

Principles of AI Planni	ng		
October 24th, 2008 — 3. Determi	inistic planning tasks		
Deterministic planning tasks			
State variables			
Propositional logic			
Operators			
Deterministic planning ta	asks		
Normal forms			
Normal form for effects			
STRIPS operators			
M. Helmert (Universität Freiburg)	AI Planning	October 24th, 2008	2 / 28

Deterministic planning tasks State variables

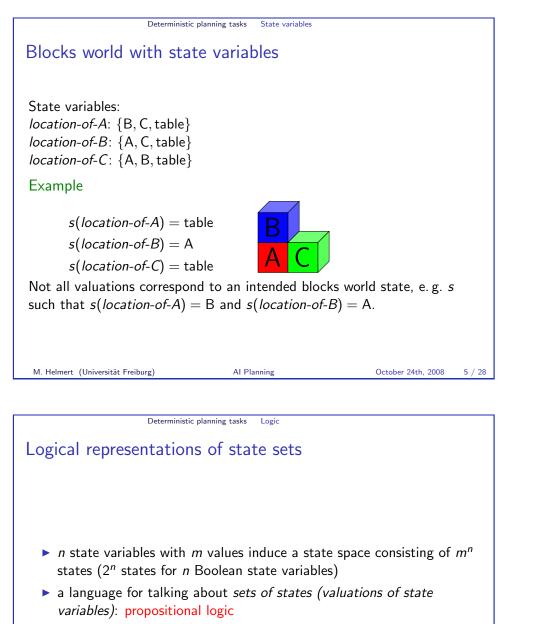
State variables

The state of the world is described in terms of a finite set of finite-valued state variables.

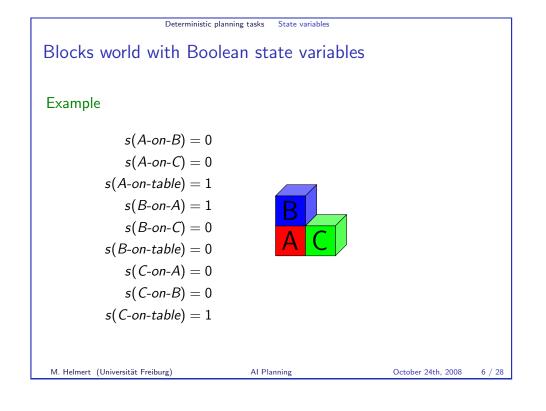
Example

 $\begin{array}{l} \mbox{hour: } \{0,\ldots,23\} = 13 \\ \mbox{minute: } \{0,\ldots,59\} = 55 \\ \mbox{location: } \{51,52,82,101,102\} = 101 \\ \mbox{weather: } \{\mbox{sunny},\mbox{cloudy},\mbox{rainy}\} = \mbox{cloudy} \\ \mbox{holiday: } \{T,F\} = F \end{array}$

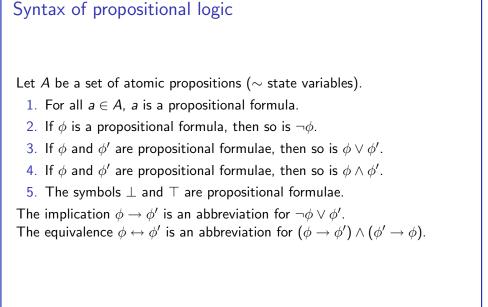
- Any *n*-valued state variable can be replaced by ⌈log₂ n⌉ Boolean (2-valued) state variables.
- Actions change the values of the state variables.

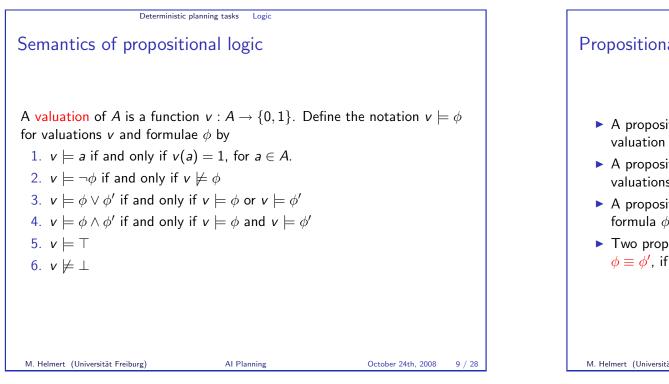


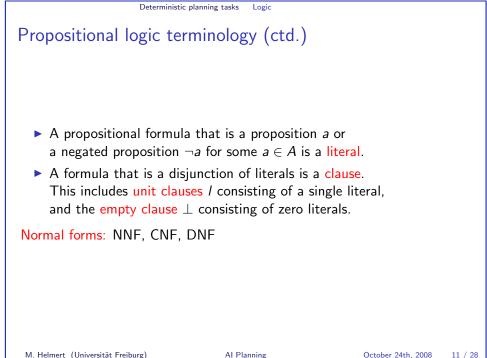
• logical connectives \approx set-theoretical operations

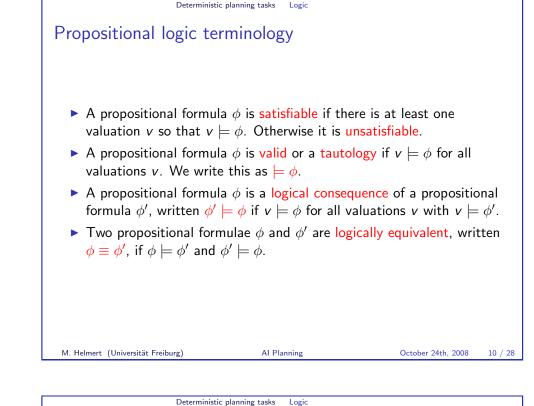


Deterministic planning tasks Logic









Deterministic planning tasks Logic		
Formulae vs. sets		
sets		formulae
those $\frac{2^n}{2}$ states in which <i>a</i> is true		$a \in A$
$E \cup F$		$E \lor F$
$E \cap F$		$E \wedge F$
$E \setminus F$ (see	et difference)	$E \wedge \neg F$
	complement)	$\neg E$
the empty set \emptyset		1
the universal set		Т
question about sets		question about formulae
$E \subseteq F$?		$E \models F$?
$E \subset F$?		$E \models F \text{ and } F \not\models E?$ $E \models F \text{ and } F \models E?$
E = F?		$E \models F$ and $F \models E$?

Deterministic planning tasks Operators

Operators

Actions for a state set with propositional state variables A can be concisely represented as operators $\langle c, e \rangle$ where

- the precondition c is a propositional formula over A describing the set of states in which the action can be taken (*states in which an arrow starts*), and
- the effect e describes the successor states of states in which the action can be taken (where the arrows go). Effect descriptions are procedural: how do the values of the state variable change?

M. Helmert (Universität Freiburg)

AI Planning

October 24th, 2008

13 / 28

Deterministic planning tasks Operators

Effect example

 $c \triangleright e$ means that change e takes place if c is true in the current state.

Example

Increment 4-bit number $b_3b_2b_1b_0$ represented as four state variables b_0 , ..., b_3 .

$(\neg b_0 hdorim b_0) \land ((\neg b_1 \land b_0) hdorim (b_1 \land \neg b_0)) \land ((\neg b_2 \land b_1 \land b_0) hdorim (b_2 \land \neg b_1 \land \neg b_0)) \land ((\neg b_3 \land b_2 \land b_1 \land b_0) hdorim (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))$

AI Planning

Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

- 1. If $a \in A$ is a state variable, then a and $\neg a$ are effects (atomic effects).
- 2. If e_1, \ldots, e_n are effects, then $e_1 \wedge \cdots \wedge e_n$ is an effect (conjunctive effects). The special case with n = 0 is the empty conjunction \top .
- 3. If c is a propositional formula and e is an effect, then $c \triangleright e$ is an effect (conditional effects).

Atomic effects *a* and $\neg a$ are best understood as assignments a := 1 and a := 0, respectively.

M. Helmert (Universität Freiburg)

AI Planning

October 24th, 2008 14 / 28

Deterministic planning tasks Operators

Blocks world operators

In addition to state variables likes *A-on-T* and *B-on-C*, for convenience we also use state variables *A-clear*, *B-clear*, and *C-clear* to denote that there is nothing on the block in question.

```
 \begin{array}{ll} \langle A\text{-}clear \land A\text{-}on\text{-}T \land B\text{-}clear, & A\text{-}on\text{-}B \land \neg A\text{-}on\text{-}T \land \neg B\text{-}clear} \rangle \\ \langle A\text{-}clear \land A\text{-}on\text{-}T \land C\text{-}clear, & A\text{-}on\text{-}C \land \neg A\text{-}on\text{-}T \land \neg C\text{-}clear} \rangle \\ \langle A\text{-}clear \land A\text{-}on\text{-}B, & A\text{-}on\text{-}T \land \neg A\text{-}on\text{-}B \land B\text{-}clear} \rangle \\ \langle A\text{-}clear \land A\text{-}on\text{-}C, & A\text{-}on\text{-}T \land \neg A\text{-}on\text{-}C \land C\text{-}clear} \rangle \\ \langle A\text{-}clear \land A\text{-}on\text{-}B \land C\text{-}clear, & A\text{-}on\text{-}C \land C\text{-}clear} \rangle \\ \langle A\text{-}clear \land A\text{-}on\text{-}B \land C\text{-}clear, & A\text{-}on\text{-}C \land C\text{-}clear} \rangle \\ \langle A\text{-}clear \land A\text{-}on\text{-}C \land B\text{-}clear, & A\text{-}on\text{-}C \land C\text{-}clear} \rangle \\ \langle A\text{-}clear \land A\text{-}on\text{-}C \land B\text{-}clear, & A\text{-}on\text{-}C \land C\text{-}clear} \rangle \\ \hline \end{array}
```

Deterministic planning tasks Operators

Operator semantics

Changes caused by an operator

For each effect e and state s, we define the change set of e in s, written $[e]_s$, as the following set of literals:

- 1. $[a]_s = \{a\}$ and $[\neg a]_s = \{\neg a\}$ for atomic effects $a, \neg a$
- 2. $[e_1 \wedge \cdots \wedge e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
- 3. $[c \triangleright e]_s = [e]_s$ if $s \models c$ and $[c \triangleright e]_s = \emptyset$ otherwise

Applicability of an operator

Operator $\langle c, e \rangle$ is applicable in a state *s* iff $s \models c$ and $[e]_s$ is consistent.

AI Planning

M. Helmert (Universität Freiburg)

October 24th, 2008

Deterministic planning tasks Tasks

Deterministic planning tasks

Definition (deterministic planning task)

- A deterministic planning task is a 4-tuple $\Pi = \langle A, I, O, G \rangle$ where
 - ► A is a finite set of state variables,
 - ► *I* is an initial state over *A*,
 - O is a finite set of operators over A, and
 - *G* is a formula over *A* describing the goal states.

Note: We will omit the word "deterministic" where it is clear from context.

AI Planning

Deterministic planning tasks Operators

Operator semantics (ctd.)

Definition (successor state)

The successor state $app_o(s)$ of s with respect to operator $o = \langle c, e \rangle$ is the state s' with $s' \models [e]_s$ and s'(v) = s(v) for all state variables v not mentioned in $[e]_s$. This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \land (\neg c \rhd \neg b) \rangle$ and the state $s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$. The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \rhd \neg b)]_s = \{\neg a\}$ is consistent. Applying the operator results in the successor state $app_{\langle a, \neg a \land (\neg c \rhd \neg b) \rangle}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.

M. Helmert (Universität Freiburg)

AI Planning

October 24th, 2008 18 / 28

Deterministic planning tasks Tasks

Mapping planning tasks to transition systems

From every deterministic planning task $\Pi = \langle A, I, O, G \rangle$ we can produce a corresponding transition system $\mathcal{T}(\Pi) = \langle S, I, O', G' \rangle$:

- 1. S is the set of all valuations of A,
- 2. $O' = \{R(o) \mid o \in O\}$ where $R(o) = \{(s, s') \in S \times S \mid s' = app_o(s)\}$, and

$$3. \quad G' = \{s \in S \mid s \models G\}.$$

17 / 28

AI Planning

Normal forms Effects

Equivalence of operators and effects

Definition (equivalent effects)

Two effects e and e' over state variables A are equivalent, written $e \equiv e'$, if for all states s over A, $[e]_s = [e']_s$.

Definition (equivalent operators)

Two operators o and o' over state variables A are equivalent, written $o \equiv o'$, if they are applicable in the same states, and for all states s where they are applicable, $app_o(s) = app_{o'}(s)$.

Theorem

Let $o = \langle c, e \rangle$ and $o' = \langle c', e' \rangle$ be operators with $c \equiv c'$ and $e \equiv e'$. Then $o \equiv o'$.

AI Planning

Note: The converse is not true. (Why not?)

M. Helmert (Universität Freiburg)

October 24th, 2008

21 / 28

Normal forms Effects

Normal form for effects

Similarly to normal forms in propositional logic (DNF, CNF, NNF, \ldots) we can define a normal form for effects.

This is useful because algorithms (and proofs) then only need to deal with effects in normal form.

- ▶ Nesting of conditionals, as in $a \triangleright (b \triangleright c)$, can be eliminated.
- Effects e within a conditional effect φ ▷ e can be restricted to atomic effects (a or ¬a).

Transformation to normal form only gives a small polynomial size increase. Compare: transformation to CNF or DNF may increase formula size exponentially. Equivalence transformations for effects

 $e_1 \wedge e_2 \equiv e_2 \wedge e_1 \tag{1}$

$$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$$
 (2)

$$\top \wedge e \equiv e$$
 (3)

$$c \triangleright e \equiv c' \triangleright e \quad \text{if } c \equiv c'$$

$$(c_1 \triangleright e) \land (c_2 \triangleright e) \equiv (c_1 \lor c_2) \triangleright e \tag{9}$$

M. Helmert (Universität Freiburg)

AI Planning

October 24th, 2008 22 / 28

(4)

Normal forms Effects

Normal form for operators and effects

Definition

An operator $\langle c, e \rangle$ is in normal form if for all occurrences of $c' \triangleright e'$ in e the effect e' is either a or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in e.

Theorem

For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form using the equivalence transformations for effects.

Normal forms Effects

Normal form example

Example

transformed to normal form is

$$(a \rhd b) \land \ ((a \land c) \rhd \neg d) \land \ ((\neg b \lor (a \land c)) \rhd e)$$

M. Helmert (Universität Freiburg)

AI Planning

October 24th, 2008

25 / 28

Normal forms STRIPS

Why STRIPS is interesting

- ► STRIPS operators are particularly simple, yet expressive enough to capture general planning problems.
- ▶ In particular, STRIPS planning is no easier than general planning problems.
- Most algorithms in the planning literature are only presented for STRIPS operators (generalization is often, but not always, obvious).

AI Planning

Normal forms STRIPS An operator $\langle c, e \rangle$ is a STRIPS operator if 1. c is a conjunction of literals, and 2. e is a conjunction of atomic effects. Hence every STRIPS operator is of the form $\langle I_1 \wedge \cdots \wedge I_n, I'_1 \wedge \cdots \wedge I'_m \rangle$

STRIPS operators

Definition

where l_i are literals and l'_i are atomic effects. Note: Many texts also require that all literals in c are positive.

STRIPS STanford Research Institute Planning System (Fikes & Nilsson, 1971)

M. Helmert (Universität Freiburg)

AI Planning

October 24th, 2008 26 / 28

Normal forms STRIPS

Transformation to STRIPS

- Not every operator is equivalent to a STRIPS operator.
- ► However, each operator can be transformed into a set of STRIPS operators whose "combination" is equivalent to the original operator. (How?)
- ► However, this transformation may exponentially increase the number of required operators. There are planning tasks for which such a blow-up is unavoidable.
- ► There are polynomial transformations of planning tasks to STRIPS, but these do not preserve the structure of the transition system (e.g., length of shortest plans may change).