Principles of Al Planning 5. State-space search: progression and regression

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 31st, 2008

Principles of AI Planning

October 31st, 2008 - 5. State-space search: progression and regression

Planning by state-space search

Introduction Classification of state-space search algorithms

Progression

Overview Example

Regression

Overview Example Regression for STRIPS tasks Regression for general planning tasks Practical issues

State-space search

- state-space search: one of the big success stories of AI
- many planning algorithms based on state-space search (we'll see some other algorithms later, though)
- will be the focus of this and the following topics
- we assume prior knowledge of basic search algorithms
 - uninformed vs. informed
 - systematic vs. local
- background on search: Russell & Norvig, Artificial Intelligence A Modern Approach, chapters 3 and 4

Satisficing or optimal planning?

Must carefully distinguish two different problems:

- satisficing planning: any solution is OK (although shorter solutions typically preferred)
- optimal planning: plans must have shortest possible length

Both are often solved by search, but:

- details are very different
- almost no overlap between good techniques for satisficing planning and good techniques for optimal planning
- many problems that are trivial for satisficing planners are impossibly hard for optimal planners

How to apply search to planning? \rightsquigarrow many choices to make!

- Choice 1: Search direction
 - progression: forward from initial state to goal
 - regression: backward from goal states to initial state
 - bidirectional search

How to apply search to planning? ~> many choices to make!

Choice 2: Search space representation

- search nodes are associated with states
- search nodes are associated with sets of states

How to apply search to planning? ~> many choices to make!

Choice 3: Search algorithm

- uninformed search: depth-first, breadth-first, iterative depth-first, ...
- heuristic search (systematic): greedy best-first, A*, Weighted A*, IDA*,
- heuristic search (local):

hill-climbing, simulated annealing, beam search, ...

How to apply search to planning? \rightsquigarrow many choices to make!

- Choice 4: Search control
- heuristics for informed search algorithms
- pruning techniques: invariants, symmetry elimination, helpful actions pruning, ...

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

- search direction: forward search
- search space representation: single states
- search algorithm: enforced hill-climbing (informed local)
- heuristic: FF heuristic (inadmissible)
- pruning technique: helpful actions (incomplete)

 \rightsquigarrow one of the best satisficing planners

Search-based optimal planners

Fast Downward + h^{HHH} (Helmert, Haslum & Hoffmann, 2007)

- search direction: forward search
- search space representation: single states
- search algorithm: A* (informed systematic)
- heuristic: merge-and-shrink abstractions (admissible)
- pruning technique: none

 \rightsquigarrow one of the best optimal planners

Our plan for the next lectures

Choices to make:

- 1. search direction: progression/regression/both → this chapter
- 2. search space representation: states/sets of states → this chapter
- 3. search algorithm: uninformed/heuristic; systematic/local → next chapter
- search control: heuristics, pruning techniques
 → following chapters

Planning by forward search: progression

Progression: Computing the successor state $app_o(s)$ of a state *s* with respect to an operator *o*.

Progression planners find solutions by forward search:

- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated

pro: very easy and efficient to implement

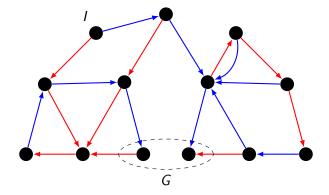
Search space representation in progression planners

Two alternative search spaces for progression planners:

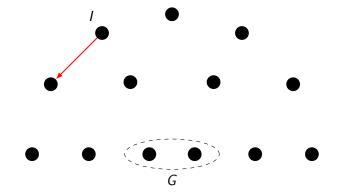
- 1. search nodes correspond to states
 - when the same state is generated along different paths, it is not considered again (duplicate detection)
 - pro: fast
 - con: memory intensive (must maintain closed list)
- 2. search nodes correspond to operator sequences
 - different operator sequences may lead to identical states (transpositions)
 - pro: can be very memory-efficient
 - con: much wasted work (often exponentially slower)

 \rightsquigarrow first alternative usually preferable

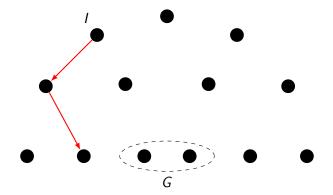
Progression planning example (depth-first search)



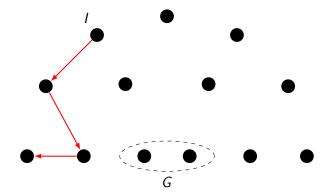
Progression planning example (depth-first search)



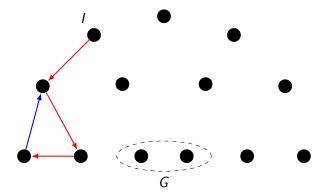
Progression planning example (depth-first search)



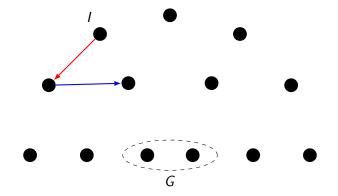
Progression planning example (depth-first search)



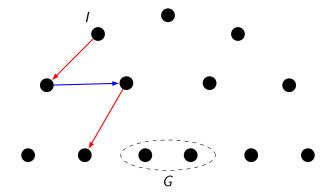
Progression planning example (depth-first search)



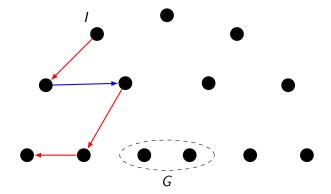
Progression planning example (depth-first search)



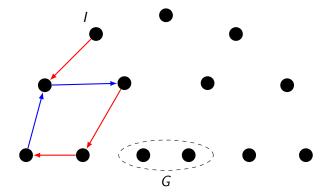
Progression planning example (depth-first search)



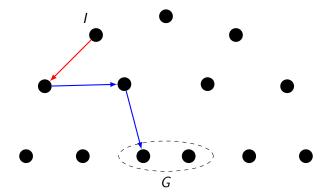
Progression planning example (depth-first search)



Progression planning example (depth-first search)



Progression planning example (depth-first search)



Forward search vs. backward search

Going through a transition graph in forward and backward directions is not symmetric:

- forward search starts from a single initial state; backward search starts from a set of goal states
- when applying an operator o in a state s in forward direction, there is a unique successor state s';

if we applied operator o to end up in state s', there can be several possible predecessor states s

 \rightsquigarrow most natural representation for backward search in planning associates sets of states with search nodes

Planning by backward search: regression

Regression: Computing the possible predecessor states $regr_{o}(S)$ of a set of states S with respect to the last operator o that was applied.

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- solution found when a generated state set includes the initial state

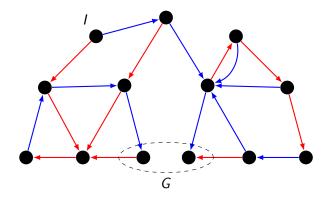
Pro: can handle many states simultaneously Con: basic operations complicated and expensive

Search space representation in regression planners

identify state sets with logical formulae:

- search nodes correspond to state sets
- many basic search operations like detecting duplicates are NP-hard or coNP-hard

Regression planning example (depth-first search)

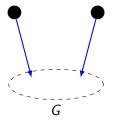


Regression planning example (depth-first search)

G

Regression planning example (depth-first search)

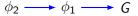
$$\phi_1 = \operatorname{regr}_{\longrightarrow}(G) \qquad \qquad \phi_1 \longrightarrow G$$

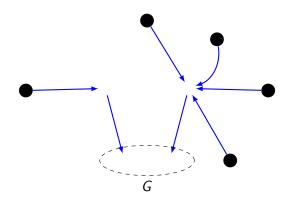


Regression planning example (depth-first search)

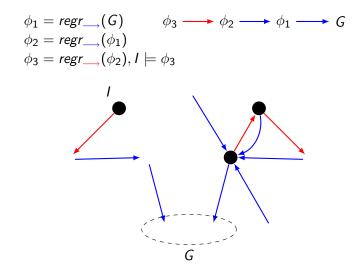
$$\phi_1 = \operatorname{regr}_{\longrightarrow}(G)$$

$$\phi_2 = \operatorname{regr}_{\longrightarrow}(\phi_1)$$





Regression planning example (depth-first search)



Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

- Goals are conjunctions of literals $I_1 \wedge \cdots \wedge I_n$.
- ▶ First step: Choose an operator that makes some of *l*₁,..., *l_n* true and makes none of them false.
- Second step: Remove goal literals achieved by the operator and add its preconditions.
- ► ~→ Outcome of regression is again conjunction of literals.

STRIPS regression

Definition

Let $\phi = \phi_1 \wedge \cdots \wedge \phi_k$, $\gamma = \gamma_1 \wedge \cdots \wedge \gamma_n$ and $\eta = \eta_1 \wedge \cdots \wedge \eta_m$ be non-contradictory conjunctions of literals.

The STRIPS regression of ϕ with respect to $o = \langle \gamma, \eta \rangle$ is

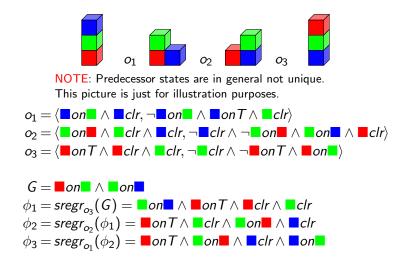
$$sregr_o(\phi) := \bigwedge \left(\left(\{\phi_1, \dots, \phi_k\} \setminus \{\eta_1, \dots, \eta_m\} \right) \cup \{\gamma_1, \dots, \gamma_n\} \right)$$

provided that this conjunction is non-contradictory and that $\neg \phi_i \neq \eta_j$ for all $i \in \{1, \ldots, k\}$, $j \in \{1, \ldots, m\}$. (Otherwise, $sregr_o(\phi)$ is undefined.)

(A conjunction of literals is contradictory iff it contains two complementary literals.)

STRIPS

STRIPS regression example



Regression for general planning tasks

- With disjunctions and conditional effects, things become more tricky. How to regress A ∨ (B ∧ C) with respect to ⟨Q, D ▷ B⟩?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

Effect preconditions

Definition (effect precondition)

The effect precondition $EPC_{I}(e)$ for literal *I* and effect *e* is defined as follows:

$$EPC_{l}(l) = \top$$

$$EPC_{l}(l') = \bot \text{ if } l \neq l' \text{ (for literals } l')$$

$$EPC_{l}(e_{1} \land \dots \land e_{n}) = EPC_{l}(e_{1}) \lor \dots \lor EPC_{l}(e_{n})$$

$$EPC_{l}(c \rhd e) = EPC_{l}(e) \land c$$

Intuition: $EPC_{I}(e)$ describes the situations in which effect *e* causes literal *I* to become true.

Effect precondition examples

Example

$$\begin{split} EPC_a(b \wedge c) &= \quad \bot \lor \bot \equiv \bot \\ EPC_a(a \wedge (b \rhd a)) &= \quad \top \lor (\top \wedge b) \equiv \top \\ EPC_a((c \rhd a) \wedge (b \rhd a)) &= \quad (\top \wedge c) \lor (\top \wedge b) \equiv c \lor b \end{split}$$

Effect preconditions: connection to change sets

Lemma (A)

Let s be a state, I a literal and e an effect. Then $I \in [e]_s$ if and only if $s \models EPC_I(e)$.

Proof.

Induction on the structure of the effect *e*.

Base case 1, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides of the equivalence are true. Base case 2, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \nvDash EPC_l(l') = \bot$ by definition. Both sides are false.

Effect preconditions: connection to change sets

Proof (ctd.)

Inductive case 1,
$$e = e_1 \land \dots \land e_n$$
:
 $l \in [e]_s \text{ iff } l \in [e_1]_s \cup \dots \cup [e_n]_s$ (Def $[e_1 \land \dots \land e_n]_s$)
 $\text{ iff } l \in [e']_s \text{ for some } e' \in \{e_1, \dots, e_n\}$
 $\text{ iff } s \models EPC_l(e') \text{ for some } e' \in \{e_1, \dots, e_n\}$ (IH)
 $\text{ iff } s \models EPC_l(e_1) \lor \dots \lor EPC_l(e_n)$
 $\text{ iff } s \models EPC_l(e_1 \land \dots \land e_n).$ (Def *EPC*)
Inductive case 2, $e = c \triangleright e'$:
 $l \in [c \triangleright e']_s \text{ iff } l \in [e']_s \text{ and } s \models c$ (Def $[c \triangleright e']_s)$
 $\text{ iff } s \models EPC_l(e') \land c$
 $\text{ iff } s \models EPC_l(e') \land c$
 $\text{ iff } s \models EPC_l(c \triangleright e').$ (Def *EPC*)

Effect preconditions: connection to normal form

Remark

Notice that in terms of $EPC_a(e)$, any operator $\langle c, e \rangle$ can be expressed in normal form as

$$\left\langle c, \bigwedge_{a\in A} \left((EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a) \right) \right\rangle.$$

Regressing state variables

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of state variable $a \in A$ after applying oin terms of values of state variables before applying o.

Either:

- a became true, or
- a was true before and it did not become false.

Regressing state variables: examples

Example

Let $e = (b \rhd a) \land (c \rhd \neg a) \land b \land \neg d$.

	$EPC_{\dots}(e) \lor (\dots \land \neg EPC_{\neg \dots}(e))$
а	$b \lor (a \land \neg c)$
b	$ op \lor (b \land \neg \bot) \equiv op$
С	$\perp \lor (c \land \neg \bot) \equiv c$
d	$ \begin{array}{c} b \lor (a \land \neg c) \\ \top \lor (b \land \neg \bot) \equiv \top \\ \bot \lor (c \land \neg \bot) \equiv c \\ \bot \lor (d \land \neg \top) \equiv \bot \end{array} $

Regressing state variables: correctness

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle$ an operator, s a state, and $s' = app_{a}(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

$$(\Rightarrow)$$
: Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$

Do a case analysis on the two disjuncts.

- 1. Assume that $s \models EPC_a(e)$. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.
- 2. Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma, we have $A \neg a \notin [e]_s$. Hence *a* remains true in s'.

Regressing state variables: correctness

Proof (ctd.)

(\Leftarrow): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- ▶ Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

Analyze the two cases: *a* is true or it is false in *s*.

- 1. Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
- 2. Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A we get $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Regression: general definition

We base the definition of regression on formulae $EPC_l(e)$.

Definition (general regression)

Let ϕ be a propositional formula and $o = \langle c, e \rangle$ an operator. The regression of ϕ with respect to o is

$$\operatorname{regr}_o(\phi) = c \wedge \phi_r \wedge f$$

where

The formula f says that no state variable may become simultaneously true and false.

Regression examples

▶
$$regr_{\langle a,b \rangle}(b) \equiv a \land (\top \lor (b \land \neg \bot)) \land \top \equiv a$$

►
$$regr_{(a,b)}(b \land c \land d)$$

≡ $a \land (\top \lor (b \land \neg \bot)) \land (\bot \lor (c \land \neg \bot)) \land (\bot \lor (d \land \neg \bot)) \land \top$
≡ $a \land c \land d$

►
$$regr_{(a,c \triangleright b)}(b) \equiv a \land (c \lor (b \land \neg \bot)) \land \top \equiv a \land (c \lor b)$$

$$\mathsf{regr}_{\langle a, (c \rhd b) \land (b \rhd \neg b) \rangle}(b) \equiv a \land (c \lor (b \land \neg b)) \land \neg (c \land b) \\ \equiv a \land c \land \neg b$$

$$regr_{(a,(c \rhd b) \land (d \rhd \neg b))}(b) \equiv a \land (c \lor (b \land \neg d)) \land \neg (c \land d) \\ \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$$

Regression example: blocks world

Consider blocks world operators to move blocks A and B onto the table from the other block if they are clear:

$$o_1 = \langle \top, (A \text{-} on \text{-} B \land A \text{-} clear)
ightarrow (A \text{-} on \text{-} T \land B \text{-} clear \land \neg A \text{-} on \text{-} B)
angle$$

 $o_2 = \langle \top, (B \text{-} on \text{-} A \land B \text{-} clear)
ightarrow (B \text{-} on \text{-} T \land A \text{-} clear \land \neg B \text{-} on \text{-} A)
angle$

Proof by regression that o_2 , o_1 puts both blocks onto the table from any blocks world state:

All three legal 2-block states satisfy ϕ_2 . Similar plans exist for any number of blocks.

Regression example: binary counter

$$\begin{array}{c} (\neg b_0 \rhd b_0) \land \\ ((\neg b_1 \land b_0) \rhd (b_1 \land \neg b_0)) \land \\ ((\neg b_2 \land b_1 \land b_0) \rhd (b_2 \land \neg b_1 \land \neg b_0)) \end{array} \\ \\ EPC_{b_2}(e) = \neg b_2 \land b_1 \land b_0 \\ EPC_{b_1}(e) = \neg b_1 \land b_0 \\ EPC_{\neg b_2}(e) = \bot \\ EPC_{\neg b_2}(e) = \bot \\ EPC_{\neg b_1}(e) = \neg b_2 \land b_1 \land b_0 \\ EPC_{\neg b_0}(e) = (\neg b_1 \land b_0) \lor (\neg b_2 \land b_1 \land b_0) \equiv (\neg b_1 \lor \neg b_2) \land b_0 \end{array}$$

Regression replaces state variables as follows:

$$b_2 \quad by \quad (\neg b_2 \land b_1 \land b_0) \lor (b_2 \land \neg \bot) \equiv (b_1 \land b_0) \lor b_2$$

$$b_1 \quad by \quad (\neg b_1 \land b_0) \lor (b_1 \land \neg (\neg b_2 \land b_1 \land b_0))$$

$$\equiv (\neg b_1 \land b_0) \lor (b_1 \land (b_2 \lor \neg b_0))$$

$$b_0 \quad by \quad \neg b_0 \lor (b_0 \land \neg ((\neg b_1 \lor \neg b_2) \land b_0)) \equiv \neg b_0 \lor (b_1 \land b_2)$$

General regression: correctness

Theorem (correctness of $regr_{o}(\phi)$)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models regr_{o}(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.

The rest of $regr_{o}(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$.

Base case 3
$$\phi' = a$$
 for some $a \in A$:
Then $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$.

General regression: correctness

Proof (ctd.)

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \neg . Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \vee .

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of \wedge .

Emptiness and subsumption testing

The following two tests are useful when performing regression searches, to avoid exploring unpromising branches:

Testing that a formula regr_o(φ) does not represent the empty set (= search is in a dead end).

For example, $\operatorname{regr}_{\langle a, \neg p \rangle}(p) \equiv a \land \bot \equiv \bot$.

 Testing that a regression step does not make the set of states smaller (= more difficult to reach).
 For example, regr_(b,c)(a) ≡ a ∧ b.

Both of these problems are NP-hard.

Formula growth

The formula $regr_{o_1}(regr_{o_2}(\ldots regr_{o_{n-1}}(regr_{o_n}(\phi))))$ may have size $O(|\phi||o_1||o_2|\ldots |o_{n-1}||o_n|)$, i. e., the product of the sizes of ϕ and the operators.

 \rightsquigarrow worst-case exponential size $O(m^n)$

Logical simplifications

$$\blacktriangleright \perp \land \phi \equiv \bot, \ \top \land \phi \equiv \phi, \ \bot \lor \phi \equiv \phi, \ \top \lor \phi \equiv \top$$

►
$$a \lor \phi \equiv a \lor \phi[\bot/a], \neg a \lor \phi \equiv \neg a \lor \phi[\top/a], a \land \phi \equiv a \land \phi[\top/a], \neg a \land \phi \equiv \neg a \land \phi[\bot/a]$$

idempotency, absorption, commutativity, associativity, ...

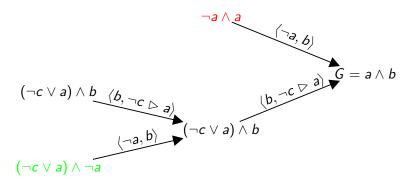
Restricting formula growth in search trees

Problem very big formulae obtained by regression

- Cause disjunctivity in the formulae: formulae without disjunctions easily convertible to small formulae $l_1 \wedge \cdots \wedge l_n$ where l_i are literals and n is at most the number of state variables.
 - Idea handle disjunctivity when generating search trees Alternatives:
 - 1. Do nothing. (May lead to very big formulae!)
 - 2. Always eliminate all disjunctivity.
 - 3. Reduce disjunctivity if formula becomes too big.

Unrestricted regression: search tree example

Reach goal $a \land b$ from state $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$.

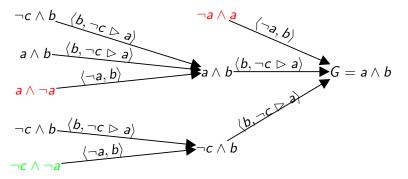


Full splitting

- Planners for STRIPS operators only need to use formulae l₁ ∧ · · · ∧ l_n where l_i are literals.
- Some general planners also restrict to this class of formulae. This is done as follows:
 - 1. Transform $regr_o(\phi)$ to disjunctive normal form (DNF):
 - $(l_1^1 \wedge \cdots \wedge l_{n_1}^1) \vee \cdots \vee (l_1^m \wedge \cdots \wedge l_{n_m}^m).$
 - 2. Generate one subtree of the search tree for each disjunct $l_1^i \wedge \cdots \wedge l_{n_i}^i$.
- The DNF formulae need not exist in its entirety explicitly: can generate one disjunct at a time.
- branching is both on the choice of operator and on the choice of the disjunct of the DNF formula
- increased branching factor and bigger search trees, but avoids big formulae

Full splitting: search tree example

Reach goal $a \land b$ from state $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$. $(\neg c \lor a) \land b$ in DNF: $(\neg c \land b) \lor (a \land b)$ \rightsquigarrow split into $\neg c \land b$ and $a \land b$



General splitting strategies

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- ▶ There are several ways to split a formula ϕ to ϕ_1, \ldots, ϕ_n such that $\phi \equiv \phi_1 \lor \cdots \lor \phi_n$. For example:
 - ► Transform ϕ to $\phi_1 \lor \cdots \lor \phi_n$ by equivalences like distributivity: $(\phi \lor \phi') \land \psi \equiv (\phi \land \psi) \lor (\phi' \land \psi).$
 - Choose state variable a, set φ₁ = a ∧ φ and φ₂ = ¬a ∧ φ, and simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[⊤/a].