Principles of Al Planning5. State-space search: progression and regression

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 31st, 2008

AI Planning

M. Helmert

State-space search

Progression

Regression

- state-space search: one of the big success stories of AI
- many planning algorithms based on state-space search (we'll see some other algorithms later, though)
- will be the focus of this and the following topics
- we assume prior knowledge of basic search algorithms
 - uninformed vs. informed
 - systematic vs. local
- background on search: Russell & Norvig, Artificial Intelligence – A Modern Approach, chapters 3 and 4

AI Planning

M. Helmert

State-space search Introduction Classification

rogression

Regression

Must carefully distinguish two different problems:

- satisficing planning: any solution is OK (although shorter solutions typically preferred)
- optimal planning: plans must have shortest possible length

Both are often solved by search, but:

- details are very different
- almost no overlap between good techniques for satisficing planning and good techniques for optimal planning
- many problems that are trivial for satisficing planners are impossibly hard for optimal planners

AI Planning

M. Helmert

Choice 1: Search direction

- progression: forward from initial state to goal
- regression: backward from goal states to initial state
- bidirectional search

AI Planning

M. Helmert

Choice 2: Search space representation

- search nodes are associated with states
- search nodes are associated with sets of states

AI Planning

M. Helmert

Choice 3: Search algorithm

• uninformed search:

depth-first, breadth-first, iterative depth-first,

• heuristic search (systematic):

greedy best-first, A*, Weighted A*, IDA*, ...

• heuristic search (local):

hill-climbing, simulated annealing, beam search, ...

AI Planning

M. Helmert

Choice 4: Search control

- heuristics for informed search algorithms
- pruning techniques: invariants, symmetry elimination, helpful actions pruning, ...

AI Planning

M. Helmert

State-space search Introduction Classification Progression

Regression

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

- search direction: forward search
- search space representation: single states
- search algorithm: enforced hill-climbing (informed local)
- heuristic: FF heuristic (inadmissible)
- pruning technique: helpful actions (incomplete)

 \leadsto one of the best satisficing planners

AI Planning

M. Helmert

Search-based optimal planners

Fast Downward $+ h^{HHH}$ (Helmert, Haslum & Hoffmann, 2007)

- search direction: forward search
- search space representation: single states
- search algorithm: A* (informed systematic)
- heuristic: merge-and-shrink abstractions (admissible)
- pruning technique: none

 \rightsquigarrow one of the best optimal planners

AI Planning

M. Helmert

State-space search Introduction Classification Progression

Regression

Choices to make:

AI Planning

M. Helmert

Progression: Computing the successor state $app_o(s)$ of a state s with respect to an operator o.

Progression planners find solutions by forward search:

- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated

pro: very easy and efficient to implement

AI Planning

M. Helmert

State-space search

Progression Overview Example

Regression

Two alternative search spaces for progression planners:

- search nodes correspond to states
 - when the same state is generated along different paths, it is not considered again (duplicate detection)
 - pro: fast
 - con: memory intensive (must maintain closed list)
- search nodes correspond to operator sequences
 - different operator sequences may lead to identical states (transpositions)
 - pro: can be very memory-efficient
 - con: much wasted work (often exponentially slower)

→ first alternative usually preferable

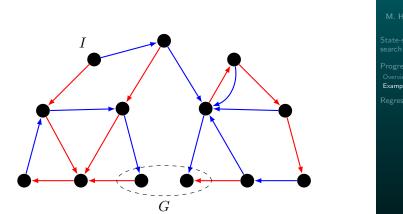
AI Planning

M. Helmert

State-space search

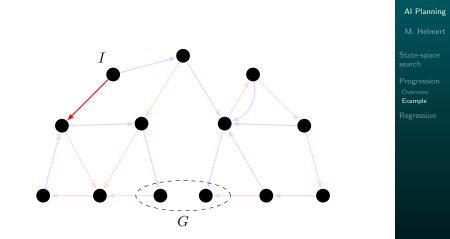
Progression Overview Example

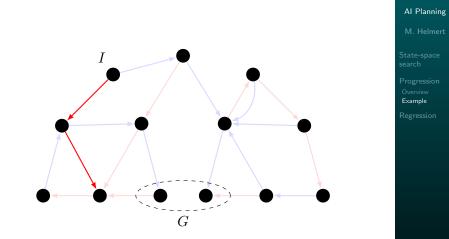
Regression

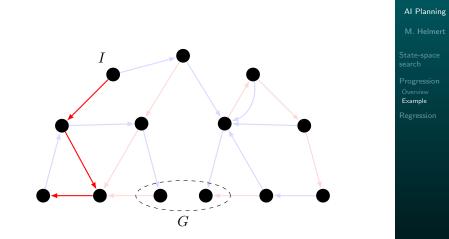


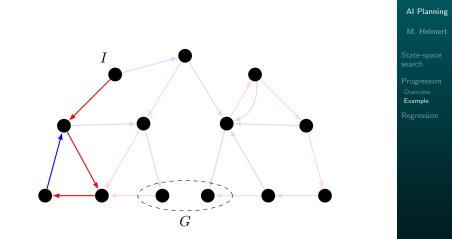
AI Planning

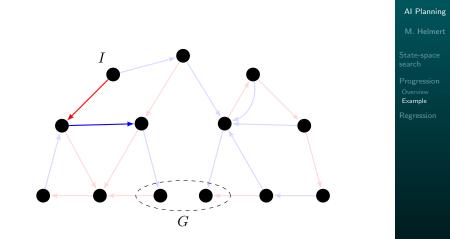
Example

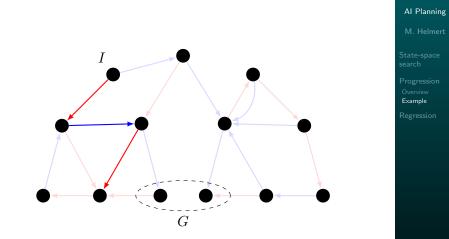


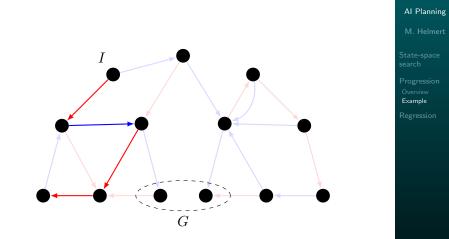


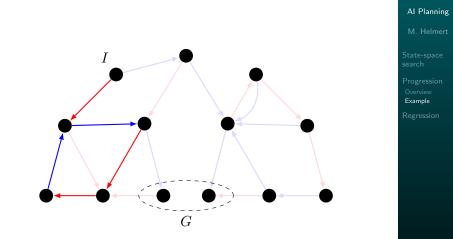


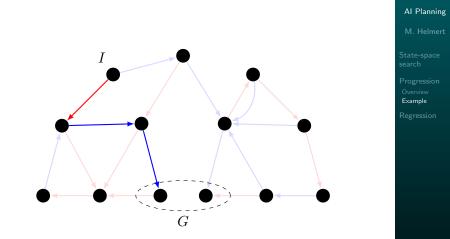












Going through a transition graph in forward and backward directions is not symmetric:

- forward search starts from a single initial state; backward search starts from a set of goal states
- when applying an operator o in a state s in forward direction, there is a unique successor state s'; if we applied operator o to end up in state s', there can be several possible predecessor states s

→→ most natural representation for backward search in planning associates sets of states with search nodes

AI Planning

M. Helmert

State-space search

Progression

Regression Overview Example STRIPS General case Practical issue: **Regression**: Computing the possible predecessor states $regr_o(S)$ of a set of states S with respect to the last operator o that was applied.

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously Con: basic operations complicated and expensive

AI Planning

M. Helmert

State-space search

Progression

Regression Overview Example STRIPS General case Practical issues identify state sets with logical formulae:

- search nodes correspond to state sets
- each state set is represented by a logical formula: ϕ represents $\{s \in S \mid s \models \phi\}$
- many basic search operations like detecting duplicates are NP-hard or coNP-hard

AI Planning

M. Helmert

State-space search

progression

Regression Overview Example STRIPS General case



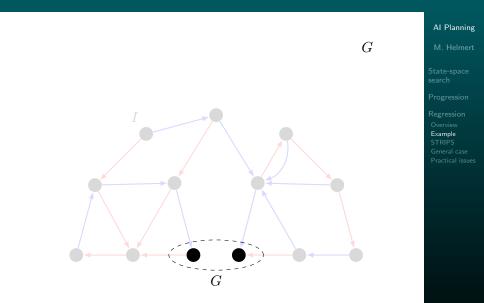
AI Planning

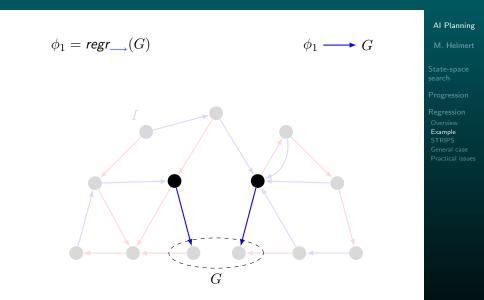
M. Helmert

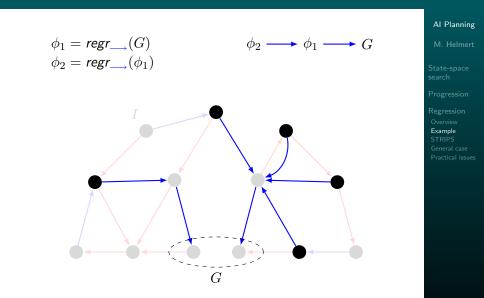
State-space search

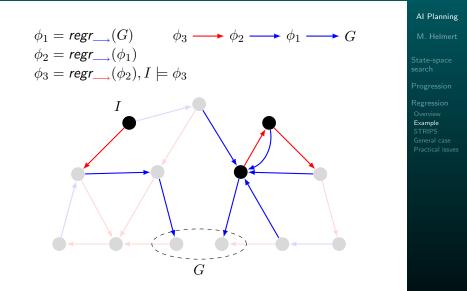
progression

Regression Overview Example STRIPS General case Practical issue:









Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

- Goals are conjunctions of literals $l_1 \wedge \cdots \wedge l_n$.
- First step: Choose an operator that makes some of l_1, \ldots, l_n true and makes none of them false.
- Second step: Remove goal literals achieved by the operator and add its preconditions.
- $\bullet \ \rightsquigarrow$ Outcome of regression is again conjunction of literals.

AI Planning

M. Helmert

State-space search

[>]rogression

Regression Overview Example STRIPS General case Practical issue:

STRIPS regression

Definition

Let $\phi = \phi_1 \wedge \cdots \wedge \phi_k$, $\gamma = \gamma_1 \wedge \cdots \wedge \gamma_n$ and $\eta = \eta_1 \wedge \cdots \wedge \eta_m$ be non-contradictory conjunctions of literals.

The STRIPS regression of ϕ with respect to $o = \langle \gamma, \eta \rangle$ is

$$sregr_o(\phi) := \bigwedge \left(\left(\{\phi_1, \dots, \phi_k\} \setminus \{\eta_1, \dots, \eta_m\} \right) \cup \{\gamma_1, \dots, \gamma_n\} \right)$$

provided that this conjunction is non-contradictory and that $\neg \phi_i \not\equiv \eta_j$ for all $i \in \{1, \ldots, k\}$, $j \in \{1, \ldots, m\}$. (Otherwise, *sregr*_o(ϕ) is undefined.)

(A conjunction of literals is contradictory iff it contains two complementary literals.)

AI Planning

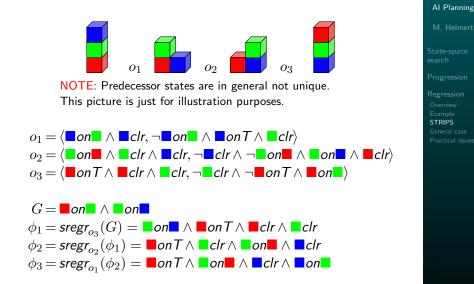
M. Helmert

State-space search

[>]rogression

```
Regression
Overview
Example
STRIPS
General case
Practical issues
```

STRIPS regression example



Regression for general planning tasks

- With disjunctions and conditional effects, things become more tricky. How to regress $A \lor (B \land C)$ with respect to $\langle Q, D \rhd B \rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

AI Planning

M. Helmert

State-space search

[>]rogression

Regression Overview Example STRIPS General case Practical issues

Definition (effect precondition)

The effect precondition $EPC_l(e)$ for literal l and effect e is defined as follows:

$$\begin{aligned} \mathsf{EPC}_l(l) &= \top \\ \mathsf{EPC}_l(l') &= \bot \text{ if } l \neq l' \quad (\text{for literals } l') \\ \mathsf{EPC}_l(e_1 \wedge \dots \wedge e_n) &= \mathsf{EPC}_l(e_1) \vee \dots \vee \mathsf{EPC}_l(e_n) \\ \mathsf{EPC}_l(c \rhd e) &= \mathsf{EPC}_l(e) \wedge c \end{aligned}$$

Intuition: $EPC_l(e)$ describes the situations in which effect e causes literal l to become true.

AI Planning

M. Helmert

State-space search

Progression

Regression Overview Example STRIPS General case Practical issues

Effect precondition examples

Example

$$\begin{aligned} & \textit{EPC}_a(b \land c) &= \ \bot \lor \bot \equiv \bot \\ & \textit{EPC}_a(a \land (b \rhd a)) &= \ \top \lor (\top \land b) \equiv \top \\ & \textit{EPC}_a((c \rhd a) \land (b \rhd a)) &= \ (\top \land c) \lor (\top \land b) \equiv c \lor b \end{aligned}$$

AI Planning

M. Helmert

State-space search

Progression

Regression Overview Example STRIPS General case Practical issue:

Lemma (A)

Let s be a state, l a literal and e an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect e.

Base case 1, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides of the equivalence are true. Base case 2, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by

definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false

AI Planning

M. Helmert

State-space search

[>]rogression

```
Regression
Overview
Example
STRIPS
General case
Practical issue
```

Lemma (A)

Let s be a state, l a literal and e an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect e. Base case 1, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides of the equivalence are true.

Base case 2, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

AI Planning

M. Helmert

State-space search

Progression

```
Regression
Overview
Example
STRIPS
General case
Practical issue:
```

Lemma (A)

Let s be a state, l a literal and e an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect e. Base case 1, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides of the equivalence are true. Base case 2, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

Inductive case 1,
$$e = e_1 \land \dots \land e_n$$
:
 $l \in [e]_s$ iff $l \in [e_1]_s \cup \dots \cup [e_n]_s$ (Def $[e_1 \land \dots \land e_n]_s$)
iff $l \in [e']_s$ for some $e' \in \{e_1, \dots, e_n\}$
iff $s \models EPC_l(e')$ for some $e' \in \{e_1, \dots, e_n\}$ (IH)
iff $s \models EPC_l(e_1) \lor \dots \lor EPC_l(e_n)$
iff $s \models EPC_l(e_1 \land \dots \land e_n)$. (Def *EPC*)
Inductive case 2, $e = c \triangleright e'$:
 $l \in [c \triangleright e']_s$ iff $l \in [e']_s$ and $s \models c$ (Def $[c \triangleright e']_s$)
iff $s \models EPC_l(e') \land c$
iff $s \models EPC_l(c \triangleright e')$. (Def *EPC*)

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

Inductive case 1,
$$e = e_1 \land \dots \land e_n$$
:
 $l \in [e]_s \text{ iff } l \in [e_1]_s \cup \dots \cup [e_n]_s$ (Def $[e_1 \land \dots \land e_n]_s$)
iff $l \in [e']_s$ for some $e' \in \{e_1, \dots, e_n\}$
iff $s \models EPC_l(e')$ for some $e' \in \{e_1, \dots, e_n\}$ (IH)
iff $s \models EPC_l(e_1) \lor \dots \lor EPC_l(e_n)$
iff $s \models EPC_l(e_1 \land \dots \land e_n)$. (Def EPC)
Inductive case 2, $e = c \triangleright e'$:
 $l \in [c \triangleright e']_s$ iff $l \in [e']_s$ and $s \models c$ (Def $[c \triangleright e']_s$)
iff $s \models EPC_l(e') \land c$
iff $s \models EPC_l(e') \land c$
iff $s \models EPC_l(c \triangleright e')$. (Def EPC)

AI Planning

M. Helmert

State-space search

^Drogression

```
Regression
Overview
Example
STRIPS
General case
Practical issues
```

Effect preconditions: connection to normal form

Remark

Notice that in terms of $\textit{EPC}_a(e),$ any operator $\langle c,e\rangle$ can be expressed in normal form as

$$\left\langle c, \bigwedge_{a \in A} \left((EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a) \right) \right\rangle.$$

AI Planning

M. Helmert

State-space search

Progression

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of state variable $a \in A$ after applying oin terms of values of state variables before applying o.

Either:

- a became true, or
- a was true before and it did not become false.

AI Planning

M. Helmert

State-space search

Progression

Regressing state variables: examples

Example

Let
$$e = (b \triangleright a) \land (c \triangleright \neg a) \land b \land \neg d$$
.

variable
$$EPC_{\dots}(e) \lor (\dots \land \neg EPC_{\neg\dots}(e))$$
 a $b \lor (a \land \neg c)$ b $\top \lor (b \land \neg \bot) \equiv \top$ c $\bot \lor (c \land \neg \bot) \equiv c$ d $\bot \lor (d \land \neg \top) \equiv \bot$

AI Planning

M. Helmert

State-space search

rogression

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle$ an operator, s a state, and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

(⇒): Assume
$$s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$$

Do a case analysis on the two disjuncts.

- Assume that $s \models EPC_a(e)$. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.
- ② Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma, we have A $\neg a \notin [e]_s$. Hence *a* remains true in *s'*.

AI Planning

M. Helmert

State-space search

Progression

```
Regression
Overview
Example
STRIPS
General case
Practical issue
```

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle$ an operator, s a state, and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

(⇒): Assume
$$s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$$
.
Do a case analysis on the two disjuncts.

• Assume that
$$s \models EPC_a(e)$$
. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.

② Assume that s ⊨ a ∧ ¬EPC_{¬a}(e). By Lemma, we have A ¬a ∉ [e]_s. Hence a remains true in s'.

AI Planning

M. Helmert

State-space search

Progression

```
Regression
Overview
Example
STRIPS
General case
Practical issues
```

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle$ an operator, s a state, and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

$$(\Rightarrow)$$
: Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$

Do a case analysis on the two disjuncts.

• Assume that $s \models EPC_a(e)$. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.

② Assume that s ⊨ a ∧ ¬EPC_{¬a}(e). By Lemma, we have A ¬a ∉ [e]_s. Hence a remains true in s'.

AI Planning

M. Helmert

State-space search

progression

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle$ an operator, s a state, and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

$$(\Rightarrow)$$
: Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$

Do a case analysis on the two disjuncts.

- Assume that $s \models EPC_a(e)$. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.
- Solution Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma, we have A $\neg a \notin [e]_s$. Hence *a* remains true in *s'*.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

• Analyze the two cases: *a* is true or it is false in *s*.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$.

2) Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma . we get $a \notin [e]$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

• Analyze the two cases: *a* is true or it is false in *s*.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$.

Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.

② Assume that s ⊭ a. Because s ⊨ ¬EPC_a(e), by Lemma A we get a ∉ [e]_s and hence s' ⊭ a.

Therefore in both cases $s' \not\models a$.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

• Analyze the two cases: *a* is true or it is false in *s*.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$.

Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.

② Assume that s ⊭ a. Because s ⊨ ¬EPC_a(e), by Lemma A we get a ∉ [e]_s and hence s' ⊭ a.

Therefore in both cases $s' \not\models a$.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- Analyze the two cases: *a* is true or it is false in *s*.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]$ and we get $s' \nvDash a$

② Assume that s ⊭ a. Because s ⊨ ¬EPC_a(e), by Lemma A we get a ∉ [e]_s and hence s' ⊭ a.

Therefore in both cases $s' \not\models a$.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

• Analyze the two cases: *a* is true or it is false in *s*.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \nvDash a$.

2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A we get $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

• Analyze the two cases: *a* is true or it is false in *s*.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \nvDash a$.

(a) Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A we get $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

• Analyze the two cases: *a* is true or it is false in *s*.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$.

Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$. 2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A

we get $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

M. Helmert

State-space search

Progression

We base the definition of regression on formulae $EPC_l(e)$.

Definition (general regression)

Let ϕ be a propositional formula and $o=\langle c,e\rangle$ an operator. The regression of ϕ with respect to o is

$$\operatorname{regr}_o(\phi) = c \wedge \phi_r \wedge f$$

where

• ϕ_r is obtained from ϕ by replacing each $a \in A$ by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$, and

$$\ \, {\it Omega} \ \, f=\bigwedge_{a\in A} \neg({\it EPC}_a(e)\wedge {\it EPC}_{\neg a}(e)).$$

The formula f says that no state variable may become simultaneously true and false.

AI Planning

M. Helmert

State-space search

progression

Regression examples

•
$$\operatorname{regr}_{\langle a,b\rangle}(b) \equiv a \land (\top \lor (b \land \neg \bot)) \land \top \equiv a$$

•
$$\operatorname{regr}_{\langle a,b\rangle}(b \wedge c \wedge d)$$

 $\equiv a \wedge (\top \lor (b \wedge \neg \bot)) \wedge (\bot \lor (c \wedge \neg \bot)) \wedge (\bot \lor (d \wedge \neg \bot)) \wedge \top$
 $\equiv a \wedge c \wedge d$

•
$$\operatorname{regr}_{\langle a,c \rhd b \rangle}(b) \equiv a \land (c \lor (b \land \neg \bot)) \land \top \equiv a \land (c \lor b)$$

•
$$\operatorname{regr}_{\langle a, (c \triangleright b) \land (b \triangleright \neg b) \rangle}(b) \equiv a \land (c \lor (b \land \neg b)) \land \neg (c \land b)$$

= $a \land c \land \neg b$

•
$$\operatorname{regr}_{\langle a, (c \rhd b) \land (d \rhd \neg b) \rangle}(b) \equiv a \land (c \lor (b \land \neg d)) \land \neg (c \land d)$$

 $\equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$

AI Planning

M. Helmert

State-space search

Progression

```
Regression
Overview
Example
STRIPS
General case
Practical issue
```

Consider blocks world operators to move blocks A and B onto the table from the other block if they are clear:

$$o_1 = \langle \top, (A\text{-}on\text{-}B \land A\text{-}clear) \rhd (A\text{-}on\text{-}T \land B\text{-}clear \land \neg A\text{-}on\text{-}B) \rangle$$

$$o_2 = \langle \top, (B\text{-}on\text{-}A \land B\text{-}clear) \rhd (B\text{-}on\text{-}T \land A\text{-}clear \land \neg B\text{-}on\text{-}A) \rangle$$

Proof by regression that o_2, o_1 puts both blocks onto the table from any blocks world state:

All three legal 2-block states satisfy ϕ_2 . Similar plans exist for any number of blocks.

AI Planning

M. Helmert

State-space search

Progression

Regression example: binary counter

$$(\neg b_0 \rhd b_0) \land \\ ((\neg b_1 \land b_0) \rhd (b_1 \land \neg b_0)) \land \\ ((\neg b_2 \land b_1 \land b_0) \rhd (b_2 \land \neg b_1 \land \neg b_0))$$

$$\begin{split} & \textit{EPC}_{b_2}(e) = \neg b_2 \wedge b_1 \wedge b_0 \\ & \textit{EPC}_{b_1}(e) = \neg b_1 \wedge b_0 \\ & \textit{EPC}_{b_0}(e) = \neg b_0 \\ & \textit{EPC}_{\neg b_2}(e) = \bot \\ & \textit{EPC}_{\neg b_1}(e) = \neg b_2 \wedge b_1 \wedge b_0 \\ & \textit{EPC}_{\neg b_0}(e) = (\neg b_1 \wedge b_0) \vee (\neg b_2 \wedge b_1 \wedge b_0) \equiv (\neg b_1 \vee \neg b_2) \wedge b_0 \end{split}$$

Regression replaces state variables as follows:

$$\begin{array}{ll} b_2 & \text{by} & (\neg b_2 \wedge b_1 \wedge b_0) \vee (b_2 \wedge \neg \bot) \equiv (b_1 \wedge b_0) \vee b_2 \\ b_1 & \text{by} & (\neg b_1 \wedge b_0) \vee (b_1 \wedge \neg (\neg b_2 \wedge b_1 \wedge b_0)) \\ & \equiv (\neg b_1 \wedge b_0) \vee (b_1 \wedge (b_2 \vee \neg b_0)) \\ b_0 & \text{by} & \neg b_0 \vee (b_0 \wedge \neg ((\neg b_1 \vee \neg b_2) \wedge b_0)) \equiv \neg b_0 \vee (b_1 \wedge b_2) \\ \end{array}$$

AI Planning

M. Helmert

State-space search

progression

Theorem (correctness of $regr_o(\phi)$)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. The rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$.

Base case 3
$$\phi' = a$$
 for some $a \in A$:
Then $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$
By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

M. Helmert

State-space search

Progression

Theorem (correctness of $regr_o(\phi)$)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. The rest of $regr_o(\phi)$ just states that o is applicable in s.

nduction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$. Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Then $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

M. Helmert

State-space search

Progression

Theorem (correctness of $regr_o(\phi)$)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. The rest of $regr_o(\phi)$ just states that *o* is applicable in *s*.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Then $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)$ By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

M. Helmert

State-space search

Progression

Theorem (correctness of $regr_o(\phi)$)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. The rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$.

Base case 3 $\phi' = a$ for some $a \in A$: Then $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

M. Helmert

State-space search

Progression

Theorem (correctness of $regr_o(\phi)$)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. The rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$. Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Then $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

M. Helmert

State-space search

Progression

Proof (ctd.)

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \neg .

Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \lor .

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \land .

AI Planning

M. Helmert

State-space search

^orogression

Proof (ctd.)

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \neg .

Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \lor .

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \land .

AI Planning

M. Helmert

State-space search

^orogression

```
Regression
Overview
Example
STRIPS
General case
Practical issues
```

Proof (ctd.)

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \neg .

Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \lor .

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \land .

AI Planning

M. Helmert

State-space search

^orogression

The following two tests are useful when performing regression searches, to avoid exploring unpromising branches:

- Testing that a formula regr_o(φ) does not represent the empty set (= search is in a dead end).
 For example, regr_{⟨a,¬p⟩}(p) ≡ a ∧ ⊥ ≡ ⊥.
- Testing that a regression step does not make the set of states smaller (= more difficult to reach).
 For example, regr_(b,c)(a) ≡ a ∧ b.

Both of these problems are NP-hard.

AI Planning

M. Helmert

State-space search

Progression

The formula $\operatorname{regr}_{o_1}(\operatorname{regr}_{o_2}(\ldots \operatorname{regr}_{o_{n-1}}(\operatorname{regr}_{o_n}(\phi))))$ may have size $O(|\phi||o_1||o_2|\ldots |o_{n-1}||o_n|)$, i.e., the product of the sizes of ϕ and the operators.

 \rightsquigarrow worst-case exponential size $O(m^n)$

Logical simplifications

•
$$\bot \land \phi \equiv \bot$$
, $\top \land \phi \equiv \phi$, $\bot \lor \phi \equiv \phi$, $\top \lor \phi \equiv \top$

•
$$a \lor \phi \equiv a \lor \phi[\bot/a], \neg a \lor \phi \equiv \neg a \lor \phi[\top/a],$$

 $a \land \phi \equiv a \land \phi[\top/a], \neg a \land \phi \equiv \neg a \land \phi[\bot/a]$

• idempotency, absorption, commutativity, associativity, ...

AI Planning

M. Helmert

State-space search

progression

Problem very big formulae obtained by regression

- Cause disjunctivity in the formulae: formulae without disjunctions easily convertible to small formulae $l_1 \wedge \cdots \wedge l_n$ where l_i are literals and n is at most the number of state variables.
 - Idea handle disjunctivity when generating search trees Alternatives:
 - Do nothing. (May lead to very big formulae!)
 - Always eliminate all disjunctivity.
 - Seduce disjunctivity if formula becomes too big.

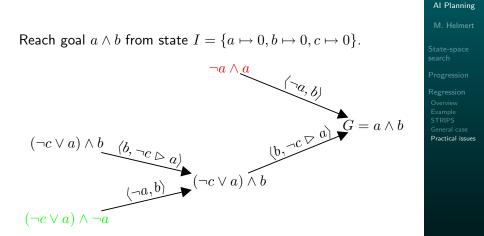
AI Planning

M. Helmert

State-space search

Progression

Unrestricted regression: search tree example



Full splitting

- Planners for STRIPS operators only need to use formulae $l_1 \wedge \cdots \wedge l_n$ where l_i are literals.
- Some general planners also restrict to this class of formulae. This is done as follows:
 - Transform $regr_o(\phi)$ to disjunctive normal form (DNF): $(l_1^1 \wedge \cdots \wedge l_{n_1}^1) \vee \cdots \vee (l_1^m \wedge \cdots \wedge l_{n_m}^m).$
 - **②** Generate one subtree of the search tree for each disjunct $l_1^i \wedge \cdots \wedge l_{n_i}^i$.
- The DNF formulae need not exist in its entirety explicitly: can generate one disjunct at a time.
- branching is both on the choice of operator and on the choice of the disjunct of the DNF formula
- increased branching factor and bigger search trees, but avoids big formulae

AI Planning

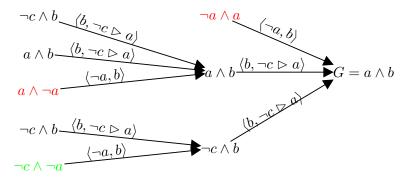
M. Helmert

State-space search

Progression

Full splitting: search tree example

Reach goal $a \wedge b$ from state $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$. $(\neg c \lor a) \land b$ in DNF: $(\neg c \land b) \lor (a \land b)$ \rightsquigarrow split into $\neg c \land b$ and $a \land b$



AI Planning

M. Helmert

State-space search

Progression

General splitting strategies

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- There are several ways to split a formula ϕ to ϕ_1, \ldots, ϕ_n such that $\phi \equiv \phi_1 \lor \cdots \lor \phi_n$. For example:
 - Transform φ to φ₁ ∨··· ∨ φ_n by equivalences like distributivity: (φ ∨ φ') ∧ ψ ≡ (φ ∧ ψ) ∨ (φ' ∧ ψ).
 - Choose state variable a, set φ₁ = a ∧ φ and φ₂ = ¬a ∧ φ, and simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[⊤/a].

AI Planning

M. Helmert

State-space search

Progression