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Introduction Nodes and states

Our plan for the next lectures

Choices to make:

1. search direction: progression/regression/both
 previous chapter

2. search space representation: states/sets of states
 previous chapter

3. search algorithm: uninformed/heuristic; systematic/local
 this chapter

4. search control: heuristics, pruning techniques
 next chapters
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Introduction Nodes and states

Search

I Search algorithms are used to find solutions (plans) for transition
systems in general, not just for planning tasks.

I Planning is one application of search among many.

I In this chapter, we describe some popular and/or representative
search algorithms, and (the basics of) how they apply to planning.

I Most of this is review of material that should be known
(details: Russell and Norvig’s textbook).
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Introduction Nodes and states

Search states vs. search nodes

In search, one distinguishes:

I search states s  states (vertices) of the transition system

I search nodes σ  search states plus information on where/when/how
they are encountered during search

What is in a search node?
Different search algorithms store different information in a search node σ,
but typical information includes:

I state(σ): associated search state

I parent(σ): pointer to search node from which σ is reached

I action(σ): an action/operator leading from state(parent(σ)) to
state(σ)

I g(σ): cost of σ (length of path from the root node)

For the root node, parent(σ) and action(σ) are undefined.
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Introduction Nodes and states

Search states vs. planning states

Search states 6= (planning) states:
I Search states don’t have to correspond to states in the planning

sense.
I progression: search states ≈ (planning) states
I regression: search states ≈ sets of states (formulae)

I Search algorithms for planning where search states are planning states
are called state-space search algorithms.

I Strictly speaking, regression is not an example of state-space search,
although the term is often used loosely.

I However, we will put the emphasis on progression, which is almost
always state-space search.
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Introduction Nodes and states

Required ingredients for search

A general search algorithm can be applied to any transition system for
which we can define the following three operations:

I init(): generate the initial state

I is-goal(s): test if a given state is a goal state

I succ(s): generate the set of successor states of state s, along with the
operators through which they are reached
(represented as pairs 〈o, s ′〉 of operators and states)

Together, these three functions form a search space (a very similar notion
to a transition system).
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Introduction Search for planning

Search for planning: progression

Let Π = 〈A, I ,O,G 〉 be a planning task.

Search space for progression search

states: all states of Π (assignments to A)

I init() = I

I succ(s) = {〈o, s ′〉 | o ∈ O, s ′ = appo(s)}

I is-goal(s) =

{
true if s |= G

false otherwise
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Introduction Search for planning

Search for planning: regression

Let 〈A, I ,O,G 〉 be a planning task.

Search space for regression search

states: all formulae over A

I init() = G

I succ(φ) = {〈o, φ′〉 | o ∈ O, φ′ = regro(φ), φ′ is satisfiable}
(modified if splitting is used)

I is-goal(φ) =

{
true if I |= φ

false otherwise
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Introduction Search for planning

Classification of search algorithms

uninformed search vs. heuristic search:

I uninformed search algorithms only use the basic ingredients for
general search algorithms

I heuristic search algorithms additionally use heuristic functions which
estimate how close a node is to the goal

systematic search vs. local search:

I systematic algorithms consider a large number of search nodes
simultaneously

I local search algorithms work with one (or a few) candidate solutions
(search nodes) at a time

I not a black-and-white distinction; there are crossbreeds (e. g.,
enforced hill-climbing)
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Introduction Search for planning

Classification: what works where in planning?

uninformed vs. heuristic search:

I For satisficing planning, heuristic search vastly outperforms
uninformed algorithms on most domains.

I For optimal planning, the difference is less pronounced. An efficiently
implemented uninformed algorithm is not easy to beat in most
domains.

systematic search vs. local search:

I For satisficing planning, the most successful algorithms are
somewhere between the two extremes.

I For optimal planning, systematic algorithms are required.
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Introduction Common procedures

Common procedures for search algorithms

Before we describe the different search algorithms, we introduce three
procedures used by all of them:

I make-root-node: Create a search node without parent.

I make-node: Create a search node for a state generated as the
successor of another state.

I extract-solution: Extract a solution from a search node representing a
goal state.
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Introduction Common procedures

Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node
def make-root-node(s):

σ := new node
state(σ) := s
parent(σ) := undefined
action(σ) := undefined
g(σ) := 0
return σ
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Introduction Common procedures

Procedure make-node

make-node: Create a search node for a state generated as the successor of
another state.

Procedure make-node
def make-node(σ, o, s):

σ′ := new node
state(σ′) := s
parent(σ′) := σ
action(σ′) := o
g(σ′) := g(σ) + 1
return σ′
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Introduction Common procedures

Procedure extract-solution

extract-solution: Extract a solution from a search node representing a goal
state.

Procedure extract-solution
def extract-solution(σ):

solution := new list
while parent(σ) is defined:

solution.push-front(action(σ))
σ := parent(σ)

return solution
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Uninformed search

Uninformed search algorithms

I Uninformed algorithms are less relevant for planning than heuristic
ones, so we keep their discussion brief.

I Uninformed algorithms are mostly interesting to us because we can
compare and contrast them to related heuristic search algorithms.

Popular uninformed systematic search algorithms:

I breadth-first search

I depth-first search

I iterated depth-first search

Popular uninformed local search algorithms:

I random walk
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Uninformed search

Breadth-first search without duplicate detection

Breadth-first search
queue := new fifo-queue
queue.push-back(make-root-node(init()))
while not queue.empty():

σ = queue.pop-front()
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable

I Possible improvement: duplicate detection (see next slide).

I Another possible improvement: test if σ′ is a goal node; if so,
terminate immediately. (We don’t do this because it obscures the
similarity to some of the later algorithms.)
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Uninformed search

Breadth-first search with duplicate detection

Breadth-first search with duplicate detection
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable
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Uninformed search

Breadth-first search with duplicate detection
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Uninformed search

Random walk

Random walk
σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Choose a random element 〈o, s〉 from succ(state(σ)).
σ := make-node(σ, o, s)

I The algorithm usually does not find any solutions, unless almost every
sequence of actions is a plan.

I Often, it runs indefinitely without making progress.

I It can also fail by reaching a dead end, a state with no successors.
This is a weakness of many local search approaches.
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Heuristic search Heuristics

Heuristic search algorithms: systematic

I Heuristic search algorithms are the most common and overall most
successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

I greedy best-first search

I A∗

I weighted A∗

I IDA∗

I depth-first branch-and-bound search

I breadth-first heuristic search

I . . .
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Heuristic search Heuristics

Heuristic search algorithms: local

I Heuristic search algorithms are the most common and overall most
successful algorithms for classical planning.

Popular heuristic local search algorithms:

I hill-climbing

I enforced hill-climbing

I beam search

I tabu search

I genetic algorithms

I simulated annealing

I . . .
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Heuristic search Heuristics

Heuristic search: idea

goal
init

dist
anc

e est
imate

distance estimate

distance estimate

distance estimate
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Heuristic search Heuristics

Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a function
h : Σ → N0 ∪ {∞}.
The value h(σ) is called the heuristic estimate or heuristic value of
heuristic h for node σ. It is supposed to estimate the distance from σ to
the nearest goal node.
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Heuristic search Heuristics

What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

I For most heuristic search algorithms, h does not need to have any
strong properties for the algorithm to work (= be correct and
complete).

I However, the efficiency of the algorithm closely relates to how
accurately h reflects the actual goal distance.

I For some algorithms, like A∗, we can prove strong formal relationships
between properties of h and properties of the algorithm (optimality,
dominance, run-time for bounded error, . . . )

I For other search algorithms, “it works well in practice” is often as
good an analysis as one gets.
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Heuristic search Heuristics

Heuristics applied to nodes or states?

I Most texts apply heuristic functions to states, not nodes.
I This is slightly less general than our definition:

I Given a state heuristic h, we can define an equivalent node heuristic as
h′(σ) := h(state(σ)).

I The opposite is not possible. (Why not?)

I There is good justification for only allowing state-defined heuristics:
why should the estimated distance to the goal depend on how we
ended up in a given state s?

I We call heuristics which don’t just depend on state(σ)
pseudo-heuristics.

I In practice there are sometimes good reasons to have the heuristic
value depend on the generating path of σ
(e. g., the landmark pseudo-heuristic, Richter et al. 2008).
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Heuristic search Heuristics

Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The optimal or perfect heuristic of a search space is the heuristic h∗ which
maps each search node σ to the length of a shortest path from state(σ) to
any goal state.

Note: h∗(σ) = ∞ iff no goal state is reachable from σ.
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Heuristic search Heuristics

Properties of heuristics

A heuristic h is called

I safe if h∗(σ) = ∞ for all σ ∈ Σ with h(σ) = ∞
I goal-aware if h(σ) = 0 for all goal nodes σ ∈ Σ

I admissible if h(σ) ≤ h∗(σ) for all nodes σ ∈ Σ

I consistent if h(σ) ≤ h(σ′) + 1 for all nodes σ, σ′ ∈ Σ
such that σ′ is a successor of σ

Relationships?
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Heuristic search Systematic search

Greedy best-first search

Greedy best-first search (with duplicate detection)
open := new min-heap ordered by (σ 7→ h(σ))
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable
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Heuristic search Systematic search

Properties of greedy best-first search

I one of the three most commonly used algorithms for satisficing
planning

I complete for safe heuristics (due to duplicate detection)

I suboptimal unless h satisfies some very strong assumptions (similar to
being perfect)

I invariant under all strictly monotonic transformations of h (e. g.,
scaling with a positive constant or adding a constant)
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Heuristic search Systematic search

A∗

A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ) + h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable
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Heuristic search Systematic search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

M. Helmert (Universität Freiburg) AI Planning November 11th, 2008 32 / 43



Heuristic search Systematic search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

M. Helmert (Universität Freiburg) AI Planning November 11th, 2008 33 / 43



Heuristic search Systematic search
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Heuristic search Systematic search
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Heuristic search Systematic search

A∗ example
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Heuristic search Systematic search

Terminology for A∗

I f value of a node: defined by f (σ) := g(σ) + h(σ)

I generated nodes: nodes inserted into open at some point

I expanded nodes: nodes σ popped from open for which the test
against closed and distance succeeds

I reexpanded nodes: expanded nodes for which state(σ) ∈ closed upon
expansion (also called reopened nodes)
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Heuristic search Systematic search

Properties of A∗

I the most commonly used algorithm for optimal planning

I rarely used for satisficing planning

I complete for safe heuristics (even without duplicate detection)

I optimal if h is admissible and/or consistent (even without duplicate
detection)

I never reopens nodes if h is consistent

Implementation notes:

I in the heap-ordering procedure, it is considered a good idea to break
ties in favour of lower h values

I can simplify algorithm if we know that we only have to deal with
consistent heuristics

I common, hard to spot bug: test membership in closed at the wrong
time
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Heuristic search Systematic search

Weighted A∗

Weighted A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ) + W · h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable
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Heuristic search Systematic search

Properties of weighted A∗

The weight W ∈ R+
0 is a parameter of the algorithm.

I for W = 0, behaves like breadth-first search

I for W = 1, behaves like A∗

I for W →∞, behaves like greedy best-first search

Properties:

I one of the three most commonly used algorithms for satisficing
planning

I for W > 1, can prove similar properties to A∗, replacing optimal with
bounded suboptimal: generated solutions are at most a factor W as
long as optimal ones
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Heuristic search Local search

Hill-climbing

Hill-climbing

σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Σ′ := {make-node(σ, o, s) | 〈o, s〉 ∈ succ(state(σ)) }
σ := an element of Σ′ minimizing h (random tie breaking)

I can easily get stuck in local minima where immediate improvements
of h(σ) are not possible

I many variations: tie-breaking strategies, restarts

M. Helmert (Universität Freiburg) AI Planning November 11th, 2008 41 / 43



Heuristic search Local search

Enforced hill-climbing

Enforced hill-climbing: procedure improve

def improve(σ0):
queue := new fifo-queue
queue.push-back(σ0)
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if h(σ) < h(σ0):

return σ
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

fail

 breadth-first search for more promising node than σ0
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Heuristic search Local search

Enforced hill-climbing (ctd.)

Enforced hill-climbing

σ := make-root-node(init())
while not is-goal(state(σ)):

σ := improve(σ)
return extract-solution(σ)

I one of the three most commonly used algorithms for satisficing
planning

I can fail if procedure improve fails (when the goal is unreachable from
σ0)

I complete for undirected search spaces (where the successor relation is
symmetric) if h(σ) = 0 for all goal nodes and only for goal nodes
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