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Example

Consider the goal formula

AonB ∧ BonC

regressed with operator

〈AonC ∧ Aclear ∧ Bclear,AonB ∧ ¬Bclear ∧ Cclear〉

resulting in the new goal

AonC ∧ Aclear ∧ Bclear ∧ BonC.

It is intuitively clear that no state satisfying this formula is
reachable by any plan from a legal blocks world state.
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Goal formulae and formulae obtained by regressing them
often represent some states that are not reachable from
the initial state.

If none of the states is reachable from the initial state,
there are no plans reaching the formula.

We would like to have reachable states only, if possible.

The same problem shows up in satisfiability planning:
partial valuations considered by satisfiability algorithms
may represent unreachable states, and this may result in
unnecessary search.
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Goal: Restriction to states that are reachable.

Problem: Testing reachability is computationally as
complex as testing whether a plan exists.

Solution: Use an approximate notion of reachability.

Implementation: Compute in polynomial time formulae that
characterize a superset of the reachable
states.
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Invariants: definition

Definition

A formula φ is an invariant of 〈A, I,O,G〉 if s |= φ for every
state s reachable from I.

Example

The formula ¬(AonB ∧ AonC) is an invariant in a blocks world
task.

Remark

Invariants are usually proved inductively:

Prove that φ is true in the initial state.

Prove that operator application preserves φ.
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Invariants: the strongest invariant

Definition

An invariant φ is the strongest invariant of 〈A, I,O,G〉 if for
any invariant ψ, φ |= ψ.

The strongest invariant exactly characterizes the set of all
states that are reachable from the initial state:
For all states s, s |= φ if and only if s is reachable.

Remark

There are infinitely many strongest invariants for any given
planning task, but they are all logically equivalent. (If φ is a
strongest invariant, then so is φ ∨ φ. . . )
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Example: the strongest invariant for blocks world

The strongest invariant for the blocks world

Let X be the set of blocks, for example X = {A,B,C,D}.
The conjunction of the following formulae is the strongest
invariant for the set of all states for the blocks X.

For all x ∈ X : clear(x) ↔
∧

y∈X ¬on(y, x)
For all x ∈ X : ontable(x) ↔

∧
y∈X ¬on(x, y)

For all x, y, z ∈ X with y 6= z : ¬on(x, y) ∨ ¬on(x, z)
For all x, y, z ∈ X with y 6= z : ¬on(y, x) ∨ ¬on(z, x)
For all n ≥ 1 and x1, . . . , xn ∈ X :
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1))
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Invariants: connection to plan existence

Theorem

Let φ be the strongest invariant for 〈A, I,O,G〉. Then
〈A, I,O,G〉 has a plan if and only if G ∧ φ is satisfiable.

Proof.

Very easy!

Theorem

Computing the strongest invariant φ is PSPACE-hard.
Even deciding whether or not > is the strongest invariant is
already PSPACE-hard.
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Invariants: connection to plan existence

Proof.

By reduction from the plan existence problem.
Fact: Testing plan existence for 〈A, I,O,G〉 is PSPACE-hard.
(We’ll show this later this month!)

Let a′ /∈ A be a new state variable. Then a plan exists for
T = 〈A, I,O,G〉 iff > is the strongest invariant of the planning
task T ′ = 〈A ∪ {a′}, I ∪ {a′ 7→ 0}, O ∪O′, G〉, where
O′ = {〈G, a′ ∧

∧
a∈A a〉}

∪ { 〈a′,¬a〉 | a ∈ A ∪ {a′} }.
. . .



AI Planning

M. Helmert,
B. Nebel

Invariants

Motivation

Definition

Example

vs. Plan
existence

Algorithms

Applications

Summary

Invariants: connection to plan existence

Proof.

By reduction from the plan existence problem.
Fact: Testing plan existence for 〈A, I,O,G〉 is PSPACE-hard.
(We’ll show this later this month!)

Let a′ /∈ A be a new state variable. Then a plan exists for
T = 〈A, I,O,G〉 iff > is the strongest invariant of the planning
task T ′ = 〈A ∪ {a′}, I ∪ {a′ 7→ 0}, O ∪O′, G〉, where
O′ = {〈G, a′ ∧

∧
a∈A a〉}

∪ { 〈a′,¬a〉 | a ∈ A ∪ {a′} }.
. . .



AI Planning

M. Helmert,
B. Nebel

Invariants

Motivation

Definition

Example

vs. Plan
existence

Algorithms

Applications

Summary

Invariants: connection to plan existence

Proof continues. . .

(⇒): If a plan exists for T , then the same plan is applicable in
T ′. We can thus reach a state satisfying G in T ′.
From this state, we can reach any state s by first applying
〈G, a′ ∧

∧
a∈A a〉 and then applying the operators 〈a′,¬a〉 for

each variable a with s(a) = 0. (If s(a′) = 0, the corresponding
operator must be applied last.)
If all states are reachable in T ′, then > is the strongest
invariant for T ′.

(⇐) (by contraposition): If T is not solvable, then no state
satisfying G is reachable in T . In that case, no state satisfying
G is reachable in T ′, and thus a′ cannot be made true in T ′.
Thus, ¬a′ is an invariant in T ′ which is stronger than >, so >
is not the strongest invariant in T ′.
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Computation of invariants: informally

Compute sets Ci of n-literal clauses characterizing (giving an
upper bound!) the states that are reachable in i steps.

Example

C0 = {a,¬b, c} ∼ {101}
C1 = {a ∨ b,¬a ∨ ¬b, c} ∼ {101, 011}
C2 = {¬a ∨ ¬b, c} ∼ {001, 011, 101}
C3 = {¬a ∨ ¬b, c ∨ a} ∼ {001, 011, 100, 101}
C4 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
C5 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
Ci = C5 for all i > 5

¬a ∨ ¬b is the only invariant found.
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Computation of invariants: informally

1 Start with all 1-literal clauses that are true in the initial
state.

2 Repeatedly test every operator vs. every clause to check
whether the clause can be shown to be true after applying
the operator:

1 One of the literals in the clause is necessarily true: retain.
2 Otherwise, if the clause is too long: forget it.
3 Otherwise, replace the clause by new clauses obtained by

adding literals that are now true.

3 When all clauses are retained, stop: they are invariants.
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Let C0 = {Aclear,¬Bclear,AonB,¬BonA,¬AonT,BonT} and
o = 〈Aclear ∧ AonB,Bclear ∧ ¬AonB ∧ AonT〉.

1 C0 ∪ {Aclear ∧ AonB} is satisfiable: o is applicable.

2 The 1-literal clauses ¬Bclear, AonB and ¬AonT become
false when o is applied.

3 They are not thrown away, though:
they are replaced by weaker clauses.

4 Literals true after applying o in state s such that s |= C0:
Aclear, Bclear, ¬AonB, ¬BonA, AonT, BonT.

5 2-literal clauses that are weaker than ¬Bclear and now true
are ¬Bclear ∨ Aclear, ¬Bclear ∨ Bclear, ¬Bclear ∨ ¬AonB,
¬Bclear ∨ ¬BonA, ¬Bclear ∨ AonT, and ¬Bclear ∨ BonT.
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Example (continues. . . )

6 Similar 2-literal clauses are obtained from AonB and from
¬AonT.

7 By eliminating logically equivalent ones, tautologies, and
clauses that follow from those in C0 not falsified we get
C1 = {Aclear,¬BonA,BonT,

¬Bclear ∨ ¬AonB,¬Bclear ∨ AonT,
AonB ∨ Bclear,AonB ∨ AonT,
¬AonT ∨ Bclear,¬AonT ∨ ¬AonB}

for distance 1 states.

8 Some clauses in C1 can be refined further by checking
other operators whose preconditions are consistent with
C1. With a bit more computation, Ci settles to a set
containing all invariants for two blocks.
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Let Ci = {¬AinRome ∨ ¬AinParis,
¬AinRome ∨ ¬AinNYC,
¬AinParis ∨ ¬AinNYC},

o = 〈AinRome,AinParis ∧ ¬AinRome〉.
1 Does o preserve truth of ¬AinParis ∨ ¬AinNYC?

2 Because o makes ¬AinParis false, we must show that
¬AinNYC is true after applying o.

3 But ¬AinNYC is not even mentioned in o!

4 However, since AinRome is the precondition of o and
¬AinRome ∨ ¬AinNYC was true before applying o, we can
infer that ¬AinNYC was true before applying o.

5 Since o does not make ¬AinNYC false, it is true also after
applying o, and then so is ¬AinParis ∨ ¬AinNYC.
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Computation of invariants: function preserved
Test whether a clause remains true when operator is applied

Test if an operator preserves a clause

def preserved(l1 ∨ · · · ∨ ln, C, o):
for each l ∈ {l1, . . . , ln}:

if not preserved-literal(C, o, {l1, . . . , ln} \ {l}, l):
return false

return true

Test if an operator preserves a literal

def preserved-literal(C, o, L′, l):
〈c, e〉 := o
Cl := C ∪ {c} ∪ {EPCl(e)}
return Cl is unsatisfiable

or Cl |= EPCl′(e) for some l′ ∈ L′
or Cl |= l′ ∧ ¬EPCl′(e) for some l′ ∈ L′
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Computation of invariants: function preserved

Let C = {c ∨ b}.
1 preserved(a ∨ b, C, 〈¬c, c ∧ d〉) returns true

2 preserved(a ∨ b, C, 〈¬c,¬a ∧ b〉) returns true

3 preserved(a ∨ b, C, 〈b,¬a〉) returns true

4 preserved(a ∨ b, C, 〈¬c,¬a〉) returns true

5 preserved(a ∨ b, C, 〈c,¬a〉) returns false
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4 preserved(a ∨ b, C, 〈¬c,¬a〉) returns true

5 preserved(a ∨ b, C, 〈c,¬a〉) returns false



AI Planning

M. Helmert,
B. Nebel

Invariants

Algorithms

Idea

Example

Invariant test

Main procedure

Example

Applications

Summary

Computation of invariants: function preserved
Correctness

Lemma

Let C be a set of clauses, φ = l1 ∨ · · · ∨ ln a clause, and o an
operator.
If preserved(φ, C, o) returns true, then appo(s) |= φ for every
state s such that s |= C ∪ {φ} and appo(s) is defined.
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Computation of invariants: function preserved
Why is preserved incomplete?

Example (incompleteness)

Let o = 〈a,¬b ∧ (c B d) ∧ (¬c B e)〉.
preserved(b ∨ d ∨ e, ∅, o) returns false because the
preserved-literal check for l = b fails:

Operator o can make b false.

It is not guaranteed that d is true in the resulting state.

It is not guaranteed that e is true in the resulting state.

However, d ∨ e is true after applying o, and hence b ∨ d ∨ e will
be true as well.
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Computation of invariants: the main procedure
Outline

1 C = the set of 1-literal clauses that are true in the initial
state.

2 For each operator o and clause φ ∈ C, test if φ remains
true when o is applied.

3 If not, remove φ, and if the number of literals in φ is less
than n, add clauses φ ∨ l for each literal l which is
guaranteed to be true after applying o.

4 Remove all dominated invariants.

5 Repeat from step 2 if C has changed in the previous two
steps.

6 Otherwise every clause in C is an invariant.

For any fixed limit n on the size of the clauses, the number of
iterations is O(mn) (where m = |A| is the number of state
variables) and hence polynomial.
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Computation of invariants: the main procedure

Invariant computation

def invariants(A, I, O, n):
C := { a ∈ A | I |= a } ∪ { ¬a | a ∈ A, I 6|= a }
repeat:

C ′ := C
for each l1 ∨ · · · ∨ lm ∈ C ′ and o = 〈c, e〉 ∈ O

with preserved(l1 ∨ · · · ∨ lm, C ′, o) = false:
C := C \ {l1 ∨ · · · ∨ lm}
if m < n:

for each literal l:
if C ′ ∪ {c} |= EPCl(e) ∨ (l ∧ ¬EPCl(e)):

C := C ∪ {l1 ∨ · · · ∨ lm ∨ l}
C := { φ ∈ C | ¬∃φ′ ∈ C : φ′ |= φ ∧ φ′ 6≡ φ }

until C = C ′

return C
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Computation of invariants: the main procedure
Correctness

Theorem

The procedure invariants(A, I,O, n) returns a set C of clauses
with at most n literals such that for any applicable operator
sequence o1, . . . , om ∈ O: appo1;...;om(I) |= C.

Proof.

A I |= C:

The initial state satisfies the initial set of 1-literal clauses.
All modifications to the clause set only make it logically
weaker (i.e., C ′ |= C after each iteration of the main loop.)
Thus the initial state satisfies the resulting clause set C by
induction over the number of iterations.

. . .
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Computation of invariants: the main procedure
Correctness

Proof continues. . .

B If s |= C and appo(s) is defined, then appo(s) |= C.

In the last iteration of the procedure, no formula is
removed from C = C ′, and hence preserved(φ, C, o) is
true for all clauses φ ∈ C and operators o ∈ O.
By the lemma, this means that appo(s) |= φ for every
state s such that s |= C and appo(s) is defined.
Since this is true for all clauses φ ∈ C, we get
appo(s) |= C for every state s such that s |= C and
appo(s) is defined.

From A and B, the theorem follows by induction over the
length of the operator sequence.
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Why is the strongest invariant not always found?

1 Practical implementations of the algorithm use polynomial
time approximations of the tests for satisfiability and |=.

2 The function preserved is incomplete for operators in
general (but complete for STRIPS operators.) Making it
complete makes it NP-hard.

3 The strongest invariant may require arbitrarily long
clauses, so the restriction to clauses of any fixed length
makes it impossible to represent it.

Example

The acyclicity of the on relation in the blocks world needs
clauses of length n when there are n blocks.
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Computation of invariants
Example

Initial state: I |= a ∧ ¬b ∧ ¬c
Operators: o1 = 〈a,¬a ∧ b〉,

o2 = 〈b,¬b ∧ c〉,
o3 = 〈c,¬c ∧ a〉

Computation: Find invariants with at most 2 literals:

C0 = {a,¬b,¬c}
C1 = {¬c, a ∨ b,¬b ∨ ¬a}
C2 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
C3 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
Cj = C2 for all j ≥ 2
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Invariants in satisfiability planning

Invariants in satisfiability planning

For every invariant l1 ∨ · · · ∨ ln, add the clauses

lt1 ∨ · · · ∨ ltn

for all time points t.

Notice that the above formulae are logical consequences of
Φseq

i and Φpar
i , so the invariants do not change the set of

valuations of these formulae.

Invariants are critical for the efficiency of satisfiability planning
on many types of problems.
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Invariants in backward search
Motivating example

Example

Regression of in(A, Freiburg) by
〈in(A, Strassburg), ¬in(A, Strassburg) ∧ in(A, Paris)〉
gives in(A, Freiburg) ∧ in(A, Strassburg)
No state satisfying in(A, Freiburg) ∧ in(A,Strassburg) makes
sense if A denotes some usual physical object.
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Invariants in backward search
Motivating example

Problem: Regression produces sets T of states such that

1 some states in T are not reachable from I, or
2 none of the states in T are reachable from I.

The first is not always a serious problem (but may
worsen the quality of distance estimates, for
example.)

Solution: Use invariants to avoid formulae that do not
represent any reachable states.

1 Compute invariant φ.
2 Do only regression steps such that regro(ψ) ∧ φ

is satisfiable.
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Invariants in backward search
Motivating example
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Invariants for problem reformulation
Mutexes

Binary clause invariants are called mutexes because they state
that certain variable assignments cannot be simultaneously true
and are hence mutually exclusive.

Example

The invariant ¬AonB ∨ ¬AonC states that AonB and AonC are
mutex.

Often, a larger set of literals is mutually exclusive because
every pair of them forms a mutex.

Example

In blocks world, BonA, ConA, DonA and Aclear are mutex.
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Invariants for problem reformulation
Multi-valued state variables

If a group of n literals G = {l1, . . . , ln} over N different
variables AG = {a1, . . . , an} are mutually exclusive, then the
planning task can be rephrased using a single multi-valued (i.e.,
non-binary) state variable vG with n+ 1 possible values in
place of the n variables in AG:

n of the possible values represent situations in which
exactly one of the literals in G is true.

The remaining value represents situations in which none of
the literals in G is true.

In many cases, the reduction in the number of variables can
dramatically improve performance of a planning algorithm.
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Summary

Invariants are needed for making backward search and
satisfiability planning more efficient and (in the case of
mutexes) can be used for problem reformulation.

We gave an algorithm for computing a class of invariants.
1 Start with 1-literal clauses true in the initial state.
2 Repeatedly weaken clauses that could not be shown to be

invariants.
3 Stop when all clauses are guaranteed to be invariants.

The algorithm runs in polynomial time if the satisfiability
and logical consequence tests are approximated by a
polynomial time algorithm and the size of the invariant
clauses is bounded by a constant.
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