Principles of AI Planning
 2. Transition systems

Malte Helmert

Albert-Ludwigs-Universität Freiburg
October 24th, 2008

Principles of AI Planning

October 24th, 2008 - 2. Transition systems

Transition systems

Definition

Example

Matrices

Reachability

Algorithm

Transition systems

Transition systems

Formalization of the dynamics of the world/application

Definition (transition system)
A transition system is $\left\langle S, I,\left\{a_{1}, \ldots, a_{n}\right\}, G\right\rangle$ where

- S is a finite set of states (the state space),
- $I \subseteq S$ is a finite set of initial states,
- every action $a_{i} \subseteq S \times S$ is a binary relation on S,
- $G \subseteq S$ is a finite set of goal states.

Definition (applicable action)
An action a is applicable in a state s if $s a s^{\prime}$ for at least one state s^{\prime}.

Transition systems

Deterministic transition systems
A transition system is deterministic if there is only one initial state and all actions are deterministic. Hence all future states of the world are completely predictable.

Definition (deterministic transition system)
A deterministic transition system is $\langle S, I, O, G\rangle$ where

- S is a finite set of states (the state space),
- $I \in S$ is a state,
- actions $a \in O$ (with $a \subseteq S \times S$) are partial functions,
- $G \subseteq S$ is a finite set of goal states.

Successor state wrt. an action
Given a state s and an action a so that a is applicable in s, the successor state of s with respect to a is s^{\prime} such that sas', denoted by $s^{\prime}=a p p_{a}(s)$.

Blocks world

The rules of the game

Location on the table does not matter.

Location on a block does not matter.

Blocks world

The rules of the game
At most one block may be below a block.

At most one block may be on top of a block.

Blocks world

The transition graph for three blocks

Blocks world

Properties blocks	states
1	1
2	3
3	13
4	73
5	501
6	4051
7	37633
8	394353
9	4596553
10	58941091

1. Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
2. Finding a shortest solution is NP-complete (for a compact description of the problem).

Deterministic planning: plans

Definition (plan)

A plan for $\langle S, I, O, G\rangle$ is a sequence $\pi=o_{1}, \ldots, o_{n}$ of operators such that $o_{1}, \ldots, o_{n} \in O$ and s_{0}, \ldots, s_{n} is a sequence of states (the execution of π) so that

1. $s_{0}=l$,
2. $s_{i}=a p p_{o_{i}}\left(s_{i-1}\right)$ for every $i \in\{1, \ldots, n\}$, and
3. $s_{n} \in G$.

This can be equivalently expressed as

$$
\operatorname{app}_{o_{n}}\left(a p p_{o_{n-1}}\left(\ldots a p p_{o_{1}}(I) \ldots\right)\right) \in G
$$

Transition relations as matrices

1. If there are n states, each action (a binary relation) corresponds to an $n \times n$ matrix: The element at row i and column j is 1 if the action maps state i to state j, and 0 otherwise.
For deterministic actions there is at most one non-zero element in each row.
2. Matrix multiplication corresponds to sequential composition: taking action M_{1} followed by action M_{2} is the product $M_{1} M_{2}$. (This also corresponds to the join of the relations.)
3. The unit matrix $I_{n \times n}$ is the NO-OP action: every state is mapped to itself.

Example

Example

Example

$$
\begin{array}{ll|llllll}
\\
& & \\
& & \\
& & A & A & B & C & D & E \\
\hline
\end{array}
$$

Sum matrix $M_{R}+M_{G}+M_{B}$

Representing one-step reachability by any of the component actions

	A	B	C	D	E	F
A	0	1	0	0	0	0
B	0	0	0	0	0	1
C	0	1	1	0	0	1
D	1	0	1	0	1	0
E	0	1	0	1	0	0
F	1	0	0	0	1	0

We use addition $0+0=0$ and $b+b^{\prime}=1$ if $b=1$ or $b^{\prime}=1$.

Sequential composition as matrix multiplication

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \times\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0
\end{array}\right)=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

E is reachable from B by two actions because
F is reachable from B by one action and
E is reachable from F by one action.

Reachability

Let M be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

$$
\begin{aligned}
& R_{0}=I_{n \times n} \\
& R_{1}=I_{n \times n}+M \\
& R_{2}=I_{n \times n}+M+M^{2} \\
& R_{3}=I_{n \times n}+M+M^{2}+M^{3}
\end{aligned}
$$

R_{i} represents reachability by i actions or less. If s^{\prime} is reachable from s, then it is reachable with $\leq n-1$ actions: $R_{n-1}=R_{n}$.

Reachability: example, M_{R}

Reachability: example, $M_{R}+M_{R}^{2}$

	A	B	C	D	E	F
A	0	1	0	0	0	1
B	0	0	0	0	1	1
C	0	0	1	0	0	0
D	0	0	1	0	0	0
E	0	1	0	0	0	1
F	0	1	0	0	1	0

Reachability: example, $M_{R}+M_{R}^{2}+M_{R}^{3}$

	A	B	C	D	E	F
A	0	1	0	0	1	1
B	0	1	0	0	1	1
C	0	0	1	0	0	0
D	0	0	1	0	0	0
E	0	1	0	0	1	1
F	0	1	0	0	1	1

Reachability: example, $M_{R}+M_{R}^{2}+M_{R}^{3}+I_{6 \times 6}$

	A	B	C	D	E	F
A	1	1	0	0	1	1
B	0	1	0	0	1	1
C	0	0	1	0	0	0
D	0	0	1	1	0	0
E	0	1	0	0	1	1
F	0	1	0	0	1	1

Relations and sets as matrices

Row vectors as sets of states

Row vectors S represent sets of states.
$S M$ is the set of states reachable from S by M.

$$
\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)^{T} \times\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{array}\right)^{T}
$$

A simple planning algorithm

- We next present a simple planning algorithm based on computing distances in the transition graph.
- The algorithm finds shortest paths less efficiently than Dijkstra's algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra's algorithm directly.

A simple planning algorithm

 Idea

A simple planning algorithm

1. Compute the matrices $R_{0}, R_{1}, R_{2}, \ldots, R_{n}$ representing reachability with $0,1,2, \ldots, n$ steps with all actions.
2. Find the smallest i such that a goal state s_{g} is reachable from the initial state according to R_{i}.
3. Find an action (the last action of the plan) by which s_{g} is reached with one step from a state $s_{g^{\prime}}$ that is reachable from the initial state according to R_{i-1}.
4. Repeat the last step, now viewing $s_{g^{\prime}}$ as the goal state with distance $i-1$.

Example

Example

		A	B	C				A	B	C		
R_{0}	A	1	0	0	0	R_{1}	A	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}$				
	B	0	1	0	0		B					
	C	0	0	1	0							
	D	0	0	0	1		D					
$R_{2}=$		A	B	C	D	R_{3}		$A B$		C		
	A	1	1	1	0		A	1	1	1		1
	B	1	1	1	1		B	1	1	1		1
	C	1	1	1	1		C	1	1	1		1
	D	0	0	0	1		D	0	0	0		1

