Principles of Al Planning

January 10th, 2007 — Expressive power Motivation

Why?

Examples

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy?

STRIPS Variants

Partially Ordered STRIPS Variants

Computational Complexity

Expressive Power

Measuring Expressive Power

Compilation Schemes

Compilability

Positive Results

Negative Results

Using Circuit Complexity . . .

General Compilability Results

Principles of Al Planning Expressive power

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 10th, 2007

Motivation: Why Analyzing the Expressive Power?

- ► Expressive power is the motivation for designing new planning languages
- ▶ Often there is the question: *Syntactic sugar* or *essential feature*?
- → If a feature can be compiled away, then it is apparently only syntactic sugar.
 - ► Sometimes, however, a compilation can lead to much larger planning domain descriptions or to much longer plans.
- This means the planning algorithm will probably choke, i.e., it cannot be considered as a compilation

Example: DNF Preconditions

- ► Assume we have **DNF preconditions** in STRIPS operators
- ► This can be **compiled away** as follows
- ▶ Split each operator with a DNF precondition $c_1 \lor ... \lor c_n$ into n operators with the same effects and c_i as preconditions
- → If there exists a plan for the original planning task there is one for the new planning task and *vice versa*
- → The planning task has almost the same size
- → The shortest plans have the same size

Example: Conditional effects

- ► Can we compile away **conditional effects** to STRIPS?
- **Example operator:** $\langle a, b \rhd d \land \neg c \rhd e \rangle$
- Can be translated into four operators: $\langle a \wedge b \wedge c, d \rangle, \langle a \wedge b \wedge \neg c, d \wedge e \rangle, \dots$
- ▶ Plan existence and plan size are identical
- Exponential blowup of domain description!
- \rightarrow Can this be avoided?

Propositional STRIPS and Variants

- ▶ In the following we will only consider **propositional STRIPS** and some variants of it.
- ► Planning task:

$$\mathcal{T} = \langle A, I, O, G \rangle$$
.

▶ Often we refer to **domain structures** $\mathcal{D} = \langle A, O \rangle$.

Disjunctive Preconditions: Trivial or Essential?

- Kambhampati et al [ECP 97] and Gazen & Knoblock [ECP 97]: Disjunctive preconditions are trivial – since they can be translated to basic STRIPS (DNF-preconditions)
- ▶ Bäckström [AIJ 95]: Disjunctive preconditions are probably essential since they can not easily be translated to basic STRIPS (CNF-preconditions)
- ► Anderson et al [AIPS 98]: "[D]isjunctive preconditions ... are ... essential prerequisites for handling conditional effects" \leftrightarrow conditional effects imply disjunctive preconditions (?) (General Boolean preconditions)

More "Expressive Power"

 $STRIPS_N$: plain strips with negative literals

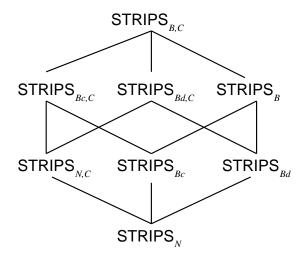
 $STRIPS_{Bd}$: precondition in disjunctive normal form $STRIPS_{Bc}$: precondition in conjunctive normal form

STRIPS_B: Boolean expressions as preconditions

 $STRIPS_C$: conditional effects

STRIPS_{C.N.}: conditional effects & negative literals

Ordering Planning Formalisms Partially



Computational Complexity . . .

Theorem

PLANEX is PSPACE-complete for STRIPS_N, STRIPS_{C,B}, and for all formalisms "between" the two.

Proof.

Follows from theorems proved in the previous lecture.

Measuring Expressive Power

Consider mappings between planning problems in different formalisms

- that preserve
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan "structure"
 - the solutions/plans themselves
- that are limited
 - in the size of the result (poly. size)
 - ▶ in the *computational resources* (poly. time)
- that transform
 - entire planning instances
 - domain structure and states in isolation

Method 1: Polynomial Transformation

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the *computational resources* (poly. time)

- entire planning instances
- domain structure and states in isolation
- → all formalisms have the same expressiveness (?)

Method 2: Bäckström's ESP-reductions

preserving

- solution existence
- plan size linearly or polynomially etc.
- ► the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the size of the result (poly. size)
- in the *computational resources* (poly. time)

- entire planning instances
- domain structure and states in isolation
- → However, expressiveness is independent of the computational resources needed to compute the mapping

Method 3: Polysize Mappings

preserving

- solution existence
- plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

limiting

- in the *size* of the result (poly. size)
- ▶ in the *computational resources* (poly. time)

- entire planning instances
- domain structure and states in isolation
- All formalisms are trivially equivalent (because planning is PSPACE-complete for all propositional STRIPS formalisms)

Method 4: Modular & Polysize Mappings

preserving

- solution existence
- ▶ plan size linearly or polynomially etc.
- the exact plan size
- the plan "structure"
- the solutions/plans themselves

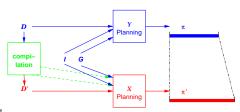
limiting

- in the *size* of the result (poly. size)
- ▶ in the *computational resources* (poly. time)

- entire planning instances
- domain structure and states in isolation
- When measuring the expressiveness of planning formalisms, domain structures should be considered independently from states

The Right Method: Compilation Schemes (Simplified)

- ► Transform domain structure $\mathcal{D} = \langle A, O \rangle$ (with polynomial blowup) to \mathcal{D}' preserving solution existence
- Only trivial changes to states (independent of operator set)
- Resulting plans π' should not grow too much (additive constant, linear growth, polynomial growth)
- Similar to knowledge compilation, with operators as the fixed part and initial states & goals as the varying part



Compilability

$$\mathcal{Y} \preceq \mathcal{X}$$
 (\mathcal{Y} is compilable to \mathcal{X}) iff

there exists a compilation scheme from \mathcal{Y} to \mathcal{X} .

 $\mathcal{Y} \leq^1 \mathcal{X}$: preserving plan size exactly (modulo additive constants)

 $\mathcal{Y} \preceq^{c} \mathcal{X}$: preserving plan size **linearly** (in $|\pi|$)

 $\mathcal{Y} \leq^p \mathcal{X}$: preserving plan size **polynomially** (in $|\pi|$ and $|\mathcal{D}|$)

 $\mathcal{Y} \leq_{p}^{\times} \mathcal{X}$: **polynomial-time** compilability

Theorem

For all x, y, the relations \leq_{v}^{x} are transitive and reflexive.

Back-Translatability

- Shouldn't we also require that plans in the compiled instance can be translated back to the original formalism?
- ▶ Yes, if we want to use this technique, one should require that!
- In all *positive cases*, there was never any problem to translate the plan back
- ▶ For the *negative case*, it is easier to prove **non-existence**
- So, in order to prove negative results, we do not need it, for positive it never had been a problem
- So, similarly to the concentration on *decision problems* when determining complexity, we simplify things here

A (Trivial) Positive Result: STRIPS_{Bd} \leq_n^1 STRIPS_N

DNF preconditions can be "compiled away." Assume operator $o = \langle c, e \rangle$ and

$$c = L_1 \vee \ldots \vee L_k$$

with L_i being a conjunction of literals. Create k operators $o_i = \langle L_i, e \rangle$

- 1. compilation is solution-preserving,
- 2. \mathcal{D}' is only polynomially larger than \mathcal{D} .
- 3. compilation can be computed in polynomial time,
- 4. resulting plans do not grow at all.
- \rightsquigarrow STRIPS_{Bd} \leq_p^1 STRIPS_N

Another Positive Result: STRIPS_{C,Bc} \leq_p^c STRIPS_{C,N}

CNF preconditions can be "compiled away" - provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new "clause atoms" true
- ▶ Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- → Operator sets grow only polynomially
- → Plans are double as long as the original plans
- → Anderson et al's conjecture holds in a weak version

A First Negative Result: Conditional Effects Cannot be Compiled into Boolean Preconditions

Consider domain \mathcal{D} with only one (STRIPS_{C,B}) operator o:

$$\langle \top, (p_1 \rhd \neg p_1) \land (\neg p_1 \rhd p_1) \land \ldots \land (p_k \rhd \neg p_k) \land (\neg p_k \rhd p_k) \rangle,$$

which "inverts" a given state. For all (I, G) with

$$G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$$

there exists a $STRIPS_{C,B}$ one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS_R domain structure \mathcal{D}' . There are exponentially many possible initial states, but only polynomially many different c-step plans for \mathcal{D}' . Some STRIPS_B plan π is used for different initial states I_1 , I_2 (for large enough k). Let v be a variable with $I_1(v) \neq I_2(v)$.

- \rightarrow In one case, v must be set by π , in the other case, it must be cleared.
- → This is not possible in an unconditional plan.
- → The transformation is not solution preserving !
- ~ Conditional effects cannot be compiled away (if plan size can grow only linearly)

Another Negative Result: STRIPS_{BC} \prec ^C STRIPS_N

k-**FISEX**: Planning problem with fixed plan length k and varying initial state. Does there exist an initial state leading to a successful k-step plan? 1-FISEX is NP-complete for $STRIPS_{Bc}$ (= SAT). k-FISEX is polynomial for STRIPS_N (regression analysis)

$$\rightsquigarrow \mathsf{STRIPS}_{Bc} \not\preceq_p^c \mathsf{STRIPS}_N \text{ (if P} \neq \mathsf{NP)}$$

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform **complexity classes** such as P/poly.

→ Bäckström's conjecture holds in the compilation framework.

A Final Negative Result: Boolean Preconditions Cannot be Compiled Away Even in the Presence of Conditional Effects

- Boolean preconditions have the power of families of Boolean circuits with logarithmic depth (because Boolean formula have this power) (= NC¹)
- Conditional effects can simulate only families of circuits with fixed depth (= AC⁰).
- ► The parity function can be expressed in the first framework (NC¹) while it cannot be expressed in the second (AC⁰).
- → The negative result follows unconditionally!

- ► We know what Boolean circuits are (directed, acyclic graphs with different types of nodes: and, or, not, input, output)
- ► Size of circuit = number of gates
- ▶ Depth of circuit = length of longest path from input gate to output gate
- ▶ When we want to recognize formal languages with circuits, we need a sequence of circuits with an increasing number of input gates ~> family of circuits
- Families with polynomial size and poly-log $(\log^k n)$ depth
- complexity classes NC^k (Nick's class)
- ▶ NC = \bigcup_k NC^k ⊆ P, the class of problems that can be solved efficiently in parallel
- ► The class of languages that can be characterized by polynomially sized Boolean formulae is identical to NC¹

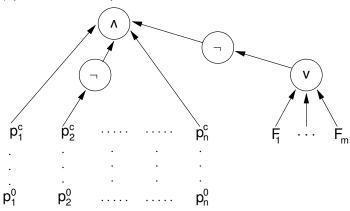
- ightharpoonup The classes NC^k are defined with a fixed fan-in
- ▶ If we have unbounded fan-in, we get the classes AC^k
 - ▶ gate types: NOT, *n*-ary AND, *n*-ary OR for all $n \ge 2$
- ▶ Obviously: $NC^k \subseteq AC^k$
- ▶ Possible to show: $AC^{k-1} \subseteq NC^k$
- ► The parity language is in NC¹, but not in AC⁰!

Accepting languages with families of domain structures with fixed goals

- ▶ We will view *families of domain structures* with fixed goals and fixed size plans as "machines" that accept languages
- ► Consider families of poly-sized domain structures in STRIPS_B and use one-step plans for acceptance.
- Obviously, this is the same as using Boolean formulae
- \rightarrow All languages in NC^1 can be accepted in this way

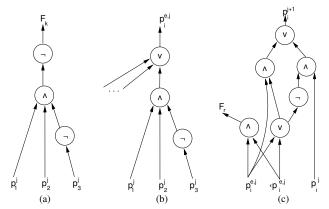
Simulating STRIPS_{C,N} c-Step Plans with AC^0 circuits (1)

Represent each operator and then chain the actions together $(O(|O|^c)$ different plans):



Simulating STRIPS_{C,N} c-Step Plans with AC^0 circuits (2)

► For each single action (precondition testing (a), conditional effects (b), and the computation of effects (c)



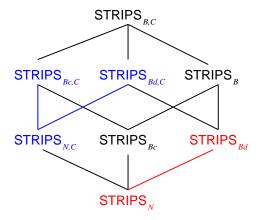
$STRIPS_B \not\prec^c STRIPS_{CN}$

Theorem $STRIPS_B \not\preceq^c STRIPS_{C,N}$.

Proof.

Assuming STRIPS_B \leq^c STRIPS_{C,N} has the consequence that the underlying compilation scheme could be used to compile a NC¹ circuit family into an AC⁰ circuit family, which is impossible in the general case.

General Results for Compilability Preserving Plan Size Linearly



All other potential positive results have been ruled out by our 3 negative results and transitivity.

Summary

- Compilation schemes seem to be the right method to measure the relative expressive power of planning formalisms
- ► Either we get a positive result preserving plan size **linearly** with a **polynomial-time compilation**
- or we get an impossibility result
- → Results are relevant for building planning systems
- CNF preconditions do not add much when we have already conditional effects
 - Note: In all cases we can get a positive result if we allow for a polynomial blow-up of the plans.