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Reminder: Restrictions on observability

Let 〈A, I, O, G, V 〉 be a problem instance in nondeterministic
planning.

1 If A = V , the problem instance is fully observable.

2 If V = ∅, the problem instance is unobservable.

3 If there are no restrictions on V then the problem instance
is partially observable.
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Planning without observability: conformant
planning

Here we consider the second special case of planning with
partial observability: planning without observability.

Plans are sequences of actions because observations are
not possible, actions cannot depend on the
nondeterministic events or uncertain initial state, and
hence the same actions have to be taken no matter what
happens.

Techniques needed for planning without observability can
often be generalized to the general partially observable
case.
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Why acting without observation?

Conformant planning is like planning to act in an
environment while you are blind and deaf.

Observations could be expensive or it is preferable to have
a simple plan.

Example: Finding synchronization sequences in hardware
circuits

Example: Initializing a system consisting of many
components that are in unknown states.

Internal motivation: try to understand the unobservable
case so that one can better deal with the more
complicated partially observable case.
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Belief states and the belief space

The current state is not in general known during plan
execution. Instead, a set of possible current states is
known.

The set of possible current states forms the belief state.

The set of all belief states is the belief space.

If there are n states and none of them can be
observationally distinguished from another, then there are
2n − 1 belief states.
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The belief space

1 Let B be a belief state (a set of states).

2 Operator o is executable in B if it is executable in every
s ∈ B.

3 When o is executed, possible next states are T = imgo(B).
4 Belief states can be succinctly represented using Boolean

formulae or BDDs.
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The belief space
Example

Example (Next slide)

Belief space generated by states over two Boolean state
variables.
n = 2 state variables, 2n = 4 states, 22n − 1 = 15 belief states
red action: complement the value of the first state variable
blue action: assign a random value to the second state variable
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The belief space
Example

00

01

10

11

{00, 01}

{00, 10}

{00, 11}

{01, 10}

{01, 11}

{10, 11}

{01, 10, 11}{00, 10, 11}

{00, 01, 11}{00, 01, 10}

{00, 01,
10, 11}
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The belief space
Example

A robot without any sensors,
anywhere in a room of size
7× 8.

Actions: go North, South, East,
West; if no way, just stay where
you are

Plan for getting out: 6 × West,
7 × North, 1 × East, 1 × North

On the next slides we depict one
possible location of the robot
(•) and the change in the belief
state at every execution step by
gray fields.

door
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Example: belief state initially

door
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The belief space
Sorting networks

Sorting networks consist of
comparator-swapper elements
that compare the values of two
inputs and output them sorted:
if first input is bigger than the
second, then they are
swapped, otherwise the
outputs are the inputs.
A sorting network for n inputs
should sort any input
sequence.

i0

i1

i2

o0

o1

o2

i0

i1

i2

i3

o0

o1

o2

o3
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The belief space
Sorting networks

Theorem

If a sorting network correctly sorts any sequence of binary digits
0 and 1, then it correctly sorts any input sequence.

3-input sorting networks can be formalized as a succinct
transition system 〈A, I, O, G, V 〉 where

A = {a0, a1, a2}
I = >
O = {o01, o02, o12}
G = (a0→a1) ∧ (a1→a2)

o01 = 〈>, (a0 ∧ ¬a1) B (¬a0 ∧ a1)〉
o02 = 〈>, (a0 ∧ ¬a2) B (¬a0 ∧ a2)〉
o12 = 〈>, (a1 ∧ ¬a2) B (¬a1 ∧ a2)〉
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The belief space
Sorting networks

A plan for the 3-input sorting network is o12, o02, o01.
The initial states are 000, 001, 010, 011, 100, 101, 110, 111.
The goal states are 000, 001, 011, 111
The belief state evolves as follows.

000, 001, 010, 011, 100, 101, 110, 111 initially
000, 001, 010,011, 100, 101, 110,111 after o12

000, 001, 010,011, 100,101, 110,111 after o02

000, 001, 010,011, 100, 101, 110,111 after o01
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Algorithms for unobservable problems

1 Find an operator sequence o1, . . . , on that reaches a state
satisfying G starting from any state satisfying I.

2 o1 must be applicable in all states B0 = {s ∈ S|s |= I}
satisfying I.
o2 must be applicable in all states in B1 = imgo1(B0).
oi must be applicable in all states in Bi = imgoi(Bi−1) for
all i ∈ {1, . . . , n}.
Terminal states must be goal states:
Bn ⊆ {s ∈ S|s |= G}.



AI Planning

M. Helmert,
B. Nebel

Introduction

Algorithms

General
approach

Heuristic search

Distance
heuristics

Cardinality
heuristics

Lazy
representations

Extending the
FF heuristics

Algorithms for unobservable problems

1 Find an operator sequence o1, . . . , on that reaches a state
satisfying G starting from any state satisfying I.

2 o1 must be applicable in all states B0 = {s ∈ S|s |= I}
satisfying I.
o2 must be applicable in all states in B1 = imgo1(B0).
oi must be applicable in all states in Bi = imgoi(Bi−1) for
all i ∈ {1, . . . , n}.
Terminal states must be goal states:
Bn ⊆ {s ∈ S|s |= G}.



AI Planning

M. Helmert,
B. Nebel

Introduction

Algorithms

General
approach

Heuristic search

Distance
heuristics

Cardinality
heuristics

Lazy
representations

Extending the
FF heuristics

Algorithms for unobservable problems

Algorithms for deterministic planning can be lifted to the
level of belief states.

We can do forward search in the belief space with
imgo(B), backward search with spreimgo(B).
We have already introduced implementation techniques
that allow representing belief states B as formulae φ and
computing images and pre-images respectively as imgo(φ)
and spreimgo(φ).
Size of belief space is exponentially bigger than the size of
the corresponding state space.
For n state variables there are 2n world states, and the
belief space has a size of 22n − 1.

Either explicit representation of world states or symbolic
representation of a belief state using a BDD.
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Heuristic search in belief space

progression/regression + heuristic search (A∗, IDA∗, simulated
annealing, ...)
Heuristics:

heuristic 1: backward distances (for forward search)

heuristic 2: cardinality of belief state (for both forward
and backward search)
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Distance heuristics

Use backward distances of states as a heuristic:

D0 = G
Di+1 = Di ∪

⋃
o∈O spreimgo(Di) for all i ≥ 1

A lower bound on plan length for belief state B is j if B ⊆ Dj

and B 6⊆ Dj−1 for j ≥ 1.
This is an admissible heuristic (does not overestimate the
distance).
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Cardinality heuristics

Backward search: Prefer operators that increase the size
of the belief state, i.e. find a plan suffix that reaches a
goal state from more starting states.

Forward search: Prefer operators that decrease the size of
the belief state, i.e. reduce the uncertainty about the
current state and make reaching goals easier.
For the room navigation example this heuristic works very
well until the size of the belief state is 1.

This heuristic is not admissible.

Computing the cardinality of a belief state from its BDD
representation takes linear time. (Propositional logic in
general: problem is NP-hard.)

Backward search with the cardinality heuristic seems to
work particularly well on the examples from the literature.
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Conformant-FF: Lazy representation of belief states

Instead of computing the belief states (explicitly or
symbolically), one could just store the representation of
the initial state and the plan (as propositional formula) so
far – a lazy representation

Works particularly well when all conditions in
STRIPS-form, i.e., conjunctions of atoms and
deterministic operators (can be extended)

Necessarily true atoms at each point in the plan can be
computed using one UNSAT-call

The FF heuristic hFF can be extended to deal with belief
state planning by using an unsound approximation of the
propositional formula.
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Representing the plan as a CNF formula

Let π be the plan 〈o1, . . . , on〉.
The atoms ai are indexed by the time point t, i.e., ai(t).
The initial belief state (at time point 0) is presented as a
CNF formula over literals indexed with 0.
Given we have a representation for the plan up time point
t, we extend the formula as follows:

1 Effect axioms: For every effect e (in normal form) of ot+1

with e = ((a1 ∧ . . . ∧ am) B l), we insert the formula

¬a1(t) ∨ . . . ∨ ¬am(t) ∨ l(t + 1)

2 Frame axioms: for every atom a, let e1, . . . , en be the
effects that contain a as a negative atomic effect; for every
tuple a1, . . . , an such that ai is a part of ei’s effect
condition, we insert

¬a(t) ∨ a1(t) ∨ . . . ∨ an(t) ∨ a(t + 1).

Similarly for positive atomic effects!
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Example

Operator o = 〈>, (a ∧ c) B ¬a〉
Initial belief state = a ∨ b,¬a ∨ ¬b, c

Plan π = 〈o〉
Construction:

1 Initial state: a(0) ∨ b(0),¬a(0) ∨ ¬b(0), c(0)
2 Effect axiom: ¬a(0) ∨ ¬c(0) ∨ ¬a(1)
3 Simple positive frame axioms: ¬b(0) ∨ b(1),¬c(0) ∨ c(1)
4 Complex positive frame axioms:
¬a(0) ∨ a(0) ∨ a(1),¬a(0) ∨ c(0) ∨ a(1)

5 Simple negative frame axioms:
a(0) ∨ ¬a(1), b(0) ∨ ¬b(1), c(0) ∨ ¬c(1)
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Computing the necessary true and false atoms

In order to check whether an operator is applicable or the
goal has been reached, one need to know, whether a set of
atoms is necessarily true.

Simply add ¬ai(t) and check for satisfiability. If it is
unsatisfiable, ai is necessarily true at time point t

Necessarily true and false atoms can be cached to speed
up reasoning.

Problem: Designing a search heuristic in belief space!
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Extending the hFF heuristics

Reminder: FF computes the heuristic estimate by ignoring
negative effects and trying to generate near-optimal plan
for this relaxation.

We do the same here and additionally . . .

We over-approximate the clause set by reducing all clauses
to two-literal clauses – randomly

This theory is stronger, i.e. it is complete and most
probably unsound

Satisfiability can be solved in linear time
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Summary

Conformant planning is planning in a non-deterministic
context without observation

The search space is the belief space, the space of all belief
sets.

Techniques from classical planning can be lifted to belief
space search

BDDs are one possibility to implement this kind of search
and model counting appears to be a reasonable heuristics

Another possibility is lazy representation of plans as in
Conformant-FF
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