
AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Principles of AI Planning
9. Invariants

Malte Helmert

Albert-Ludwigs-Universität Freiburg

December 5th, 2008

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Spurious formulae in regression planning

Example

Consider the goal formula

A-on-B ∧ B-on-C

regressed with operator

〈A-on-C ∧ A-clear ∧ B-clear,A-on-B ∧ ¬B-clear ∧ C-clear〉

resulting in the new subgoal

A-on-C ∧ A-clear ∧ B-clear ∧ B-on-C.

It is intuitively clear that no state satisfying this formula is
reachable by any plan from a legal blocks world state.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Spurious formulae cause unnecessary search

Goal formulae and formulae obtained by regressing them
often represent some states that are not reachable from
the initial state.

If none of the states is reachable from the initial state,
there are no plans reaching the formula.

We would like to have reachable states only, if possible.

The same problem shows up in satisfiability planning
(discussed later in the course):
partial valuations considered by satisfiability algorithms
may represent unreachable states, and this may result in
unnecessary search.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Restricting search to reachable sets

Goal: Restriction to states that are reachable.

Problem: Testing reachability is computationally as
complex as testing whether a plan exists.

Solution: Use an approximate notion of reachability.

Implementation: Compute in polynomial time formulae that
characterize a superset of the reachable
states.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Invariants

Definition (invariant)

A formula ϕ is an invariant of 〈A, I,O,G〉 if s |= ϕ for every
state s reachable from I.

Example

The formula ¬(A-on-B ∧ A-on-C) is an invariant in a
well-formed blocks world task.

Remark

Invariants are usually proved inductively:

Prove that ϕ is true in the initial state.

Prove that operator application preserves ϕ.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants

Definition (strongest invariant)

An invariant ϕ is the strongest invariant of 〈A, I,O,G〉 iff for
any invariant ψ, ϕ |= ψ.

The strongest invariant exactly characterizes the set of all
states that are reachable from the initial state:
For all states s, s |= ϕ if and only if s is reachable.

Remark

There are infinitely many strongest invariants for any given
planning task, but they are all logically equivalent.
(If ϕ is a strongest invariant, then so is ϕ ∧ >, ϕ ∨ ϕ, . . .)

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Example: strongest invariant for blocks world

Example (blocks world)

Let X be the set of blocks of a well-formed blocks world task
Π, for example X = {A,B,C,D}.
The conjunction of the following formulae is the strongest
invariant for Π:

For all x ∈ X : clear(x) ↔
∧

y∈X ¬on(y, x)
For all x ∈ X : ontable(x) ↔

∧
y∈X ¬on(x, y)

For all x, y, z ∈ X with y 6= z : ¬on(x, y) ∨ ¬on(x, z)
For all x, y, z ∈ X with y 6= z : ¬on(y, x) ∨ ¬on(z, x)
For all n ≥ 1 and x1, . . . , xn ∈ X :
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1))

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants: connection to plan existence

Theorem (strongest invariants vs. plan existence)

Let ϕ be the strongest invariant for Π = 〈A, I,O,G〉.
Then Π has a plan if and only if G ∧ ϕ is satisfiable.

Proof.

Obvious.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants: complexity

Theorem (complexity of computing strongest invariants)

Computing the strongest invariant ϕ is PSPACE-hard.
Even deciding whether or not > is the strongest invariant is
already PSPACE-hard.

Proof.

By reduction from the plan existence problem.
Fact: Testing plan existence for 〈A, I,O,G〉 is PSPACE-hard.
(We’ll show this later in the course!)

Let a′ /∈ A be a new state variable. Then a plan exists for
Π = 〈A, I,O,G〉 iff > is the strongest invariant of the planning
task Π′ = 〈A ∪ {a′}, I ∪ {a′ 7→ 0}, O ∪O′, G〉, where
O′ = {〈G, a′ ∧

∧
a∈A a〉} ∪ { 〈a′,¬a〉 | a ∈ A ∪ {a′} }.

. . .

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants: complexity

Theorem (complexity of computing strongest invariants)

Computing the strongest invariant ϕ is PSPACE-hard.
Even deciding whether or not > is the strongest invariant is
already PSPACE-hard.

Proof.

By reduction from the plan existence problem.
Fact: Testing plan existence for 〈A, I,O,G〉 is PSPACE-hard.
(We’ll show this later in the course!)

Let a′ /∈ A be a new state variable. Then a plan exists for
Π = 〈A, I,O,G〉 iff > is the strongest invariant of the planning
task Π′ = 〈A ∪ {a′}, I ∪ {a′ 7→ 0}, O ∪O′, G〉, where
O′ = {〈G, a′ ∧

∧
a∈A a〉} ∪ { 〈a′,¬a〉 | a ∈ A ∪ {a′} }.

. . .

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(⇒): If a plan exists for Π, then the same plan is applicable in
Π′. We can thus reach a state satisfying G in Π′.
From this state, we can reach any state s by first applying
〈G, a′ ∧

∧
a∈A a〉 and then applying the operators 〈a′,¬a〉 for

each variable a with s(a) = 0. (If s(a′) = 0, the corresponding
operator must be applied last.)
If all states are reachable in Π′, then > is the strongest
invariant for Π′.

(⇐) (by contraposition): If Π is not solvable, then no state
satisfying G is reachable in Π. In that case, no state satisfying
G is reachable in Π′, and thus a′ cannot be made true in Π′.
Thus, ¬a′ is an invariant in Π′ which is stronger than >, so >
is not the strongest invariant in Π′.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(⇒): If a plan exists for Π, then the same plan is applicable in
Π′. We can thus reach a state satisfying G in Π′.
From this state, we can reach any state s by first applying
〈G, a′ ∧

∧
a∈A a〉 and then applying the operators 〈a′,¬a〉 for

each variable a with s(a) = 0. (If s(a′) = 0, the corresponding
operator must be applied last.)
If all states are reachable in Π′, then > is the strongest
invariant for Π′.

(⇐) (by contraposition): If Π is not solvable, then no state
satisfying G is reachable in Π. In that case, no state satisfying
G is reachable in Π′, and thus a′ cannot be made true in Π′.
Thus, ¬a′ is an invariant in Π′ which is stronger than >, so >
is not the strongest invariant in Π′.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(⇒): If a plan exists for Π, then the same plan is applicable in
Π′. We can thus reach a state satisfying G in Π′.
From this state, we can reach any state s by first applying
〈G, a′ ∧

∧
a∈A a〉 and then applying the operators 〈a′,¬a〉 for

each variable a with s(a) = 0. (If s(a′) = 0, the corresponding
operator must be applied last.)
If all states are reachable in Π′, then > is the strongest
invariant for Π′.

(⇐) (by contraposition): If Π is not solvable, then no state
satisfying G is reachable in Π. In that case, no state satisfying
G is reachable in Π′, and thus a′ cannot be made true in Π′.
Thus, ¬a′ is an invariant in Π′ which is stronger than >, so >
is not the strongest invariant in Π′.

AI Planning

M. Helmert

Invariants

Motivation

Definition

Example

Complexity

Algorithms

Applications

Conclusion

Strongest invariants: complexity (ctd.)

Proof (ctd.)

(⇒): If a plan exists for Π, then the same plan is applicable in
Π′. We can thus reach a state satisfying G in Π′.
From this state, we can reach any state s by first applying
〈G, a′ ∧

∧
a∈A a〉 and then applying the operators 〈a′,¬a〉 for

each variable a with s(a) = 0. (If s(a′) = 0, the corresponding
operator must be applied last.)
If all states are reachable in Π′, then > is the strongest
invariant for Π′.

(⇐) (by contraposition): If Π is not solvable, then no state
satisfying G is reachable in Π. In that case, no state satisfying
G is reachable in Π′, and thus a′ cannot be made true in Π′.
Thus, ¬a′ is an invariant in Π′ which is stronger than >, so >
is not the strongest invariant in Π′.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis: example run

Compute sets Ci of n-literal clauses characterizing (giving an
upper bound!) the states that are reachable in up to i steps.

Example

C0 = {a,¬b, c} ∼ {101}
C1 = {a ∨ b,¬a ∨ ¬b, c} ∼ {101, 011}
C2 = {¬a ∨ ¬b, c} ∼ {001, 011, 101}
C3 = {¬a ∨ ¬b, c ∨ a} ∼ {001, 011, 100, 101}
C4 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
C5 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
Ci = C5 for all i > 5

¬a ∨ ¬b is the only invariant found.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis algorithm (informally)

Start with all 1-literal clauses true in the initial state.

Repeatedly test every operator vs. every clause to check
whether the clause can be shown to be true after applying
the operator:

One of the literals in the clause is necessarily true: retain.
Otherwise, if the clause is too long: forget it.
Otherwise, replace the clause by new clauses obtained by
adding literals that are now true.

When all clauses are retained, stop: they are invariants.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Blocks world example

Example (blocks world)

Let C0 = {A-clear,¬B-clear,A-on-B,¬B-on-A,¬A-on-T,B-on-T}
and o = 〈A-clear ∧ A-on-B,B-clear ∧ ¬A-on-B ∧ A-on-T〉.

1 C0 ∪ {A-clear ∧ A-on-B} is satisfiable: o is applicable.

2 The 1-literal clauses ¬B-clear, A-on-B and ¬A-on-T become
false when o is applied.

3 They are not thrown away, though:
they are replaced by weaker clauses.

4 Literals true after applying o in state s such that s |= C0:
A-clear, B-clear, ¬A-on-B, ¬B-on-A, A-on-T, B-on-T.

5 2-literal clauses that are weaker than ¬B-clear and now true are
¬B-clear ∨ A-clear, ¬B-clear ∨ B-clear, ¬B-clear ∨ ¬A-on-B,
¬B-clear∨¬B-on-A, ¬B-clear∨A-on-T, and ¬B-clear∨B-on-T.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Blocks world example (ctd.)

Example (ctd.)

6 Similar 2-literal clauses are obtained from A-on-B and from
¬A-on-T.

7 By eliminating logically equivalent ones, tautologies, and clauses
that follow from those in C0 not falsified we get

C1 = {A-clear,¬B-on-A,B-on-T,
¬B-clear ∨ ¬A-on-B,¬B-clear ∨ A-on-T,
A-on-B ∨ B-clear,A-on-B ∨ A-on-T,
¬A-on-T ∨ B-clear,¬A-on-T ∨ ¬A-on-B}

for distance 1 states.

8 Some clauses in C1 can be refined further by checking other
operators whose preconditions are consistent with C1.

With a bit more computation, Ci settles to a set containing all
invariants for two blocks.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Simple travel example

Example (simple travel)

Let Ci = {¬AinRome ∨ ¬AinParis,
¬AinRome ∨ ¬AinNYC,
¬AinParis ∨ ¬AinNYC},

o = 〈AinRome,AinParis ∧ ¬AinRome〉.

Does o preserve truth of ¬AinParis ∨ ¬AinNYC?

Because o makes ¬AinParis false, we must show that ¬AinNYC
is true after applying o.

But ¬AinNYC is not even mentioned in o!

However, since AinRome is the precondition of o and
¬AinRome ∨ ¬AinNYC was true before applying o, we can infer
that ¬AinNYC was true before applying o.

Since o does not make ¬AinNYC false, it is true also after
applying o, and then so is ¬AinParis ∨ ¬AinNYC.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis: function preserves-clause

Test if an operator preserves a clause

def preserves-clause(l1 ∨ · · · ∨ ln, C, o):
for each l ∈ {l1, . . . , ln}:

if not preserves-literal(C, o, {l1, . . . , ln} \ {l}, l):
return false

return true

Test if an operator preserves a literal

def preserves-literal(C, o, L′, l):
〈c, e〉 := o
Cl := C ∪ {c} ∪ {EPCl(e)}
return Cl is unsatisfiable

or Cl |= EPCl′(e) for some l′ ∈ L′
or Cl |= l′ ∧ ¬EPCl′(e) for some l′ ∈ L′

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Function preserves-clause: examples

Let C = {c ∨ b}.

preserves-clause(a ∨ b, C, 〈¬c, c ∧ d〉) returns true

preserves-clause(a ∨ b, C, 〈¬c,¬a ∧ b〉) returns true

preserves-clause(a ∨ b, C, 〈b,¬a〉) returns true

preserves-clause(a ∨ b, C, 〈¬c,¬a〉) returns true

preserves-clause(a ∨ b, C, 〈c,¬a〉) returns false

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Correctness of function preserves-clause

Lemma (correctness of preserves-clause)

Let C be a set of clauses, ϕ = l1 ∨ · · · ∨ ln a clause, and o an
operator.
If preserves-clause(ϕ, C, o) returns true, then appo(s) |= ϕ for
every state s such that s |= C ∪ {ϕ} and appo(s) is defined.

(Proof omitted.)

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Incompleteness of function preserves-clause

Example (incompleteness of preserves-clause)

Let o = 〈a,¬b ∧ (c B d) ∧ (¬c B e)〉.
preserves-clause(b ∨ d ∨ e, ∅, o) returns false because the
preserves-literal check for l = b fails:

Operator o can make b false.

It is not guaranteed that d is true in the resulting state.

It is not guaranteed that e is true in the resulting state.

However, d ∨ e is true after applying o, and hence b ∨ d ∨ e will
be true as well.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis: outline of main procedure

1 C = the set of 1-literal clauses true in the initial state.

2 For each operator o and clause ϕ ∈ C, test if ϕ remains
true when o is applied.

3 If not, remove ϕ, and if the number of literals in ϕ is less
than n, add clauses ϕ ∨ l for each literal l which is
guaranteed to be true after applying o.

4 Remove all dominated invariants.

5 Repeat from step 2 if C has changed in the previous two
steps.

6 Otherwise every clause in C is an invariant.

For any fixed limit n on the size of the clauses, the number of
iterations is O(mn) (where m = |A| is the number of state
variables) and hence polynomial.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis: the main procedure

Invariant synthesis

def invariants(A, I, O, n):
C := { a ∈ A | I |= a } ∪ { ¬a | a ∈ A, I 6|= a }
repeat:

C ′ := C
for each l1 ∨ · · · ∨ lm ∈ C ′ and o = 〈c, e〉 ∈ O

with preserves-clause(l1 ∨ · · · ∨ lm, C ′, o) = false:
C := C \ {l1 ∨ · · · ∨ lm}
if m < n:

for each literal l:
if C ′ ∪ {c} |= EPCl(e) ∨ (l ∧ ¬EPCl(e)):

C := C ∪ {l1 ∨ · · · ∨ lm ∨ l}
C := { ϕ ∈ C | ¬∃ϕ′ ∈ C : ϕ′ |= ϕ and ϕ′ 6≡ ϕ }

until C = C ′

return C

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis: correctness

Theorem (correctness of invariants)

The procedure invariants(A, I,O, n) returns a set C of clauses
with at most n literals such that for any applicable operator
sequence o1, . . . , om ∈ O: appo1...om

(I) |= C.

Proof.

A I |= C:

The initial state satisfies the initial set of 1-literal clauses.
All modifications to the clause set only make it logically
weaker (i.e., C ′ |= C after each iteration of the main loop.)
Thus the initial state satisfies the resulting clause set C by
induction over the number of iterations.

. . .

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis: correctness (ctd.)

Proof (ctd.)

B If s |= C and appo(s) is defined, then appo(s) |= C.

In the last iteration of the procedure, no formula is
removed from C = C ′, and hence preserves-clause(ϕ, C,
o) is true for all clauses ϕ ∈ C and operators o ∈ O.
By the lemma, this means that appo(s) |= ϕ for every
state s such that s |= C and appo(s) is defined.
Since this is true for all clauses ϕ ∈ C, we get appo(s) |= C
for every state s such that s |= C and appo(s) is defined.

From A and B, the theorem follows by induction over the
length of the operator sequence.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Why is the strongest invariant not always found?

The function preserves-clause is incomplete for general
operators (but complete for STRIPS operators.)
Making it complete makes it NP-hard.

The strongest invariant may require arbitrarily long
clauses, so the restriction to clauses of any fixed length
makes it impossible to represent it.

Example

The acyclicity of the on relation in the blocks world
needs clauses of length n when there are n blocks.

Practical implementations of the algorithm use polynomial
time approximations of the tests for satisfiability and |=.

AI Planning

M. Helmert

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Conclusion

Invariant synthesis: example

Initial state: I |= a ∧ ¬b ∧ ¬c
Operators: o1 = 〈a,¬a ∧ b〉,

o2 = 〈b,¬b ∧ c〉,
o3 = 〈c,¬c ∧ a〉

Computation: Find invariants with at most 2 literals:

C0 = {a,¬b,¬c}
C1 = {¬c, a ∨ b,¬b ∨ ¬a}
C2 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
C3 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
Ci = C2 for all i ≥ 2

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Invariants for regression: motivating example

Example

Regression of in(A, Freiburg) by
〈in(A, Strasbourg), ¬in(A, Strasbourg) ∧ in(A, Paris)〉
gives in(A, Freiburg) ∧ in(A, Strasbourg)

No state satisfying in(A, Freiburg) ∧ in(A,Strasbourg) makes
sense if A denotes some usual physical object.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Exploiting invariants for regression

Problem: Regression produces sets T of states such that

some states in T are unreachable from I, or even
all states in T are unreachable from I.

The first is not always a serious problem (but may
worsen the quality of distance estimates, for
example.)

Solution: Use invariants to avoid formulae that do not
represent any reachable states.

1 Compute invariant ϕ.
2 Do only regression steps such that regro(ψ) ∧ ϕ

is satisfiable.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Exploiting invariants in satisfiability planning

Invariants are very useful in the planning as satisfiability
framework (SAT planning), where they help reduce the
search space for the SAT solver.

We will discuss SAT planning later in this course.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Invariants for problem reformulation: mutexes

Binary clause invariants are called mutexes because they state
that certain variable assignments cannot be simultaneously true
and are hence mutually exclusive.

Example

The invariant ¬A-on-B ∨ ¬A-on-C states that A-on-B and
A-on-C are mutex.

Often, a larger set of literals is mutually exclusive because
every pair of them forms a mutex.

Example

In blocks world, B-on-A, C-on-A, D-on-A and A-clear are
mutex.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Encoding mutex groups as finite-domain variables

Let L = {l1, . . . , ln} be mutually exclusive literals over n
different variables AL = {a1, . . . , an}.
Then the planning task can be rephrased using a single
finite-domain (i.e., non-binary) state variable vL with n+ 1
possible values in place of the n variables in AL:

n of the possible values represent situations in which
exactly one of the literals in L is true.

The remaining value represents situations in which none of
the literals in L is true.

Note: If we can prove that one of the literals in L has to
be true in each state, this additional value can be omitted.

In many cases, the reduction in the number of variables can
dramatically improve performance of a planning algorithm.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Finite-domain state variables

Definition (finite-domain state variable)

A finite-domain state variable is a symbol v with an associated
finite domain, i. e., a non-empty finite set.

We write Dv for the domain of v.

Example

v = above-a, Dabove-a = {b, c, d, nothing}
This state variable encodes the same information as the
propositional variables B-on-A, C-on-A, D-on-A and A-clear.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Finite-domain states

Definition (finite-domain state)

Let V be a finite set of finite-domain state variables.

A state over V is an assignment s : V →
⋃

v∈V Dv such that
s(v) ∈ Dv for all v ∈ V .

Example

s = {above-a 7→ nothing, above-b 7→ a, above-c 7→ b,
below-a 7→ b, below-b 7→ c, below-c 7→ table}

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Finite-domain formulae

Definition (finite-domain formulae)

Logical formulae over finite-domain state variables V are
defined as in the propositional case, except that instead of
atomic formulae of the form a ∈ A, there are atomic formulae
of the form v = d, where v ∈ V and d ∈ Dv.

Example

The formulae (above-a = nothing) ∨ ¬(below-b = c)
corresponds to the formula A-clear ∨ ¬B-on-C.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Finite-domain effects

Definition (finite-domain effects)

Effects over finite-domain state variables V are defined as in
the propositional case, except that instead of atomic effects of
the form a and ¬a with a ∈ A, there are atomic effects of the
form v := d, where v ∈ V and d ∈ Dv.

Example

The effect
(below-a := table) ∧ ((above-b = a) B (above-b := nothing))
corresponds to the effect
A-on-T ∧ ¬A-on-B ∧ ¬A-on-C ∧ ¬A-on-D ∧ (A-on-B B
(¬A-on-B ∧ B-clear)).

 definition of finite-domain operators follows

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Planning tasks in finite-domain representation

Definition (planning task in finite-domain representation)

A deterministic planning task in finite-domain representation or
FDR planning task is a 4-tuple Π = 〈V, I,O,G〉 where

V is a finite set of finite-domain state variables,

I is an initial state over V ,

O is a finite set of finite-domain operators over V , and

G is a formula over V describing the goal states.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

Relationship to propositional planning tasks

Definition (induced propositional planning task)

Let Π = 〈V, I,O,G〉 be an FDR planning task.
The induced propositional planning task Π′ is the (regular)
planning task Π′ = 〈A′, I ′, O′, G′〉, where

A′ = {(v, d) | v ∈ V, d ∈ Dv}
I ′((v, d)) = 1 iff I(v) = d

O′ and G′ are obtained from O and G by replacing

each atomic formula v = d with the proposition (v, d), and
each atomic effect v := d with the effect
(v, d) ∧

∧
d′∈Dv\{d} ¬(v, d′).

 can define operator semantics, plans, relaxed planning
graphs, . . . for Π in terms of its induced propositional
planning task

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Regression &
SAT planning

Reformulation

Conclusion

SAS+ planning tasks

Definition (SAS+ planning task)

An FDR planning task Π = 〈V, I,O,G〉 is called an SAS+

planning task iff there are no conditional effects in O and all
operator preconditions in O and the goal formula G are
conjunctions of atoms.

analogue of STRIPS planning tasks for finite-domain
representations

induced propositional planning task of a SAS+ planning
task is STRIPS

FDR tasks obtained by invariant-based reformulation of
STRIPS planning task are SAS+

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Literature &
summary

Literature on invariant synthesis

DISCOPLAN (Gerevini & Schubert, 1998)

many classes of invariants (not just mutexes),
but not general clausal invariants

generate/test/repair approach
(similar to the algorithm presented here)

limited to STRIPS

works directly with schematic operators

usually fast, but too expensive for some large tasks

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Literature &
summary

Literature on invariant synthesis (ctd.)

TIM (Fox & Long, 1998)

mutexes + some additional invariants

not a generate/test/repair approach
(or at least, not described as such)

limited to STRIPS

works directly with schematic operators

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Literature &
summary

Literature on invariant synthesis (ctd.)

Edelkamp & Helmert’s algorithm (1999)

only mutexes

specifically tailored towards FDR reformulation

generate/test/repair approach
(similar to the algorithm presented here)

limited to STRIPS

works directly with schematic operators

fast, but limitations in PDDL support
(even in addition to being STRIPS only)

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Literature &
summary

Literature on invariant synthesis (ctd.)

Rintanen’s algorithm (2000)

general clausal invariants

however, speed unclear for general invariants
(beyond mutexes)

generate/test/repair approach

limited to STRIPS

works with schematic operators

The algorithm presented in this section is essentially Rintanen’s
algorithm, translated to non-schematic operators.

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Literature &
summary

Literature on invariant synthesis (ctd.)

Bonet & Geffner’s algorithm (2001)

mutexes only

generate/test approach (without repair stage)

limited to STRIPS

works with propositional representation (not schematic)

can be seen as simpler version of Rintanen’s algorithm

quite expensive for very large planning tasks

developed for additional pruning in regression search

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Literature &
summary

Literature on invariant synthesis (ctd.)

Helmert’s algorithm (2009)

only mutexes

specifically tailored towards FDR reformulation

generate/test/repair approach
(similar to the algorithm presented here)

not limited to STRIPS

works directly with schematic operators

fast

AI Planning

M. Helmert

Invariants

Algorithms

Applications

Conclusion

Literature &
summary

Summary

Invariants help make backward search and satisfiability
planning more efficient and (in the case of mutexes) can
be used for problem reformulation.

We gave an algorithm for computing a class of invariants.
1 Start with 1-literal clauses true in the initial state.
2 Repeatedly weaken clauses that could not be shown to be

invariants.
3 Stop when all clauses are guaranteed to be invariants.

The algorithm runs in polynomial time if the satisfiability
and logical consequence tests are approximated by a
polynomial time algorithm and the size of the invariant
clauses is bounded by a constant.

	Invariants
	Motivation
	Definition
	Example
	Complexity

	Algorithms
	Idea
	Example
	Invariant test
	Main procedure
	Example

	Applications
	Regression & SAT planning
	Reformulation

	Conclusion
	Literature & summary

