# Principles of Al Planning 

3. Deterministic planning tasks

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 24th, 2008

## Succinct representation of transition systems

- More compact representation of actions than as relations is often
- possible because of symmetries and other regularities,
- unavoidable because the relations are too big.
- Represent different aspects of the world in terms of different state variables. $\rightsquigarrow A$ state is a valuation of state variables.
- Represent actions in terms of changes to the state variables.


## State variables

- The state of the world is described in terms of a finite set of finite-valued state variables.

```
Example
hour. }{0,\ldots,23}=1
minute: {0,\ldots,59}=55
location: {51,52, 82, 101, 102} = 101
weather: {sunny, cloudy, rainy} = cloudy
holiday: {T,F} = F
```

- Any $n$-valued state variable can be replaced by $\left\lceil\log _{2} n\right\rceil$ Boolean (2-valued) state variables.
- Actions change the values of the state variables.


## Blocks world with state variables

State variables:

## Example

$$
\begin{aligned}
& s(\text { location }- \text { of }-A)=\text { table } \\
& s(\text { location }-o f-B)=\mathrm{A} \\
& s(\text { location }-o f-C)=\text { table }
\end{aligned}
$$



Not all valuations correspond to an intended blocks world state, e.g. $s$ such that $s$ (location-of-A) $=\mathrm{B}$ and $s($ location-of- $B)=A$.

## Blocks world with Boolean state variables

## Example

Al Planning
M. Helmert

Deterministic
planning tasks
State variables
Logic
Operators
Tasks
Normal forms

## Logical representations of state sets

- $n$ state variables with $m$ values induce a state space consisting of $m^{n}$ states ( $2^{n}$ states for $n$ Boolean state variables)
- a language for talking about sets of states (valuations of state variables): propositional logic
- logical connectives $\approx$ set-theoretical operations

Deterministic
planning tasks
State variables
Logic
Operators
Tasks
Normal forms

## Syntax of propositional logic

Let $A$ be a set of atomic propositions ( $\sim$ state variables).
(1) For all $a \in A, a$ is a propositional formula.
(2) If $\phi$ is a propositional formula, then so is $\neg \phi$.
(3) If $\phi$ and $\phi^{\prime}$ are propositional formulae, then so is $\phi \vee \phi^{\prime}$.

Deterministic
planning tasks
State variables
Logic
Operators
Tasks
(1) If $\phi$ and $\phi^{\prime}$ are propositional formulae, then so is $\phi \wedge \phi^{\prime}$.
(3) The symbols $\perp$ and $T$ are propositional formulae.

The implication $\phi \rightarrow \phi^{\prime}$ is an abbreviation for $\neg \phi \vee \phi^{\prime}$.
The equivalence $\phi \leftrightarrow \phi^{\prime}$ is an abbreviation for
$\left(\phi \rightarrow \phi^{\prime}\right) \wedge\left(\phi^{\prime} \rightarrow \phi\right)$.

## Semantics of propositional logic

A valuation of $A$ is a function $v: A \rightarrow\{0,1\}$. Define the notation $v \models \phi$ for valuations $v$ and formulae $\phi$ by
(1) $v \models a$ if and only if $v(a)=1$, for $a \in A$.
(2) $v \models \neg \phi$ if and only if $v \not \vDash \phi$
(3) $v \models \phi \vee \phi^{\prime}$ if and only if $v \models \phi$ or $v \models \phi^{\prime}$
(9) $v \models \phi \wedge \phi^{\prime}$ if and only if $v \models \phi$ and $v \models \phi^{\prime}$
(6) $v \models T$
(0) $v \not \vDash \perp$

## Propositional logic terminology

- A propositional formula $\phi$ is satisfiable if there is at least one valuation $v$ so that $v \models \phi$. Otherwise it is unsatisfiable.
- A propositional formula $\phi$ is valid or a tautology if $v \models \phi$

Deterministic planning tasks
State variables
Logic
Operators
Tasks
Normal forms for all valuations $v$. We write this as $\vDash \phi$.

- A propositional formula $\phi$ is a logical consequence of a propositional formula $\phi^{\prime}$, written $\phi^{\prime} \models \phi$ if $v \models \phi$ for all valuations $v$ with $v \models \phi^{\prime}$.
- Two propositional formulae $\phi$ and $\phi^{\prime}$ are logically equivalent, written $\phi \equiv \phi^{\prime}$, if $\phi \models \phi^{\prime}$ and $\phi^{\prime} \models \phi$.


## Propositional logic terminology (ctd.)

- A propositional formula that is a proposition $a$ or a negated proposition $\neg a$ for some $a \in A$ is a literal.

Deterministic
planning tasks
State variables
Logic
Operators
Tasks

- A formula that is a disjunction of literals is a clause. This includes unit clauses $l$ consisting of a single literal, and the empty clause $\perp$ consisting of zero literals.

Normal forms: NNF, CNF, DNF

## Formulae vs. sets

| sets | formulae |
| :--- | :--- |
| those $\frac{2^{n}}{2}$ states in which $a$ is true | $a \in A$ |
| $E \cup F$ | $E \vee F$ |
| $E \cap F$ | $E \wedge F$ |
| $E \backslash F$ | (set difference) |
| $\bar{E}$ (complement) | $E \wedge \neg F$ |
| the empty set $\emptyset$ | $\neg E$ |
| the universal set |  |
|  |  |
|  |  |


| question about sets | question about formulae |
| :--- | :--- |
| $E \subseteq F ?$ | $E \models F ?$ |
| $E \subset F ?$ | $E \models F$ and $F \not \models E ?$ |
| $E=F ?$ | $E \models F$ and $F \models E ?$ |

## Operators

Actions for a state set with propositional state variables $A$ can be concisely represented as operators $\langle c, e\rangle$ where

- the precondition $c$ is a propositional formula over $A$ describing the set of states in which the action can be

Deterministic
planning tasks
State variables
Logic
Operators
Tasks
Normal forms taken (states in which an arrow starts), and

- the effect $e$ describes the successor states of states in which the action can be taken (where the arrows go). Effect descriptions are procedural: how do the values of the state variable change?


## Effects (for deterministic operators)

## Definition (effects)

(Deterministic) effects are recursively defined as follows:
(1) If $a \in A$ is a state variable, then $a$ and $\neg a$ are effects (atomic effects).
(2) If $e_{1}, \ldots, e_{n}$ are effects, then $e_{1} \wedge \cdots \wedge e_{n}$ is an effect (conjunctive effects). The special case with $n=0$ is the empty conjunction $T$.
(3) If $c$ is a propositional formula and $e$ is an effect, then $c \triangleright e$ is an effect (conditional effects).

Atomic effects $a$ and $\neg a$ are best understood as assignments $a:=1$ and $a:=0$, respectively.

## Effect example

$c \triangleright e$ means that change $e$ takes place if $c$ is true in the current state.

## Example

Increment 4-bit number $b_{3} b_{2} b_{1} b_{0}$ represented as four state variables $b_{0}, \ldots, b_{3}$.

$$
\begin{gathered}
\left(\neg b_{0} \triangleright b_{0}\right) \wedge \\
\left(\left(\neg b_{1} \wedge b_{0}\right) \triangleright\left(b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{3} \wedge b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{3} \wedge \neg b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right)
\end{gathered}
$$

## Blocks world operators

In addition to state variables likes $A$-on- $T$ and $B$-on- $C$, for convenience we also use state variables $A$-clear, $B$-clear, and $C$-clear to denote that there is nothing on the block in question.
$\langle A$-clear $\wedge A$-on- $T \wedge B$-clear, $\quad A$-on- $B \wedge \neg A$-on- $T \wedge \neg B$-clear $\rangle$ $\langle A$-clear $\wedge A$-on- $T \wedge C$-clear, $\quad A$-on- $C \wedge \neg A$-on- $T \wedge \neg C$-clear $\rangle$ $\langle A$-clear $\wedge A$-on- $B, \quad A$-on- $T \wedge \neg A$-on- $B \wedge B$-clear $\rangle$ $\langle A$-clear $\wedge A$-on- $C, \quad A$-on- $T \wedge \neg A$-on- $C \wedge C$-clear $\rangle$ $\langle A$-clear $\wedge A$-on- $B \wedge C$-clear, $A$-on- $C \wedge \neg A$-on- $B \wedge B$-clear $\wedge \neg C$-clear $\rangle$ $\langle A$-clear $\wedge A$-on- $C \wedge B$-clear, $\quad A$-on- $B \wedge \neg A$-on- $C \wedge C$-clear $\wedge \neg B$-clear $\rangle$

## Operator semantics

## Changes caused by an operator

For each effect $e$ and state $s$, we define the change set of $e$ in $s$, written $[e]_{s}$, as the following set of literals:
(1) $[a]_{s}=\{a\}$ and $[\neg a]_{s}=\{\neg a\}$ for atomic effects $a, \neg a$
(2) $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}=\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s}$
(3) $[c \triangleright e]_{s}=[e]_{s}$ if $s \models c$ and $[c \triangleright e]_{s}=\emptyset$ otherwise

## Applicability of an operator

Operator $\langle c, e\rangle$ is applicable in a state $s$ iff $s \models c$ and $[e]_{s}$ is consistent.

## Operator semantics (ctd.)

## Definition (successor state)

The successor state $\operatorname{app}_{o}(s)$ of $s$ with respect to operator $o=\langle c, e\rangle$ is the state $s^{\prime}$ with $s^{\prime} \models[e]_{s}$ and $s^{\prime}(v)=s(v)$ for all state variables $v$ not mentioned in $[e]_{s}$.
This is defined only if $o$ is applicable in $s$.

## Example

Consider the operator $\langle a, \neg a \wedge(\neg c \triangleright \neg b)\rangle$ and the state $s=\{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.
The operator is applicable because $s \models a$ and $[\neg a \wedge(\neg c \triangleright \neg b)]_{s}=\{\neg a\}$ is consistent.
Applying the operator results in the successor state $a p p_{\langle a, \neg a \wedge(\neg c \triangleright \neg b)\rangle}(s)=\{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.

## Deterministic planning tasks

## Definition (deterministic planning task)

A deterministic planning task is a 4-tuple $\Pi=\langle A, I, O, G\rangle$ where

- $A$ is a finite set of state variables,
- $I$ is an initial state over $A$,
- $O$ is a finite set of operators over $A$, and
- $G$ is a formula over $A$ describing the goal states.

Note: We will omit the word "deterministic" where it is clear from context.

## Mapping planning tasks to transition systems

From every deterministic planning task $\Pi=\langle A, I, O, G\rangle$ we can produce a corresponding transition system $\mathcal{T}(\Pi)=\left\langle S, I, O^{\prime}, G^{\prime}\right\rangle:$
(1) $S$ is the set of all valuations of $A$,
(2) $O^{\prime}=\{R(o) \mid o \in O\}$ where
$R(o)=\left\{\left(s, s^{\prime}\right) \in S \times S \mid s^{\prime}=\operatorname{app}_{o}(s)\right\}$, and
(3) $G^{\prime}=\{s \in S \mid s \models G\}$.

## Equivalence of operators and effects

## Definition (equivalent effects)

Two effects $e$ and $e^{\prime}$ over state variables $A$ are equivalent, written $e \equiv e^{\prime}$, if for all states $s$ over $A,[e]_{s}=\left[e^{\prime}\right]_{s}$.

## Definition (equivalent operators)

Two operators $o$ and $o^{\prime}$ over state variables $A$ are equivalent, written $o \equiv o^{\prime}$, if they are applicable in the same states, and for all states $s$ where they are applicable, $\operatorname{app}_{o}(s)=a p p_{o^{\prime}}(s)$.

## Theorem

Let $o=\langle c, e\rangle$ and $o^{\prime}=\left\langle c^{\prime}, e^{\prime}\right\rangle$ be operators with $c \equiv c^{\prime}$ and $e \equiv e^{\prime}$. Then $o \equiv o^{\prime}$.

Note: The converse is not true. (Why not?)

## Equivalence transformations for effects

$$
\begin{align*}
e_{1} \wedge e_{2} & \equiv e_{2} \wedge e_{1}  \tag{1}\\
\left(e_{1} \wedge e_{2}\right) \wedge e_{3} & \equiv e_{1} \wedge\left(e_{2} \wedge e_{3}\right) \\
\top \wedge e & \equiv e \\
c \triangleright e & \equiv c^{\prime} \triangleright e \quad \text { if } c \equiv c^{\prime} \\
\top \triangleright e & \equiv e \\
\perp \triangleright e & \equiv \top \\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \\
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right)  \tag{8}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e
\end{align*}
$$

## Normal form for effects

Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
This is useful because algorithms (and proofs) then only need to deal with effects in normal form.

- Nesting of conditionals, as in $a \triangleright(b \triangleright c)$, can be eliminated.
- Effects $e$ within a conditional effect $\phi \triangleright e$ can be restricted to atomic effects ( $a$ or $\neg a$ ).

Transformation to normal form only gives a small polynomial size increase.
Compare: transformation to CNF or DNF may increase formula size exponentially.

## Normal form for operators and effects

## Definition

An operator $\langle c, e\rangle$ is in normal form if for all occurrences of $c^{\prime} \triangleright e^{\prime}$ in $e$ the effect $e^{\prime}$ is either $a$ or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in $e$.

## Theorem

For every operator there is an equivalent one in normal form.
Proof is constructive: we can transform any operator into normal form using the equivalence transformations for effects.

## Normal form example

## Example

$$
\begin{aligned}
& (a \triangleright(b \wedge \\
& \quad(c \triangleright(\neg d \wedge e)))) \wedge \\
& (\neg b \triangleright e)
\end{aligned}
$$

transformed to normal form is

$$
\begin{gathered}
(a \triangleright b) \wedge \\
((a \wedge c) \triangleright \neg d) \wedge \\
((\neg b \vee(a \wedge c)) \triangleright e)
\end{gathered}
$$

## STRIPS operators

## Definition

An operator $\langle c, e\rangle$ is a STRIPS operator if
(1) $c$ is a conjunction of literals, and
(2) $e$ is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

$$
\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

where $l_{i}$ are literals and $l_{j}^{\prime}$ are atomic effects.
Note: Many texts also require that all literals in $c$ are positive.

## STRIPS

STanford Research Institute Planning System
(Fikes \& Nilsson, 1971)

## Why STRIPS is interesting

- STRIPS operators are particularly simple, yet expressive enough to capture general planning problems.
- In particular, STRIPS planning is no easier than general planning problems.
- Most algorithms in the planning literature are only presented for STRIPS operators (generalization is often, but not always, obvious).


## Transformation to STRIPS

- Not every operator is equivalent to a STRIPS operator.
- However, each operator can be transformed into a set of STRIPS operators whose "combination" is equivalent to the original operator. (How?)
- However, this transformation may exponentially increase the number of required operators. There are planning tasks for which such a blow-up is unavoidable.
- There are polynomial transformations of planning tasks to STRIPS, but these do not preserve the structure of the transition system (e. g., length of shortest plans may change).

