
AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Principles of AI Planning
Expressive power

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 10th, 2007

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Motivation: Why Analyzing the Expressive Power?

Expressive power is the motivation for designing new
planning languages

Often there is the question: Syntactic sugar or essential
feature?

 Compiling away or change planning algorithm?

→ If a feature can be compiled away, then it is apparently
only syntactic sugar.

Sometimes, however, a compilation can lead to much
larger planning domain descriptions or to much longer
plans.

 This means the planning algorithm will probably choke,
i.e., it cannot be considered as a compilation

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Motivation: Why Analyzing the Expressive Power?

Expressive power is the motivation for designing new
planning languages

Often there is the question: Syntactic sugar or essential
feature?

 Compiling away or change planning algorithm?

→ If a feature can be compiled away, then it is apparently
only syntactic sugar.

Sometimes, however, a compilation can lead to much
larger planning domain descriptions or to much longer
plans.

 This means the planning algorithm will probably choke,
i.e., it cannot be considered as a compilation

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Motivation: Why Analyzing the Expressive Power?

Expressive power is the motivation for designing new
planning languages

Often there is the question: Syntactic sugar or essential
feature?

 Compiling away or change planning algorithm?

→ If a feature can be compiled away, then it is apparently
only syntactic sugar.

Sometimes, however, a compilation can lead to much
larger planning domain descriptions or to much longer
plans.

 This means the planning algorithm will probably choke,
i.e., it cannot be considered as a compilation

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Motivation: Why Analyzing the Expressive Power?

Expressive power is the motivation for designing new
planning languages

Often there is the question: Syntactic sugar or essential
feature?

 Compiling away or change planning algorithm?

→ If a feature can be compiled away, then it is apparently
only syntactic sugar.

Sometimes, however, a compilation can lead to much
larger planning domain descriptions or to much longer
plans.

 This means the planning algorithm will probably choke,
i.e., it cannot be considered as a compilation

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Motivation: Why Analyzing the Expressive Power?

Expressive power is the motivation for designing new
planning languages

Often there is the question: Syntactic sugar or essential
feature?

 Compiling away or change planning algorithm?

→ If a feature can be compiled away, then it is apparently
only syntactic sugar.

Sometimes, however, a compilation can lead to much
larger planning domain descriptions or to much longer
plans.

 This means the planning algorithm will probably choke,
i.e., it cannot be considered as a compilation

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Motivation: Why Analyzing the Expressive Power?

Expressive power is the motivation for designing new
planning languages

Often there is the question: Syntactic sugar or essential
feature?

 Compiling away or change planning algorithm?

→ If a feature can be compiled away, then it is apparently
only syntactic sugar.

Sometimes, however, a compilation can lead to much
larger planning domain descriptions or to much longer
plans.

 This means the planning algorithm will probably choke,
i.e., it cannot be considered as a compilation

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: DNF Preconditions

Assume we have DNF preconditions in STRIPS operators

This can be compiled away as follows

Split each operator with a DNF precondition c1 ∨ . . . ∨ cn

into n operators with the same effects and ci as
preconditions

 If there exists a plan for the original planning task there is
one for the new planning task and vice versa

→ The planning task has almost the same size

→ The shortest plans have the same size

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: DNF Preconditions

Assume we have DNF preconditions in STRIPS operators

This can be compiled away as follows

Split each operator with a DNF precondition c1 ∨ . . . ∨ cn

into n operators with the same effects and ci as
preconditions

 If there exists a plan for the original planning task there is
one for the new planning task and vice versa

→ The planning task has almost the same size

→ The shortest plans have the same size

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: DNF Preconditions

Assume we have DNF preconditions in STRIPS operators

This can be compiled away as follows

Split each operator with a DNF precondition c1 ∨ . . . ∨ cn

into n operators with the same effects and ci as
preconditions

 If there exists a plan for the original planning task there is
one for the new planning task and vice versa

→ The planning task has almost the same size

→ The shortest plans have the same size

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: DNF Preconditions

Assume we have DNF preconditions in STRIPS operators

This can be compiled away as follows

Split each operator with a DNF precondition c1 ∨ . . . ∨ cn

into n operators with the same effects and ci as
preconditions

 If there exists a plan for the original planning task there is
one for the new planning task and vice versa

→ The planning task has almost the same size

→ The shortest plans have the same size

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: DNF Preconditions

Assume we have DNF preconditions in STRIPS operators

This can be compiled away as follows

Split each operator with a DNF precondition c1 ∨ . . . ∨ cn

into n operators with the same effects and ci as
preconditions

 If there exists a plan for the original planning task there is
one for the new planning task and vice versa

→ The planning task has almost the same size

→ The shortest plans have the same size

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: DNF Preconditions

Assume we have DNF preconditions in STRIPS operators

This can be compiled away as follows

Split each operator with a DNF precondition c1 ∨ . . . ∨ cn

into n operators with the same effects and ci as
preconditions

 If there exists a plan for the original planning task there is
one for the new planning task and vice versa

→ The planning task has almost the same size

→ The shortest plans have the same size

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: Conditional effects

Can we compile away conditional effects to STRIPS?

Example operator: 〈a, b B d ∧ ¬c B e〉
Can be translated into four operators:
〈a ∧ b ∧ c, d〉, 〈a ∧ b ∧ ¬c, d ∧ e〉, . . .
Plan existence and plan size are identical

Exponential blowup of domain description!

→ Can this be avoided?

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: Conditional effects

Can we compile away conditional effects to STRIPS?

Example operator: 〈a, b B d ∧ ¬c B e〉
Can be translated into four operators:
〈a ∧ b ∧ c, d〉, 〈a ∧ b ∧ ¬c, d ∧ e〉, . . .
Plan existence and plan size are identical

Exponential blowup of domain description!

→ Can this be avoided?

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: Conditional effects

Can we compile away conditional effects to STRIPS?

Example operator: 〈a, b B d ∧ ¬c B e〉
Can be translated into four operators:
〈a ∧ b ∧ c, d〉, 〈a ∧ b ∧ ¬c, d ∧ e〉, . . .
Plan existence and plan size are identical

Exponential blowup of domain description!

→ Can this be avoided?

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: Conditional effects

Can we compile away conditional effects to STRIPS?

Example operator: 〈a, b B d ∧ ¬c B e〉
Can be translated into four operators:
〈a ∧ b ∧ c, d〉, 〈a ∧ b ∧ ¬c, d ∧ e〉, . . .
Plan existence and plan size are identical

Exponential blowup of domain description!

→ Can this be avoided?

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: Conditional effects

Can we compile away conditional effects to STRIPS?

Example operator: 〈a, b B d ∧ ¬c B e〉
Can be translated into four operators:
〈a ∧ b ∧ c, d〉, 〈a ∧ b ∧ ¬c, d ∧ e〉, . . .
Plan existence and plan size are identical

Exponential blowup of domain description!

→ Can this be avoided?

AI Planning

M. Helmert,
B. Nebel

Motivation

Why?

Examples

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Example: Conditional effects

Can we compile away conditional effects to STRIPS?

Example operator: 〈a, b B d ∧ ¬c B e〉
Can be translated into four operators:
〈a ∧ b ∧ c, d〉, 〈a ∧ b ∧ ¬c, d ∧ e〉, . . .
Plan existence and plan size are identical

Exponential blowup of domain description!

→ Can this be avoided?

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Propositional STRIPS and Variants

In the following we will only consider propositional
STRIPS and some variants of it.

Planning task:
T = 〈A, I, O, G〉.

Often we refer to domain structures D = 〈A,O〉.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Propositional STRIPS and Variants

In the following we will only consider propositional
STRIPS and some variants of it.

Planning task:
T = 〈A, I, O, G〉.

Often we refer to domain structures D = 〈A,O〉.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Propositional STRIPS and Variants

In the following we will only consider propositional
STRIPS and some variants of it.

Planning task:
T = 〈A, I, O, G〉.

Often we refer to domain structures D = 〈A,O〉.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Disjunctive Preconditions: Trivial or Essential?

Kambhampati et al [ECP 97] and Gazen & Knoblock
[ECP 97]: Disjunctive preconditions are trivial – since they
can be translated to basic STRIPS (DNF-preconditions)

Bäckström [AIJ 95]: Disjunctive preconditions are
probably essential – since they can not easily be translated
to basic STRIPS (CNF-preconditions)

Anderson et al [AIPS 98]: “[D]isjunctive preconditions
. . . are . . . essential prerequisites for handling conditional
effects” conditional effects imply disjunctive
preconditions (?) (General Boolean preconditions)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Disjunctive Preconditions: Trivial or Essential?

Kambhampati et al [ECP 97] and Gazen & Knoblock
[ECP 97]: Disjunctive preconditions are trivial – since they
can be translated to basic STRIPS (DNF-preconditions)

Bäckström [AIJ 95]: Disjunctive preconditions are
probably essential – since they can not easily be translated
to basic STRIPS (CNF-preconditions)

Anderson et al [AIPS 98]: “[D]isjunctive preconditions
. . . are . . . essential prerequisites for handling conditional
effects” conditional effects imply disjunctive
preconditions (?) (General Boolean preconditions)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Disjunctive Preconditions: Trivial or Essential?

Kambhampati et al [ECP 97] and Gazen & Knoblock
[ECP 97]: Disjunctive preconditions are trivial – since they
can be translated to basic STRIPS (DNF-preconditions)

Bäckström [AIJ 95]: Disjunctive preconditions are
probably essential – since they can not easily be translated
to basic STRIPS (CNF-preconditions)

Anderson et al [AIPS 98]: “[D]isjunctive preconditions
. . . are . . . essential prerequisites for handling conditional
effects” conditional effects imply disjunctive
preconditions (?) (General Boolean preconditions)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

More “Expressive Power”

STRIPSN : plain strips with negative literals

STRIPSBd : precondition in disjunctive normal form

STRIPSBc : precondition in conjunctive normal form

STRIPSB : Boolean expressions as preconditions

STRIPSC : conditional effects

STRIPSC,N : conditional effects & negative literals

. . .

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

More “Expressive Power”

STRIPSN : plain strips with negative literals

STRIPSBd : precondition in disjunctive normal form

STRIPSBc : precondition in conjunctive normal form

STRIPSB : Boolean expressions as preconditions

STRIPSC : conditional effects

STRIPSC,N : conditional effects & negative literals

. . .

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

More “Expressive Power”

STRIPSN : plain strips with negative literals

STRIPSBd : precondition in disjunctive normal form

STRIPSBc : precondition in conjunctive normal form

STRIPSB : Boolean expressions as preconditions

STRIPSC : conditional effects

STRIPSC,N : conditional effects & negative literals

. . .

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

More “Expressive Power”

STRIPSN : plain strips with negative literals

STRIPSBd : precondition in disjunctive normal form

STRIPSBc : precondition in conjunctive normal form

STRIPSB : Boolean expressions as preconditions

STRIPSC : conditional effects

STRIPSC,N : conditional effects & negative literals

. . .

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

More “Expressive Power”

STRIPSN : plain strips with negative literals

STRIPSBd : precondition in disjunctive normal form

STRIPSBc : precondition in conjunctive normal form

STRIPSB : Boolean expressions as preconditions

STRIPSC : conditional effects

STRIPSC,N : conditional effects & negative literals

. . .

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

More “Expressive Power”

STRIPSN : plain strips with negative literals

STRIPSBd : precondition in disjunctive normal form

STRIPSBc : precondition in conjunctive normal form

STRIPSB : Boolean expressions as preconditions

STRIPSC : conditional effects

STRIPSC,N : conditional effects & negative literals

. . .

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

More “Expressive Power”

STRIPSN : plain strips with negative literals

STRIPSBd : precondition in disjunctive normal form

STRIPSBc : precondition in conjunctive normal form

STRIPSB : Boolean expressions as preconditions

STRIPSC : conditional effects

STRIPSC,N : conditional effects & negative literals

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Ordering Planning Formalisms Partially

. . . STRIPS

STRIPS

STRIPS STRIPS STRIPS

STRIPS STRIPS STRIPS

B,C

Bc,C Bd,C B

BdBcN,C

N

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Computational Complexity . . .

Theorem

PLANEX is PSPACE-complete for STRIPSN , STRIPSC,B, and
for all formalisms “between” the two.

Proof.

Follows from theorems proved in the previous lecture.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Disjunctive
Preconditions:
Difficult or
Easy?

STRIPS Variants

Partially Ordered
STRIPS Variants

Computational
Complexity

Expressive
Power

Summary

Computational Complexity . . .

Theorem

PLANEX is PSPACE-complete for STRIPSN , STRIPSC,B, and
for all formalisms “between” the two.

Proof.

Follows from theorems proved in the previous lecture.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Measuring Expressive Power

Consider mappings between planning problems in different
formalisms

that preserve

solution existence
plan size linearly or polynomially etc.
the exact plan size
the plan “structure”
the solutions/plans themselves

that are limited

in the size of the result (poly. size)
in the computational resources (poly. time)

that transform

entire planning instances
domain structure and states in isolation

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Measuring Expressive Power

Consider mappings between planning problems in different
formalisms

that preserve

solution existence
plan size linearly or polynomially etc.
the exact plan size
the plan “structure”
the solutions/plans themselves

that are limited

in the size of the result (poly. size)
in the computational resources (poly. time)

that transform

entire planning instances
domain structure and states in isolation

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Measuring Expressive Power

Consider mappings between planning problems in different
formalisms

that preserve

solution existence
plan size linearly or polynomially etc.
the exact plan size
the plan “structure”
the solutions/plans themselves

that are limited

in the size of the result (poly. size)
in the computational resources (poly. time)

that transform

entire planning instances
domain structure and states in isolation

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 1: Polynomial Transformation

preserving

solution existence
plan size linearly or polynomially etc.
the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 all formalisms have the same expressiveness (?)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 1: Polynomial Transformation

preserving

solution existence
plan size linearly or polynomially etc.
the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 all formalisms have the same expressiveness (?)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 1: Polynomial Transformation

preserving

solution existence
plan size linearly or polynomially etc.
the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 all formalisms have the same expressiveness (?)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 1: Polynomial Transformation

preserving

solution existence
plan size linearly or polynomially etc.
the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 all formalisms have the same expressiveness (?)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 2: Bäckström’s ESP-reductions

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size

the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 However, expressiveness is independent of the
computational resources needed to compute the
mapping

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 2: Bäckström’s ESP-reductions

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size

the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 However, expressiveness is independent of the
computational resources needed to compute the
mapping

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 2: Bäckström’s ESP-reductions

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size

the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 However, expressiveness is independent of the
computational resources needed to compute the
mapping

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 2: Bäckström’s ESP-reductions

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size

the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 However, expressiveness is independent of the
computational resources needed to compute the
mapping

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 3: Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 All formalisms are trivially equivalent (because planning
is PSPACE-complete for all propositional STRIPS
formalisms)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 3: Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 All formalisms are trivially equivalent (because planning
is PSPACE-complete for all propositional STRIPS
formalisms)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 3: Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 All formalisms are trivially equivalent (because planning
is PSPACE-complete for all propositional STRIPS
formalisms)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 3: Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 All formalisms are trivially equivalent (because planning
is PSPACE-complete for all propositional STRIPS
formalisms)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 4: Modular & Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 When measuring the expressiveness of planning
formalisms, domain structures should be considered
independently from states

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 4: Modular & Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 When measuring the expressiveness of planning
formalisms, domain structures should be considered
independently from states

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 4: Modular & Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 When measuring the expressiveness of planning
formalisms, domain structures should be considered
independently from states

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Method 4: Modular & Polysize Mappings

preserving

solution existence
plan size linearly or polynomially etc.

the exact plan size
the plan “structure”
the solutions/plans themselves

limiting

in the size of the result (poly. size)

in the computational resources (poly. time)

transforming

entire planning instances

domain structure and states in isolation

 When measuring the expressiveness of planning
formalisms, domain structures should be considered
independently from states

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The Right Method: Compilation Schemes
(Simplified)

Transform domain structure
D = 〈A,O〉 (with polynomial
blowup) to D′ preserving
solution existence
Only trivial changes to states
(independent of operator set)
Resulting plans π′ should not
grow too much (additive
constant, linear growth,
polynomial growth)

 Similar to knowledge
compilation, with operators
as the fixed part and initial
states & goals as the varying
part

’’

I
lation

compi− G

Y

X

Planning

Planning
π

π

D

D

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The Right Method: Compilation Schemes
(Simplified)

Transform domain structure
D = 〈A,O〉 (with polynomial
blowup) to D′ preserving
solution existence
Only trivial changes to states
(independent of operator set)
Resulting plans π′ should not
grow too much (additive
constant, linear growth,
polynomial growth)

 Similar to knowledge
compilation, with operators
as the fixed part and initial
states & goals as the varying
part

’’

I
lation

compi− G

Y

X

Planning

Planning
π

π

D

D

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The Right Method: Compilation Schemes
(Simplified)

Transform domain structure
D = 〈A,O〉 (with polynomial
blowup) to D′ preserving
solution existence
Only trivial changes to states
(independent of operator set)
Resulting plans π′ should not
grow too much (additive
constant, linear growth,
polynomial growth)

 Similar to knowledge
compilation, with operators
as the fixed part and initial
states & goals as the varying
part

’’

I
lation

compi− G

Y

X

Planning

Planning
π

π

D

D

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The Right Method: Compilation Schemes
(Simplified)

Transform domain structure
D = 〈A,O〉 (with polynomial
blowup) to D′ preserving
solution existence
Only trivial changes to states
(independent of operator set)
Resulting plans π′ should not
grow too much (additive
constant, linear growth,
polynomial growth)

 Similar to knowledge
compilation, with operators
as the fixed part and initial
states & goals as the varying
part

’’

I
lation

compi− G

Y

X

Planning

Planning
π

π

D

D

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Compilability

Y�X (Y is compilable to X)
iff

there exists a compilation scheme from Y to X .

Y�1X : preserving plan size exactly (modulo additive
constants)

Y�cX : preserving plan size linearly (in |π|)
Y�pX : preserving plan size polynomially (in |π| and |D|)
Y�x

pX : polynomial-time compilability

Theorem

For all x, y, the relations �x
y are transitive and reflexive.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Compilability

Y�X (Y is compilable to X)
iff

there exists a compilation scheme from Y to X .

Y�1X : preserving plan size exactly (modulo additive
constants)

Y�cX : preserving plan size linearly (in |π|)
Y�pX : preserving plan size polynomially (in |π| and |D|)
Y�x

pX : polynomial-time compilability

Theorem

For all x, y, the relations �x
y are transitive and reflexive.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Compilability

Y�X (Y is compilable to X)
iff

there exists a compilation scheme from Y to X .

Y�1X : preserving plan size exactly (modulo additive
constants)

Y�cX : preserving plan size linearly (in |π|)
Y�pX : preserving plan size polynomially (in |π| and |D|)
Y�x

pX : polynomial-time compilability

Theorem

For all x, y, the relations �x
y are transitive and reflexive.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Compilability

Y�X (Y is compilable to X)
iff

there exists a compilation scheme from Y to X .

Y�1X : preserving plan size exactly (modulo additive
constants)

Y�cX : preserving plan size linearly (in |π|)
Y�pX : preserving plan size polynomially (in |π| and |D|)
Y�x

pX : polynomial-time compilability

Theorem

For all x, y, the relations �x
y are transitive and reflexive.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Compilability

Y�X (Y is compilable to X)
iff

there exists a compilation scheme from Y to X .

Y�1X : preserving plan size exactly (modulo additive
constants)

Y�cX : preserving plan size linearly (in |π|)
Y�pX : preserving plan size polynomially (in |π| and |D|)
Y�x

pX : polynomial-time compilability

Theorem

For all x, y, the relations �x
y are transitive and reflexive.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Back-Translatability

Shouldn’t we also require that plans in the compiled
instance can be translated back to the original formalism?

Yes, if we want to use this technique, one should require
that!

In all positive cases, there was never any problem to
translate the plan back

For the negative case, it is easier to prove non-existence

So, in order to prove negative results, we do not need it,
for positive it never had been a problem

 So, similarly to the concentration on decision problems
when determining complexity, we simplify things here

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Back-Translatability

Shouldn’t we also require that plans in the compiled
instance can be translated back to the original formalism?

Yes, if we want to use this technique, one should require
that!

In all positive cases, there was never any problem to
translate the plan back

For the negative case, it is easier to prove non-existence

So, in order to prove negative results, we do not need it,
for positive it never had been a problem

 So, similarly to the concentration on decision problems
when determining complexity, we simplify things here

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Back-Translatability

Shouldn’t we also require that plans in the compiled
instance can be translated back to the original formalism?

Yes, if we want to use this technique, one should require
that!

In all positive cases, there was never any problem to
translate the plan back

For the negative case, it is easier to prove non-existence

So, in order to prove negative results, we do not need it,
for positive it never had been a problem

 So, similarly to the concentration on decision problems
when determining complexity, we simplify things here

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Back-Translatability

Shouldn’t we also require that plans in the compiled
instance can be translated back to the original formalism?

Yes, if we want to use this technique, one should require
that!

In all positive cases, there was never any problem to
translate the plan back

For the negative case, it is easier to prove non-existence

So, in order to prove negative results, we do not need it,
for positive it never had been a problem

 So, similarly to the concentration on decision problems
when determining complexity, we simplify things here

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Back-Translatability

Shouldn’t we also require that plans in the compiled
instance can be translated back to the original formalism?

Yes, if we want to use this technique, one should require
that!

In all positive cases, there was never any problem to
translate the plan back

For the negative case, it is easier to prove non-existence

So, in order to prove negative results, we do not need it,
for positive it never had been a problem

 So, similarly to the concentration on decision problems
when determining complexity, we simplify things here

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Back-Translatability

Shouldn’t we also require that plans in the compiled
instance can be translated back to the original formalism?

Yes, if we want to use this technique, one should require
that!

In all positive cases, there was never any problem to
translate the plan back

For the negative case, it is easier to prove non-existence

So, in order to prove negative results, we do not need it,
for positive it never had been a problem

 So, similarly to the concentration on decision problems
when determining complexity, we simplify things here

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A (Trivial) Positive Result: STRIPSBd �1
p STRIPSN

DNF preconditions can be “compiled away.”
Assume operator o = 〈c, e〉 and

c = L1 ∨ . . . ∨ Lk

with Li being a conjunction of literals. Create k operators
oi = 〈Li, e〉

1 compilation is solution-preserving,

2 D′ is only polynomially larger than D,

3 compilation can be computed in polynomial time,

4 resulting plans do not grow at all.

 STRIPSBd �1
p STRIPSN

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A (Trivial) Positive Result: STRIPSBd �1
p STRIPSN

DNF preconditions can be “compiled away.”
Assume operator o = 〈c, e〉 and

c = L1 ∨ . . . ∨ Lk

with Li being a conjunction of literals. Create k operators
oi = 〈Li, e〉

1 compilation is solution-preserving,

2 D′ is only polynomially larger than D,

3 compilation can be computed in polynomial time,

4 resulting plans do not grow at all.

 STRIPSBd �1
p STRIPSN

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A (Trivial) Positive Result: STRIPSBd �1
p STRIPSN

DNF preconditions can be “compiled away.”
Assume operator o = 〈c, e〉 and

c = L1 ∨ . . . ∨ Lk

with Li being a conjunction of literals. Create k operators
oi = 〈Li, e〉

1 compilation is solution-preserving,

2 D′ is only polynomially larger than D,

3 compilation can be computed in polynomial time,

4 resulting plans do not grow at all.

 STRIPSBd �1
p STRIPSN

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A (Trivial) Positive Result: STRIPSBd �1
p STRIPSN

DNF preconditions can be “compiled away.”
Assume operator o = 〈c, e〉 and

c = L1 ∨ . . . ∨ Lk

with Li being a conjunction of literals. Create k operators
oi = 〈Li, e〉

1 compilation is solution-preserving,

2 D′ is only polynomially larger than D,

3 compilation can be computed in polynomial time,

4 resulting plans do not grow at all.

 STRIPSBd �1
p STRIPSN

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A (Trivial) Positive Result: STRIPSBd �1
p STRIPSN

DNF preconditions can be “compiled away.”
Assume operator o = 〈c, e〉 and

c = L1 ∨ . . . ∨ Lk

with Li being a conjunction of literals. Create k operators
oi = 〈Li, e〉

1 compilation is solution-preserving,

2 D′ is only polynomially larger than D,

3 compilation can be computed in polynomial time,

4 resulting plans do not grow at all.

 STRIPSBd �1
p STRIPSN

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A (Trivial) Positive Result: STRIPSBd �1
p STRIPSN

DNF preconditions can be “compiled away.”
Assume operator o = 〈c, e〉 and

c = L1 ∨ . . . ∨ Lk

with Li being a conjunction of literals. Create k operators
oi = 〈Li, e〉

1 compilation is solution-preserving,

2 D′ is only polynomially larger than D,

3 compilation can be computed in polynomial time,

4 resulting plans do not grow at all.

 STRIPSBd �1
p STRIPSN

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A (Trivial) Positive Result: STRIPSBd �1
p STRIPSN

DNF preconditions can be “compiled away.”
Assume operator o = 〈c, e〉 and

c = L1 ∨ . . . ∨ Lk

with Li being a conjunction of literals. Create k operators
oi = 〈Li, e〉

1 compilation is solution-preserving,

2 D′ is only polynomially larger than D,

3 compilation can be computed in polynomial time,

4 resulting plans do not grow at all.

 STRIPSBd �1
p STRIPSN

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Positive Result: STRIPSC,Bc �c
p STRIPSC,N

CNF preconditions can be “compiled away” – provided we
have already conditional effects.

Evaluate the truth value of all disjunctions appearing in
operators by using a special evaluation operator with
conditional effects that make new “clause atoms” true

Alternate between executing original operators (clauses
replaced by new atoms) and evaluation operators

 Operator sets grow only polynomially

 Plans are double as long as the original plans

 Anderson et al’s conjecture holds in a weak version

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Positive Result: STRIPSC,Bc �c
p STRIPSC,N

CNF preconditions can be “compiled away” – provided we
have already conditional effects.

Evaluate the truth value of all disjunctions appearing in
operators by using a special evaluation operator with
conditional effects that make new “clause atoms” true

Alternate between executing original operators (clauses
replaced by new atoms) and evaluation operators

 Operator sets grow only polynomially

 Plans are double as long as the original plans

 Anderson et al’s conjecture holds in a weak version

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Positive Result: STRIPSC,Bc �c
p STRIPSC,N

CNF preconditions can be “compiled away” – provided we
have already conditional effects.

Evaluate the truth value of all disjunctions appearing in
operators by using a special evaluation operator with
conditional effects that make new “clause atoms” true

Alternate between executing original operators (clauses
replaced by new atoms) and evaluation operators

 Operator sets grow only polynomially

 Plans are double as long as the original plans

 Anderson et al’s conjecture holds in a weak version

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Positive Result: STRIPSC,Bc �c
p STRIPSC,N

CNF preconditions can be “compiled away” – provided we
have already conditional effects.

Evaluate the truth value of all disjunctions appearing in
operators by using a special evaluation operator with
conditional effects that make new “clause atoms” true

Alternate between executing original operators (clauses
replaced by new atoms) and evaluation operators

 Operator sets grow only polynomially

 Plans are double as long as the original plans

 Anderson et al’s conjecture holds in a weak version

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Positive Result: STRIPSC,Bc �c
p STRIPSC,N

CNF preconditions can be “compiled away” – provided we
have already conditional effects.

Evaluate the truth value of all disjunctions appearing in
operators by using a special evaluation operator with
conditional effects that make new “clause atoms” true

Alternate between executing original operators (clauses
replaced by new atoms) and evaluation operators

 Operator sets grow only polynomially

 Plans are double as long as the original plans

 Anderson et al’s conjecture holds in a weak version

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Positive Result: STRIPSC,Bc �c
p STRIPSC,N

CNF preconditions can be “compiled away” – provided we
have already conditional effects.

Evaluate the truth value of all disjunctions appearing in
operators by using a special evaluation operator with
conditional effects that make new “clause atoms” true

Alternate between executing original operators (clauses
replaced by new atoms) and evaluation operators

 Operator sets grow only polynomially

 Plans are double as long as the original plans

 Anderson et al’s conjecture holds in a weak version

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Positive Result: STRIPSC,Bc �c
p STRIPSC,N

CNF preconditions can be “compiled away” – provided we
have already conditional effects.

Evaluate the truth value of all disjunctions appearing in
operators by using a special evaluation operator with
conditional effects that make new “clause atoms” true

Alternate between executing original operators (clauses
replaced by new atoms) and evaluation operators

 Operator sets grow only polynomially

 Plans are double as long as the original plans

 Anderson et al’s conjecture holds in a weak version

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A First Negative Result: Conditional Effects
Cannot be Compiled into Boolean Preconditions

Consider domain D with only one (STRIPSC,B) operator o:

〈>, (p1 B ¬p1) ∧ (¬p1 B p1) ∧ . . . ∧ (pk B ¬pk) ∧ (¬pk B pk)〉,

which “inverts” a given state. For all (I,G) with

G =
∧
{ ¬v | v ∈ A, I |= v } ∧

∧
{ v | v ∈ A, I 6|= v },

there exists a STRIPSC,B one-step plan.
Assume there exists a compilation preserving plan size linearly leading
to a STRIPSB domain structure D′. There are exponentially many
possible initial states, but only polynomially many different c-step
plans for D′. Some STRIPSB plan π is used for different initial states
I1, I2 (for large enough k). Let v be a variable with I1(v) 6= I2(v).
 In one case, v must be set by π, in the other case, it must be
cleared.
 This is not possible in an unconditional plan.
 The transformation is not solution preserving !

 Conditional effects cannot be compiled away (if plan size can
grow only linearly)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A First Negative Result: Conditional Effects
Cannot be Compiled into Boolean Preconditions

Consider domain D with only one (STRIPSC,B) operator o:

〈>, (p1 B ¬p1) ∧ (¬p1 B p1) ∧ . . . ∧ (pk B ¬pk) ∧ (¬pk B pk)〉,

which “inverts” a given state. For all (I,G) with

G =
∧
{ ¬v | v ∈ A, I |= v } ∧

∧
{ v | v ∈ A, I 6|= v },

there exists a STRIPSC,B one-step plan.
Assume there exists a compilation preserving plan size linearly leading
to a STRIPSB domain structure D′. There are exponentially many
possible initial states, but only polynomially many different c-step
plans for D′. Some STRIPSB plan π is used for different initial states
I1, I2 (for large enough k). Let v be a variable with I1(v) 6= I2(v).
 In one case, v must be set by π, in the other case, it must be
cleared.
 This is not possible in an unconditional plan.
 The transformation is not solution preserving !

 Conditional effects cannot be compiled away (if plan size can
grow only linearly)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A First Negative Result: Conditional Effects
Cannot be Compiled into Boolean Preconditions

Consider domain D with only one (STRIPSC,B) operator o:

〈>, (p1 B ¬p1) ∧ (¬p1 B p1) ∧ . . . ∧ (pk B ¬pk) ∧ (¬pk B pk)〉,

which “inverts” a given state. For all (I,G) with

G =
∧
{ ¬v | v ∈ A, I |= v } ∧

∧
{ v | v ∈ A, I 6|= v },

there exists a STRIPSC,B one-step plan.
Assume there exists a compilation preserving plan size linearly leading
to a STRIPSB domain structure D′. There are exponentially many
possible initial states, but only polynomially many different c-step
plans for D′. Some STRIPSB plan π is used for different initial states
I1, I2 (for large enough k). Let v be a variable with I1(v) 6= I2(v).
 In one case, v must be set by π, in the other case, it must be
cleared.
 This is not possible in an unconditional plan.
 The transformation is not solution preserving !

 Conditional effects cannot be compiled away (if plan size can
grow only linearly)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A First Negative Result: Conditional Effects
Cannot be Compiled into Boolean Preconditions

Consider domain D with only one (STRIPSC,B) operator o:

〈>, (p1 B ¬p1) ∧ (¬p1 B p1) ∧ . . . ∧ (pk B ¬pk) ∧ (¬pk B pk)〉,

which “inverts” a given state. For all (I,G) with

G =
∧
{ ¬v | v ∈ A, I |= v } ∧

∧
{ v | v ∈ A, I 6|= v },

there exists a STRIPSC,B one-step plan.
Assume there exists a compilation preserving plan size linearly leading
to a STRIPSB domain structure D′. There are exponentially many
possible initial states, but only polynomially many different c-step
plans for D′. Some STRIPSB plan π is used for different initial states
I1, I2 (for large enough k). Let v be a variable with I1(v) 6= I2(v).
 In one case, v must be set by π, in the other case, it must be
cleared.
 This is not possible in an unconditional plan.
 The transformation is not solution preserving !

 Conditional effects cannot be compiled away (if plan size can
grow only linearly)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A First Negative Result: Conditional Effects
Cannot be Compiled into Boolean Preconditions

Consider domain D with only one (STRIPSC,B) operator o:

〈>, (p1 B ¬p1) ∧ (¬p1 B p1) ∧ . . . ∧ (pk B ¬pk) ∧ (¬pk B pk)〉,

which “inverts” a given state. For all (I,G) with

G =
∧
{ ¬v | v ∈ A, I |= v } ∧

∧
{ v | v ∈ A, I 6|= v },

there exists a STRIPSC,B one-step plan.
Assume there exists a compilation preserving plan size linearly leading
to a STRIPSB domain structure D′. There are exponentially many
possible initial states, but only polynomially many different c-step
plans for D′. Some STRIPSB plan π is used for different initial states
I1, I2 (for large enough k). Let v be a variable with I1(v) 6= I2(v).
 In one case, v must be set by π, in the other case, it must be
cleared.
 This is not possible in an unconditional plan.
 The transformation is not solution preserving !

 Conditional effects cannot be compiled away (if plan size can
grow only linearly)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A First Negative Result: Conditional Effects
Cannot be Compiled into Boolean Preconditions

Consider domain D with only one (STRIPSC,B) operator o:

〈>, (p1 B ¬p1) ∧ (¬p1 B p1) ∧ . . . ∧ (pk B ¬pk) ∧ (¬pk B pk)〉,

which “inverts” a given state. For all (I,G) with

G =
∧
{ ¬v | v ∈ A, I |= v } ∧

∧
{ v | v ∈ A, I 6|= v },

there exists a STRIPSC,B one-step plan.
Assume there exists a compilation preserving plan size linearly leading
to a STRIPSB domain structure D′. There are exponentially many
possible initial states, but only polynomially many different c-step
plans for D′. Some STRIPSB plan π is used for different initial states
I1, I2 (for large enough k). Let v be a variable with I1(v) 6= I2(v).
 In one case, v must be set by π, in the other case, it must be
cleared.
 This is not possible in an unconditional plan.
 The transformation is not solution preserving !

 Conditional effects cannot be compiled away (if plan size can
grow only linearly)

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Negative Result: STRIPSBc 6�c STRIPSN

k-FISEX: Planning problem with fixed plan length k and
varying initial state. Does there exist an initial state leading to
a successful k-step plan?
1-FISEX is NP-complete for STRIPSBc (= SAT).
k-FISEX is polynomial for STRIPSN (regression analysis)

 STRIPSBc 6�c
p STRIPSN (if P6=NP)

Using a technique first used by Kautz & Selman, one can show
that even arbitrary compilations can be ruled out – provided
the polynomial hierarchy does not collapse. The proof method
uses non-uniform complexity classes such as P/poly.

 Bäckström’s conjecture holds in the compilation
framework.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Negative Result: STRIPSBc 6�c STRIPSN

k-FISEX: Planning problem with fixed plan length k and
varying initial state. Does there exist an initial state leading to
a successful k-step plan?
1-FISEX is NP-complete for STRIPSBc (= SAT).
k-FISEX is polynomial for STRIPSN (regression analysis)

 STRIPSBc 6�c
p STRIPSN (if P6=NP)

Using a technique first used by Kautz & Selman, one can show
that even arbitrary compilations can be ruled out – provided
the polynomial hierarchy does not collapse. The proof method
uses non-uniform complexity classes such as P/poly.

 Bäckström’s conjecture holds in the compilation
framework.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Negative Result: STRIPSBc 6�c STRIPSN

k-FISEX: Planning problem with fixed plan length k and
varying initial state. Does there exist an initial state leading to
a successful k-step plan?
1-FISEX is NP-complete for STRIPSBc (= SAT).
k-FISEX is polynomial for STRIPSN (regression analysis)

 STRIPSBc 6�c
p STRIPSN (if P6=NP)

Using a technique first used by Kautz & Selman, one can show
that even arbitrary compilations can be ruled out – provided
the polynomial hierarchy does not collapse. The proof method
uses non-uniform complexity classes such as P/poly.

 Bäckström’s conjecture holds in the compilation
framework.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Negative Result: STRIPSBc 6�c STRIPSN

k-FISEX: Planning problem with fixed plan length k and
varying initial state. Does there exist an initial state leading to
a successful k-step plan?
1-FISEX is NP-complete for STRIPSBc (= SAT).
k-FISEX is polynomial for STRIPSN (regression analysis)

 STRIPSBc 6�c
p STRIPSN (if P6=NP)

Using a technique first used by Kautz & Selman, one can show
that even arbitrary compilations can be ruled out – provided
the polynomial hierarchy does not collapse. The proof method
uses non-uniform complexity classes such as P/poly.

 Bäckström’s conjecture holds in the compilation
framework.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Negative Result: STRIPSBc 6�c STRIPSN

k-FISEX: Planning problem with fixed plan length k and
varying initial state. Does there exist an initial state leading to
a successful k-step plan?
1-FISEX is NP-complete for STRIPSBc (= SAT).
k-FISEX is polynomial for STRIPSN (regression analysis)

 STRIPSBc 6�c
p STRIPSN (if P6=NP)

Using a technique first used by Kautz & Selman, one can show
that even arbitrary compilations can be ruled out – provided
the polynomial hierarchy does not collapse. The proof method
uses non-uniform complexity classes such as P/poly.

 Bäckström’s conjecture holds in the compilation
framework.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Negative Result: STRIPSBc 6�c STRIPSN

k-FISEX: Planning problem with fixed plan length k and
varying initial state. Does there exist an initial state leading to
a successful k-step plan?
1-FISEX is NP-complete for STRIPSBc (= SAT).
k-FISEX is polynomial for STRIPSN (regression analysis)

 STRIPSBc 6�c
p STRIPSN (if P6=NP)

Using a technique first used by Kautz & Selman, one can show
that even arbitrary compilations can be ruled out – provided
the polynomial hierarchy does not collapse. The proof method
uses non-uniform complexity classes such as P/poly.

 Bäckström’s conjecture holds in the compilation
framework.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Another Negative Result: STRIPSBc 6�c STRIPSN

k-FISEX: Planning problem with fixed plan length k and
varying initial state. Does there exist an initial state leading to
a successful k-step plan?
1-FISEX is NP-complete for STRIPSBc (= SAT).
k-FISEX is polynomial for STRIPSN (regression analysis)

 STRIPSBc 6�c
p STRIPSN (if P6=NP)

Using a technique first used by Kautz & Selman, one can show
that even arbitrary compilations can be ruled out – provided
the polynomial hierarchy does not collapse. The proof method
uses non-uniform complexity classes such as P/poly.

 Bäckström’s conjecture holds in the compilation
framework.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A Final Negative Result: Boolean Preconditions
Cannot be Compiled Away Even in the Presence of
Conditional Effects

Boolean preconditions have the power of families of
Boolean circuits with logarithmic depth (because
Boolean formula have this power) (= NC1)

Conditional effects can simulate only families of circuits
with fixed depth (= AC0).

The parity function can be expressed in the first framework
(NC1) while it cannot be expressed in the second (AC0).

 The negative result follows unconditionally!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A Final Negative Result: Boolean Preconditions
Cannot be Compiled Away Even in the Presence of
Conditional Effects

Boolean preconditions have the power of families of
Boolean circuits with logarithmic depth (because
Boolean formula have this power) (= NC1)

Conditional effects can simulate only families of circuits
with fixed depth (= AC0).

The parity function can be expressed in the first framework
(NC1) while it cannot be expressed in the second (AC0).

 The negative result follows unconditionally!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A Final Negative Result: Boolean Preconditions
Cannot be Compiled Away Even in the Presence of
Conditional Effects

Boolean preconditions have the power of families of
Boolean circuits with logarithmic depth (because
Boolean formula have this power) (= NC1)

Conditional effects can simulate only families of circuits
with fixed depth (= AC0).

The parity function can be expressed in the first framework
(NC1) while it cannot be expressed in the second (AC0).

 The negative result follows unconditionally!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

A Final Negative Result: Boolean Preconditions
Cannot be Compiled Away Even in the Presence of
Conditional Effects

Boolean preconditions have the power of families of
Boolean circuits with logarithmic depth (because
Boolean formula have this power) (= NC1)

Conditional effects can simulate only families of circuits
with fixed depth (= AC0).

The parity function can be expressed in the first framework
(NC1) while it cannot be expressed in the second (AC0).

 The negative result follows unconditionally!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Boolean Circuits

We know what Boolean circuits are (directed, acyclic
graphs with different types of nodes: and, or, not, input,
output)

Size of circuit = number of gates

Depth of circuit = length of longest path from input
gate to output gate

When we want to recognize formal languages with circuits,
we need a sequence of circuits with an increasing number
of input gates family of circuits

Families with polynomial size and poly-log (logk n) depth

complexity classes NCk (Nick’s class)

NC =
⋃

k NCk ⊆ P , the class of problems that can be
solved efficiently in parallel

The class of languages that can be characterized by
polynomially sized Boolean formulae is identical to NC1

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The classes ACk

The classes NCk are defined with a fixed fan-in

If we have unbounded fan-in, we get the classes ACk

gate types: NOT, n-ary AND, n-ary OR for all n ≥ 2

Obviously: NCk ⊆ ACk

Possible to show: ACk−1 ⊆ NCk

The parity language is in NC1, but not in AC0!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The classes ACk

The classes NCk are defined with a fixed fan-in

If we have unbounded fan-in, we get the classes ACk

gate types: NOT, n-ary AND, n-ary OR for all n ≥ 2

Obviously: NCk ⊆ ACk

Possible to show: ACk−1 ⊆ NCk

The parity language is in NC1, but not in AC0!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The classes ACk

The classes NCk are defined with a fixed fan-in

If we have unbounded fan-in, we get the classes ACk

gate types: NOT, n-ary AND, n-ary OR for all n ≥ 2

Obviously: NCk ⊆ ACk

Possible to show: ACk−1 ⊆ NCk

The parity language is in NC1, but not in AC0!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The classes ACk

The classes NCk are defined with a fixed fan-in

If we have unbounded fan-in, we get the classes ACk

gate types: NOT, n-ary AND, n-ary OR for all n ≥ 2

Obviously: NCk ⊆ ACk

Possible to show: ACk−1 ⊆ NCk

The parity language is in NC1, but not in AC0!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The classes ACk

The classes NCk are defined with a fixed fan-in

If we have unbounded fan-in, we get the classes ACk

gate types: NOT, n-ary AND, n-ary OR for all n ≥ 2

Obviously: NCk ⊆ ACk

Possible to show: ACk−1 ⊆ NCk

The parity language is in NC1, but not in AC0!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

The classes ACk

The classes NCk are defined with a fixed fan-in

If we have unbounded fan-in, we get the classes ACk

gate types: NOT, n-ary AND, n-ary OR for all n ≥ 2

Obviously: NCk ⊆ ACk

Possible to show: ACk−1 ⊆ NCk

The parity language is in NC1, but not in AC0!

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Accepting languages with families of domain
structures with fixed goals

We will view families of domain structures with fixed goals
and fixed size plans as “machines” that accept languages

Consider families of poly-sized domain structures in
STRIPSB and use one-step plans for acceptance.

Obviously, this is the same as using Boolean formulae

 All languages in NC1 can be accepted in this way

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Accepting languages with families of domain
structures with fixed goals

We will view families of domain structures with fixed goals
and fixed size plans as “machines” that accept languages

Consider families of poly-sized domain structures in
STRIPSB and use one-step plans for acceptance.

Obviously, this is the same as using Boolean formulae

 All languages in NC1 can be accepted in this way

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Accepting languages with families of domain
structures with fixed goals

We will view families of domain structures with fixed goals
and fixed size plans as “machines” that accept languages

Consider families of poly-sized domain structures in
STRIPSB and use one-step plans for acceptance.

Obviously, this is the same as using Boolean formulae

 All languages in NC1 can be accepted in this way

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Accepting languages with families of domain
structures with fixed goals

We will view families of domain structures with fixed goals
and fixed size plans as “machines” that accept languages

Consider families of poly-sized domain structures in
STRIPSB and use one-step plans for acceptance.

Obviously, this is the same as using Boolean formulae

 All languages in NC1 can be accepted in this way

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Simulating STRIPSC,N c-Step Plans with AC0

circuits (1)

Represent each operator and then chain the actions
together (O(|O|c) different plans):

1
c

2
c c

n

1 2 n
0 0 0

1 m
.
.
.

.

.

.

.

.

.

p p p
.
.
.

.

.

.

.

.

.

.

. . .

v

F F

p p p

v

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

Simulating STRIPSC,N c-Step Plans with AC0

circuits (2)

For each single action (precondition testing (a),
conditional effects (b), and the computation of effects (c)

j
21
j

3
j j

21
j

3
j e,j

i

k i

e,j

r

i
j+1

i

je,j
i

pp p pp p p

(c)(b)(a)

. . .

F

v

v

F p
p

p‹p

v

vv

v v

v

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

STRIPSB 6�c STRIPSC,N

Theorem

STRIPSB 6�c STRIPSC,N .

Proof.

Assuming STRIPSB �c STRIPSC,N has the consequence that
the underlying compilation scheme could be used to compile a
NC1 circuit family into an AC0 circuit family, which is
impossible in the general case.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

STRIPSB 6�c STRIPSC,N

Theorem

STRIPSB 6�c STRIPSC,N .

Proof.

Assuming STRIPSB �c STRIPSC,N has the consequence that
the underlying compilation scheme could be used to compile a
NC1 circuit family into an AC0 circuit family, which is
impossible in the general case.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Measuring
Expressive Power

Compilation
Schemes

Compilability

Positive Results

Negative Results

Circuit
Complexity

General
Compilability
Results

Summary

General Results for Compilability
Preserving Plan Size Linearly

STRIPS

STRIPS

STRIPS

STRIPS

STRIPSSTRIPS

STRIPSSTRIPS

B,C

Bc,C Bd,C B

BdBcN,C

N

All other potential positive results have been ruled out by our 3
negative results and transitivity.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Summary

Compilation schemes seem to be the right method to
measure the relative expressive power of planning
formalisms

Either we get a positive result preserving plan size linearly
with a polynomial-time compilation

or we get an impossibility result

→ Results are relevant for building planning systems

 CNF preconditions do not add much when we have
already conditional effects

Note: In all cases we can get a positive result if we allow
for a polynomial blow-up of the plans.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Summary

Compilation schemes seem to be the right method to
measure the relative expressive power of planning
formalisms

Either we get a positive result preserving plan size linearly
with a polynomial-time compilation

or we get an impossibility result

→ Results are relevant for building planning systems

 CNF preconditions do not add much when we have
already conditional effects

Note: In all cases we can get a positive result if we allow
for a polynomial blow-up of the plans.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Summary

Compilation schemes seem to be the right method to
measure the relative expressive power of planning
formalisms

Either we get a positive result preserving plan size linearly
with a polynomial-time compilation

or we get an impossibility result

→ Results are relevant for building planning systems

 CNF preconditions do not add much when we have
already conditional effects

Note: In all cases we can get a positive result if we allow
for a polynomial blow-up of the plans.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Summary

Compilation schemes seem to be the right method to
measure the relative expressive power of planning
formalisms

Either we get a positive result preserving plan size linearly
with a polynomial-time compilation

or we get an impossibility result

→ Results are relevant for building planning systems

 CNF preconditions do not add much when we have
already conditional effects

Note: In all cases we can get a positive result if we allow
for a polynomial blow-up of the plans.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Summary

Compilation schemes seem to be the right method to
measure the relative expressive power of planning
formalisms

Either we get a positive result preserving plan size linearly
with a polynomial-time compilation

or we get an impossibility result

→ Results are relevant for building planning systems

 CNF preconditions do not add much when we have
already conditional effects

Note: In all cases we can get a positive result if we allow
for a polynomial blow-up of the plans.

AI Planning

M. Helmert,
B. Nebel

Motivation

Propositional
STRIPS and
Variants

Expressive
Power

Summary

Summary

Compilation schemes seem to be the right method to
measure the relative expressive power of planning
formalisms

Either we get a positive result preserving plan size linearly
with a polynomial-time compilation

or we get an impossibility result

→ Results are relevant for building planning systems

 CNF preconditions do not add much when we have
already conditional effects

Note: In all cases we can get a positive result if we allow
for a polynomial blow-up of the plans.

	Motivation
	Why?
	Examples

	Propositional STRIPS and Variants
	Disjunctive Preconditions: Difficult or Easy?
	STRIPS Variants
	Partially Ordered STRIPS Variants
	Computational Complexity

	Expressive Power
	Measuring Expressive Power
	Compilation Schemes
	Compilability
	Positive Results
	Negative Results
	Using Circuit Complexity …
	General Compilability Results

	Summary

