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Allen’s Interval Calculus Motivation

Qualitative Temporal Representation and Reasoning

Often we do not want to talk about precise times:

◮ NLP – we do not have precise time points

◮ Planning – we do not want to commit to time points too early

◮ Scenario descriptions – we do not have the exact times or do not want to
state them

What are the primitives in our representation system?

◮ Time points: actions and events are instantaneous, or we consider their
beginning and ending

◮ Time intervals: actions and events have duration

◮ Reducibility? Expressiveness? Computational costs for reasoning?
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Allen’s Interval Calculus Motivation

Motivation: Example

Consider a planning scenario for multimedia generation:

P1: Display Picture1

P2: Say “Put the plug in.”

P3: Say “The device should be shut off.”

P4: Point to Plug-in-Picture1.

Temporal relations between events:

P2 should happen during P1
P3 should happen during P1
P2 should happen before or directly precede P3
P4 should happen during or end together with P2

Ã P4 happens before or directly precedes P3”

Ã We could add the statement “P4 does not overlap with P3” without
creating an inconsistency.
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Allen’s Interval Calculus Intervals and Relations Between Them

Allen’s Interval Calculus

◮ Allen’s interval calculus: time intervals and binary relations over them

◮ Time intervals: X = (X−,X+), where X− and X+ are interpreted over the
reals and X− < X+ (Ã naı̈ve approach)

◮ Relations between concrete intervals, e. g.:

(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)

. . .

Ã Which relations are conceivable?
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Allen’s Interval Calculus Intervals and Relations Between Them

The Base Relations

How many ways are there to order the four points of two intervals?

Relation Symbol Name

{(X ,Y ) : X− < X+ < Y− < Y +} ≺ before

{(X ,Y ) : X− < X+ = Y− < Y +} m meets

{(X ,Y ) : X− < Y− < X+ < Y +} o overlaps

{(X ,Y ) : X− = Y− < X+ < Y +} s starts

{(X ,Y ) : Y− < X− < X+ = Y +} f finishes

{(X ,Y ) : Y− < X− < X+ < Y +} d during

{(X ,Y ) : Y− = X− < X+ = Y +} ≡ equal

and the converse relations (obtained by exchanging X and Y )

Ã These relations are JEPD.

(Knowledge Representation and Reasoning) Qualitative Reasoning January 18, 2006 6 / 40



Allen’s Interval Calculus Intervals and Relations Between Them

The 13 Base Relations Graphically
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Allen’s Interval Calculus Intervals and Relations Between Them

Disjunctive Descriptions

◮ Assumption: We don’t have precise information about the relation
between X and Y , e. g.:

X oY or X mY

◮ . . . modelled by sets of base relations (meaning the union of the relations):

X {o,m}Y

Ã 213 imprecise relations (incl. /0 and B)

Example of an indefinite qualitative description:

{

X {o,m}Y, Y {m}Z,X {o,m}Z

}
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Allen’s Interval Calculus Processing an Example

Our Example . . . Formal

P1: Display Picture1 P2: Say “Put the plug in.”
P3: Say “The device should be shut off.” P4: Point to Plug-in-Picture1.
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Compose the constraints: P4{d,f}P2 and P2{d}P1: P4{d}P1.
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Allen’s Interval Calculus Outlook

Outlook

◮ Using the composition table and the rules about operations on relations,
we can deduce new relations between time intervals.

◮ What would be a systematic approach?

◮ How costly is that?

◮ Is that complete?

◮ If not, could it be complete on a subset of the relation system?
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Reasoning in Allen’s Interval Calculus Constraint propagation algorithms (enforcing path consistency)

Constraint Propagation – The Naive Algorithm

Enforcing path-consistency using the straight-forward method:
Let Table [i, j] be an array of size |n|× |n| (n: number of intervals), in which we
have recorded the constraints between the intervals.

EnforcePathConsistency1 (C ):
Input: a (binary) CSP C = 〈V,D,C〉
Output: an equivalent, but path consistent CSP C ′

repeat
for each pair (i, j), 1≤ i, j ≤ n

for each k with 1≤ k ≤ n
Table [i, j] := Table [i, j]∩ (Table [i,k]◦Table [k, j])

endfor
endfor

until no entry in Table is changed

Ã terminates;

Ã needs O(n5) intersections and compositions.
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Reasoning in Allen’s Interval Calculus Constraint propagation algorithms (enforcing path consistency)

An O(n3) Algorithm

EnforcePathConsistency2 (C ):
Input: a (binary) CSP C = 〈V,D,C〉
Output: an equivalent, but path consistent CSP C ′

Paths(i, j) = {(i, j,k) : 1≤ k ≤ n}∪{(k, i, j) : 1≤ k ≤ n}
Queue :=

S

i, j Paths(i, j)

While Q 6= /0
select and delete (i,k, j) from Q
T := Table [i, j]∩ (Table [i,k]◦Table [k, j])

if T 6= Table [i, j]
Table [i, j] := T
Table [ j, i] := T−1

Queue := Queue∪Paths(i, j)
endif

endwhile
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Reasoning in Allen’s Interval Calculus Example for Incompleteness

Example for Incompleteness
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Reasoning in Allen’s Interval Calculus NP-Hardness Example

NP-Hardness

Theorem (Kautz & Vilain)
CSAT is NP-hard for Allen’s interval calculus.

Proof.
Reduction from 3-colorability (original proof using 3Sat).

Let G = (V,E), V = {v1, . . . ,vn} be an instance of 3-colorability.
Then we use the intervals {v1, . . . ,vn,1,2,3} with the following constraints:

1 {m} 2
2 {m} 3
vi {m,≡,m−1} 2 ∀vi ∈V
vi {m,m−1,≺,≻} v j ∀(vi,v j) ∈ E

This constraint system is satisfiable iff G can be colored with 3 colors.
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Reasoning in Allen’s Interval Calculus The Continuous Endpoint Class

Looking for Special Cases

◮ Idea: Let us look for polynomial special cases. In particular, let us look for
sets of relations (subsets of the entire set of relations) that have an easy
CSAT problem.

◮ Note: Interval formulae X R Y can be expressed as clauses over atoms of
the form a op b, where:

◮ a and b are endpoints X−,X+,Y− and Y + and
◮ op ∈ {<,>,=,≤,≥}.

◮ Example: All base relations can be expressed as unit clauses.

Lemma
Let π(Θ) be the translation of Θ to clause form. Θ is satisfiable over intervals
iff π(Θ) is satisfiable over the rational numbers.
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Reasoning in Allen’s Interval Calculus The Continuous Endpoint Class

The Continuous Endpoint Class

Continuous Endpoint Class C : This is a subset of A such that there exists a
clause form for each relation containing only unit clauses where ¬(a = b) is
forbidden.

Example: All basic relations and {d,o,s}, because

π(X {d,o,s}Y ) = { X− < X+,Y− < Y +,
X− < Y +,X+ > Y−,
X+ < Y +}

¾ -

¾ -¾ ....¾ ...

Y

X
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Why Do We Have Completeness?

The set C is closed under intersection, composition, and converse (it is a
sub-algebra wrt. these three operations on relations). This can be shown by
using a computer program.

Lemma
Each 3-consistent interval CSP over C is globally consistent.

Theorem (van Beek)
Path consistency solves CMIN(C ) and decides CSAT(C ).

Proof.
Follows from the above lemma and the fact that a strongly n-consistent CSP is
minimal.

Corollary

A path consistent interval CSP consisting of base relations only is satisfiable.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Helly’s Theorem

Definition
A set M ⊆ Rn is convex iff for all pairs of points a,b ∈ M, all points on the line
connecting a and b belong to M.

Theorem (Helly)

Let F be a family of at least n+1 convex sets in Rn. If all sub-families of F
with n+1 sets have a non-empty intersection, then

T

F 6= /0.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Strong n-Consistency (1)

Proof.
We prove the claim by induction over k with k ≤ n.

Base case: k = 1,2,3
√

Induction assumption: Assume strong k−1-consistency (and non-emptiness
of all relations)

Induction step: From the assumption, it follows that there is an instantiation of
k−1 variables Xi to pairs (si,ei) satisfying the constraints Ri j between the
k−1 variables.

We have to show that we can extend the instantiation to any kth variable.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Strong n-Consistency (2): Instantiating the kth Variable

Proof (Part 2).
The instantiation of the k−1 variables Xi to (si,ei) restricts the instantiation of
Xk.

Note: Since Ri j ∈ C by assumption, these restrictions can be expressed by
inequalities of the form:

si < X+
k ∧ e j ≥ X−

k ∧ . . .

Such inequalities define convex subsets in R2.

Ã Consider sets of 3 inequalities (= 3 convex sets).
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Strong n-Consistency (3): Using Helly’s Theorem

Proof (Part 3).
Case 1: All 3 inequalities mention only X−

k (or mention only X+
k ). Then it

suffices to consider only 2 of these inequalities (the strongest). Because of
3-consistency, there exists at least 1 common point satisfying these 3
inequalities.

Case 2: The inequalities mention X−
k and X+

k , but it does not contain the
inequality X−

k < X+
k . Then there are at most 2 inequalities with the same

variable and we have the same situation as in Case 1.

Case 3: The set contains the inequality X−
k < X+

k . In this case, only three
intervals (incl. Xk) can be involved and by the same argument as above there
exists a common point.

Ã With Helly’s Theorem, it follows that there exists a consistent instantiation
for all subsets of variables.

Ã Strong k-consistency for all k ≤ n.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Outlook

◮ CMIN(C ) can be computed in O(n3) time (for n being the number of
intervals) using the path consistency algorithm.

◮ C is a set of relations occurring “naturally” when observations are
uncertain.

◮ C contains 83 relations (incl. the impossible and the universal relations).

◮ Are there larger sets such that path consistency computes minimal
CSPs? Probably not

◮ Are there larger sets of relations that permit polynomial satisfiability
testing? Yes
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A Maximal Tractable Sub-Algebra The Endpoint Subclass

The EP-Subclass
End-Point Subclass: P ⊆ A is the subclass that permits a clause form
containing only unit clauses (a 6= b is allowed).

Example: all basic relations and {d,o} since

π(X {d,o}Y ) = { X− < X+,Y− < Y +,
X− < Y +,X+ > Y−,X− 6= Y−,
X+ < Y +}

¾ -

¾ -X ....¾ ...

Y

X

Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)
The path-consistency method decides CSAT(P ).
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

The ORD-Horn Subclass

ORD-Horn Subclass: H ⊆ A is the subclass that permits a clause form
containing only Horn clauses , where only the following literals are allowed:

a ≤ b,a = b,a 6= b

¬a ≤ b is not allowed!

Example: all R ∈ P and {o,s,f−1}:

π(X{o,s,f−1}Y ) =
{

X− ≤ X+,X− 6= X+,
Y− ≤ Y +,Y− 6= Y +,
X− ≤ Y−,
X− ≤ Y +,X− 6= Y +,
Y− ≤ X+,X+ 6= Y−,
X+ ≤ Y +,

X− 6= Y−∨X+ 6= Y +
}

.
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Partial Orders: The ORD Theory

Let ORD be the following theory:

∀x,y,z : x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
∀x : x ≤ x (reflexivity)
∀x,y : x ≤ y ∧ y ≤ x → x = y (anti-symmetry)
∀x,y : x = y → x ≤ y (weakening of =)
∀x,y : x = y → y ≤ x (weakening of =).

◮ ORD describes partially ordered sets, ≤ being the ordering relation.

◮ ORD is a Horn theory

◮ What is missing wrt to dense and linear orders?
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Satisfiability over Partial Orders

Proposition
Let Θ be a CSP over H . Θ is satisfiable over interval interpretations iff
π(Θ)∪ORD is satisfiable over arbitrary interpretations.

Proof.
⇒: Since the reals form a partially ordered set (i. e., satisfy ORD), this
direction is trivial.
⇐: Each extension of a partial order to a linear order satisfies all formulae of
the form a ≤ b, a = b, and a 6= b which have been satisfied over the original
partial order.
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Complexity of CSAT(H )

Let ORDπ(Θ) be the propositional theory resulting from instantiating all axioms
with the endpoints occurring in π(Θ).

Proposition
ORD∪π(Θ) is satisfiable iff ORDπ(Θ)∪π(Θ) is so.

Proof idea: Herbrand expansion!

Theorem
CSAT(H ) can be decided in polynomial time.

Proof.
CSAT(H ) instances can be translated into a propositional Horn theory with
blowup O(n3) according to the previous Prop., and such a theory is decidable
in polynomial time.

C ⊂ P ⊂ H with |C | = 83, |P | = 188, |H | = 868
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Path-Consistency and the OH-Class

Lemma
Let Θ be a path-consistent set over H . Then

(X{}Y ) /∈ Θ iff Θ is satisfiable

Proof Idea.
One can show that ORDπ(Θ)∪π(Θ) is closed wrt positive unit resolution.
Since this inference rule is refutation complete for Horn theories, the claim
follows.

Lemma
H is closed under intersection, composition, and conversion.

Theorem
The path-consistency method decides CSAT(H ).

Ã Maximality of H ?
Ã Do we have to check all 8192 - 868 extensions?

(Knowledge Representation and Reasoning) Qualitative Reasoning January 18, 2006 31 / 40



A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Complexity of Sub-Algebras

Let Ŝ be the closure of S ⊆ A under converse, intersection, and composition
(i.e., the carrier of the least sub-algebra generated by S)

Theorem
CSAT(Ŝ) can be polynomially transformed to CSAT(S).

Proof Idea.
All relations in Ŝ−S can be modeled by a fixed number of compositions,
intersections, and conversions of relations in S, introducing perhaps some
fresh variables.

Ã Polynomiality of S extends to Ŝ.

Ã NP-hardness of Ŝ is inherited by all generating sets S.

Ã Note: H = Ĥ .
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A Maximal Tractable Sub-Algebra Maximality

Minimal Extensions of the H -Subclass

A computer-aided case analysis leads to the following result:

Lemma
There are only two minimal sub-algebras that strictly contain H : X1,X2

N1 = {d,d−1,o−1,s−1,f} ∈ X1

N2 = {d−1,o,o−1,s−1,f−1} ∈ X2

The clause form of these relations contain “proper” disjunctions!

Theorem
CSAT(H ∪{Ni}) is NP-complete.

Question: Are there other maximal tractable subclasses?
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A Maximal Tractable Sub-Algebra Maximality

“Interesting” Subclasses

Interesting subclasses of A should contain all basic relations.

A computer-aided case analysis reveals: For S ⊇ {{B} : B ∈ B} it holds that

1. Ŝ ⊆ H , or

2. N1 or N2 is in Ŝ.

In case 2, one can show: CSAT(S) is NP-complete.

Ã H is the only maximal tractable subclass that is interesting.

Meanwhile, there is a complete classification of all sub-algebras containing at
least one basic relation [IJCAI 2001] . . . but the question for sub-algebras not
containing a basic relation is open.
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A Maximal Tractable Sub-Algebra Maximality

Relevance?

Theoretical:

We now know the boundary between polynomial and NP-hard
reasoning problems along the dimension expressiveness. ⊕

Practical: All known applications either need only P or they need more
than H ! ⊖
Backtracking methods might profit from the result because the
branching factor is lower. ?

Ã How difficult is CSAT(A ) in practice?
Ã What are the relevant branching factors?
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A Maximal Tractable Sub-Algebra Solving Arbitrary Allen CSPs

Solving General Allen CSPs

◮ Backtracking algorithm using path-consistency as a forward-checking
method

◮ Relies on tractable fragments of Allen’s calculus: split relations into
relations of a tractable fragment, and backtrack over these.

◮ Refinements and evaluation of different heuristics

Ã Which tractable fragment should one use?
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A Maximal Tractable Sub-Algebra Solving Arbitrary Allen CSPs

Branching Factors

◮ If the labels are split into base relations, then on average a label is split
into

6.5 relations

◮ If the labels are split into pointizable relations (P ), then on average a label
is split into

2.955 relations

◮ If the labels are split into ORD-Horn relations (H ), then on average a
label is split into

2.533 relations

Ã A difference of 0.422

Ã This makes a difference for “hard” instances.
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A Maximal Tractable Sub-Algebra Solving Arbitrary Allen CSPs

Summary

◮ Allen’s interval calculus is often adequate for describing relative orders of
events that have duration.

◮ The satisfiability problem for CSPs using the relations is NP-complete.

◮ For the continuous endpoint class, minimal CSPs can be computed using
the path-consistency method.

◮ For the larger ORD-Horn class, CSAT is still decided by the
path-consistency method.

◮ Can be used in practice for backtracking algorithms.
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