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Our plan for the next lectures

Choices to make:

1 search direction: progression/regression/both
 previous chapter

2 search space representation: states/sets of states
 previous chapter

3 search algorithm: uninformed/heuristic; systematic/local
 this chapter

4 search control: heuristics, pruning techniques
 next chapters
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Search

Search algorithms are used to find solutions (plans) for
transition systems in general, not just for planning tasks.

Planning is one application of search among many.

In this chapter, we describe some popular and/or
representative search algorithms, and (the basics of) how
they apply to planning.

Most of this is review of material that should be known
(details: Russell and Norvig’s textbook).
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Search states vs. search nodes

In search, one distinguishes:

search states s  states (vertices) of the transition system

search nodes σ  search states plus information on
where/when/how they are encountered during search

What is in a search node?

Different search algorithms store different information in a
search node σ, but typical information includes:

state(σ): associated search state

parent(σ): pointer to search node from which σ is reached

action(σ): an action/operator leading from
state(parent(σ)) to state(σ)
g(σ): cost of σ (length of path from the root node)

For the root node, parent(σ) and action(σ) are undefined.
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Search states vs. planning states

Search states 6= (planning) states:

Search states don’t have to correspond to states in the
planning sense.

progression: search states ≈ (planning) states
regression: search states ≈ sets of states (formulae)

Search algorithms for planning where search states are
planning states are called state-space search algorithms.

Strictly speaking, regression is not an example of
state-space search, although the term is often used loosely.

However, we will put the emphasis on progression, which
is almost always state-space search.
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Required ingredients for search

A general search algorithm can be applied to any transition
system for which we can define the following three operations:

init(): generate the initial state

is-goal(s): test if a given state is a goal state

succ(s): generate the set of successor states of state s,
along with the operators through which they are reached
(represented as pairs 〈o, s′〉 of operators and states)

Together, these three functions form a search space (a very
similar notion to a transition system).
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Search for planning: progression

Let Π = 〈A, I, O, G〉 be a planning task.

Search space for progression search

states: all states of Π (assignments to A)

init() = I

succ(s) = {〈o, s′〉 | o ∈ O, s′ = appo(s)}

is-goal(s) =

{
true if s |= G

false otherwise
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Search for planning: regression

Let 〈A, I, O, G〉 be a planning task.

Search space for regression search

states: all formulae over A

init() = G

succ(φ) = {〈o, φ′〉 | o ∈ O,φ′ = regro(φ), φ′ is satisfiable}
(modified if splitting is used)

is-goal(φ) =

{
true if I |= φ

false otherwise
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Classification of search algorithms

uninformed search vs. heuristic search:

uninformed search algorithms only use the basic
ingredients for general search algorithms

heuristic search algorithms additionally use heuristic
functions which estimate how close a node is to the goal

systematic search vs. local search:

systematic algorithms consider a large number of search
nodes simultaneously

local search algorithms work with one (or a few) candidate
solutions (search nodes) at a time

not a black-and-white distinction; there are crossbreeds
(e. g., enforced hill-climbing)
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Classification: what works where in planning?

uninformed vs. heuristic search:

For satisficing planning, heuristic search vastly
outperforms uninformed algorithms on most domains.

For optimal planning, the difference is less pronounced. An
efficiently implemented uninformed algorithm is not easy
to beat in most domains.

systematic search vs. local search:

For satisficing planning, the most successful algorithms are
somewhere between the two extremes.

For optimal planning, systematic algorithms are required.



AI Planning

M. Helmert

Introduction

Nodes and states

Search for
planning

Common
procedures

Uninformed
search

Heuristic
search

Common procedures for search algorithms

Before we describe the different search algorithms, we
introduce three procedures used by all of them:

make-root-node: Create a search node without parent.

make-node: Create a search node for a state generated as
the successor of another state.

extract-solution: Extract a solution from a search node
representing a goal state.
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Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node

def make-root-node(s):
σ := new node
state(σ) := s
parent(σ) := undefined
action(σ) := undefined
g(σ) := 0
return σ
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Procedure make-node

make-node: Create a search node for a state generated as the
successor of another state.

Procedure make-node

def make-node(σ, o, s):
σ′ := new node
state(σ′) := s
parent(σ′) := σ
action(σ′) := o
g(σ′) := g(σ) + 1
return σ′
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Procedure extract-solution

extract-solution: Extract a solution from a search node
representing a goal state.

Procedure extract-solution

def extract-solution(σ):
solution := new list
while parent(σ) is defined:

solution.push-front(action(σ))
σ := parent(σ)

return solution
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Uninformed search algorithms

Uninformed algorithms are less relevant for planning than
heuristic ones, so we keep their discussion brief.

Uninformed algorithms are mostly interesting to us
because we can compare and contrast them to related
heuristic search algorithms.

Popular uninformed systematic search algorithms:

breadth-first search

depth-first search

iterated depth-first search

Popular uninformed local search algorithms:

random walk
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Breadth-first search without duplicate detection

Breadth-first search

queue := new fifo-queue
queue.push-back(make-root-node(init()))
while not queue.empty():

σ = queue.pop-front()
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable

Possible improvement: duplicate detection (see next slide).

Another possible improvement: test if σ′ is a goal node; if
so, terminate immediately. (We don’t do this because it
obscures the similarity to some of the later algorithms.)
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Breadth-first search with duplicate detection

Breadth-first search with duplicate detection

queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable
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Breadth-first search with duplicate detection

Breadth-first search with duplicate detection

queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable
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Random walk

σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Choose a random element 〈o, s〉 from succ(state(σ)).
σ := make-node(σ, o, s)

The algorithm usually does not find any solutions, unless
almost every sequence of actions is a plan.

Often, it runs indefinitely without making progress.

It can also fail by reaching a dead end, a state with no
successors. This is a weakness of many local search
approaches.
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Heuristic search algorithms: systematic

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

greedy best-first search

A∗

weighted A∗

IDA∗

depth-first branch-and-bound search

breadth-first heuristic search

. . .
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Heuristic search algorithms: local

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular heuristic local search algorithms:

hill-climbing

enforced hill-climbing

beam search

tabu search

genetic algorithms

simulated annealing

. . .
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Heuristic search: idea

goal
init

dist
anc

e est
imate

distance estimate

distance estimate

distance estimate
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Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a
function h : Σ → N0 ∪ {∞}.

The value h(σ) is called the heuristic estimate or heuristic
value of heuristic h for node σ. It is supposed to estimate the
distance from σ to the nearest goal node.
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What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

For most heuristic search algorithms, h does not need to
have any strong properties for the algorithm to work (=
be correct and complete).

However, the efficiency of the algorithm closely relates to
how accurately h reflects the actual goal distance.

For some algorithms, like A∗, we can prove strong formal
relationships between properties of h and properties of the
algorithm (optimality, dominance, run-time for bounded
error, . . . )

For other search algorithms, “it works well in practice” is
often as good an analysis as one gets.
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Heuristics applied to nodes or states?

Most texts apply heuristic functions to states, not nodes.

This is slightly less general than our definition:

Given a state heuristic h, we can define an equivalent node
heuristic as h′(σ) := h(state(σ)).
The opposite is not possible. (Why not?)

There is good justification for only allowing state-defined
heuristics: why should the estimated distance to the goal
depend on how we ended up in a given state s?

We call heuristics which don’t just depend on state(σ)
pseudo-heuristics.

In practice there are sometimes good reasons to have the
heuristic value depend on the generating path of σ
(e. g., the landmark pseudo-heuristic, Richter et al. 2008).
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Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The optimal or perfect heuristic of a search space is the
heuristic h∗ which maps each search node σ to the length of a
shortest path from state(σ) to any goal state.

Note: h∗(σ) = ∞ iff no goal state is reachable from σ.
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Properties of heuristics

A heuristic h is called

safe if h∗(σ) = ∞ for all σ ∈ Σ with h(σ) = ∞
goal-aware if h(σ) = 0 for all goal nodes σ ∈ Σ
admissible if h(σ) ≤ h∗(σ) for all nodes σ ∈ Σ
consistent if h(σ) ≤ h(σ′) + 1 for all nodes σ, σ′ ∈ Σ
such that σ′ is a successor of σ

Relationships?
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Greedy best-first search

Greedy best-first search (with duplicate detection)

open := new min-heap ordered by (σ 7→ h(σ))
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable
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Properties of greedy best-first search

one of the three most commonly used algorithms for
satisficing planning

complete for safe heuristics (due to duplicate detection)

suboptimal unless h satisfies some very strong
assumptions (similar to being perfect)

invariant under all strictly monotonic transformations of h
(e. g., scaling with a positive constant or adding a
constant)
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A∗

A∗ (with duplicate detection and reopening)

open := new min-heap ordered by (σ 7→ g(σ) + h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable
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A∗ example
Example

G
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Terminology for A∗

f value of a node: defined by f(σ) := g(σ) + h(σ)
generated nodes: nodes inserted into open at some point

expanded nodes: nodes σ popped from open for which the
test against closed and distance succeeds

reexpanded nodes: expanded nodes for which
state(σ) ∈ closed upon expansion (also called reopened
nodes)
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Properties of A∗

the most commonly used algorithm for optimal planning

rarely used for satisficing planning

complete for safe heuristics (even without duplicate
detection)

optimal if h is admissible and/or consistent (even without
duplicate detection)

never reopens nodes if h is consistent

Implementation notes:

in the heap-ordering procedure, it is considered a good
idea to break ties in favour of lower h values

can simplify algorithm if we know that we only have to
deal with consistent heuristics

common, hard to spot bug: test membership in closed at
the wrong time
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Weighted A∗

Weighted A∗ (with duplicate detection and reopening)

open := new min-heap ordered by (σ 7→ g(σ) + W · h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable
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Properties of weighted A∗

The weight W ∈ R+
0 is a parameter of the algorithm.

for W = 0, behaves like breadth-first search

for W = 1, behaves like A∗

for W →∞, behaves like greedy best-first search

Properties:

one of the three most commonly used algorithms for
satisficing planning

for W > 1, can prove similar properties to A∗, replacing
optimal with bounded suboptimal: generated solutions are
at most a factor W as long as optimal ones
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Hill-climbing

Hill-climbing

σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Σ′ := {make-node(σ, o, s) | 〈o, s〉 ∈ succ(state(σ)) }
σ := an element of Σ′ minimizing h (random tie breaking)

can easily get stuck in local minima where immediate
improvements of h(σ) are not possible

many variations: tie-breaking strategies, restarts
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Enforced hill-climbing

Enforced hill-climbing: procedure improve

def improve(σ0):
queue := new fifo-queue
queue.push-back(σ0)
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if h(σ) < h(σ0):

return σ
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

fail

 breadth-first search for more promising node than σ0
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Enforced hill-climbing (ctd.)

Enforced hill-climbing

σ := make-root-node(init())
while not is-goal(state(σ)):

σ := improve(σ)
return extract-solution(σ)

one of the three most commonly used algorithms for
satisficing planning

can fail if procedure improve fails (when the goal is
unreachable from σ0)

complete for undirected search spaces (where the
successor relation is symmetric) if h(σ) = 0 for all goal
nodes and only for goal nodes
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