Advanced AI Techniques

Prof. Dr. Burgard, Prof. Dr. De Raedt,Prof. Dr. Nebel, Dr. KerstingM. Ragni, A. RottmannWS 2006/2007

University of Freiburg Department of Computer Science

Exercise Sheet 7 Due: Tuesday, 19. December 2006

Exercise 7.1

- a.) Part-of-speech-tagging is the task of assigning (grammatical) word categories or "tags" to the individual words in a sentence. Manually assign tags to the words in the sentence "I saw a man with a telescope". Use the following set of tags:
 - N a noun.
 - $\bullet~{\bf Vi}$ an intransitive verb.
 - $\bullet~\mathbf{Vt}$ a transitive verb.
 - **D** a determiner (like "the", "a").
 - **PR** a preposition.
- b.) *Parsing* a sentence means recovering its internal grammatical structure in a so-called parse tree. Find two different possible parse trees for the sentence **"I saw a man with a telescope"** to show the syntactic ambiguity in this sentence. Use the tags given above and the following non-terminals in the tree:
 - **S** the whole sentence.
 - NP a noun phrase.
 - $\bullet~\mathbf{VP}$ a verb phrase.
 - **PP** a prepositional phrase, which is a preposition followed by a noun phrase. Prepositional phrases can occur both in noun phrases and verb phrases.

Exercise 7.2

Definite clause grammars are an extension to context free grammars that include arguments in non-terminal symbols and unification.

- Give the most general unification (substitution and result of unification) for the following pairs of non-terminals, or say why they cannot be unified:
 - (a) PN(Number, Case) and PN(singular, Case)
 - (b) NP(N) and VP(singular)
 - (c) VP(Any, accusative) and VP(Number, accusative)
 - (d) A(s(N)) and A(s(s(M)))

• As explained in the lecture, DCGs are strictly more expressive than CFGs and can, for example, represent the language $\{a^n b^n c^n | n \in \mathbb{N}\}$. Show how to derive the sentence *aabbcc* using the grammar presented in the lecture.

Exercise 7.3

Consider the following bigram statistics of a corpus over the vocabulary $\{a, b, c, d\}$:

	a	b	с	d	$N(w_x)$	$T(w_x)$	$Z(w_x)$
a	20	20	20	0	60	3	1
b	0	0	60	0			
с	0	0	400	0			
d							

The word in row i is followed n times by the word in column j in the text, e.g. b is followed by c 60 times.

Assume we want to use Witten-Bell smoothing to compute the bigram probability estimates. Compute the necessary statistics $N(w_x)$, $T(w_x)$, $Z(w_x)$ for $w_x \in \{a, b, c\}$. From these, compute the bigram probabilities $p^*(w_i|w_x)$ for $w_i \in \{a, b, c, d\}$ and $w_x \in \{a, b, c\}$ according to the formulas given in the lecture.