
Computer Supported Modeling and Reasoning

Dr. Jan-Georg Smaus

WS06/07

1

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 1 (27th October 2006)

Propositional Logic This week’s exercises will be on propositional logic. We will do proofs
both using Isabelle and using paper and pencil as we have learned in the lecture.

Isabelle Isabelle is an interactive theorem prover. During an Isabelle session, you will con-
struct proofs of theorems. A proof consists of a number of proof steps, and the Isabelle system
will ensure that each step is correct, and thus ultimately that the entire proof is correct. Various
degrees of automation can be realized in Isabelle: you can write each step of a proof yourself,
or you can let the system do big subproofs or even the entire proof automatically. In the be-
ginning, we will do the former, because we want to understand in detail what a proof looks
like.

Isabelle is implemented in the functional programming language (Standard) ML. If you do
not know (S)ML, consult [1, Appendix 2] for a short overview. See also the explanations at the
end of this exercise sheet.

Isabelle can be used with different interfaces:

1. directly from a shell;

2. using an editor, e.g. emacs; this allows you to have better control of the files that are
involved in an Isabelle session;

3. using a sophisticated specialized interface built on an editor; e.g., the ProofGeneral system
is built on top of emacs and provides many functionalities for running Isabelle.

In these exercises, we will opt for (3).
Thus you should be aware of three layers when you are working with Isabelle: there is the

programming language ML, then there is the system Isabelle built on top of it, and finally there
is the interface for using Isabelle, which might be ProofGeneral.

Configuring your system for Isabelle You will always run Isabelle by starting xemacs. If
you are not familar with xemacs you should look at

http://www.digilife.be/quickreferences/QRC/XEmacs%20Reference%20Card.pdf

Create a working directory, move to it, and type xemacs. You can customize xemacs using
the rich menus provided. Open (create) the file ex1.ML, which will be your first proof script,
that is, a file containing Isabelle proofs.

Now customize xemacs:

• Multiple Windows: Isabelle will use several xemacs subwindows (simply windows in emacs
jargon). You may choose if you want these displayed all in one window (called frame in
emacs jargon) split into several parts or as several windows. This is done by (un)ticking
the box “Proof-General → Options → Display → Multiple Windows”.

• X-Symbol: For a nice rendering of mathematical symbols, xemacs uses the X-Symbol
package. To enable it, tick the box “Proof-General → Options → X-Symbol”.

• Electric Terminator: This will save you from having to type the return key to fire proof
commands. Proceed in analogy to X-Symbol.

http://www.digilife.be/quickreferences/QRC/XEmacs%20Reference%20Card.pdf

• Fly Past Comments: This will ignore comments when processing a proof step by step.
Proceed in analogy to X-Symbol.

You should now select “Proof-General → Options → Save Options”

• Choosing the logic: We will use the logic FOL. Go to “Proof-General → Advanced →
Customize → Isabelle → Chosen Logic”. This will open a new buffer. Set the logic to
“FOL” (following the instructions given in that buffer) and click “Save”.

You are encouraged to experiment with the configuration menu to configure ProofGeneral
according to your personal preferences! You might also want to consult the documentation at
http://proofgeneral.inf.ed.ac.uk/userman.

Before actually starting Isabelle, we will explain some more points.

Files and Directories On the computers you are using, only the Isabelle binaries are in-
stalled, so that you cannot see the sources. However these sources can be found on the web:
http://isabelle.in.tum.de/library/.

Whenever we prove something in Isabelle (or in a paper and pencil fashion), we do so in the
context of a theory. The essential parts of a theory are (1) the definition of some syntax and
(2) judgements that are postulated to be true. Point (2) will be clarified below.

In Isabelle, this theory is contained in a file whose name ends in .thy. You will find many
standard Isabelle theories on http://isabelle.in.tum.de/library/,

There is no special theory file for propositional logic in our distribution, but rather we use
the theory files of first-order logic, which is a superset of propositional logic. We have already
taken care of that above by choosing the logic. The files are named IFOL.thy (for intuitionistic
first-order logic) and FOL.thy (for classical first-order logic).

Syntax and Proofs in Isabelle Understanding the correspondence between a paper and
pencil proof and a proof in Isabelle is difficult in the beginning and will take some time.

First consider the syntax of formulae in Isabelle. The logical connectives are typed as -->,
\/ (or |), /\ (or &), and ~. Note that xemacs displays those as the connectives used in paper
and pencil proofs, thanks to the X-Symbol package. Just type some formulae in ex1.ML to see
this (but then erase them again).

Now consider the inference rules. These are listed in IFOL.thy beneath the comment
(* Propositional logic *). E.g.

conjunct1: "P&Q ==> P"

is the Isabelle FOL encoding of ∧-EL. We want to understand the correspondence between the
notation above and the Isabelle encoding of the rules, first by looking at the mere syntactic
forms.

Try to suggest how the rule conjunct1 corresponds to ∧-EL. Do the same for some of:
conjunct2 vs. ∧-ER, disjI1 vs. ∨-IL, disjI2 vs. ∨-IR, FalseE vs. ⊥-E.

Now suggest how the rule conjI corresponds to ∧-I, and how mp corresponds to →-E.
Finally, suggest how disjE corresponds to ∨-E, and how impI corresponds to →-I.
The inference rules conjI, conjunct1 etc. are examples of ‘judgements that are postulated

to be true’ (see above). Technically, each such rule is an expression of type thm (‘theorem’).
Simply type, e.g., conjI; in the file ex1.ML. The so-called Response buffer will pop up and
display ”[|?P; ?Q|] =⇒?P∧?Q” : thm, which gives the value and the type of the expression conjI.
The type thm is one of the most important datatypes of Isabelle.

Note that typing conjI; has started Isabelle. During the Isabelle session, the Response
buffer will display messages from the Isabelle system, but depending on how you configured
your system, the buffer will not be visible.

Goals The most common way of using Isabelle is by means of goals and tactics, and a first
intuitive understanding of this is that you build a proof (tree), as you would in a paper and
pencil proof, but from the bottom to the top. At any point in an Isabelle session, the Isabelle
system will be in a ‘state’, which consists of one or more goals. A goal is a statement you are
currently trying to prove. A tactic is a function you apply to manipulate the state.

We explain these ideas in detail using the formula A→ (B → A). Type

2

http://proofgeneral.inf.ed.ac.uk/userman
http://isabelle.in.tum.de/library/
http://isabelle.in.tum.de/library/

goal thy "A --> (B --> A)";

in ex1.ML. The function goal takes two arguments: our current theory FOL, to which the
identifier thy is bound, and a formula, encoded as a string. The effect is to put the Isabelle
system in a state which says: without making any assumptions, prove A → (B → A) in the
theory FOL. The so-called Goals buffer will pop up displaying this state.

In our paper and pencil proof of A → (B → A), the only rule we used was →-I, and so in
the Isabelle proof, we will use impI. If we replace (i.e., unify) P with A and Q with B → A,
the rule impI says: in order to prove A → (B → A) without making any assumptions, prove
B → A under the assumption A. Typing

by (rtac impI 1);

has the effect of manipulating the state in this way. Look in the Goals buffer and you will see it.
What happens technically is that the current goal A =⇒ B → A is obtained by resolving the
rule impI and the previous goal A→ (B → A); rtac stands for ‘resolution tactic’. Intuitively,
our current state says: if we can prove B → A under the assumption A, we are done.

You may find it difficult to understand the difference between =⇒ and −→, since both
somehow seem to stand for implication. However, −→ is a symbol of propositional logic, which
is our object logic, i.e., the language we are talking about. In contrast, =⇒ is a symbol of
the meta-logic, i.e., the language in which we talk. A little analogy: if I say ‘in German, all
nouns are capitalized’, I am making a statement in the meta language English about the object
language German. The difference between object and meta-logic will be explained over and
over again.

Now type

by (rtac impI 1);

again. This time, we should read impI as follows: in order to prove B → A without making
any assumptions, prove A under the assumption B. Look in the Goals buffer. Our current
state says: if we can prove A under the assumptions A and B, we are done. Trivially one can
prove A under the assumption A. In Isabelle, this is made explicit by the so-called assumption
tactic. Type

by (atac 1);

The effect of this tactic is to remove the first (and in this case only) subgoal provided the
conclusion to be proven (in this case A) is one of the assumptions. This completes our proof of
A→ (B → A). Try to see that we built the proof tree starting from the bottom. We can save
the theorem by typing

qed "aba";

This makes aba a theorem (an expression of type thm) which can be used from now on in the
same way as any rule in IFOL.thy, say impI.

Shortcuts by (rtac rule n) can be abbreviated as br rule n. by (atac n) can be abbreviated
as ba n.

Metavariables Sometimes Isabelle introduces variables preceded by ‘?’. These are called
metavariables, and we now explain what they are. To understand these explanations, you must
try it out in Isabelle.

Let us prove the formula A ∧B → A. In Isabelle you would start as follows

goal thy "A /\ B --> A";
br impI 1;

The current goal will be
A ∧B =⇒ A

This reads as: If we are able to derive A assuming A ∧ B, we are done. In turn, the rule
conjunct1 reads: If we can prove ?P∧?Q, we can also prove ?P. Now, ?P and ?Q could be any
formula. In particular, ?P could be A. This is what happens when you type

3

br conjunct1 1;

You are currently trying to prove A, and if you want use conjunct1, then clearly ?P must be
instantiated to A. We say that the resolution tactic unifies the conclusion of our current goal (A)
with the conclusion of the rule conjunct1 (?P), which yields a substitution that replaces ?P with
A. As new goal, we have to prove the premise of conjunct1, using the old assumptions. But the
unification did not involve the ?Q that also occurs in conjunct1, and therefore Isabelle (using
this tactic) cannot know how ?Q should be instantiated. Therefore she leaves this instantiation
open and introduces a metavariable (when I tried it was ?Q1). You may also say that the
instantiation of ?Q is delayed : we do not know yet what ?Q will be. As next step you may type

ba 1;

You can now better understand proving by assumption: the conclusion does not need to be
identical to one of the premises, but rather some instance of the conclusion must be identical
to one of the premises. Here, ?Q1 is replaced with B and the subgoal is solved. We are done.

Exercise 1
Prove the following theorems using paper and pencil and using Isabelle.

For all theorems you prove (also in later exercises), use qed to save the theorem. As name,
use the number of the exercise, e.g. ex1_1 for B ∧A→ A ∧B.

1. B ∧A→ A ∧B

2. B ∧A→ A ∨B

3. B ∨A→ A ∨B

4. (A ∧B) ∧ C → A ∧ C

5. (A→ B → C)→ (A→ B)→ (A→ C)

6. (A ∨B) ∧ (A ∨ C)→ A ∨ (B ∧ C)

Exercise 2
Prove the following theorems involving negation with paper and pencil and in Isabelle. Look
out in IFOL.thy for not_def. Typing

by (fold_goals_tac [not_def]);

and

by (rewrite_goals_tac [not_def]);

replaces each ¬ψ by ψ −→ ⊥ or vice versa. Note that not_def is an expression of type thm,
just like impI or aba (see above).

1. P ∧ ¬P → R

2. (A ∨B) ∧ ¬A→ B

3. (A ∨ ¬A)→ ((A→ B)→ A)→ A

Keep the last theorem in mind, it will be useful below.

So far we have been working in intuitionistic propositional logic. We will now add one
further rule

[¬A]
....
A

A
classical

to obtain classical propositional logic. The characteristic of classical logic is that the principle
of the excluded middle holds: P ∨ ¬P .

Exercise 3
We show that classical is equivalent to the principle of the excluded middle. As above, do the
proofs both using paper and pencil and in Isabelle.

4

1. Prove P ∨ ¬P (hint: make the assumptions ¬(P ∨ ¬P) and P).

2. Prove P ∨ ¬P → ((¬P → P)→ P) intuitionistically.

Exercise 4
Prove the following classical theorem called Peirce’s law, both using paper and pencil and in
Isabelle:

((A→ B)→ A)→ A

(Hint: use Exercise 3.1)

The Bluffer’s guide to ML One clarification of [1, Appendix 2]: On top of page 281, it
says:

Patterns are expressions which contain only variables and constructors.

In Section A.2.5 it is explained what a constructor is. Constants are a special case of construc-
tors, namely constructors with 0 arguments. Thus examples of constructors are the integer
constants 0,1,2,. . . , and the list constructors [] and ::. Those happen to be predefined in ML.
Other constructors may be defined by the user. Note also that a constructor is not the same
thing as a type constructor. Sometimes one speaks of a term constructor to emphasize that one
does not mean a type constructor.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

5

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 2 (3rd November 2006)

From now on, all exercises will be Isabelle exercises unless it is clear from the context that they
must be paper & pencil exercises or this is explicitly said.

Resolution tactic revisited Let us recall the idea of the resolution tactic. We simplify
matters by ignoring the issue of instantiation of rules, which was treated on Sheet 1. Suppose
one of our current subgoals is [[ψ1; . . . ;ψn]] =⇒ φ, which reads: if we are able to prove φ
assuming ψ1, . . . , ψn, we are done. We want to use a rule [[φ1; . . . ;φm]] =⇒ φ, which reads: if
we have proofs of φ1, . . . , φm, we have a proof of φ. Now rtac replaces the subgoal with new
subgoals

[[ψ1; . . . ;ψn]] =⇒ φ1

. . .
[[ψ1; . . . ;ψn]] =⇒ φm

(1)

Think about why this is correct: If we are able to prove all φ1, . . . , φm assuming ψ1, . . . , ψn, by
the rule we have shown φ. Thus it is correct to say: If we have shown (1), we are done.

There is one further point to note. Remember that for some rules (e.g.,impI), the left hand
side contains premises with ==> in them. Suppose that for some j ∈ {1, . . . ,m}, φj has the
form

[[µ1; . . . ;µk]] =⇒ φ̃j

In this case, the j’th subgoal of (1), which is

[[ψ1; . . . ;ψn]] =⇒ ([[µ1; . . . ;µk]] =⇒ φ̃j),

will be displayed as
[[ψ1; . . . ;ψn;µ1; . . . ;µk]] =⇒ φ̃j

In fact, Isabelle makes no distinction between the two forms. Semantically, this corresponds to
the equivalence of A1 ∧ . . . ∧An → B and A1 → . . .→ An → B.

As an example, consider our proof of A→ B → A. After one application of rtac with rule
impI, the current goal is

A ==> B --> A

Now br impI 1 will convert this into

[|A;B|] ==> A

You should think of A as an old assumption (it was there before) and B as a new assumption
(it was introduced by this tactic application).

Derived Rules In lecture “Propositional Logic”, we have learned that (1) the inference
rules like conjI, conjunct1 etc., (2) proven formulae like A → A, (3) definitions of syntactic
conversions like not_def, are expressions of type thm. We said that the inference rules were
postulated to be true, and one can also say that the proven formulae are true. However, the
proven formulae are not rules in the proper sense, since there is no =⇒ (which corresponds
to the horizontal bar in the paper and pencil notation) in them. We will now see that it also
possible to derive rules in Isabelle.

To do so, we have to understand some Isabelle and ML technicalities. Suppose we want to
derive the rule

A ∧B
B ∧A

∧ − comm

It is possible to type

goal thy "P&Q ==> Q&P";

but the problem is that Isabelle does then not display the premise P&Q, but only the desired
conclusion Q&P. In fact, we have no way of referring to the premise. The solution is to type

val [prem] = goal thy "P&Q ==> Q&P";

instead. Try to understand what happens here in terms of ML. goal is a function which takes
as arguments a theory and a string (this is the reason you always have to put ”” around a
formula), and it returns a list of thm’s. Just type goal; to see the type of goal. The list of
thm’s it returns are the premises of the goal you are trying to prove. In our example this is the
list containing only one element, namely the premise P&Q. [prem] to the list of premises, i.e.,
binding prem to the one premise we have. Type

val [prem1,prem2] = goal thy "P&Q ==> Q&P";

Why do you think things go wrong this time?
You can use the premise as a rule whose name is prem. For example, the proof of the derived

rule above would be

val [prem] = goal thy "P&Q ==> Q&P";
br conjI 1;
br conjunct2 1;
br prem 1;
br conjunct1 1;
br prem 1;
qed "conjComm";

Instead of goal, you can also use Goal. This has two advantages: the argument thy is not
required any longer (since the current theory is assumed), and it is usually not necessary to
bind the assumptions of the goal you want to prove to identifiers. So instead of val prems =
goal thy . . . you simply type Goal The assumptions will be visible in your subgoals (see [1,
Section 2.1.1]). However, this does not work if the assumptions contain premises again, i.e., if
they are of the form . . . =⇒

Alternatively, if you have used val prems = goal thy . . . and now you want to insert prems
into the premises of your current subgoal n, you can use by (cut facts tac prems n) (see [1,
Section 3.2.2]).

Some common derived rules of propositional logic

P ∧Q

[P,Q]
....
R

R
∧-E

P → Q P

[Q]
....
R

R
→-E′

[P]
....
⊥
¬P ¬-I

¬P P
R

¬-E

For ∧-E, note that the notation means: discharge zero or more occurrences of P , and discharge
zero or more occurrences of Q.

Note that there is a terminological confusion about rule names as presented in the lecture
and the ones in the theory files. If you want to see what a rule looks like, type its name followed
by ; in the proof-script window and the rule will be displayed.

Exercise 1
The Isabelle encoding of →-E′ is

[| P-->Q; P; Q ==> R |] ==> R

Derive this rule in Isabelle.

Actually, it already existed before. It is contained in IFOL lemmas.ML (see http://isabelle.in.tum.de/library/)
and called impE, and it is part of the theory context of our current logic FOL. In IFOL lemmas.ML,
you will also find conjE (∧-E), notI (¬-I), and notE (¬-E).

2

http://isabelle.in.tum.de/library/

Exercise 2

1. Derive the rule
[A]
....

A→ B

A→ B

using paper and pencil, as well as in Isabelle. Do it intuitionistically! (Hint: it requires
only two rule applications.)

2. Derive the rule
[A]
....
¬A
¬A classical dual

using paper and pencil, as well as in Isabelle. Again, do it intuitionistically!

The first part shows an interesting technique that may sometimes be useful for doing Isabelle
proofs: Whenever you want to prove A→ B, you may use A as an additional assumption.

Concerning the second part, compare the derived rule to the rule classical (you do not need
to comment on it, just compare for yourself)!

Elimination tactic Elimination rules such as conjE, impE, disjE and FalseE are designed
to be used in combination with etac (elimination tactic). In the Isabelle proofs we have
constructed so far, we have applied the proof rules “backwards”: To get rid of a connective in
the conclusion we want to prove, we used an introduction rule, and to obtain a connective in
the conclusion, we used an elimination rule. The elimination tactic allows to use eliminate a
connective in the premises. We will now explain this.

Consider the proof of A ∧B → A on Sheet 1 . We could have simply written

goal thy "A /\ B --> A";
br impI 1;
by (etac conjunct1 1);

Here, etac first does the same thing as rtac, but then it immediately proves the resulting
subgoal by assumption, so that you do not even get to see it. You should go through the two
proofs of A ∧B → A again to understand that etac simply does the last two steps of the first
proof in one go.

Note that there is the abbreviation be, in analogy to br and ba.
The pragmatics of elimination rules and the elimination tactic are that they allow you to

manipulate premises, or more precisely, break a premise into pieces. For example, when you
have the premise A∧B, you may want to replace this premise with the two premises A and B.
This is what be conjE is good for.

More generally, etac may be useful whenever you know that the first subgoal you will get
by applying a rule will be provable by assumption.

We now explain what etac does in the general case. We have to take into account that a
rule may have several premises, not just one. When you use rtac, each of those premises gives
rise to a new subgoal (explained above in the paragraph on the resolution tactic). Now etac
solves the first of those premises by assumption, but the other ones still result in new subgoals.
Moreover, in each of those subgoals, that assumption will be removed from the premises.

As above, we formalize this idea in a simplified way, by ignoring the issue of instantiation
of rules. We have a current subgoal [[ψ1; . . . ;ψn]] =⇒ φ and a rule [[φ1; . . . ;φm]] =⇒ φ. The
rtac would convert this into (1), but etac will also solve the first of these goals immediately
by assumption. But for this to be possible, some ψi must be identical to φ1. The result of
applying etac will be

[[ψ1; . . . ;ψi−1;ψi+1; . . . ;ψn]] =⇒ φ2

. . .
[[ψ1; . . . ;ψi−1;ψi+1; . . . ;ψn]] =⇒ φm

(2)

3

You should compare this to (1). The first subgoal is missing, and the premise ψi is removed in
each subgoal.

In the non-simplified formulation, you must replace ‘identical’ with ‘unifiable’, but it is best
you see this in examples.

Exercise 3
Prove the following theorems using etac and disjE and conjE wherever possible.

1. (A ∧B) ∧ C → A ∧B ∧ C

2. ((A ∧B) ∧ C) ∧D → (B ∧ C) ∧ (A ∧D)

3. ((A ∨B) ∨ C) ∨D → (B ∨ C) ∨ (A ∨D)

4. (A ∨B) ∧ (A ∨ C)→ A ∨ (B ∧ C)

You may want to compare this to proofs without using etac.

Generally, you will find that proofs become more complicated, and you can probably not
oversee an entire proof all at once. But you should be able to get a local view of the subgoal
you are proving. There are certain heuristics, some of which are suggested in our explanations
this week. Using those heuristics, most exercises of this week can be solved quite easily.

A general remark about which subgoal should be selected first: Select the subgoal first whose
conclusion is most instantiated. The reason is that the more it is instantiated, the smaller the
chance is that it gets wrongly instantiated by unification. You may think: but if it is more
instantiated, then chances are that the chosen tactic applied to that goal fails altogether. But
the point is: each subgoal must be solved eventually anyway.

References

[1] L. C. Paulson. The Isabelle Reference Manual. Computer Laboratory, University of Cam-
bridge, October 2005.

4

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 3 (10th November 2006)

Variable Occurrences In lecture “First-Order Logic”, it was said that all occurrences of
a variable in a term or formula are bound or free or binding. These notions are defined by
induction on the structure of terms/formulae. This is why the following definition is along the
lines of our definition of terms and formulae.

1. The (only) occurrence of x in the term x is a free occurrence of x in x;

2. the free occurrences of x in f(t1, . . . , tn) are the free occurrences of x in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free occurrences of x in t1, . . . , tn;

5. the free occurrences of x in ¬φ are the free occurrences of x in φ;

6. the free occurrences of x in ψ◦φ are the free occurrences of x in ψ and the free occurrences
of x in φ (◦ ∈ {∧,∨,→});

7. the free occurrences of x in ∀y. ψ, where y 6= x, are the free occurrences of x in ψ; likewise
for ∃;

8. x has no free occurrences in ∀x. ψ; in ∀x. ψ, the (outermost) ∀ binds all free occurrences
of x in ψ; the occurrence of x next to ∀ is a binding occurrence of x; likewise for ∃.

A variable occurrence is bound if it is not free and not binding. We define

FV (φ) := {x | x has a free occurrence in φ}.

Exercise 1
Mark each variable occurrence in

(∀z. q(z) ∨ p(b)) ∨ p(c)→ p(x) ∧ ∀x.∃y. r(x, f(z, b), g(z, x), g(b, x))

as bound (e.g., red), free (e.g., green) or binding (e.g., blue). For each bound occurrence,
indicate the corresponding binding occurrence. Assume the common convention that x, y, z are
variables and a, b, c are constants.

Substitution The notation s[x ← t] denotes the expression (term, formula) obtained by
substituting t for x in s. However, a substitution [x ← t] replaces only the free occurrences of
x in the expression that it is applied to. A substitution is defined as follows:

1. x[x← t] = t;

2. y[x← t] = y if y is a variable other than x;

3. f(t1, . . . , tn)[x← t] = f(t1[x← t], . . . , tn[x← t]) (where f is a function symbol, n ≥ 0);

4. p(t1, . . . , tn)[x← t] = p(t1[x← t], . . . , tn[x← t]) (where p is a predicate symbol, possibly
⊥);

5. (¬ψ)[x← t] = ¬(ψ[x← t])

6. (ψ ◦ φ)[x← t] = (ψ[x← t] ◦ φ[x← t]) (where ◦ ∈ {∧,∨,→});

7. (Qx.ψ)[x← t] = Qx.ψ (where Q ∈ {∀,∃});

8. (Qy.ψ)[x← t] = Qy.(ψ[x← t]) (where Q ∈ {∀,∃}) if y 6= x and y 6∈ FV (t);

9. (Qy.ψ)[x← t] = Qz.(ψ[y ← z][x← t]) (where Q ∈ {∀,∃}) if y 6= x and y ∈ FV (t) where
z is a variable such that z 6∈ FV (t) and z 6∈ FV (ψ).

So you have to be careful about two points when applying a substitution: the substitution
must not replace bound occurrences of a variable, and it must be avoided that the substitution
introduces a variable that is intended to be free into a context where this variable is bound.

Exercise 2
Apply the substitution [z ← f(x)] to (∃z. q(y, z, g(x))) ∧ ∀x. r(g(z)) following the definition of
a substitution step by step.

Syntax extensions In lecture “First-Order Logic”, it was mentioned that the syntax of
propositional or first-order logic may be extended with further connectives such as ↔, which
provide shorthands for certain formulae. E.g., φ ↔ ψ stands for (φ → ψ) ∧ (ψ → φ). In
IFOL.thy, we have

iff_def: "P<->Q == (P-->Q) & (Q-->P)"

This defines the equivalence of two syntactic forms in the same way as we have seen for negation
in lecture “Propositional Logic”. In Isabelle, you will sometimes have to use rewrite_goals_tac
and fold_goals_tac to convert between the two syntactic forms.

Exercise 3
Derive the rule

[A]
....
B

[B]
....
A

A↔ B

in Isabelle and using paper and pencil. (First think carefully about how to encode it in Isabelle;
this should definitely involve the symbol <->).

Hint: etac may be useful, but it can be done without.

First Order Logic Concerning the semantics of first oder logic, you should review the fol-
lowing concepts: structure, satisfiability, validity.

We now have some exercises on first-order logic, and so we keep using the theory FOL,
of which propositional logic is a subset. The quantifiers are written ALL and EX in FOL. For
example, ∀y.∃x.p(x, y) is written ALL y. EX x. p(x,y). Note that (∀x.p(x)) → ∃x.p(x) has
to be written (ALL x. p(x)) --> (EX x. p(x)), including the parentheses.

The introduction and elimination rules for the quantifiers are as follows:

P (x)

∀x. P (x)
∀-I∗

∀x. P (x)

P (t)
∀-E

A(t)

∃x.A(x)
∃-I

∃x.A(x)

[A(x)]
....
B

B
∃-E∗∗

Side conditions:

* x is not free in any assumption on which P (x) depends.

** x is not free in B or any assumption of the subderivation of B other than A(x).

In FOL, these rules are encoded as follows:

2

allI: "(!!x. P(x)) ==> (ALL x. P(x))"
spec: "(ALL x. P(x)) ==> P(x)"

exI: "P(x) ==> (EX x. P(x))"
exE: "[| EX x. P(x); !!x. P(x) ==> R |] ==> R"

The !! is the metalevel universal quantification (ProofGeneral also displays this as
∧

). If a
goal is preceded by

∧
x, this means that Isabelle must be able to prove the subgoal in a way

which is independent from x, i.e., without instantiating x. Whenever you apply a tactic and
rule to a subgoal that is preceded by

∧
x, then the metavariables of the rule, which will occur

in the new subgoals through the resolution step, will be made dependent on x. You may also
say that those variables will be Skolem functions of x.

Note that the rules with !! in Isabelle are the rules whose paper & pencil versions have
side conditions.

Now, when you are doing proofs in first-order logic, it is crucial that you introduce metalevel
universal quantification into your proofs as early as possible. In other words, rules with a side
condition should be applied first. Intuitively, the idea is: if you need a proof that goes through
for every x, then you must tell Isabelle as early as possible that you want it that way, so that
she can properly make the later variables depend on x.

This implies that you should apply allI and exE, the two rules that contain !!, as early
as possible. For allI, this is clear: If you have a conclusion ∀x. . . ., to prove, br allI is the
obvious choice anyway. But for exE, the ∃ occurs in the premises. This means that whenever
you have an ∃ in the premises of the current subgoal, you should use the rule exE, and by our
explanations about etac, you may guess that you should apply etac with this rule.

Having said that, the above are rules of thumb, so you cannot expect that they always work.
But they work for all exercises of this sheet.

Exercise 4
Prove the following theorems of first-order logic in Isabelle:

1. (∀x.p(x))→ ∃x.p(x)

2. ((∀x.p(x)) ∨ (∀x.q(x)))→ (∀x.(p(x) ∨ q(x)))

3. (∀x.(p(x) ∧ q(x)))↔ ((∀x.p(x)) ∧ (∀x.q(x)))

4. (∃x.∀y.p(x, y))→ (∀y.∃x.p(x, y))

5. (∀x.p(x))→ (∀x.p(f(x)))

What about (∀x.(p(x) ∨ q(x)))→ ((∀x.p(x)) ∨ (∀x.q(x)))? Can you prove it?

Exercise 5
Prove (∀x.A→ B(x))↔ (A→ ∀x.B(x)) in Isabelle. Save it under, say, all scoping.

In lecture “First-Order Logic” it was said that in the above theorem it is crucial that A
does not contain x freely. You should have a careful look at Exercise 5 (theorem all scoping)
again. The metavariable ?A does not depend on x. This formalizes in Isabelle that A does not
contain x freely. If this condition was violated, we might be tempted to prove p(x)→ ∀x.p(x),
which is not valid. You may want to attempt a proof of p(x)→ ∀x.p(x) in Isabelle and try to
understand why this cannot work.

The next exercise illustrates that whether or not a sub-formula is within the scope of a
quantifier may matter even if the sub-formula does not contain that quantifier.

Exercise 6
Attempt to prove ((∀x.A(x)) → B) → (∀x.A(x) → B) in Isabelle. Does it work? If it does
not work, give (on paper) a counterexample demonstrating that the formula is not valid (i.e.,
sketch a signature and a structure).

3

Miscellaneous Isabelle commands In the following, we will refer to [1] (you will find this
on this course’s webpages). You are encouraged to look there for more detail.

In order to reuse theorems that you have proven previously in the file, say, scriptA.ML, in
file scriptB.ML, you should invoke the command use "scriptA.ML"; [1, Section 1.3].

Instead of goal or Goal, you can also use goalw or Goalw, which will take a list of rewrite
rules as additional argument (just type goalw; and Goalw; to see the type of those functions)
and apply these rewrite rules to the first subgoal and the premises [1, Section 2.1.1].

Forward resolution In Isabelle, there are several functions that can be used to combine
existing rules into a new rule. In terms of proof trees, this is best understood as collapsing
a fragment from a proof tree into a single application of a rule. For example, consider the
following derivation tree, which might occur in some proof tree:

A ∧B
B

∧-ER
A ∧B
A

∧-EL

B ∧A ∧-I

We may want to replace this by
A ∧B
B ∧A

∧ − comm

We have seen on Sheet 2 how such a rule can be derived and an identifier be bound to it, but
to build big proofs, one may not want to introduce identifiers for each fragment. In Isabelle,
the expression

[conjunct2,conjunct1] MRS conjI

combines the rules conjunct2, conjunct1, and conjI into the new rule

[|?P2 & ?P; ?Q & ?Q1|] ==> ?P & ?Q

More precisely, “combining” means that the conclusions of conjunct2 and conjunct1 are
unified with the premises of conjI, respectively. The result is a rule whose premises are the
premises of conjunct2 and conjunct1, and whose conclusion is the conclusion of conjI, where
the unifier is be applied. This process is called (forward) resolution.

Note that MRS is an infix function whose arguments are a list of thms and a thm.

Exercise 7
Prove the theorem A ∧B → B ∧A in Isabelle using the rule

([conjunct2,conjunct1] MRS conjI)

Generally, when we write
rule list MRS rule,

rule list may have fewer elements than the number of assumptions of rule. Try

[conjunct2] MRS conjI;

to see what happens in this case.
There is also an infix function RS which is a special case of MRS for the first argument being

a one element list. So instead of writing [rule1] MRS rule2, you can write rule1 RS rule2.
Since ([conjunct2,conjunct1] MRS conjI) is a rule, we can use RS to combine it with

another rule, say impI.

Exercise 8
Prove the theorem A ∧B → B ∧A in Isabelle using a combination of

([conjunct2,conjunct1] MRS conjI)

4

and impI with RS.

Actually, using MRS (or RS), there is a very close correspondence between proofs in Isabelle
and the trees we had in paper and pencil proofs. Each new rule you obtain by an MRS expression
corresponds to a subtree. You can look at a tree and construct a corresponding MRS expression
inductively. Suppose you have a horizontal bar labeled with rule, and the subtrees above that
line are T1, . . . , Tn, and the MRS expressions corresponding to those subtrees are E1, . . . , En.
Then the MRS expression for the subtree at this horizontal bar is simply

[E1, . . . , En] MRS rule

Exercise 9
Consider again the theorem (A → B → C) → (A → B) → (A → C) on Sheet 1 Exercise 1.5,
and have a look at its paper and pencil proof. Then prove the theorem in Isabelle using a single
expression that combines the (six) rule applications involved using MRS (or possibly RS). Other
than that, only applications of atac are allowed.

Equality In lecture “First-Order Logic with Equality” we have learned that in first-order
logic with equality, the predicate = is not just any predicate, but it has certain properties,
namely it is an equivalence relation and a congruence on all terms and relations.

Note that we have no special theory file for first-order logic with equality, since it is already
included in IFOL.thy. There, all we have is

refl: "a=a"
subst: "[| a=b; P(a) |] ==> P(b)"

In fact, it turns out that transitivity and symmetry can be derived from reflexivity and congru-
ence.

Exercise 10
Derive rules that state that = is symmetric and transitive:

x = y

y = x
sym

x = y y = z

x = z
trans

Do it both in Isabelle and using paper & pencil. Concerning the paper & pencil proof, I allow
you to cheat and derive

y = z x = y

x = z
trans′

Hint: In the rule subst, P(b) stands for any formula that might contain b; in particular,
a = b is such a formula. Both proofs are extremely short (less than 5 lines).

References

[1] L. C. Paulson. The Isabelle Reference Manual. Computer Laboratory, University of Cam-
bridge, October 2005.

5

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 4 (17th November 2006)

This week we will be using several Isabelle theories. You should have proof scripts named
ex4 FOL.ML, ex4 ONE AXIOM.ML, ex4 ONE RULE.ML, and ex4 NSet.ML.

Instantiation Tactic We have mentioned that when you apply rtac, Isabelle unifies the
conclusion of your current subgoal with the conclusion of the rule you use. In general, this
unification is not unique, and sometimes you will have to help Isabelle to find it. For example,
suppose your current goal is [|ALL x. p(s(x)) |] ==> p(s(s(z))). Intuitively, it should be
clear that you can prove this, since p(s(x)) holds for all x, and thus in particular for x = s(z).
But when you apply br spec, Isabelle does not know that you need x to be s(z). The way of
telling her is by using

by (res_inst_tac [("x","s(z)")] spec 1);

The first argument of res inst tac is a list of pairs of strings. For each pair, the first component
should be the name of some variable occurring in the rule (in this case spec), and the second
component should be a term or formula to which you want to instantiate this variable.

Exercise 1
Prove the following theorem of first-order logic in Isabelle:

s(s(s(s(zero)))) = four ∧ p(zero) ∧ (∀x.p(x)→ p(s(s(x))))→ p(four)

As an alternative, try doing it without instantiation tactic.

There is also eres_inst_tac that is an analogous generalization of etac. There is also
instantiate_tac, which can be used to instantiate any metavariable in the entire current
proof state [1, Section 3.1.4].

Axioms vs. Rules In lecture “First-Order Theories”, we have learned that when formalizing
a theory, one sometimes has a choice between introducing axioms and introducing (proper)
rules. This works when the axioms have a particular form, namely they are Horn clauses, i.e.,
formulae of the form ∀x1 . . . xn.A1∧. . .∧Am → B where A1, . . . , Am, B are atoms. We illustrate
this general principle with an ad-hoc example.

Exercise 2
Consider the axiom ∀x.R(x) ∧ S(x)→ T (x). How would you write it as a rule?

1. I have written a small theory file ONE AXIOM.thy for you, containing essentially just this
axiom. Move it in your working directory and load the file by typing

use_thy "ONE_AXIOM";

in the proof script ex4 ONE AXIOM.ML. Now derive the rule formulation.

2. I have written a fragment of a theory file ONE RULE fragment.thy. Complete this frag-
ment by inserting the rule derived above and save the file as ONE RULE.thy. Please send
in the file by email.
Restart Isabelle and type

use_thy "ONE_RULE";

in the proof script ex4 ONE RULE.ML. Now derive ∀x.R(x) ∧ S(x)→ T (x).

Näıve Set Theory (Näıve) set theory has been formalized in Isabelle in NSet.thy. Here are
some notes on the syntax (if this list is incomplete, you may have a look at NSet.thy):

Usual math. notation Isabelle

{1, 2, 3} {1,2,3}
∈ :
/∈ ~:
{y | P (y)} {y. P(y)}
A ∩B A Int B
A ∪B A Un B
A ⊆ B A <= B
A \B A Minus B
P(A) Pow(A)

In lecture “Näıve Set Theory”, we have seen four elementary rules of set theory

P (t)

t ∈ {x | P (x)}
∈-I

t ∈ {x | P (x)}
P (t)

∈-E
∀x.x ∈ A↔ x ∈ B

A = B
=-I

A = B

∀x.x ∈ A↔ x ∈ B =-E

In NSet.thy, instead of those inference rules we have two axioms ext and Collect. The
Isabelle encoding of the rule forms can be found in NSet.ML. Load NSet (with use thy) in
ex4 NSet.ML. The file NSet.ML will be loaded automatically. As an aside, you may want to
have a look at NSet.ML to see how these encodings and proofs work. We are using lemmas from
IFOL lemmas.ML, see http://isabelle.in.tum.de/library/.

Exercise 3
Prove in Isabelle that the subset relation is a partial order, i.e., it is reflexive, transitive and
antisymmetric.

Exercise 4
Prove A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) in Isabelle.

Hint: Have a look at NSet.ML and ask yourself why there are two different kinds of elimi-
nation rules.

Exercise 5
Prove A ⊆ B ↔ P(A) ⊆ P(B) in Isabelle

Hint: same hint as in Exercise 4.

Exercise 6
Show that NSet is inconsistent, i.e., that ⊥ can be derived in it.

Hint: recall lecture “Näıve Set Theory”. You should start like this:

goal thy "False";
by (res_inst_tac [("P","{A. A ~: A} : {A. A ~: A}")] notE 1);

Hint: The rule classical dual from Exercise 2 will be useful.

Untyped λ-calculus Recall that the syntax of the untyped λ-calculus is defined by the
following grammar:

e ::= x | c | (ee) | (λx. e)

We introduced conventions of left-associativity and iterated λ’s in order to avoid cluttering the
notation.

Exercise 7
Write out the following λ-terms with full bracketing and without iterated λ’s:

1. (λxyz. xz(yz))(λxy. x)(λxyz. xz(yz))

2

http://isabelle.in.tum.de/library/

2. (λu. uu)(λxz. (λv. x)(λxy. xy))(c(λw.wc))

Exercise 8
Rewrite the following λ-term using left-associativity and iterated λ’s:

1. ((λx. (λy. (λz. ((z(yz))((wx)z)))))(λx. (xx)))

2. ((λx. ((λw. v)(λy. (yz))))((λz. x)(λx. (λz. (λu. ((xy)(uz)))))))

References

[1] L. C. Paulson. The Isabelle Reference Manual. Computer Laboratory, University of Cam-
bridge, October 2005.

3

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 5 (24th November 2006)

You should have proof scripts named ex5 RED.ML, ex5 CONV.ML, and ex5 CNUM.ML.

Untyped λ-calculus In a λ-term, a subterm of the form (λx.M)N is called a redex (plur. redices).
It is a subterm to which β-reduction can be applied.

Exercise 1
Reduce the terms (λxy. (λz. zw)(λw.w)x)y, (λx. xy)(λy. y), and (λxyz. zyx)(λx. x)((λw.wx)c)
to β-normal form (on paper), underlining the redex in each step.

In Isabelle, the untyped λ-calculus has been implemented in RED.thy (for β-reduction) and
CONV.thy (for β-conversion).

Concerning the syntax, λ is written lam, and application MN is written M^N. Reduc-
tion is denoted by --> (note that xemacs might replace this with −→ which is not what
we want). Moreover, for some frequently used λ-terms called combinators [1, chapter 2], let-
ters are introduced as a means of abbreviation: I ≡ λx. x, K ≡ λxy. x, S ≡ λxyz. xz(yz),
YC ≡ λf. (λx. f(xx))(λx. f(xx)), YT ≡ (λzx. x(zzx))(λzx. x(zzx)).

Exercise 2
Reduce the following terms to β-normal form in Isabelle RED.

1. SKK

2. SKS

Hint: You should type S^K^K --> ?x (for the first part). In the end, the metavariable ?x should
be instantiated to a term in β-normal form.

Exercise 3
Prove the following goals in Isabelle CONV:

1. YTF = F (YTF) (here F will be a free variable, which will be replaced with a metavariable
once the goal has been proven).

2. YCF = F (YCF).

Is it possible to show YTF-->F (YTF) and YCF-->F (YCF) in RED?

Turing-Completeness In lecture “The λ-Calculus”, it was said that the untyped λ-calculus
is Turing-complete. This is usually shown not by mimicking a Turing machine in the λ-calculus,
but rather by exploiting the fact that the Turing computable functions are the same class as the
µ-recursive functions [1, chapter 4]. In a lecture on theory of computation, you have probably
learned that the µ-recursive functions are obtained from the primitive recursive functions by
so-called unbounded minimalization, while the primitive recursive functions are built from the
0-place zero function, projection functions and the successor function using composition and
primitive recursion [2].

The proof that the untyped λ-calculus can compute all µ-recursive functions is thus based on
showing that each of the abovementioned ingredients can be encoded in the untyped λ-calculus.
While we are not going to study this, one crucial point is that it should be possible to encode
the natural numbers and the arithmetic operations in the untyped λ-calculus.

Such an encoding has been proposed by Alonzo Church. Here the number n is encoded
as the term λfx. f(f . . . (f︸ ︷︷ ︸

n times

x) · · ·), which we abbreviate by writing λfx. fnx. The successor

function and addition are given by the λ-terms:

succ ≡ λufx. f(ufx)
add ≡ λuvfx. uf(vfx)

Exercise 4
Prove (on paper, not in Isabelle) that succ and add are indeed the successor and addition
function, by evaluating them symbolically (i.e, on “terms” λfx. fnx and λfx. fmx).

The encoding of the natural numbers proposed by Alonzo Church is implemented in the
theory CNUM.thy. In the theory file, you will also find abbreviations C0, . . . for some small
numbers.

Exercise 5
Reduce the following terms in CNUM:

1. succ C0

2. add C2 C3

Exercise 6
The existence of fixpoint combinators YT and YC (Exer. 3) seems to suggest that every function
has a fixpoint [1, chapter 3]. This exercise tries to shed some light on this strange impression.

1. From what you remember from any math course that you took: does every function have
a fixpoint?

2. Is a Church numeral a λ-term in β-normal form?

3. Try to reduce (on paper) the term YT succ to normal form. To avoid getting terms that
are too complicated, follow two strategies:

• replace a combinator by its definition only if that allows you to do a β-reduction.
After each step, simplify the term by replacing (λzx. x(zzx))(λzx. x(zzx)) with YT

and λufx. f(ufx) with succ.

• whenever several reduction steps are possible, avoid steps for which it is obvious that
they will lead to divergence.

What do you observe? Compare this to point 1.

4. The function that always returns 0 is encoded as Z ≡ λu.(λfx. x). Try to reduce (on
paper) the term YT Z to normal form. What do you observe this time?

The simply-typed λ-calculus We now do some paper-and-pencil exercises on the simply-
typed λ-calculus.

Exercise 7
Why is it a useful convention that function applications associate to the left whereas types
associate to the right?

Exercise 8
Derive (on paper) a type judgement for the term λfgx. f(g x)x (g x) (including inserting the
appropriate type superscripts for the variables f, g, x you bind with λ), as this has been done
for λfx. f x x in lecture “The λ-Calculus”.

2

Polymorphism We now have an exercise where a type judgement in the λ-calculus with
polymorphism must be derived.

Exercise 9
Let B = {bool/0,N/0, pair/2} (e.g., pair has arity 2) and Σ = 〈> : bool , 3 : N, 4 : N, P : α →
β → (α, β) pair〉.

Derive (using paper & pencil) an appropriate type judgement for P (P 3 >) 4.

References

[1] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-Calculus. Cambridge
University Press, 1990.

[2] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-
Hall, 1981.

3

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 6 (1st December 2006)

Higher-Order Unification We have seen many times by now that applying tactics in Is-
abelle usually involves unification. In the following, assume that any object term or formula
is (represented by) a λ-term, so the variable of the λ-calculus will be called metavariable, as
explained in lecture “Encoding Syntax”.

Often Isabelle will not immediately find the appropriate unifier. An example of this was the
derived rule

Goal "x=y ==> y=x";

The paper and pencil proof of it is

x = y x = x
refl

y = x
subst

but when you try to do this proof in Isabelle starting from the bottom using rule subst, the
problem is to make her know that the metavariable ?b contained in subst should be y. The
unification problem

?P(?b) =αβη y = x

has solutions
[?P← (λz. z = x), ?b← y]
[?P← (λz. y = z), ?b← x]
[?P← (λz. y = x), ?b← t] (for any t)

If you have ever programmed in Prolog, or have taken a course on first-order logic, you may
remember that in that context, every unification problem that has a solution has a unique (up
to variable renaming) solution, called the most general unifier. So what is different here? The
difference is that the variables may assume functions as values, such as λz. z = y above. We
also speak of higher-order variables. This is why we speak of higher-order unification.

There are several ways of helping Isabelle to find the right unifier, including:

• Choosing the right subgoal.

• res inst tac: In this context, note that in Isabelle, λ is written %.

• RS and MRS: Can you explain intuitively why these are useful for finding the right unifier?

• back: Whenever Isabelle is at a point where the result of applying a tactic is non-unique
(e.g. because the unification is not unique), she creates a branch point, indicating that
there are several possibilities of action. She will try the first possibility, but you can call
the function back to go to the most recent branch point and try the next possibility that
has not been tried yet. Note that back has type unit -> unit, meaning that you have
to call it with () as argument.

Tacticals Tacticals are operations on tactics. They play an important role in automating
proofs in Isabelle. But they also fit in well here because they are helpful for finding the right
unifier (see above).

The most basic tacticals are THEN and ORELSE. Both of those tacticals are of type tactic ∗
tactic → tactic and are written infix: tac1 THEN tac2 applies tac1 and then tac2, while

tac1 ORELSE tac2 applies tac1 if possible and otherwise applies tac2 (see [1, Chapter 4]). Note
that if you invoke

by tac1 THEN tac2;

and tac1 happens to create a branch-point, and afterwards tac2 fails, Isabelle will backtrack to
this branch-point and try another possibility. Thus THEN is another way of tackling the problem
that unifications are not unique.

Exercise 1
Derive (in FOL)

x = y

y = x
sym

using

1. res inst tac, where you instantiate the metavariable ?P occurring in rule subst;

2. RS;

3. MRS;

4. back

5. THEN.

Encoding Propositional Logic in λ→ We have seen in lecture “Encoding Syntax” that
λ→ can be used to encode propositional logic. To this end, we introduced constants not, and,
imp (this list could easily be extended), i.e. we introduced a signature

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o〉.

The propositional variables were typed by a context Γ. This Γ will be different for each formula
we want to encode.

Exercise 2
Using paper & pencil, encode a ∨ ¬b in λ→ and give the proof tree of the judgement Γ `
pa ∨ ¬b)q : o, as this has been done for ¬a → a in lecture “Encoding Syntax”. What is an
appropriate Γ?

Encoding First-Order Logic in λ→ In order to encode first-order logic, we need to extend
Σ by quantifiers:

Σ = 〈not : o→ o, and : o→ o→ o, imp : o→ o→ o, all : (i→ o)→ o, exists : (i→ o)→ o〉

Exercise 3
Using paper & pencil, encode ∀x.∃y.p(f(x), y) in λ→ and give the proof tree of the judgement
. . . ` p∀x.∃y.p(f(x), y)q : o.

Hint: to guess what the appropriate types for x, y, f and p are, consider the encoding of
first-order arithmetic given in lecture “Encoding Syntax”.

I also suggest you have a look at IFOL.thy (see http://isabelle.in.tum.de/library/)
to see how the concepts of lecture “Encoding Syntax” are implemented. The keyword consts
precedes a number of declarations of constants such as Not, False, and All.

Looking at the current proof state In order to look at the current proof state in Isabelle,
you can type topthm();. Try this with any old proof in FOL that you have done previously. To
find more commands of this kind, have a look at [1, Section 2.6.2]

2

http://isabelle.in.tum.de/library/

“No subgoals!” This is a little digression about the status of premises used in Isabelle proofs
and bound to ML identifiers. When you start a proof with val [prem] = goal, you might
expect that once you interrupt the proof and start a new one, the value of prem will be forgotten,
or at least, it cannot be reused in subsequent proofs. However, this is not quite so. Seemingly,
such premises can later be used. It is only when you do qed that it will be checked if the
premise actually belonged to the current proof.

Exercise 4
Try to “prove” False in FOL. You should be able to finish a proof starting with

Goal "False";

in a state saying “No subgoals!”. Now try to do qed.

Automation by Proof Search In lecture “Automation by Proof Search” it has been said
that construction of proofs can be automated to a large extent. There are many situations
where there is no doubt about which rule should be applied; it can be applied “blindly”. Such
rules were referred to as safe rules.

We want to illustrate here that such a claim is highly non-trivial and depends on the kind
of rules we have at our disposal and on the resolution techniques we use. If we limit ourselves
to the rules of FOL and rtac (possibly res inst tac), as we did in the first week’s exercises,
such a claim would be completely unjustified.

Exercise 5
We gave the heuristic that when the top-level symbol of the conclusion of the current subgoal
is →, impI should be applied.

Prove (∀x. P (x)↔ R(x))→ (P (s)→ R(s)) using only rtac, atac, and rewrite goals tac.
You will see that you cannot find a proof following this heuristic. In fact, constructing the proof
requires a lot of look-ahead.

Now in contrast, prove the theorem but this time following the heuristic, and using etac
wherever possible (this implies: using conjE, not conjunct1 or conjunct2; using allE, not
spec; using impE, not mp).

Thus one should be aware that the rules and resolution techniques must be carefully tuned
for a theory to allow for this “determinism”, and years of research have gone into this. See [1,
chapter 11] for more details. In the above example, note that the second application of impI
is not particularly clever. It necessitates a later application of impE. But of course, one cannot
expect a proof following some principles blindly to be the shortest proof in all cases.

The classical rule set (type claset) of FOL is denoted by the identifier FOL CS. Type

print_cs FOL_cs;

to have a look at it. This set is crucial in the implementation of tactics like fast tac (Fast tac)
and blast tac (Blast tac). More generally, typing claset() returns the classical rule set of
the current theory (use print cs to look at it).

In the following exercise, you are asked to derive one of the rules used in FOL CS. For the
purpose of the exercise, use only elementary proof steps (rtac, atac, etac). Conceptually,
rules must be derived before they can be used by tactics such as fast tac and blast tac, and
so you should convince yourself that they can be derived.

Exercise 6
Derive the rule ∨-swap presented in lecture “Automation by Proof Search”: (¬Q =⇒ P) =⇒
P ∨Q.

Hint: Use classical at the very beginning. Otherwise, when your current subgoal is a
disjunction, find out by trying which introduction rule is the right one.

Negation and Swapping In addition to the rules in FOL CS, one has to be aware that for
dealing with negated formulae in the premises of the current subgoal, introduction rules are

3

combined with swap using etac. Type swap; to have a look at it.

Exercise 7
Prove (A → B) ∨ (B → A) using elementary proof steps, in particular, not use the rule
∨-swap (disjCI) (you may however use the derived rule excluded middle, and you may use
cut facts tac).

Now try to prove (A → B) ∨ (B → A) using swap with etac whenever there is a negated
formula on the left-hand side. You may start your proof by using ∨-swap. What is the effect
of using swap with etac, and what problem arises?

Now use a different strategy: use swap with etac whenever there is a negated formula on
the left-hand side, but immediately after that, use an introduction rule.

So generally, we have a formula ¬(A◦B) in the premises. Can you explain why the technique
of using swap with etac followed by an introduction rule for ◦ is way of dealing with (i.e.,
decompose) ¬(A ◦B)?

Since this technique is standard, the classical reasoner of Isabelle uses such derived rules.
You may want to read [1, Section 11.2] for further explanations.

Now prove (A→ B) ∨ (B → A) using Clarify step tac. Can you explain which rule was
used each time?

Give the answers to the questions as comments in your proof script.

Try to prove Peirce’s law ((A→ B)→ A)→ A using Blast tac and Fast tac.

Exercise 8
Prove Peirce’s law by applying

by (Clarify_step_tac 1);

several times. Try to figure out for each step which rule in FOL CS was applied.

Duplicating Rules In lecture “Automation by Proof Search”, we have mentioned that for
dealing with quantifiers in automated proof search, one sometimes needs so-called duplicating
rules. We now give a simple exercise to illustrate this point.

Exercise 9
Prove the following formula in FOL: (∀x.P (x))→ (P (a) ∧ P (b)) using the strategy of applying
etac with allE wherever possible. Does it work? Now try rule all dupE instead.

References

[1] L. C. Paulson. The Isabelle Reference Manual. Computer Laboratory, University of Cam-
bridge, October 2005.

4

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 7 (8th December 2006)

Using Tacticals for β-Reduction We now continue looking at tacticals. We will work with
the RED theory (see Sheet 5).

Exercise 1
Write a tactic to automate β-reduction and use it to reduce the following terms to β-normal
form:

1. SKKISS

2. SKIKISS

Hint: Whenever you write tactics in Isabelle that involve an arbitrary number of applications
of simpler tactics, you will find that termination is a big problem.

First you should write a tactic that does one proper β-reduction step. Note that according
to the rules of the λ-calculus, the redex may be somewhere inside the term, in which case
contraction of redices in contexts must be applied. In terms of Isabelle, this means: A proper
β-reduction step consists of zero or more applications of the congruences appr, appl and epsi,
followed by exactly one application of beta.

This can be implemented in Isabelle by using fast tac, where the set of safe introduction
rules should consist of appr, appl, epsi, and beta.

This is the beginning of a possible solution:

val RED_cs = empty_cs addSIs [appr,appl,epsi,beta];

(*We now write a tactic which does one proper beta-reduction step*)
fun proper_beta_step i =
(fast_tac RED_cs i);

(*Example*)
Goal "S^K^K --> ?x";
by (rewrite_goals_tac [S_def,K_def]);
br trans 1;
by (proper_beta_step 1);
br trans 1;
. . .

This gives you a tactic to perform one proper β-reduction step. However, if the λ-term in your
current subgoal does not reach a normal form in one β-reduction step, then the application of
proper_beta_step must be preceded by an application of rule trans. Write a function that
does this using THEN.

Write a function that applies the previous function (transitivity followed by a proper β-
reduction step) as often as possible, using REPEAT. Note that the transitivity step will only be
performed when a proper β-reduction step is possible afterwards, so if you do it right, it will
not happen that you apply a transitivity step that will lead to a dead-end.

With the function defined so far, the final subgoal will have a λ-term in normal form, and
the subgoal can be solved using refl.

Finally, you can enhance your function so that also the rewriting and folding of the definitions
of S, K, etc. is automated.

To experiment, you should try out your tactics on a simple term such as SKK.

Equational Theories and Term Rewriting In lecture “First-Order Logic with Equality”
(and “Term Rewriting”), we have seen that an equational theory is given by the four rules refl,
sym, trans, and subst plus additional (possibly conditional) rules of the form φ1 = ψ1, . . . , φn =
ψn =⇒ φ = ψ. We will call the rules of an equational theory other than the four standard rules:
particular rules. We have seen an (in general incomplete) decision procedure for an equality
e = e′ in an equational theory, see lecture “Term Rewriting”. The procedure defines a term
rewriting system (TRS).

We should clarify what the notion of term is for term rewriting. Do we mean the syntactic
category of terms in first-order logic, as opposed to atoms? No! One can apply term rewriting
to first-order formulae, but the distinction between function symbols, predicate symbols and
logical symbols (such as ∧) is irrelevant for term rewriting. Our notion of term is that of
the λ-calculus as it is built into Isabelle. It is the universal representation for object logics in
Isabelle (see lecture “Encoding Syntax”). So if the object logic is first-order logic, then the
function symbols, predicate symbols and logical symbols would all be constants on the level
of the representation. As syntactic sugar, we sometimes also use constants written in infix
notation, and constants applied to a tuple of arguments (as opposed to Currying).

Exercise 2
For each of the four general rules refl, sym, trans, subst of an equational theory, explain how
(at which place exactly) the procedure reflects that rule.

At what point are the particular rules (of the form φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ)
reflected?

Is rule sym fully catered for in the procedure? Under which conditions does it matter? Can
you think of an extension of the procedure?

Typically, equational theories are associated with a set of function symbols occurring in the
rewrite rules. E.g., one may speak of an equational theory for +.

Exercise 3
Consider an equational theory

E = {x = f(x, x)}

(here f is a constant). Suppose moreover that 1 is a constant. Solve the goal f(1, f(1, f(1, 1))) =
1 using our procedure.

Now consider the equational theory

E′ = {f(x, x) = x}

and solve the same goal using our procedure. Any remarks?

Ordered Rewriting The biggest problem for term rewriting is (non-)termination. For some
crucial rules, this problem is solved by ordered term rewriting. A term ordering is a partial
order on ground terms. It can be defined using a norm, which is some function from terms to
natural numbers. In lecture “Term Rewriting” it was said that ordered term rewriting solves
the problem of rewriting modulo ACI. Ordered rewriting will be useful in the following exercise.

Exercise 4
Consider the equational theories given by

E1 = { f(f(x, y), z) = f(x, f(y, z))}
E2 = { f(f(x, y), z) = f(x, f(y, z)), f(x, x) = x}
E3 = { f(f(x, y), z) = f(x, f(y, z)), f(x, x) = x, f(x, y) = f(y, x)}

(Here f is a constant). Suppose moreover that 0, 1, . . . and l are constants.
What are the properties stated for f called? Can you give an example for E3 from common

mathematics?
Give a term ordering suitable for solving equations in E3 while preserving termination.
For each of the above theories, decide the following equations using our procedure:

1. f(f(l(1), l(1)), l(2)) = f(f(l(3), l(2)), l(1))

2. f(f(l(2), l(2)), f(l(3), l(1))) = f(l(2), f(l(1), l(3)))

2

3. f(f(l(1), l(1)), l(2)) = f(l(1), l(2))

4. f(l(4), f(l(3), f(l(2), l(1)))) = f(f(f(l(4), l(3)), l(2)), l(1))

Higher-Order Pattern Rewriting Recall higher-order abstract syntax. We will consider
first-order logic as an example, and so you should note that the quantifiers occurring below are
constants on the level of the representation. Assume that P , Q, and R are metavariables (as
far as term rewriting is concerned, simply think: variables).

In the following exercise, assume that 0, 1, . . . are constants, in addition to constants used
for representing the logical symbols of first-order logic.

Exercise 5
Which of the following expressions are higher-order pattern rules (for each expression that is
not, state the reason):

1. (∃x.P x ∧Q x) = (∃x.P x) ∧ (∃x.Q x)

2. (∃x.((λh.h x)P) ∧Q x) = (∃x.P x) ∧ (∃x.Q x)

3. (∃x.P 0 ∧Q x) = (∃x.P x) ∧ (∃x.Q x)

4. (∃x.P x ∧Q x) = (∃x.P x) ∧ (∃x.R x)

5. P x = P x ∧ P x

See [1, 2] for more details on term rewriting (not higher-order rewriting, however; we are
not aware of a book on that topic).

Metalogic We now have some first exercises on lecture “Isabelle’s Metalogic”.

Exercise 6
To encode Prop or FOL inM, the signature ofM has to be extended by a constant true. How
is this done in IFOL.thy (see http://isabelle.in.tum.de/library/)? Can you quote the
relevant line?

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[2] J. W. Klop. Handbook of Logic in Computer Science, chapter ”Term Rewriting Systems”.
Oxford: Clarendon Press, 1993.

3

http://isabelle.in.tum.de/library/

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 8 (15th December 2006)

Instantiating the Proof State In lecture “Isabelle’s Metalogic”, it was explained that at
some points, one either has to guess the right instance of a rule, or one has to generalize the
resolution rule to allow for instantiation of the current goal (proof state). In particular, this
concerned the rule ∧-EL used in the proof of A ∧B → (C → A ∧ C)

Exercise 1
Using paper & pencil, do steps (5) and (6) in the proof of A ∧ B → (C → A ∧ C) without
magically guessing the right instance of ∧-EL, but instead using a fresh copy of ∧-EL, and
using a generalized resolution rule where instantiation of goals is allowed. Explain why you
need instantiation of goals.

Scope of
∧

In lecture “Isabelle’s Metalogic”, we have shown how the proof of (∀z.G(z)) →
(∀z.G(z) ∨ H(z)) can be done in M, i.e., we have proven [[(∀z.G z)→ (∀z.G z ∨H z)]] in M.
Recall that at some point it was said that the meta-axiom ∀-I could have been lifted in a
different way.

Exercise 2

1. Prove (∀z.G(z))→ (∀z.G(z)∨H(z)) in Isabelle always using rtac or atac. Compare the
proof state after each step to the presentation in the lecture. What differences do you
note?

2. Using paper & pencil, work out the proof in M as it would be if we had lifted ∀-I
differently, as mentioned in the lecture. This includes saying how you lift each rule and
what the result of the lifting is. It should correspond very closely to the proof in Isabelle!

Metavariables In lecture “Isabelle’s Metalogic”, it was explained that there are two kinds
of free variables: ordinary variables and metavariables. The distinction is important for goals:
meta-variables in goals may be instantiated by resolution, while the other free variables must
not become instantiated. Once a meta-theorem is proven, all its free variables are replaced by
metavariables. This means in particular that the free variables in meta-axioms are metavari-
ables.

Exercise 3

1. Try to prove A→ B in Isabelle.

2. Prove A →?B in Isabelle in at least three different ways, i.e., obtaining three different
instances for ?B.

3. Prove A → A ∨ B and A → A∨?B (in the most straightforward way) in Isabelle. Save
the thm’s using qed. How do they differ?

4. Prove ((?A→?B)→?A)→?A using rtac with impI and mp, as well as atac. What does
the “formula” ((?A→?B)→?A)→?A remind you of?

5. Prove (?A∧?B) ∧ (?C∧?D) −→ (?B∧?C) ∧ (?D∧?A) using exactly the same proof that
you used to prove (A ∧ B) ∧ (C ∧D)→ (B ∧ C) ∧ (D ∧ A) in Sheet 2 Exercise 3. What
have you proven?

Can you comment on why it is important to distinguish metavariables from ordinary free
variables?

2

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 9 (20th December 2006)

This sheet is due on 12th January 2007. If you have any questions concerning this sheet,
please email them to me. I will be reading email from 4th January onwards.

Exercise 1
In lecture “HOL: Foundations”, it has been said that a tuple (x, y) can be encoded as {{x}, {x, y}}.
Why is that so?

Definitions in HOL The basic inference rules of HOL involve only the constants =, →, and
ε. All other constants are defined in terms of those three, and the rules are derived, as we will
see in lecture “HOL: Deriving Rules”. But now, we want to check the definitions semantically:

True = (λxBool.x = λx.x)
∀ = λφ.(φ = λx.True)
False = ∀φ.φ
∨ = λφη.∀ψ.(φ→ ψ)→ (η → ψ)→ ψ
∧ = λφη.∀ψ.(φ→ η → ψ)→ ψ
¬ = λφ.(φ→ False)
∃ = (λφ.φ(εx.φx))

Consider True: The term λxBool.x = λx.x evaluates to T , and so it is a suitable definition
for the constant True.

Now consider ∀: Note the use of HOAS here. ∀ should be a function that expects an
argument φ of type α → Bool (generalizing the technique we used for encoding first-order
∀). So φ is such that when you pass it an argument x of type α, it will return a proposition
(something of type Bool). Now when does φx hold for all x? This is the case exactly when φx
evaluates to T for all x, which is the same as saying that φ is the function λx.True.

Think about similar intuitive explanations for the other definitions. You may also have a
look at the chapter “HOL Foundations” in the lecture.

Exercise 2
Consider the rules and definitions of constants ∨, ∧ etc. in Isabelle/HOL as they were presented
in the lecture (this corresponds to an older version of Isabelle). Now have a look at HOL.thy
(see http://isabelle.in.tum.de/library/ and the other theory files in that directory (this
is Isabelle 2005). Point out where the rules and definitions deviate from the presentation in the
lecture.

Basic HOL The following exercises should be done after lecture “HOL: Deriving Rules”. In
this lecture we derive all well-known inference rules for logical connectives and quantifiers in
HOL.

However, in a realistic setup of Isabelle/HOL, those rules are available by default since they
are derived from the eight basic rules once and for all. For the sake of exercise, this week we
will work with a setup where those derived rules are not present already.

You will have to set the logic used by Isabelle to “Pure” in the same way that you set it to
“FOL” at the beginning of this course.

We provide a theory file HOL BASIC which contains the definitions of HOL without any
pre-proven lemmas. You should create a script ex9.ML, where you call use thy "HOL BASIC".

http://isabelle.in.tum.de/library/

Previously, we have said that all the rules, definitions, etc. (the thms), of a theory are bound
to ML identifiers. So one could type, e.g., impI and see the according rule displayed. How-
ever, due to ML technicalities, these bindings have to be performed explicitly. This is done in
HOL BASIC.ML. Note that use_thy looks for this file automatically. This is not very different
from the standard Isabelle/HOL setup (see HOL.ML at http://isabelle.in.tum.de/library/).

The following exercise illustrates an important point using a very simple example: The
unification algorithm of Isabelle is incomplete!

Exercise 3
Derive the following rules in HOL BASIC:

1. f = g =⇒ f(x) = g(x) (fun cong)

2. x = y =⇒ f(x) = f(y) (arg cong)

Hint: For fun cong, you should first draw a derivation tree. When you translate this tree
into an Isabelle backwards proof, Isabelle will not find the unifier. You have to think of a way
of helping Isabelle find the unifier. There are at least three techniques for doing this.

Exercise 4
Derive the following rules from the lecture in HOL BASIC.

1. s = t =⇒ t = s (sym)

2. [[r = s; s = t]] =⇒ r = t (trans)

3. [[P =⇒ Q;Q =⇒ P]] =⇒ P = Q (iffI)

4. [[P = Q;Q]] =⇒ P (iffD2)

5. True (TrueI)

6. P = True =⇒ P (eqTrueE)

7. P =⇒ P = True (eqTrueI)

8. (
∧
x.P x) =⇒ ∀x.P x (allI)

9. (∀x.P x) =⇒ P x (spec)

10. False =⇒ P (FalseE)

11. False = True =⇒ P (False neq True)

12. True = False =⇒ P (True neq False)

13. (P =⇒ False) =⇒ ¬P (notI)

14. [[¬P ;P]] =⇒ R (notE)

15. ¬(True = False) (True Not False)

16. P (x) =⇒ ∃x.P x (existsI)

17. [[(∃x.P x);
∧
x.P x =⇒ Q]] =⇒ Q (existsE)

18. [[P ;Q]] =⇒ P ∧Q (conjI)

19. P ∧Q =⇒ P (conjEL)

20. P ∧Q =⇒ Q (conjER)

21. [[P ∧Q; [[P ;Q]] =⇒ R]] =⇒ R (conjE)

22. P =⇒ P ∨Q (disjIL)

23. Q =⇒ P ∨Q (disjIR)

24. [[P ∨Q;P =⇒ R;Q =⇒ R]] =⇒ R (disjE)

2

http://isabelle.in.tum.de/library/

25. P ∨ ¬P (excluded middle)

26. Q = True =⇒ If Q x y = x (ite then)

27. Q = False =⇒ If Q x y = y (ite else)

3

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 10 (12th January 2007)

Working with Isabelle HOL From now on, we will work with a full-fledged Isabelle
HOL setup. You will have to set the logic used by Isabelle to “HOL” in the same way
that you set it to “FOL” at the beginning of this course. If Isabelle is currently running,
you should quit and restart it (also using menus). The HOL theory file can be found at
http://isabelle.in.tum.de/library/. In the same directory you find many other files con-
tained in the standard HOL library.

We give an overview of some of the files that are read when this theory is invoked.

• HOL lemmas.ML: this file is called explicitly from HOL.thy. It starts with commands to
bind all the rules and definitions in HOL.thy (e.g., subst or False def) to ML identifiers.
This is followed by the derivations of many rules. Some of those rules will look familiar
from the theory FOL, but it also contains many other useful rules. You should have a look
at this file. The rules are organized in sections, but this is only relevant for documentation
purposes.

• cladata.ML: this sets up the classical reasoner.

• blastdata.ML: this file contains some setup for blast tac.

• simpdata.ML: this sets up the generic simplifier for HOL.

Not all of this is different from, say FOL.thy, but it will become more relevant now.

Simplifier Much more than the theories we have looked at previously, HOL is centered around
proving equalities. The reason for the central role of equalities is that in higher-order logic,
formulae are terms of type bool , and so rather than saying that two formula are equivalent, we
say that they are equal.

Since equality has such a central role, the simplifier is extremely important in HOL. Generally
in Isabelle, the simplifier is a module that simplifies subgoals by rewriting using equalities. Of
course, those equalities must be true in the given theory. Even so, one should not simply apply
equalities blindly, since this may lead to inefficiencies or even non-termination. For example,
if our theory contains an equality x + y = y + x, then this equation can be applied infinitely
many times.

Note that technically, the rewriting works with metalevel equalities (==), not object level
equalities (=). The following simple exercise sheds light on this distinction.

Exercise 1
Derive the thm’s (x = y) =⇒ (x == y) and (x == y) =⇒ (x = y) in HOL and add a little
explanation as comment in the theory file. Use elementary proof steps (no auto(), simp tac
etc.).

The simplifier has to be set separately for each major Isabelle theory such as FOL, ZF,
HOL. The data-structure containing the setup of the simplifier is called the simpset. For HOL,
this is built by reading the file simpdata.ML. When we work with extensions of HOL, we will
mainly rely on this setup. However, we will also sometimes modify the simpset.

Recall simpset, addsimps, delsimps, simp tac, asm simp tac (and the upper-case coun-
terparts) from lecture “Term Rewriting”.

print_ss (simpset()); will print the printable contents of the current simpset. In partic-
ular, you will see all the rewrite rules.

http://isabelle.in.tum.de/library/

Tracing set trace_simp; or trace_simp := true will set the tracer, so that you can look
at the single steps of the rewriting process. In order to look at this output, you may have
to switch to the Trace buffer. This is done by selecting “Proof-General → Buffers → Trace”.
However, we advise you to turn off the tracer most of the time, since it will slow down Isabelle
a lot and may even cause her to get hung up, probably due to some exhaustion of resources.

For more details on the simplifier, you should look at [1, Chapter 10]. In the following
exercise, you will find that using a combination of simplification and blast tac (or fast tac
if you like) is effective.

Exercise 2
The following are some theorems and non-theorems of HOL. For each of them, prove it or else
state that it is not provable.

1. (if False then A else B) = B

2. (if False then A else B) 6= A

3. [[E =⇒ A = A′]] =⇒ (if E then A else B) = (if E then A′ else B)

4. [[¬E =⇒ B 6= B′]] =⇒ (if E then A else B) 6= (if E then A else B ′)

5. [[A 6= A′;B 6= B′]] =⇒ (if E then A else B) 6= (if E then A′ else B ′)

6. [[¬E =⇒ B 6= B′;¬E]] =⇒ (if E then A else B) 6= (if E then A else B ′)

7. (if E then A else B) = (if ¬E then B else A)

8. f (if E then x else y) = (if E then (f x) else (f y))

9. [[(P ∨Q)]] =⇒ (if P then A else B) = (if Q then B else A)

10. [[(P ∨Q) ∧ ¬(P ∧Q)]] =⇒ (if P then A else B) = (if Q then B else A)

It may be interesting to switch on the tracer as explained above and look at how the
simplification has worked.

References

[1] L. C. Paulson. The Isabelle Reference Manual. Computer Laboratory, University of Cam-
bridge, October 2005.

2

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 11 (19th January 2007)

Orders In the lecture, various type classes involving orders were introduced: ord, order,
and linorder. Each of them is a subclass of the previous class (it is defined by adding some
additional requirements).

In Isabelle, it is possible to specify the type of a term contained in a goal we want to prove.
It is also possible to specify only the fact that the type belongs to a certain class. It is necessary
to do this whenever the goal only holds for terms of certain types. To specify that x should
have type τ , you write x :: τ , and to specify that x has some type in the class C, you write
x :: α :: C.

Exercise 1
The following are some lemmas involving orders. Some of the lemmas hold for ord, some for
order but not ord, and some only hold for linorder. Try to prove each of the following goals
for the biggest type class possible, and if applicable, state (as a comment in your script) for
which type classes the goal cannot be proven. As mentioned above, you will have to insert
appropriate type annotations.

1. x < y =⇒ x ≤ y

2. [[x ≤ y; y ≤ z; z ≤ x]] =⇒ x = z

3. (x < y ∧ y < z ∧ z < x) = False

4. min x y 6= x =⇒ y ≤ x

5. min x y 6= y =⇒ x ≤ y
(a useful auxiliary lemma to show this is ((if P then A else B) 6= B) =⇒ P)

6. min x y = min y x

7. min x (min y z) = min (min x y) z

8. (¬x ≤ z ∨ x ≤ y ∨ y ≤ z) =⇒ min x (min y z) = min (min x y) z

9. mono (λx.x)

10. mono (λx.y)

Hint: you are encouraged to look at the HOL sources and use anything that seems useful
there. Sometimes simp_tac is useful, but note that you have to use it so that it will also exploit
assumptions, and moreover, often the simpset will not contain the required thm’s to prove the
goal. The reason for this is that many rules are critical for termination. Therefore, sometimes
you have to insert rules into the simpset locally. For example, I once found it useful to do

by (asm_simp_tac (HOL_ss addsimps [order_le_less]) 1);

Note that addsimps returns a simplifier set, whereas Addsimps modifies the current simplifier
set.

Inserting the right rules into the simpset is the key to achieving a high degree of automation
in these exercises. It is helpful to use the function thms containing, as in

thms_containing ["op <=","op |","op <"];

to find thm’s containing a particular constant.
To appreciate the termination problem: for some goals, it was clear to me that I had to use

order_antisym and order_trans to prove them, but

by (asm_simp_tac (HOL_ss addsimps [order_antisym,order_trans]) 1);

caused a loop.
To tune simptac further, you can also add splitting rules, e.g. I once used

by (asm_simp_tac (HOL_ss addsimps [order_antisym,linorder_not_le]
addsplits [split_if]) 1);

You should study the reference manual and lecture “Term Rewriting” to understand what this
does.

I also found the rule swap useful in some places.

Sets We will now have some exercises concerning sets. One might get confused about syntax
here. There is the ASCII syntax vs. the X-symbol syntax. Then there is the distinction between
the higher-order abstract syntax used in operator declarations, e.g. Ball A S, and its concrete
counterpart ALL x:A. S x (declared like this in Set.thy), which would then be displayed by
X-symbols (and in the lecture slides) as ∀x ∈ A.S x.

Sets are defined in Set.thy. Note that sets are not defined using the typedef syntax.
Instead the isomorphism axioms, which are simpler than in the general case, have been added
directly. This is explained in lecture “Conservative Theory Extensions”.

Exercise 2
Prove the following three lemmas from lecture “Sets”:

1. P a =⇒ a ∈ Collect P (CollectI)

2. a ∈ Collect P =⇒ P a (CollectD)

3. (∀x.(x ∈ A) = (x ∈ B)) =⇒ A = B (set ext)

Hints and notes: You will have to use the axioms in Set.thy which state the isomorphism
between characteristic functions and sets (see lecture “Sets”). You may use any lemmas proven
in HOL.*, but not the lemmas in Set (since that would undermine the purpose of this exercise).
You may not use fast tac, blast tac, auto etc.! For the last lemma, another lemma called
box equals is helpful. First make a sketch of the proofs by hand (they are not very compli-
cated). Use res inst tac or RS or other means to ensure that Isabelle finds the right unifier,
since this will be the crucial problem here.

Exercise 3
Solve the following goals involving sets, using as much automation as you like.

1. [[∀x ∈ A.x ∈ B;∀x ∈ B.x ∈ C]] =⇒ ∀x ∈ A.x ∈ C

2. A ⊆ A ∪B

3. A ∩B ⊆ A

4. (A = B) = ((Pow A) = (Pow B))

5. (A ⊆ B) = (A ∈ Pow B)

6. X ⊆ insert x X

7. x /∈ X =⇒ X ⊂ insert x X

8. [[X ⊆ Y ;X 6= {}]] =⇒ (Y −X) ⊂ Y

9. x 6= y =⇒ {x} 6= {x, y}

10.
[[S = {a, b}; a 6= b]] =⇒
∃A : Pow S.(∃B : Pow S.(∃C : Pow S.(∃D : Pow S.
A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D)))

2

11. range(λx.True) = {True}

12. range(λx.if x = True then False else True) = {True,False}

13. f ‘ {} = {}

14. (A 6= {}) = (((λx.True) ‘ A) = {True})

Exercise 4
Attempt to redo Exercise 6 on Sheet 4. Why does it not work in Set? (Do this in your proof
script, and describe in a comment what goes wrong).

Fixpoints A fixpoint of a function f is a value s such that f(s) = s. This is a common concept
in mathematics, which you may have seen in calculus courses. We use arithmetic symbols and
if-then-else with their usual meanings.

Exercise 5
Which are the fixpoints of the following two functions:

1. f = λx. x2

2. f = λx. x+ 1

We are not concerned with finding effective procedures for computing the fixpoints of ar-
bitrary functions. We are interested in fixpoints because they are related to induction and
recursion, and in this context, we are looking at fixpoints of particular functions. Essentially, a
fixpoint combinator Y allows us to have one single recursive equation as foundation of recursion,
as opposed to defining each recursive function with a recursive equation (recall the explanation
in lecture “Background: Recursion, Induction, and Fixpoints”).

The following exercise shows that the definition of a general fixpoint combinator, Y ≡
λF.F (Y F), can be used for computing the value of a function defined as Y F , for some “appro-
priate” F . In lecture “Well-Founded Recursion”, we will see what “appropriate” means. For
non-appropriate F , there is a problem, as shall be seen in the next exercise.

Exercise 6
Let

Y ≡ λF.F (Y F)
Fac ≡ (λf. λn. if n = 0 then 1 else n ∗ f(n− 1))
Bar ≡ (λf. λn. if n = 0 then 1 else n ∗ f(n+ 1))
Foo ≡ λf. λx. fx

Reduce the following terms (on paper, of course):

1. (Y Fac) 2

2. (Y Bar) 2

3. (Y Foo) 4882273

In the first part, how many times did you expand the definition of Y ? What would have
happened if you had expanded it more often?

Do Bar and Foo have fixpoints?
Hint: Expand the definitions as late as possible, i.e., only when it serves to do an application.

Otherwise your expressions will become completely unreadable.

3

Finite Sets In lecture ,“Least Fixpoints”, the set of finite subsets of A was defined as lfp F
where

F = λX.{{}} ∪
⋃
x ∈ A.((insert x) ‘X)

(recall that ‘ is nice syntax for image, whose type is [α⇒ β, α set]⇒ (β set)).
We shall try to understand this better, in particular analyze the types that are involved.

All the following statements are consequences of the typing rules of HOL and the definitions
of the occurring constants. Note first that if A is a set then this means that A is of type τ set
for some τ . Secondly note that the expression x ∈ A forces x to be of type τ . Next, the
type of (insert x) is τ set ⇒ τ set . Next, the expression (insert x) ‘X forces X to be of type
τ set set , and (insert x) ‘X is also of type τ set set (see the declaration of UNION). Next,

⋃
x ∈

A.((insert x) ‘X) is also of type τ set set , and the same holds for {{}}∪
⋃
x ∈ A.((insert x) ‘X).

Next, F is of type τ set set ⇒ τ set set . Finally, lfp F is of type τ set set , which is what we
expect.

Such informal type checking is usually helpful to understand what an expression does and
whether it is what one intends.

In the following, we assume that we have a type nat (so τ = nat) containing constants
0, 1, 2,

Exercise 7
Let Ev be the set of even numbers and

F = λX.{{}} ∪
⋃
x ∈ Ev .((insert x) ‘X)

(i.e., we instantiate A by Ev). Give the values of the following expressions (where appropriate,
use natural language to describe them):

1. F {}

2. F (F {})

3. F (F (F {}))

4. F {{1}}

5. F {S | S is finite} (please describe in natural language)

6. F {S | S ⊆ Ev , S is finite} (please describe in natural language)

7. F {S | S ⊆ Ev} (please describe in natural language)

8. F UNIV (please describe in natural language)

Can you name a few fixpoints of F?

We now show that this approach can also be taken in Isabelle, although it is not the one
taken in the HOL library.

Exercise 8
Load the theory FinSet.thy in your proof script ex11.ML. Type

open FinSet;
Fin.defs;

to see how the keyword inductive was translated to a fixpoint definition. Talking (ML-)tech-
nically, Fin is a structure (module), and defs is a value (component) of this structure (and Fin
is a component of FinSet). Prove the following goal:

{1, 2} ∈ Fin {0, 1, 2}

Hints: Fin.defs gives you a rewrite rule to replace Fin by its definition. Tarski’s fixpoint
theorem is proven in Lfp.ML and is called lfp unfold. To apply the theorem in such a way
that it rewrites a goal using the equation exactly once, the tactic stac is useful. The tactic
combines rtac with a use of the subst rule.

4

To show monotonicity, one of the automatically generated thm’s of the FinSet structure is
useful. If you have used lfp unfold the appropriate number of times, the rest of the proof is
quite automatic.

In the above, we have right from the start distinguished between a type τ and a set A
(Ev in the exercise) of type τ set , which could be thought of as a “subset” of the type τ
(although of course, sets and types are formal objects of a different kind). Alternatively, one
could define “the set of all finite sets whose elements have type τ”. In this case, no fixed A is
involved, and it is closer to what actually happens in the Isabelle library. In Finite Set.thy
(see http://isabelle.in.tum.de/library/ a constant Finites is defined. It has polymorphic
type α set set . We have A ∈ Finites if and only if A is a finite set. However, it would be
wrong to think of Finites as one single set that contains all finite sets. Instead, for each τ ,
there is an instance of Finites of type τ set set containing all finite sets of element type τ . In
Finite Set.thy we find the lines

inductive "Finites"
intros
emptyI [simp, intro!]: "{} : Finites"
insertI [simp, intro!]: "A : Finites ==> insert a A : Finites"

The Isabelle mechanism of interpreting the keyword inductive translates this into the following
definition: Finites = lfp G where

G ≡ λS. {x | x = {} ∨ (∃A a. x = insert a A ∧A ∈ S)}

You can see this by typing in your proof script:

thm "Finites.defs";

Note that for reasons related to how ML identifiers are (not) bound, you cannot simply type

Finites.defs;

Note that the A in the above expression is existentially quantified and has nothing to do with
the even numbers as in Exercise 7.

Again, let us have a look at the type of this expression. The expression insert aA forces
A to be of type τ set for some τ and a to be of type τ . Next, insert aA is of type τ set , and
hence x is also of type τ set . Moreover, the expression A ∈ S forces S to be of type τ set set .
The expression {x | x = {} ∨ (∃Aa. x = insert aA ∧ A ∈ S)} is of type τ set set . Next, G is
of type τ set set ⇒ τ set set , and so finally, Finites is of type τ set set . But actually, since τ is
arbitrary, we can replace it by a type variable α.

Note that there is a convenient syntactic translation

translations "finite A" == "A : Finites"

Exercise 9
Repeat Exercise 7 for G instead of F . Assume that we use the type instance nat set set ⇒
nat set set of the type of G.

If Ev is the set of even numbers, give an expression for the set of all finite subsets of Ev ,
using Finites.

5

http://isabelle.in.tum.de/library/

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 12 (26th January 2007)

Relations In lecture “Well-Founded Recursion”, relations and the standard operations about
them (converse, composition, identity, etc.) were introduced. These are defined in the theory
Relation.thy. We now discuss whether ((α × α) set , ◦, Id , −1) is a group1 i.e., whether the
group axioms

(r ◦ s) ◦ t = r ◦ (s ◦ t) (1)
r ◦ Id = r (2)
r ◦ r−1 = Id (3)

are true.

Exercise 1
Which of the group axioms hold for ((α× α) set , ◦, Id , −1)?

A comment on the order when writing r ◦ s: If r is of type (β × γ) set and s is of type
(α× β) set then r ◦ s is of type (α× γ) set . This may be illustrated as follows:

�

�

�

�
α set

s-

�

�

�

�
β set

r-

�

�

�

�
γ set

.
.......................................

......................................
.....................................

....................................
.............................

.........

........................
...............j

r ◦ s

One may find this somewhat confusing but it is in analogy to function concatenation, which
is also denoted using ◦: there, (f ◦ g)(x) is defined as f(g(x)). And: if f is of type β ⇒ γ and
g is of type α ⇒ β then f ◦ g is of type α ⇒ γ. As such, a relation cannot be “applied” to an
argument: it is not a function. However, for relations we have that

(r ◦ s)“A = r“(s“A)

where A is of type α set . This is in perfect analogy to

(f ◦ g)‘X = f ‘(g‘X)

where f , g are functions as specified above. You should compare image on functions, ab-
breviated by ‘, defined in Set.thy, with Image on relations, abbreviated by “, defined in
Relation.thy. The idea is the same in both cases. Note that in Isabelle, relation concatena-
tion is written O (see Relation.thy) and function concatenation is written o (see Fun.thy).

Exercise 2
Give counterexamples for the following two purported theorems:

1. r−1 ◦ r ⊆ Id
1The first argument (α × α) set is a type, and each term of that type is a relation. Implicitly, the type

(α× α) set is interpreted as the set of all terms of the type.

2. Id ⊆ r−1 ◦ r

Exercise 3
Find reasonable (short!) conditions φ and ψ such that you can prove the following in Isabelle:

1. φ =⇒ Id ⊆ r−1 ◦ r

2. ¬φ =⇒ ∃x. (x, x) /∈ r−1 ◦ r

3. ψ =⇒ r−1 ◦ r ⊆ Id

4. ¬ψ =⇒ ∃x y. (x, y) ∈ r−1 ◦ r ∧ x 6= y

Hint: before you try to phrase the conditions in Isabelle, they should be clear to you
intuitively. You will find the constants to express the conditions in Set.thy and Relation.thy
(and they are short!).

Well-founded Orders In the following exercises, the crucial step will be to use wf induct
with a suitable instantiation. Much of the rest can be automated (e.g. using Blast tac).

Exercise 4
Show wf not sym2: wf r =⇒ ∀ax.(a, x) ∈ r −→ (x, a) /∈ r in Isabelle.

Exercise 5
Show wf minimal: wf r =⇒ ∃x.∀y.(y, x) /∈ r+ in Isabelle.

Exercise 6
Show wf subrel: wf p =⇒ ∀r.r ⊆ p −→ (∃x.∀y.(y, x) /∈ r+) in Isabelle.

Exercise 7
Show wf eq minimal2: wf p = (∀r.r 6= {} ∧ r ⊆ p −→ (∃x ∈ Domain r.∀y.(y, x) /∈ r))

Hint: You should use wf eq minimal and Domain def. The theorem wf eq minimal provides
a characterization of well-foundedness in terms of, intuitively speaking, sets of points. The
theorem wf eq minimal2 reasons in terms of sets of arrows, that is, relations. The proof of
wf eq minimal2 can be automated until one arrives at two subgoals, one having a statement
about all point sets Q in the premises, and one having a statement about all relations r in the
premises.

At this point, you must use eres inst tac with allE and instantiate the point set so that
it is somehow related to a particular relation, and conversely, instantiate the relation so that it
is somehow related to a particular point set. Afterwards, the rest can be done automatically.

Exercise 8
Using paper & pencil, show that (4, 24) ∈ wfrec rel ‘<’Fac, using the inductive definition

∀z.(z, x) ∈ R −→ (z, g z) ∈ wfrec rel RF =⇒ (x, F g x) ∈ wfrec rel RF,

given in lecture “Well-Founded Recursion”. Use mathematical facts such as “there exists no z
smaller than 0” freely.

Argue that one cannot show that (4, 23) ∈ wfrec rel ‘<’Fac.

Exercise 9
Show in Isabelle that there is an injective function f :: ind ⇒ ind that has “three witnesses of
not being surjective”, i.e., three different values not reached by the function. This is the goal

∃(f :: ind ⇒ ind)x y z. (∀w.fw 6= x)∧(∀w.fw 6= y)∧(∀w.fw 6= z)∧x 6= y∧y 6= z∧x 6= z∧inj f

Hints: In essential places you have to provide the instantiations. Isabelle will not be able to
guess them.

To make the axioms for ind usable, you will have to include

2

val inj_Suc_Rep = thm "inj_Suc_Rep";

in your proof script, and a similar line for the other axiom.
Also, in some places you should reflect about what the essential lemmas/definitions are that

you need to prove your goal. In particular, a lemma concerning injective functions in Fun.thy
will be useful. You should add the appropriate lemmas/definitions to the simplifier and apply
asm simp tac.

There is one useful rule that requires special care: not sym. You should first do asm simp tac
without this rule, and then again with this rule added. This way you can avoid looping.

3

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 13 (2nd February 2007)

The primrec syntax In lectures “Well-Founded Recursion” and “Arithmetic”, we have seen
the primrec syntax for defining recursive functions.

Exercise 1
Consider the functional iterate defined as follows:

iterate n f a = fn(a)

Generate a theory file Iterate.thy, where you define this function iterate (its type is nat ⇒
(α⇒ α)⇒ α⇒ α) using the primrec syntax.

Try it out on the goals

1. iterate (Suc(Suc 0)) Suc (Suc 0) =?x;

2. iterate (Suc(Suc 0)) (Suc ◦ Suc ◦ Suc) 0 =?x.

What instantiations do you obtain for ?x in each case?
Hint: Look around in any theory files to get the syntax right.

Primitive recursion Typing nat.recs; gives you a scheme for defining primitive recursive
functions on the natural numbers. Recall (from your knowledge of the theory of computation [1])
that a primitive recursive function f of type nat ⇒ nat is defined by giving a constant c (of
type nat) and a function g of type nat ⇒ nat ⇒ nat , as follows:

f 0 = c

f n+ 1 = g n (f n)

In Isabelle, the expression nat rec c g defines f . You can address the two thm’s of the recursion
scheme by the names nat rec 0 and nat rec Suc (search in Nat.ML if you want to understand
why).

Exercise 2
Define the factorial function by primitive recursion, i.e., find appropriate φ and γ, and prove
the following two goals:

[[c = φ; g = γ]] =⇒ nat rec c g (Suc (Suc (Suc 0))) = Suc (Suc (Suc (Suc (Suc (Suc 0)))))
[[c = φ; g = γ]] =⇒ nat rec c g (Suc (Suc (Suc (Suc 0)))) =

Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc (
Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))))))))))

Hint: if you find it rather silly to type Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))))))))))), you may
also type 24.

Now prove the goal
[[c = φ; g = γ]] =⇒ nat rec c g 11 =?x

What instantiation do you obtain for ?x?

Advice: have a coffee while Isabelle calculates.

The summation operator
∑n

i=l f(i) is standard syntax in mathematics. In lecture “Encoding
Syntax”, it was suggested that it should have type sum : i⇒ i⇒ (i⇒ i)⇒ i, where i was the
type of individuals. In the context of HOL and for the sake of simplification, I want to define
a summation operator sumup of type (nat ⇒ nat) ⇒ nat ⇒ nat , where sumup f n is to stand
for

∑n
i=1 f i.

Exercise 3
Define an expresion ς for the summation operator sumup using nat rec, and test it by proving
the following goals:

1. sumup = ς =⇒ sumup (λi.i) 4 = 10

2. sumup = ς =⇒ sumup (λi.i+ 2) 3 = 12

3. sumup = ς =⇒ sumup (λi.c)m = c ∗m

4. sumup = ς =⇒ sumup (λi.2 ∗ i)m = m ∗ (m+ 1)

Hint: If you find it difficult to define sumup, you should start by defining it for a fixed f ; e.g.,
define an expression S such that that S n = Σn

i=12 ∗ i, using nat rec.
Definition by recursion asks for proofs by induction. Whenever there is a statement about

arbitrary m of type nat to be proven, it has to be proven by induction (i.e., nat induct) on m.
The last exercise is similar to a well-known theorem often used as an example for induction

proofs: ∀n.
∑n

i=1 i = n∗(n+1)
2 .

The approximation theorem of lecture “Least Fixpoints” In the lecture we have seen
the theorem

(∀S. f(
⋃
S) =

⋃
(f ‘ S)) =⇒

⋃
n∈N

fn(∅) = lfp f

We now prove this theorem. You will have to use iterate from Exercise 1.

Exercise 4
Prove the following goals in Isabelle

1. mono f =⇒ (
⋃

n∈UNIV (iterate n f {})) ⊆ lfp f (union below lfp)

Hint: In the beginning, auto(); will do a good job. You then have to massage your current
goal to reach a subgoal where you have to prove

∧
n.iterate n f {} ⊆ lfp f . This proof

goes by induction (induct tac). Afterwards you will have to use lfp unfold and an
elementary lemma about monotonicity.

2. (∀S. f(
⋃
S) =

⋃
(f ‘ S)) =⇒ mono f (distr implies mono)

Hint: The following lemmas are crucial: Un eq Union, Un upper1, Un absorb1,
image Collect. You can use those by adding them to the simplifier set.

3. Write (on paper) a function f :: nat set ⇒ nat set that is monotone but for which
(∀S. f(

⋃
S) =

⋃
(f ‘ S)) does not hold.

4. [[mono f ; ∃m.f (iterate m f {}) = (iterate m f {})]] =⇒ lfp f ⊆
⋃

n∈UNIV (iterate n f {}))
(lfp below union if finite)

Hint: In the beginning, auto(); will do a good job. This will reach a goal where you have
to prove an existential quantification. Make a smart guess how you should instantiate the
existentially quantified variable!

Note: this is interesting but will not be needed below.

5. (∀S. f(
⋃
S) =

⋃
(f ‘ S)) =⇒ f (

⋃
n∈UNIV (iterate n f {})) = (

⋃
n∈UNIV (iterate n f {}))

(union is fixpoint).

Hint: I based the proof of this lemma on several auxiliary lemmas, but there may be other
ways of doing it (if you find a simpler way, great!):

2

(a)
⋃

n∈UNIV iterate (Suc n) f {} =
⋃

n∈{m|0<m}(iterate n f {}) (shift successor)
Hint: If you start with auto();, you will obtain a goal where you have to prove an
existential formula. Use your intuition about natural numbers to guess the appro-
priate instantiation for the existentially quantified variable. Moreover, iterate Suc
will be useful.

(b)
⋃

n∈UNIV g (n :: nat)) = (
⋃

n∈{m|0<m}(g n)) ∪ (g 0) (split universal union)
Hint: case tac is useful here.

(c)
(∀S. f(

⋃
S) =

⋃
(f ‘ S)) =⇒

f (
⋃

n∈UNIV (iterate n f {})) = (
⋃

n∈UNIV f (iterate n f {})) (f special distr)

Hint: It is a good idea to start with box equals, instantiating ?a and ?b to set unions
using an expression ∃n . . . = iterate n f {}. The thm image Collect is useful again,
but don’t use it blindly! Work out exactly how you want to use it.

union is fixpoint can be shown using lemmas f special distr, iterate suc,
shift successor, and split universal union.

6. (∀S. f(
⋃
S) =

⋃
(f ‘ S)) =⇒ lfp f ⊆

⋃
n∈UNIV (iterate n f {}) (lfp below union)

Hint: This uses an important lemma in Lfp.ML and union is fixpoint.

7. (∀S. f(
⋃
S) =

⋃
(f ‘ S)) =⇒

⋃
n∈UNIV (iterate n f {})) = lfp f (approx)

Hint: Using some of the lemmas above, this should now be a very neat proof.

AVL trees In the remaining weeks, we will develop a theory of AVL trees. These are binary
trees where the inner nodes are labeled with terms of a type α. These trees can thus be used
to store such a set of labels and thereby implement finite sets, dictionaries etc. AVL trees
allow for efficient insert-algorithms of the order O(log n). The idea is to maintain a certain
“balanced-ness”-invariant during inserting by certain “rotation-operations”. We will develop
the necessary recursive functions in such a way that they can be executed in Haskell (and with
some minor changes related to type classes) also in SML.

First some organizational matters: The exercises on AVL trees are spread over three weeks.
You will be devoloping and working with a theory file AVL.thy and a corresponding lemma file
AVL.ML. So these files will change while you work on them.

For communicating the versions of those files in the coming weeks, we will proceed as follows:
This week you will receive AVL fragment1.thy. The version after completing this sheet should
be named AVL completion1.thy. In week 14 you will receive AVL fragment.ML. You will work
with this file as well as continue working with AVL completion1.thy. The versions after com-
pleting sheet 14 should be named AVL completion2.thy and AVL completion1.ML. The ver-
sions after completing sheet 15 should be named AVL completion3.thy and AVL completion2.ML.
This is illustrated in Figures 1 and 2. So again: work with AVL.thy and AVL.ML but only turn
in files named as stated above.

The first part of this verification project is concerned with the basic definitions of the theory
file. We have provided a fragment of the theory file AVL.thy. Your task will be to fill in more
constants and definitions.

The line

datatype ’a tree = Leaf | Node ’a (’a tree) (’a tree)

is interpreted by Isabelle as a datatype definition, as we have seen in lecture “Datatypes”.
Similar to a type definition using typedef, such a definition will cause Isabelle to prove a
number of thm’s about the new type, e.g. stating that Leaf 6= Node a t1 t2 or that there is an
induction schema for this type. We will look into this in more detail next week.

So each node has a node label of type ′a, and a left and right subtree.
The fragment defines a constant height and a definition stating that the height of a tree is

the maximal number of nodes in a path from the root to a leaf. Use this as guideline for the
following exercises.

Exercise 5
Give a definition of a function isin (of result type bool) such that isin a t holds iff a is a node

3

AVL fragment1.thy

“Sheet 13”

AVL fragment2.thy

“Sheet 14”

“Sheet 15”

�
�

��

H
H

HH

�
�

�
�

S
S

S
S

�
�
�
�
�
�

A
A
A
A

= AVL completion1.thy

= AVL completion2.thy

= AVL completion3.thy

Figure 1: Theory files for AVL trees

AVL fragment.ML

“Sheet 14”

“Sheet 15”

�
�

��

H
H

HH

�
�

�

@
@

@ = AVL completion2.ML
= AVL completion1.ML

Figure 2: Lemma files for AVL trees

label contained in tree t (note that you must also add the appropriate type declaration of isin
in the fragment).

Make sure Isabelle accepts your theory file and test the function using a few simple examples.

Exercise 6
Assume that the elements of the tree belong to a type in the class order . We call a tree ordered
if for each node labeled n, all node labels in the left subtree are smaller, and all labels in the
right subtree are greater. Define a function isord (of result type bool) such that isord t holds
iff t is ordered (as above, you must also add the appropriate type declaration of isord in the
fragment).

Again, test your function with some small examples.

Exercise 7
From an algorithmical viewpoint, the definition of isin in Exercise 5 is inefficient. Can you
suggest under which condition and how it could be made more efficient?

References

[1] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-
Hall, 1981.

4

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 14 (9th February 2007)

AVL trees This week we continue to look at AVL trees.

Exercise 1
We call a tree balanced if it is either a leaf or a node with balanced subtrees with a height that
differs at most by one. Define a function isbal (of result type bool) such that isbal t holds iff t
is balanced (as previously, you must also add the appropriate type declaration of isbal in the
fragment).

You should now have obtained a syntactically correct Isabelle theory, and a number of thm’s
of this theory have already been proven by Isabelle. You can do

use_thy "AVL";
open AVL;

tree.cases;
tree.distinct;
tree.induct;
tree.exhaust;

to see some of them.
As mentioned previously, the efficiency of the datastructure AVL tree hinges on the fact that

a tree should be balanced and ordered. Of course, when a node is inserted into or deleted from
the tree, these properties must be maintained, by certain rotation operations on AVL trees.
Note that unless a tree contains 2n − 1 nodes for some n, it cannot be “exactly” balanced. All
we can expect is that the height of the left and right subtrees differ by at most one. In order
to decide in which way a tree should be rotated, it is convenient to have a function bal that
tells us if a tree is perfectly balanced, or heavier on the right, or heavier on the left. To this
end, you should insert the following lines into the AVL.thy file (for your convenience, all code
fragments of this exercise sheet are contained in the file AVL fragment2.thy):

datatype bal = Just | Left | Right

constdefs
bal :: "’a tree => bal"
"bal t == case t of Leaf => Just
| (Node n l r) => if height l = height r then Just

else if height l < height r then Right else Left"

Exercise 2
What is the complexity of bal in n, where n is the number of nodes in the tree? If inserting
a node into a tree involves calls to bal , do you think this complexity is satisfactory? Can you
suggest a way of improvement?

We now consider the rotation operations. There are four different kinds of rotations, depicted
in Figures 1, 2, 3, 4.

You should insert the following lines into the AVL.thy file:

consts
r_rot,l_rot,lr_rot,rl_rot :: "’a * ’a tree * ’a tree => ’a tree"

�
��

A
AAll

�
��

A
AAlr

�
�
�

A
A

A

ln
�
�
�

A
A

A

n

�
��

A
AAr =⇒

�
��

A
AAr

�
��

A
AAlr

�
�
�

A
A

A

n
�
�
�

A
A

A

ln

�
��

A
AAll

Figure 1: r rot

�
��

A
AArr

�
��

A
AArl

�
�
�

A
A

A

rn
�
�
�

A
A

A

n

�
��

A
AAl =⇒

�
��

A
AAl

�
��

A
AArl

�
�
�

A
A

A

n
�
�
�

A
A

A

rn

�
��

A
AArr

Figure 2: l rot

recdef r_rot "{}"
"r_rot (n, Node ln ll lr, r) = Node ln ll (Node n lr r)"

recdef l_rot "{}"
"l_rot(n, l, Node rn rl rr) = Node rn (Node n l rl) rr"

The recdef syntax is provided in Isabelle for defining recursive functions. It is more general
than the primrec syntax, since a well-founded ordering can be provided by the user. We use
this syntax although the rotation functions are not recursive, since this syntax also allows for
pattern matching, which is convenient. The "{}" indicates that we are not actually providing
an ordering.

Note that each rotation function does not actually take a tree as input, but rather a triple
consisting of a node and two trees. However, this is a a technical detail: conceptually, the
rotation functions have a tree as input and output. Note moreover that the rotation functions
are partial: e.g., r rot (n,Leaf ,Leaf) is undefined. This is no problem.

Exercise 3
Define the two missing rotation functions in your AVL.thy file.

AVL tree insertion We explain insertion of a node into an AVL tree in order to motivate
the use of the rotation functions. Suppose we insert a node x into a (balanced ordered) tree
Node n l r. If x = n, then x should not be inserted at all since the property of being ordered
requires that the tree contains no duplicates (why?). If x < n, we must insert x into l (to
maintain the orderedness property). Let l′ be the tree obtained by inserting x into l, and
assume (by “inductive hypothesis”) that it is balanced and ordered. As an intermediate result,
we have the tree Node n l′ r. It is ordered, but it might not be balanced.

In fact, it might be the case that height l = height r + 1 and height l′ = height l + 1. Then
height l′ = height r+2 and so Node nl′ r is not balanced. Note that in all other cases, Node nl′ r
is balanced.

So suppose that height l′ = height r+ 2. Then Node n l′ r looks as shown in the first picture

2

�
��

A
AAlrr

�
��

A
AAlrl

�
�
�

A
A

A

lrn
�
�
�

A
A

A

ln

�
��

A
AAll

�
�
�

A
A

A

n

�
��

A
AAr

=⇒

�
��

A
AAll

�
��

A
AAlrl

�
�
�

A
A

A

ln
�

�
�

@
@

@

lrn

�
��

A
AAlrr

�
��

A
AAr

�
�
�

A
A

A

n

Figure 3: lr rot

�
��

A
AArll

�
��

A
AArlr

�
�
�

A
A

A

rln
�
�
�

A
A

A

rn

�
��

A
AArr

�
�
�

A
A

A

n

�
��

A
AAl

=⇒

�
��

A
AAl

�
��

A
AArll

�
�
�

A
A

A

n
�

�
�

@
@

@

rln

�
��

A
AArlr

�
��

A
AArr

�
�
�

A
A

A

rn

Figure 4: rl rot

�
�
�

A
A

A
ll′

�
�
�

A
A

A
lr′

�
�
��

A
A

AA

ln′
�
�
��

A
A

AA

n

�
�
�

A
A

A
r

�
�
�

A
A

A
lrr′

�
�
�

A
A

A
lrl′

�
�
��

A
A

AA

lrn′
�
�
��

A
A

AA

ln′

�
�
�

A
A

A
ll′

�
�
��

A
A

AA

n

�
�
�

A
A

A
r

Figure 5: Too heavy on left

3

of Figure 5, where either height ll ′ = height r + 1 or height lr ′ = height r + 1.2 The tree is too
heavy on the left, and rotation must rectify this. We distinguish two cases:

bal l′ = Right. Since l′ is balanced, this means that height lr ′ = height r + 1 and height ll ′ =
height r. So, since lr ′ has height > 0, it follows that Node n l′ r actually looks as shown in
the second picture of Figure 5, where both lrl ′ and lrr ′ have height height r or height r−1.
Since all three trees ll ′, lrl ′, lrr ′ have the same height as r or one less, it follows that lr rot
produces a balanced tree (see Figure 3).

bal l′ 6= Right. In this case, height ll ′ = height r + 1, and, since l′ is balanced, height lr ′ =
height r + 1 or height lr ′ = height r. One can easily see that r rot produces a balanced
tree (see Figure 1).

Exercise 4
Define a function l bal which performs an appropriate rotation for a tree that is too heavy on
the left. Here is a fragment of the code you should insert into AVL.thy:

constdefs
l_bal :: "’a => ’a tree => ’a tree => ’a tree"
"l_bal n l r == if

then
else "

In complete symmetry, define a function r bal .

The insertion function is defined as follows:

consts
insert :: "’a::order => ’a tree => ’a tree"
primrec
"insert x Leaf = Node x Leaf Leaf"
"insert x (Node n l r) =

(if x=n
then Node n l r
else if x<n

then let l’ = insert x l
in if height l’ = Suc(Suc(height r))

then l_bal n l’ r
else Node n l’ r

else let r’ = insert x r
in if height r’ = Suc(Suc(height l))

then r_bal n l r’
else Node n l r’)"

You should also insert this fragment into AVL.thy.

Names for recursion rules It can be convenient to have names for the two equations (base
case and recursive case) of a recursive definition. The primrec syntax allows for this. Instead
of

primrec
"height Leaf = 0"
"height (Node n l r) = Suc(max (height l) (height r))"

you can have

primrec
height_empty "height Leaf = 0"
height_branch "height (Node n l r) = Suc(max (height l) (height r))"

2 Never both actually, but this is not needed in the proofs.

4

defining two names and for the according thm’s.

Exercise 5
Modify the AVL.thy file by introducing names for the equations as shown for height (choose
the obvious names!).

“Declarative” AVL trees So far, we have reconstructed the theory of AVL trees as defined
by Cornelia Pusch and Tobias Nipkow. We have already mentioned that there are some in-
herent inefficiencies in the way that the datastructure itself is defined and the procedures are
implemented. This is what computer-supported modeling and reasoning is about: one should
think of the theory file so far as a specification of AVL trees rather than an implementation.
We use this specification to prove any property about AVL trees that we consider essential
for “correct” behaviour of AVL trees. We will then aim at implementing AVL trees in more
efficient ways.

But first, we work on the theory file we have so far. In the file AVL fragment.ML, you find a
number of essential lemmas about AVL trees. Several symmetric cases are left out. A point to
note is that the goals are usually of the form φ1 −→ . . . −→ φn −→ ψ, where [[φ1; . . . ;φn]] =⇒ ψ
would be more natural. However, it turns out that highly automated proofs can deal better
with the first form. The command qed_spec_mp saves the theorem as [[φ1; . . . ;φn]] =⇒ ψ rather
than φ1 −→ . . . −→ φn −→ ψ.

You may encounter problems with the provided ML-file since you might have defined the
theory file in a different way from the model solution. If this is the case, see if you can repair
AVL.ML appropriately. For the theorems you cannot repair, just comment them out for the time
being, and use the theory file of the model solution next week.

Exercise 6
Copy AVL fragment.ML into some scratch proof script. Complete it by inserting the symmetric
cases, and save it as AVL.ML.

Exercise 7
For each of the lemmas already proven in AVL fragment.ML, state in simple informal language
what it says (you may say “symmetric to . . . ”, wherever appropriate).

Which of the proofs needed induction? Can you give a high-level explanation for this? Your
explanation should make plausible that, e.g., isbal_r_rot does not need induction.

5

Universität Freiburg
Institut für Informatik
Lehrstuhl für Grundlagen der Künstlichen Intelligenz
Dr. Jan-Georg Smaus

Computer Supported Modeling and Reasoning WS06/07
Exercise Sheet No. 15 (16th February 2007)

Efficient AVL trees We will now aim at implementing AVL trees in more efficient ways. For
the efficient implementation to behave as the specification, we have to show that each operation
behaves in the same way.

The first inefficiency we noted in Exercise 7 on Sheet 13 is that isin traverses the entire tree,
which is unnecessary in case the tree is ordered.

Exercise 1
Write an efficient version of isin called isin eff which works correctly on ordered trees (no
correct behaviour is required on non-ordered trees).

Exercise 2
In some scratch proof script, prove the following goals:

1. isord (Node n l r) −→ x < n −→ isin x (Node n l r) −→ isin x l (qed it as isin_ord_l)

2. isord (Node n l r) −→ n < x −→ isin x (Node n l r) −→ isin x r (qed it as isin_ord_r)

3. isord t −→ (isin k t = isin eff k t) (qed it as isin_eff_correct)

After you have completed these proofs, paste them into AVL.ML (since they are fundamental
lemmas about AVL trees).

Note that the inefficiency of isin is not a problem for insertion of nodes, but still isin is an
important operation and so we should make it efficient. However for verification purposes we
may also use the inefficient one.

Another inefficiency we noted was related to bal , which calls height and hence has running
time O(n) where n is the number of nodes in the tree. We suggested that this could be made
more efficient by recording for each node what its balance is: Just , Left , or Right .

Exercise 3
Define a new datatype etree with term constructors (constants) ELeaf and ENode in analogy
to tree, but with an additional label giving the balancing information for a node. Do this still
in the same theory file AVL.thy.

In the following, we will call members of the new type E-trees.

Exercise 4
Define the function prune which, given an E-tree et , returns the tree obtained from et by
throwing away all the balancing labels.

Open a proof script ex15.ML and test prune on four different E-trees. E.g., prove the goal

prune(ENode Just 2 ELeaf ELeaf) =?t”

Isabelle should instantiate ?t to Node 2 Leaf Leaf .

The balancing labels are supposed to record, for each node in a tree, the information that
would otherwise have to be computed by bal . Obviously, the balancing labels might be incorrect,

i.e., deviate from what bal computes. E.g., ENode Just 2 ELeaf ELeaf is labeled correctly
whereas ENode Just 2 ELeaf (ENode Just 3 ELeaf ELeaf) is not.

Exercise 5
Define a function correct which says if an E-tree is correct, and test it in ex15.ML on four trees,
two correct ones and two incorrect ones.

Exercise 6
Prove the following goal in a scratch proof script:

correct (ENode b n l r) −→ (bal (prune (ENode b n l r)) = b).

Now paste the proof into AVL.ML.

Exercise 7
Define the function label which, given a tree t , returns the E-tree obtained from t by inserting
correct balancing labels.

Test label in analogy to Exercise 4. In these tests, the final result should be completely eval-
uated. It is not acceptable if the instantiation of the metavariables still contains “unevaluated
function calls”.

Exercise 8
Prove the following two goals in a scratch proof script:

1. prune(label t) = t;

2. ψ =⇒ label(prune t) = t,

where ψ is a natural condition that you have to guess. Now paste the proof into AVL.ML.

This completes our little verification project and this course. Of course, there are many
more properties of AVL trees to be shown.

2

	Sheet No. 1
	Sheet No. 2
	Sheet No. 3
	Sheet No. 4
	Sheet No. 5
	Sheet No. 6
	Sheet No. 7
	Sheet No. 8
	Sheet No. 9
	Sheet No. 10
	Sheet No. 11
	Sheet No. 12
	Sheet No. 13
	Sheet No. 14
	Sheet No. 15

