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Deterministic planning tasks State variables

Succinct representation of transition systems

I More compact representation of actions than as relations is often
I possible because of symmetries and other regularities,
I unavoidable because the relations are too big.

I Represent different aspects of the world in terms of different state
variables.  A state is a valuation of state variables.

I Represent actions in terms of changes to the state variables.
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Deterministic planning tasks State variables

State variables

I The state of the world is described in terms of a finite set of
finite-valued state variables.

Example

hour: {0, . . . , 23} = 13
minute: {0, . . . , 59} = 55
location: {51, 52, 82, 101, 102} = 101
weather: {sunny, cloudy, rainy} = cloudy
holiday: {T,F} = F

I Any n-valued state variable can be replaced by dlog2 ne Boolean
(2-valued) state variables.

I Actions change the values of the state variables.
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Deterministic planning tasks State variables

Blocks world with state variables

State variables:
location-of-A: {B,C, table}
location-of-B: {A,C, table}
location-of-C : {A,B, table}

Example

s(location-of-A) = table

s(location-of-B) = A

s(location-of-C) = table A
B

C
Not all valuations correspond to an intended blocks world state, e. g. s
such that s(location-of-A) = B and s(location-of-B) = A.
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Deterministic planning tasks State variables

Blocks world with Boolean state variables

Example

s(A-on-B) = 0

s(A-on-C) = 0

s(A-on-table) = 1

s(B-on-A) = 1

s(B-on-C) = 0

s(B-on-table) = 0

s(C-on-A) = 0

s(C-on-B) = 0

s(C-on-table) = 1

A
B

C
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Deterministic planning tasks Logic

Logical representations of state sets

I n state variables with m values induce a state space consisting of mn

states (2n states for n Boolean state variables)

I a language for talking about sets of states (valuations of state
variables): propositional logic

I logical connectives ≈ set-theoretical operations
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Deterministic planning tasks Logic

Syntax of propositional logic

Let A be a set of atomic propositions (∼ state variables).

1. For all a ∈ A, a is a propositional formula.

2. If φ is a propositional formula, then so is ¬φ.

3. If φ and φ′ are propositional formulae, then so is φ ∨ φ′.

4. If φ and φ′ are propositional formulae, then so is φ ∧ φ′.

5. The symbols ⊥ and > are propositional formulae.

The implication φ → φ′ is an abbreviation for ¬φ ∨ φ′.
The equivalence φ ↔ φ′ is an abbreviation for (φ → φ′) ∧ (φ′ → φ).

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 8 / 28



Deterministic planning tasks Logic

Semantics of propositional logic

A valuation of A is a function v : A → {0, 1}. Define the notation v |= φ
for valuations v and formulae φ by

1. v |= a if and only if v(a) = 1, for a ∈ A.

2. v |= ¬φ if and only if v 6|= φ

3. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

4. v |= φ ∧ φ′ if and only if v |= φ and v |= φ′

5. v |= >
6. v 6|= ⊥
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Deterministic planning tasks Logic

Propositional logic terminology

I A propositional formula φ is satisfiable if there is at least one
valuation v so that v |= φ. Otherwise it is unsatisfiable.

I A propositional formula φ is valid or a tautology if v |= φ for all
valuations v . We write this as |= φ.

I A propositional formula φ is a logical consequence of a propositional
formula φ′, written φ′ |= φ if v |= φ for all valuations v with v |= φ′.

I Two propositional formulae φ and φ′ are logically equivalent, written
φ ≡ φ′, if φ |= φ′ and φ′ |= φ.
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Deterministic planning tasks Logic

Propositional logic terminology (ctd.)

I A propositional formula that is a proposition a or
a negated proposition ¬a for some a ∈ A is a literal.

I A formula that is a disjunction of literals is a clause.
This includes unit clauses l consisting of a single literal,
and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF
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Deterministic planning tasks Logic

Formulae vs. sets

sets formulae

those 2n

2 states in which a is true a ∈ A
E ∪ F E ∨ F
E ∩ F E ∧ F
E \ F (set difference) E ∧ ¬F

E (complement) ¬E
the empty set ∅ ⊥
the universal set >

question about sets question about formulae

E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?
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Deterministic planning tasks Operators

Operators

Actions for a state set with propositional state variables A can be concisely
represented as operators 〈c , e〉 where

I the precondition c is a propositional formula over A describing the set
of states in which the action can be taken (states in which an arrow
starts), and

I the effect e describes the successor states of states in which the
action can be taken (where the arrows go). Effect descriptions are
procedural: how do the values of the state variable change?
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Deterministic planning tasks Operators

Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

1. If a ∈ A is a state variable, then a and ¬a are effects (atomic effects).

2. If e1, . . . , en are effects, then e1 ∧ · · · ∧ en is an effect (conjunctive
effects). The special case with n = 0 is the empty conjunction >.

3. If c is a propositional formula and e is an effect, then c B e is an
effect (conditional effects).

Atomic effects a and ¬a are best understood as assignments a := 1 and
a := 0, respectively.
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Deterministic planning tasks Operators

Effect example

c B e means that change e takes place if c is true in the current state.

Example

Increment 4-bit number b3b2b1b0 represented as four state variables b0,
. . . , b3.

(¬b0B b0) ∧
((¬b1 ∧ b0)B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0)B (b2 ∧ ¬b1 ∧ ¬b0)) ∧
((¬b3 ∧ b2 ∧ b1 ∧ b0)B (b3 ∧ ¬b2 ∧ ¬b1 ∧ ¬b0))
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Deterministic planning tasks Operators

Blocks world operators

In addition to state variables likes A-on-T and B-on-C, for convenience we
also use state variables A-clear, B-clear, and C-clear to denote that there is
nothing on the block in question.

〈A-clear ∧ A-on-T ∧ B-clear, A-on-B ∧ ¬A-on-T ∧ ¬B-clear〉
〈A-clear ∧ A-on-T ∧ C-clear, A-on-C ∧ ¬A-on-T ∧ ¬C-clear〉
〈A-clear ∧ A-on-B, A-on-T ∧ ¬A-on-B ∧ B-clear〉
〈A-clear ∧ A-on-C, A-on-T ∧ ¬A-on-C ∧ C-clear〉
〈A-clear ∧ A-on-B ∧ C-clear, A-on-C ∧ ¬A-on-B ∧ B-clear ∧ ¬C-clear〉
〈A-clear ∧ A-on-C ∧ B-clear, A-on-B ∧ ¬A-on-C ∧ C-clear ∧ ¬B-clear〉
. . .
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Deterministic planning tasks Operators

Operator semantics

Changes caused by an operator

For each effect e and state s, we define the change set of e in s, written
[e]s , as the following set of literals:

1. [a]s = {a} and [¬a]s = {¬a} for atomic effects a, ¬a

2. [e1 ∧ · · · ∧ en]s = [e1]s ∪ · · · ∪ [en]s

3. [c B e]s = [e]s if s |= c and [c B e]s = ∅ otherwise

Applicability of an operator

Operator 〈c , e〉 is applicable in a state s iff s |= c and [e]s is consistent.
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Deterministic planning tasks Operators

Operator semantics (ctd.)

Definition (successor state)

The successor state appo(s) of s with respect to operator o = 〈c , e〉 is the
state s ′ with s ′ |= [e]s and s ′(v) = s(v) for all state variables v not
mentioned in [e]s .
This is defined only if o is applicable in s.

Example

Consider the operator 〈a,¬a ∧ (¬c B ¬b)〉 and the state
s = {a 7→ 1, b 7→ 1, c 7→ 1, d 7→ 1}.
The operator is applicable because s |= a and [¬a ∧ (¬c B ¬b)]s = {¬a}
is consistent.
Applying the operator results in the successor state
app〈a,¬a∧(¬cB¬b)〉(s) = {a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 1}.
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Deterministic planning tasks Tasks

Deterministic planning tasks

Definition (deterministic planning task)

A deterministic planning task is a 4-tuple Π = 〈A, I ,O,G 〉 where

I A is a finite set of state variables,

I I is an initial state over A,

I O is a finite set of operators over A, and

I G is a formula over A describing the goal states.

Note: We will omit the word “deterministic” where it is clear from context.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 19 / 28

Deterministic planning tasks Tasks

Mapping planning tasks to transition systems

From every deterministic planning task Π = 〈A, I ,O,G 〉 we can produce a
corresponding transition system T (Π) = 〈S , I ,O ′,G ′〉:

1. S is the set of all valuations of A,

2. O ′ = {R(o) | o ∈ O} where R(o) = {(s, s ′) ∈ S × S | s ′ = appo(s)},
and

3. G ′ = {s ∈ S | s |= G}.
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Normal forms Effects

Equivalence of operators and effects

Definition (equivalent effects)

Two effects e and e ′ over state variables A are equivalent, written e ≡ e ′,
if for all states s over A, [e]s = [e ′]s .

Definition (equivalent operators)

Two operators o and o ′ over state variables A are equivalent, written
o ≡ o ′, if they are applicable in the same states, and for all states s where
they are applicable, appo(s) = appo′(s).

Theorem
Let o = 〈c , e〉 and o ′ = 〈c ′, e ′〉 be operators with c ≡ c ′ and e ≡ e ′. Then
o ≡ o ′.

Note: The converse is not true. (Why not?)
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Normal forms Effects

Equivalence transformations for effects

e1 ∧ e2 ≡ e2 ∧ e1 (1)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (2)

> ∧ e ≡ e (3)

c B e ≡ c ′ B e if c ≡ c ′ (4)

> B e ≡ e (5)

⊥ B e ≡ > (6)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (7)

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (8)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (9)
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Normal forms Effects

Normal form for effects

Similarly to normal forms in propositional logic (DNF, CNF, NNF, . . . ) we
can define a normal form for effects.
This is useful because algorithms (and proofs) then only need to deal with
effects in normal form.

I Nesting of conditionals, as in a B (b B c), can be eliminated.

I Effects e within a conditional effect φ B e can be restricted to atomic
effects (a or ¬a).

Transformation to normal form only gives a small polynomial size increase.
Compare: transformation to CNF or DNF may increase formula size
exponentially.
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Normal forms Effects

Normal form for operators and effects

Definition
An operator 〈c , e〉 is in normal form if for all occurrences of c ′ B e ′ in e
the effect e ′ is either a or ¬a for some a ∈ A, and there is at most one
occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form
using the equivalence transformations for effects.
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Normal forms Effects

Normal form example

Example

(aB (b ∧
(c B (¬d ∧ e)))) ∧

(¬bB e)

transformed to normal form is

(aB b) ∧
((a ∧ c)B¬d) ∧

((¬b ∨ (a ∧ c))B e)
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Normal forms STRIPS

STRIPS operators

Definition
An operator 〈c , e〉 is a STRIPS operator if

1. c is a conjunction of literals, and

2. e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

〈l1 ∧ · · · ∧ ln, l ′1 ∧ · · · ∧ l ′m〉

where li are literals and l ′j are atomic effects.
Note: Many texts also require that all literals in c are positive.

STRIPS
STanford Research Institute Planning System
(Fikes & Nilsson, 1971)
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Normal forms STRIPS

Why STRIPS is interesting

I STRIPS operators are particularly simple, yet expressive enough to
capture general planning problems.

I In particular, STRIPS planning is no easier than general planning
problems.

I Most algorithms in the planning literature are only presented for
STRIPS operators (generalization is often, but not always, obvious).
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Normal forms STRIPS

Transformation to STRIPS

I Not every operator is equivalent to a STRIPS operator.

I However, each operator can be transformed into a set of STRIPS
operators whose “combination” is equivalent to the original operator.
(How?)

I However, this transformation may exponentially increase the number
of required operators. There are planning tasks for which such a
blow-up is unavoidable.

I There are polynomial transformations of planning tasks to STRIPS,
but these do not preserve the structure of the transition system (e. g.,
length of shortest plans may change).
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