
AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Principles of AI Planning
7. State-space search: relaxed planning tasks

Malte Helmert

Albert-Ludwigs-Universität Freiburg

November 18th, 2008

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A simple heuristic for deterministic planning

STRIPS (Fikes & Nilsson, 1971) used the number of state
variables that differ in current state s and a STRIPS goal
l1 ∧ · · · ∧ ln:

h(s) := |{i ∈ {1, . . . , n} | s(a) 6|= li}|.

Intuition: more true goal literals closer to the goal

 STRIPS heuristic (properties?)

Note: From now on, for convenience we usually write heuristics
as functions of states (as above), not nodes.
Node heuristic h′ is defined from state heuristic h as
h′(σ) := h(state(σ)).

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

Criticism of the STRIPS heuristic

What is wrong with the STRIPS heuristic?

quite uninformative:
the range of heuristic values in a given task is small;
typically, most successors have the same estimate

very sensitive to reformulation:
can easily transform any planning task into an equivalent
one where h(s) = 1 for all non-goal states (how?)

ignores almost all problem structure:
heuristic value does not depend on the set of operators!

 need a better, principled way of coming up with heuristics

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

Coming up with heuristics in a principled way

General procedure for obtaining a heuristic

Solve an easier version of the problem.

Two common methods:

relaxation: consider less constrained version of the problem

abstraction: consider smaller version of real problem

Both have been very successfully applied in planning.
We consider both in this course, beginning with relaxation.

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

Relaxing a problem

How do we relax a problem?

Example (Route planning for a road network)

The road network is formalized as a weighted graph over points
in the Euclidean plane. The weight of an edge is the road
distance between two locations.

A relaxation drops constraints of the original problem.

Example (Relaxation for route planning)

Use the Euclidean distance
√
|x1 − y1|2 + |x2 − y2|2 as a

heuristic for the road distance between (x1, x2) and (y1, y2)
This is a lower bound on the road distance (admissible).

 We drop the constraint of having to travel on roads.

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km

270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km

270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km
270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km
270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km
270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km
270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km
270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

STRIPS
heuristic

Relaxation and
abstraction

Positive
normal form

Relaxed
planning tasks

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0

km

1
2
0

km

100 km
100

km

100 km 120
km80

km

160 km

100 km

100 km

120
km

20
0

km

20
0

km
270 km

150 km

420 km180 km

34
0 km

12
0 km

45
0

km
13

0
km

440
km

100
km

540
km

120
km

460 km

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Relaxations for planning

Relaxation is a general technique for heuristic design:

Straight-line heuristic (route planning): Ignore the fact
that one must stay on roads.
Manhattan heuristic (15-puzzle): Ignore the fact that one
cannot move through occupied tiles.

We want to apply the idea of relaxations to planning.

Informally, we want to ignore bad side effects of applying
operators.

Example (FreeCell)

If we move a card c to a free tableau position, the good effect
is that the card formerly below c is now available.
The bad effect is that we lose one free tableau position.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

What is a good or bad effect?

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:

Locking the entrance door is good if we want to keep
burglars out.

Locking the entrance door is bad if we want to enter.

We will now consider a reformulation of planning tasks that
makes the distinction between good and bad effects obvious.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form

Definition (operators in positive normal form)

An operator o = 〈c, e〉 is in positive normal form if it is in
normal form, no negation symbols appear in c, and no negation
symbols appear in any effect condition in e.

Definition (planning tasks in positive normal form)

A planning task 〈A, I,O,G〉 is in positive normal form if all
operators in O are in positive normal form and no negation
symbols occur in the goal G.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: existence

Theorem (positive normal form)

Every planning task Π has an equivalent planning task Π′ in
positive normal form.
Moreover, Π′ can be computed from Π in polynomial time.

Note: Equivalence here means that the represented transition
systems of Π and Π′, limited to the states that can be reached
from the initial state, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: algorithm

Transformation of 〈A, I,O,G〉 to positive normal form

Convert all operators o ∈ O to normal form.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal ¬a:

Let a be a variable which occurs negatively in a condition.
A := A ∪ {â} for some new state variable â
I(â) := 1− I(a)
Replace the effect a by (a ∧ ¬â) in all operators o ∈ O.
Replace the effect ¬a by (¬a ∧ â) in all operators o ∈ O.
Replace ¬a by â in all conditions.

Convert all operators o ∈ O to normal form (again).

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike

Identify state variable a occurring negatively in conditions.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike

Introduce new variable â with complementary initial value.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike

Identify effects on variable a.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike

Introduce complementary effects for â.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike

Identify negative conditions for a.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) B ¬bike)〉}

G = lecture ∧ bike

Replace by positive condition â.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Motivation

Definition &
algorithm

Example

Relaxed
planning tasks

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) B ¬bike)〉}

G = lecture ∧ bike

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxed planning tasks: idea

In positive normal form, good and bad effects are easy to
distinguish:

Effects that make state variables true are good
(add effects).

Effects that make state variables false are bad
(delete effects).

Idea for the heuristic: Ignore all delete effects.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxed planning tasks

Definition (relaxation of operators)

The relaxation o+ of an operator o = 〈c, e〉 in positive normal
form is the operator which is obtained by replacing all negative
effects ¬a within e by the do-nothing effect >.

Definition (relaxation of planning tasks)

The relaxation Π+ of a planning task Π = 〈A, I,O,G〉 in
positive normal form is the planning task
Π+ := 〈A, I, {o+ | o ∈ O}, G〉.

Definition (relaxation of operator sequences)

The relaxation of an operator sequence π = o1 . . . on is the
operator sequence π+ := o1

+ . . . on
+.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxed planning tasks: terminology

Planning tasks in positive normal form without delete
effects are called relaxed planning tasks.

Plans for relaxed planning tasks are called relaxed plans.

If Π is a planning task in positive normal form and π+ is a
plan for Π+, then π+ is called a relaxed plan for Π.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Dominating states

The on-set on(s) of a state s is the set of true state variables
in s, i.e. on(s) = s−1({1}).
A state s′ dominates another state s iff on(s) ⊆ on(s′).

Lemma (domination)

Let s and s′ be valuations of a set of propositional variables
and let χ be a propositional formula which does not contain
negation symbols.
If s |= χ and s′ dominates s, then s′ |= χ.

Proof by induction over the structure of χ.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

The relaxation lemma

For the rest of this chapter, we assume that all planning tasks
are in positive normal form.

Lemma (relaxation)

Let s be a state, let s′ be a state that dominates s,
and let π be an operator sequence which is applicable in s.
Then π+ is applicable in s′ and appπ+(s′) dominates appπ(s).
Moreover, if π leads to a goal state from s, then π+ leads to a
goal state from s′.

Proof.

The “moreover” part follows from the rest by the domination
lemma. Prove the rest by induction over the length of π.

Base case: π = ε
appπ+(s′) = s′ dominates appπ(s) = s by assumption.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

The relaxation lemma

For the rest of this chapter, we assume that all planning tasks
are in positive normal form.

Lemma (relaxation)

Let s be a state, let s′ be a state that dominates s,
and let π be an operator sequence which is applicable in s.
Then π+ is applicable in s′ and appπ+(s′) dominates appπ(s).
Moreover, if π leads to a goal state from s, then π+ leads to a
goal state from s′.

Proof.

The “moreover” part follows from the rest by the domination
lemma. Prove the rest by induction over the length of π.

Base case: π = ε
appπ+(s′) = s′ dominates appπ(s) = s by assumption.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

The relaxation lemma (ctd.)

Proof (ctd.)

Inductive case: π = o1 . . . on+1

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1+...on

+(s′) dominates t = appo1...on
(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t′ |= c and hence o+ is applicable in t′. Therefore, π+ is
applicable in s′.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t′ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t′ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t′) ∪ [e+]t′ =
on(appπ+(s′)), and thus appπ+(s′) dominates appπ(s).

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

The relaxation lemma (ctd.)

Proof (ctd.)

Inductive case: π = o1 . . . on+1

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1+...on

+(s′) dominates t = appo1...on
(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t′ |= c and hence o+ is applicable in t′. Therefore, π+ is
applicable in s′.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t′ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t′ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t′) ∪ [e+]t′ =
on(appπ+(s′)), and thus appπ+(s′) dominates appπ(s).

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

The relaxation lemma (ctd.)

Proof (ctd.)

Inductive case: π = o1 . . . on+1

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1+...on

+(s′) dominates t = appo1...on
(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t′ |= c and hence o+ is applicable in t′. Therefore, π+ is
applicable in s′.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t′ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t′ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t′) ∪ [e+]t′ =
on(appπ+(s′)), and thus appπ+(s′) dominates appπ(s).

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

The relaxation lemma (ctd.)

Proof (ctd.)

Inductive case: π = o1 . . . on+1

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1+...on

+(s′) dominates t = appo1...on
(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t′ |= c and hence o+ is applicable in t′. Therefore, π+ is
applicable in s′.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t′ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t′ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t′) ∪ [e+]t′ =
on(appπ+(s′)), and thus appπ+(s′) dominates appπ(s).

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Consequences of the relaxation lemma

Corollary (relaxation leads to dominance and preserves plans)

Let π be an operator sequence which is applicable in state s.
Then π+ is applicable in s and appπ+(s) dominates appπ(s).
If π is a plan for Π, then π+ is a plan for Π+.

Proof.

Apply relaxation lemma with s′ = s.

 Relaxations of plans are relaxed plans.

 Relaxations are no harder to solve than the original task.

 Optimal relaxed plans are never longer than optimal plans
for original tasks.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Consequences of the relaxation lemma (ctd.)

Corollary (relaxation preserves dominance)

Let s be a state, let s′ be a state that dominates s,
and let π+ be a relaxed operator sequence applicable in s.
Then π+ is applicable in s′ and appπ+(s′) dominates appπ+(s).

Proof.

Apply relaxation lemma with π+ for π, noting that
(π+)+ = π+.

 If there is a relaxed plan starting from state s, the same
plan can be used starting from a dominating state s′.

 Making a transition to a dominating state never hurts in
relaxed planning tasks.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Monotonicity of relaxed planning tasks

We need one final property before we can provide an algorithm
for solving relaxed planning tasks.

Lemma (monotonicity)

Let o+ = 〈c, e+〉 be a relaxed operator and let s be a state in
which o+ is applicable.
Then appo+(s) dominates s.

Proof.

Since relaxed operators only have positive effects, we have
on(s) ⊆ on(s) ∪ [e+]s = on(appo+(s)).

 Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Greedy algorithm for relaxed planning tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy planning algorithm for 〈A, I,O+, G〉
s := I
π+ := ε
forever:

if s |= G:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with appo+(s) 6= s:

Append such an operator o+ to π+.
s := appo+(s)

else:
return unsolvable

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Correctness of the greedy algorithm

The algorithm is sound:

If it returns a plan, this is indeed a correct solution.

If it returns “unsolvable”, the task is indeed unsolvable

Upon termination, there clearly is no relaxed plan from s.
By iterated application of the monotonicity lemma, s
dominates I.
By the relaxation lemma, there is no solution from I.

What about completeness (termination) and runtime?

Each iteration of the loop adds at least one atom to on(s).

This guarantees termination after at most |A| iterations.

Thus, the algorithm can clearly be implemented to run in
polynomial time.

A good implementation runs in O(‖Π‖).

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Using the greedy algorithm as a heuristic

We can apply the greedy algorithm within heuristic search:

In a search node σ, solve the relaxation of the planning
task with state(σ) as the initial state.

Set h(σ) to the length of the generated relaxed plan.

Is this an admissible heuristic?

Yes if the relaxed plans are optimal (due to the plan
preservation corollary).

However, usually they are not, because our greedy
planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

The set cover problem

To obtain an admissible heuristic, we need to generate optimal
relaxed plans. Can we do this efficiently?

This question is related to the following problem:

Problem (set cover)

Given: a finite set U , a collection of subsets C = {C1, . . . , Cn}
with Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K.

Question: Does there exist a set cover of size at most K, i. e.,
a subcollection S = {S1, . . . , Sm} ⊆ C with S1 ∪ · · · ∪ Sm = U
and m ≤ K?

The following is a classical result from complexity theory:

Theorem

The set cover problem is NP-complete.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Hardness of optimal relaxed planning

Theorem (optimal relaxed planning is hard)

The problem of deciding whether a given relaxed planning task
has a plan of length at most K is NP-complete.

Proof.

For membership in NP, guess a plan and verify. It is sufficient
to check plans of length at most |A|, so this can be done in
nondeterministic polynomial time.

For hardness, we reduce from the set cover problem.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Hardness of optimal relaxed planning (ctd.)

Proof (ctd.)

Given a set cover instance 〈U,C,K〉, we generate the following
relaxed planning task Π+ = 〈A, I,O+, G〉:

A = U

I = {a 7→ 0 | a ∈ A}
O+ = {〈>,

∧
a∈Ci

a〉 | Ci ∈ C}
G =

∧
a∈U a

If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets
corresponding to the operators. Clearly, there exists a plan of
length at most K iff there exists a set cover of size K.

Moreover, Π+ can be generated from the set cover instance in
polynomial time, so this is a polynomial reduction.

AI Planning

M. Helmert

Obtaining
heuristics

Positive
normal form

Relaxed
planning tasks

Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Using relaxations in practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

Implement an optimal planner for relaxed planning tasks
and use its solution lengths as an estimate, even though it
is NP-hard.
 h+ heuristic

Do not actually solve the relaxed planning task, but
compute an estimate of its difficulty in a different way.
 hmax heuristic, hadd heuristic

Compute a solution for relaxed planning tasks which is not
necessarily optimal, but “reasonable”.
 hFF heuristic

	How to obtain a heuristic
	The STRIPS heuristic
	Relaxation and abstraction

	Positive normal form
	Motivation
	Definition & algorithm
	Example

	Relaxed planning tasks
	Definition
	The relaxation lemma
	Greedy algorithm
	Optimality
	Discussion

