Principles of Al Planning 2. Transition systems

Malte Helmert

Albert-Ludwigs-Universität Freiburg

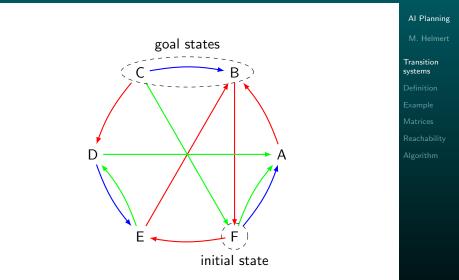
October 24th, 2008

AI Planning

M. Helmert

Transition systems Definition Example Matrices Reachability Algorithm

Transition systems



Definition (transition system)

- A transition system is $\langle S, I, \{a_1, \ldots, a_n\}, G \rangle$ where
 - S is a finite set of states (the state space),
 - $I \subseteq S$ is a finite set of initial states,
 - every action $a_i \subseteq S \times S$ is a binary relation on S,
 - $G \subseteq S$ is a finite set of goal states.

Definition (applicable action)

An action a is applicable in a state s if sas' for at least one state s'.

AI Planning

M. Helmert

Transition systems

Definition Example

Reachability Algorithm A transition system is deterministic if there is only one initial state and all actions are deterministic. Hence all future states of the world are completely predictable.

Definition (deterministic transition system)

A deterministic transition system is $\langle S, I, O, G \rangle$ where

- S is a finite set of states (the state space),
- $\bullet \ I \in S \text{ is a state,} \\$
- actions $a \in O$ (with $a \subseteq S \times S$) are partial functions,
- $G \subseteq S$ is a finite set of goal states.

Successor state wrt. an action

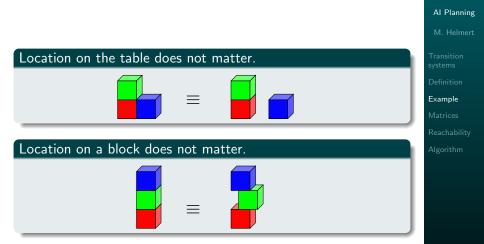
Given a state s and an action a so that a is applicable in s, the successor state of s with respect to a is s' such that sas', denoted by $s' = app_a(s)$.

AI Planning

M. Helmert

Transition systems

Definition Example Matrices Reachability Algorithm



At most one block may be below a block.

At most one block may be on top of a block.

AI Planning

M. Helmert

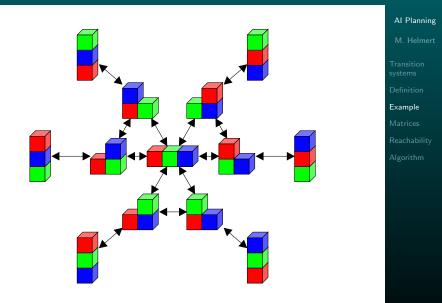
Transition systems

Definition

Example

/latrices

Blocks world The transition graph for three blocks



Blocks world Properties

blocks	states		
1	1		
2	3		
3	13		
4	73		
5	501		
6	4051		
7	37633		
8	394353		
9	4596553		
10	58941091		

- Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- Finding a shortest solution is NP-complete (for a compact description of the problem).

AI Planning

M. Helmert

Transition systems

Definition

Example

Matrices Reachability

Deterministic planning: plans

Definition (plan)

A plan for $\langle S, I, O, G \rangle$ is a sequence $\pi = o_1, \ldots, o_n$ of operators such that $o_1, \ldots, o_n \in O$ and s_0, \ldots, s_n is a sequence of states (the execution of π) so that

(1)
$$s_0 = I$$
,
(2) $s_i = app_{o_i}(s_{i-1})$ for every $i \in \{1, ..., n\}$, and
(3) $s_n \in G$.

This can be equivalently expressed as

$$\mathsf{app}_{o_n}(\mathsf{app}_{o_{n-1}}(\dots \mathsf{app}_{o_1}(I)\dots)) \in G$$

AI Planning

M. Helmert

Transition systems

Definition

Example Matrices Reachability

Transition relations as matrices

If there are n states, each action (a binary relation) corresponds to an n × n matrix: The element at row i and column j is 1 if the action maps state i to state j, and 0 otherwise.

For deterministic actions there is at most one non-zero element in each row.

- Matrix multiplication corresponds to sequential composition: taking action M_1 followed by action M_2 is the product M_1M_2 . (This also corresponds to the join of the relations.)
- The unit matrix I_{n×n} is the NO-OP action: every state is mapped to itself.

AI Planning

M. Helmert

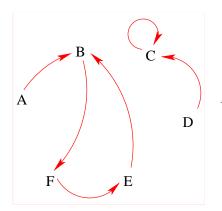
Transition systems

Definition

Example

Matrices

Reachability Algorithm



	A	В	C	D 0 0 0 0 0 0 0	E	F
A	0	1	0	0	0	0
B	0	0	0	0	0	1
C	0	0	1	0	0	0
D	0	0	1	0	0	0
E	0	1	0	0	0	0
F	0	0	0	0	1	0

AI Planning

M. Helmert

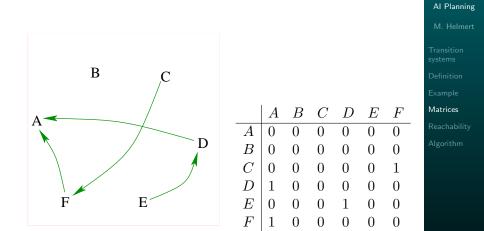
Transition systems

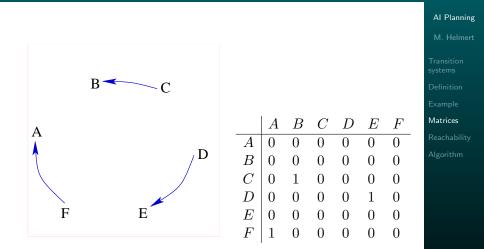
Definition

Example

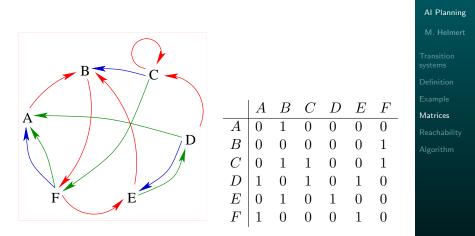
Matrices

Reachability Algorithm





Sum matrix $M_R + M_G + M_B$ Representing one-step reachability by any of the component actions



We use addition 0 + 0 = 0 and b + b' = 1 if b = 1 or b' = 1.

Sequential composition as matrix multiplication

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & \mathbf{1} \\ \hline 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & \mathbf{1} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & \mathbf{1} & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

AI Planning

M. Helmert

Transition systems

Definition

Example

Matrices

Reachability Algorithm

E is reachable from B by two actions because

F is reachable from B by one action and E is reachable from F by one action.

Let M be the $n\times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

$$\begin{array}{rcl} R_{0} & = & I_{n \times n} \\ R_{1} & = & I_{n \times n} + M \\ R_{2} & = & I_{n \times n} + M + M^{2} \\ R_{3} & = & I_{n \times n} + M + M^{2} + M^{3} \\ \vdots \end{array}$$

 R_i represents reachability by i actions or less. If s' is reachable from s, then it is reachable with $\leq n-1$ actions: $R_{n-1} = R_n$.

.

AI Planning

M. Helmert

Transition systems

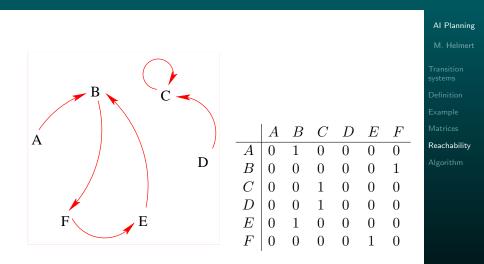
Definition

Example

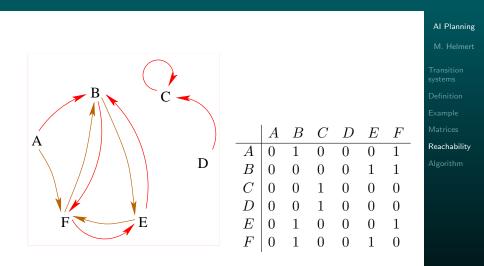
Matrices

Reachability

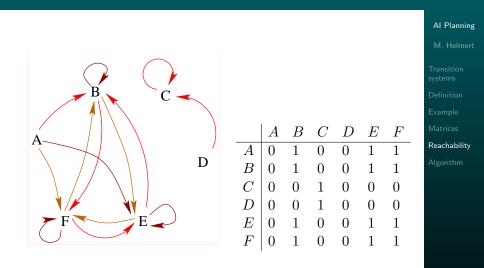
Reachability: example, M_R



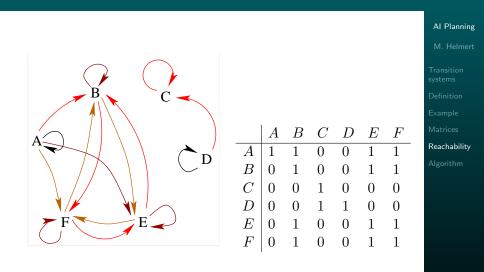
Reachability: example, $M_R + M_R^2$



Reachability: example, $M_R + M_R^2 + M_R^3$



Reachability: example, $M_R + M_R^2 + M_R^3 + I_{6 imes 6}$



Relations and sets as matrices

Row vectors as sets of states

Row vectors S represent sets of states. SM is the set of states reachable from S by M.

$$\begin{pmatrix} 1\\0\\1\\0\\0\\0 \end{pmatrix}^T \times \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1\\0 & 1 & 0 & 0 & 1 & 1\\0 & 0 & 1 & 0 & 0 & 0\\0 & 1 & 1 & 0 & 0 & 1 & 1\\0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1\\1\\1\\0\\1\\1 \end{pmatrix}^T$$

AI Planning

M. Helmert

Transition systems

Definition

Example

Matrices

Reachability

A simple planning algorithm

- We next present a simple planning algorithm based on computing distances in the transition graph.
- The algorithm finds shortest paths less efficiently than Dijkstra's algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra's algorithm directly.

AI Planning

M. Helmert

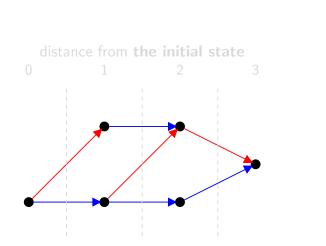
Transition systems

Definition

Example

Matrices

Reachability



AI Planning

M. Helmert

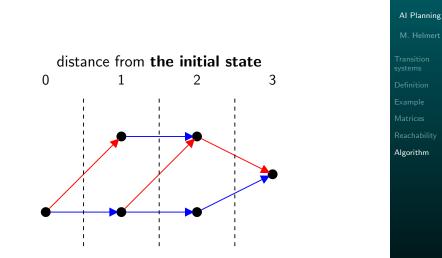
Transition systems

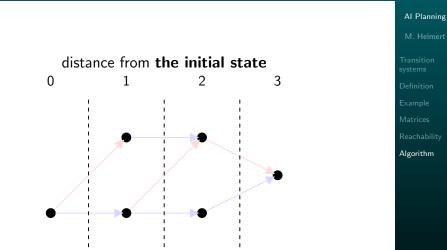
Definition

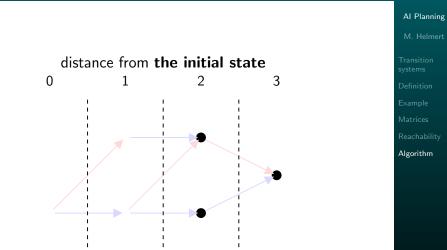
Example

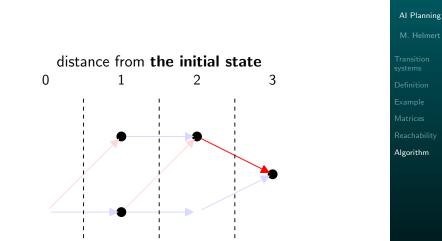
Matrices

Reachability

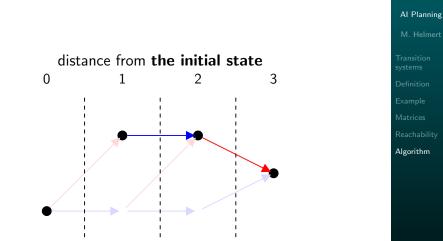


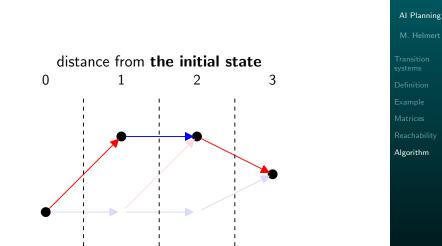






A simple planning algorithm Idea





A simple planning algorithm

- Compute the matrices R₀, R₁, R₂, ..., R_n representing reachability with 0, 1, 2, ..., n steps with all actions.
- Find the smallest i such that a goal state s_g is reachable from the initial state according to R_i.
- Find an action (the last action of the plan) by which s_g is reached with one step from a state s_{g'} that is reachable from the initial state according to R_{i-1}.
- Repeat the last step, now viewing s_{g'} as the goal state with distance i 1.

AI Planning

M. Helmert

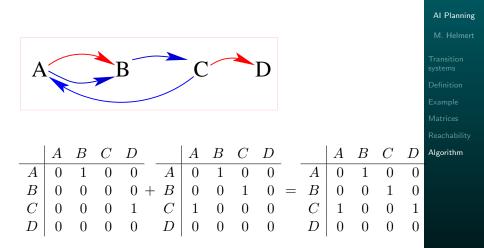
Transition systems

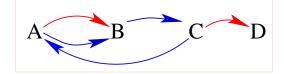
Definition

Example

Matrices

Reachability Algorithm





$$R_{0} = \frac{\begin{vmatrix} A & B & C & D \\ \hline A & 1 & 0 & 0 & 0 \\ B & 0 & 1 & 0 & 0 \\ C & 0 & 0 & 1 & 0 \\ D & 0 & 0 & 0 & 1 \end{vmatrix} R_{1} = \frac{\begin{vmatrix} A & B & C & D \\ \hline A & 1 & 1 & 0 & 0 \\ B & 0 & 1 & 1 & 0 \\ C & 1 & 0 & 1 & 1 \\ D & 0 & 0 & 0 & 1 \end{vmatrix}$$
$$R_{2} = \frac{\begin{vmatrix} A & B & C & D \\ \hline A & 1 & 1 & 1 & 0 \\ R_{1} & 1 & 1 & 1 & 0 \\ \hline A & 1 & 1 & 1 & 0 \\ \hline A & 1 & 1 & 1 & 1 \\ C & 1 & 1 & 1 & 1 \\ D & 0 & 0 & 0 & 1 \end{vmatrix}$$
$$R_{3} = \frac{\begin{vmatrix} A & B & C & D \\ \hline A & 1 & 1 & 1 & 1 \\ \hline A & 1 & 1 & 1 & 1 \\ \hline C & 1 & 1 & 1 & 1 \\ D & 0 & 0 & 0 & 1 \end{vmatrix}$$

AI Planning

M. Helmert

Transition systems

Definition

Example

Matrices

Reachability