Principles of Al Planning

3. Deterministic planning tasks

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 24th, 2008

Principles of Al Planning

October 24th, 2008 — 3. Deterministic planning tasks

Deterministic planning tasks

State variables

Propositional logic

Operators

Deterministic planning tasks

Normal forms

Normal form for effects STRIPS operators

Succinct representation of transition systems

- ▶ More compact representation of actions than as relations is often
 - possible because of symmetries and other regularities,
 - unavoidable because the relations are too big.
- Represent different aspects of the world in terms of different state variables.

 A state is a valuation of state variables.
- ▶ Represent actions in terms of changes to the state variables.

State variables

▶ The state of the world is described in terms of a finite set of finite-valued state variables.

Example

```
hour: \{0, \ldots, 23\} = 13
minute: \{0, ..., 59\} = 55
location: \{51, 52, 82, 101, 102\} = 101
weather: {sunny, cloudy, rainy} = cloudy
holiday: \{T, F\} = F
```

- Any *n*-valued state variable can be replaced by $\lfloor \log_2 n \rfloor$ Boolean (2-valued) state variables.
- Actions change the values of the state variables.

Blocks world with state variables

State variables:

```
 \begin{array}{l} \textit{location-of-A} : \ \{B,C,\mathsf{table}\} \\ \textit{location-of-B} : \ \{A,C,\mathsf{table}\} \\ \textit{location-of-C} : \ \{A,B,\mathsf{table}\} \\ \end{array}
```

Example

$$s(location-of-A) = table$$

 $s(location-of-B) = A$
 $s(location-of-C) = table$

Not all valuations correspond to an intended blocks world state, e.g. s such that s(location-of-A) = B and s(location-of-B) = A.

Blocks world with Boolean state variables

Example

$$s(A-on-B) = 0$$

$$s(A-on-C) = 0$$

$$s(A-on-table) = 1$$

$$s(B-on-A) = 1$$

$$s(B-on-C) = 0$$

$$s(B-on-table) = 0$$

$$s(C-on-A) = 0$$

$$s(C-on-B) = 0$$

$$s(C-on-table) = 1$$

Logical representations of state sets

- \triangleright n state variables with m values induce a state space consisting of m^n states $(2^n \text{ states for } n \text{ Boolean state variables})$
- ▶ a language for talking about sets of states (valuations of state variables): propositional logic
- \blacktriangleright logical connectives \approx set-theoretical operations

Syntax of propositional logic

Let A be a set of atomic propositions (\sim state variables).

- 1. For all $a \in A$, a is a propositional formula.
- 2. If ϕ is a propositional formula, then so is $\neg \phi$.
- 3. If ϕ and ϕ' are propositional formulae, then so is $\phi \vee \phi'$.
- 4. If ϕ and ϕ' are propositional formulae, then so is $\phi \wedge \phi'$.
- 5. The symbols \perp and \top are propositional formulae.

The implication $\phi \to \phi'$ is an abbreviation for $\neg \phi \lor \phi'$.

The equivalence $\phi \leftrightarrow \phi'$ is an abbreviation for $(\phi \to \phi') \land (\phi' \to \phi)$.

Semantics of propositional logic

A valuation of A is a function $v:A\to\{0,1\}$. Define the notation $v\models\phi$ for valuations v and formulae ϕ by

- 1. $v \models a$ if and only if v(a) = 1, for $a \in A$.
- 2. $v \models \neg \phi$ if and only if $v \not\models \phi$
- 3. $v \models \phi \lor \phi'$ if and only if $v \models \phi$ or $v \models \phi'$
- 4. $v \models \phi \land \phi'$ if and only if $v \models \phi$ and $v \models \phi'$
- 5. $v \models \top$
- 6. $v \not\models \bot$

Propositional logic terminology

- ▶ A propositional formula ϕ is satisfiable if there is at least one valuation v so that $v \models \phi$. Otherwise it is unsatisfiable.
- ▶ A propositional formula ϕ is valid or a tautology if $v \models \phi$ for all valuations v. We write this as $\models \phi$.
- ▶ A propositional formula ϕ is a logical consequence of a propositional formula ϕ' , written $\phi' \models \phi$ if $v \models \phi$ for all valuations v with $v \models \phi'$.
- ► Two propositional formulae ϕ and ϕ' are logically equivalent, written $\phi \equiv \phi'$, if $\phi \models \phi'$ and $\phi' \models \phi$.

Propositional logic terminology (ctd.)

- ▶ A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a literal.
- ➤ A formula that is a disjunction of literals is a clause. This includes unit clauses *I* consisting of a single literal, and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

Formulae vs. sets

sets		formulae
those $\frac{2^n}{2}$ states in which a is true		$a \in A$
$E \cup F$		$E \vee F$
$E \cap F$		$E \wedge F$
$E \setminus F$	(set difference)	$E \wedge \neg F$
Ē	(complement)	¬ <i>E</i>
the empty set \emptyset		
the universal set		Τ
		I
question about sets		question about formulae
<i>E</i> ⊆ <i>F</i> ?		<i>E</i> = <i>F</i> ?
<i>E</i> ⊂ <i>F</i> ?		$E \models F$ and $F \not\models E$?
E = F?		$E \models F$ and $F \models E$?

Operators

Actions for a state set with propositional state variables A can be concisely represented as operators $\langle c, e \rangle$ where

- ▶ the precondition c is a propositional formula over A describing the set of states in which the action can be taken (states in which an arrow starts), and
- ▶ the effect e describes the successor states of states in which the action can be taken (where the arrows go). Effect descriptions are procedural: how do the values of the state variable change?

Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

- 1. If $a \in A$ is a state variable, then a and $\neg a$ are effects (atomic effects).
- 2. If e_1, \ldots, e_n are effects, then $e_1 \wedge \cdots \wedge e_n$ is an effect (conjunctive effects). The special case with n=0 is the empty conjunction \top .
- 3. If c is a propositional formula and e is an effect, then $c \triangleright e$ is an effect (conditional effects).

Atomic effects a and $\neg a$ are best understood as assignments a := 1 and a := 0, respectively.

Effect example

 $c \triangleright e$ means that change e takes place if c is true in the current state.

Example

Increment 4-bit number $b_3b_2b_1b_0$ represented as four state variables b_0 , \dots , b_3 .

Blocks world operators

In addition to state variables likes A-on-T and B-on-C, for convenience we also use state variables A-clear, B-clear, and C-clear to denote that there is nothing on the block in question.

```
\langle A-clear \land A-on-T \land B-clear, A-on-B \land \neg A-on-T \land \neg B-clear\rangle
\langle A-clear \wedge A-on-T \wedge C-clear. A-on-C \wedge \neg A-on-T \wedge \neg C-clear.
\langle A	ext{-clear} \wedge A	ext{-on-B}, \quad A	ext{-on-T} \wedge 
eg A	ext{-on-B} \wedge B	ext{-clear} 
angle
\langle A\text{-clear} \wedge A\text{-on-}C, A\text{-on-}T \wedge \neg A\text{-on-}C \wedge C\text{-clear} \rangle
\langle A\text{-clear} \wedge A\text{-on-}B \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-}B \wedge B\text{-clear} \wedge \neg C\text{-clear} \rangle
\langle A\text{-}clear \land A\text{-}on\text{-}C \land B\text{-}clear, \quad A\text{-}on\text{-}B \land \neg A\text{-}on\text{-}C \land C\text{-}clear \land \neg B\text{-}clear \rangle
```

Operator semantics

Changes caused by an operator

For each effect e and state s, we define the change set of e in s, written [e], as the following set of literals:

- 1. $[a]_s = \{a\}$ and $[\neg a]_s = \{\neg a\}$ for atomic effects $a, \neg a$
- 2. $[e_1 \wedge \cdots \wedge e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
- 3. $[c \triangleright e]_s = [e]_s$ if $s \models c$ and $[c \triangleright e]_s = \emptyset$ otherwise

Applicability of an operator

Operator $\langle c, e \rangle$ is applicable in a state s iff $s \models c$ and $[e]_s$ is consistent.

Operator semantics (ctd.)

Definition (successor state)

The successor state $app_o(s)$ of s with respect to operator $o = \langle c, e \rangle$ is the state s' with $s' \models [e]_s$ and s'(v) = s(v) for all state variables v not mentioned in $[e]_{\varsigma}$.

This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \land (\neg c \rhd \neg b) \rangle$ and the state

$$s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}.$$

The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \rhd \neg b)]_s = {\neg a}$ is consistent.

Applying the operator results in the successor state

$$app_{\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}.$$

Deterministic planning tasks

Definition (deterministic planning task)

A deterministic planning task is a 4-tuple $\Pi = \langle A, I, O, G \rangle$ where

- ► A is a finite set of state variables,
- ► *I* is an initial state over *A*.
- ▶ O is a finite set of operators over A, and
- G is a formula over A describing the goal states.

Note: We will omit the word "deterministic" where it is clear from context.

Mapping planning tasks to transition systems

From every deterministic planning task $\Pi = \langle A, I, O, G \rangle$ we can produce a corresponding transition system $\mathcal{T}(\Pi) = \langle S, I, O', G' \rangle$:

- 1. S is the set of all valuations of A,
- 2. $O' = \{R(o) \mid o \in O\}$ where $R(o) = \{(s, s') \in S \times S \mid s' = app_o(s)\}$, and
- 3. $G' = \{ s \in S \mid s \models G \}.$

Equivalence of operators and effects

Definition (equivalent effects)

Two effects e and e' over state variables A are equivalent, written $e \equiv e'$, if for all states s over A, $[e]_s = [e']_s$.

Definition (equivalent operators)

Two operators o and o' over state variables A are equivalent, written $o \equiv o'$, if they are applicable in the same states, and for all states s where they are applicable, $app_{o}(s) = app_{o'}(s)$.

Theorem

Let $o = \langle c, e \rangle$ and $o' = \langle c', e' \rangle$ be operators with $c \equiv c'$ and $e \equiv e'$. Then $o \equiv o'$

Note: The converse is not true. (Why not?)

 $e_1 \wedge e_2 \equiv e_2 \wedge e_1$

 $(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$

 $\top \wedge e \equiv e$

Equivalence transformations for effects

$$c \triangleright e \equiv c' \triangleright e \quad \text{if } c \equiv c' \tag{4}$$

$$\top \triangleright e \equiv e \tag{5}$$

$$\bot \triangleright e \equiv \top \tag{6}$$

$$c_1 \triangleright (c_2 \triangleright e) \equiv (c_1 \land c_2) \triangleright e \tag{7}$$

$$c \triangleright (e_1 \land \dots \land e_n) \equiv (c \triangleright e_1) \land \dots \land (c \triangleright e_n) \tag{8}$$

$$(c_1 \triangleright e) \land (c_2 \triangleright e) \equiv (c_1 \lor c_2) \triangleright e \tag{9}$$

(1)

(2)

(3)

Normal form for effects

Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.

This is useful because algorithms (and proofs) then only need to deal with effects in normal form.

- ▶ Nesting of conditionals, as in $a \triangleright (b \triangleright c)$, can be eliminated.
- ▶ Effects e within a conditional effect $\phi \triangleright e$ can be restricted to atomic effects (a or $\neg a$).

Transformation to normal form only gives a small polynomial size increase. Compare: transformation to CNF or DNF may increase formula size exponentially.

Normal form for operators and effects

Definition

An operator $\langle c, e \rangle$ is in normal form if for all occurrences of $c' \triangleright e'$ in e the effect e' is either a or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in e.

Theorem

For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form using the equivalence transformations for effects.

Normal form example

Example

$$\begin{array}{c} (a\rhd(b\land\\ (c\rhd(\neg d\land e))))\land\\ (\neg b\rhd e) \end{array}$$

transformed to normal form is

$$\begin{array}{c} (a \rhd b) \land \\ ((a \land c) \rhd \neg d) \land \\ ((\neg b \lor (a \land c)) \rhd e) \end{array}$$

STRIPS operators

Definition

An operator $\langle c, e \rangle$ is a STRIPS operator if

- 1. c is a conjunction of literals, and
- 2. e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

$$\langle I_1 \wedge \cdots \wedge I_n, I'_1 \wedge \cdots \wedge I'_m \rangle$$

where l_i are literals and l'_i are atomic effects.

Note: Many texts also require that all literals in c are positive.

STRIPS

STanford Research Institute Planning System (Fikes & Nilsson, 1971)

Why STRIPS is interesting

- ► STRIPS operators are particularly simple, yet expressive enough to capture general planning problems.
- ▶ In particular, STRIPS planning is no easier than general planning problems.
- ▶ Most algorithms in the planning literature are only presented for STRIPS operators (generalization is often, but not always, obvious).

Transformation to STRIPS

- ▶ Not every operator is equivalent to a STRIPS operator.
- ▶ However, each operator can be transformed into a set of STRIPS operators whose "combination" is equivalent to the original operator. (How?)
- ▶ However, this transformation may exponentially increase the number of required operators. There are planning tasks for which such a blow-up is unavoidable.
- ▶ There are polynomial transformations of planning tasks to STRIPS, but these do not preserve the structure of the transition system (e.g., length of shortest plans may change).