Principles of Al Planning

2. Transition systems

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 24th, 2008

Principles of Al Planning

October 24th, 2008 — 2. Transition systems

Transition systems

Definition

Example

Matrices

Reachability

Algorithm

Transition systems

Transition systems

Formalization of the dynamics of the world/application

Definition (transition system)

A transition system is $\langle S, I, \{a_1, \ldots, a_n\}, G \rangle$ where

- ► *S* is a finite set of states (the state space),
- ▶ $I \subseteq S$ is a finite set of initial states,
- every action $a_i \subseteq S \times S$ is a binary relation on S,
- ▶ $G \subseteq S$ is a finite set of goal states.

Definition (applicable action)

An action a is applicable in a state s if sas' for at least one state s'.

Transition systems

Deterministic transition systems

A transition system is deterministic if there is only one initial state and all actions are deterministic. Hence all future states of the world are completely predictable.

Definition (deterministic transition system)

A deterministic transition system is $\langle S, I, O, G \rangle$ where

- ► S is a finite set of states (the state space),
- ▶ $I \in S$ is a state,
- ▶ actions $a \in O$ (with $a \subseteq S \times S$) are partial functions,
- ▶ $G \subseteq S$ is a finite set of goal states.

Successor state wrt. an action

Given a state s and an action a so that a is applicable in s, the successor state of s with respect to a is s' such that sas', denoted by $s' = app_a(s)$.

The rules of the game

Location on the table does not matter.

Location on a block does not matter.

The rules of the game

At most one block may be below a block.

At most one block may be on top of a block.

The transition graph for three blocks

Properties

olocks	states
1	1
2	3
3	13
4	73
5	501
6	4051
7	37633
8	394353
9	4596553
10	58941091

- 1. Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- 2. Finding a shortest solution is NP-complete (for a compact description of the problem).

Deterministic planning: plans

Definition (plan)

A plan for $\langle S, I, O, G \rangle$ is a sequence $\pi = o_1, \ldots, o_n$ of operators such that $o_1, \ldots, o_n \in O$ and s_0, \ldots, s_n is a sequence of states (the execution of π) so that

- 1. $s_0 = I$,
- 2. $s_i = app_{o_i}(s_{i-1})$ for every $i \in \{1, ..., n\}$, and
- 3. $s_n \in G$.

This can be equivalently expressed as

$$app_{o_n}(app_{o_{n-1}}(\dots app_{o_1}(I)\dots)) \in G$$

Transition relations as matrices

- 1. If there are n states, each action (a binary relation) corresponds to an $n \times n$ matrix: The element at row i and column j is 1 if the action maps state i to state j, and 0 otherwise. For deterministic actions there is at most one non-zero element in each row.
- 2. Matrix multiplication corresponds to sequential composition: taking action M_1 followed by action M_2 is the product M_1M_2 . (This also corresponds to the join of the relations.)
- 3. The unit matrix $I_{n \times n}$ is the NO-OP action: every state is mapped to itself.

	Α	В	С	D 0 0 0 0 0	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	1
C	0	0	1	0	0	0
D	0	0	1	0	0	0
Ε	0	1	0	0	0	0
F	0	0	0	0	1	0

	Α	В	С	D 0 0 0 0 1	Ε	F
Α	0	0	0	0	0	0
В	0	0	0	0	0	0
C	0	0	0	0	0	1
D	1	0	0	0	0	0
Ε	0	0	0	1	0	0
F	1	0	0	0	0	0

	Α	В	С	D 0 0 0 0 0 0 0 0	Ε	F
Α	0	0	0	0	0	0
В	0	0	0	0	0	0
C	0	1	0	0	0	0
D	0	0	0	0	1	0
Ε	0	0	0	0	0	0
F	1	0	0	0	0	0

Sum matrix $M_R + M_G + M_B$

Representing one-step reachability by any of the component actions

	A	В	C	D	Ε	F
A	0	1	0	0	0	0
В	0	0	0	0	0	1
C	0	1	1	0	0	1
D	1	0	1	D 0 0 0 0 1	1	0
Ε	0	1	0	1	0	0
F	1	0	0	0	1	0

We use addition 0 + 0 = 0 and b + b' = 1 if b = 1 or b' = 1.

Sequential composition as matrix multiplication

E is reachable from B by two actions because

F is reachable from B by one action and E is reachable from F by one action.

Reachability

Let M be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

$$R_{0} = I_{n \times n} R_{1} = I_{n \times n} + M R_{2} = I_{n \times n} + M + M^{2} R_{3} = I_{n \times n} + M + M^{2} + M^{3} \vdots$$

 R_i represents reachability by i actions or less. If s' is reachable from s, then it is reachable with $\leq n-1$ actions: $R_{n-1}=R_n$.

Reachability: example, M_R

	Α	В	С	D 0 0 0 0 0	Ε	F
A	0	1	0	0	0	0
В	0	0	0	0	0	1
C	0	0	1	0	0	0
D	0	0	1	0	0	0
Ε	0	1	0	0	0	0
F	0	0	0	0	1	0

Reachability: example, $M_R + M_R^2$

	Α	В	С	D 0 0 0 0 0	Ε	F
Α	0	1	0	0	0	1
В	0	0	0	0	1	1
C	0	0	1	0	0	0
D	0	0	1	0	0	0
Ε	0	1	0	0	0	1
F	0	1	0	0	1	0

Reachability: example, $M_R + M_R^2 + M_R^3$

	Α	В	С	D	Ε	F
Α	0	1	0	0 0 0 0 0	1	1
В	0	1	0	0	1	1
C	0	0	1	0	0	0
D	0	0	1	0	0	0
Ε	0	1	0	0	1	1
F	0	1	0	0	1	1

Reachability: example, $M_R + M_R^2 + M_R^3 + I_{6\times6}$

	Α	В	С	D 0 0 0 1 0	Ε	F
Α	1	1	0	0	1	1
В	0	1	0	0	1	1
C	0	0	1	0	0	0
D	0	0	1	1	0	0
Ε	0	1	0	0	1	1
F	0	1	0	0	1	1

Relations and sets as matrices

Row vectors as sets of states

Row vectors S represent sets of states. SM is the set of states reachable from S by M.

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}^{T} \times \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}^{T}$$

A simple planning algorithm

- We next present a simple planning algorithm based on computing distances in the transition graph.
- ► The algorithm finds shortest paths <u>less efficiently</u> than Dijkstra's algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra's algorithm directly.

A simple planning algorithm Idea

A simple planning algorithm

- 1. Compute the matrices $R_0, R_1, R_2, \ldots, R_n$ representing reachability with $0, 1, 2, \ldots, n$ steps with all actions.
- 2. Find the smallest i such that a goal state s_g is reachable from the initial state according to R_i .
- 3. Find an action (the last action of the plan) by which s_g is reached with one step from a state $s_{g'}$ that is reachable from the initial state according to R_{i-1} .
- 4. Repeat the last step, now viewing $s_{g'}$ as the goal state with distance i-1.

	Α	В	C	D			A	В	C	D			Α	В	C	D
				0												
В	0	0	0	0	+	В	0	0	1	0	=	В	0	0	1	0
C	0	0	0	1		C	1	0	0	0		C	1	0	0	1
D	0	0	0	0		D	0	0	0	0		D	0	0	0	0

