Principles of Al Planning

6. State-space search: search algorithms

Malte Helmert

Albert-Ludwigs-Universität Freiburg

November 11th, 2008

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

Al Planning

Introduction Nodes and states

Our plan for the next lectures

Choices to make:

- 1. search direction: progression/regression/both
 - → previous chapter
- 2. search space representation: states/sets of states
 - → previous chapter
- 3. search algorithm: uninformed/heuristic; systematic/local
 - → this chapter
- 4. search control: heuristics, pruning techniques
 - → next chapters

Principles of Al Planning

November 11th, 2008 — 6. State-space search: search algorithms

Introduction to search algorithms for planning

Search nodes & search states Search for planning Common procedures for search algorithms

Uninformed search algorithms

Heuristic search algorithms

Heuristics: definition and properties Systematic heuristic search algorithms Heuristic local search algorithms

M. Helmert (Universität Freiburg)

November 11th, 2008

Nodes and states

Search

- ► Search algorithms are used to find solutions (plans) for transition systems in general, not just for planning tasks.
- ▶ Planning is one application of search among many.
- ▶ In this chapter, we describe some popular and/or representative search algorithms, and (the basics of) how they apply to planning.
- Most of this is review of material that should be known (details: Russell and Norvig's textbook).

M. Helmert (Universität Freiburg) Al Planning November 11th, 2008 M. Helmert (Universität Freiburg) Al Planning November 11th, 2008

Search states vs. search nodes

In search, one distinguishes:

- ▶ search states s → states (vertices) of the transition system
- ▶ search nodes $\sigma \leadsto$ search states plus information on where/when/how they are encountered during search

What is in a search node?

Different search algorithms store different information in a search node σ , but typical information includes:

- \triangleright state(σ): associated search state
- **parent**(σ): pointer to search node from which σ is reached
- ▶ $action(\sigma)$: an action/operator leading from $state(parent(\sigma))$ to $state(\sigma)$
- $g(\sigma)$: cost of σ (length of path from the root node)

For the root node, $parent(\sigma)$ and $action(\sigma)$ are undefined.

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

5 / 43

Introduction Nodes and states

Required ingredients for search

A general search algorithm can be applied to any transition system for which we can define the following three operations:

- ▶ init(): generate the initial state
- ▶ is-goal(s): test if a given state is a goal state
- ▶ succ(s): generate the set of successor states of state s, along with the operators through which they are reached (represented as pairs $\langle o, s' \rangle$ of operators and states)

Together, these three functions form a search space (a very similar notion to a transition system).

Search states vs. planning states

Search states \neq (planning) states:

- ► Search states don't have to correspond to states in the planning sense.
 - ▶ progression: search states \approx (planning) states
 - regression: search states \approx sets of states (formulae)
- ► Search algorithms for planning where search states are planning states are called state-space search algorithms.
- ► Strictly speaking, regression is **not** an example of state-space search, although the term is often used loosely.
- ► However, we will put the emphasis on progression, which is almost always state-space search.

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

18 6

Introduction Search for planning

Search for planning: progression

Let $\Pi = \langle A, I, O, G \rangle$ be a planning task.

Search space for progression search

states: all states of Π (assignments to A)

- ► init() = *I*
- $\blacktriangleright \, \mathsf{succ}(s) = \{ \langle o, s' \rangle \mid o \in O, s' = \mathsf{app}_o(s) \}$
- $is\text{-goal}(s) = \begin{cases} \text{true} & \text{if } s \models G \\ \text{false} & \text{otherwise} \end{cases}$

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

7 /

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

Introduction Search for planning

Search for planning: regression

Let $\langle A, I, O, G \rangle$ be a planning task.

Search space for regression search

states: all formulae over A

- ▶ init() = *G*
- ▶ $\operatorname{succ}(\phi) = \{ \langle o, \phi' \rangle \mid o \in O, \phi' = \operatorname{regr}_o(\phi), \phi' \text{ is satisfiable} \}$ (modified if splitting is used)
- $is-goal(\phi) = \begin{cases} true & \text{if } I \models \phi \\ false & \text{otherwise} \end{cases}$

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

9 / 43

Classification of search algorithms

uninformed search vs. heuristic search:

- uninformed search algorithms only use the basic ingredients for general search algorithms
- ► heuristic search algorithms additionally use heuristic functions which estimate how close a node is to the goal

systematic search vs. local search:

- systematic algorithms consider a large number of search nodes simultaneously
- ► local search algorithms work with one (or a few) candidate solutions (search nodes) at a time
- ▶ not a black-and-white distinction; there are crossbreeds (e.g., enforced hill-climbing)

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

10 / 43

Introduction Search for planning

Classification: what works where in planning?

uninformed vs. heuristic search:

- ► For satisficing planning, heuristic search vastly outperforms uninformed algorithms on most domains.
- ► For optimal planning, the difference is less pronounced. An efficiently implemented uninformed algorithm is not easy to beat in most domains.

systematic search vs. local search:

- ► For satisficing planning, the most successful algorithms are somewhere between the two extremes.
- ▶ For optimal planning, systematic algorithms are required.

Introduction Common procedure

Common procedures for search algorithms

Before we describe the different search algorithms, we introduce three procedures used by all of them:

- ▶ make-root-node: Create a search node without parent.
- ► make-node: Create a search node for a state generated as the successor of another state.
- extract-solution: Extract a solution from a search node representing a goal state.

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

11 / 43

M. H

M. Helmert (Universität Freiburg) Al Planning

November 11th, 2008

Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node

```
def make-root-node(s):
      \sigma := \mathbf{new} \text{ node}
      state(\sigma) := s
      parent(\sigma) := undefined
      action(\sigma) := undefined
      g(\sigma) := 0
      return \sigma
```

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

13 / 43

Procedure make-node

make-node: Create a search node for a state generated as the successor of another state.

Procedure make-node

```
def make-node(\sigma, o, s):
      \sigma' := \mathbf{new} \text{ node}
      state(\sigma') := s
      parent(\sigma') := \sigma
      action(\sigma') := o
      g(\sigma') := g(\sigma) + 1
       return \sigma'
```

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

14 / 43

Procedure extract-solution

extract-solution: Extract a solution from a search node representing a goal state.

Procedure extract-solution

```
def extract-solution(\sigma):
     solution := new list
     while parent(\sigma) is defined:
           solution.push-front(action(\sigma))
           \sigma := parent(\sigma)
     return solution
```

Uninformed search

Uninformed search algorithms

- ▶ Uninformed algorithms are less relevant for planning than heuristic ones, so we keep their discussion brief.
- ▶ Uninformed algorithms are mostly interesting to us because we can compare and contrast them to related heuristic search algorithms.

Popular uninformed systematic search algorithms:

- breadth-first search
- ▶ depth-first search
- ▶ iterated depth-first search

Popular uninformed local search algorithms:

random walk

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

16 / 43

Uninformed search

Breadth-first search without duplicate detection

```
\begin{aligned} & \textbf{Breadth-first search} \\ & \textit{queue} := \textbf{new} \text{ fifo-queue} \\ & \textit{queue.push-back}(\text{make-root-node}(\text{init}())) \\ & \textbf{while not } \textit{queue.empty}() : \\ & \sigma = \textit{queue.pop-front}() \\ & \textbf{if is-goal}(\text{state}(\sigma)) : \\ & \textbf{return } \text{ extract-solution}(\sigma) \\ & \textbf{for each } \langle o, s \rangle \in \text{succ}(\textit{state}(\sigma)) : \\ & \sigma' := \text{make-node}(\sigma, o, s) \\ & \textit{queue.push-back}(\sigma') \\ & \textbf{return } \text{ unsolvable} \end{aligned}
```

- ▶ Possible improvement: duplicate detection (see next slide).
- ▶ Another possible improvement: test if σ' is a goal node; if so, terminate immediately. (We don't do this because it obscures the similarity to some of the later algorithms.)

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

17 / 43

Uninformed search

Breadth-first search with duplicate detection

Breadth-first search with duplicate detection

```
queue := \mathbf{new} \text{ fifo-queue} \\ queue. \text{push-back}(\text{make-root-node}(\text{init}())) \\ closed := \emptyset \\ \mathbf{while} \text{ not } queue. \text{empty}(): \\ \sigma = queue. \text{pop-front}() \\ \mathbf{if} \text{ } state(\sigma) \notin closed: \\ closed := closed \cup \{state(\sigma)\} \\ \mathbf{if} \text{ } \mathbf{is-goal}(\text{state}(\sigma)): \\ \mathbf{return} \text{ } \mathbf{extract-solution}(\sigma) \\ \mathbf{for } \mathbf{each} \ \langle o, s \rangle \in \text{succ}(state(\sigma)): \\ \sigma' := \text{make-node}(\sigma, o, s) \\ queue. \text{push-back}(\sigma') \\ \mathbf{return} \text{ } \mathbf{unsolvable} \\ \end{cases}
```

Uninformed search

Breadth-first search with duplicate detection

Breadth-first search with duplicate detection

```
queue := \mathbf{new} \text{ fifo-queue} \\ queue.push-back(make-root-node(init())) \\ closed := \emptyset \\ \mathbf{while} \text{ not } queue.empty(): \\ \sigma = queue.pop-front() \\ \mathbf{if } state(\sigma) \notin closed: \\ closed := closed \cup \{state(\sigma)\} \\ \mathbf{if } \text{ is-goal}(state(\sigma)): \\ \mathbf{return} \text{ extract-solution}(\sigma) \\ \mathbf{for } \mathbf{each} \ \langle o, s \rangle \in \mathsf{succ}(state(\sigma)): \\ \sigma' := \mathsf{make-node}(\sigma, o, s) \\ queue.\mathsf{push-back}(\sigma') \\ \mathbf{return} \text{ unsolvable} \\ \\ \end{aligned}
```

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

18 / 43

Random walk

Random walk

```
\begin{split} \sigma := \mathsf{make}\text{-root-node}(\mathsf{init}()) \\ \textbf{forever}: \\ & \quad \textbf{if is-goal}(\mathsf{state}(\sigma)): \\ & \quad \textbf{return extract-solution}(\sigma) \\ & \quad \mathsf{Choose a random element } \langle o, s \rangle \text{ from } \mathsf{succ}(\mathsf{state}(\sigma)). \\ & \quad \sigma := \mathsf{make-node}(\sigma, o, s) \end{split}
```

Uninformed search

- ► The algorithm usually does not find any solutions, unless almost every sequence of actions is a plan.
- ▶ Often, it runs indefinitely without making progress.
- ▶ It can also fail by reaching a dead end, a state with no successors. This is a weakness of many local search approaches.

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

Heuristic search algorithms: systematic

► Heuristic search algorithms are the most common and overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

- ▶ greedy best-first search
- ► A*
- weighted A*
- ► IDA*
- ▶ depth-first branch-and-bound search
- breadth-first heuristic search

•

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

21 / 43

Heuristic search algorithms: local

► Heuristic search algorithms are the most common and overall most successful algorithms for classical planning.

Popular heuristic local search algorithms:

- hill-climbing
- enforced hill-climbing
- beam search
- ▶ tabu search
- ▶ genetic algorithms
- ► simulated annealing

M. Helmert (Universität Freiburg)

Al Planning

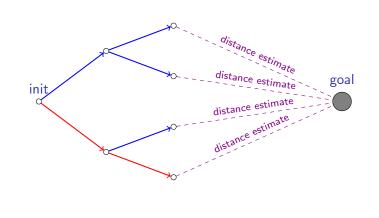
November 11th, 2008

22 / 43

Heuristic search

Heuristics

Heuristic search: idea



Heuristic search Heurist

Required ingredients for heuristic search

A heuristic search algorithm requires one more operation in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space.

A heuristic function or heuristic (for that search space) is a function $h: \Sigma \to \mathbb{N}_0 \cup \{\infty\}$.

The value $h(\sigma)$ is called the heuristic estimate or heuristic value of heuristic h for node σ . It is supposed to estimate the distance from σ to the nearest goal node.

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008 24 / 43

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

Heuristic search Heuristi

What exactly is a heuristic estimate?

What does it mean that h "estimates the goal distance"?

- ► For most heuristic search algorithms, *h* does not need to have any strong properties for the algorithm to work (= be correct and complete).
- ► However, the efficiency of the algorithm closely relates to how accurately *h* reflects the actual goal distance.
- ▶ For some algorithms, like A*, we can prove strong formal relationships between properties of h and properties of the algorithm (optimality, dominance, run-time for bounded error, ...)
- ► For other search algorithms, "it works well in practice" is often as good an analysis as one gets.

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

25 / 43

Heuristics applied to nodes or states?

- ▶ Most texts apply heuristic functions to states, not nodes.
- ► This is slightly less general than our definition:
 - ▶ Given a state heuristic h, we can define an equivalent node heuristic as $h'(\sigma) := h(state(\sigma))$.
 - ► The opposite is not possible. (Why not?)
- ► There is good justification for only allowing state-defined heuristics: why should the estimated distance to the goal depend on how we ended up in a given state *s*?
- We call heuristics which don't just depend on $state(\sigma)$ pseudo-heuristics.
- In practice there are sometimes good reasons to have the heuristic value depend on the generating path of σ (e.g., the landmark pseudo-heuristic, Richter et al. 2008).

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

26 / 43

Heuristic search Heuristics

Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The optimal or perfect heuristic of a search space is the heuristic h^* which maps each search node σ to the length of a shortest path from $state(\sigma)$ to any goal state.

Note: $h^*(\sigma) = \infty$ iff no goal state is reachable from σ .

Heuristic search Heuristic

Properties of heuristics

A heuristic h is called

- ▶ safe if $h^*(\sigma) = \infty$ for all $\sigma \in \Sigma$ with $h(\sigma) = \infty$
- ▶ goal-aware if $h(\sigma) = 0$ for all goal nodes $\sigma \in \Sigma$
- ▶ admissible if $h(\sigma) \le h^*(\sigma)$ for all nodes $\sigma \in \Sigma$
- ▶ consistent if $h(\sigma) \le h(\sigma') + 1$ for all nodes $\sigma, \sigma' \in \Sigma$ such that σ' is a successor of σ

Relationships?

M. Helmert (Universität Freiburg) Al Planning November 11th, 2008 27 / 43

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

Greedy best-first search

```
Greedy best-first search (with duplicate detection)  open := \textbf{new} \text{ min-heap ordered by } (\sigma \mapsto h(\sigma))   open.insert(make-root-node(init()))   closed := \emptyset   \textbf{while not } open.empty():   \sigma = open.pop-min()   \textbf{if } state(\sigma) \notin closed:   closed := closed \cup \{state(\sigma)\}   \textbf{if } is\text{-goal}(state(\sigma)):   \textbf{return } extract\text{-solution}(\sigma)   \textbf{for } \textbf{each } \langle o, s \rangle \in succ(state(\sigma)):   \sigma' := make\text{-node}(\sigma, o, s)   \textbf{if } h(\sigma') < \infty:   open.insert(\sigma')   \textbf{return } unsolvable
```

M. Helmert (Universität Freiburg)

Al Planning

Systematic search

November 11th, 2008

29 / 43

Properties of greedy best-first search

- ▶ one of the three most commonly used algorithms for satisficing planning
- complete for safe heuristics (due to duplicate detection)
- ► suboptimal unless *h* satisfies some very strong assumptions (similar to being perfect)
- ▶ invariant under all strictly monotonic transformations of *h* (e.g., scaling with a positive constant or adding a constant)

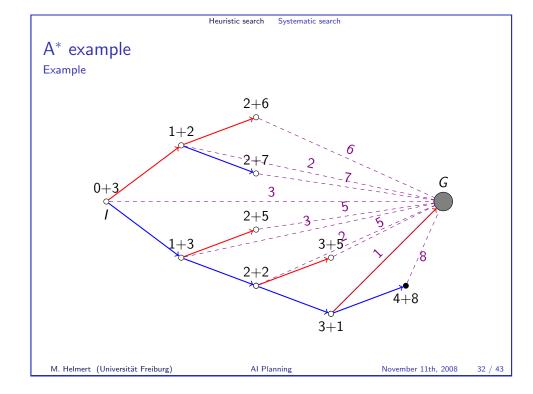
M. Helmert (Universität Freiburg)

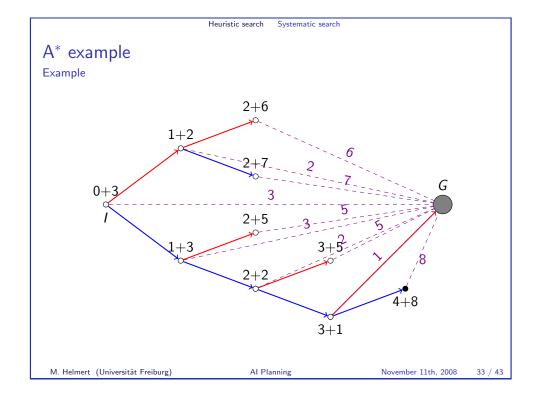
AI Planning

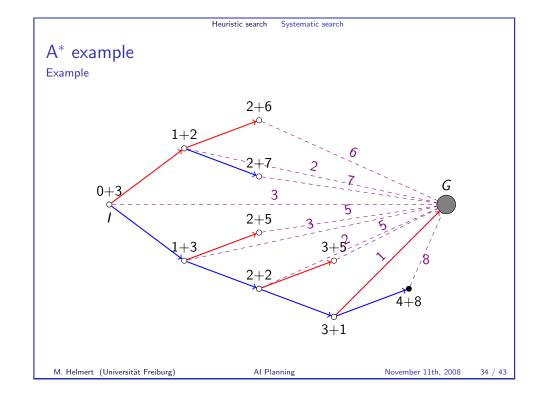
November 11th, 2008

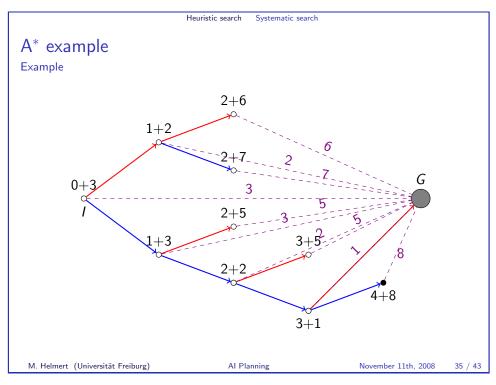
30 / 43

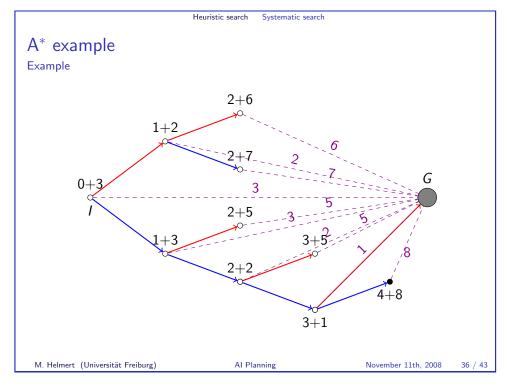
Systematic search A^* A* (with duplicate detection and reopening) open := **new** min-heap ordered by $(\sigma \mapsto g(\sigma) + h(\sigma))$ open.insert(make-root-node(init())) $closed := \emptyset$ $distance := \emptyset$ while not open.empty(): $\sigma = open.pop-min()$ **if** $state(\sigma) \notin closed$ **or** $g(\sigma) < distance(state(\sigma))$: $closed := closed \cup \{state(\sigma)\}$ $distance(\sigma) := g(\sigma)$ **if** is-goal(state(σ)): **return** extract-solution(σ) for each $\langle o, s \rangle \in \text{succ}(\textit{state}(\sigma))$: $\sigma' := \mathsf{make-node}(\sigma, o, s)$ if $h(\sigma') < \infty$: open.insert(σ') return unsolvable M. Helmert (Universität Freiburg) Al Planning November 11th, 2008 31 / 43











Heuristic search Systematic search

Terminology for A*

- f value of a node: defined by $f(\sigma) := g(\sigma) + h(\sigma)$
- generated nodes: nodes inserted into open at some point
- ightharpoonup expanded nodes: nodes σ popped from *open* for which the test against *closed* and *distance* succeeds
- ▶ reexpanded nodes: expanded nodes for which $state(\sigma) \in closed$ upon expansion (also called reopened nodes)

M. Helmert (Universität Freiburg)

M. Helmert (Universität Freiburg)

Al Planning

Al Planning

November 11th, 2008

November 11th, 2008

39 / 43

37 / 43

Systematic search

Weighted A*

```
Weighted A* (with duplicate detection and reopening)
```

Heuristic search

```
open := new min-heap ordered by (\sigma \mapsto g(\sigma) + W \cdot h(\sigma))
open.insert(make-root-node(init()))
closed := \emptyset
distance := \emptyset
while not open.empty():
      \sigma = open.pop-min()
     if state(\sigma) \notin closed or g(\sigma) < distance(state(\sigma)):
            closed := closed \cup \{state(\sigma)\}
             distance(\sigma) := g(\sigma)
            if is-goal(state(\sigma)):
                   return extract-solution(\sigma)
             for each \langle o, s \rangle \in \text{succ}(state(\sigma)):
                   \sigma' := \mathsf{make-node}(\sigma, o, s)
                   if h(\sigma') < \infty:
                          open.insert(\sigma')
return unsolvable
```

Heuristic search Systematic search

Properties of A*

- ▶ the most commonly used algorithm for optimal planning
- rarely used for satisficing planning
- complete for safe heuristics (even without duplicate detection)
- optimal if h is admissible and/or consistent (even without duplicate detection)
- ▶ never reopens nodes if *h* is consistent

Implementation notes:

- ▶ in the heap-ordering procedure, it is considered a good idea to break ties in favour of lower *h* values
- can simplify algorithm if we know that we only have to deal with consistent heuristics
- common, hard to spot bug: test membership in *closed* at the wrong time

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

38 / 43

Heuristic search Systematic search

Properties of weighted A*

The weight $W \in \mathbb{R}_0^+$ is a parameter of the algorithm.

- for W = 0, behaves like breadth-first search
- ▶ for W = 1, behaves like A*
- lacktriangleright for $W o\infty$, behaves like greedy best-first search

Properties:

- one of the three most commonly used algorithms for satisficing planning
- ▶ for W > 1, can prove similar properties to A*, replacing optimal with bounded suboptimal: generated solutions are at most a factor W as long as optimal ones

M. Helmert (Universität Freiburg) Al Planning November 11th, 2008 40 / 43

Heuristic search Local search

Hill-climbing

```
Hill-climbing \begin{split} \sigma &:= \mathsf{make}\text{-root-node}(\mathsf{init}()) \\ \textbf{forever} &: \\ &\quad \textbf{if is-goal}(\mathsf{state}(\sigma)) \\ &\quad \textbf{return extract-solution}(\sigma) \\ &\quad \Sigma' := \{ \, \mathsf{make}\text{-node}(\sigma,o,s) \mid \langle o,s \rangle \in \mathsf{succ}(\mathsf{state}(\sigma)) \, \} \\ &\quad \sigma := \mathsf{an element of } \Sigma' \ \mathsf{minimizing} \ h \ \mathsf{(random tie breaking)} \end{split}
```

- ightharpoonup can easily get stuck in local minima where immediate improvements of $h(\sigma)$ are not possible
- ▶ many variations: tie-breaking strategies, restarts

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008

41 / 43

43 / 43

Heuristic search Local searc

Enforced hill-climbing (ctd.)

Enforced hill-climbing

```
\sigma := \mathsf{make-root-node}(\mathsf{init}())

while not \mathsf{is-goal}(\mathsf{state}(\sigma)):

\sigma := \mathsf{improve}(\sigma)

return \mathsf{extract-solution}(\sigma)
```

- one of the three most commonly used algorithms for satisficing planning
- ightharpoonup can fail if procedure improve fails (when the goal is unreachable from σ_0)
- ightharpoonup complete for undirected search spaces (where the successor relation is symmetric) if $h(\sigma) = 0$ for all goal nodes and only for goal nodes

M. Helmert (Universität Freiburg) Al Planning November 11th, 2008

Heuristic search Local search

Enforced hill-climbing

```
Enforced hill-climbing: procedure improve
```

```
\label{eq:def-improve} \begin{aligned} & \text{def } \textit{improve}(\sigma_0) \colon \\ & \textit{queue} := \text{new } \textit{fifo-queue} \\ & \textit{queue.push-back}(\sigma_0) \\ & \textit{closed} := \emptyset \\ & \text{while not } \textit{queue.empty}() \colon \\ & \sigma = \textit{queue.pop-front}() \\ & \text{if } \textit{state}(\sigma) \notin \textit{closed} \colon \\ & \textit{closed} := \textit{closed} \cup \{\textit{state}(\sigma)\} \\ & \text{if } \textit{h}(\sigma) < \textit{h}(\sigma_0) \colon \\ & \text{return } \sigma \\ & \text{for each } \langle \textit{o}, \textit{s} \rangle \in \text{succ}(\textit{state}(\sigma)) \colon \\ & \sigma' := \text{make-node}(\sigma, \textit{o}, \textit{s}) \\ & \textit{queue.push-back}(\sigma') \\ & \text{fail} \\ \\ & \leadsto \text{breadth-first search for more promising node than } \sigma_0 \end{aligned}
```

•

M. Helmert (Universität Freiburg)

Al Planning

November 11th, 2008