Qualitative Representation and Reasoning Allen's Interval Calculus

Knowledge Representation and Reasoning

January 18, 2006

(Knowledge Representation and Reasoning)

Qualitative Reasoning

Allen's Interval Calculus – Outline

Allen's Interval Calculus

Motivation Intervals and Relations Between Them Processing an Example Composition Table Outlook

Reasoning in Allen's Interval Calculus

A Maximal Tractable Sub-Algebra

Literature

Qualitative Temporal Representation and Reasoning

Often we do not want to talk about precise times:

- NLP we do not have precise time points
- Planning we do not want to commit to time points too early
- Scenario descriptions we do not have the exact times or do not want to state them

What are the primitives in our representation system?

- Time points: actions and events are instantaneous, or we consider their beginning and ending
- Time intervals: actions and events have duration
- Reducibility? Expressiveness? Computational costs for reasoning?

Motivation: Example

Consider a planning scenario for multimedia generation:

- P1: *Display* Picture1
- P2: Say "Put the plug in."
- P3: Say "The device should be shut off."
- P4: Point to Plug-in-Picture1.

Temporal relations between events:

P2	should happen during	P1
P3	should happen during	P1

- P2 should happen before or directly precede P3
- P4 should happen during or end together with P2
- → P4 happens before or directly precedes P3"
- We could add the statement "P4 does not overlap with P3" without creating an inconsistency.

Allen's Interval Calculus

- Allen's interval calculus: time intervals and binary relations over them
- ► *Time intervals*: $X = (X^-, X^+)$, where X^- and X^+ are interpreted over the reals and $X^- < X^+$ (\rightsquigarrow naïve approach)
- Relations between concrete intervals, e.g.:

(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)

→ Which relations are conceivable?

. . .

The Base Relations

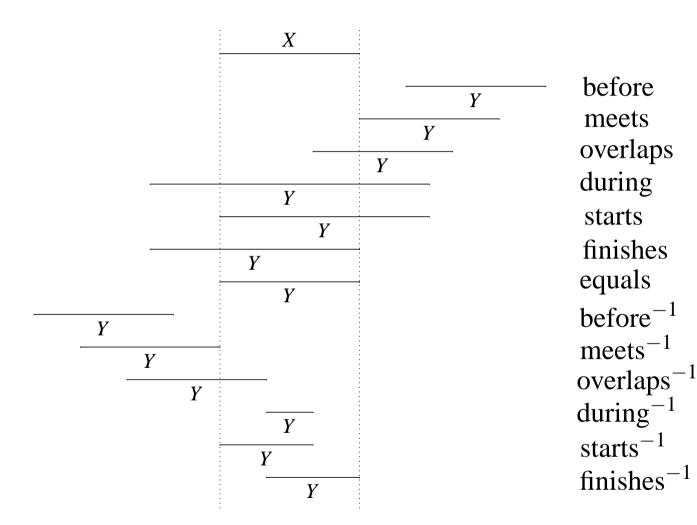
How many ways are there to order the four points of two intervals?

Relation	Symbol	Name
$\{(X,Y): X^- < X^+ < Y^- < Y^+\}$	\prec	before
$\{(X,Y): X^- < X^+ = Y^- < Y^+\}$	m	meets
$\{(X,Y): X^- < Y^- < X^+ < Y^+\}$	0	overlaps
$\{(X,Y):X^-=Y^- < X^+ < Y^+\}$	S	starts
$\{(X,Y):Y^- < X^- < X^+ = Y^+\}$	f	finishes
$\{(X,Y):Y^- < X^- < X^+ < Y^+\}$	d	during
$\{(X,Y) : Y^- = X^- < X^+ = Y^+\}$		equal

and the **converse** relations (obtained by exchanging X and Y)

 \rightsquigarrow These relations are JEPD.

The 13 Base Relations Graphically



Disjunctive Descriptions

Assumption: We don't have precise information about the relation between X and Y, e.g.:

 $X \circ Y$ or X m Y

modelled by sets of base relations (meaning the union of the relations):

 $X \{ o, m \} Y$

 $\rightsquigarrow 2^{13}$ imprecise relations (incl. \emptyset and **B**)

Example of an indefinite qualitative description:

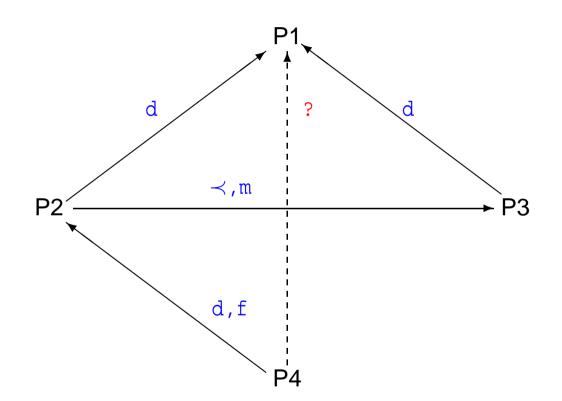
$$\left\{X\left\{\mathtt{o},\mathtt{m}\right\}Y,Y\left\{\mathtt{m}\right\}Z,X\left\{\mathtt{o},\mathtt{m}\right\}Z\right\}$$

Our Example ... Formal

- P1: *Display* Picture1
- P3: Say "The device should be shut off."

P2: Say "Put the plug in."

P4: Point to Plug-in-Picture1.



Compose the constraints: $P4 \{d, f\} P2$ and $P2 \{d\} P1$: $P4 \{d\} P1$.

(Knowledge Representation and Reasoning)

Qualitative Reasoning

	\prec	\succ	d	d^{-1}	ο	o^{-1}	m	${\tt m}^{-1}$	s	s^{-1}	f	\mathtt{f}^{-1}
\prec	Y	В	γo md s	Y	Y	γo md s	Υ	y o ∀ md s	Y	Υ	≺ o md s	Y
\succ	В	Y	$\begin{array}{c} \succ \mathrm{o}^{-1} \\ \mathrm{m}^{-1} \mathrm{d} \\ \mathrm{f} \end{array}$	×	$\begin{array}{c} \succ \mathrm{o}^{-1} \\ \mathrm{m}^{-1} \mathrm{d} \\ \mathrm{f} \end{array}$	X	$\begin{array}{c} \succ \mathrm{o}^{-1} \\ \mathrm{m}^{-1} \mathrm{d} \\ \mathrm{f} \end{array}$	Y	$\begin{array}{c} \succ \mathrm{o}^{-1} \\ \mathrm{m}^{-1} \mathrm{d} \\ \mathrm{f} \end{array}$	¥	\succ	\succ
d	¥	¥	d	В	≺o md s	$\begin{array}{c} \succ \mathrm{o}^{-1} \\ \mathrm{m}^{-1} \mathrm{d} \\ \mathrm{f} \end{array}$	Ý	Y	d	$\begin{array}{c} \succ \mathrm{o}^{-1} \\ \mathrm{m}^{-1} \mathrm{d} \\ \mathrm{f} \end{array}$	d	≺ o md s
d^{-1}	$\begin{array}{c} \prec \ {\tt o} \\ {\tt m} {\tt d}^{-1} \\ {\tt f}^{-1} \end{array}$	$\begin{array}{c}\succ \mathrm{o}^{-1}\\ \mathrm{m}^{-1}\mathrm{d}^{-1}\\ \mathrm{s}^{-1}\end{array}$	$\mathbf{B}-\ \prec\succ\ \mathtt{m}\mathtt{m}^{-1}$	d^{-1}	$egin{array}{c} \mathbf{o} \\ \mathbf{d}^{-1} \\ \mathbf{f}^{-1} \end{array}$	o^{-1} d^{-1} s^{-1}	$\begin{array}{c} o \\ d^{-1} \\ f^{-1} \end{array}$	o^{-1} d^{-1} s^{-1}	$\begin{array}{c} o \\ d^{-1} \\ f^{-1} \end{array}$	d^{-1}	o^{-1} d^{-1} s^{-1}	d^{-1}
o	×	$\begin{array}{c}\succ o^{-1}\\ \mathtt{m}^{-1}\mathtt{d}^{-1}\\ \mathtt{s}^{-1}\end{array}$	o d s	$rac{d}{d} \sim o$ $\mathtt{m} \mathtt{d}^{-1}$ \mathtt{f}^{-1}	үод	$\mathbf{B}-\ \prec\succ\ \mathtt{m}\mathtt{m}^{-1}$	Ý	o^{-1} d^{-1} s^{-1}	0	d^{-1} f^{-1} o	d s o	≺ о д
o^{-1}	$\begin{array}{c} \prec \texttt{o} \\ \texttt{m}, \texttt{d}^{-1} \\ \texttt{f}^{-1} \end{array}$	¥	o ⁻¹ d f	$\begin{array}{c} \succ, {\tt o}^{-1} \\ {\tt m}^{-1} {\tt d}^{-1} \\ {\tt s}^{-1} \end{array}$	$\mathbf{B}-\ \prec\succ\ \mathtt{m}\mathtt{m}^{-1}$	\succ o ⁻¹ m ⁻¹	$egin{array}{c} o \\ d^{-1} \\ f^{-1} \end{array}$	Y	o ⁻¹ d f	\circ^{-1} \succ m^{-1}	o ⁻¹	o^{-1} d^{-1} s^{-1}
m	\prec	$\begin{array}{c}\succ o^{-1}\\ \mathtt{m}^{-1}\mathtt{d}^{-1}\\ \mathtt{s}^{-1}\end{array}$	o d s	Y	Y	o d s	Y	${f f}{f f^{-1}}$	m	m	d s o	\prec
${\tt m}^{-1}$	$\begin{array}{c} \prec \ {\tt o} \\ {\tt m} {\tt d}^{-1} \\ {\tt f}^{-1} \end{array}$	Y	\circ^{-1} d f	$\scriptstyle \star$	o^{-1} d f	¥	${f s}^{-1}$	Y	d f o ⁻¹	Y	m^{-1}	m^{-1}
s	Y	Y	d	\prec o md ⁻¹ f ⁻¹	Yо Е	o^{-1} d f	Y	${\tt m}^{-1}$	s	s s ^{−1} ≡	d	Υщо
s^{-1}	$\begin{array}{c} \prec \ {\tt o} \\ {\tt m} {\tt d}^{-1} \\ {\tt f}^{-1} \end{array}$	Y	o ⁻¹ .d f	d^{-1}	o d^{-1} f^{-1}	o^{-1}	$egin{array}{c} o \\ d^{-1} \\ \mathtt{f}^{-1} \end{array}$	${\tt m}^{-1}$	${f s}^{-1}$	s^{-1}	o ⁻¹	d^{-1}
f	\prec	¥	d	$\begin{array}{c} \succ \mathrm{o}^{-1} \\ \mathrm{m}^{-1} \mathrm{d}^{-1} \\ \mathrm{s}^{-1} \end{array}$	o d s	\succ o ⁻¹ m ⁻¹	m	Y	d	\succ o ⁻¹ m ⁻¹	f	${f f} {f f}^{-1} \equiv$
f^{-1}	\prec	$\begin{array}{c} \succ \ \mathbf{o}^{-1} \\ \mathbf{m}^{-1} \mathbf{d}^{-1} \\ \mathbf{s}^{-1} \end{array}$	o d s	d^{-1}	0	$o^{-1} d^{-1} s^{-1}$	m	s^{-1} o^{-1} d^{-1}	0	d^{-1}	${f f} {f f}^{-1} \equiv$	f^{-1}
											I	

Outlook

- Using the composition table and the rules about operations on relations, we can deduce new relations between time intervals.
- What would be a systematic approach?
- How costly is that?
- Is that complete?
- If not, could it be complete on a subset of the relation system?

Reasoning in Allen's Interval Calculus

Allen's Interval Calculus

Reasoning in Allen's Interval Calculus

Constraint propagation algorithms (enforcing path consistency) Example for Incompleteness NP-Hardness Example The Continuous Endpoint Class Completeness for the CEP Class

A Maximal Tractable Sub-Algebra

Literature

Constraint Propagation – The Naive Algorithm

Enforcing path-consistency using the straight-forward method: Let Table[i, j] be an array of size $|n| \times |n|$ (*n*: number of intervals), in which we have recorded the constraints between the intervals.

> **EnforcePathConsistency1** (C): *Input:* a (binary) CSP $C = \langle V, D, C \rangle$ *Output:* an equivalent, but path consistent CSP C'

repeat

```
for each pair (i, j), 1 \le i, j \le n
for each k with 1 \le k \le n
Table [i, j] := Table [i, j] \cap (Table [i, k] \circ Table [k, j])
endfor
endfor
until no entry in Table is changed
```

- → terminates;
- \rightsquigarrow needs $O(n^5)$ intersections and compositions.

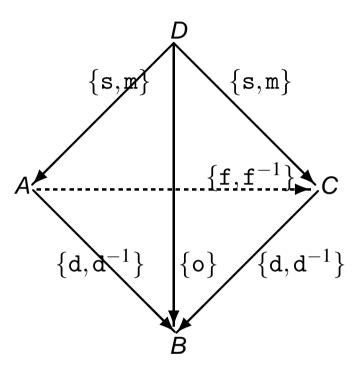
(Knowledge Representation and Reasoning)

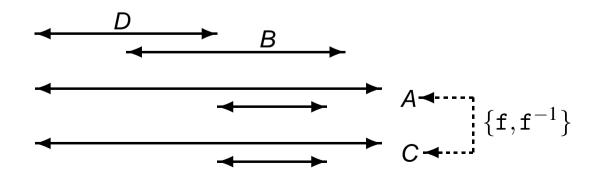
An $O(n^3)$ Algorithm

```
EnforcePathConsistency2 (C):
Input: a (binary) CSP C = \langle V, D, C \rangle
Output: an equivalent, but path consistent CSP C'
Paths(i, j) = \{(i, j, k) : 1 \le k \le n\} \cup \{(k, i, j) : 1 \le k \le n\}
Queue := \bigcup_{i, i} Paths(i, j)
While Q \neq \emptyset
    select and delete (i, k, j) from Q
    T := Table[i, j] \cap (Table[i, k] \circ Table[k, j])
    if T \neq Table[i, j]
         Table [i, j] := T
         Table [i, i] := T^{-1}
         Queue := Queue \cup Paths(i, j)
    endif
endwhile
```

(Knowledge Representation and Reasoning)

Example for Incompleteness





NP-Hardness

Theorem (Kautz & Vilain)

CSAT is NP-hard for Allen's interval calculus.

Proof.

Reduction from 3-colorability (original proof using 3Sat).

Let G = (V, E), $V = \{v_1, \dots, v_n\}$ be an instance of 3-colorability. Then we use the intervals $\{v_1, \dots, v_n, 1, 2, 3\}$ with the following constraints:

This constraint system is satisfiable *iff* G can be colored with 3 colors.

Looking for Special Cases

- Idea: Let us look for polynomial special cases. In particular, let us look for sets of relations (subsets of the entire set of relations) that have an easy CSAT problem.
- Note: Interval formulae X R Y can be expressed as clauses over atoms of the form *a op b*, where:
 - *a* and *b* are endpoints X^-, X^+, Y^- and Y^+ and
 - $\blacktriangleright op \in \{<,>,=,\leq,\geq\}.$
- **Example**: All base relations can be expressed as unit clauses.

Lemma

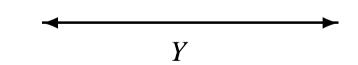
Let $\pi(\Theta)$ be the translation of Θ to clause form. Θ is satisfiable over intervals iff $\pi(\Theta)$ is satisfiable over the rational numbers.

The Continuous Endpoint Class

Continuous Endpoint Class C: This is a subset of A such that there exists a clause form for each relation containing only unit clauses where $\neg(a = b)$ is forbidden.

Example: All basic relations and $\{d, o, s\}$, because

$$\pi(X \{d, o, s\}Y) = \{X^{-} < X^{+}, Y^{-} < Y^{+}, X^{-} < Y^{+}, X^{-} < Y^{+}, X^{+} > Y^{-}, X^{+} < Y^{+}\}$$



Why Do We Have Completeness?

The set C is closed under intersection, composition, and converse (it is a *sub-algebra* wrt. these three operations on relations). This can be shown by using a computer program.

Lemma

Each 3-consistent interval CSP over *C* is globally consistent.

Theorem (van Beek)

Path consistency solves CMIN(C) and decides CSAT(C).

Proof.

Follows from the above lemma and the fact that a strongly n-consistent CSP is minimal.

Corollary

A path consistent interval CSP consisting of base relations only is satisfiable.

Helly's Theorem

Definition

A set $M \subseteq \mathbb{R}^n$ is *convex* iff for all pairs of points $a, b \in M$, all points on the line connecting a and b belong to M.

Theorem (Helly)

Let *F* be a family of at least n + 1 convex sets in \mathbb{R}^n . If all sub-families of *F* with n + 1 sets have a non-empty intersection, then $\bigcap F \neq \emptyset$.

Strong *n*-Consistency (1)

Proof.

We prove the claim by induction over k with $k \leq n$.

Base case: $k = 1, 2, 3 \quad \sqrt{}$

Induction assumption: Assume strong k - 1-consistency (and non-emptiness of all relations)

Induction step: From the assumption, it follows that there is an instantiation of k-1 variables X_i to pairs (s_i, e_i) satisfying the constraints R_{ij} between the k-1 variables.

We have to show that we can extend the instantiation to any kth variable.

Strong *n*-Consistency (2): Instantiating the kth Variable

Proof (Part 2).

The instantiation of the k-1 variables X_i to (s_i, e_i) restricts the instantiation of X_k .

Note: Since $R_{ij} \in C$ by assumption, these restrictions can be expressed by inequalities of the form:

$$s_i < X_k^+ \wedge e_j \ge X_k^- \wedge \dots$$

Such inequalities define convex subsets in \mathbf{R}^2 .

 \rightsquigarrow Consider sets of 3 inequalities (= 3 convex sets).

Strong *n*-Consistency (3): Using Helly's Theorem

Proof (Part 3).

Case 1: All 3 inequalities mention only X_k^- (or mention only X_k^+). Then it suffices to consider only 2 of these inequalities (the strongest). Because of 3-consistency, there exists at least 1 common point satisfying these 3 inequalities.

Case 2: The inequalities mention X_k^- and X_k^+ , but it does not contain the inequality $X_k^- < X_k^+$. Then there are at most 2 inequalities with the same variable and we have the same situation as in Case 1.

Case 3: The set contains the inequality $X_k^- < X_k^+$. In this case, only three intervals (incl. X_k) can be involved and by the same argument as above there exists a common point.

- → With Helly's Theorem, it follows that there exists a consistent instantiation for all subsets of variables.
- → Strong *k*-consistency for all $k \le n$.

Outlook

- CMIN(C) can be computed in O(n³) time (for n being the number of intervals) using the path consistency algorithm.
- C is a set of relations occurring "naturally" when observations are uncertain.
- C contains 83 relations (incl. the impossible and the universal relations).
- Are there larger sets such that path consistency computes minimal CSPs? Probably not
- Are there larger sets of relations that permit polynomial satisfiability testing? Yes

A Maximal Tractable Sub-Algebra

Allen's Interval Calculus

Reasoning in Allen's Interval Calculus

A Maximal Tractable Sub-Algebra

The Endpoint Subclass The ORD-Horn Subclass Maximality Solving Arbitrary Allen CSPs

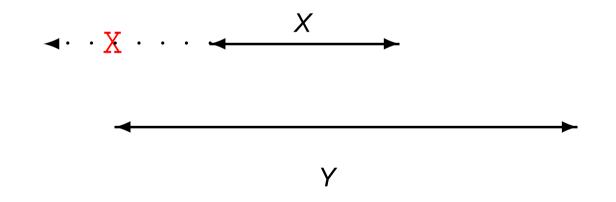
Literature

The EP-Subclass

End-Point Subclass: $\mathcal{P} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only unit clauses ($a \neq b$ is allowed).

Example: all basic relations and $\{d, o\}$ since

$$\begin{aligned} \pi(X \, \{ \mathtt{d}, \mathtt{o} \} \, Y) &= & \{ \, X^- < X^+, Y^- < Y^+, \\ & X^- < Y^+, X^+ > Y^-, X^- \neq Y^-, \\ & X^+ < Y^+ \} \end{aligned}$$



Theorem (Vilain & Kautz 86, Ladkin & Maddux 88) The path-consistency method decides CSAT(P).

(Knowledge Representation and Reasoning)

Qualitative Reasoning

The ORD-Horn Subclass

ORD-Horn Subclass: $\mathcal{H} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only Horn clauses, where only the following literals are allowed:

$$a \le b, a = b, a \ne b$$

 $\neg a \leq b$ is not allowed!

Example: all $R \in \mathcal{P}$ and $\{o, s, f^{-1}\}$:

$$\pi(X\{\mathsf{o},\mathsf{s},\mathsf{f}^{-1}\}Y) = \left\{ \begin{array}{l} X^{-} \leq X^{+}, X^{-} \neq X^{+}, \\ Y^{-} \leq Y^{+}, Y^{-} \neq Y^{+}, \\ X^{-} \leq Y^{-}, \\ X^{-} \leq Y^{+}, X^{-} \neq Y^{+}, \\ Y^{-} \leq X^{+}, X^{+} \neq Y^{-}, \\ X^{+} \leq Y^{+}, \\ X^{-} \neq Y^{-} \lor X^{+} \neq Y^{+} \right\}$$

Partial Orders: The ORD Theory

Let *ORD* be the following theory:

$\forall x, y, z$:	$x \le y \land y \le z$	\rightarrow	$x \leq z$	(transitivity)
$\forall x$:	$x \leq x$			(reflexivity)
$\forall x, y$:	$x \le y \land y \le x$	\rightarrow	x = y	(anti-symmetry)
$\forall x, y$:	x = y	\rightarrow	$x \le y$	(weakening of $=$)
$\forall x, y$:	x = y	\rightarrow	$y \le x$	(weakening of $=$).

- *ORD* describes partially ordered sets, \leq being the ordering relation.
- ORD is a Horn theory
- What is missing wrt to dense and linear orders?

Satisfiability over Partial Orders

Proposition

Let Θ be a CSP over \mathcal{H} . Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup ORD$ is satisfiable over arbitrary interpretations.

Proof.

 \Rightarrow : Since the reals form a partially ordered set (i. e., satisfy *ORD*), this direction is trivial.

 \Leftarrow : Each extension of a partial order to a linear order satisfies all formulae of the form $a \le b$, a = b, and $a \ne b$ which have been satisfied over the original partial order.

Complexity of $CSAT(\mathcal{H})$

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition

 $ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is so.

Proof idea: Herbrand expansion!

Theorem

 $CSAT(\mathcal{H})$ can be decided in polynomial time.

Proof.

CSAT(\mathcal{H}) instances can be translated into a propositional Horn theory with blowup $O(n^3)$ according to the previous Prop., and such a theory is decidable in polynomial time.

$$\mathcal{C} \subset \mathcal{P} \subset \mathcal{H}$$
 with $|\mathcal{C}| = 83, |\mathcal{P}| = 188, |\mathcal{H}| = 868$

Path-Consistency and the OH-Class

Lemma

Let Θ be a path-consistent set over \mathcal{H} . Then

 $(X{}) \notin \Theta$ iff Θ is satisfiable

Proof Idea.

One can show that $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma

 \mathcal{H} is closed under intersection, composition, and conversion.

Theorem

The path-consistency method decides $CSAT(\mathcal{H})$.

- \rightsquigarrow Maximality of \mathcal{H} ?
- → Do we have to check all 8192 868 extensions?

(Knowledge Representation and Reasoning)

Qualitative Reasoning

Complexity of Sub-Algebras

Let \hat{S} be the closure of $S \subseteq \mathcal{A}$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S)

Theorem

 $CSAT(\hat{S})$ can be polynomially transformed to CSAT(S).

Proof Idea.

All relations in $\hat{S} - S$ can be modeled by a fixed number of compositions, intersections, and conversions of relations in *S*, introducing perhaps some fresh variables.

- \rightsquigarrow Polynomiality of *S* extends to \hat{S} .
- \rightsquigarrow NP-hardness of \hat{S} is inherited by all generating sets *S*.
- \rightsquigarrow Note: $\mathcal{H} = \hat{\mathcal{H}}$.

Minimal Extensions of the \mathcal{H} -Subclass

A *computer-aided* case analysis leads to the following result:

Lemma

There are only two minimal sub-algebras that strictly contain \mathcal{H} : X_1, X_2

$$N_1 = \{ \mathbf{d}, \mathbf{d}^{-1}, \mathbf{o}^{-1}, \mathbf{s}^{-1}, \mathbf{f} \} \in X_1$$
$$N_2 = \{ \mathbf{d}^{-1}, \mathbf{o}, \mathbf{o}^{-1}, \mathbf{s}^{-1}, \mathbf{f}^{-1} \} \in X_2$$

The clause form of these relations contain "proper" disjunctions!

Theorem

 $CSAT(\mathcal{H} \cup \{N_i\})$ is NP-complete.

Question: Are there other maximal tractable subclasses?

(Knowledge Representation and Reasoning)

"Interesting" Subclasses

Interesting subclasses of \mathcal{A} should contain all basic relations.

A *computer-aided* case analysis reveals: For $S \supseteq \{\{B\} : B \in \mathbf{B}\}$ it holds that

- 1. $\hat{S} \subseteq \mathcal{H}$, or
- **2.** N_1 or N_2 is in \hat{S} .

In case 2, one can show: CSAT(*S*) is NP-complete.

 $\rightsquigarrow \mathcal{H}$ is the only maximal tractable subclass that is interesting.

Meanwhile, there is a complete classification of all sub-algebras containing at least one basic relation [IJCAI 2001] ... but the question for sub-algebras not containing a basic relation is open.

Relevance?

Theoretical:

We now know the boundary between polynomial and NP-hard reasoning problems along the dimension *expressiveness*.

Practical:All known applications either need only \mathcal{P} or they need more
than \mathcal{H} !

Backtracking methods might profit from the result because the branching factor is lower.

- \rightsquigarrow How difficult is CSAT(\mathcal{A}) in practice?
- → What are the relevant branching factors?

 \ominus

Solving General Allen CSPs

- Backtracking algorithm using path-consistency as a forward-checking method
- Relies on tractable fragments of Allen's calculus: split relations into relations of a tractable fragment, and backtrack over these.
- Refinements and evaluation of different heuristics
- → Which tractable fragment should one use?

Branching Factors

If the labels are split into base relations, then on average a label is split into

6.5 relations

If the labels are split into pointizable relations (P), then on average a label is split into

2.955 relations

► If the labels are split into ORD-Horn relations (*H*), then on average a label is split into

2.533 relations

- \rightarrow A difference of 0.422
- \rightarrow This makes a difference for "hard" instances.

Summary

- Allen's interval calculus is often adequate for describing relative orders of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the continuous endpoint class, minimal CSPs can be computed using the path-consistency method.
- For the larger ORD-Horn class, CSAT is still decided by the path-consistency method.
- Can be used in practice for backtracking algorithms.

Literature

Literature I

J. F. Allen.

Maintaining knowledge about temporal intervals. *Communications of the ACM*, 26(11):832–843, November 1983. Also in *Readings in Knowledge Representation*.

P. van Beek and R. Cohen.

Exact and approximate reasoning about temporal relations. *Computational Intelligence*, 6:132–144, 1990.

B. Nebel and H.-J. Bürckert.

Reasoning about temporal relations: A maximal tractable subclass of Allen's interval algebra,

Journal of the ACM, 42(1): 43-66, 1995.

B. Nebel.

Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-horn class.

CONSTRAINTS, 1(3): 175-190, 1997.

Literature

Literature II

A. Krokhin, P. Jeavons and P. Jonsson.

A complete classification of complexity in Allen's algebra in the presence of a non-trivial basic relation.

Proc. 17th Int. Joint Conf. on AI (IJCAI-01), 83-88, Seattle, WA, 2001.