

State-space search Introduction

State-space search

- state-space search: one of the big success stories of AI
- many planning algorithms based on state-space search (we'll see some other algorithms later, though)
- will be the focus of this and the following topics
- we assume prior knowledge of basic search algorithms
 - uninformed vs. informed
 - systematic vs. local
- background on search: Russell & Norvig, Artificial Intelligence A Modern Approach, chapters 3 and 4

AI Planning

Principles of AI Planning

October 31st, 2008 — 5. State-space search: progression and regression

Planning by state-space search

Introduction Classification of state-space search algorithms

Progression

Overview Example

Regression

Overview Example Regression for STRIPS tasks Regression for general planning tasks Practical issues

M. Helmert (Universität Freiburg)

AI Planning

October 31st, 2008 2 / 57

State-space search Introduction

Satisficing or optimal planning?

Must carefully distinguish two different problems:

- satisficing planning: any solution is OK (although shorter solutions typically preferred)
- optimal planning: plans must have shortest possible length

Both are often solved by search, but:

- details are very different
- almost no overlap between good techniques for satisficing planning and good techniques for optimal planning
- many problems that are trivial for satisficing planners are impossibly hard for optimal planners

State-space search Classification

Planning by state-space search

How to apply search to planning? ~> many choices to make!

Choice 1: Search direction

- progression: forward from initial state to goal
- regression: backward from goal states to initial state
- bidirectional search

M. Helmert (Universität Freiburg)

AI Planning

October 31st, 2008

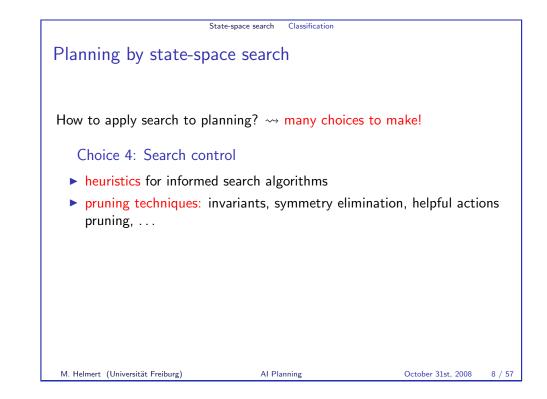
5 / 57

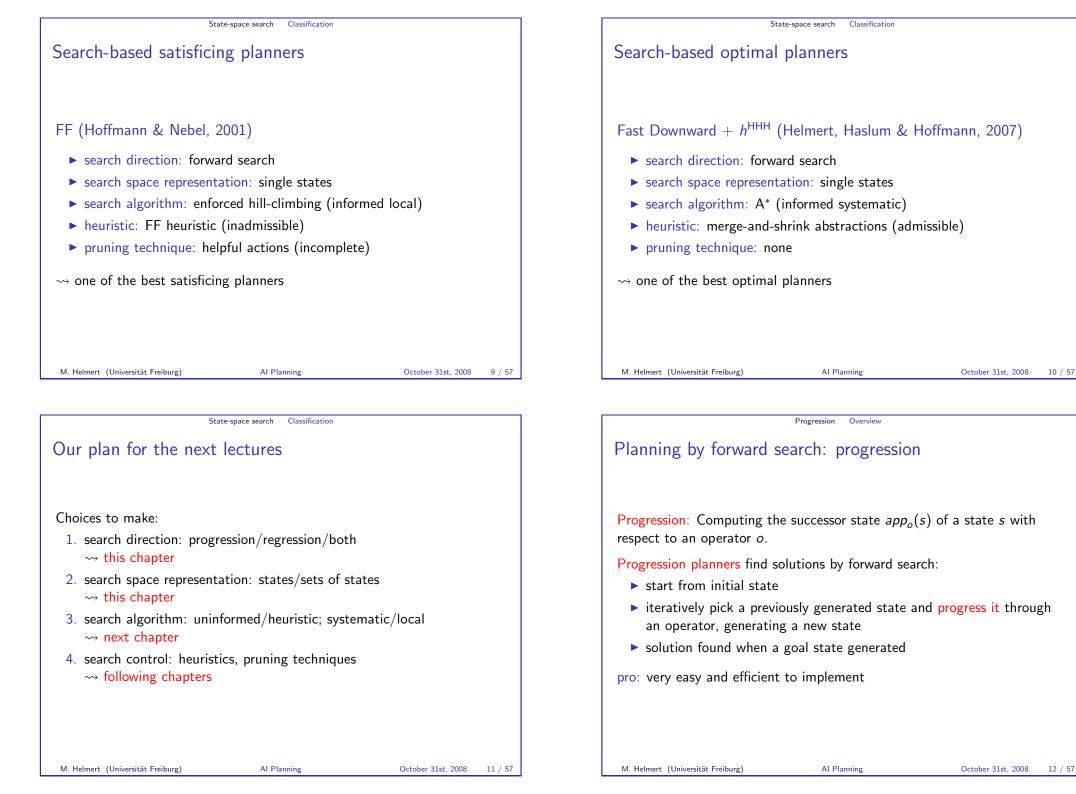
7 / 57

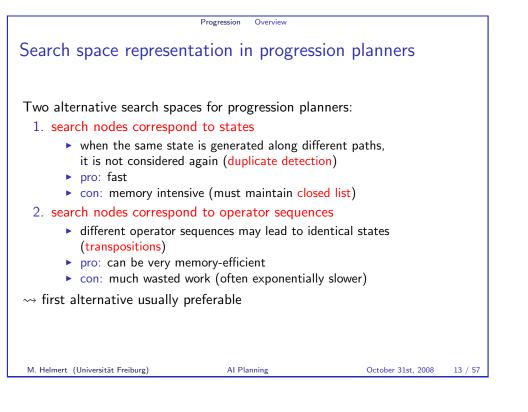
State-space search
Planning by state-space search
Mow to apply search to planning? ~> many choices to make!
Choice 3: Search algorithm
 uninformed search:
 depth-first, breadth-first, iterative depth-first, ...
 heuristic search (systematic):
 greedy best-first, A*, Weighted A*, IDA*, ...
 heuristic search (local):
 hill-climbing, simulated annealing, beam search, ...

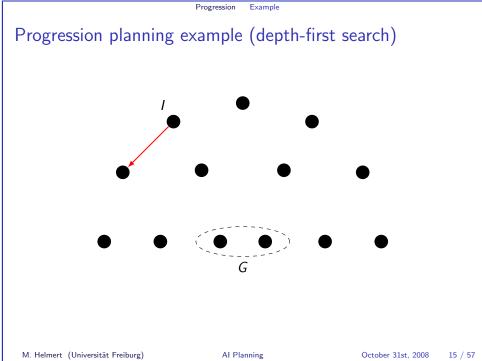
AI Planning

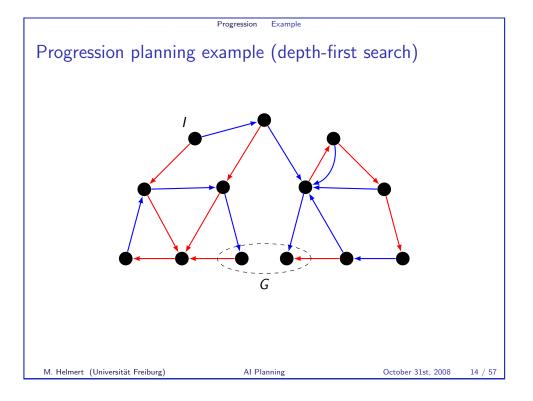
State-space search Planning by state-space search How to apply search to planning? ~→ many choices to make! Choice 2: Search space representation • search nodes are associated with states • search nodes are associated with sets of states • search nodes are associated with sets of states

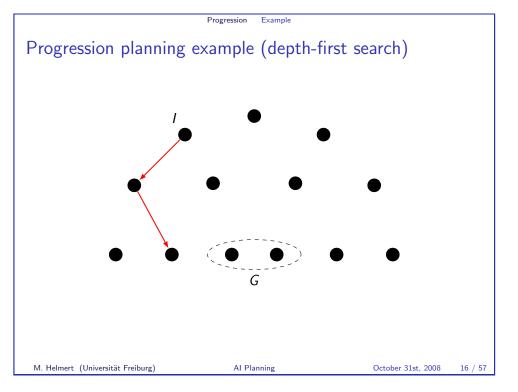


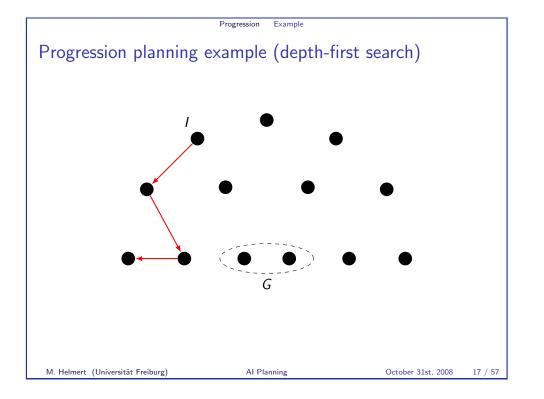


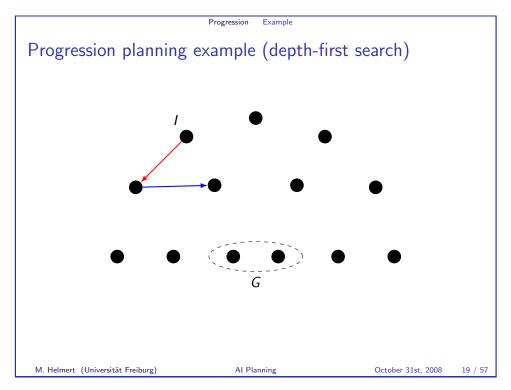


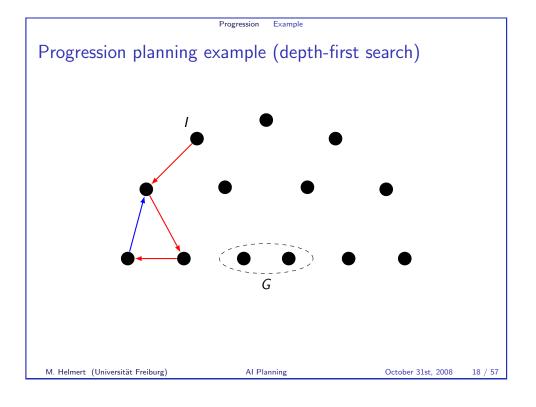


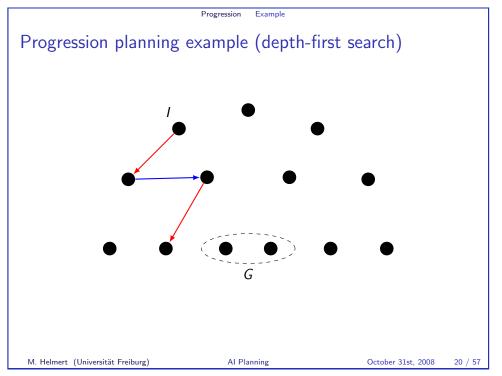


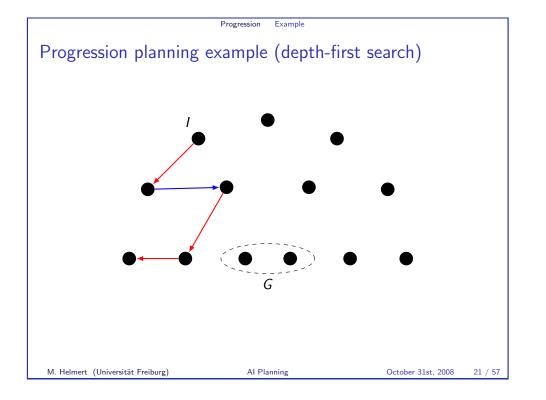


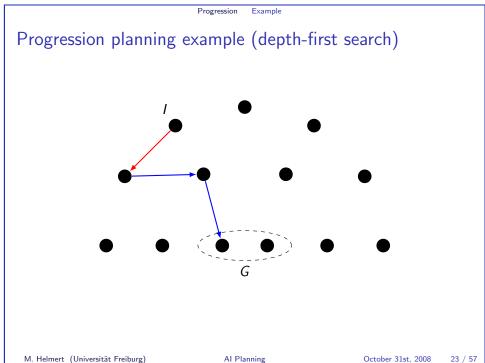


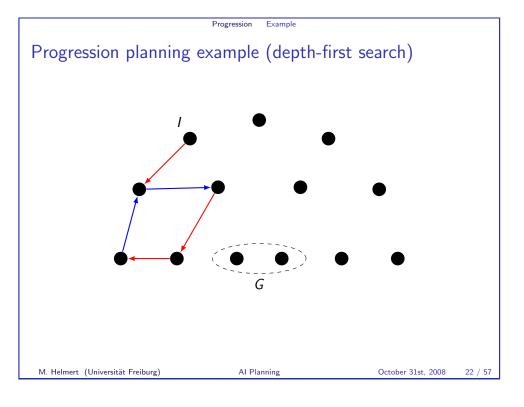


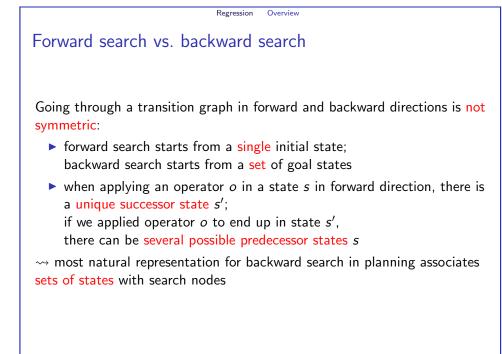












Regression Overview

Planning by backward search: regression

Regression: Computing the possible predecessor states $regr_o(S)$ of a set of states *S* with respect to the last operator *o* that was applied.

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- ▶ solution found when a generated state set includes the initial state

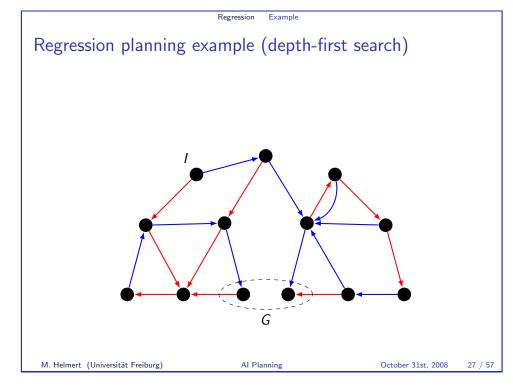
Pro: can handle many states simultaneously

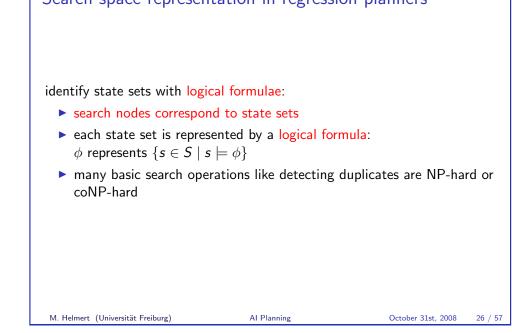
 $\label{eq:constraint} \mbox{Con: basic operations complicated and expensive}$

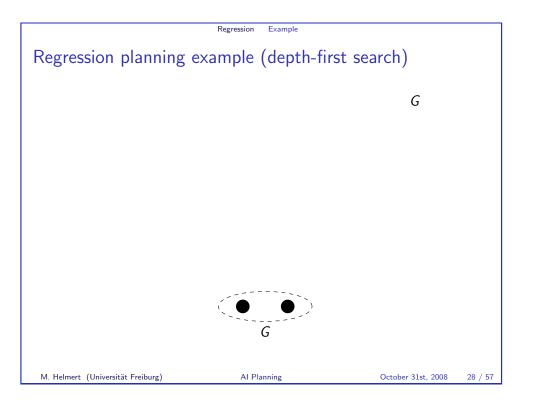
M. Helmert (Universität Freiburg)

AI Planning

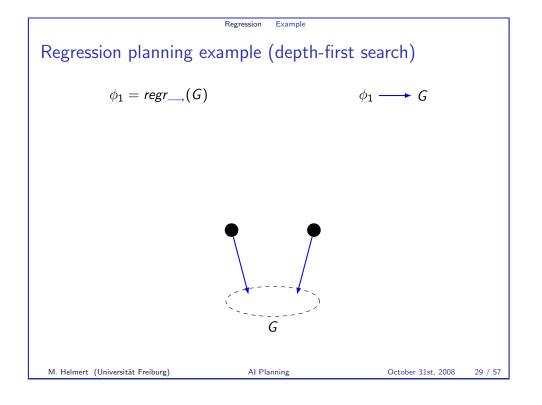
October 31st, 2008 25 / 57

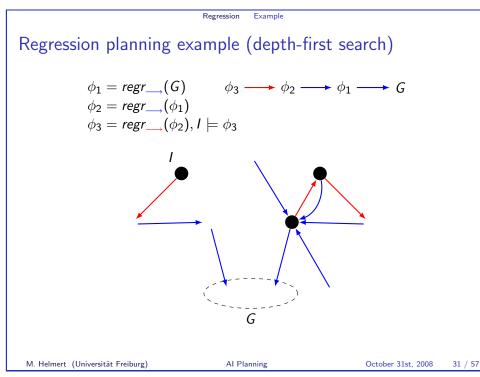


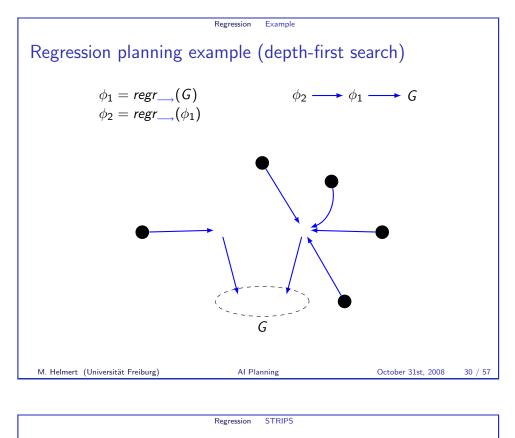




Search space representation in regression planners







Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

- Goals are conjunctions of literals $I_1 \wedge \cdots \wedge I_n$.
- ► First step: Choose an operator that makes some of *I*₁,..., *I_n* true and makes none of them false.
- Second step: Remove goal literals achieved by the operator and add its preconditions.
- ▶ ~→ Outcome of regression is again conjunction of literals.

M. Helmert (Universität Freiburg)

Regression STRIPS

STRIPS regression

Definition Let $\phi = \phi_1 \wedge \cdots \wedge \phi_k$, $\gamma = \gamma_1 \wedge \cdots \wedge \gamma_n$ and $\eta = \eta_1 \wedge \cdots \wedge \eta_m$ be non-contradictory conjunctions of literals.

The STRIPS regression of ϕ with respect to $o = \langle \gamma, \eta \rangle$ is

$$sregr_o(\phi) := \bigwedge \left(\left(\{\phi_1, \dots, \phi_k\} \setminus \{\eta_1, \dots, \eta_m\} \right) \cup \{\gamma_1, \dots, \gamma_n\} \right)$$

AI Planning

provided that this conjunction is non-contradictory and that $\neg \phi_i \neq \eta_j$ for all $i \in \{1, \dots, k\}$, $j \in \{1, \dots, m\}$. (Otherwise, $sregr_o(\phi)$ is undefined.)

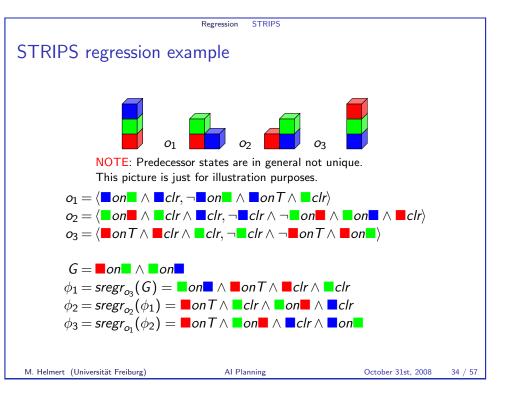
(A conjunction of literals is contradictory iff it contains two complementary literals.)

M. Helmert (Universität Freiburg)

October 31st, 2008

33 / 57

Regression General case
Regression for general planning tasks
With disjunctions and conditional effects, things become more tricky. How to regress A ∨ (B ∧ C) with respect to ⟨Q, D ⊳ B⟩?
The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
We present a general method for doing regression for any formula and any operator.
Now we extensively use the idea of representing sets of states as formulae.





AI Planning

Regression General case

Effect precondition examples

Example

M. Helmert (Universität Freiburg)

	,				
M. Helmert	(Universität Freiburg)	AI Planr	ing	October 31st, 2008	37 / 57
		$\dot{b} \rhd a)) =$			

Regression General case Effect preconditions: connection to change sets Proof (ctd.) Inductive case 1, $e = e_1 \wedge \cdots \wedge e_n$: $(\mathsf{Def}\ [e_1 \wedge \cdots \wedge e_n]_s)$ $I \in [e]_s$ iff $I \in [e_1]_s \cup \cdots \cup [e_n]_s$ iff $l \in [e']_s$ for some $e' \in \{e_1, \ldots, e_n\}$ iff $s \models EPC_l(e')$ for some $e' \in \{e_1, \ldots, e_n\}$ (IH)iff $s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)$ iff $s \models EPC_l(e_1 \land \cdots \land e_n)$. (Def EPC) Inductive case 2, $e = c \triangleright e'$: (Def $[c \triangleright e']_s$) $l \in [c \triangleright e']_s$ iff $l \in [e']_s$ and $s \models c$ iff $s \models EPC_l(e')$ and $s \models c$ (IH)iff $s \models EPC_l(e') \land c$ iff $s \models EPC_l(c \triangleright e')$. (Def EPC)

AI Planning

October 31st, 2008

39 / 57

Effect preconditions: connection to change sets

Lemma (A)

Let s be a state, I a literal and e an effect. Then $I \in [e]_s$ if and only if $s \models EPC_I(e)$.

Proof.

Induction on the structure of the effect *e*. Base case 1, e = I: $I \in [I]_s = \{I\}$ by definition, and $s \models EPC_I(I) = \top$ by definition. Both sides of the equivalence are true. Base case 2, e = I' for some literal $I' \neq I$: $I \notin [I']_s = \{I'\}$ by definition, and $s \not\models EPC_I(I') = \bot$ by definition. Both sides are false.

M. Helmert (Universität Freiburg)

AI Planning

October 31st, 2008 38 / 57

Regression General case Effect preconditions: connection to normal form

Remark

Notice that in terms of $EPC_a(e)$, any operator $\langle c, e \rangle$ can be expressed in normal form as

$$\left\langle c, \bigwedge_{a \in A} \left((EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a) \right) \right\rangle$$

Regressing state variables

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of state variable $a \in A$ after applying oin terms of values of state variables before applying o.

Either:

- ► *a* became true, or
- ► a was true before and it did not become false.

M. Helmert (Universität Freiburg)

AI Planning

Regression General case

Regressing state variables: correctness

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle$ an operator, s a state, and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

(⇒): Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- 1. Assume that $s \models EPC_a(e)$. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.
- 2. Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma, we have $A \neg a \notin [e]_s$. Hence *a* remains true in *s'*.

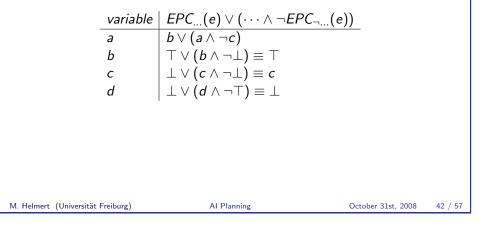
AI Planning

Regression General case

Regressing state variables: examples

Example

Let $e = (b \rhd a) \land (c \rhd \neg a) \land b \land \neg d$.



General case

Regressing state variables: correctness

Regression

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- ▶ Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- Analyze the two cases: *a* is true or it is false in *s*.
 - 1. Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - 2. Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A we get $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

October 31st, 2008

41 / 57

43 / 57

 \square

Regression General case

Regression: general definition

We base the definition of regression on formulae $EPC_{l}(e)$.

Definition (general regression)

Let ϕ be a propositional formula and $o = \langle c, e \rangle$ an operator. The regression of ϕ with respect to o is

$$regr_o(\phi) = c \wedge \phi_r \wedge f$$

where

1. ϕ_r is obtained from ϕ by replacing each $a \in A$ by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$, and

2.
$$f = \bigwedge_{a \in A} \neg (EPC_a(e) \land EPC_{\neg a}(e))$$

The formula f says that no state variable may become simultaneously true and false.

AI Planning

M. Helmert (Universität Freiburg)

October 31st, 2008

45 / 57

47 / 57

M. Helmert (Universität Freiburg)

Regression General case

Regression example: blocks world

Consider blocks world operators to move blocks A and B onto the table from the other block if they are clear:

$$o_1 = \langle \top, (A \text{-}on \text{-}B \land A \text{-}clear) \triangleright (A \text{-}on \text{-}T \land B \text{-}clear \land \neg A \text{-}on \text{-}B) \rangle$$

 $o_2 = \langle \top, (B \text{-}on \text{-}A \land B \text{-}clear) \triangleright (B \text{-}on \text{-}T \land A \text{-}clear \land \neg B \text{-}on \text{-}A) \rangle$

Proof by regression that o_2 , o_1 puts both blocks onto the table from any blocks world state:

$$\begin{array}{lll} G &=& A\text{-on-}T \land B\text{-on-}T \\ \phi_1 &=& regr_{o_1}(G) \equiv ((A\text{-on-}B \land A\text{-clear}) \lor A\text{-on-}T) \land B\text{-on-}T \\ \phi_2 &=& regr_{o_2}(\phi_1) \\ &\equiv& ((A\text{-on-}B \land ((B\text{-on-}A \land B\text{-clear}) \lor A\text{-clear})) \lor A\text{-on-}T) \\ &\wedge& ((B\text{-on-}A \land B\text{-clear}) \lor B\text{-on-}T) \end{array}$$

AI Planning

All three legal 2-block states satisfy ϕ_2 . Similar plans exist for any number of blocks.

M. Helmert (Universität Freiburg))
-----------------------------------	---



Regression General case							
Regression example: binary counter							
$(eg b_0 arprop b_0) \land \ ((eg b_1 \land b_0) arprop (b_1 \land eg b_0)) \land \ ((eg b_2 \land b_1 \land b_0) arprop (b_2 \land eg b_1 \land eg b_0))$							
$\begin{aligned} & EPC_{b_2}(e) = \neg b_2 \wedge b_1 \wedge b_0 \\ & EPC_{b_1}(e) = \neg b_1 \wedge b_0 \\ & EPC_{b_0}(e) = \neg b_0 \\ & EPC_{\neg b_2}(e) = \bot \\ & EPC_{\neg b_1}(e) = \neg b_2 \wedge b_1 \wedge b_0 \\ & EPC_{\neg b_0}(e) = (\neg b_1 \wedge b_0) \vee (\neg b_2 \wedge b_1 \wedge b_0) \equiv (\neg b_1 \vee \neg b_2) \wedge b_0 \end{aligned}$							
Regression replaces state variables as follows:							
$b_2 \text{by} (\neg b_2 \land b_1 \land b_0) \lor (b_2 \land \neg \bot) \equiv (b_1 \land b_0) \lor b_2$ $b_1 \text{by} (\neg b_1 \land b_0) \lor (b_1 \land \neg (\neg b_2 \land b_1 \land b_0))$ $\equiv (\neg b_1 \land b_0) \lor (b_1 \land (b_2 \lor \neg b_0))$							
b_0 by $\neg b_0 \lor (b_0 \land \neg((\neg b_1 \lor \neg b_2) \land b_0)) \equiv \neg b_0 \lor (b_1 \land b_2)$							

AI Planning

October 31st, 2008

48 / 57

Regression General case

General regression: correctness

Theorem (correctness of $regr_{o}(\phi)$)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models regr_{o}(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. The rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$. Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Then $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$. M. Helmert (Universität Freiburg) AI Planning October 31st, 2008 49 / 57

> Practical issues Regression

Emptiness and subsumption testing

The following two tests are useful when performing regression searches, to avoid exploring unpromising branches:

- Testing that a formula $regr_{o}(\phi)$ does not represent the empty set (= search is in a dead end). For example, $regr_{(a, \neg p)}(p) \equiv a \land \bot \equiv \bot$.
- Testing that a regression step does not make the set of states smaller (= more difficult to reach).

AI Planning

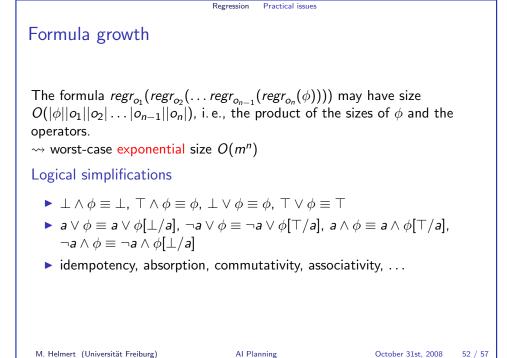
For example, $regr_{(b,c)}(a) \equiv a \wedge b$.

Both of these problems are NP-hard.

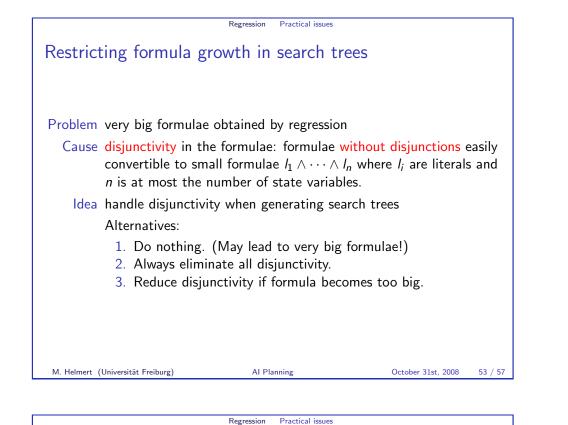
General regression: correctness

Proof (ctd.)

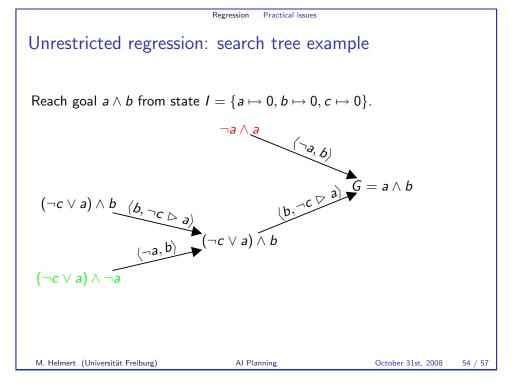
		n hypothesis $s \models \psi_r$ iff $s' \models$ by the logical semantics of -	'		
		tion hypothesis $s \models \psi_r$ iff $\models \psi'$. Hence $s \models \phi'_r$ iff $s' \models$ f \lor .	= \ \ \ \ \ \ \		
Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ in $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff s' by the logical semantics of \land .					
M. Helmert (Universität Fr	eiburg) Al Planning	October 31st, 2008	50 / 57		



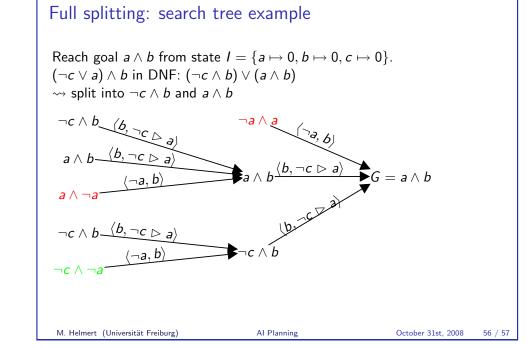
51 / 57



Full splitting: search tree example Full splitting ▶ Planners for STRIPS operators only need to use formulae $l_1 \land \cdots \land l_n$ $(\neg c \lor a) \land b$ in DNF: $(\neg c \land b) \lor (a \land b)$ where l_i are literals. \rightsquigarrow split into $\neg c \land b$ and $a \land b$ Some general planners also restrict to this class of formulae. This is done as follows: (b, c Da) 1. Transform $regr_{o}(\phi)$ to disjunctive normal form (DNF): $(l_1^1 \wedge \cdots \wedge l_{n_1}^1) \vee \cdots \vee (l_1^m \wedge \cdots \wedge l_{n_m}^m).$ $a \wedge b \checkmark b, \neg c \triangleright a$ 2. Generate one subtree of the search tree for each disjunct $l_1^i \wedge \cdots \wedge l_n^i$. ¬a. b) ▶ The DNF formulae need not exist in its entirety explicitly: can generate one disjunct at a time. \rightarrow branching is both on the choice of operator $\langle b, \neg c \triangleright a \rangle$ and on the choice of the disjunct of the DNF formula ¬a,b⟩ → increased branching factor and bigger search trees, but avoids big formulae AI Planning October 31st, 2008 55 / 57



Practical issues



Regression

Regression Practical issues

General splitting strategies

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- There are several ways to split a formula ϕ to ϕ_1, \ldots, ϕ_n such that $\phi \equiv \phi_1 \lor \cdots \lor \phi_n$. For example:
 - Transform ϕ to $\phi_1 \lor \cdots \lor \phi_n$ by equivalences like distributivity: $(\phi \lor \phi') \land \psi \equiv (\phi \land \psi) \lor (\phi' \land \psi).$

AI Planning

Choose state variable a, set φ₁ = a ∧ φ and φ₂ = ¬a ∧ φ, and simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[⊤/a].

October 31st, 2008 57 / 57