
Principles of AI Planning
5. State-space search: progression and regression

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 31st, 2008

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 1 / 57

Principles of AI Planning
October 31st, 2008 — 5. State-space search: progression and regression

Planning by state-space search
Introduction
Classification of state-space search algorithms

Progression
Overview
Example

Regression
Overview
Example
Regression for STRIPS tasks
Regression for general planning tasks
Practical issues

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 2 / 57

State-space search Introduction

State-space search

I state-space search: one of the big success stories of AI

I many planning algorithms based on state-space search
(we’ll see some other algorithms later, though)

I will be the focus of this and the following topics
I we assume prior knowledge of basic search algorithms

I uninformed vs. informed
I systematic vs. local

I background on search: Russell & Norvig, Artificial Intelligence – A
Modern Approach, chapters 3 and 4

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 3 / 57

State-space search Introduction

Satisficing or optimal planning?

Must carefully distinguish two different problems:

I satisficing planning: any solution is OK
(although shorter solutions typically preferred)

I optimal planning: plans must have shortest possible length

Both are often solved by search, but:

I details are very different

I almost no overlap between good techniques for satisficing planning
and good techniques for optimal planning

I many problems that are trivial for satisficing planners are impossibly
hard for optimal planners

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 4 / 57

State-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 1: Search direction

I progression: forward from initial state to goal

I regression: backward from goal states to initial state

I bidirectional search

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 5 / 57

State-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 2: Search space representation

I search nodes are associated with states

I search nodes are associated with sets of states

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 6 / 57

State-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 3: Search algorithm

I uninformed search:
depth-first, breadth-first, iterative depth-first, . . .

I heuristic search (systematic):
greedy best-first, A∗, Weighted A∗, IDA∗, . . .

I heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 7 / 57

State-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 4: Search control

I heuristics for informed search algorithms

I pruning techniques: invariants, symmetry elimination, helpful actions
pruning, . . .

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 8 / 57

State-space search Classification

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

I search direction: forward search

I search space representation: single states

I search algorithm: enforced hill-climbing (informed local)

I heuristic: FF heuristic (inadmissible)

I pruning technique: helpful actions (incomplete)

 one of the best satisficing planners

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 9 / 57

State-space search Classification

Search-based optimal planners

Fast Downward + hHHH (Helmert, Haslum & Hoffmann, 2007)

I search direction: forward search

I search space representation: single states

I search algorithm: A∗ (informed systematic)

I heuristic: merge-and-shrink abstractions (admissible)

I pruning technique: none

 one of the best optimal planners

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 10 / 57

State-space search Classification

Our plan for the next lectures

Choices to make:

1. search direction: progression/regression/both
 this chapter

2. search space representation: states/sets of states
 this chapter

3. search algorithm: uninformed/heuristic; systematic/local
 next chapter

4. search control: heuristics, pruning techniques
 following chapters

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 11 / 57

Progression Overview

Planning by forward search: progression

Progression: Computing the successor state appo(s) of a state s with
respect to an operator o.

Progression planners find solutions by forward search:

I start from initial state

I iteratively pick a previously generated state and progress it through
an operator, generating a new state

I solution found when a goal state generated

pro: very easy and efficient to implement

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 12 / 57

Progression Overview

Search space representation in progression planners

Two alternative search spaces for progression planners:

1. search nodes correspond to states
I when the same state is generated along different paths,

it is not considered again (duplicate detection)
I pro: fast
I con: memory intensive (must maintain closed list)

2. search nodes correspond to operator sequences
I different operator sequences may lead to identical states

(transpositions)
I pro: can be very memory-efficient
I con: much wasted work (often exponentially slower)

 first alternative usually preferable

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 13 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 14 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 15 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 16 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 17 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 18 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 19 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 20 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 21 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 22 / 57

Progression Example

Progression planning example (depth-first search)

I

G

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 23 / 57

Regression Overview

Forward search vs. backward search

Going through a transition graph in forward and backward directions is not
symmetric:

I forward search starts from a single initial state;
backward search starts from a set of goal states

I when applying an operator o in a state s in forward direction, there is
a unique successor state s ′;
if we applied operator o to end up in state s ′,
there can be several possible predecessor states s

 most natural representation for backward search in planning associates
sets of states with search nodes

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 24 / 57

Regression Overview

Planning by backward search: regression

Regression: Computing the possible predecessor states regro(S) of a set of
states S with respect to the last operator o that was applied.

Regression planners find solutions by backward search:

I start from set of goal states

I iteratively pick a previously generated state set and
regress it through an operator, generating a new state set

I solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 25 / 57

Regression Overview

Search space representation in regression planners

identify state sets with logical formulae:

I search nodes correspond to state sets

I each state set is represented by a logical formula:
φ represents {s ∈ S | s |= φ}

I many basic search operations like detecting duplicates are NP-hard or
coNP-hard

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 26 / 57

Regression Example

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 27 / 57

Regression Example

Regression planning example (depth-first search)

I

G

G

φ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 28 / 57

Regression Example

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G)

φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 29 / 57

Regression Example

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 30 / 57

Regression Example

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 31 / 57

Regression STRIPS

Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS
operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

I Goals are conjunctions of literals l1 ∧ · · · ∧ ln.

I First step: Choose an operator that makes some of l1, . . . , ln true and
makes none of them false.

I Second step: Remove goal literals achieved by the operator and add
its preconditions.

I Outcome of regression is again conjunction of literals.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 32 / 57

Regression STRIPS

STRIPS regression

Definition
Let φ = φ1 ∧ · · · ∧ φk , γ = γ1 ∧ · · · ∧ γn and η = η1 ∧ · · · ∧ ηm be
non-contradictory conjunctions of literals.

The STRIPS regression of φ with respect to o = 〈γ, η〉 is

sregro(φ) :=
∧

(({φ1, . . . , φk} \ {η1, . . . , ηm}) ∪ {γ1, . . . , γn})

provided that this conjunction is non-contradictory
and that ¬φi 6≡ ηj for all i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}.
(Otherwise, sregro(φ) is undefined.)

(A conjunction of literals is contradictory iff it contains two
complementary literals.)

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 33 / 57

Regression STRIPS

STRIPS regression example

NOTE: Predecessor states are in general not unique.

This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G =�on� ∧�on�
φ1 = sregro3

(G) = �on� ∧�onT ∧�clr ∧�clr
φ2 = sregro2

(φ1) = �onT ∧�clr ∧�on� ∧�clr
φ3 = sregro1

(φ2) = �onT ∧�on� ∧�clr ∧�on�

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 34 / 57

Regression General case

Regression for general planning tasks

I With disjunctions and conditional effects, things become more tricky.
How to regress A ∨ (B ∧ C) with respect to 〈Q,D B B〉?

I The story about goals and subgoals and fulfilling subgoals, as in the
STRIPS case, is no longer useful.

I We present a general method for doing regression for any formula and
any operator.

I Now we extensively use the idea of representing sets of states as
formulae.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 35 / 57

Regression General case

Effect preconditions

Definition (effect precondition)

The effect precondition EPCl(e) for literal l and effect e is defined as
follows:

EPCl(l) = >
EPCl(l

′) = ⊥ if l 6= l ′ (for literals l ′)
EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)

EPCl(c B e) = EPCl(e) ∧ c

Intuition: EPCl(e) describes the situations in which effect e causes literal l
to become true.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 36 / 57

Regression General case

Effect precondition examples

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 37 / 57

Regression General case

Effect preconditions: connection to change sets

Lemma (A)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if and only if
s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e = l : l ∈ [l]s = {l} by definition, and s |= EPCl(l) = > by
definition. Both sides of the equivalence are true.
Base case 2, e = l ′ for some literal l ′ 6= l : l /∈ [l ′]s = {l ′} by definition,
and s 6|= EPCl(l

′) = ⊥ by definition. Both sides are false.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 38 / 57

Regression General case

Effect preconditions: connection to change sets

Proof (ctd.)

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e ′]s for some e ′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e ′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e ′:
l ∈ [c B e ′]s iff l ∈ [e ′]s and s |= c (Def [c B e ′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e ′). (Def EPC)

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 39 / 57

Regression General case

Effect preconditions: connection to normal form

Remark
Notice that in terms of EPCa(e), any operator 〈c , e〉 can be expressed in
normal form as〈

c ,
∧
a∈A

((EPCa(e) B a) ∧ (EPC¬a(e) B ¬a))

〉
.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 40 / 57

Regression General case

Regressing state variables

The formula EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) expresses
the value of state variable a ∈ A after applying o
in terms of values of state variables before applying o.

Either:

I a became true, or

I a was true before and it did not become false.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 41 / 57

Regression General case

Regressing state variables: examples

Example

Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d .

variable EPC...(e) ∨ (· · · ∧ ¬EPC¬...(e))

a b ∨ (a ∧ ¬c)
b > ∨ (b ∧ ¬⊥) ≡ >
c ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ∨ (d ∧ ¬>) ≡ ⊥

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 42 / 57

Regression General case

Regressing state variables: correctness

Lemma (B)

Let a be a state variable, o = 〈c , e〉 an operator,
s a state, and s ′ = appo(s).
Then s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s ′ |= a.

Proof.
(⇒): Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
Do a case analysis on the two disjuncts.

1. Assume that s |= EPCa(e). By Lemma A, we have a ∈ [e]s and hence
s ′ |= a.

2. Assume that s |= a ∧ ¬EPC¬a(e). By Lemma, we have A ¬a /∈ [e]s .
Hence a remains true in s ′.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 43 / 57

Regression General case

Regressing state variables: correctness

Proof (ctd.)

(⇐): We showed that if the formula is true in s, then a is true in s ′. For
the second part, we show that if the formula is false in s, then a is false in
s ′.

I So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).

I Then s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) (de Morgan).
I Analyze the two cases: a is true or it is false in s.

1. Assume that s |= a. Now s |= EPC¬a(e) because s |= ¬a ∨ EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s ′ 6|= a.

2. Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A we get
a /∈ [e]s and hence s ′ 6|= a.

Therefore in both cases s ′ 6|= a.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 44 / 57

Regression General case

Regression: general definition

We base the definition of regression on formulae EPCl(e).

Definition (general regression)

Let φ be a propositional formula and o = 〈c , e〉 an operator.
The regression of φ with respect to o is

regro(φ) = c ∧ φr ∧ f

where

1. φr is obtained from φ by replacing each a ∈ A by
EPCa(e) ∨ (a ∧ ¬EPC¬a(e)), and

2. f =
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

The formula f says that no state variable may become simultaneously true
and false.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 45 / 57

Regression General case

Regression examples

I regr〈a,b〉(b) ≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ > ≡ a

I regr〈a,b〉(b ∧ c ∧ d)
≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ (⊥ ∨ (c ∧ ¬⊥)) ∧ (⊥ ∨ (d ∧ ¬⊥)) ∧ >
≡ a ∧ c ∧ d

I regr〈a,cBb〉(b) ≡ a ∧ (c ∨ (b ∧ ¬⊥)) ∧ > ≡ a ∧ (c ∨ b)

I regr〈a,(cBb)∧(bB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)
≡ a ∧ c ∧ ¬b

I regr〈a,(cBb)∧(dB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)
≡ a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 46 / 57

Regression General case

Regression example: blocks world
Consider blocks world operators to move blocks A and B onto the table
from the other block if they are clear:

o1 = 〈>, (A-on-B ∧ A-clear) B (A-on-T ∧ B-clear ∧ ¬A-on-B)〉
o2 = 〈>, (B-on-A ∧ B-clear) B (B-on-T ∧ A-clear ∧ ¬B-on-A)〉

Proof by regression that o2, o1 puts both blocks onto the table from any
blocks world state:

G = A-on-T ∧ B-on-T
φ1 = regro1

(G) ≡ ((A-on-B ∧ A-clear) ∨ A-on-T) ∧ B-on-T
φ2 = regro2

(φ1)
≡ ((A-on-B ∧ ((B-on-A ∧ B-clear) ∨ A-clear)) ∨ A-on-T)

∧ ((B-on-A ∧ B-clear) ∨ B-on-T)

All three legal 2-block states satisfy φ2.
Similar plans exist for any number of blocks.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 47 / 57

Regression General case

Regression example: binary counter

(¬b0B b0) ∧
((¬b1 ∧ b0)B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0)B (b2 ∧ ¬b1 ∧ ¬b0))

EPCb2(e) =¬b2 ∧ b1 ∧ b0

EPCb1(e) =¬b1 ∧ b0

EPCb0(e) =¬b0

EPC¬b2(e) =⊥
EPC¬b1(e) =¬b2 ∧ b1 ∧ b0

EPC¬b0(e) = (¬b1 ∧ b0) ∨ (¬b2 ∧ b1 ∧ b0) ≡ (¬b1 ∨ ¬b2) ∧ b0

Regression replaces state variables as follows:

b2 by (¬b2 ∧ b1 ∧ b0) ∨ (b2 ∧ ¬⊥) ≡ (b1 ∧ b0) ∨ b2

b1 by (¬b1 ∧ b0) ∨ (b1 ∧ ¬(¬b2 ∧ b1 ∧ b0))
≡ (¬b1 ∧ b0) ∨ (b1 ∧ (b2 ∨ ¬b0))

b0 by ¬b0 ∨ (b0 ∧ ¬((¬b1 ∨ ¬b2) ∧ b0)) ≡ ¬b0 ∨ (b1 ∧ b2)

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 48 / 57

Regression General case

General regression: correctness

Theorem (correctness of regro(φ))

Let φ be a formula, o an operator, s any state and s ′ = appo(s). Then
s |= regro(φ) if and only if s ′ |= φ.

Proof.
Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s ′ |= φ′, where φ′r is φ′ with every
a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
The rest of regro(φ) just states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s ′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: trivial, as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A:
Then φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma B, s |= φ′r iff s ′ |= φ′.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 49 / 57

Regression General case

General regression: correctness

Proof (ctd.)

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis s |= ψr iff s ′ |= ψ.
Hence s |= φ′r iff s ′ |= φ′ by the logical semantics of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the logical semantics of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the logical semantics of ∧.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 50 / 57

Regression Practical issues

Emptiness and subsumption testing

The following two tests are useful when performing regression searches, to
avoid exploring unpromising branches:

I Testing that a formula regro(φ) does not represent the empty set (=
search is in a dead end).
For example, regr〈a,¬p〉(p) ≡ a ∧ ⊥ ≡ ⊥.

I Testing that a regression step does not make the set of states smaller
(= more difficult to reach).
For example, regr〈b,c〉(a) ≡ a ∧ b.

Both of these problems are NP-hard.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 51 / 57

Regression Practical issues

Formula growth

The formula regro1
(regro2

(. . . regron−1
(regron

(φ)))) may have size
O(|φ||o1||o2| . . . |on−1||on|), i. e., the product of the sizes of φ and the
operators.
 worst-case exponential size O(mn)

Logical simplifications

I ⊥ ∧ φ ≡ ⊥, > ∧ φ ≡ φ, ⊥ ∨ φ ≡ φ, > ∨ φ ≡ >
I a ∨ φ ≡ a ∨ φ[⊥/a], ¬a ∨ φ ≡ ¬a ∨ φ[>/a], a ∧ φ ≡ a ∧ φ[>/a],
¬a ∧ φ ≡ ¬a ∧ φ[⊥/a]

I idempotency, absorption, commutativity, associativity, . . .

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 52 / 57

Regression Practical issues

Restricting formula growth in search trees

Problem very big formulae obtained by regression

Cause disjunctivity in the formulae: formulae without disjunctions easily
convertible to small formulae l1 ∧ · · · ∧ ln where li are literals and
n is at most the number of state variables.

Idea handle disjunctivity when generating search trees

Alternatives:

1. Do nothing. (May lead to very big formulae!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 53 / 57

Regression Practical issues

Unrestricted regression: search tree example

Reach goal a ∧ b from state I = {a 7→ 0, b 7→ 0, c 7→ 0}.

G = a ∧ b

¬a ∧ a

(¬c ∨ a) ∧ b

(¬c ∨ a) ∧ ¬a

(¬c ∨ a) ∧ b

〈¬a, b〉

〈b,¬
c B

a〉

〈¬a, b〉

〈b,¬c B a〉

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 54 / 57

Regression Practical issues

Full splitting

I Planners for STRIPS operators only need to use formulae l1 ∧ · · · ∧ ln
where li are literals.

I Some general planners also restrict to this class of formulae. This is
done as follows:

1. Transform regro(φ) to disjunctive normal form (DNF):
(l11 ∧ · · · ∧ l1n1

) ∨ · · · ∨ (lm1 ∧ · · · ∧ lmnm
).

2. Generate one subtree of the search tree for each disjunct l i1 ∧ · · · ∧ l ini
.

I The DNF formulae need not exist in its entirety explicitly:
can generate one disjunct at a time.

 branching is both on the choice of operator
and on the choice of the disjunct of the DNF formula

 increased branching factor and bigger search trees,
but avoids big formulae

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 55 / 57

Regression Practical issues

Full splitting: search tree example

Reach goal a ∧ b from state I = {a 7→ 0, b 7→ 0, c 7→ 0}.
(¬c ∨ a) ∧ b in DNF: (¬c ∧ b) ∨ (a ∧ b)
 split into ¬c ∧ b and a ∧ b

G = a ∧ b

¬a ∧ a

¬c ∧ b

a ∧ b

¬c ∧ ¬a

¬c ∧ b

a ∧ ¬a

a ∧ b

¬c ∧ b 〈¬a, b〉

〈b,¬
c B

a〉

〈b,¬c B a〉

〈¬a, b〉

〈¬a, b〉

〈b,¬c B a〉

〈b,¬c B a〉

〈b,¬c B a〉

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 56 / 57

Regression Practical issues

General splitting strategies

I With full splitting search tree can be exponentially bigger than
without splitting. (But it is not necessary to construct the DNF
formulae explicitly!)

I Without splitting the formulae may have size that is exponential in
the number of state variables.

I A compromise is to split formulae only when necessary: combine
benefits of the two extremes.

I There are several ways to split a formula φ to φ1, . . . , φn such that
φ ≡ φ1 ∨ · · · ∨ φn. For example:

I Transform φ to φ1 ∨ · · · ∨ φn by equivalences like distributivity:
(φ ∨ φ′) ∧ ψ ≡ (φ ∧ ψ) ∨ (φ′ ∧ ψ).

I Choose state variable a, set φ1 = a ∧ φ and φ2 = ¬a ∧ φ, and simplify
with equivalences like a ∧ ψ ≡ a ∧ ψ[>/a].

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 57 / 57

	Planning by state-space search
	Introduction
	Classification of state-space search algorithms

	Progression
	Overview
	Example

	Regression
	Overview
	Example
	Regression for STRIPS tasks
	Regression for general planning tasks
	Practical issues

