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State-space search Introduction

State-space search

> state-space search: one of the big success stories of Al

» many planning algorithms based on state-space search
(we'll see some other algorithms later, though)
» will be the focus of this and the following topics

> we assume prior knowledge of basic search algorithms

» uninformed vs. informed
» systematic vs. local

> background on search: Russell & Norvig, Artificial Intelligence — A
Modern Approach, chapters 3 and 4
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State-space search Introduction

Satisficing or optimal planning?

Must carefully distinguish two different problems:

» satisficing planning: any solution is OK
(although shorter solutions typically preferred)

» optimal planning: plans must have shortest possible length

Both are often solved by search, but:
» details are very different

> almost no overlap between good techniques for satisficing planning
and good techniques for optimal planning

» many problems that are trivial for satisficing planners are impossibly
hard for optimal planners
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State-space search Classification

Planning by state-space search

How to apply search to planning? ~» many choices to make!

Choice 1: Search direction

» progression: forward from initial state to goal
> regression: backward from goal states to initial state

» bidirectional search
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State-space search Classification

Planning by state-space search

How to apply search to planning? ~» many choices to make!

Choice 2: Search space representation

» search nodes are associated with states

» search nodes are associated with sets of states
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State-space search Classification

Planning by state-space search

How to apply search to planning? ~» many choices to make!

Choice 3: Search algorithm
» uninformed search:
depth-first, breadth-first, iterative depth-first, ...

» heuristic search (systematic):
greedy best-first, A*, Weighted A*, IDA*, ...

» heuristic search (local):
hill-climbing, simulated annealing, beam search, ...
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State-space search Classification

Planning by state-space search

How to apply search to planning? ~» many choices to make!

Choice 4: Search control

» heuristics for informed search algorithms

» pruning techniques: invariants, symmetry elimination, helpful actions
pruning, ...
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State-space search Classification

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

search direction: forward search
search space representation: single states
search algorithm: enforced hill-climbing (informed local)

heuristic: FF heuristic (inadmissible)

vV v v v VY

pruning technique: helpful actions (incomplete)

~> one of the best satisficing planners
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State-space search Classification

Search-based optimal planners

Fast Downward + hHHH (Helmert, Haslum & Hoffmann, 2007)

search direction: forward search

search space representation: single states

>

>

» search algorithm: A* (informed systematic)

» heuristic: merge-and-shrink abstractions (admissible)
>

pruning technique: none

~> one of the best optimal planners
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State-space search Classification

Our plan for the next lectures

Choices to make:

1. search direction: progression/regression/both
~> this chapter

2. search space representation: states/sets of states
~= this chapter

3. search algorithm: uninformed/heuristic; systematic/local
~> next chapter

4. search control: heuristics, pruning techniques
~ following chapters
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Progression Overview

Planning by forward search: progression

Progression: Computing the successor state app,(s) of a state s with
respect to an operator o.
Progression planners find solutions by forward search:

> start from initial state

> iteratively pick a previously generated state and progress it through
an operator, generating a new state

» solution found when a goal state generated

pro: very easy and efficient to implement
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Progression Overview

Search space representation in progression planners

Two alternative search spaces for progression planners:
1. search nodes correspond to states

» when the same state is generated along different paths,
it is not considered again (duplicate detection)

> pro: fast

» con: memory intensive (must maintain closed list)

2. search nodes correspond to operator sequences

» different operator sequences may lead to identical states
(transpositions)

» pro: can be very memory-efficient

» con: much wasted work (often exponentially slower)

~ first alternative usually preferable
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Progression Example

Progression planning example (depth-first search)

"N\
A
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Progression planning example (depth-first search)
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Progression Example

Progression planning example (depth-first search)
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Progression Example

Progression planning example (depth-first search)
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Regression Overview

Forward search vs. backward search

Going through a transition graph in forward and backward directions is not
symmetric:

» forward search starts from a single initial state;
backward search starts from a set of goal states

» when applying an operator o in a state s in forward direction, there is
a unique successor state s’;
if we applied operator o to end up in state s/,
there can be several possible predecessor states s

~» most natural representation for backward search in planning associates
sets of states with search nodes
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Regression Overview

Planning by backward search: regression

Regression: Computing the possible predecessor states regr,(S) of a set of
states S with respect to the last operator o that was applied.
Regression planners find solutions by backward search:

» start from set of goal states

> iteratively pick a previously generated state set and
regress it through an operator, generating a new state set

» solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive
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Regression Overview

Search space representation in regression planners

identify state sets with logical formulae:
» search nodes correspond to state sets

> each state set is represented by a logical formula:
¢ represents {s € S| s = ¢}

» many basic search operations like detecting duplicates are NP-hard or
coNP-hard
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Regression Example

Regression planning example (depth-first search)
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Regression Example

Regression planning example (depth-first search)
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Regression Example

Regression planning example (depth-first search)

¢1 = regr__(G) 1 —> G
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Regression Example

Regression planning example (depth-first search)

¢1 = regr__(G) P2 —> ¢ —> G
¢2 = regr—>(¢1)

\ /

G
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Regression Example

Regression planning example (depth-first search)

¢1 = regr_(G) ¢3 —> o —> 1 —> G
¢2 = regr—>(¢1)
¢3 = regr—>(¢2)7l |: ¢3

/
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Regression STRIPS

Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS
operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:
» Goals are conjunctions of literals |t A --- A I,.

» First step: Choose an operator that makes some of ,...,/, true and
makes none of them false.

v

Second step: Remove goal literals achieved by the operator and add
its preconditions.

> ~- Qutcome of regression is again conjunction of literals.
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Regression STRIPS

STRIPS regression

Definition
let p =1 A Ad, y=71A---Aypand p=mn1 A--- Anm be
non-contradictory conjunctions of literals.

The STRIPS regression of ¢ with respect to o = (v, n) is

sregro(gb) = /\(({¢1a a¢k} \ {771a--- 77’m}) U {'71a--~ v'Yn})

provided that this conjunction is non-contradictory

and that —~¢; #n; forall i € {1,...,k}, j e {1,...,m}.
(Otherwise, sregr,(¢) is undefined.)

(A conjunction of literals is contradictory iff it contains two
complementary literals.)
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Regression STRIPS

STRIPS regression example

1. &.8.0

NOTE: Predecessor states are in general not unique.

This picture is just for illustration purposes.
o1 = (Mon® N\ Mclr,—Mon® A\ MonT A Mclr)
0o = (MonM N Mclr A Mclr,—Mclr N ~Monl N\ Bonl A Mclr)
o3 = (MonT N Mclr A Wclr,—Mclr A —BonT N\ Moni)

G =Honl A Honll

¢1 = sregr,,(G) = WonM N MonT A Mclr A Mclr
¢2 = sregr,, (1) = MonT N Mcir A Monll A Mclr
¢3 = sregr,, (¢2) = MonT A Monl A Mclr A Mon®
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Regression General case

Regression for general planning tasks

» With disjunctions and conditional effects, things become more tricky.
How to regress AV (B A C) with respect to (Q, D > B)?

» The story about goals and subgoals and fulfilling subgoals, as in the
STRIPS case, is no longer useful.

» We present a general method for doing regression for any formula and
any operator.

» Now we extensively use the idea of representing sets of states as
formulae.
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Regression General case

Effect preconditions

Definition (effect precondition)

The effect precondition EPC/(e) for literal | and effect e is defined as
follows:

) = T

)y = Lifl#/1 (for literals I)

EPC;(el VASEEIVAN e,,) = EPC/(el) VeV EPC/(e,,)
EPC/(c>€e) = EPC(e)Nc

Intuition: EPC;(e) describes the situations in which effect e causes literal /
to become true.
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Regression General case

Effect precondition examples

Example
EPC,(bNc) = Lvli=1
EPCi(an(br>a)) = TV(TAb)=T
EPC,((c>a)A(b>a)) = (TAc)V(TAb)=cVb
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Regression General case

Effect preconditions: connection to change sets

Lemma (A)

Let s be a state, | a literal and e an effect. Then | € [e]s if and only if
S ’: EPC/(e).

Proof.

Induction on the structure of the effect e.

Base case 1, e = I: | € [l]s = {I} by definition, and s = EPC)(/) = T by
definition. Both sides of the equivalence are true.

Base case 2, e = /I’ for some literal I' # I: | ¢ [I'|s = {I'} by definition,
and s = EPC(I') = L by definition. Both sides are false.
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Regression General case

Effect preconditions: connection to change sets

Proof (ctd.)

Inductive case 1, e = e; A --- A ep:

I € [e]siff | € [e1]s U---U[en]s (Def [e1 A=+ Aenls)
iff | € [€']s for some €' € {e1,...,en}
iff s = EPCi(€’) for some €' € {ey,...,en} (IH)
iff s ): EPC,(el) VeV EPC,(e,,)
iff s = EPCi(e1 A -+ A ep). (Def EPC)
Inductive case 2, e =c > €:
l€lcr €siff I € [€]s and s = ¢ (Def [c > €]s)
iff s = EPC(e') and s |= ¢ (IH)
iff s = EPCi(e') A c
iff s = EPC(c > €). (Def EPC)
L]
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Regression General case

Effect preconditions: connection to normal form

Remark

Notice that in terms of EPC,(e), any operator (c, e) can be expressed in
normal form as

<c, /\ ((EPCa(e) > a) A (EPC_,(e) > ﬂa))> :

acA
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Regression General case

Regressing state variables

The formula EPC,(e) V (a A —~EPC-,(e)) expresses
the value of state variable a € A after applying o
in terms of values of state variables before applying o.

Either:
» a became true, or

> a was true before and it did not become false.
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Regression General case

Regressing state variables: examples

Example
Lete=(br>a)A(c>—a)AbA—d.

variable | EPC_(e) V (--- A =EPC.._(e))

a bV (aA-c)

b TV(bA-L)=T
c 1Lv(en-Ll)=c
d LV(dA-T)=1
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Regression General case

Regressing state variables: correctness

Lemma (B)

Let a be a state variable, o = (c, €) an operator,
s a state, and s’ = app,(s).
Then s = EPC,(e) V (a A ~EPC-,(e)) if and only if s’ |= a.

Proof.
(=): Assume s |= EPC,(e) V (a A =EPC-,(e)).
Do a case analysis on the two disjuncts.

1. Assume that s = EPC,(e). By Lemma A, we have a € [e]s and hence
s = a.

2. Assume that s = a A ~EPC_(e). By Lemma, we have A —a ¢ [e]s.
Hence a remains true in s'.
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Regression General case

Regressing state variables: correctness

Proof (ctd.)

(«<): We showed that if the formula is true in s, then a is true in s’. For
the second part, we show that if the formula is false in s, then a is false in

s’

» So assume s [~ EPC,(e) V (a A =EPC-,(e)).
» Then s = —EPC,(e) A (—a Vv EPC_,(e)) (de Morgan).

> Analyze the two cases: a is true or it is false in s.

1. Assume that s = a. Now s = EPC_,(e) because s |= —a Vv EPC_,(e).
Hence by Lemma A —a € [¢e]s and we get s’ |~ a.

2. Assume that s [~ a. Because s = ~EPC,(€), by Lemma A we get
a ¢ [e]s and hence s’ [~ a.

Therefore in both cases s’ £ a.
O
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Regression General case

Regression: general definition

We base the definition of regression on formulae EPC)(e).

Definition (general regression)

Let ¢ be a propositional formula and o = (c, ) an operator.
The regression of ¢ with respect to o is

regro(¢) = cANor N F

where

1. ¢, is obtained from ¢ by replacing each a € A by
EPC,(e) V (a AN —EPC-(e)), and

2. f = Nsea—~(EPCs(e) A EPC_,(e)).

The formula f says that no state variable may become simultaneously true
and false.
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Regression General case

Regression examples

> regriop(b) =an(TV(bA-L)AT=a

> regri,p(bAcAd)

an(TV((bA=L)A(LV(cA-L)A(LV(dA-L)AT

aNcNnd

> regriy copy(b) =aA(cV(BA-L) AT =aA(cVb)

> regri, (esb)n(b-b)) (P) = aA (¢ V (b A —b)) A=(cAb)
=aAcA-b

> regr<a’(cl>b)/\(d,>ﬁb)>(b) =aA(cV(bA=d))A=(cAd)
=aA(cVb)A(cV—d)A(-cVd)
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Regression General case

Regression example: blocks world

Consider blocks world operators to move blocks A and B onto the table
from the other block if they are clear:

o1 = (T, (A-on-B A A-clear) > (A-on-T A B-clear A ~A-on-B))
02 = (T, (B-on-A A B-clear) > (B-on-T A A-clear A ~B-on-A))

Proof by regression that o0y, 01 puts both blocks onto the table from any
blocks world state:

G = A-on-TAB-on-T

¢1 = regr, (G) = ((A-on-B A A-clear) vV A-on-T) A B-on-T
¢2 = regry,(¢1)

((A-on-B A ((B-on-A N B-clear) vV A-clear)) V A-on-T)
A ((B-on-A A B-clear) V B-on-T)

All three legal 2-block states satisfy ¢».
Similar plans exist for any number of blocks.
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Regression General case

Regression example: binary counter

(mbo > bo) A
((—by A bo) > (b1 A —bg)) A
((—b2 A by A bo) > (b A —by A —by))

EPCbZ(e) = _\b2 A b1 A bo
EPCbl(e) = —|b1 A bo
EPCbO(e) = by
EPC_J,Z(G) :J_
EPCﬁbl(e) =-by A\ by N\ by
EPC_,bO( ): (ﬁbl A\ bo) \Y ( by A by A bo) = (ﬁbl V ﬁb2) A bg

Regression replaces state variables as follows:

b, by (—|b2 A by A bo) \Y (b2 VAN ﬂJ_) = (bl VAN b()) V by
by by (—|b1 A bo) vV (b1 A —|(—\b2 A b1 A bo))
= (ﬁbl AN b()) V (b1 VAN (b2 V ﬁbo))
by by —bgV (bo VAN —|((—|b1 V —|b2) A bo)) = by V (bl A bg)
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Regression General case

General regression: correctness

Theorem (correctness of regr,(¢))
Let ¢ be a formula, o an operator, s any state and s' = app,(s). Then
s = regr,(¢) if and only if s’ = ¢.

Proof.
Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/ iff s’ |= ¢/, where ¢, is ¢’ with every
a € A replaced by EPC,(e) V (a A ~EPC-,(e)).
The rest of regr,(¢) just states that o is applicable in s.
Induction hypothesis s = ¢/ if and only if s’ = ¢'.
Base cases 1 & 2 ¢/ =T or ¢/ = L: trivial, as ¢, = ¢'.
Base case 3 ¢/ = a for some a € A:
Then ¢, = EPC,(e) V (a A ~EPC_,(€)).
By Lemma B, s = ¢/ iff s’ = ¢/.
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Regression General case

General regression: correctness

Proof (ctd.)

Inductive case 1 ¢’ = —): By the induction hypothesis s = 1), iff s = .
Hence s = ¢ iff s’ = ¢’ by the logical semantics of —.

Inductive case 2 ¢ =1V ¢': By the induction hypothesis s |= 1), iff
s'"E, and s ) iff S =4, Hence s |= ¢ iff s’ = ¢/

by the logical semantics of V.
Inductive case 3 ¢' = A«)": By the induction hypothesis s = 1), iff
s'"E, and s ) iff S =4, Hence s |= ¢ iff s’ = ¢/

by the logical semantics of A.

O
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Regression Practical issues

Emptiness and subsumption testing

The following two tests are useful when performing regression searches, to
avoid exploring unpromising branches:

» Testing that a formula regr,(¢) does not represent the empty set (=
search is in a dead end).
For example, regri, ., (p) =aA L= 1.

> Testing that a regression step does not make the set of states smaller
(= more difficult to reach).

For example, regry, cy(a) = a A b.

Both of these problems are NP-hard.
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Regression Practical issues

Formula growth

The formula regr, (regr,,(. .. regr,  (regr,, (#)))) may have size
O(|¢||o1]]oz| - - - |on—1]|on]), i.e., the product of the sizes of ¢ and the
operators.

~~ worst-case exponential size O(m")
Logical simplifications

> LAp=1L, TAp=¢, LVop=9¢, TVP=T

» aVo=aVoll/al, avo=-aVve[T/al,and=ano¢[T/a],
—aAN¢=-aNg[Ll/a]

> idempotency, absorption, commutativity, associativity, ...
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Regression Practical issues

Restricting formula growth in search trees

Problem very big formulae obtained by regression

Cause disjunctivity in the formulae: formulae without disjunctions easily
convertible to small formulae 4 A --- A I, where /; are literals and
n is at most the number of state variables.

Idea handle disjunctivity when generating search trees
Alternatives:

1. Do nothing. (May lead to very big formulae!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.
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Regression Practical issues

Unrestricted regression: search tree example

Reach goal a A b from state | = {a+— 0,b+— 0,c +— 0}.

—alAa
(9,4

/

G=aAb
(ﬁCVa)Ab (b Cva\1

w‘
i

(—cVa)A-a

(o
3

“cVa)Ab
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Regression Practical issues

Full splitting

» Planners for STRIPS operators only need to use formulae 1 A --- A I,
where [; are literals.
» Some general planners also restrict to this class of formulae. This is
done as follows:
1. Transform regr,(¢) to disjunctive normal form (DNF):
(BN ALYV V(A AT, ' '
2. Generate one subtree of the search tree for each disjunct f A--- A [} .
» The DNF formulae need not exist in its entirety explicitly:
can generate one disjunct at a time.
~» branching is both on the choice of operator
and on the choice of the disjunct of the DNF formula
~ increased branching factor and bigger search trees,
but avoids big formulae
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Regression Practical issues

Full splitting: search tree example

Reach goal a A b from state | = {a+— 0,b+— 0,c +— 0}.
(mcVva)Abin DNF: (mc A b)V (aAb)
~= split into -c Aband aA b

-cADb —aAa
6 (o
anb b o
anb , ¢~ 3 G=aAb
a/N—-a
-cADb b7ﬁCl>a 9

__,a’b _‘C/\b
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Regression Practical issues

General splitting strategies

» With full splitting search tree can be exponentially bigger than
without splitting. (But it is not necessary to construct the DNF
formulae explicitly!)

» Without splitting the formulae may have size that is exponential in
the number of state variables.

» A compromise is to split formulae only when necessary: combine
benefits of the two extremes.
» There are several ways to split a formula ¢ to ¢1, ..., ¢, such that
O=¢1V---V @, For example:
» Transform ¢ to ¢1 V ---V ¢, by equivalences like distributivity:

(pV )AL =(pAP)V (¢ AY).
» Choose state variable a, set ¢1 = a A ¢ and ¢» = —a A ¢, and simplify
with equivalences like a A ¢ = a A [T /a].
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