
Principles of AI Planning
3. Deterministic planning tasks

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 24th, 2008

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 1 / 28

Principles of AI Planning
October 24th, 2008 — 3. Deterministic planning tasks

Deterministic planning tasks
State variables
Propositional logic
Operators
Deterministic planning tasks

Normal forms
Normal form for effects
STRIPS operators

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 2 / 28

Deterministic planning tasks State variables

Succinct representation of transition systems

I More compact representation of actions than as relations is often
I possible because of symmetries and other regularities,
I unavoidable because the relations are too big.

I Represent different aspects of the world in terms of different state
variables. A state is a valuation of state variables.

I Represent actions in terms of changes to the state variables.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 3 / 28

Deterministic planning tasks State variables

State variables

I The state of the world is described in terms of a finite set of
finite-valued state variables.

Example

hour: {0, . . . , 23} = 13
minute: {0, . . . , 59} = 55
location: {51, 52, 82, 101, 102} = 101
weather: {sunny, cloudy, rainy} = cloudy
holiday: {T,F} = F

I Any n-valued state variable can be replaced by dlog2 ne Boolean
(2-valued) state variables.

I Actions change the values of the state variables.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 4 / 28

Deterministic planning tasks State variables

Blocks world with state variables

State variables:
location-of-A: {B,C, table}
location-of-B: {A,C, table}
location-of-C : {A,B, table}

Example

s(location-of-A) = table

s(location-of-B) = A

s(location-of-C) = table A
B

C
Not all valuations correspond to an intended blocks world state, e. g. s
such that s(location-of-A) = B and s(location-of-B) = A.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 5 / 28

Deterministic planning tasks State variables

Blocks world with Boolean state variables

Example

s(A-on-B) = 0

s(A-on-C) = 0

s(A-on-table) = 1

s(B-on-A) = 1

s(B-on-C) = 0

s(B-on-table) = 0

s(C-on-A) = 0

s(C-on-B) = 0

s(C-on-table) = 1

A
B

C

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 6 / 28

Deterministic planning tasks Logic

Logical representations of state sets

I n state variables with m values induce a state space consisting of mn

states (2n states for n Boolean state variables)

I a language for talking about sets of states (valuations of state
variables): propositional logic

I logical connectives ≈ set-theoretical operations

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 7 / 28

Deterministic planning tasks Logic

Syntax of propositional logic

Let A be a set of atomic propositions (∼ state variables).

1. For all a ∈ A, a is a propositional formula.

2. If φ is a propositional formula, then so is ¬φ.

3. If φ and φ′ are propositional formulae, then so is φ ∨ φ′.

4. If φ and φ′ are propositional formulae, then so is φ ∧ φ′.

5. The symbols ⊥ and > are propositional formulae.

The implication φ → φ′ is an abbreviation for ¬φ ∨ φ′.
The equivalence φ ↔ φ′ is an abbreviation for (φ → φ′) ∧ (φ′ → φ).

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 8 / 28

Deterministic planning tasks Logic

Semantics of propositional logic

A valuation of A is a function v : A → {0, 1}. Define the notation v |= φ
for valuations v and formulae φ by

1. v |= a if and only if v(a) = 1, for a ∈ A.

2. v |= ¬φ if and only if v 6|= φ

3. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

4. v |= φ ∧ φ′ if and only if v |= φ and v |= φ′

5. v |= >
6. v 6|= ⊥

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 9 / 28

Deterministic planning tasks Logic

Propositional logic terminology

I A propositional formula φ is satisfiable if there is at least one
valuation v so that v |= φ. Otherwise it is unsatisfiable.

I A propositional formula φ is valid or a tautology if v |= φ for all
valuations v . We write this as |= φ.

I A propositional formula φ is a logical consequence of a propositional
formula φ′, written φ′ |= φ if v |= φ for all valuations v with v |= φ′.

I Two propositional formulae φ and φ′ are logically equivalent, written
φ ≡ φ′, if φ |= φ′ and φ′ |= φ.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 10 / 28

Deterministic planning tasks Logic

Propositional logic terminology (ctd.)

I A propositional formula that is a proposition a or
a negated proposition ¬a for some a ∈ A is a literal.

I A formula that is a disjunction of literals is a clause.
This includes unit clauses l consisting of a single literal,
and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 11 / 28

Deterministic planning tasks Logic

Formulae vs. sets

sets formulae

those 2n

2 states in which a is true a ∈ A
E ∪ F E ∨ F
E ∩ F E ∧ F
E \ F (set difference) E ∧ ¬F

E (complement) ¬E
the empty set ∅ ⊥
the universal set >

question about sets question about formulae

E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 12 / 28

Deterministic planning tasks Operators

Operators

Actions for a state set with propositional state variables A can be concisely
represented as operators 〈c , e〉 where

I the precondition c is a propositional formula over A describing the set
of states in which the action can be taken (states in which an arrow
starts), and

I the effect e describes the successor states of states in which the
action can be taken (where the arrows go). Effect descriptions are
procedural: how do the values of the state variable change?

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 13 / 28

Deterministic planning tasks Operators

Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

1. If a ∈ A is a state variable, then a and ¬a are effects (atomic effects).

2. If e1, . . . , en are effects, then e1 ∧ · · · ∧ en is an effect (conjunctive
effects). The special case with n = 0 is the empty conjunction >.

3. If c is a propositional formula and e is an effect, then c B e is an
effect (conditional effects).

Atomic effects a and ¬a are best understood as assignments a := 1 and
a := 0, respectively.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 14 / 28

Deterministic planning tasks Operators

Effect example

c B e means that change e takes place if c is true in the current state.

Example

Increment 4-bit number b3b2b1b0 represented as four state variables b0,
. . . , b3.

(¬b0B b0) ∧
((¬b1 ∧ b0)B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0)B (b2 ∧ ¬b1 ∧ ¬b0)) ∧
((¬b3 ∧ b2 ∧ b1 ∧ b0)B (b3 ∧ ¬b2 ∧ ¬b1 ∧ ¬b0))

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 15 / 28

Deterministic planning tasks Operators

Blocks world operators

In addition to state variables likes A-on-T and B-on-C, for convenience we
also use state variables A-clear, B-clear, and C-clear to denote that there is
nothing on the block in question.

〈A-clear ∧ A-on-T ∧ B-clear, A-on-B ∧ ¬A-on-T ∧ ¬B-clear〉
〈A-clear ∧ A-on-T ∧ C-clear, A-on-C ∧ ¬A-on-T ∧ ¬C-clear〉
〈A-clear ∧ A-on-B, A-on-T ∧ ¬A-on-B ∧ B-clear〉
〈A-clear ∧ A-on-C, A-on-T ∧ ¬A-on-C ∧ C-clear〉
〈A-clear ∧ A-on-B ∧ C-clear, A-on-C ∧ ¬A-on-B ∧ B-clear ∧ ¬C-clear〉
〈A-clear ∧ A-on-C ∧ B-clear, A-on-B ∧ ¬A-on-C ∧ C-clear ∧ ¬B-clear〉
. . .

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 16 / 28

Deterministic planning tasks Operators

Operator semantics

Changes caused by an operator

For each effect e and state s, we define the change set of e in s, written
[e]s , as the following set of literals:

1. [a]s = {a} and [¬a]s = {¬a} for atomic effects a, ¬a

2. [e1 ∧ · · · ∧ en]s = [e1]s ∪ · · · ∪ [en]s

3. [c B e]s = [e]s if s |= c and [c B e]s = ∅ otherwise

Applicability of an operator

Operator 〈c , e〉 is applicable in a state s iff s |= c and [e]s is consistent.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 17 / 28

Deterministic planning tasks Operators

Operator semantics (ctd.)

Definition (successor state)

The successor state appo(s) of s with respect to operator o = 〈c , e〉 is the
state s ′ with s ′ |= [e]s and s ′(v) = s(v) for all state variables v not
mentioned in [e]s .
This is defined only if o is applicable in s.

Example

Consider the operator 〈a,¬a ∧ (¬c B ¬b)〉 and the state
s = {a 7→ 1, b 7→ 1, c 7→ 1, d 7→ 1}.
The operator is applicable because s |= a and [¬a ∧ (¬c B ¬b)]s = {¬a}
is consistent.
Applying the operator results in the successor state
app〈a,¬a∧(¬cB¬b)〉(s) = {a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 1}.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 18 / 28

Deterministic planning tasks Tasks

Deterministic planning tasks

Definition (deterministic planning task)

A deterministic planning task is a 4-tuple Π = 〈A, I ,O,G 〉 where

I A is a finite set of state variables,

I I is an initial state over A,

I O is a finite set of operators over A, and

I G is a formula over A describing the goal states.

Note: We will omit the word “deterministic” where it is clear from context.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 19 / 28

Deterministic planning tasks Tasks

Mapping planning tasks to transition systems

From every deterministic planning task Π = 〈A, I ,O,G 〉 we can produce a
corresponding transition system T (Π) = 〈S , I ,O ′,G ′〉:

1. S is the set of all valuations of A,

2. O ′ = {R(o) | o ∈ O} where R(o) = {(s, s ′) ∈ S × S | s ′ = appo(s)},
and

3. G ′ = {s ∈ S | s |= G}.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 20 / 28

Normal forms Effects

Equivalence of operators and effects

Definition (equivalent effects)

Two effects e and e ′ over state variables A are equivalent, written e ≡ e ′,
if for all states s over A, [e]s = [e ′]s .

Definition (equivalent operators)

Two operators o and o ′ over state variables A are equivalent, written
o ≡ o ′, if they are applicable in the same states, and for all states s where
they are applicable, appo(s) = appo′(s).

Theorem
Let o = 〈c , e〉 and o ′ = 〈c ′, e ′〉 be operators with c ≡ c ′ and e ≡ e ′. Then
o ≡ o ′.

Note: The converse is not true. (Why not?)

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 21 / 28

Normal forms Effects

Equivalence transformations for effects

e1 ∧ e2 ≡ e2 ∧ e1 (1)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (2)

> ∧ e ≡ e (3)

c B e ≡ c ′ B e if c ≡ c ′ (4)

> B e ≡ e (5)

⊥ B e ≡ > (6)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (7)

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (8)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (9)

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 22 / 28

Normal forms Effects

Normal form for effects

Similarly to normal forms in propositional logic (DNF, CNF, NNF, . . .) we
can define a normal form for effects.
This is useful because algorithms (and proofs) then only need to deal with
effects in normal form.

I Nesting of conditionals, as in a B (b B c), can be eliminated.

I Effects e within a conditional effect φ B e can be restricted to atomic
effects (a or ¬a).

Transformation to normal form only gives a small polynomial size increase.
Compare: transformation to CNF or DNF may increase formula size
exponentially.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 23 / 28

Normal forms Effects

Normal form for operators and effects

Definition
An operator 〈c , e〉 is in normal form if for all occurrences of c ′ B e ′ in e
the effect e ′ is either a or ¬a for some a ∈ A, and there is at most one
occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form
using the equivalence transformations for effects.

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 24 / 28

Normal forms Effects

Normal form example

Example

(aB (b ∧
(c B (¬d ∧ e)))) ∧

(¬bB e)

transformed to normal form is

(aB b) ∧
((a ∧ c)B¬d) ∧

((¬b ∨ (a ∧ c))B e)

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 25 / 28

Normal forms STRIPS

STRIPS operators

Definition
An operator 〈c , e〉 is a STRIPS operator if

1. c is a conjunction of literals, and

2. e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

〈l1 ∧ · · · ∧ ln, l ′1 ∧ · · · ∧ l ′m〉

where li are literals and l ′j are atomic effects.
Note: Many texts also require that all literals in c are positive.

STRIPS
STanford Research Institute Planning System
(Fikes & Nilsson, 1971)

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 26 / 28

Normal forms STRIPS

Why STRIPS is interesting

I STRIPS operators are particularly simple, yet expressive enough to
capture general planning problems.

I In particular, STRIPS planning is no easier than general planning
problems.

I Most algorithms in the planning literature are only presented for
STRIPS operators (generalization is often, but not always, obvious).

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 27 / 28

Normal forms STRIPS

Transformation to STRIPS

I Not every operator is equivalent to a STRIPS operator.

I However, each operator can be transformed into a set of STRIPS
operators whose “combination” is equivalent to the original operator.
(How?)

I However, this transformation may exponentially increase the number
of required operators. There are planning tasks for which such a
blow-up is unavoidable.

I There are polynomial transformations of planning tasks to STRIPS,
but these do not preserve the structure of the transition system (e. g.,
length of shortest plans may change).

M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 28 / 28

	Deterministic planning tasks
	State variables
	Propositional logic
	Operators
	Deterministic planning tasks

	Normal forms
	Normal form for effects
	STRIPS operators

