof.

By reduction from the plan existence problem. Fact: Testing plan existence for $\langle A, I, O, G\rangle$ is PSPACE-hard. (We'll show this later in the course!)

Strongest invariants: complexity

Theorem (complexity of computing strongest invariants)

Al Planning
M. Helmert

Computing the strongest invariant φ is PSPACE-hard.
Even deciding whether or not T is the strongest invariant is
Invariants already PSPACE-hard.

Motivation
Definition
Example
Complexity Fact: Testing plan existence for $\langle A, I, O, G\rangle$ is PSPACE-hard. (We'll show this later in the course!)

Let $a^{\prime} \notin A$ be a new state variable. Then a plan exists for $\Pi=\langle A, I, O, G\rangle$ iff T is the strongest invariant of the planning task $\Pi^{\prime}=\left\langle A \cup\left\{a^{\prime}\right\}, I \cup\left\{a^{\prime} \mapsto 0\right\}, O \cup O^{\prime}, G\right\rangle$, where $O^{\prime}=\left\{\left\langle G, a^{\prime} \wedge \bigwedge_{a \in A} a\right\rangle\right\} \cup\left\{\left\langle a^{\prime}, \neg a\right\rangle \mid a \in A \cup\left\{a^{\prime}\right\}\right\}$.

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(\Rightarrow) : If a plan exists for Π, then the same plan is applicable in Π^{\prime}. We can thus reach a state satisfying G in Π^{\prime}.
From this state, we can reach any state s by first applying $\left\langle G, a^{\prime} \wedge \bigwedge_{a \in A} a\right\rangle$ and then applying the operators $\left\langle a^{\prime}, \neg a\right\rangle$ for each variable a with $s(a)=0$. (If $s\left(a^{\prime}\right)=0$, the corresponding

Invariants
Motivation
Definition
Example
Complexity
Algorithms
Applications
Conclusion

If all states are reachable in Π^{\prime}, then T is the strongest invariant for Π^{\prime}
(\Leftarrow) (by contraposition): If II is not solvable, then no state satisfying G is reachable in Π. In that case, no state satisfying G is reachable in Π^{\prime}, and thus a^{\prime} cannot be made true in Π^{\prime} Thus, $\neg a^{\prime}$ is an invariant in Π^{\prime} which is stronger than T, so is not the strongest invariant in Π^{\prime}

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(\Rightarrow) : If a plan exists for Π, then the same plan is applicable in
Π^{\prime}. We can thus reach a state satisfying G in Π^{\prime}.
From this state, we can reach any state s by first applying $\left\langle G, a^{\prime} \wedge \bigwedge_{a \in A} a\right\rangle$ and then applying the operators $\left\langle a^{\prime}, \neg a\right\rangle$ for

Invariants
Motivation
Definition
Example
Complexity
Algorithms
Applications
Conclusion

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(\Rightarrow) : If a plan exists for Π, then the same plan is applicable in
Π^{\prime}. We can thus reach a state satisfying G in Π^{\prime}.
From this state, we can reach any state s by first applying $\left\langle G, a^{\prime} \wedge \bigwedge_{a \in A} a\right\rangle$ and then applying the operators $\left\langle a^{\prime}, \neg a\right\rangle$ for

Invariants
Motivation
Definition
Example
Complexity
Algorithms
Applications
Conclusion operator must be applied last.)
If all states are reachable in Π^{\prime}, then T is the strongest invariant for Π^{\prime}.
(\Leftarrow) (by contraposition): If Π is not solvable, then no state
satisfying G is reachable in Π. In that case, no state satisfying G is reachable in Π^{\prime}, and thus a^{\prime} cannot be made true in Π^{\prime}. Thus, $\neg a^{\prime}$ is an invariant in Π^{\prime} which is stronger than T, so is not the strongest invariant in Π^{\prime}.

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(\Rightarrow) : If a plan exists for Π, then the same plan is applicable in
Π^{\prime}. We can thus reach a state satisfying G in Π^{\prime}.
From this state, we can reach any state s by first applying $\left\langle G, a^{\prime} \wedge \bigwedge_{a \in A} a\right\rangle$ and then applying the operators $\left\langle a^{\prime}, \neg a\right\rangle$ for

Invariants
Motivation
Definition
Example
Complexity
Algorithms
each variable a with $s(a)=0$. (If $s\left(a^{\prime}\right)=0$, the corresponding operator must be applied last.)

If all states are reachable in Π^{\prime}, then T is the strongest invariant for Π^{\prime}.
(\Leftarrow) (by contraposition): If Π is not solvable, then no state satisfying G is reachable in Π. In that case, no state satisfying G is reachable in Π^{\prime}, and thus a^{\prime} cannot be made true in Π^{\prime}. Thus, $\neg a^{\prime}$ is an invariant in Π^{\prime} which is stronger than T, so \top is not the strongest invariant in Π^{\prime}.

Invariant synthesis: example run

Compute sets C_{i} of n-literal clauses characterizing (giving an upper bound!) the states that are reachable in up to i steps.

Example

$$
\begin{array}{ll}
C_{0}=\{a, \neg b, c\} & \sim\{101\} \\
C_{1}=\{a \vee b, \neg a \vee \neg b, c\} & \sim\{101,011\} \\
C_{2}=\{\neg a \vee \neg b, c\} & \sim\{001,011,101\} \\
C_{3}=\{\neg a \vee \neg b, c \vee a\} & \sim\{001,011,100,101\} \\
C_{4}=\{\neg a \vee \neg b\} & \sim\{000,001,010,011,100,101\} \\
C_{5}=\{\neg a \vee \neg b\} & \sim\{000,001,010,011,100,101\} \\
C_{i}=C_{5} \text { for all } i>5 &
\end{array}
$$

$\neg a \vee \neg b$ is the only invariant found.

Invariant synthesis algorithm (informally)

- Start with all 1-literal clauses true in the initial state.
- Repeatedly test every operator vs. every clause to check whether the clause can be shown to be true after applying the operator:
- One of the literals in the clause is necessarily true: retain.
- Otherwise, if the clause is too long: forget it.
- Otherwise, replace the clause by new clauses obtained by adding literals that are now true.
- When all clauses are retained, stop: they are invariants.

Blocks world example

Example (blocks world)

Al Planning
M. Helmert

Let $C_{0}=\{A$-clear, $\neg B$-clear, A-on- $B, \neg B$-on- $A, \neg A$-on- T, B-on- $T\}$ and $o=\langle A$-clear $\wedge A$-on- B, B-clear $\wedge \neg A$-on- $B \wedge A$-on- $T\rangle$.
(1) $C_{0} \cup\{A$-clear $\wedge A$-on- $B\}$ is satisfiable: o is applicable.
(2) The 1-literal clauses $\neg B$-clear, A-on- B and $\neg A$-on- T become false when o is applied.
(3) They are not thrown away, though: they are replaced by weaker clauses.
(4) Literals true after applying o in state s such that $s \models C_{0}$: A-clear, B-clear, $\neg A$-on- $B, \neg B$-on- A, A-on-T, B-on- T.
(5) 2-literal clauses that are weaker than $\neg B$-clear and now true are $\neg B$-clear $\vee A$-clear, $\neg B$-clear $\vee B$-clear, $\neg B$-clear $\vee \neg A$-on- B, $\neg B$-clear $\vee \neg B$-on- $A, \neg B$-clear $\vee A$-on- T, and $\neg B$-clear $\vee B$-on- T.

Blocks world example (ctd.)

Example (ctd.)

Al Planning
M. Helmert
(6) Similar 2-literal clauses are obtained from A-on- B and from

Invariants
Algorithms
Idea
Example
Invariant test
Main procedure
Example
Applications
Conclusion
for distance 1 states.
(8) Some clauses in C_{1} can be refined further by checking other operators whose preconditions are consistent with C_{1}.
With a bit more computation, C_{i} settles to a set containing all invariants for two blocks.

Simple travel example

Example (simple travel)

Al Planning
M. Helmert

Let $C_{i}=\{\neg$ AinRome $\vee \neg$ AinParis,
\neg AinRome $\vee \neg$ AinNYC, \neg AinParis $\vee \neg$ AinNYC\},
$o=\langle$ AinRome, AinParis $\wedge \neg$ AinRome \rangle.

- Does o preserve truth of \neg AinParis $\vee \neg$ AinNYC?
- Because o makes \neg AinParis false, we must show that \neg AinNYC is true after applying o.
- But \neg AinNYC is not even mentioned in o !
- However, since AinRome is the precondition of o and \neg AinRome $\vee \neg$ AinNYC was true before applying o, we can infer that \neg AinNYC was true before applying o.
- Since o does not make \neg AinNYC false, it is true also after applying o, and then so is \neg AinParis $\vee \neg$ AinNYC.

Invariant synthesis: function preserves-clause

Test if an operator preserves a clause

Al Planning
M. Helmert

Invariants
Algorithms
Idea
Example
Invariant test
Main procedure
Example
Applications
Conclusion

Test if an operator preserves a literal def preserves-literal $\left(C, o, L^{\prime}, l\right)$:

$$
\langle c, e\rangle:=o
$$

$$
C_{\bar{l}}:=C \cup\{c\} \cup\left\{E P C_{\bar{l}}(e)\right\}
$$

return $C_{\bar{l}}$ is unsatisfiable

$$
\text { or } C_{\bar{l}} \models E P C_{l^{\prime}}(e) \text { for some } l^{\prime} \in L^{\prime}
$$

$$
\text { or } C_{\bar{l}} \models l^{\prime} \wedge \neg E P C_{\overline{l^{\prime}}}(e) \text { for some } l^{\prime} \in L^{\prime}
$$

Function preserves-clause: examples

$$
\text { Let } C=\{c \vee b\} \text {. }
$$

- preserves-clause $(a \vee b, C,\langle\neg c, c \wedge d\rangle)$ returns true
- preserves-clause $(a \vee b, C,\langle\neg c, \neg a \wedge b\rangle)$ returns true
- preserves-clause $(a \vee b, C,\langle b, \neg a\rangle)$ returns true

Invariants
Algorithms
Idea
Example
Invariant test
Main procedure
Example
Applications
Conclusion

- preserves-clause $(a \vee b, C,\langle\neg c, \neg a\rangle)$ returns true
- preserves-clause $(a \vee b, C,\langle c, \neg a\rangle)$ returns false

Correctness of function preserves-clause

Al Planning
M. Helmert

Invariants
Lemma (correctness of preserves-clause)
Let C be a set of clauses, $\varphi=l_{1} \vee \cdots \vee l_{n}$ a clause, and o an operator.
If preserves-clause (φ, C, o) returns true, then $\operatorname{app}_{o}(s) \models \varphi$ for

Idea
Example
Invariant test
Main procedure
Example
Applications
Conclusion every state s such that $s \models C \cup\{\varphi\}$ and $\operatorname{app}_{o}(s)$ is defined.
(Proof omitted.)

Incompleteness of function preserves-clause

Al Planning
M. Helmert

Example (incompleteness of preserves-clause)
Let $o=\langle a, \neg b \wedge(c \triangleright d) \wedge(\neg c \triangleright e)\rangle$.
preserves-clause $(b \vee d \vee e, \emptyset, o)$ returns false because the preserves-literal check for $l=b$ fails:

- Operator o can make b false.
- It is not guaranteed that d is true in the resulting state.
- It is not guaranteed that e is true in the resulting state.

However, $d \vee e$ is true after applying o, and hence $b \vee d \vee e$ will be true as well.

Invariant synthesis: outline of main procedure

(1) $C=$ the set of 1-literal clauses true in the initial state.
(2) For each operator o and clause $\varphi \in C$, test if φ remains true when o is applied.
(3) If not, remove φ, and if the number of literals in φ is less than n, add clauses $\varphi \vee l$ for each literal l which is guaranteed to be true after applying o.
(9) Remove all dominated invariants.
(5) Repeat from step 2 if C has changed in the previous two steps.
(c) Otherwise every clause in C is an invariant.

For any fixed limit n on the size of the clauses, the number of iterations is $O\left(m^{n}\right)$ (where $m=|A|$ is the number of state variables) and hence polynomial.

Invariant synthesis: the main procedure

Al Planning

Invariant synthesis

M. Helmert
def invariants (A, I, O, n) :
Invariants
$C:=\{a \in A \mid I \models a\} \cup\{\neg a \mid a \in A, I \not \vDash a\}$
repeat:

$$
C^{\prime}:=C
$$

for each $l_{1} \vee \cdots \vee l_{m} \in C^{\prime}$ and $o=\langle c, e\rangle \in O$
with preserves-clause $\left(l_{1} \vee \cdots \vee l_{m}, C^{\prime}, o\right)=$ false:
$C:=C \backslash\left\{l_{1} \vee \cdots \vee l_{m}\right\}$ if $m<n$:
for each literal l :
if $C^{\prime} \cup\{c\} \models E P C_{l}(e) \vee\left(l \wedge \neg E P C_{\bar{l}}(e)\right)$: $C:=C \cup\left\{l_{1} \vee \cdots \vee l_{m} \vee l\right\}$
$C:=\left\{\varphi \in C\left|\neg \exists \varphi^{\prime} \in C: \varphi^{\prime}\right|=\varphi\right.$ and $\left.\varphi^{\prime} \not \equiv \varphi\right\}$
until $C=C^{\prime}$
return C

Invariant synthesis: correctness

Theorem (correctness of invariants)

The procedure invariants (A, I, O, n) returns a set C of clauses with at most n literals such that for any applicable operator sequence $o_{1}, \ldots, o_{m} \in O: \operatorname{app}_{o_{1} \ldots o_{m}}(I) \models C$.

Proof.

Invariants
Algorithms
Idea
Example
Invariant test
Main procedure
Example
Applications
Conclusion

- The initial state satisfies the initial set of 1-literal clauses.
- All modifications to the clause set only make it logically weaker (i.e., $C^{\prime} \models C$ after each iteration of the main loop.)
- Thus the initial state satisfies the resulting clause set C by induction over the number of iterations.

Invariant synthesis: correctness (ctd.)

Proof (ctd.)

Invariants
Algorithms
Idea
Example
Invariant test
Main procedure
Example
Applications
Conclusion

- Since this is true for all clauses $\varphi \in C$, we get $\operatorname{app}_{o}(s) \models C$ for every state s such that $s \models C$ and $\operatorname{app}_{o}(s)$ is defined.

From A and B, the theorem follows by induction over the length of the operator sequence.

Why is the strongest invariant not always found?

- The function preserves-clause is incomplete for general operators (but complete for STRIPS operators.) Making it complete makes it NP-hard.
- The strongest invariant may require arbitrarily long clauses, so the restriction to clauses of any fixed length makes it impossible to represent it.

Example

The acyclicity of the on relation in the blocks world needs clauses of length n when there are n blocks.

- Practical implementations of the algorithm use polynomial time approximations of the tests for satisfiability and \models.

Invariant synthesis: example

Al Planning
M. Helmert

Initial state: $I \models a \wedge \neg b \wedge \neg c$
Operators: $o_{1}=\langle a, \neg a \wedge b\rangle$,

$$
\begin{aligned}
& o_{2}=\langle b, \neg b \wedge c\rangle, \\
& o_{3}=\langle c, \neg c \wedge a\rangle
\end{aligned}
$$

Computation: Find invariants with at most 2 literals:

$$
\begin{aligned}
& C_{0}=\{a, \neg b, \neg c\} \\
& C_{1}=\{\neg c, a \vee b, \neg b \vee \neg a\} \\
& C_{2}=\{\neg b \vee \neg a, \neg c \vee \neg a, \neg c \vee \neg b\} \\
& C_{3}=\{\neg b \vee \neg a, \neg c \vee \neg a, \neg c \vee \neg b\} \\
& C_{i}=C_{2} \text { for all } i \geq 2
\end{aligned}
$$

Invariants for regression: motivating example

Example

Regression of in(A, Freiburg) by
\langle in(A, Strasbourg), \neg in(A, Strasbourg $) \wedge$ in(A, Paris) \rangle
Regression \&
SAT planning
gives in $(A$, Freiburg $) \wedge$ in(A, Strasbourg $)$
No state satisfying in(A, Freiburg) \wedge in(A,Strasbourg) makes sense if A denotes some usual physical object.

Exploiting invariants for regression

Problem: Regression produces sets T of states such that

- some states in T are unreachable from I, or even

Invariants

- all states in T are unreachable from I. The first is not always a serious problem (but may worsen the quality of distance estimates, for example.)
Solution: Use invariants to avoid formulae that do not represent any reachable states.
(1) Compute invariant φ.
(2) Do only regression steps such that $\operatorname{regr}_{o}(\psi) \wedge \varphi$ is satisfiable.

Exploiting invariants in satisfiability planning

- Invariants are very useful in the planning as satisfiability framework (SAT planning), where they help reduce the search space for the SAT solver.
- We will discuss SAT planning later in this course.

Regression \&
SAT planning
Reformulation
Conclusion

Invariants for problem reformulation: mutexes

Binary clause invariants are called mutexes because they state that certain variable assignments cannot be simultaneously true and are hence mutually exclusive.

Example

The invariant $\neg A$-on- $B \vee \neg A$-on- C states that A-on- B and A-on- C are mutex.

Often, a larger set of literals is mutually exclusive because every pair of them forms a mutex.

Example

In blocks world, B-on- A, C-on- $A, D-$ on- A and A-clear are mutex.

Encoding mutex groups as finite-domain variables

Let $L=\left\{l_{1}, \ldots, l_{n}\right\}$ be mutually exclusive literals over n different variables $A_{L}=\left\{a_{1}, \ldots, a_{n}\right\}$.
Then the planning task can be rephrased using a single finite-domain (i.e., non-binary) state variable v_{L} with $n+1$ possible values in place of the n variables in A_{L} :

- n of the possible values represent situations in which exactly one of the literals in L is true.
- The remaining value represents situations in which none of the literals in L is true.
- Note: If we can prove that one of the literals in L has to be true in each state, this additional value can be omitted.

In many cases, the reduction in the number of variables can dramatically improve performance of a planning algorithm.

Finite-domain state variables

Definition (finite-domain state variable)

A finite-domain state variable is a symbol v with an associated finite domain, i. e., a non-empty finite set.
We write \mathcal{D}_{v} for the domain of v.

> Example
> $v=$ above-a, $\mathcal{D}_{\text {above-a }}=\{b, c, d$, nothing $\}$

This state variable encodes the same information as the propositional variables B-on- A, C-on- A, D-on- A and A-clear.

Finite-domain states

Definition (finite-domain state)

Let V be a finite set of finite-domain state variables.
A state over V is an assignment $s: V \rightarrow \bigcup_{v \in V} \mathcal{D}_{v}$ such that
Applications
Regression \&
SAT planning
Reformulation $s(v) \in \mathcal{D}_{v}$ for all $v \in V$.

Conclusion

Example

$$
\begin{aligned}
s= & \{\text { above-a } \mapsto \text { nothing, above- } b \mapsto \mathrm{a}, \text { above- } \mathrm{c} \mapsto \mathrm{~b}, \\
& \text { below- } \mathrm{a} \mapsto \mathrm{~b}, \text { below- } b \mapsto \mathrm{c}, \text { below }-\mathrm{c} \mapsto \text { table }\}
\end{aligned}
$$

Finite-domain formulae

Definition (finite-domain formulae)

Logical formulae over finite-domain state variables V are defined as in the propositional case, except that instead of atomic formulae of the form $a \in A$, there are atomic formulae of the form $v=d$, where $v \in V$ and $d \in \mathcal{D}_{v}$.

Example

The formulae (above-a $=$ nothing) $\vee \neg($ below- $b=\mathrm{c})$ corresponds to the formula A-clear $\vee \neg B$-on- C.

Finite-domain effects

Definition (finite-domain effects)

Effects over finite-domain state variables V are defined as in the propositional case, except that instead of atomic effects of the form a and $\neg a$ with $a \in A$, there are atomic effects of the form $v:=d$, where $v \in V$ and $d \in \mathcal{D}_{v}$.

Example

The effect
$($ below-a $:=$ table $) \wedge((a b o v e-b=a) \triangleright($ above- $b:=$ nothing $))$ corresponds to the effect
A-on- $T \wedge \neg A$-on- $B \wedge \neg A$-on- $C \wedge \neg A$-on- $D \wedge(A$-on- $B \triangleright$ $(\neg A$-on- $B \wedge B$-clear) $)$.
\rightsquigarrow definition of finite-domain operators follows

Planning tasks in finite-domain representation

Definition (planning task in finite-domain representation)
A deterministic planning task in finite-domain representation or FDR planning task is a 4-tuple $\Pi=\langle V, I, O, G\rangle$ where

- V is a finite set of finite-domain state variables,
- I is an initial state over V,
- O is a finite set of finite-domain operators over V, and
- G is a formula over V describing the goal states.

Relationship to propositional planning tasks

Definition (induced propositional planning task)

Al Planning
M. Helmert

Invariants
Algorithms
Applications
Regression \&
SAT planning
Reformulation
Conclusion

- O^{\prime} and G^{\prime} are obtained from O and G by replacing
- each atomic formula $v=d$ with the proposition (v, d), and
- each atomic effect $v:=d$ with the effect

$$
(v, d) \wedge \bigwedge_{d^{\prime} \in \mathcal{D}_{w} \backslash\{d\}} \neg\left(v, d^{\prime}\right) .
$$

- \rightsquigarrow can define operator semantics, plans, relaxed planning graphs, ... for Π in terms of its induced propositional planning task

SAS+ planning tasks

Definition (SAS ${ }^{+}$planning task)

An FDR planning task $\Pi=\langle V, I, O, G\rangle$ is called an SAS^{+} planning task iff there are no conditional effects in O and all operator preconditions in O and the goal formula G are conjunctions of atoms.

Applications
Regression \&
SAT planning
Reformulation
Conclusion

- analogue of STRIPS planning tasks for finite-domain representations
- induced propositional planning task of a SAS ${ }^{+}$planning task is STRIPS
- FDR tasks obtained by invariant-based reformulation of STRIPS planning task are SAS ${ }^{+}$

Literature on invariant synthesis

DISCOPLAN (Gerevini \& Schubert, 1998)

- many classes of invariants (not just mutexes), but not general clausal invariants
- generate/test/repair approach
(similar to the algorithm presented here)
- limited to STRIPS
- works directly with schematic operators
- usually fast, but too expensive for some large tasks

Literature on invariant synthesis (ctd.)

TIM (Fox \& Long, 1998)

- mutexes + some additional invariants
- not a generate/test/repair approach (or at least, not described as such)
- limited to STRIPS
- works directly with schematic operators

Literature on invariant synthesis (ctd.)

Edelkamp \& Helmert's algorithm (1999)

- only mutexes
- specifically tailored towards FDR reformulation
- generate/test/repair approach (similar to the algorithm presented here)
- limited to STRIPS
- works directly with schematic operators
- fast, but limitations in PDDL support (even in addition to being STRIPS only)

Literature on invariant synthesis (ctd.)

Rintanen's algorithm (2000)

Invariants
Algorithms
Applications
Conclusion
Literature \&
summary

- generate/test/repair approach
- limited to STRIPS
- works with schematic operators

The algorithm presented in this section is essentially Rintanen's algorithm, translated to non-schematic operators.

Literature on invariant synthesis (ctd.)

Bonet \& Geffner's algorithm (2001)

- mutexes only
- generate/test approach (without repair stage)
- limited to STRIPS
- works with propositional representation (not schematic)
- can be seen as simpler version of Rintanen's algorithm
- quite expensive for very large planning tasks
- developed for additional pruning in regression search

Literature on invariant synthesis (ctd.)

Helmert's algorithm (2009)

- only mutexes
- specifically tailored towards FDR reformulation
- generate/test/repair approach (similar to the algorithm presented here)
- not limited to STRIPS
- works directly with schematic operators
- fast

Summary

- Invariants help make backward search and satisfiability planning more efficient and (in the case of mutexes) can be used for problem reformulation.
- We gave an algorithm for computing a class of invariants.
(1) Start with 1-literal clauses true in the initial state.
(2) Repeatedly weaken clauses that could not be shown to be invariants.
(3) Stop when all clauses are guaranteed to be invariants.
- The algorithm runs in polynomial time if the satisfiability and logical consequence tests are approximated by a polynomial time algorithm and the size of the invariant clauses is bounded by a constant.

