

Transition systems

Principles of AI Planning October 24th, 2008 — 2. Transition systems			
Transition systems			
Definition			
Example			
Matrices			
Reachability			
Algorithm			
M. Helmert (Universität Freiburg)	AI Planning	October 24th, 2008	2 / 27

	Definition		
Transition systems Formalization of the dynamics of	the world/application		
Definition (transition syst A transition system is $\langle S, I \rangle$ > S is a finite set of stat > $I \subseteq S$ is a finite set of > every action $a_i \subseteq S \times$ > $G \subseteq S$ is a finite set of	em) , $\{a_1, \ldots, a_n\}, G\rangle$ where es (the state space), initial states, S is a binary relation f goal states.	on S,	
Definition (applicable acti An action <i>a</i> is applicable in	on) a state <i>s</i> if <i>sas</i> ′ for a	it least one state <i>s</i> '.	
M. Helmert (Universität Freiburg)	AI Planning	October 24th, 2008	4 / 27

Definition

Transition systems

Deterministic transition systems

A transition system is deterministic if there is only one initial state and all actions are deterministic. Hence all future states of the world are completely predictable.

Definition (deterministic transition system)

- A deterministic transition system is (S, I, O, G) where
 - ► *S* is a finite set of states (the state space),
 - $I \in S$ is a state,
 - ▶ actions $a \in O$ (with $a \subseteq S \times S$) are partial functions,
 - $G \subseteq S$ is a finite set of goal states.

Successor state wrt. an action

Given a state s and an action a so that a is applicable in s, the successor state of s with respect to a is s' such that sas', denoted by $s' = app_a(s)$.

AI Planning

M. Helmert (Universität Freiburg)

October 24th, 2008

5 / 27

7 / 27

M. Helmert (Universität Freiburg)

Example

Blocks world The rules of the game

At most one block may be below a block.

At most one block may be on top of a block.

AI Planning

М	Helmert	(Universität	Freiburg)
IVI.	Termert	Oniversitat	rieiburg)

AI Planning

October 24th, 2008

		Example
Blocks	world	
Properties	5	
blocks	states	
1	1	
2	3	
3	13	
4	73	
5	501	
6	4051	
7	37633	
8	394353	
9	4596553	
10	58941091	
1 Fin	ding a soluti	on is polynomia

- 1. Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- 2. Finding a shortest solution is NP-complete (for a compact description of the problem).

AI Planning

```
M. Helmert (Universität Freiburg)
```

Matrices

Transition relations as matrices

If there are n states, each action (a binary relation) corresponds to an n × n matrix: The element at row i and column j is 1 if the action maps state i to state j, and 0 otherwise.
 For deterministic actions there is at most one non-zero element in

each row.2. Matrix multiplication corresponds to sequential composition: taking

- action M_1 followed by action M_2 is the product M_1M_2 . (This also corresponds to the join of the relations.)
- 3. The unit matrix $I_{n \times n}$ is the NO-OP action: every state is mapped to itself.

Example

Deterministic planning: plans

Definition (plan)

A plan for $\langle S, I, O, G \rangle$ is a sequence $\pi = o_1, \ldots, o_n$ of operators such that $o_1, \ldots, o_n \in O$ and s_0, \ldots, s_n is a sequence of states (the execution of π) so that

1. $s_0 = I$, 2. $s_i = app_{o_i}(s_{i-1})$ for every $i \in \{1, ..., n\}$, and

This can be equivalently expressed as

$$\mathsf{app}_{o_n}(\mathsf{app}_{o_{n-1}}(\dots \mathsf{app}_{o_1}(I)\dots)) \in G$$

M. Helmert (Universität Freiburg)

AI Planning

October 24th, 2008 10 / 27

October 24th, 2008

Matrices

Sum matrix $M_R + M_G + M_B$ Representing one-step reachability by any of the component actions

Matrices
Sequential composition as matrix multiplication
$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline $
E is reachable from F by one action.

Reachability

Reachability

Let *M* be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

$$R_0 = I_{n \times n}$$

$$R_1 = I_{n \times n} + M$$

$$R_2 = I_{n \times n} + M + M^2$$

$$R_3 = I_{n \times n} + M + M^2 + M^3$$
:

 R_i represents reachability by *i* actions or less. If s' is reachable from *s*, then it is reachable with $\leq n - 1$ actions: $R_{n-1} = R_n$.

AI Planning

M. Helmert (Universität Freiburg)

October 24th, 2008

A simple planning algorithm

▶ We next present a simple planning algorithm based on computing distances in the transition graph.

Algorithm

• The algorithm finds shortest paths less efficiently than Dijkstra's algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra's algorithm directly.

Relations and sets as matrices Row vectors as sets of states Row vectors S represent sets of states. SM is the set of states reachable from S by M. $\begin{pmatrix} 1\\0\\1\\0\\0\\0 \end{pmatrix}^{T} \times \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1\\0 & 1 & 0 & 0 & 1 & 1\\0 & 0 & 1 & 0 & 0 & 0\\0 & 1 & 1 & 0 & 0 & 1 & 1\\0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1\\1\\1\\0\\1\\1 \end{pmatrix}^{T}$

AI Planning

Reachability

Algorithm A simple planning algorithm Idea distance from **the initial state** 0 1 2 3 M. Helmert (Universität Freiburg) AI Planning October 24th, 2008 24 / 27

M. Helmert (Universität Freiburg)

October 24th, 2008

Algorithm

A simple planning algorithm

- 1. Compute the matrices $R_0, R_1, R_2, \ldots, R_n$ representing reachability with $0, 1, 2, \ldots, n$ steps with all actions.
- 2. Find the smallest *i* such that a goal state s_g is reachable from the initial state according to R_i .
- 3. Find an action (the last action of the plan) by which s_g is reached with one step from a state $s_{g'}$ that is reachable from the initial state according to R_{i-1} .
- 4. Repeat the last step, now viewing $s_{g'}$ as the goal state with distance i-1.

M. Helmert	(Universität Freiburg)
------------	------------------------

AI Planning

October 24th, 2008

