#### Principles of Al Planning 5. State-space search: progression and regression

#### Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 31st, 2008

#### Principles of AI Planning

October 31st, 2008 - 5. State-space search: progression and regression

Planning by state-space search

Introduction Classification of state-space search algorithms

Progression

Overview Example

Regression

Overview Example Regression for STRIPS tasks Regression for general planning tasks Practical issues

#### State-space search

- state-space search: one of the big success stories of AI
- many planning algorithms based on state-space search (we'll see some other algorithms later, though)
- will be the focus of this and the following topics
- we assume prior knowledge of basic search algorithms
  - uninformed vs. informed
  - systematic vs. local
- background on search: Russell & Norvig, Artificial Intelligence A Modern Approach, chapters 3 and 4

# Satisficing or optimal planning?

Must carefully distinguish two different problems:

- satisficing planning: any solution is OK (although shorter solutions typically preferred)
- optimal planning: plans must have shortest possible length

Both are often solved by search, but:

- details are very different
- almost no overlap between good techniques for satisficing planning and good techniques for optimal planning
- many problems that are trivial for satisficing planners are impossibly hard for optimal planners

How to apply search to planning?  $\rightsquigarrow$  many choices to make!

- Choice 1: Search direction
  - progression: forward from initial state to goal
  - regression: backward from goal states to initial state
  - bidirectional search

How to apply search to planning? ~> many choices to make!

Choice 2: Search space representation

- search nodes are associated with states
- search nodes are associated with sets of states

How to apply search to planning? ~> many choices to make!

Choice 3: Search algorithm

- uninformed search: depth-first, breadth-first, iterative depth-first, ...
- heuristic search (systematic): greedy best-first, A\*, Weighted A\*, IDA\*, ....
- heuristic search (local):

hill-climbing, simulated annealing, beam search, ...

How to apply search to planning?  $\rightsquigarrow$  many choices to make!

- Choice 4: Search control
- heuristics for informed search algorithms
- pruning techniques: invariants, symmetry elimination, helpful actions pruning, ...

### Search-based satisficing planners

#### FF (Hoffmann & Nebel, 2001)

- search direction: forward search
- search space representation: single states
- search algorithm: enforced hill-climbing (informed local)
- heuristic: FF heuristic (inadmissible)
- pruning technique: helpful actions (incomplete)

 $\rightsquigarrow$  one of the best satisficing planners

#### Search-based optimal planners

Fast Downward +  $h^{\text{HHH}}$  (Helmert, Haslum & Hoffmann, 2007)

- search direction: forward search
- search space representation: single states
- search algorithm: A\* (informed systematic)
- heuristic: merge-and-shrink abstractions (admissible)
- pruning technique: none

 $\rightsquigarrow$  one of the best optimal planners

#### Our plan for the next lectures

Choices to make:

- 1. search direction: progression/regression/both → this chapter
- 2. search space representation: states/sets of states → this chapter
- 3. search algorithm: uninformed/heuristic; systematic/local → next chapter
- search control: heuristics, pruning techniques
   → following chapters

#### Planning by forward search: progression

**Progression:** Computing the successor state  $app_o(s)$  of a state *s* with respect to an operator *o*.

Progression planners find solutions by forward search:

- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated

pro: very easy and efficient to implement

#### Search space representation in progression planners

Two alternative search spaces for progression planners:

- 1. search nodes correspond to states
  - when the same state is generated along different paths, it is not considered again (duplicate detection)
  - pro: fast
  - con: memory intensive (must maintain closed list)
- 2. search nodes correspond to operator sequences
  - different operator sequences may lead to identical states (transpositions)
  - pro: can be very memory-efficient
  - con: much wasted work (often exponentially slower)

 $\rightsquigarrow$  first alternative usually preferable

# Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Progression planning example (depth-first search)



#### Forward search vs. backward search

Going through a transition graph in forward and backward directions is not symmetric:

- forward search starts from a single initial state; backward search starts from a set of goal states
- when applying an operator o in a state s in forward direction, there is a unique successor state s';

if we applied operator o to end up in state s', there can be several possible predecessor states s

 $\rightsquigarrow$  most natural representation for backward search in planning associates sets of states with search nodes

#### Planning by backward search: regression

Regression: Computing the possible predecessor states  $regr_{o}(S)$  of a set of states S with respect to the last operator o that was applied.

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously Con: basic operations complicated and expensive

#### Search space representation in regression planners

identify state sets with logical formulae:

- search nodes correspond to state sets
- many basic search operations like detecting duplicates are NP-hard or coNP-hard

#### Regression planning example (depth-first search)



#### Regression planning example (depth-first search)

G



#### Regression planning example (depth-first search)

$$\phi_1 = \operatorname{regr}_{\longrightarrow}(G) \qquad \qquad \phi_1 \longrightarrow G$$



Regression planning example (depth-first search)

$$\phi_1 = \operatorname{regr}_{\longrightarrow}(G)$$
  
$$\phi_2 = \operatorname{regr}_{\longrightarrow}(\phi_1)$$





Regression planning example (depth-first search)



### Regression for STRIPS planning tasks

#### Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

- Goals are conjunctions of literals  $I_1 \wedge \cdots \wedge I_n$ .
- ▶ First step: Choose an operator that makes some of *l*<sub>1</sub>,..., *l<sub>n</sub>* true and makes none of them false.
- Second step: Remove goal literals achieved by the operator and add its preconditions.
- ► ~→ Outcome of regression is again conjunction of literals.

## STRIPS regression

#### Definition

Let  $\phi = \phi_1 \wedge \cdots \wedge \phi_k$ ,  $\gamma = \gamma_1 \wedge \cdots \wedge \gamma_n$  and  $\eta = \eta_1 \wedge \cdots \wedge \eta_m$  be non-contradictory conjunctions of literals.

The STRIPS regression of  $\phi$  with respect to  $o = \langle \gamma, \eta \rangle$  is

$$sregr_o(\phi) := \bigwedge \left( \left( \{\phi_1, \dots, \phi_k\} \setminus \{\eta_1, \dots, \eta_m\} \right) \cup \{\gamma_1, \dots, \gamma_n\} \right)$$

provided that this conjunction is non-contradictory and that  $\neg \phi_i \neq \eta_j$  for all  $i \in \{1, \ldots, k\}$ ,  $j \in \{1, \ldots, m\}$ . (Otherwise,  $sregr_o(\phi)$  is undefined.)

(A conjunction of literals is contradictory iff it contains two complementary literals.)

#### STRIPS

### STRIPS regression example



#### Regression for general planning tasks

- With disjunctions and conditional effects, things become more tricky. How to regress A ∨ (B ∧ C) with respect to ⟨Q, D ▷ B⟩?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

#### Effect preconditions

#### Definition (effect precondition)

The effect precondition  $EPC_{I}(e)$  for literal *I* and effect *e* is defined as follows:

$$EPC_{l}(l) = \top$$

$$EPC_{l}(l') = \bot \text{ if } l \neq l' \text{ (for literals } l')$$

$$EPC_{l}(e_{1} \land \dots \land e_{n}) = EPC_{l}(e_{1}) \lor \dots \lor EPC_{l}(e_{n})$$

$$EPC_{l}(c \rhd e) = EPC_{l}(e) \land c$$

Intuition:  $EPC_{I}(e)$  describes the situations in which effect *e* causes literal *I* to become true.

# Effect precondition examples

### Example

$$\begin{split} EPC_a(b \wedge c) &= \quad \bot \lor \bot \equiv \bot \\ EPC_a(a \wedge (b \rhd a)) &= \quad \top \lor (\top \wedge b) \equiv \top \\ EPC_a((c \rhd a) \wedge (b \rhd a)) &= \quad (\top \wedge c) \lor (\top \wedge b) \equiv c \lor b \end{split}$$

# Effect preconditions: connection to change sets

# Lemma (A)

Let s be a state, I a literal and e an effect. Then  $I \in [e]_s$  if and only if  $s \models EPC_I(e)$ .

#### Proof.

Induction on the structure of the effect *e*.

Base case 1, e = l:  $l \in [l]_s = \{l\}$  by definition, and  $s \models EPC_l(l) = \top$  by definition. Both sides of the equivalence are true. Base case 2, e = l' for some literal  $l' \neq l$ :  $l \notin [l']_s = \{l'\}$  by definition, and  $s \nvDash EPC_l(l') = \bot$  by definition. Both sides are false.

# Effect preconditions: connection to change sets

### Proof (ctd.)

Inductive case 1, 
$$e = e_1 \land \dots \land e_n$$
:  
 $l \in [e]_s \text{ iff } l \in [e_1]_s \cup \dots \cup [e_n]_s$  (Def  $[e_1 \land \dots \land e_n]_s$ )  
 $\text{ iff } l \in [e']_s \text{ for some } e' \in \{e_1, \dots, e_n\}$   
 $\text{ iff } s \models EPC_l(e') \text{ for some } e' \in \{e_1, \dots, e_n\}$  (IH)  
 $\text{ iff } s \models EPC_l(e_1) \lor \dots \lor EPC_l(e_n)$   
 $\text{ iff } s \models EPC_l(e_1 \land \dots \land e_n).$  (Def *EPC*)  
Inductive case 2,  $e = c \triangleright e'$ :  
 $l \in [c \triangleright e']_s \text{ iff } l \in [e']_s \text{ and } s \models c$  (Def  $[c \triangleright e']_s)$   
 $\text{ iff } s \models EPC_l(e') \land c$   
 $\text{ iff } s \models EPC_l(e') \land c$   
 $\text{ iff } s \models EPC_l(c \triangleright e').$  (Def *EPC*)

# Effect preconditions: connection to normal form

#### Remark

Notice that in terms of  $EPC_a(e)$ , any operator  $\langle c, e \rangle$  can be expressed in normal form as

$$\left\langle c, \bigwedge_{a\in A} \left( (EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a) \right) \right\rangle.$$

# Regressing state variables

The formula  $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$  expresses the value of state variable  $a \in A$  after applying oin terms of values of state variables before applying o.

Either:

- a became true, or
- a was true before and it did not become false.

Regressing state variables: examples

#### Example

Let  $e = (b \rhd a) \land (c \rhd \neg a) \land b \land \neg d$ .

|   | $EPC_{\dots}(e) \lor (\dots \land \neg EPC_{\neg \dots}(e))$                                                                                                                                 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| а | $b \lor (a \land \neg c)$                                                                                                                                                                    |
| b | $	op \lor (b \land \neg \bot) \equiv 	op$                                                                                                                                                    |
| С | $\perp \lor (c \land \neg \bot) \equiv c$                                                                                                                                                    |
| d | $ \begin{array}{c} b \lor (a \land \neg c) \\ \top \lor (b \land \neg \bot) \equiv \top \\ \bot \lor (c \land \neg \bot) \equiv c \\ \bot \lor (d \land \neg \top) \equiv \bot \end{array} $ |

# Regressing state variables: correctness

### Lemma (B)

Let a be a state variable,  $o = \langle c, e \rangle$  an operator, s a state, and  $s' = app_{a}(s)$ . Then  $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$  if and only if  $s' \models a$ .

### Proof.

$$(\Rightarrow)$$
: Assume  $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ 

Do a case analysis on the two disjuncts.

- 1. Assume that  $s \models EPC_a(e)$ . By Lemma A, we have  $a \in [e]_s$  and hence  $s' \models a$ .
- 2. Assume that  $s \models a \land \neg EPC_{\neg a}(e)$ . By Lemma, we have  $A \neg a \notin [e]_s$ . Hence *a* remains true in s'.

# Regressing state variables: correctness

Proof (ctd.)

( $\Leftarrow$ ): We showed that if the formula is true in *s*, then *a* is true in *s'*. For the second part, we show that if the formula is false in *s*, then *a* is false in *s'*.

- So assume  $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$
- ▶ Then  $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$  (de Morgan).

Analyze the two cases: *a* is true or it is false in *s*.

- 1. Assume that  $s \models a$ . Now  $s \models EPC_{\neg a}(e)$  because  $s \models \neg a \lor EPC_{\neg a}(e)$ . Hence by Lemma A  $\neg a \in [e]_s$  and we get  $s' \not\models a$ .
- 2. Assume that  $s \not\models a$ . Because  $s \models \neg EPC_a(e)$ , by Lemma A we get  $a \notin [e]_s$  and hence  $s' \not\models a$ .

Therefore in both cases  $s' \not\models a$ .

# Regression: general definition

We base the definition of regression on formulae  $EPC_l(e)$ .

# Definition (general regression)

Let  $\phi$  be a propositional formula and  $o = \langle c, e \rangle$  an operator. The regression of  $\phi$  with respect to o is

$$\operatorname{regr}_o(\phi) = c \wedge \phi_r \wedge f$$

where

The formula f says that no state variable may become simultaneously true and false.

# Regression examples

▶ 
$$regr_{\langle a,b \rangle}(b) \equiv a \land (\top \lor (b \land \neg \bot)) \land \top \equiv a$$

► 
$$regr_{(a,b)}(b \land c \land d)$$
  
≡  $a \land (\top \lor (b \land \neg \bot)) \land (\bot \lor (c \land \neg \bot)) \land (\bot \lor (d \land \neg \bot)) \land \top$   
≡  $a \land c \land d$ 

► 
$$regr_{(a,c \triangleright b)}(b) \equiv a \land (c \lor (b \land \neg \bot)) \land \top \equiv a \land (c \lor b)$$

$$\mathsf{regr}_{\langle a, (c \rhd b) \land (b \rhd \neg b) \rangle}(b) \equiv a \land (c \lor (b \land \neg b)) \land \neg (c \land b) \\ \equiv a \land c \land \neg b$$

$$regr_{(a,(c \rhd b) \land (d \rhd \neg b))}(b) \equiv a \land (c \lor (b \land \neg d)) \land \neg (c \land d) \\ \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$$

## Regression example: blocks world

Consider blocks world operators to move blocks A and B onto the table from the other block if they are clear:

$$o_1 = \langle \top, (A \text{-} on \text{-} B \land A \text{-} clear) 
ightarrow (A \text{-} on \text{-} T \land B \text{-} clear \land \neg A \text{-} on \text{-} B) 
angle$$
  
 $o_2 = \langle \top, (B \text{-} on \text{-} A \land B \text{-} clear) 
ightarrow (B \text{-} on \text{-} T \land A \text{-} clear \land \neg B \text{-} on \text{-} A) 
angle$ 

Proof by regression that  $o_2$ ,  $o_1$  puts both blocks onto the table from any blocks world state:

All three legal 2-block states satisfy  $\phi_2$ . Similar plans exist for any number of blocks.

Regression example: binary counter

$$\begin{array}{c} (\neg b_0 \rhd b_0) \land \\ ((\neg b_1 \land b_0) \rhd (b_1 \land \neg b_0)) \land \\ ((\neg b_2 \land b_1 \land b_0) \rhd (b_2 \land \neg b_1 \land \neg b_0)) \end{array} \\ \\ EPC_{b_2}(e) = \neg b_2 \land b_1 \land b_0 \\ EPC_{b_1}(e) = \neg b_1 \land b_0 \\ EPC_{\neg b_2}(e) = \bot \\ EPC_{\neg b_2}(e) = \bot \\ EPC_{\neg b_1}(e) = \neg b_2 \land b_1 \land b_0 \\ EPC_{\neg b_0}(e) = (\neg b_1 \land b_0) \lor (\neg b_2 \land b_1 \land b_0) \equiv (\neg b_1 \lor \neg b_2) \land b_0 \end{array}$$

Regression replaces state variables as follows:

$$b_2 \quad by \quad (\neg b_2 \land b_1 \land b_0) \lor (b_2 \land \neg \bot) \equiv (b_1 \land b_0) \lor b_2$$
  

$$b_1 \quad by \quad (\neg b_1 \land b_0) \lor (b_1 \land \neg (\neg b_2 \land b_1 \land b_0))$$
  

$$\equiv (\neg b_1 \land b_0) \lor (b_1 \land (b_2 \lor \neg b_0))$$
  

$$b_0 \quad by \quad \neg b_0 \lor (b_0 \land \neg ((\neg b_1 \lor \neg b_2) \land b_0)) \equiv \neg b_0 \lor (b_1 \land b_2)$$

# General regression: correctness

# Theorem (correctness of $regr_{o}(\phi)$ )

Let  $\phi$  be a formula, o an operator, s any state and  $s' = app_o(s)$ . Then  $s \models regr_{o}(\phi)$  if and only if  $s' \models \phi$ .

### Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae  $\phi'$  of  $\phi$  that  $s \models \phi'_r$  iff  $s' \models \phi'$ , where  $\phi'_r$  is  $\phi'$  with every  $a \in A$  replaced by  $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ .

The rest of  $regr_{o}(\phi)$  just states that o is applicable in s.

Induction hypothesis  $s \models \phi'_r$  if and only if  $s' \models \phi'$ .

Base cases 1 & 2  $\phi' = \top$  or  $\phi' = \bot$ : trivial, as  $\phi'_r = \phi'$ .

Base case 3 
$$\phi' = a$$
 for some  $a \in A$ :  
Then  $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ .  
By Lemma B,  $s \models \phi'_r$  iff  $s' \models \phi'$ .

## General regression: correctness

# Proof (ctd.)

Inductive case 1  $\phi' = \neg \psi$ : By the induction hypothesis  $s \models \psi_r$  iff  $s' \models \psi$ . Hence  $s \models \phi'_r$  iff  $s' \models \phi'$  by the logical semantics of  $\neg$ . Inductive case 2  $\phi' = \psi \lor \psi'$ : By the induction hypothesis  $s \models \psi_r$  iff  $s' \models \psi$ , and  $s \models \psi'_r$  iff  $s' \models \psi'$ . Hence  $s \models \phi'_r$  iff  $s' \models \phi'$ by the logical semantics of  $\vee$ .

Inductive case 3  $\phi' = \psi \land \psi'$ : By the induction hypothesis  $s \models \psi_r$  iff  $s' \models \psi$ , and  $s \models \psi'_r$  iff  $s' \models \psi'$ . Hence  $s \models \phi'_r$  iff  $s' \models \phi'$ by the logical semantics of  $\wedge$ .

# Emptiness and subsumption testing

The following two tests are useful when performing regression searches, to avoid exploring unpromising branches:

Testing that a formula regr<sub>o</sub>(φ) does not represent the empty set (= search is in a dead end).

For example,  $\operatorname{regr}_{\langle a, \neg p \rangle}(p) \equiv a \land \bot \equiv \bot$ .

 Testing that a regression step does not make the set of states smaller (= more difficult to reach).
 For example, regr<sub>(b,c)</sub>(a) ≡ a ∧ b.

Both of these problems are NP-hard.

# Formula growth

The formula  $regr_{o_1}(regr_{o_2}(\ldots regr_{o_{n-1}}(regr_{o_n}(\phi))))$  may have size  $O(|\phi||o_1||o_2|\ldots |o_{n-1}||o_n|)$ , i. e., the product of the sizes of  $\phi$  and the operators.

 $\rightsquigarrow$  worst-case exponential size  $O(m^n)$ 

### Logical simplifications

$$\blacktriangleright \perp \land \phi \equiv \bot, \ \top \land \phi \equiv \phi, \ \bot \lor \phi \equiv \phi, \ \top \lor \phi \equiv \top$$

► 
$$a \lor \phi \equiv a \lor \phi[\bot/a], \neg a \lor \phi \equiv \neg a \lor \phi[\top/a], a \land \phi \equiv a \land \phi[\top/a], \neg a \land \phi \equiv \neg a \land \phi[\bot/a]$$

idempotency, absorption, commutativity, associativity, ...

# Restricting formula growth in search trees

Problem very big formulae obtained by regression

- Cause disjunctivity in the formulae: formulae without disjunctions easily convertible to small formulae  $l_1 \wedge \cdots \wedge l_n$  where  $l_i$  are literals and n is at most the number of state variables.
  - Idea handle disjunctivity when generating search trees Alternatives:
    - 1. Do nothing. (May lead to very big formulae!)
    - 2. Always eliminate all disjunctivity.
    - 3. Reduce disjunctivity if formula becomes too big.

## Unrestricted regression: search tree example

Reach goal  $a \land b$  from state  $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$ .



# Full splitting

- Planners for STRIPS operators only need to use formulae l<sub>1</sub> ∧ · · · ∧ l<sub>n</sub> where l<sub>i</sub> are literals.
- Some general planners also restrict to this class of formulae. This is done as follows:
  - 1. Transform  $regr_o(\phi)$  to disjunctive normal form (DNF):
    - $(l_1^1 \wedge \cdots \wedge l_{n_1}^1) \vee \cdots \vee (l_1^m \wedge \cdots \wedge l_{n_m}^m).$
  - 2. Generate one subtree of the search tree for each disjunct  $l_1^i \wedge \cdots \wedge l_{n_i}^i$ .
- The DNF formulae need not exist in its entirety explicitly: can generate one disjunct at a time.
- branching is both on the choice of operator and on the choice of the disjunct of the DNF formula
- increased branching factor and bigger search trees, but avoids big formulae

## Full splitting: search tree example

Reach goal  $a \land b$  from state  $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$ .  $(\neg c \lor a) \land b$  in DNF:  $(\neg c \land b) \lor (a \land b)$  $\rightsquigarrow$  split into  $\neg c \land b$  and  $a \land b$ 



# General splitting strategies

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- ▶ There are several ways to split a formula  $\phi$  to  $\phi_1, \ldots, \phi_n$  such that  $\phi \equiv \phi_1 \lor \cdots \lor \phi_n$ . For example:
  - ► Transform  $\phi$  to  $\phi_1 \lor \cdots \lor \phi_n$  by equivalences like distributivity:  $(\phi \lor \phi') \land \psi \equiv (\phi \land \psi) \lor (\phi' \land \psi).$
  - Choose state variable a, set φ<sub>1</sub> = a ∧ φ and φ<sub>2</sub> = ¬a ∧ φ, and simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[⊤/a].