Principles of Al Planning 1. Introduction

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 21st, 2008

AI Planning

M. Helmert

bout...

Introduction

People

Lecturer

Dr. Malte Helmert

- email: helmert@informatik.uni-freiburg.de
- office: room 052-00-044
- consultation: by appointment (email)

Assistants

Gabi Röger and Patrick Eyerich

- email: roeger@informatik.uni-freiburg.de, eyerich@informatik.uni-freiburg.de
- office: room 052-00-030
- consultation: by appointment (email)

AI Planning

M. Helmert

Time & Place

Lectures

- time: Tuesday 11:15-13:00, Friday 11:15-12:00
- place: SR 051-00-031

Exercises

- time: Friday 12:15-13:00
- place: SR 051-00-031

AI Planning

M. Helmert

About. . . Coordinates Rules

Introduction

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/aip/

- main page: course description
- lecture page: slides
- exercise page: assignments, model solutions, software
- bibliography page: literature references and papers

AI Planning

M. Helmert

- no textbook, no script
- slides handed out during lectures and available on the web
- additional resources: bibliography page on web + ask us!

Acknowledgment:

 slides based on earlier courses by Jussi Rintanen, Bernhard Nebel and Malte Helmert AI Planning

M. Helmert

Target audience

Students of Computer Science:

- Diploma, advanced study period (\sim 4th year)
- Master of Science
- Bachelor of Science, \sim 3rd year

Students of Applied Computer Science:

• Master of Science, ${\sim}2nd$ year

Other students:

• advanced study period (\sim 4th year)

AI Planning

M. Helmert

Course prerequisites:

- propositional logic: syntax and semantics
- foundations of AI: search, heuristic search
- computational complexity theory: decision problems, reductions, NP-completeness

AI Planning

M. Helmert

Exams & grades

- 6 ECTS points
- special lecture in concentration subject Artificial Intelligence and Robotics
- oral exam for degree courses:
 - BSc in Computer Science
 - MSc in Applied Computer Science
- written exam for degree courses:
 - MSc in Computer Science
 - diploma in Computer Science
- neither Computer Science nor Applied Computer Science
 ~> contact us!
- if too few written exam candidates, oral exam for everyone

AI Planning

M. Helmert

Exercises (written assignments):

- handed out on Tuesdays
- due Tuesday following week, before the lecture
- discussed Friday that week
- may solve in groups of two students $(2 \neq 3)$
- copied/plagiarized solutions: 0 marks
- may earn bonus marks for oral/written exam

AI Planning

M. Helmert

Projects (programming assignments):

- handed out every now and then
- more time to work on than for exercises
- may solve in groups of two students (2 = 2)
- copied/plagiarized solutions: 0 marks
- language: Java (maybe open for some projects)
- solutions that obviously do not work: 0 marks
 - may fix bugs uncovered by our testing if still within submission deadline
- may earn bonus marks for oral/written exam

AI Planning

M. Helmert

Bonus marks

- may earn up to 10 bonus marks in exercises
- may earn up to 10 bonus marks in projects
- → max. possible: 20 bonus marks
- 10 bonus marks $\approx \frac{1}{3}$ grade improvement (e.g., $1.7 \rightarrow 1.3$)

Bonus marks from exercises

- compute total score percentage for the semester
- $\leq 50\%$: no bonus marks
- $1 \ {\rm bonus} \ {\rm mark}$ for each 5% above 50%

Bonus marks from projects

- no minimum requirement: each project directly yields a certain number of bonus marks
- max. bonus marks from projects capped at 10

AI Planning

M. Helmert

About... Coordinates **Rules** Introduction

- intelligent decision making: What actions to take?
- general-purpose problem representation
- algorithms for solving any problem expressible in the representation
- application areas:
 - high-level planning for intelligent robots
 - autonomous systems: NASA Deep Space One, ...
 - problem solving (single-agent games like Rubik's cube)

AI Planning

M. Helmert

About...

 solutions to classical planning problems are paths from an initial state to a goal state in the transition graph

- efficiently solvable by Dijkstra's algorithm in $O(|V| \log |V| + |E|)$ time
- Why don't we solve all planning problems this way?
- state spaces may be huge: $10^9, 10^{12}, 10^{15}, \ldots$ states
 - constructing the transition graph is infeasible!
 - planning algorithms try to avoid constructing whole graph
- planning algorithms often are but not guaranteed to be more efficient than obvious solution methods constructing the transition graph and using e.g. Dijkstra's algorithm

AI Planning

M. Helmert

About...

Introduction

- solutions to classical planning problems are paths from an initial state to a goal state in the transition graph
 - efficiently solvable by Dijkstra's algorithm in $O(|V|\log |V|+|E|)$ time
 - Why don't we solve all planning problems this way?
- state spaces may be huge: $10^9, 10^{12}, 10^{15}, \ldots$ states
 - constructing the transition graph is infeasible!
 - planning algorithms try to avoid constructing whole graph
- planning algorithms often are but not guaranteed to be more efficient than obvious solution methods constructing the transition graph and using e.g. Dijkstra's algorithm

AI Planning

M. Helmert

About...

What is

- solutions to classical planning problems are paths from an initial state to a goal state in the transition graph
 - efficiently solvable by Dijkstra's algorithm in $O(|V|\log |V|+|E|)$ time
 - Why don't we solve all planning problems this way?
- state spaces may be huge: $10^9, 10^{12}, 10^{15}, \ldots$ states
 - constructing the transition graph is infeasible!
 - planning algorithms try to avoid constructing whole graph
- planning algorithms often are but not guaranteed to be more efficient than obvious solution methods constructing the transition graph and using e.g. Dijkstra's algorithm

AI Planning

M. Helmert

About...

Introduction What is

- solutions to classical planning problems are paths from an initial state to a goal state in the transition graph
 - efficiently solvable by Dijkstra's algorithm in $O(|V|\log |V|+|E|)$ time
 - Why don't we solve all planning problems this way?
- state spaces may be huge: $10^9, 10^{12}, 10^{15}, \ldots$ states
 - constructing the transition graph is infeasible!
 - planning algorithms try to avoid constructing whole graph
- planning algorithms often are but not guaranteed to be more efficient than obvious solution methods constructing the transition graph and using e.g. Dijkstra's algorithm

AI Planning

M. Helmert

About...

What is planning?

Dynamics Observability Objectives Planning vs. game theory Summary

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- . . .
- classical planning
- 2 conditional planning with full observability
- S conditional planning with partial observability
- conformant planning
- Markov decision processes (MDP)
- o partially observable MDPs (POMDP)

AI Planning

M. Helmert

About...

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- . . .
- classical planning
- conditional planning with full observability
- S conditional planning with partial observability
- conformant planning
- Markov decision processes (MDP)
- o partially observable MDPs (POMDP)

AI Planning

M. Helmert

About...

Introduction

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- . . .
- classical planning
- conditional planning with full observability
- S conditional planning with partial observability
- conformant planning
- Markov decision processes (MDP)
- o partially observable MDPs (POMDP)

AI Planning

M. Helmert

About...

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- . . .
- classical planning
- conditional planning with full observability
- S conditional planning with partial observability
- conformant planning
- Markov decision processes (MDP)
- o partially observable MDPs (POMDP)

AI Planning

M. Helmert

About...

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- . . .
- classical planning
- 2 conditional planning with full observability
- S conditional planning with partial observability
- conformant planning
- Markov decision processes (MDP)
- o partially observable MDPs (POMDP)

AI Planning

M. Helmert

About...

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- . . .
- classical planning
- conditional planning with full observability
- S conditional planning with partial observability
- conformant planning
- Markov decision processes (MDP)
- o partially observable MDPs (POMDP)

AI Planning

M. Helmert

About...

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite
- . . .
- classical planning
- 2 conditional planning with full observability
- S conditional planning with partial observability
- conformant planning
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

AI Planning

M. Helmert

About...

Properties of the world: dynamics

Deterministic dynamics

Action + current state uniquely determine successor state.

Nondeterministic dynamics

For each action and current state there may be several possible successor states.

Probabilistic dynamics

For each action and current state there is a probability distribution over possible successor states.

Analogy: deterministic versus nondeterministic automata

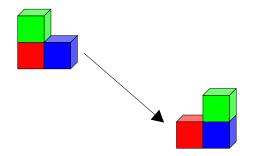
AI Planning

M. Helmert

About...

Determistic dynamics example

Moving objects with a robotic hand: move the green block onto the blue block.



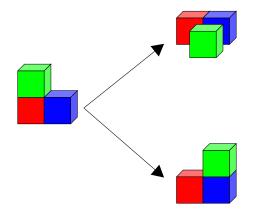
AI Planning

M. Helmert

About...

Nondetermistic dynamics example

Moving objects with an unreliable robotic hand: move the green block onto the blue block.



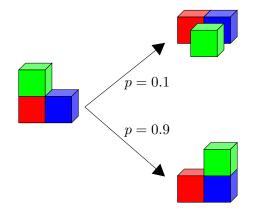
AI Planning

M. Helmert

About...

Probabilistic dynamics example

Moving objects with an unreliable robotic hand: move the green block onto the blue block.



AI Planning

M. Helmert

About...

Properties of the world: observability

Full observability

Observations/sensing determine current world state uniquely.

Partial observability

Observations determine current world state only partially: we only know that current state is one of several possible ones.

No observability

There are no observations to narrow down possible current states. However, can use knowledge of action dynamics to deduce which states we might be in.

Consequence: If observability is not full, must represent the knowledge an agent has.

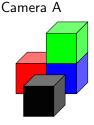
AI Planning

M. Helmert

About...

Introduction

What difference does observability make?



Camera B

AI Planning

M. Helmert

About...

Introduction

What is planning? Problem classes Dynamics **Observability**

Objectives Planning vs. game theory Summary

Reach a goal state.

- Example: Earn 500 euro.
- ② Stay in goal states indefinitely (infinite horizon).
 - Example: Never allow the bank account balance to be negative.
- In Maximize the probability of reaching a goal state.
 - Example: To be able to finance buying a house by 2018 study hard and save money.
- Collect the maximal *expected* rewards/minimal expected costs (infinite horizon).
 - Example: Maximize your future income.

AI Planning

VI. Helmert

About...

Introduction

What is planning? Problem classes Dynamics Observability **Objectives**

Reach a goal state.

- Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
 - Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state.
 - Example: To be able to finance buying a house by 2018 study hard and save money.
- Collect the maximal *expected* rewards/minimal expected costs (infinite horizon).
 - Example: Maximize your future income.

AI Planning

M. Helmert

About...

What is planning? Problem classes Dynamics Observability Objectives

- Reach a goal state.
 - Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
 - Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state.
 - Example: To be able to finance buying a house by 2018 study hard and save money.
- Collect the maximal *expected* rewards/minimal expected costs (infinite horizon).
 - Example: Maximize your future income.

AI Planning

M. Helmert

About...

What is planning? Problem classes Dynamics Observability Objectives

- Reach a goal state.
 - Example: Earn 500 euro.
- **2** Stay in goal states indefinitely (infinite horizon).
 - Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state.
 - Example: To be able to finance buying a house by 2018 study hard and save money.
- Collect the maximal *expected* rewards/minimal expected costs (infinite horizon).
 - Example: Maximize your future income.

AI Planning

M. Helmert

About...

What is planning? Problem classes Dynamics Observability

Objectives Planning vs. game theory Summary

- Reach a goal state.
 - Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
 - Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state.
 - Example: To be able to finance buying a house by 2018 study hard and save money.
- Collect the maximal *expected* rewards/minimal expected costs (infinite horizon).
 - Example: Maximize your future income.

AI Planning

M. Helmert

About...

What is planning? Problem classes Dynamics Observability Objectives

Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are rational, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- Some of the techniques are also applicable to special cases of multi-agent planning.
 - Example: Finding a winning strategy of a game like chess. In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.
- Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

AI Planning

M. Helmert

About...

What do you learn in this course?

• "big picture" of different kinds of planning problems

- classification according to dynamics, observability, objectives, ...
- computational complexity for different problem classes
- algorithms for solving different problem classes, with an emphasis on the classical ("simplest") setting:
 - algorithms based on heuristic search
 - algorithms based on satisfiability testing (SAT)
 - algorithms based on exhaustive search with logic-based data structures (BDDs)

Many of these techniques are applicable to problems outside AI as well.

• hands-on experience with a classical planner (optional)

AI Planning

M. Helmert

About...

Introduction