
The Rome Workshop of Artificial Intelligence

March 26–28, 2007



Alexander Kleiner

Firemen won’t loop

The success of disaster mitigation, i.e. the efficiency of a team of first re-
sponders searching for victims after a disaster, depends on their ability to
coordinate and thus to be always aware of their location. However, to lo-
calize within collapsed buildings without visibility due to smoke and fire
is even for humans a challenging task. One solution to this problem is to
equip firemen with assistance systems, such as wearable devices performing
Simultaneous Localization And Mapping (SLAM) in the background. SLAM
methods work after the principle of map improvement through loop-closure,
i.e. to improve the map globally each time places have been re-observed.
However, facing the reality of emergency response, fireman won’t loop.

In this talk I present a solution to this problem based on non-selfish
information sharing via the deployment of RFID technology. Furthermore,
preliminary results from experiments with pedestrians are shown and dis-
cussed.

1



Dapeng Zhang

Learning a New Action Sequence with a Table Soccer Robot
by Observing and Imitating

Star-Kick is a commercially available and fully automatic table soccer robot,
which plays table soccer games with human players on a competitive level.
With Star-Kick, learning skillful actions similar to a human player in the
games demands well-tuned parameters and a not too tedious learning pro-
cess. Two independent learning algorithms are therefore employed to learn a
new ”lock” and ”slide-kick” action sequence by observing the performed ac-
tions and imitating the relative actions of a human player. The experiments
with a Star-Kick show that an effective action sequence can be learned in
around 20 trials.

2



Robert Mattmüller

Integrating Selective and Symbolic Approaches for ATL Model
Checking

Model-checking Alternating-time temporal logic (ATL) formulae can be ac-
complished in various different ways. The approach followed in the MOCHA
tool is a symbolic BDD-based one; alternatively, one can reduce any ATL
model checking instance to a weak game, which can in turn be solved by
heuristic game graph search.

Whereas the symbolic approach is most powerful in verifying formulae
for which almost the complete state space has to be explored and heuristic
guidance is of no use anyway, the explicit heuristic game graph search out-
performs symbolic search if only a small fragment of the search space has to
be explored.

We will investigate ways of integrating the approaches and compare the
results to those of the basic algorithms.

3



Gabi Röger

Basic Action Theories with the same Expressive Power as
ADL

The main focus in the area of action languages such as Golog was put on
expressive power, while the development in the area of action planning was
focused on efficient plan generation. In recent years one can observe some
convergence in the expressive power of PDDL – the language that is used in
the field of action planning – and Golog. This brings up the idea of integrat-
ing the concepts of both areas, wich would provide great advantages: A user
could constrain a system’s behaviour on a high level using Golog, while the
actual low-level actions are planned by an efficient planning system. First
endevours have been made by Eyerich et al. by identifying a subset of the
situation calculus with the same expressive power as the ADL fragment of
PDDL. However, it was not proven that the identified restrictions define a
maximum subset. For some of the restrictions we will show that they are
indeed necessary. For the others we will examine to what extent we can ease
them without loosing the same expressiveness as ADL.

4



Malte Helmert

Domain-Independent Construction of Pattern Database Heuris-
tics for Cost-Optimal Planning

Heuristic search is a leading approach to domain-independent planning. For
cost-optimal planning, however, existing admissible heuristics are generally
too weak to effectively guide the search. Pattern database heuristics (PDBs),
which are based on abstractions of the search space, are currently one of the
most promising approaches to developing better admissible heuristics.

The informedness of PDB heuristics depends crucially on the selection
of appropriate abstractions (patterns). Although PDBs have been applied
to many search problems, including planning, there are not many insights
into how to select good patterns, even manually. What constitutes a good
pattern depends on the problem domain, making the task even more difficult
for domain-independent planning, where the process needs to be completely
automatic and general.

We present a novel way of constructing good patterns automatically from
the specification of planning problem instances. We demonstrate that this
allows a domain-independent planner to solve planning problems optimally
in some very challenging domains, including a STRIPS formulation of the
Sokoban puzzle.

5



Jan-Georg Smaus

Using Predicate Abstraction to Generate Heuristic Functions
in UPPAAL

We focus on checking safety properties in networks of extended timed au-
tomata, with the well-known UPPAAL system. We show how to use pred-
icate abstraction, in the sense used in model checking, to generate search
guidance, in the sense used in Artificial Intelligence (AI). This contributes
another family of heuristic functions to the growing body of work on directed
model checking. The overall methodology follows the pattern database ap-
proach from AI: the abstract state space is exhaustively built in a pre-
process, and used as a lookup table during search. While typically pattern
databases use rather primitive abstractions ignoring some of the relevant
symbols, we use predicate abstraction, dividing the state space into equiv-
alence classes with respect to a list of logical expressions (predicates). We
empirically explore the behavior of the resulting family of heuristics, in a
meaningful set of benchmarks. In particular, while several challenges re-
main open, we show that one can easily obtain heuristic functions that are
competitive with the state-of-the-art in directed model checking. We will
also discuss some recent work on generating predicates by an abstraction
refinement loop.

6


