Al Planning

M. Helmert

Principles of Al Planning

5. State-space search: progression and regression

Malte Helmert

Albert-Ludwigs-Universitat Freiburg

October 31st, 2008

State-space search

Al Planning

M. Helmert

@ state-space search: one of the big success stories of Al

Introduction

@ many planning algorithms based on state-space search
(we'll see some other algorithms later, though)
@ will be the focus of this and the following topics
@ we assume prior knowledge of basic search algorithms
e uninformed vs. informed
e systematic vs. local
@ background on search: Russell & Norvig, Artificial
Intelligence — A Modern Approach, chapters 3 and 4

Satisficing or optimal planning?

Al Planning
M. Helmer
Must carefully distinguish two different problems: k
@ satisficing planning: any solution is OK
(although shorter solutions typically preferred) prederen

@ optimal planning: plans must have shortest possible length

Both are often solved by search, but:
@ details are very different

@ almost no overlap between good techniques for satisficing
planning and good techniques for optimal planning

@ many problems that are trivial for satisficing planners are
impossibly hard for optimal planners

Planning by state-space search

Al Planning

M. Helmert

How to apply search to planning? ~~ many choices to make!

Classification

Choice 1: Search direction

@ progression: forward from initial state to goal
@ regression: backward from goal states to initial state

@ bidirectional search

Planning by state-space search

Al Planning

M. Helmert

How to apply search to planning? ~~ many choices to make!

Classification

Choice 2: Search space representation

@ search nodes are associated with states

@ search nodes are associated with sets of states

Planning by state-space search

Al Planning

M. Helmert

How to apply search to planning? ~~ many choices to make!

Classification
Choice 3: Search algorithm

@ uninformed search:

depth-first, breadth-first, iterative depth-first, ...
@ heuristic search (systematic):

greedy best-first, A*, Weighted A*, IDA*, ...

@ heuristic search (local):
hill-climbing, simulated annealing, beam search, ...

Planning by state-space search

Al Planning

M. Helmert

How to apply search to planning? ~~ many choices to make!

Classification

Choice 4: Search control

@ heuristics for informed search algorithms

@ pruning techniques: invariants, symmetry elimination,
helpful actions pruning, ...

Search-based satisficing planners

Al Planning

M. Helmert

FF (Hoffmann & Nebel, 2001)

Classification

search direction: forward search

search space representation: single states

°
°
e search algorithm: enforced hill-climbing (informed local)
@ heuristic: FF heuristic (inadmissible)

°

pruning technique: helpful actions (incomplete)

~> one of the best satisficing planners

Search-based optimal planners

Fast Downward + AHHH (Helmert, Haslum & Hoffmann, 2007)

@ search direction: forward search

@ search space representation: single states
@ search algorithm: A* (informed systematic)
@ heuristic: merge-and-shrink abstractions (admissible)

@ pruning technique: none

~> one of the best optimal planners

Al Planning

M. Helmert

Classification

Our plan for the next lectures

Al Planning

M. Helmert

Choices to make:

o

(2]

search direction: progression/regression/both
~> this chapter

Classification

search space representation: states/sets of states
~> this chapter

search algorithm: uninformed /heuristic; systematic/local
~~+ next chapter

search control: heuristics, pruning techniques
~ following chapters

Planning by forward search: progression

Al Planning

M. Helmert

Progression: Computing the successor state app,(s) of a state
s with respect to an operator o.

Overview

Progression planners find solutions by forward search:
@ start from initial state

@ iteratively pick a previously generated state and progress it
through an operator, generating a new state

@ solution found when a goal state generated

pro: very easy and efficient to implement

Search space representation in progression planners

Al Planning

M. Helmert
Two alternative search spaces for progression planners:
@ search nodes correspond to states
e when the same state is generated along different paths,
it is not considered again (duplicate detection)
e pro: fast
e con: memory intensive (must maintain closed list)

Overview

@ search nodes correspond to operator sequences
o different operator sequences may lead to identical states
(transpositions)
e pro: can be very memory-efficient
e con: much wasted work (often exponentially slower)

~ first alternative usually preferable

Progression planning example (depth-first search)

Al Planning

M. Helmert

xample

Progression planning example (depth-first search)

Al Planning

M. Helmert

Example

Progression planning example (depth-first search)

Al Planning

M. Helmert

Example

Progression planning example (depth-first search)

Al Planning

M. Helmert

Example

Progression planning example (depth-first search)

Al Planning

M. Helmert

Example

Progression planning example (depth-first search)

Al Planning
M. Helmert
Example

Progression planning example (depth-first search)

Al Planning
M. Helmert
Example

Progression planning example (depth-first search)

Al Planning
M. Helmert
Example

Progression planning example (depth-first search)

Al Planning
M. Helmert
/ Example

Progression planning example (depth-first search)

Al Planning
M. Helmert
Example

Forward search vs. backward search

Al Planning

M. Helmert

Going through a transition graph in forward and backward
directions is not symmetric:

o forward search starts from a single initial state;
backward search starts from a set of goal states

Overview

@ when applying an operator o in a state s in forward
direction, there is a unique successor state s’;
if we applied operator o to end up in state &/,
there can be several possible predecessor states s
~» most natural representation for backward search in planning
associates sets of states with search nodes

Planning by backward search: regression

Al Planning

M. Helmert

Regression: Computing the possible predecessor states regr, (.S)
of a set of states S with respect to the last operator o that was
applied.

Regression planners find solutions by backward search:

Overview

@ start from set of goal states

@ iteratively pick a previously generated state set and
regress it through an operator, generating a new state set

@ solution found when a generated state set includes the
initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive

Search space representation in regression planners

Al Planning

M. Helmert

identify state sets with logical formulae:

@ search nodes correspond to state sets

Overview
@ each state set is represented by a logical formula:

¢ represents {s € S | s |= ¢}
@ many basic search operations like detecting duplicates are

NP-hard or coNP-hard

Regression planning example (depth-first search)

Al Planning

M. Helmert

Regression planning example (depth-first search)

Al Planning

G M. Helmert

Example

Regression planning example (depth-first search)

Al Planning

o1 = regr_)(G) o1 — G M. Helmert

Example

Regression planning example (depth-first search)

Al Planning
o1 = regr__(G) o —> ¢ —> G M. Helmert
¢2 - regr—>(¢1)
j Exampl
> — —

Regression planning example (depth-first search)

o1 = regr_)(G) ¢3 —_— ¢2 _— ¢1 — G M. Helmert
¢2 = regr__(¢1)
¢3 = regr—>(¢2)7l): ¢3

Regression for STRIPS planning tasks

Al Planning
M. Helmert
Definition (STRIPS planning task)
A planning task is a STRIPS planning task if all operators are
STRIPS operators and the goal is a conjunction of literals.
Regression for STRIPS planning tasks is very simple: STRIPS

@ Goals are conjunctions of literals I1 A --- Al,.

@ First step: Choose an operator that makes some of
l1,...,l, true and makes none of them false.

@ Second step: Remove goal literals achieved by the
operator and add its preconditions.

@ ~~» Outcome of regression is again conjunction of literals.

STRIPS regression

Definition

Letdp=P1 A A, y=m A Amand n=m A Ay
be non-contradictory conjunctions of literals.

The STRIPS regression of ¢ with respect to o = (v,7) is

Sregro((b) = /\(({¢17 e 7¢k} \ {7717 e 777m}) U {fylv e 7771})

provided that this conjunction is non-contradictory
and that —¢; £ n; foralli e {1,...,k}, je{1,...,m}.
(Otherwise, sregr,(¢) is undefined.)

(A conjunction of literals is contradictory iff it contains two
complementary literals.)

Al Planning

M. Helmert

STRIPS

STRIPS regression example

Al Planning

M. Helmert

Iolﬂozi%i

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.
STRIPS
01 = (Mon® A Mclr,—Mon® N\ BonT A Mclr)
09 = (MonM N Wclr A Mclr,—Mclr A —Bonll A Monl A Mclr)
o3 = (MonT A Mclr A Wclr,—Mclr A —BonT N\ MonM)

G =Monl N\ Honll

¢1 = sregr,,, (G) = Wonl N\ MonT A Mclr \ Mclr
¢ = sregr,, (¢1) = MonT A\ Bclr A Monl N Mclr
¢3 = sregr,, (¢2) = MonT A\ Honl N Mcir A Mon®

Regression for general planning tasks

Al Planning

M. Helmert

e With disjunctions and conditional effects, things become
more tricky. How to regress AV (B A C') with respect to
(Q,D > B)?

@ The story about goals and subgoals and fulfilling subgoals,
as in the STRIPS case, is no longer useful.

General case

@ We present a general method for doing regression for any
formula and any operator.

@ Now we extensively use the idea of representing sets of
states as formulae.

Effect preconditions

Al Planning

M. Helmert

Definition (effect precondition)

The effect precondition EPC;(e) for literal I and effect e is
defined as follows:

EPC[(l) = T General case
EPG(l"Yy = Lifl#1l" (for literals l')
EPCl(el/\---/\en) = EPCl(el)\/---\/EPCl(en)
EPC(c>e) = EPG(e)ANc

Intuition: EPC;(e) describes the situations in which effect e
causes literal [to become true.

Effect precondition examples

Al Planning

M. Helmert

EPCa(b/\C) =S J—\/J— = J— Genera | case
EPCi(an(b>a)) = TV(TAL=T
EPCi((c>a)AN(b>a)) = (TAe)V(TAb)=cVb

Effect preconditions: connection to change sets

Al Planning

M. Helmert

Let s be a state, | a literal and e an effect. Thenl € [e]s if and
only if s = EPC(e).

Proof.
Induction on the structure of the effect e.

General case

Effect preconditions: connection to change sets

Al Planning

M. Helmert

Let s be a state, | a literal and e an effect. Thenl € [e]s if and
only if s = EPC(e).

Proof.

Induction on the structure of the effect e.

Base case 1, e = I: I € [l]; = {l} by definition, and

s = EPC(l) = T by definition. Both sides of the equivalence
are true.

General case

Effect preconditions: connection to change sets

Al Planning

M. Helmert

Let s be a state, | a literal and e an effect. Thenl € [e]s if and
only if s = EPC(e).

Proof.

Induction on the structure of the effect e.

Base case 1, e = I: I € [l]; = {l} by definition, and

s = EPC(l) = T by definition. Both sides of the equivalence
are true.

Base case 2, e =’ for some literal I’ £1: 1 ¢ [I']s = {I'} by
definition, and s £ EPC;(I') = L by definition. Both sides are
false.

General case

Effect preconditions: connection to change sets

Al Planning

M. Helmert

Proof (ctd.)

Inductive case 1, e = A ey
[€le]siffl € [e] U []S (Def [e1 A -+ Aepls)
iff 1 € [e']s for some €’ € {el,.. €n}
iff s |= EPCy(€’) for some €’ € {e1,...,e,} (IH)
iff s = EPC(e) -V EPG(ey)
iff s = EPClex A -+ Aey). (Def EPC)

Effect preconditions: connection to change sets

Al Planning

M. Helmert

Proof (ctd.)

Inductive case 1, e = A ey
lelelsiffl €le] U [ol (Def [e1 A -+ Aepls)
iff [€ [€]s forsomee G{el,...,en}
iff s |= EPCy(€’) for some €’ € {e1,...,e,} (IH)
iff s = EPCy(e1) V -+ V EPGy(e)

General case

iff s = EPCi(e1 A\ -+ Nep). (Def EPC)
Inductive case 2, e = ¢ > ¢
lee>elsiffl €le]s and s = ¢ (Def [c > €]5)

iff s = EPG(¢)

iff s = EPG(¢€)

iff s = EPG(c1>€). (Def EPC)
[

and s = ¢ (IH)

Effect preconditions: connection to normal form

Notice that in terms of EPC,(e), any operator (c,e) can be
expressed in normal form as

<c, /\ ((EPCu(e) > a) A (EPCqle) > —|a))> .

acA

Al Planning

M. Helmert

General case

Regressing state variables

Al Planning

M. Helmert

The formula EPC,(e) V (a AN =EPC-4(e)) expresses
the value of state variable a € A after applying o
in terms of values of state variables before applying o.

General case

Either:
@ a became true, or

@ a was true before and it did not become false.

Regressing state variables: examples

Al Planning

M. Helmert

Lete=(b>a)A(c>—a)ANbA—d.

General case

variable | EPC_(e) V (--- A—EPC., (e))
a bV (aA —c)

TVGA-L) =T
LVv(en-Ll)=¢c
Lv@dAan-T)=1

Q0 o

Regressing state variables: correctness

Al Planning

M. Helmert

Lemma (B)
Let a be a state variable, o = {(c,) an operator,

s a state, and s’ = app,(s).
Then s = EPCy(e) V (a AN ~EPC_-,(e)) if and only if s' = a.

General case

Regressing state variables: correctness

Al Planning
Lemma (B) M. Helmert
Let a be a state variable, o = {(c,) an operator,
s a state, and s’ = app,(s).
Then s = EPCy(e) V (a AN ~EPC_-,(e)) if and only if s' = a.

(=): Assume s = EPC,(e) V (a A =EPC-4(e)).
Do a case analysis on the two disjuncts.

A\

Regressing state variables: correctness

Al Planning
Lemma (B) M. Helmert
Let a be a state variable, o = {(c,) an operator,
s a state, and s’ = app,(s).
Then s = EPCy(e) V (a AN ~EPC_-,(e)) if and only if s' = a.

(=): Assume s = EPC,(e) V (a A =EPC-4(e)).
Do a case analysis on the two disjuncts.

O Assume that s = EPC,(e). By Lemma A, we have
a € [e]s and hence s’ = a.

A\

Regressing state variables: correctness

Al Planning
Lemma (B) M. Helmert
Let a be a state variable, o = {(c,) an operator,
s a state, and s’ = app,(s).
Then s = EPCy(e) V (a AN ~EPC_-,(e)) if and only if s' = a.

(=): Assume s = EPC,(e) V (a A =EPC-4(e)).
Do a case analysis on the two disjuncts.

O Assume that s = EPC,(e). By Lemma A, we have
a € [e]s and hence s’ = a.

@ Assume that s |=a A 2EPC-,(e). By Lemma, we have A
—a ¢ [e]s. Hence a remains true in s’

A\

Regressing state variables: correctness

Al Planning

Proof (ctd.)

M. Helmert

(«<): We showed that if the formula is true in s, then a is true
in s’. For the second part, we show that if the formula is false
in s, then a is false in s’.

General case

Regressing state variables: correctness

Al Planning

Proof (ctd.)

M. Helmert

(«<): We showed that if the formula is true in s, then a is true
in s’. For the second part, we show that if the formula is false
in s, then a is false in s’.

@ So assume s = EPCy(e) V (a A ~EPC-,(e)).

General case

Regressing state variables: correctness

Al Planning

Proof (ctd.)

(«<): We showed that if the formula is true in s, then a is true
in s’. For the second part, we show that if the formula is false
in s, then a is false in s’.

M. Helmert

@ So assume s = EPCy(e) V (a A ~EPC-,(e)).
@ Then s = —EPC,(e) A (ma V EPC-4(e)) (de Morgan). e

Regressing state variables: correctness

Al Planning

Proof (ctd.)

(«<): We showed that if the formula is true in s, then a is true
in s’. For the second part, we show that if the formula is false
in s, then a is false in s’.

M. Helmert

@ So assume s = EPCy(e) V (a A ~EPC-,(e)).
@ Then s = —EPC,(e) A (ma V EPC-4(e)) (de Morgan). e
@ Analyze the two cases: a is true or it is false in s.

Regressing state variables: correctness

Proof (ctd.)

(«<): We showed that if the formula is true in s, then a is true
in s’. For the second part, we show that if the formula is false

in s, then a is false in s’.

@ So assume s = EPCy(e) V (a A ~EPC-,(e)).
@ Then s = —EPC,(e) A (ma V EPC-4(e)) (de Morgan).
@ Analyze the two cases: a is true or it is false in s.

© Assume that s |=a. Now s = EPC_,(e) because
s E—aV EPC ,(e).
Hence by Lemma A —a € [e]s and we get s’ [~ a.

Al Planning

M. Helmert

General case

Regressing state variables: correctness

Proof (ctd.)

(«<): We showed that if the formula is true in s, then a is true
in s’. For the second part, we show that if the formula is false

in s, then a is false in s’.

@ So assume s = EPCy(e) V (a A ~EPC-,(e)).
@ Then s = —EPC,(e) A (ma V EPC-4(e)) (de Morgan).
@ Analyze the two cases: a is true or it is false in s.
© Assume that s |=a. Now s = EPC_,(e) because
s E—aV EPC ,(e).
Hence by Lemma A —a € [e]s and we get s’ [~ a.
@ Assume that s = a. Because s = =EPC,(e), by Lemma A
we get a ¢ [e]s and hence s [~ a.

Al Planning

M. Helmert

General case

Regressing state variables: correctness

Proof (ctd.)

(«<): We showed that if the formula is true in s, then a is true
in s’. For the second part, we show that if the formula is false
in s, then a is false in s’.

@ So assume s = EPCy(e) V (a A ~EPC-,(e)).
@ Then s = —EPC,(e) A (ma V EPC-4(e)) (de Morgan).
@ Analyze the two cases: a is true or it is false in s.

© Assume that s |=a. Now s = EPC_,(e) because
s E—aV EPC ,(e).
Hence by Lemma A —a € [e]s and we get s’ [~ a.

@ Assume that s = a. Because s = =EPC,(e), by Lemma A
we get a ¢ [e]s and hence s [~ a.

Therefore in both cases s }~ a.

Al Planning

M. Helmert

General case

Regression: general definition

We base the definition of regression on formulae EPC(e).

Definition (general regression)

Let ¢ be a propositional formula and o = (¢, e) an operator.
The regression of ¢ with respect to o is

regro(¢) = c N ¢r A f

where

@ ¢, is obtained from ¢ by replacing each a € A by
EPCy(e) V (a AN =EPC-4(e)), and

@ f = Ayea —(EPCule) A EPC_4(€)).

The formula f says that no state variable may become
simultaneously true and false.

Al Planning

M. Helmert

General case

Regression examples

Al Planning
M. Helmert
o regri, () =an(TV(OA-L)AT=a
o regri, (b A cAd)
=aN(TVOA-LY)A(LV(eA=L)A(LV(@A-L)AT
=aANcNhd
o regrig cppy(0) =an(cV(OA-L)AT=aA(cVb) e e
© regriq (csb)A(b>—b)) (0) = a A (e V (b A =b)) A=(cAD)
=aANcA-b

® regriy (esb)n(ds—b)) (b) = a A (cV (b A =d)) A—(cAd)
=aAN(cVb)A(cV—d)A(—eV—d)

Regression example: blocks world

Consider blocks world operators to move blocks A and B onto Al Planning
the table from the other block if they are clear: M. Helmert

o1 = (T, (A-on-B A A-clear) > (A-on-T A B-clear A\ —=A-on-B))
02 = (T, (B-on-A A B-clear) > (B-on-T A A-clear A —=B-on-A))

Proof by regression that 09,01 puts both blocks onto the table
from any blocks world state: el e

G = A-on-TA B-on-T
b1 regr,, (G) = ((A-on-B A\ A-clear) V A-on-T) A B-on-T
b2 regr,, (61)
= ((A-on-B A ((B-on-A A B-clear) \/ A-clear)) V A-on-T)
A ((B-on-A A B-clear) V B-on-T)

All three legal 2-block states satisfy ¢o.
Similar plans exist for any number of blocks.

Regression example: binary counter

Al Planning
(_‘bO > bO) A M. Helmert
((—\bl VAN bo) > (bl VAN ﬂbo)) AN
((ﬁbg Abr A bo) > (bQ A —by A ﬁbo))

E:DCb2 (6) = _|b2 A b1 AN bo

E:DCb1 (e) =-by A by

EPCbO (6) = jbo General case
EPCﬁbz (6) =1
EPCﬁb1 (6) = —\bQ A b1 A\ bo
EPC_J,O (6) = (_|b1 AN b()) V (_|b2 AN b1 A bo) = ("bl \Y _|b2) A bo

Regression replaces state variables as follows:

by by (—\bg A by A bo) V (b2 A —|J_) = (b] VAN bo) V by
b1 by (—\bl A bo) V (bl A —|(—|b2 Abi A bo))
= (ﬁb1 VAN b()) vV (b] VAN (bg V ﬁbo))
b by —byV (bo VAN —|((—|b1 \Y —|b2) VAN bo)) = -by V (bl VAN bz)

General regression: correctness

Al Planning

Theorem (correctness of regr,(¢))

M. Helmert

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s |= regr,(¢) if and only if s’ = ¢.

General case

General regression: correctness

Al Planning

Theorem (correctness of regr,(¢))

M. Helmert

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s |= regr,(¢) if and only if s’ = ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/, iff ' = ¢, where ¢/, is ¢’ with | (=
every a € A replaced by EPC,(e) V (a A =EPC-4(e)).

The rest of regr,(¢) just states that o is applicable in s.

General regression: correctness

Al Planning

Theorem (correctness of regr,(¢))

M. Helmert

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s |= regr,(¢) if and only if s’ = ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/, iff ' = ¢, where ¢/, is ¢’ with | (=
every a € A replaced by EPC,(e) V (a A =EPC-4(e)).

The rest of regr,(¢) just states that o is applicable in s.

Induction hypothesis s = ¢!, if and only if s’ = ¢/'.

General regression: correctness

Al Planning

Theorem (correctness of regr,(¢))

M. Helmert

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s |= regr,(¢) if and only if s’ = ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢, of ¢ that s): ¢;,. iff 8/ ': ¢I, where (b;n is ¢I with General case
every a € A replaced by EPC,(e) V (a A =EPC-4(e)).
The rest of regr,(¢) just states that o is applicable in s.
Induction hypothesis s = ¢!, if and only if s’ = ¢/'.

Base cases 1 & 2 ¢/ = T or ¢/ = L: trivial, as ¢, = ¢'.

General regression: correctness

Theorem (correctness of regr,(¢))

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s |= regr,(¢) if and only if s’ = ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s = ¢/ iff s’ = ¢, where ¢/, is ¢/ with
every a € A replaced by EPC,(e) V (a A =EPC-4(e)).
The rest of regr,(¢) just states that o is applicable in s.
Induction hypothesis s = ¢!, if and only if s’ = ¢/'.
Base cases 1 & 2 ¢/ = T or ¢/ = L: trivial, as ¢, = ¢'.
Base case 3 ¢/ = a for some a € A:
Then ¢ = EPCy(e) V (a A ~EPC4(e)).

By Lemma B, s |= ¢/ iff s’ = ¢/.

Al Planning

M. Helmert

General case

General regression: correctness

Al Planning

PI’OOf (Ctd) M. Helmert

Inductive case 1 ¢/ = —): By the induction hypothesis s = 1),

iff s’ = 1. Hence s = ¢, iff s’ |= ¢ by the
logical semantics of —.

General case

General regression: correctness

Al Planning

PI’OOf (Ctd) M. Helmert

Inductive case 1 ¢/ = —): By the induction hypothesis s = 1),
iff s’ = 1. Hence s = ¢, iff s’ |= ¢ by the
logical semantics of —.

Inductive case 2 ¢ =V ¢': By the induction hypothesis

B ': ¢T IfF S/ ': w’ and S ': 1/)7/" IfF Sl): w/' General case
Hence s = ¢! iff s’ = ¢ by the logical
semantics of V.

General regression: correctness

Al Planning

PI’OOf (Ctd) M. Helmert

Inductive case 1 ¢/ = —): By the induction hypothesis s = 1),
iff s’ = 1. Hence s = ¢, iff s’ |= ¢ by the
logical semantics of —.

Inductive case 2 ¢ =V ¢': By the induction hypothesis
SE o iffs' v, and s =0l iff s . | [
Hence s = ¢! iff s’ = ¢ by the logical
semantics of V.

Inductive case 3 ¢ =1 A¢': By the induction hypothesis
sE Y, iff ' =1, and s E YL ff s E .
Hence s = ¢! iff s' = ¢/ by the logical
semantics of A.

Emptiness and subsumption testing

Al Planning

M. Helmert

The following two tests are useful when performing regression
searches, to avoid exploring unpromising branches:

@ Testing that a formula regr,(¢) does not represent the
empty set (= search is in a dead end).
For example, regri, ., (p) =aA L= 1.

Practical issues
@ Testing that a regression step does not make the set of

states smaller (= more difficult to reach).

For example, regry, (a) = a A'b.

Both of these problems are NP-hard.

Formula growth

Al Planning

M. Helmert

The formula regr, (regr,,(...regr, _ (regr, (¢)))) may have
size O(|¢||o1]|o2| ... |on—1||0on]), i.e., the product of the sizes
of ¢ and the operators.

~~ worst-case exponential size O(m™)

Logical simplifications

o LNG=L TAdp=¢d, LVd=¢ TVS=T
e aVo=aVoll/al, aVod=-aVe[T/al
aNp=aANP[T/al, "aNd=-aN¢[L/a]

@ idempotency, absorption, commutativity, associativity, . ..

Restricting formula growth in search trees

Al Planning
M. Helmert

Problem very big formulae obtained by regression

Cause disjunctivity in the formulae: formulae without
disjunctions easily convertible to small formulae
l1 \---Al, where [; are literals and n is at most the
number of state variables.

Practical issues

Idea handle disjunctivity when generating search trees
Alternatives:

@ Do nothing. (May lead to very big formulae!)
@ Always eliminate all disjunctivity.
© Reduce disjunctivity if formula becomes too big.

Unrestricted regression: search tree example

Al Planning
M. Helmert
Reach goal a A b from state I = {a — 0,b — 0,c+— 0}.
—a \a
WA
Oh G=aNb

- . V Practical issues
(meVa)Ab - C

W‘ o,
\ (meVa)Ab

(mcVa) A -a

Full splitting

Al Planning
@ Planners for STRIPS operators only need to use formulae M. Helmert
l1 \---Al, where [; are literals.
@ Some general planners also restrict to this class of
formulae. This is done as follows:
© Transform regr,(¢) to disjunctive normal form (DNF):
(A ALYV V(AN AT).
@ Generate one subtree of the search tree for each disjunct
lzl Ao A ZZ . Practical issues
n;

@ The DNF formulae need not exist in its entirety explicitly:
can generate one disjunct at a time.

~> branching is both on the choice of operator
and on the choice of the disjunct of the DNF formula

~> increased branching factor and bigger search trees,
but avoids big formulae

Full splitting: search tree example

Al Planning
Reach goal a A b from state I = {a — 0,b — 0, ¢+ 0}. M. Helmert
(me¢Va)Abin DNF: (m¢ AD)V (a A D)
~ split into mc Aband aAb

General splitting strategies

Al Planning

M. Helmert

e With full splitting search tree can be exponentially bigger
than without splitting. (But it is not necessary to
construct the DNF formulae explicitly!)

e Without splitting the formulae may have size that is
exponential in the number of state variables.

@ A compromise is to split formulae only when necessary:
combine benefits of the two extremes.

Practical issues

@ There are several ways to split a formula ¢ to ¢1,..., ¢,
such that ¢ = ¢1 V - -- V ¢,,. For example:
e Transform ¢ to ¢1 V ---V ¢, by equivalences like
distributivity: (¢ V ¢') A = (@A) V (¢ A).
o Choose state variable a, set ¢1 = a A ¢ and ¢ = —a A ¢,
and simplify with equivalences like a A) = a A [T /al.

	Planning by state-space search
	Introduction
	Classification of state-space search algorithms

	Progression
	Overview
	Example

	Regression
	Overview
	Example
	Regression for STRIPS tasks
	Regression for general planning tasks
	Practical issues

