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State-space search Introduction

State-space search

I state-space search: one of the big success stories of AI

I many planning algorithms based on state-space search
(we’ll see some other algorithms later, though)

I will be the focus of this and the following topics
I we assume prior knowledge of basic search algorithms

I uninformed vs. informed
I systematic vs. local

I background on search: Russell & Norvig, Artificial Intelligence – A
Modern Approach, chapters 3 and 4
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State-space search Introduction

Satisficing or optimal planning?

Must carefully distinguish two different problems:

I satisficing planning: any solution is OK
(although shorter solutions typically preferred)

I optimal planning: plans must have shortest possible length

Both are often solved by search, but:

I details are very different

I almost no overlap between good techniques for satisficing planning
and good techniques for optimal planning

I many problems that are trivial for satisficing planners are impossibly
hard for optimal planners
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State-space search Classification

Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 1: Search direction

I progression: forward from initial state to goal

I regression: backward from goal states to initial state

I bidirectional search

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 5 / 57

State-space search Classification

Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 2: Search space representation

I search nodes are associated with states

I search nodes are associated with sets of states
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State-space search Classification

Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 3: Search algorithm

I uninformed search:
depth-first, breadth-first, iterative depth-first, . . .

I heuristic search (systematic):
greedy best-first, A∗, Weighted A∗, IDA∗, . . .

I heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .
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State-space search Classification

Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 4: Search control

I heuristics for informed search algorithms

I pruning techniques: invariants, symmetry elimination, helpful actions
pruning, . . .
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State-space search Classification

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

I search direction: forward search

I search space representation: single states

I search algorithm: enforced hill-climbing (informed local)

I heuristic: FF heuristic (inadmissible)

I pruning technique: helpful actions (incomplete)

 one of the best satisficing planners
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State-space search Classification

Search-based optimal planners

Fast Downward + hHHH (Helmert, Haslum & Hoffmann, 2007)

I search direction: forward search

I search space representation: single states

I search algorithm: A∗ (informed systematic)

I heuristic: merge-and-shrink abstractions (admissible)

I pruning technique: none

 one of the best optimal planners
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State-space search Classification

Our plan for the next lectures

Choices to make:

1. search direction: progression/regression/both
 this chapter

2. search space representation: states/sets of states
 this chapter

3. search algorithm: uninformed/heuristic; systematic/local
 next chapter

4. search control: heuristics, pruning techniques
 following chapters
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Progression Overview

Planning by forward search: progression

Progression: Computing the successor state appo(s) of a state s with
respect to an operator o.

Progression planners find solutions by forward search:

I start from initial state

I iteratively pick a previously generated state and progress it through
an operator, generating a new state

I solution found when a goal state generated

pro: very easy and efficient to implement
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Progression Overview

Search space representation in progression planners

Two alternative search spaces for progression planners:

1. search nodes correspond to states
I when the same state is generated along different paths,

it is not considered again (duplicate detection)
I pro: fast
I con: memory intensive (must maintain closed list)

2. search nodes correspond to operator sequences
I different operator sequences may lead to identical states

(transpositions)
I pro: can be very memory-efficient
I con: much wasted work (often exponentially slower)

 first alternative usually preferable
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Progression Example

Progression planning example (depth-first search)

I

G
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Regression Overview

Forward search vs. backward search

Going through a transition graph in forward and backward directions is not
symmetric:

I forward search starts from a single initial state;
backward search starts from a set of goal states

I when applying an operator o in a state s in forward direction, there is
a unique successor state s ′;
if we applied operator o to end up in state s ′,
there can be several possible predecessor states s

 most natural representation for backward search in planning associates
sets of states with search nodes
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Regression Overview

Planning by backward search: regression

Regression: Computing the possible predecessor states regro(S) of a set of
states S with respect to the last operator o that was applied.

Regression planners find solutions by backward search:

I start from set of goal states

I iteratively pick a previously generated state set and
regress it through an operator, generating a new state set

I solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 25 / 57

Regression Overview

Search space representation in regression planners

identify state sets with logical formulae:

I search nodes correspond to state sets

I each state set is represented by a logical formula:
φ represents {s ∈ S | s |= φ}

I many basic search operations like detecting duplicates are NP-hard or
coNP-hard
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Regression Example

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G ) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3
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Regression STRIPS

Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS
operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

I Goals are conjunctions of literals l1 ∧ · · · ∧ ln.

I First step: Choose an operator that makes some of l1, . . . , ln true and
makes none of them false.

I Second step: Remove goal literals achieved by the operator and add
its preconditions.

I  Outcome of regression is again conjunction of literals.
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Regression STRIPS

STRIPS regression

Definition
Let φ = φ1 ∧ · · · ∧ φk , γ = γ1 ∧ · · · ∧ γn and η = η1 ∧ · · · ∧ ηm be
non-contradictory conjunctions of literals.

The STRIPS regression of φ with respect to o = 〈γ, η〉 is

sregro(φ) :=
∧

(({φ1, . . . , φk} \ {η1, . . . , ηm}) ∪ {γ1, . . . , γn})

provided that this conjunction is non-contradictory
and that ¬φi 6≡ ηj for all i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}.
(Otherwise, sregro(φ) is undefined.)

(A conjunction of literals is contradictory iff it contains two
complementary literals.)
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Regression STRIPS

STRIPS regression example

NOTE: Predecessor states are in general not unique.

This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G =�on� ∧�on�
φ1 = sregro3

(G ) = �on� ∧�onT ∧�clr ∧�clr
φ2 = sregro2

(φ1) = �onT ∧�clr ∧�on� ∧�clr
φ3 = sregro1

(φ2) = �onT ∧�on� ∧�clr ∧�on�
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Regression General case

Regression for general planning tasks

I With disjunctions and conditional effects, things become more tricky.
How to regress A ∨ (B ∧ C ) with respect to 〈Q,D B B〉?

I The story about goals and subgoals and fulfilling subgoals, as in the
STRIPS case, is no longer useful.

I We present a general method for doing regression for any formula and
any operator.

I Now we extensively use the idea of representing sets of states as
formulae.
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Regression General case

Effect preconditions

Definition (effect precondition)

The effect precondition EPCl(e) for literal l and effect e is defined as
follows:

EPCl(l) = >
EPCl(l

′) = ⊥ if l 6= l ′ (for literals l ′)
EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)

EPCl(c B e) = EPCl(e) ∧ c

Intuition: EPCl(e) describes the situations in which effect e causes literal l
to become true.
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Regression General case

Effect precondition examples

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b
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Regression General case

Effect preconditions: connection to change sets

Lemma (A)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if and only if
s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e = l : l ∈ [l ]s = {l} by definition, and s |= EPCl(l) = > by
definition. Both sides of the equivalence are true.
Base case 2, e = l ′ for some literal l ′ 6= l : l /∈ [l ′]s = {l ′} by definition,
and s 6|= EPCl(l

′) = ⊥ by definition. Both sides are false.
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Regression General case

Effect preconditions: connection to change sets

Proof (ctd.)

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e ′]s for some e ′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e ′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC )

Inductive case 2, e = c B e ′:
l ∈ [c B e ′]s iff l ∈ [e ′]s and s |= c (Def [c B e ′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e ′). (Def EPC )
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Regression General case

Effect preconditions: connection to normal form

Remark
Notice that in terms of EPCa(e), any operator 〈c , e〉 can be expressed in
normal form as〈

c ,
∧
a∈A

((EPCa(e) B a) ∧ (EPC¬a(e) B ¬a))

〉
.
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Regression General case

Regressing state variables

The formula EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) expresses
the value of state variable a ∈ A after applying o
in terms of values of state variables before applying o.

Either:

I a became true, or

I a was true before and it did not become false.
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Regression General case

Regressing state variables: examples

Example

Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d .

variable EPC...(e) ∨ (· · · ∧ ¬EPC¬...(e))

a b ∨ (a ∧ ¬c)
b > ∨ (b ∧ ¬⊥) ≡ >
c ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ∨ (d ∧ ¬>) ≡ ⊥
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Regression General case

Regressing state variables: correctness

Lemma (B)

Let a be a state variable, o = 〈c , e〉 an operator,
s a state, and s ′ = appo(s).
Then s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s ′ |= a.

Proof.
(⇒): Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
Do a case analysis on the two disjuncts.

1. Assume that s |= EPCa(e). By Lemma A, we have a ∈ [e]s and hence
s ′ |= a.

2. Assume that s |= a ∧ ¬EPC¬a(e). By Lemma, we have A ¬a /∈ [e]s .
Hence a remains true in s ′.
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Regression General case

Regressing state variables: correctness

Proof (ctd.)

(⇐): We showed that if the formula is true in s, then a is true in s ′. For
the second part, we show that if the formula is false in s, then a is false in
s ′.

I So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).

I Then s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) (de Morgan).
I Analyze the two cases: a is true or it is false in s.

1. Assume that s |= a. Now s |= EPC¬a(e) because s |= ¬a ∨ EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s ′ 6|= a.

2. Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A we get
a /∈ [e]s and hence s ′ 6|= a.

Therefore in both cases s ′ 6|= a.
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Regression General case

Regression: general definition

We base the definition of regression on formulae EPCl(e).

Definition (general regression)

Let φ be a propositional formula and o = 〈c , e〉 an operator.
The regression of φ with respect to o is

regro(φ) = c ∧ φr ∧ f

where

1. φr is obtained from φ by replacing each a ∈ A by
EPCa(e) ∨ (a ∧ ¬EPC¬a(e)), and

2. f =
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

The formula f says that no state variable may become simultaneously true
and false.
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Regression General case

Regression examples

I regr〈a,b〉(b) ≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ > ≡ a

I regr〈a,b〉(b ∧ c ∧ d)
≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ (⊥ ∨ (c ∧ ¬⊥)) ∧ (⊥ ∨ (d ∧ ¬⊥)) ∧ >
≡ a ∧ c ∧ d

I regr〈a,cBb〉(b) ≡ a ∧ (c ∨ (b ∧ ¬⊥)) ∧ > ≡ a ∧ (c ∨ b)

I regr〈a,(cBb)∧(bB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)
≡ a ∧ c ∧ ¬b

I regr〈a,(cBb)∧(dB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)
≡ a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)
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Regression General case

Regression example: blocks world
Consider blocks world operators to move blocks A and B onto the table
from the other block if they are clear:

o1 = 〈>, (A-on-B ∧ A-clear) B (A-on-T ∧ B-clear ∧ ¬A-on-B)〉
o2 = 〈>, (B-on-A ∧ B-clear) B (B-on-T ∧ A-clear ∧ ¬B-on-A)〉

Proof by regression that o2, o1 puts both blocks onto the table from any
blocks world state:

G = A-on-T ∧ B-on-T
φ1 = regro1

(G ) ≡ ((A-on-B ∧ A-clear) ∨ A-on-T) ∧ B-on-T
φ2 = regro2

(φ1)
≡ ((A-on-B ∧ ((B-on-A ∧ B-clear) ∨ A-clear)) ∨ A-on-T)

∧ ((B-on-A ∧ B-clear) ∨ B-on-T)

All three legal 2-block states satisfy φ2.
Similar plans exist for any number of blocks.
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Regression General case

Regression example: binary counter

(¬b0B b0) ∧
((¬b1 ∧ b0)B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0)B (b2 ∧ ¬b1 ∧ ¬b0))

EPCb2(e) =¬b2 ∧ b1 ∧ b0

EPCb1(e) =¬b1 ∧ b0

EPCb0(e) =¬b0

EPC¬b2(e) =⊥
EPC¬b1(e) =¬b2 ∧ b1 ∧ b0

EPC¬b0(e) = (¬b1 ∧ b0) ∨ (¬b2 ∧ b1 ∧ b0) ≡ (¬b1 ∨ ¬b2) ∧ b0

Regression replaces state variables as follows:

b2 by (¬b2 ∧ b1 ∧ b0) ∨ (b2 ∧ ¬⊥) ≡ (b1 ∧ b0) ∨ b2

b1 by (¬b1 ∧ b0) ∨ (b1 ∧ ¬(¬b2 ∧ b1 ∧ b0))
≡ (¬b1 ∧ b0) ∨ (b1 ∧ (b2 ∨ ¬b0))

b0 by ¬b0 ∨ (b0 ∧ ¬((¬b1 ∨ ¬b2) ∧ b0)) ≡ ¬b0 ∨ (b1 ∧ b2)
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Regression General case

General regression: correctness

Theorem (correctness of regro(φ))

Let φ be a formula, o an operator, s any state and s ′ = appo(s). Then
s |= regro(φ) if and only if s ′ |= φ.

Proof.
Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s ′ |= φ′, where φ′r is φ′ with every
a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
The rest of regro(φ) just states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s ′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: trivial, as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A:
Then φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma B, s |= φ′r iff s ′ |= φ′.
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Regression General case

General regression: correctness

Proof (ctd.)

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis s |= ψr iff s ′ |= ψ.
Hence s |= φ′r iff s ′ |= φ′ by the logical semantics of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the logical semantics of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the logical semantics of ∧.
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Regression Practical issues

Emptiness and subsumption testing

The following two tests are useful when performing regression searches, to
avoid exploring unpromising branches:

I Testing that a formula regro(φ) does not represent the empty set (=
search is in a dead end).
For example, regr〈a,¬p〉(p) ≡ a ∧ ⊥ ≡ ⊥.

I Testing that a regression step does not make the set of states smaller
(= more difficult to reach).
For example, regr〈b,c〉(a) ≡ a ∧ b.

Both of these problems are NP-hard.
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Regression Practical issues

Formula growth

The formula regro1
(regro2

(. . . regron−1
(regron

(φ)))) may have size
O(|φ||o1||o2| . . . |on−1||on|), i. e., the product of the sizes of φ and the
operators.
 worst-case exponential size O(mn)

Logical simplifications

I ⊥ ∧ φ ≡ ⊥, > ∧ φ ≡ φ, ⊥ ∨ φ ≡ φ, > ∨ φ ≡ >
I a ∨ φ ≡ a ∨ φ[⊥/a], ¬a ∨ φ ≡ ¬a ∨ φ[>/a], a ∧ φ ≡ a ∧ φ[>/a],
¬a ∧ φ ≡ ¬a ∧ φ[⊥/a]

I idempotency, absorption, commutativity, associativity, . . .
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Regression Practical issues

Restricting formula growth in search trees

Problem very big formulae obtained by regression

Cause disjunctivity in the formulae: formulae without disjunctions easily
convertible to small formulae l1 ∧ · · · ∧ ln where li are literals and
n is at most the number of state variables.

Idea handle disjunctivity when generating search trees

Alternatives:

1. Do nothing. (May lead to very big formulae!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.
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Regression Practical issues

Unrestricted regression: search tree example

Reach goal a ∧ b from state I = {a 7→ 0, b 7→ 0, c 7→ 0}.

G = a ∧ b

¬a ∧ a

(¬c ∨ a) ∧ b

(¬c ∨ a) ∧ ¬a

(¬c ∨ a) ∧ b

〈¬a, b〉

〈b,¬
c B

a〉

〈¬a, b〉

〈b,¬c B a〉
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Regression Practical issues

Full splitting

I Planners for STRIPS operators only need to use formulae l1 ∧ · · · ∧ ln
where li are literals.

I Some general planners also restrict to this class of formulae. This is
done as follows:

1. Transform regro(φ) to disjunctive normal form (DNF):
(l11 ∧ · · · ∧ l1n1

) ∨ · · · ∨ (lm1 ∧ · · · ∧ lmnm
).

2. Generate one subtree of the search tree for each disjunct l i1 ∧ · · · ∧ l ini
.

I The DNF formulae need not exist in its entirety explicitly:
can generate one disjunct at a time.

 branching is both on the choice of operator
and on the choice of the disjunct of the DNF formula

 increased branching factor and bigger search trees,
but avoids big formulae
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Regression Practical issues

Full splitting: search tree example

Reach goal a ∧ b from state I = {a 7→ 0, b 7→ 0, c 7→ 0}.
(¬c ∨ a) ∧ b in DNF: (¬c ∧ b) ∨ (a ∧ b)
 split into ¬c ∧ b and a ∧ b

G = a ∧ b

¬a ∧ a

¬c ∧ b

a ∧ b

¬c ∧ ¬a

¬c ∧ b

a ∧ ¬a

a ∧ b

¬c ∧ b 〈¬a, b〉

〈b,¬
c B

a〉

〈b,¬c B a〉

〈¬a, b〉

〈¬a, b〉

〈b,¬c B a〉

〈b,¬c B a〉

〈b,¬c B a〉

M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 56 / 57



Regression Practical issues

General splitting strategies

I With full splitting search tree can be exponentially bigger than
without splitting. (But it is not necessary to construct the DNF
formulae explicitly!)

I Without splitting the formulae may have size that is exponential in
the number of state variables.

I A compromise is to split formulae only when necessary: combine
benefits of the two extremes.

I There are several ways to split a formula φ to φ1, . . . , φn such that
φ ≡ φ1 ∨ · · · ∨ φn. For example:

I Transform φ to φ1 ∨ · · · ∨ φn by equivalences like distributivity:
(φ ∨ φ′) ∧ ψ ≡ (φ ∧ ψ) ∨ (φ′ ∧ ψ).

I Choose state variable a, set φ1 = a ∧ φ and φ2 = ¬a ∧ φ, and simplify
with equivalences like a ∧ ψ ≡ a ∧ ψ[>/a].
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