Principles of AI Planning Introduction

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

October 27th, 2006

AI Planning

M. Helmert, B. Nebel

Coordinates

ntroduction

Course: Principles of AI Planning

Lecturer

Dr. Malte Helmert (helmert@informatik.uni-freiburg.de) Prof. Dr. Bernhard Nebel (nebel@informatik.uni-freiburg.de)

Lecture

Wednesday 2-4pm, Friday 2-3pm in 51-00-034

www.informatik.uni-freiburg.de/~ki/teaching/ws0607/aip/

Text

Slides are partially based on similar course developed by Jussi Rintanen. They are available on the web page as the course proceeds.

AI Planning

M. Helmert, B. Nebel

Coordinates Lectures Exercises

Introduction

Exercises and Examination

Exercises

Assistant: Robert Mattmüller (mattmuel@informatik.uni-freiburg.de) Friday 3pm after lecture Assignments are given out on Wednesday, returned on Wednesday (before lecture).

Examination

Takes place in April (exact date to be determined).

AI Planning

M. Helmert, B. Nebel

Coordinates Lectures Exercises

Introduction

- Intelligent decision making: What actions to take?
- general-purpose problem representation
- algorithms for solving any problem expressible in the representation
- application areas:
 - high-level planning for intelligent robots
 - autonomous systems: NASA Deep Space One, ...
 - problem-solving (single-agent games like Rubik's cube)

AI Planning

M. Helmert, B. Nebel

Coordinates

Introduction

Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph.
 Efficiently solvable e.g. by Dijkstra's algorithm in O(n log n) time.

Why don't we solve all planning problems this way?

- State spaces may be huge: $10^9, 10^{12}, 10^{15}, \dots$ states. Constructing the transition graph and using e.g. Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole graph.
- Planning algorithms often are but are not guaranteed to be more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

AI Planning

И. Helmert, В. Nebel

Coordinates

Introduction

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph.
 Efficiently solvable e.g. by Dijkstra's algorithm in O(n log n) time.
 Why don't we solve all planning problems this way?
- State spaces may be huge: $10^9, 10^{12}, 10^{15}, \ldots$ states. Constructing the transition graph and using e.g. Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole graph.
- Planning algorithms often are but are not guaranteed to be more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

AI Planning

VI. Helmert, B. Nebel

Coordinates

Introduction

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph.
 Efficiently solvable e.g. by Dijkstra's algorithm in O(n log n) time.
 Why don't we solve all planning problems this way?
- State spaces may be huge: $10^9, 10^{12}, 10^{15}, \dots$ states. Constructing the transition graph and using e.g. Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole graph.
- Planning algorithms often are but are not guaranteed to be – more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

AI Planning

VI. Helmert, B. Nebel

Coordinates

Introduction

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph.
 Efficiently solvable e.g. by Dijkstra's algorithm in O(n log n) time.
 Why don't we solve all planning problems this way?
- State spaces may be huge: $10^9, 10^{12}, 10^{15}, \dots$ states. Constructing the transition graph and using e.g. Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole graph.
- Planning algorithms often are but are not guaranteed to be – more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

AI Planning

VI. Helmert, B. Nebel

Coordinates

Introduction

actions	deterministic	nondeterministic	
probabilities	no	yes	
probabilities observability	full	partial	no
horizon	finite	infinite	
:			I

Al Planning M. Helmert, B. Nebel

Problem classes

classical planning

.

- ② conditional planning with full/partial observability
- conformant planning
- Markov decision processes (MDP)
- opartially observable MDPs (POMDP)

actions
probabilities
observability
horizon

.

deterministic nor no yes full par finite infi

nondeterministic yes partial infinite

no

AI Planning

M. Helmert, B. Nebel

Coordinates

ntroduction Problem classes Nondeterminism Observability Objectives vs. Game Theory Summary

classical planning

- ② conditional planning with full/partial observability
- Conformant planning
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

actions
probabilities
observability
horizon

:

deterministic no full finite

deterministic nondeterministic yes

infinite

no

M. Helmert, B. Nebel

AI Planning

Coordinates

Introduction Problem classes Nondeterminism Observability Objectives vs. Game Theory Summary

classical planning

- ② conditional planning with full/partial observability
- Sconformant planning
- Markov decision processes (MDP)
- opartially observable MDPs (POMDP)

.

deterministic no full finite

nondeterministic yes partial infinite

10

Introduction Problem classes Nondeterminism Observability Objectives vs. Game Theory Summary

Al Planning M. Helmert.

B. Nebel

classical planning

- onditional planning with full/partial observability
- Sconformant planning
- Markov decision processes (MDP)
- opartially observable MDPs (POMDP)

actions
probabilities
observability
horizon

:

deterministic no full finite

deterministic | nondeterministic

no

AI Planning

M. Helmert, B. Nebel

Coordinates

- classical planning
- ② conditional planning with full/partial observability
- Conformant planning
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

actions probabilities observability horizon

.

deterministie no full finite

nondeterministic yes partial infinite

10

ntroduction Problem classes Nondeterminism Observability Objectives

Al Planning M. Helmert.

B. Nebel

- classical planning
- ② conditional planning with full/partial observability
- Sconformant planning
- Markov decision processes (MDP)
- o partially observable MDPs (POMDP)

٠ .

no full finite

deterministic nondeterministic yes partial infinite

AI Planning

M. Helmert. B. Nebel

Problem classes

- classical planning
- 2 conditional planning with full/partial observability
- 3 conformant planning
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

Properties of the world: nondeterminism

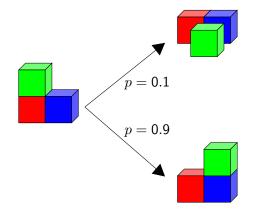
Deterministic world/actions

Action and current state uniquely determine the successor state.

Nondeterministic world/actions

For an action and a current state there may be several successor states.

Analogy: deterministic versus nondeterministic automata


AI Planning

M. Helmert, B. Nebel

Coordinates

Nondeterminism Example

Moving objects with an unreliable robotic hand: move the green block onto the blue block.

AI Planning

1. Helmert, B. Nebel

Coordinates

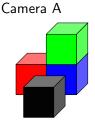
Properties of the world: observability

Full observability

Observations/sensing allow to determine the current state of the world uniquely.

Partial observability

Observations/sensing allow to determine the current state of the world only partially: we only know that the current state is one of several of possible ones.


Consequence: It is necessary to represent the knowledge an agent has.

AI Planning

M. Helmert, B. Nebel

Coordinates

What difference does observability make?

AI Planning

 Helmert, B. Nebel

Coordinates

Reach a goal state. Example: Earn 500 euro.

- Stay in goal states indefinitely (infinite horizon). Example: Never allow the bank account balance to be negative.
- Maximize the *probability* of reaching a goal state. Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal *expected* rewards / minimal expected costs (infinite horizon).
 Example: Maximize your future income.

AI Planning

M. Helmert, B. Nebel

Coordinates

- Reach a goal state. Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
 Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state. Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal *expected* rewards / minimal expected costs (infinite horizon).
 Example: Maximize your future income.

AI Planning

M. Helmert, B. Nebel

Coordinates

- Reach a goal state. Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
 Example: Never allow the bank account balance to be negative.
- Maximize the *probability* of reaching a goal state.
 Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal *expected* rewards / minimal expected costs (infinite horizon).
 Example: Maximize your future income.

AI Planning

M. Helmert, B. Nebel

Coordinates

- Reach a goal state. Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
 Example: Never allow the bank account balance to be negative.
- Maximize the *probability* of reaching a goal state.
 Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal *expected* rewards / minimal expected costs (infinite horizon).
 Example: Maximize your future income.

AI Planning

M. Helmert, B. Nebel

Coordinates

- Reach a goal state. Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
 Example: Never allow the bank account balance to be negative.
- Maximize the *probability* of reaching a goal state.
 Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal *expected* rewards / minimal expected costs (infinite horizon).
 Example: Maximize your future income.

AI Planning

M. Helmert, B. Nebel

Coordinates

Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are intelligent, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- In certain special cases our techniques are applicable to multi-agent planning:
 - Finding a winning strategy of a game (example: chess). In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.

Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

AI Planning

M. Helmert, B. Nebel

Coordinates

Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are intelligent, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- In certain special cases our techniques are applicable to multi-agent planning:
 - Finding a winning strategy of a game (example: chess). In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.

Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

AI Planning

M. Helmert, B. Nebel

Coordinates

Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are intelligent, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- In certain special cases our techniques are applicable to multi-agent planning:
 - Finding a winning strategy of a game (example: chess). In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.

Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

AI Planning

M. Helmert, B. Nebel

Coordinates

Prerequisites of the course

- basics of AI (you have attended an introductory course on AI)
- basics of propositional logic
- basics of structural complexity theory (reduction, NP-completeness, ...)

AI Planning

M. Helmert, B. Nebel

Coordinates

What do you learn in this course?

Classification of different problems to different classes

- Classification according to observability, nondeterminism, goal objectives, ...
- o computational complexity
- Techniques for solving different problem classes
 - search-based planning techniques
 - algorithms based on heuristic search
 - algorithms based on satisfiability testing (SAT)
 - algorithms based on exhaustive search with logic-based data structures (BDDs)

Many of these techniques are applicable to problems outside AI as well.

AI Planning

M. Helmert, B. Nebel

Coordinates